Broadcast classical-quantum capacity region of two-phase bidirectional relaying channels
Energy Technology Data Exchange (ETDEWEB)
Boche, Holger; Cai, Minglai; Deppe, Christian [Technische Universitaet Muenchen, Fakultaet fuer Elektrotechnik und Informationstechnik, Lehrstuhl fuer Theoretische Informationstechnik (Germany)
2014-07-01
The transmission of quantum states over long distances is essential for future applications such as quantum networks. The direct transmission is limited by unavoidable losses of the channel. A promising alternative for long distance quantum states distribution is the use of quantum repeaters. We analyze a quantum repeater protocol which takes advantage of bidirectional communication. We consider a three-node quantum network which enables bidirectional communication between two nodes with a half-duplex relay node. The message m{sub 2} element of M{sub 2} is located at node 1 and the message m{sub 1} element of M{sub 1} is located at node 2, respectively. Our goal is that the message m{sub 2} element of M{sub 2} is known at node 2 and the message m{sub 1} element of M{sub 1} is known at node 1, respectively. We simplify the problem by assuming an a priori separation of the communication into two phases. The capacity of the first phase (MAC) is known. We determine the capacity region of the second phase (broadcast).
Musakaev, N. G.; Borodin, S. L.
2016-05-01
The mathematical model of the two-phase flow in a vertical well with an electric centrifugal pump located in the permafrost region is presented. The comparison of the calculation's results with experimental data, the results of numerical experiments by determining the flow structure, the temperature distribution in a well, influence of the temperature distribution on paraffin deposition and change in time of the radius of thawing in the frozen ground are presented.
Microstructure Formations in the Two-Phase Region of the Binary Peritectic Organic System TRIS-NPG
Mogeritsch, Johann; Ludwig, Andreas
2012-01-01
In order to prepare for an onboard experiment on the International Space Station (ISS), systematic directional solidification experiments with transparent hypoperitectic alloys were carried out at different solidification rates around the critical velocity for morphological stability of both solid phases. The investigations were done in the peritectic region of the binary transparent organic TRIS-NPG system where the formation of layered structures is expected to occur. The transparent appearance of the liquid and solid phase enables real time observations of the dynamic of pattern formation during solidification. The investigations show that frequently occurring nucleation events govern the peritectic solidification morphology which occurs at the limit of morphological stability. As a consequence, banded structures lead to coupled growth even if the lateral growth is much faster compared to the growth in pulling direction.
Ahmad, Zahoor; Hanif, Muhammad
2013-01-01
The development of estimators of population parameters based on two-phase sampling schemes has seen a dramatic increase in the past decade. Various authors have developed estimators of population using either one or two auxiliary variables. The present volume is a comprehensive collection of estimators available in single and two phase sampling. The book covers estimators which utilize information on single, two and multiple auxiliary variables of both quantitative and qualitative nature. Th...
Energy Technology Data Exchange (ETDEWEB)
Majta, J; Zurek, A.K.; Pietrzyk, M.
1999-07-13
The differences in microstructure development of hot deformed steels in the austenite and two-phase region have been effectively described using an integrated computer modeling process. In general, the complete model presented here takes into account kinetics of recrystallization, precipitation, phase transformation, recrystallized austenite grain size, ferrite grain size, and the resulting mechanical properties. The transformation submodel of niobium-microalloyed steels is based on the nucleation and grain growth theory and additivity rule. The thermomechanical part of the modeling process was effectively carried out using the finite element method. Results were obtained in different temperatures, strain rates, and range of deformation. The thermomechanical treatments are different for two grades of niobium-steels to make possible analysis of the resulting structure and properties for different histories of deformation and chemical composition.
Knudsen effusion mass spectrometric studies over (USn3+U3Sn7) two-phase region of U-Sn system
Manikandan, P.; Trinadh, V. V.; Bera, Suranjan; Narasimhan, T. S. Lakshmi; Ananthasivan, K.; Joseph, M.; Mudali, U. Kamachi
2017-08-01
Vaporisation studies over (USn3+U3Sn7) ;two-phase; field have been carried out by employing Knudsen effusion mass spectrometry (KEMS) in the temperature range of 1050-1226 K. Sn(g) was the species observed in the mass spectrum of the equilibrium vapour phase over the samples (71.5 at% Sn and 73.0 at% Sn). The partial pressure of Sn(g) was measured as a function of temperature over (USn3+U3Sn7) ;two-phase; field and the p-T relation was derived as log (pSn/Pa) = ((-14580 ± 91)/(T/K)) + (8.82 ± 0.08) (1050-1226 K). The vaporisation reaction 3USn3(s) = U3Sn7(s) + 2Sn(g) was evaluated by second law method. The Gibbs energy of formation of USn3(s) was derived as ΔfGm°(U Sn3 , s , T) (±1.8) = -173.4 + 0.055 T (K) (kJ mol-1) (1050-1226 K). The mass spectrometric studies on this system have been carried out for the first time.
Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media
Chen, J.
2014-06-03
This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow. 2014 Jie Chen et al.
Two-phase viscoelastic jetting
Energy Technology Data Exchange (ETDEWEB)
Yu, J-D; Sakai, S.; Sethian, J.A.
2008-12-10
A coupled finite difference algorithm on rectangular grids is developed for viscoelastic ink ejection simulations. The ink is modeled by the Oldroyd-B viscoelastic fluid model. The coupled algorithm seamlessly incorporates several things: (1) a coupled level set-projection method for incompressible immiscible two-phase fluid flows; (2) a higher-order Godunov type algorithm for the convection terms in the momentum and level set equations; (3) a simple first-order upwind algorithm for the convection term in the viscoelastic stress equations; (4) central difference approximations for viscosity, surface tension, and upper-convected derivative terms; and (5) an equivalent circuit model to calculate the inflow pressure (or flow rate) from dynamic voltage.
Institute of Scientific and Technical Information of China (English)
孙勇; 李文哲; 张鸿琼
2012-01-01
摘要；针对高寒地区农村户用沼气发酵周期过长、产气量少的状况,该文提出并设计了适用于高寒地区农村户用的两相厌氧发酵装置,通过确立合理的工艺方案,控制两相厌氧发酵中产酸相、料液温度和pH值、水力滞留时间等因素,探讨了在哈尔滨地区最寒冷季节,所设计的新型农村户用沼气发酵装置产气量与维持发酵罐体内料液温度所消耗沼气量之间的关系.结果表明:基于两相厌氧发酵的高寒地区高效户用沼气发酵装置最高产气率为1.35m3/(m3·d),是传统沼气池产气率( 0.35 m3/(m3·d))的4倍.冬季1月份日均结余4.08 m3沼气量足以满足三口之家照明、炊事所需能源,实现高寒地区户用沼气全年正能输出,可以取代传统沼气池.该文研究成果为今后寒地户用沼气的发展提供技术支持和参考依据.%According to the problems of long fermentation period and low gas production in the alpine region, a two-phase anaerobic fermentation device was designed for rural household biogas production in the alpine region. The fermentation parameters such as acid production, temperature and pH value of feed and hydraulic retention time were controlled during two-phase anaerobic fermentation. The relationship between the quantity of produced biogas during fermentation and the quantity of consumed biogas to maintain the biogas slurry temperature in most cold season in Harbin was discussed. Results showed that the highest methan production was 1.35 m3/(m3d) using the two-phase anaerobic fermentation process, which was four times higher than the traditional process of 0.35 m3/(m3-d). There was 4.08 m3 daily balance biogas to satisfy lighting and cooking for three people family in January of winter, which could operate in alpine region year-round. In addition, the equipment structure is reasonable and perfect, which might replace the traditional digester. The research can provide a technical support
Two-phase flow in refrigeration systems
Gu, Junjie; Gan, Zhongxue
2013-01-01
Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b
Two-phase flow studies. Final report
Energy Technology Data Exchange (ETDEWEB)
Kestin, J.; Maeder, P.F.
1980-08-01
Progress on the following is reported: literature survey, design of two-phase flow testing facility, design of nozzle loop, thermophysical properties, design manual, and advanced energy conversion systems. (MHR)
Dynamic Modeling of Phase Crossings in Two-Phase Flow
DEFF Research Database (Denmark)
Madsen, Søren; Veje, Christian; Willatzen, Morten
2012-01-01
of the variables and are usually very slow to evaluate. To overcome these challenges, we use an interpolation scheme with local refinement. The simulations show that the method handles crossing of the saturation lines for both liquid to two-phase and two-phase to gas regions. Furthermore, a novel result obtained...... in this work, the method is stable towards dynamic transitions of the inlet/outlet boundaries across the saturation lines. Results for these cases are presented along with a numerical demonstration of conservation of mass under dynamically varying boundary conditions. Finally we present results...
Velocity and energy relaxation in two-phase flows
Meyapin, Yannick; Gisclon, Marguerite
2009-01-01
In the present study we investigate analytically the process of velocity and energy relaxation in two-phase flows. We begin our exposition by considering the so-called six equations two-phase model [Ishii1975, Rovarch2006]. This model assumes each phase to possess its own velocity and energy variables. Despite recent advances, the six equations model remains computationally expensive for many practical applications. Moreover, its advection operator may be non-hyperbolic which poses additional theoretical difficulties to construct robust numerical schemes |Ghidaglia et al, 2001]. In order to simplify this system, we complete momentum and energy conservation equations by relaxation terms. When relaxation characteristic time tends to zero, velocities and energies are constrained to tend to common values for both phases. As a result, we obtain a simple two-phase model which was recently proposed for simulation of violent aerated flows [Dias et al, 2010]. The preservation of invariant regions and incompressible li...
Viscosity Solutions for the two-phase Stefan Problem
Kim, Inwon C
2010-01-01
We introduce a notion of viscosity solutions for the two-phase Stefan problem, which incorporates possible existence of a mushy region generated by the initial data. We show that a comparison principle holds between viscosity solutions, and investigate the coincidence of the viscosity solutions and the weak solutions defined via integration by parts. In particular, in the absence of initial mushy region, viscosity solution is the unique weak solution with the same boundary data.
Study of two-phase flows in reduced gravity
Roy, Tirthankar
have been done in the past to understand the global structure of gas-liquid two-phase flows under reduced gravity conditions, using experimental setups aboard drop towers or aircrafts flying parabolic flights, detailed data on local structure of such two-phase flows are extremely rare. Hence experiments were carried out in a 304 mm inner diameter (ID) test facility on earth. Keeping in mind the detailed experimental data base that needs to be generated to evaluate two-fluid model along with IATE, ground based simulations provide the only economic path. Here the reduced gravity condition is simulated using two-liquids of similar densities (water and Therminol 59 RTM in the present case). Only adiabatic two-phase flows were concentrated on at this initial stage. Such a large diameter test section was chosen to study the development of drops to their full extent (it is to be noted that under reduced gravity conditions the stable bubble size in gas-liquid two-phase flows is much larger than that at normal gravity conditions). Twelve flow conditions were chosen around predicted bubbly flow to cap-bubbly flow transition region. Detailed local data was obtained at ten radial locations for each of three axial locations using state-of-the art multi-sensor conductivity probes. The results are presented and discussed. Also one-group as well as two-group, steady state, one-dimensional IATE was evaluated against data obtained here and by other researchers, and the results presented and discussed.
Two-Phase Cavitating Flow in Turbomachines
Directory of Open Access Journals (Sweden)
Sandor I. Bernad
2012-11-01
Full Text Available Cavitating flows are notoriously complex because they are highly turbulent and unsteady flows involving two species (liquid/vapor with a large density difference. These features pose a unique challenge to numerical modeling works. The study briefly reviews the methodology curently employed for industrial cavitating flow simulations using the two-phase mixture model. The two-phase mixture model is evaluated and validated using benchmark problem where experimental data are available. A 3D cavitating flow computation is performed for the GAMM Francis runner. The model is able to qualitatively predict the location and extent of the 3D cavity on the blade, but further investigation are needed to quatitatively assess the accuracy for real turbomachinery cavitating flows.
Review of two-phase instabilities
Energy Technology Data Exchange (ETDEWEB)
Kang, Han Ok; Seo, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Lee, Doo Jeong
1997-06-01
KAERI is carrying out a development of the design for a new type of integral reactors. The once-through helical steam generator is important design features. The study on designs and operating conditions which prevent flow instability should precede the introduction of one-through steam generator. Experiments are currently scheduled to understand two-phase instability, evaluate the effect of each design parameter on the critical point, and determine proper inlet throttling for the prevention of instability. This report covers general two-phase instability with review of existing studies on this topics. The general classification of two phase flow instability and the characteristics of each type of instability are first described. Special attention is paid to BWR core flow instability and once-through steam generator instability. The reactivity feedback and the effect of system parameters are treated mainly for BWR. With relation to once-through steam generators, the characteristics of convective heating and dryout point oscillation are first investigated and then the existing experimental studies are summarized. Finally chapter summarized the proposed correlations for instability boundary conditions. (author). 231 refs., 5 tabs., 47 figs
Critical thinking: a two-phase framework.
Edwards, Sharon L
2007-09-01
This article provides a comprehensive review of how a two-phase framework can promote and engage nurses in the concepts of critical thinking. Nurse education is required to integrate critical thinking in their teaching strategies, as it is widely recognised as an important part of student nurses becoming analytical qualified practitioners. The two-phase framework can be incorporated in the classroom using enquiry-based scenarios or used to investigate situations that arise from practice, for reflection, analysis, theorising or to explore issues. This paper proposes a two-phase framework for incorporation in the classroom and practice to promote critical thinking. Phase 1 attempts to make it easier for nurses to organise and expound often complex and abstract ideas that arise when using critical thinking, identify more than one solution to the problem by using a variety of cues to facilitate action. Phase 2 encourages nurses to be accountable and responsible, to justify a decision, be creative and innovative in implementing change.
Microgravity Two-Phase Flow Transition
Parang, M.; Chao, D.
1999-01-01
Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.
Droplet Manipulations in Two Phase Flow Microfluidics
Directory of Open Access Journals (Sweden)
Arjen M. Pit
2015-11-01
Full Text Available Even though droplet microfluidics has been developed since the early 1980s, the number of applications that have resulted in commercial products is still relatively small. This is partly due to an ongoing maturation and integration of existing methods, but possibly also because of the emergence of new techniques, whose potential has not been fully realized. This review summarizes the currently existing techniques for manipulating droplets in two-phase flow microfluidics. Specifically, very recent developments like the use of acoustic waves, magnetic fields, surface energy wells, and electrostatic traps and rails are discussed. The physical principles are explained, and (potential advantages and drawbacks of different methods in the sense of versatility, flexibility, tunability and durability are discussed, where possible, per technique and per droplet operation: generation, transport, sorting, coalescence and splitting.
Two phase decision algorithm of replica allocation
Institute of Scientific and Technical Information of China (English)
Zuo Chaoshu; Liu Xinsong; Wang Zheng; Li Yi
2006-01-01
In distributed parallel server system, location and redundancy of replicas have great influence on availability and efficiency of the system. In order to improve availahility and efficiency of the system, two phase decision algorithm of replica allocation is proposed. The algorithm which makes use of auto-regression model dynamically predicts the future count of READ and WRITE operation, and then determines location and redundancy of replicas by considering availability, CPU and bands of the network. The algorithm can not only ensure the requirement of availability, but also reduce the system resources consumed by all the operations in a great scale. Analysis and test show that communication complexity and time complexity of the algorithm satisfy O( n ), resource optimizing scale increases with the increase of READ count.
Institute of Scientific and Technical Information of China (English)
王成龙; 丛腾龙; 田文喜; 秋穗正; 苏光辉
2014-01-01
基于两流体欧拉数学模型结合RPI壁面沸腾模型，利用大型商用CFD软件ANSYS CFX 12.0对蒸汽发生器传热管束过冷沸腾区一次侧、壁面和二次侧耦合传热过程进行了数值模拟。研究了三叶梅花孔支撑板和不同入口过冷度条件下蒸汽发生器传热管束内的流动沸腾现象，得到一、二次侧流场与温度场，二次侧空泡份额分布，支撑板梅花孔局部的流动状况及不同入口过冷度对蒸汽发生器热工水力特性的影响。数值模拟结果表明，三叶梅花孔支撑板的存在及不同入口过冷度对蒸汽发生器传热管束过冷沸腾区域的热工水力特性影响显著。%Based on two fluid Euler model combining with RPI wall boiling model ,the coupled heat transfer among the primary side ,the tube wall and the secondary side in the subcooled boiling region of the heat transfer tube bundle of steam generator (SG) was simulated by using ANSYS CFX 12.0 code .The flow boiling phenomenon occurred in the heat transfer tube bundle of SG under trefoil orifice plate and different inlet subcooling conditions was researched . The velocity and temperature distributions of both the primary and the secondary sides ,the void fraction distribution of the secondary side ,the local flow characteristics around trefoil orifice plate ,and the effect of different inlet subcoolings on thermal-hydraulic characteristics of SG were acquired .Numerical simulated results show that the existence of trefoil orifice plate and inlet subcooling have a significant influence on thermal-hydraulic characteristics in the subcooled boiling region of the tube bundle of SG .
Characterization of horizontal air–water two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Kong, Ran; Kim, Seungjin, E-mail: skim@psu.edu
2017-02-15
Highlights: • A visualization study is performed to develop flow regime map in horizontal flow. • Database in horizontal bubbly flow is extended using a local conductivity probe. • Frictional pressure drop analysis is performed in horizontal bubbly flow. • Drift flux analysis is performed in horizontal bubbly flow. - Abstract: This paper presents experimental studies performed to characterize horizontal air–water two-phase flow in a round pipe with an inner diameter of 3.81 cm. A detailed flow visualization study is performed using a high-speed video camera in a wide range of two-phase flow conditions to verify previous flow regime maps. Two-phase flows are classified into bubbly, plug, slug, stratified, stratified-wavy, and annular flow regimes. While the transition boundaries identified in the present study compare well with the existing ones (Mandhane et al., 1974) in general, some discrepancies are observed for bubbly-to-plug/slug, and plug-to-slug transition boundaries. Based on the new transition boundaries, three additional test conditions are determined in horizontal bubbly flow to extend the database by Talley et al. (2015a). Various local two-phase flow parameters including void fraction, interfacial area concentration, bubble velocity, and bubble Sauter mean diameter are obtained. The effects of increasing gas flow rate on void fraction, bubble Sauter mean diameter, and bubble velocity are discussed. Bubbles begin to coalesce near the gas–liquid layer instead of in the highly packed region when gas flow rate increases. Using all the current experimental data, two-phase frictional pressure loss analysis is performed using the Lockhart–Martinelli method. It is found that the coefficient C = 24 yields the best agreement with the data with the minimum average difference. Moreover, drift flux analysis is performed to predict void-weighted area-averaged bubble velocity and area-averaged void fraction. Based on the current database, functional
Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)
1999-01-01
A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas components.ne dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.
Pressure Loss across Tube Bundles in Two-phase Flow
Energy Technology Data Exchange (ETDEWEB)
Sim, Woo Gun; Banzragch, Dagdan [Hannam Univ., Daejon (Korea, Republic of)
2016-03-15
An analytical model was developed by Sim to estimate the two-phase damping ratio for upward two-phase flow perpendicular to horizontal tube bundles. The parameters of two-phase flow, such as void fraction and pressure loss evaluated in the model, were calculated based on existing experimental formulations. However, it is necessary to implement a few improvements in the formulations for the case of tube bundles. For the purpose of the improved formulation, we need more information about the two-phase parameters, which can be found through experimental test. An experiment is performed with a typical normal square array of cylinders subjected to the two-phase flow of air-water in the tube bundles, to calculate the two-phase Euler number and the two-phase friction multiplier. The pitch-to-diameter ratio is 1.35 and the diameter of cylinder is 18mm. Pressure loss along the flow direction in the tube bundles is measured with a pressure transducer and data acquisition system to calculate the two-phase Euler number and the two-phase friction multiplier. The void fraction model by Feenstra et al. is used to estimate the void fraction of the two-phase flow in tube bundles. The experimental results of the two phase friction multiplier and two-phase Euler number for homogeneous and non-homogeneous two-phase flows are compared and evaluated against the analytical results given by Sim's model.
Analysis of transient gas-liquid two-phase natural circulation
Energy Technology Data Exchange (ETDEWEB)
Kataoka, Isao; Matsumoto, Tadayoshi; Morita, Yu; Kawashima, Atsushi [Department of Mechanophysics Engineering, Osaka University, Suita, Osaka (Japan); Nakayama, Akio
1999-07-01
Analyses were made on the transient behavior of two-phase natural circulation in annular passage. Drift flux model was used in the analyses and several correlations of drift velocity were used and compared. Transient variation of void fraction, inlet liquid flux and length of two-phase region were predicted based on simplified model. It was revealed that in transient two-phase natural circulation, the condition for pressure difference between inlet and outlet is quite important and difficult to be specified. A simplified model for inlet pressure condition was assumed and transient two-phase natural circulation was reasonably predicted. The correlation of drift velocity was shown to have important effect on the flow behavior particularly for the transient variation of two-phase length. (author)
Vapor Compressor Driven Hybrid Two-Phase Loop Project
National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will demonstrate a vapor compressor driven hybrid two-phase loop technology. The hybrid two-phase loop...
Thermo-fluid dynamics of two-phase flow
Ishii, Mamoru; Ishii, Mamoru; Ishii, M
2006-01-01
Provides a very systematic treatment of two phase flow problems from a theoretical perspectiveProvides an easy to follow treatment of modeling and code devlopemnt of two phase flow related phenomenaCovers new results of two phase flow research such as coverage of fuel cells technology.
A real two-phase submarine debris flow and tsunami
Energy Technology Data Exchange (ETDEWEB)
Pudasaini, Shiva P.; Miller, Stephen A. [Department of Geodynamics and Geophysics, Steinmann Institute, University of Bonn Nussallee 8, D-53115, Bonn (Germany)
2012-09-26
The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the
Reynolds transport theorem for a two-phase flow
Collado, Francisco J.
2007-01-01
Transport equations for one-dimensional (1d), steady, two-phase flow have been proposed based on the fact that if the phases have different velocities, they cannot cover the same distance (the control volume length) in the same time. Thus, working in the same control volume for the two phases, the time scales of the phases have to be different. From this approach, transport balances for 1D, steady, two-phase flow have been already derived, supplying acceptable correlations for two-phase flow. Here, based on the strict application of the Reynolds transport theorem, general transport balances for two-phase flow are suggested.
Two-phase flow instability in a parallel multichannel system
Institute of Scientific and Technical Information of China (English)
HOU Suxia
2009-01-01
The two-phase flow instabilities observed in through parallel multichannel can be classified into three types, of which only one is intrinsic to parallel multichannel systems. The intrinsic instabilities observed in parallel multichannel system have been studied experimentally. The stable boundary of the flow in such a parallel-channel system are sought, and the nature of inlet flow oscillation in the unstable region has been examined experimentally under various conditions of inlet velocity, heat flux, liquid temperature, cross section of channel and entrance throttling. The results show that parallel multichannel system possess a characteristic oscillation that is quite independent of the magnitude and duration of the initial disturbance, and the stable boundary is influenced by the characteristic frequency of the system as well as by the exit quality when this is low, and upon raising the exit quality and reducing the characteristic frequency, the system increases its instability, and entrance throttling effectively contributes to stabilization of the system.
Response of two-phase droplets to intense electromagnetic radiation
Energy Technology Data Exchange (ETDEWEB)
Spann, J.F. (Morgantown Energy Technology Center, U.S. Department of Energy, P.O. Box 880, Morgantown, West Virginia 26507-0880 (United States)); Maloney, D.J.; Lawson, W.F.; Casleton, K.H. (Morgantown Energy Technology Center, U.S. Department of Energy, P.O. Box 880, Morgantown, West Virginia 26507-0880 (United States))
1993-04-20
The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii = 37, 55, and 80 [mu]m) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.
Solutal Marangoni instability in layered two-phase flows
Picardo, Jason R; Pushpavanam, S
2015-01-01
In this paper, the instability of layered two-phase flows caused by the presence of a soluble surfactant (or a surface active solute) is studied. The fluids have different viscosities, but are density matched to focus on Marangoni effects. The fluids flow between two flat plates, which are maintained at different solute concentrations. This establishes a constant flux of solute from one fluid to the other in the base state. A linear stability analysis is performed, using a combination of asymptotic and numerical methods. In the creeping flow regime, Marangoni stresses destabilize the flow, provided a concentration gradient is maintained across the fluids. One long wave and two short wave Marangoni instability modes arise, in different regions of parameter space. A well-defined condition for the long wave instability is determined in terms of the viscosity and thickness ratios of the fluids, and the direction of mass transfer. Energy budget calculations show that the Marangoni stresses that drive long and shor...
Response of two-phase droplets to intense electromagnetic radiation
Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.
1993-01-01
The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.
Rarefaction Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle
Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi
Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. Those waves affect largely on the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. The high pressure hot water blow down experiment has been carried out. The decompression curves by the rarefaction waves are measured by changing the flow rate of the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The divergent angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the recompression curves are different from those predicted by the isentropic homogenous two-phase flow. The regions where the rarefaction waves occur become wide due to the increased outlet speed of two-phase flow. The qualitative dependency of this expansion character is the same as the isotropic homogenous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the super sonic two-phase flow. This means that the disturbance of the down-stream propagate to the up-stream. It is shown by the present experiments that the rarefaction waves in the supersonic two-phase flow of water have a subsonic feature. The measured
Expansion Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle
Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi; Ibragimov, Zokirjon
Two-phase flow nozzles are used in the total flow system of geothermal power plants and in the ejector of the refrigeration cycle, etc. One of the most important functions of the two-phase flow nozzle is converting two-phase flow thermal energy into kinetic energy. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. In the case of non-best fitting expansion conditions, when the operation conditions of the supersonic nozzle are widely chosen, there exist shock waves or expansion waves at the outlet of the nozzle. Those waves affect largely the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate character of the expansion waves at the outlet of the supersonic two-phase flow nozzle. High-pressure hot water blowdown experiments have been carried out. The decompression curves of the expansion waves are measured by changing the flowrate in the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The expansion angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the decompression curves are different from those predicted by the isentropic homogeneous two-phase flow theory. The regions where the expansion waves occur become wide due to the increased outlet speed of the two-phase flow. The qualitative dependency of this expansion character is the same as the isentropic homogeneous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the supersonic two-phase flow. This means that the disturbance in the downstream propagates to the upstream. It is shown by the present experiments that the expansion waves in the supersonic two-phase flow of water have a subsonic feature. The measured expansion angles become
Next steps in two-phase flow: executive summary
Energy Technology Data Exchange (ETDEWEB)
DiPippo, R.
1980-09-01
The executive summary includes the following topics of discussion: the state of affairs; the fundamental governing equations; the one-dimensional mixture model; the drift-flux model; the Denver Research Institute two-phase geothermal flow program; two-phase flow pattern transition criteria; a two-fluid model under development; the mixture model as applied to geothermal well flow; DRI downwell instrumentation; two-phase flow instrumentation; the Sperry Research Corporation downhole pump and gravity-head heat exchanger systems; and the Brown University two-phase flow experimental program. (MHR)
Non-local two phase flow momentum transport in S BWR
Energy Technology Data Exchange (ETDEWEB)
Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)
2015-09-15
The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)
Response of two-phase droplets to intense electromagnetic radiation
Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.
1993-04-01
The behavior of two-phase droplets subjected to high intensity radiation pulses is studied. Droplets are highly absorbing solids in weakly absorbing liquid medium. The objective of the study was to define heating thresholds required for causing explosive boiling and secondary atomization of the fuel droplet. The results point to mechanisms for energy storage and transport in two-phase systems.
Two-Phase Technology at NASA/Johnson Space Center
Ungar, Eugene K.; Nicholson, Leonard S. (Technical Monitor)
1999-01-01
Since the baseline International Space Station (ISS) External Active Thermal Control System (EATCS) was changed from a two-phase mechanically pumped system to a single phase cascade system in the fall of 1993, two-phase EATCS research has continued at a low level at JSC. One of-the lessons of the ISS EATCS selection was that two-phase thermal control systems must have significantly lower power than comparable single phase systems to overcome their larger radiator area, larger line and fluid mass, and perceived higher technical risk. Therefore, research at JSC has concentrated on low power mechanically pumped two-phase EATCSs. In the presentation, the results of a study investigating the trade of single and two-phase mechanically pumped EATCSs for space vehicles will be summarized. The low power two-phase mechanically pumped EATCS system under development at JSC will be described in detail and the current design status of the subscale test unit will be reviewed. Also, performance predictions for a full size EATCS will be presented. In addition to the discussion of two-phase mechanically pumped EATCS development at JSC, two-phase technologies under development for biological water processing will be discussed. These biological water processor technologies are being prepared for a 2001 flight experiment and subsequent usage on the TransHab module on the International Space Station.
Two Phases of Coherent Structure Motions in Turbulent Boundary Layer
Institute of Scientific and Technical Information of China (English)
LIU Jian-Hua; JIANG Nan
2007-01-01
Two phases of coherent structure motion are acquired after obtaining conditional phase-averaged waveforms for longitudinal velocity of coherent structures in turbulent boundary layer based on Harr wavelet transfer. The correspondences of the two phases to the two processes (i.e. ejection and sweep) during a burst are determined.
Thermo-Fluid Dynamics of Two-Phase Flow
Ishii, Mamrou
2011-01-01
"Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part
Critical transport velocity in two-phase, horizontal pipe flow
Energy Technology Data Exchange (ETDEWEB)
Sommerville, D. (U.S. Army Chemical Research, Development and Engineering Center, Aberdeen Proving Grounds, MD (US))
1991-02-01
This paper reports on the suspension of solid particles or entrainment of liquid droplets in two- phase flow. Theoretical and empirical relationships have been derived for both instances without any consideration to the similarities between the two. However, a general relation for two-phase flow is desirable since there are systems that cannot be readily defined due to the dual (solid/liquid) nature of the transported material, such as colloids, pulp, slurries, and sludge. Using turbulence theory, one general equation can be derived to predict critical transport velocities for two-phase horizontal flow.
What types of investors generate the two-phase phenomenon?
Ryu, Doojin
2013-12-01
We examine the two-phase phenomenon described by Plerou, Gopikrishnan, and Stanley (2003) [1] in the KOSPI 200 options market, one of the most liquid options markets in the world. By analysing a unique intraday dataset that contains information about investor type for each trade and quote, we find that the two-phase phenomenon is generated primarily by domestic individual investors, who are generally considered to be uninformed and noisy traders. In contrast, our empirical results indicate that trades by foreign institutions, who are generally considered informed and sophisticated investors, do not exhibit two-phase behaviour.
Tunable two-phase coexistence in half-doped manganites
Indian Academy of Sciences (India)
P Chaddah; A Banerjee
2008-02-01
We discuss our very interesting experimental observation that the low-temperature two-phase coexistence in half-doped manganites is multi-valued (at any field) in that we can tune the coexisting antiferromagnetic-insulating (AF-I) and the ferromagnetic-metallic (FM-M) phase fractions by following different paths in (; ) space. We have shown experimentally that the phase fraction, in this two-phase coexistence, can take continuous infinity of values. All but one of these are metastable, and two-phase coexistence is not an equilibrium state.
Time dependent two phase flows in Magnetohydrodynamics: A ...
African Journals Online (AJOL)
Journal of the Nigerian Association of Mathematical Physics ... Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Time dependent two phase flows in Magnetohydrodynamics: A Greens function approach. BK Jha, HM Jibril ...
Gravity Independence of Microchannel Two-Phase Flow Project
National Aeronautics and Space Administration — Most of the amassed two-phase flow and heat transfer knowledge comes from experiments conducted in Earth’s gravity. Space missions span varying gravity levels,...
Vapor Compressor Driven Hybrid Two-Phase Loop Project
National Aeronautics and Space Administration — The Phase I project successfully demonstrated the feasibility of the vapor compression hybrid two-phase loop (VCHTPL). The test results showed the high...
TWO PHASE FLOW SPLIT MODEL FOR PARALLEL CHANNELS
African Journals Online (AJOL)
Ifeanyichukwu Onwuka
The equations are solved using the Broyden'smethod ... channel system subjected to a two-phase flow transient, and the results have been very .... system pressure, the heat addition rates inside ... three dimensional flows in the LP.
Particle modulations to turbulence in two-phase round jets
Institute of Scientific and Technical Information of China (English)
Bing Wang; Huiqiang Zhang; Yi Liu; Xiaofen Yan; Xilin Wang
2009-01-01
The particle modulations to turbulence in round jets were experimentally studied by means of two-phase velocity measurements with Phase Doppler Anemometer (PDA). Laden with very large particles, no significant attenuations of turbulence intensities were measured in the far-fields, due to small two-phase slip velocities and particle Reynolds number. The gas-phase turbulence is enhanced by particles in the near-fields, but it is significantly attenuated by the small particles in the far-fields. The smaller particles have a more profound effect on the attenuation of turbulence intensities. The enhancements or attenuations of turbulence intensities in the far-fields depends on the energy production, transport and dissipation mechanisms between the two phases, which are determined by the particle prop-erties and two-phase velocity slips. The non-dimensional parameter CTI is introduced to represent the change of turbulence intensity.
Transient two-phase performance of LOFT reactor coolant pumps
Energy Technology Data Exchange (ETDEWEB)
Chen, T.H.; Modro, S.M.
1983-01-01
Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed.
Scaling of Two-Phase Systems Across Gravity Levels Project
National Aeronautics and Space Administration — There is a defined need for long term earth based testing for the development and deployment of two-phase flow systems in reduced-gravity, including lunar gravity,...
Two-phase cooling fluids; Les fluides frigoporteurs diphasiques
Energy Technology Data Exchange (ETDEWEB)
Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)
1997-12-31
In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry
Two-phase application of multi-objective genetic algorithms in green building design
Energy Technology Data Exchange (ETDEWEB)
Wang, W.; Zmeureanu, R. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering; Rivard, H. [Ecole de Technologie Superieure, Montreal, PQ (Canada). Dept. of Construction Engineering
2005-07-01
The application of multi-objective genetic algorithms for green building design in two phases were presented in order to better help designers in the decision-making process. The purpose is to minimize two conflicting criteria: the life-cycle cost and the life-cycle environmental impact. Environmental impact criteria examined include energy and non-energy natural resources, global warming, and acidification. Variables focus on building envelope-related parameters. The application of multi-objective genetic algorithms is divided into two phases. The first phase intends to help designers in understanding the trade-off relationship between the two conflicting criteria. The second phase intends to refine the performance region that is of the designer's interest. The results after the two-phase application of the multi objective genetic algorithm were then presented. 13 refs., 4 tabs., 3 figs.
A Derivation of the Nonlocal Volume-Averaged Equations for Two-Phase Flow Transport
Directory of Open Access Journals (Sweden)
Gilberto Espinosa-Paredes
2012-01-01
Full Text Available In this paper a detailed derivation of the general transport equations for two-phase systems using a method based on nonlocal volume averaging is presented. The local volume averaging equations are commonly applied in nuclear reactor system for optimal design and safe operation. Unfortunately, these equations are limited to length-scale restriction and according with the theory of the averaging volume method, these fail in transition of the flow patterns and boundaries between two-phase flow and solid, which produce rapid changes in the physical properties and void fraction. The non-local volume averaging equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection diffusion and transport properties for two-phase flow; for instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail.
New Results in Two-Phase Pressure Drop Calculations at Reduced Gravity Conditions
Braisted, Jon; Kurwitz, Cable; Best, Frederick
2004-02-01
The mass, power, and volume energy savings of two-phase systems for future spacecraft creates many advantages over current single-phase systems. Current models of two-phase phenomena such as pressure drop, void fraction, and flow regime prediction are still not well defined for space applications. Commercially available two-phase modeling software has been developed for a large range of acceleration fields including reduced-gravity conditions. Recently, a two-phase experiment has been flown to expand the two-phase database. A model of the experiment was created in the software to determine how well the software could predict the pressure drop observed in the experiment. Of the simulations conducted, the computer model shows good agreement of the pressure drop in the experiment to within 30%. However, the software does begin to over-predict pressure drop in certain regions of a flow regime map indicating that some models used in the software package for reduced-gravity modeling need improvement.
Numerical investigation of the mechanism of two-phase flow instability in parallel narrow channels
Energy Technology Data Exchange (ETDEWEB)
Hu, Lian [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China); Chen, Deqi, E-mail: chendeqi@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China); CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Huang, Yanping, E-mail: hyanping007@163.com [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Yuan, Dewen; Wang, Yanling [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Pan, Liangming [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China)
2015-06-15
Highlights: • A mathematical model is proposed to predict the two-phase flow instability. • The mathematical model predicted result agrees well with the experimental result. • Oscillation characteristics of the two-phase flow instability is discussed in detail. - Abstract: In this paper, the mechanism of two-phase flow instability in parallel narrow channels is studied theoretically, and the characteristic of the flow instability is discussed in detail. Due to the significant confining effect of the narrow channel on the vapor–liquid interface, the two-phase flow resistance in the narrow channel is probably different from that in conventional channel. Therefore, the vapor confined number (N{sub conf}), defined by the size of narrow channel and bubble detachment diameter, is considered in the “Chisholm B model” to investigate the two-phase flow pressure drop. The flow instability boundaries are plotted in parameter plane with phase-change-number (N{sub pch}) and subcooling-number (N{sub sub}) under different working conditions. It is found that the predicted result agrees well with the experimental result. According to the predicted result, the oscillation behaviors near the flow instability boundary indicate that the Supercritical Hopf bifurcation appears in high sub-cooled region and the Subcritical Hopf bifurcation appears in low sub-cooled region. Also, a detailed analysis about the effects of key parameters on the characteristic of two-phase flow instability and the flow instability boundary is proposed, including the effects of inlet subcooling, heating power, void distribution parameter and drift velocity.
Mathematical modeling of disperse two-phase flows
Morel, Christophe
2015-01-01
This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, a...
A SAS Package for Logistic Two-Phase Studies
Directory of Open Access Journals (Sweden)
Walter Schill
2014-04-01
Full Text Available Two-phase designs, in which for a large study a dichotomous outcome and partial or proxy information on risk factors is available, whereas precise or complete measurements on covariates have been obtained only in a stratified sub-sample, extend the standard case-control design and have been proven useful in practice. The application of two-phase designs, however, seems to be hampered by the lack of appropriate, easy-to-use software. This paper introduces sas-twophase-package, a collection of SAS-macros, to fulfill this task. sas-twophase-package implements weighted likelihood, pseudo likelihood and semi- parametric maximum likelihood estimation via the EM algorithm and via profile likelihood in two-phase settings with dichotomous outcome and a given stratification.
Two-Phase flow instrumentation for nuclear accidents simulation
Monni, G.; De Salve, M.; Panella, B.
2014-11-01
The paper presents the research work performed at the Energy Department of the Politecnico di Torino, concerning the development of two-phase flow instrumentation and of models, based on the analysis of experimental data, that are able to interpret the measurement signals. The study has been performed with particular reference to the design of power plants, such as nuclear water reactors, where the two-phase flow thermal fluid dynamics must be accurately modeled and predicted. In two-phase flow typically a set of different measurement instruments (Spool Piece - SP) must be installed in order to evaluate the mass flow rate of the phases in a large range of flow conditions (flow patterns, pressures and temperatures); moreover, an interpretative model of the SP need to be developed and experimentally verified. The investigated meters are: Turbine, Venturi, Impedance Probes, Concave sensors, Wire mesh sensor, Electrical Capacitance Probe. Different instrument combinations have been tested, and the performance of each one has been analyzed.
A mechanical erosion model for two-phase mass flows
Pudasaini, Shiva P
2016-01-01
Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, process-based, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transport. The model is based on the jump in the momentum flux including changes of material and flow properties along the flow-bed interface and enhances an existing general two-phase mass flow model (Pudasaini, 2012). A two-phase variably saturated erodible basal morphology is introduced and allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process including momentum and rheological changes of the flowing mixture. By rigorous derivation, we show that appropriate incorporation of the mass and momentum productions or losses in conservative model formulation is essential for the physically correct and mathematically consistent descript...
Simulating confined swirling gas-solid two phase jet
Institute of Scientific and Technical Information of China (English)
金晗辉; 夏钧; 樊建人; 岑可法
2002-01-01
A k-ε-kp multi-fluid model was used to simulate confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. After considering the drag force between the two phases and gravity, a series of numerical simulations of the two-phase flow of 30μm, 45μm, 60μm diameter particles were performed on a x×r＝50×50 mesh grid respectively. The results showed that the k-ε-kp multi-fluid model can be applied to predict moderate swirling multi-phase flow. When the particle diameter is large, the collision of the particles with the wall will influence the prediction accuracy. The bigger the diameter of the particles, the stronger the collision with the wall, and the more obvious the difference between measured and calculated results.
Numerical methods for two-phase flow with contact lines
Energy Technology Data Exchange (ETDEWEB)
Walker, Clauido
2012-07-01
This thesis focuses on numerical methods for two-phase flows, and especially flows with a moving contact line. Moving contact lines occur where the interface between two fluids is in contact with a solid wall. At the location where both fluids and the wall meet, the common continuum descriptions for fluids are not longer valid, since the dynamics around such a contact line are governed by interactions at the molecular level. Therefore the standard numerical continuum models have to be adjusted to handle moving contact lines. In the main part of the thesis a method to manipulate the position and the velocity of a contact line in a two-phase solver, is described. The Navier-Stokes equations are discretized using an explicit finite difference method on a staggered grid. The position of the interface is tracked with the level set method and the discontinuities at the interface are treated in a sharp manner with the ghost fluid method. The contact line is tracked explicitly and its dynamics can be described by an arbitrary function. The key part of the procedure is to enforce a coupling between the contact line and the Navier-Stokes equations as well as the level set method. Results for different contact line models are presented and it is demonstrated that they are in agreement with analytical solutions or results reported in the literature.The presented Navier-Stokes solver is applied as a part in a multiscale method to simulate capillary driven flows. A relation between the contact angle and the contact line velocity is computed by a phase field model resolving the micro scale dynamics in the region around the contact line. The relation of the microscale model is then used to prescribe the dynamics of the contact line in the macro scale solver. This approach allows to exploit the scale separation between the contact line dynamics and the bulk flow. Therefore coarser meshes can be applied for the macro scale flow solver compared to global phase field simulations
Shock wave of vapor-liquid two-phase flow
Institute of Scientific and Technical Information of China (English)
Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN
2008-01-01
The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.
Two Phase Flow and Space-Based Applications
McQuillen, John
1999-01-01
A reduced gravity environment offers the ability to remove the effect of buoyancy on two phase flows whereby density differences that normally would promote relative velocities between the phases and also alter the shape of the interface are removed. However, besides being a potent research tool, there are also many space-based technologies that will either utilize or encounter two-phase flow behavior, and as a consequence, several questions must be addressed. This paper presents some of these technologies missions. Finally, this paper gives a description of web-sites for some funding.
Two-phase analysis in consensus genetic mapping.
Ronin, Y; Mester, D; Minkov, D; Belotserkovski, R; Jackson, B N; Schnable, P S; Aluru, S; Korol, A
2012-05-01
Numerous mapping projects conducted on different species have generated an abundance of mapping data. Consequently, many multilocus maps have been constructed using diverse mapping populations and marker sets for the same organism. The quality of maps varies broadly among populations, marker sets, and software used, necessitating efforts to integrate the mapping information and generate consensus maps. The problem of consensus genetic mapping (MCGM) is by far more challenging compared with genetic mapping based on a single dataset, which by itself is also cumbersome. The additional complications introduced by consensus analysis include inter-population differences in recombination rate and exchange distribution along chromosomes; variations in dominance of the employed markers; and use of different subsets of markers in different labs. Hence, it is necessary to handle arbitrary patterns of shared sets of markers and different level of mapping data quality. In this article, we introduce a two-phase approach for solving MCGM. In phase 1, for each dataset, multilocus ordering is performed combined with iterative jackknife resampling to evaluate the stability of marker orders. In this phase, the ordering problem is reduced to the well-known traveling salesperson problem (TSP). Namely, for each dataset, we look for order that gives minimum sum of recombination distances between adjacent markers. In phase 2, the optimal consensus order of shared markers is selected from the set of allowed orders and gives the minimal sum of total lengths of nonconflicting maps of the chromosome. This criterion may be used in different modifications to take into account the variation in quality of the original data (population size, marker quality, etc.). In the foregoing formulation, consensus mapping is considered as a specific version of TSP that can be referred to as "synchronized TSP." The conflicts detected after phase 1 are resolved using either a heuristic algorithm over the
Film boiling on spheres in single- and two-phase flows.
Energy Technology Data Exchange (ETDEWEB)
Liu, C.; Theofanous, T. G.
2000-08-29
Film boiling on spheres in single- and two-phase flows was studied experimentally and theoretically with an emphasis on establishing the film boiling heat transfer closure law, which is useful in the analysis of nuclear reactor core melt accidents. Systematic experimentation of film boiling on spheres in single-phase water flows was carried out to investigate the effects of liquid subcooling (from 0 to 40 C), liquid velocity (from 0 to 2 m/s), sphere superheat (from 200 to 900 C), sphere diameter (from 6 to 19 mm), and sphere material (stainless steel and brass) on film boiling heat transfer. Based on the experimental data a general film boiling heat transfer correlation is developed. Utilizing a two-phase laminar boundary-layer model for the unseparated front film region and a turbulent eddy model for the separated rear region, a theoretical model was developed to predict the film boiling heat transfer in all single-phase regimes. The film boiling from a sphere in two-phase flows was investigated both in upward two-phase flows (with void fraction from 0.2 to 0.65, water velocity from 0.6 to 3.2 m/s, and steam velocity from 3.0 to 9.0 m/s) and in downward two-phase flows (with void fraction from 0.7 to 0.95, water velocity from 1.9 to 6.5 m/s, and steam velocity from 1.1 to 9.0 m/s). The saturated single-phase heat transfer correlation was found to be applicable to the two-phase film boiling data by making use of the actual water velocity (water phase velocity), and an adjustment factor of (1 - {alpha}){sup 1/4} (with a being the void fraction) for downward flow case only. Slight adjustments of the Reynolds number exponents in the correlation provided an even better interpretation of the two-phase data. Preliminary experiments were also conducted to address the influences of multi-sphere structure on the film boiling heat transfer in single- and two-phase flows.
Modelling two-phase transport of 3H/3He
Visser, A.; Schaap, J.D.; Leijnse, T.; Broers, H.P.; Bierkens, M.F.P.
2008-01-01
Degassing of groundwater by excess denitrification of agricultural pollution complicates the interpretation of 3H/3He data and hinders the estimation of travel times in nitrate pollution studies. In this study we used a two-phase flow and transport model (STOMP) to evaluate the method presented by
Two-phase alkali-metal experiments in reduced gravity
Energy Technology Data Exchange (ETDEWEB)
Antoniak, Z.I.
1986-06-01
Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.
Coal-Face Fracture With A Two-Phase Liquid
Collins, E. R., Jr.
1985-01-01
In new method for mining coal without explosive, two-phase liquid such as CO2 and water, injected at high pressure into deeper ends of holes drilled in coal face. Liquid permeates coal seam through existing microfractures; as liquid seeps back toward face, pressure eventually drops below critical value at which dissolved gas flashvaporizes, breaking up coal.
Two-phase flow in micro and nanofluidic devices
Shui, Lingling
2009-01-01
This thesis provides experimental data and theoretical analysis on two-phase flow in devices with different layouts of micrometer or nanometer-size channels. A full flow diagram is presented for oil and water flow in head-on microfluidic devices. Morphologically different flow regimes (dripping, jet
Modelling two-phase transport of 3H/3He
Visser, A.; Schaap, J.D.; Leijnse, T.; Broers, H.P.; Bierkens, M.F.P.
2008-01-01
Degassing of groundwater by excess denitrification of agricultural pollution complicates the interpretation of 3H/3He data and hinders the estimation of travel times in nitrate pollution studies. In this study we used a two-phase flow and transport model (STOMP) to evaluate the method presented by V
Experimental Investigation of two-phase nitrogen Cryo transfer line
Singh, G. K.; Nimavat, H.; Panchal, R.; Garg, A.; Srikanth, GLN; Patel, K.; Shah, P.; Tanna, V. L.; Pradhan, S.
2017-02-01
A 6-m long liquid nitrogen based cryo transfer line has been designed, developed and tested at IPR. The test objectives include the thermo-hydraulic characteristics of Cryo transfer line under single phase as well as two phase flow conditions. It is always easy in experimentation to investigate the thermo-hydraulic parameters in case of single phase flow of cryogen but it is real challenge when one deals with the two phase flow of cryogen due to availibity of mass flow measurements (direct) under two phase flow conditions. Established models have been reported in the literature where one of the well-known model of Lockhart-Martenelli relationship has been used to determine the value of quality at the outlet of Cryo transfer line. Under homogenous flow conditions, by taking the ratio of the single-phase pressure drop and the two-phase pressure drop, we estimated the quality at the outlet. Based on these equations, vapor quality at the outlet of the transfer line was predicted at different heat loads. Experimental rresults shown that from inlet to outlet, there is a considerable increment in the pressure drop and vapour quality of the outlet depending upon heat load and mass flow rate of nitrogen flowing through the line.
Numerical simulation of two-phase flow in offshore environments
Wemmenhove, Rik
2008-01-01
Numerical Simulation of Two-Phase Flow in Offshore Environments Rik Wemmenhove Weather conditions on full sea are often violent, leading to breaking waves and lots of spray and air bubbles. As high and steep waves may lead to severe damage on ships and offshore structures, there is a great need for
TWO-PHASE EJECTOR of CARBON DIOXIDE HEAT PUMP CALCULUS
Directory of Open Access Journals (Sweden)
Sit B.M.
2010-12-01
Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.
A numerical method for a model of two-phase flow in a coupled free flow and porous media system
Chen, Jie
2014-07-01
In this article, we study two-phase fluid flow in coupled free flow and porous media regions. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the porous medium region. We propose a Robin-Robin domain decomposition method for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Numerical examples are presented to illustrate the effectiveness of this method. © 2014 Elsevier Inc.
Investigations of two-phase flame propagation under microgravity conditions
Gokalp, Iskender
2016-07-01
Investigations of two-phase flame propagation under microgravity conditions R. Thimothée, C. Chauveau, F. Halter, I Gökalp Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France This paper presents and discusses recent results on two-phase flame propagation experiments we carried out with mono-sized ethanol droplet aerosols under microgravity conditions. Fundamental studies on the flame propagation in fuel droplet clouds or sprays are essential for a better understanding of the combustion processes in many practical applications including internal combustion engines for cars, modern aircraft and liquid rocket engines. Compared to homogeneous gas phase combustion, the presence of a liquid phase considerably complicates the physico-chemical processes that make up combustion phenomena by coupling liquid atomization, droplet vaporization, mixing and heterogeneous combustion processes giving rise to various combustion regimes where ignition problems and flame instabilities become crucial to understand and control. Almost all applications of spray combustion occur under high pressure conditions. When a high pressure two-phase flame propagation is investigated under normal gravity conditions, sedimentation effects and strong buoyancy flows complicate the picture by inducing additional phenomena and obscuring the proper effect of the presence of the liquid droplets on flame propagation compared to gas phase flame propagation. Conducting such experiments under reduced gravity conditions is therefore helpful for the fundamental understanding of two-phase combustion. We are considering spherically propagating two-phase flames where the fuel aerosol is generated from a gaseous air-fuel mixture using the condensation technique of expansion cooling, based on the Wilson cloud chamber principle. This technique is widely recognized to create well-defined mono-size droplets
A Stable Parametric Finite Element Discretization of Two-Phase Navier--Stokes Flow
Barrett, John W; Nürnberg, Robert
2013-01-01
We present a parametric finite element approximation of two-phase flow. This free boundary problem is given by the Navier--Stokes equations in the two phases, which are coupled via jump conditions across the interface. Using a novel variational formulation for the interface evolution gives rise to a natural discretization of the mean curvature of the interface. The parametric finite element approximation of the evolving interface is then coupled to a standard finite element approximation of the two-phase Navier--Stokes equations in the bulk. Here enriching the pressure approximation space with the help of an XFEM function ensures good volume conservation properties for the two phase regions. In addition, the mesh quality of the parametric approximation of the interface in general does not deteriorate over time, and an equidistribution property can be shown for a semidiscrete continuous-in-time variant of our scheme in two space dimensions. Moreover, our finite element approximation can be shown to be uncondit...
MICROGRAVITY EXPERIMENTS OF TWO-PHASE FLOW PATTERNS ABOARD MIR SPACE STATION
Institute of Scientific and Technical Information of China (English)
赵建福; 解京昌; 林海; 胡文瑞; A.V. Ivanov; A.Yu. Belyaev
2001-01-01
A first experimental study on two-phase flow patterns at a long-term,steady microgravity condition was conducted on board the Russian Space Station "MIR" in August 1999. Carbogal and air are used as the liquid and the gas phase,respectively. Bubble, slug, slug-annular transitional, and annular flows are observed.A new region of annular flow with lower liquid superficial velocity is discovered,and the region of the slug-annular transitionalfiow is wider than that observed by experiments on board the parabolic aircraft. The main patterns are bubble, slug annular transitional and annular flows based on the experiments on board MIR space station. Some influences on the two-phase flow patterns in the present experiments are discussed.
Two-phase relative permeability models in reservoir engineering calculations
Energy Technology Data Exchange (ETDEWEB)
Siddiqui, S.; Hicks, P.J.; Ertekin, T.
1999-01-15
A comparison of ten two-phase relative permeability models is conducted using experimental, semianalytical and numerical approaches. Model predicted relative permeabilities are compared with data from 12 steady-state experiments on Berea and Brown sandstones using combinations of three white mineral oils and 2% CaCl1 brine. The model results are compared against the experimental data using three different criteria. The models are found to predict the relative permeability to oil, relative permeability to water and fractional flow of water with varying degrees of success. Relative permeability data from four of the experimental runs are used to predict the displacement performance under Buckley-Leverett conditions and the results are compared against those predicted by the models. Finally, waterflooding performances predicted by the models are analyzed at three different viscosity ratios using a two-dimensional, two-phase numerical reservoir simulator. (author)
Computer simulation of two-phase flow in nuclear reactors
Energy Technology Data Exchange (ETDEWEB)
Wulff, W.
1992-09-01
Two-phase flow models dominate the economic resource requirements for development and use of computer codes for analyzing thermohydraulic transients in nuclear power plants. Six principles are presented on mathematical modeling and selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited for two-phase flow analysis in nuclear reactors than the two-fluid model, because of the latter`s closure problem. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost.
Computer simulation of two-phase flow in nuclear reactors
Energy Technology Data Exchange (ETDEWEB)
Wulff, W.
1992-01-01
Two-phase flow models dominate the economic resource requirements for development and use of computer codes for analyzing thermohydraulic transients in nuclear power plants. Six principles are presented on mathematical modeling and selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited for two-phase flow analysis in nuclear reactors than the two-fluid model, because of the latter's closure problem. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost.
Two-phase Flow Distribution in Heat Exchanger Manifolds
Vist, Sivert
2004-01-01
The current study has investigated two-phase refrigerant flow distribution in heat exchange manifolds. Experimental data have been acquired in a heat exchanger test rig specially made for measurement of mass flow rate and gas and liquid distribution in the manifolds of compact heat exchangers. Twelve different manifold designs were used in the experiments, and CO2 and HFC-134a were used as refrigerants.
Computational methods for two-phase flow and particle transport
Lee, Wen Ho
2013-01-01
This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.
Recent advances in two-phase flow numerics
Energy Technology Data Exchange (ETDEWEB)
Mahaffy, J.H.; Macian, R. [Pennsylvania State Univ., University Park, PA (United States)
1997-07-01
The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.
Estimating disease prevalence in two-phase studies.
Alonzo, Todd A; Pepe, Margaret Sullivan; Lumley, Thomas
2003-04-01
Disease prevalence is ideally estimated using a 'gold standard' to ascertain true disease status on all subjects in a population of interest. In practice, however, the gold standard may be too costly or invasive to be applied to all subjects, in which case a two-phase design is often employed. Phase 1 data consisting of inexpensive and non-invasive screening tests on all study subjects are used to determine the subjects that receive the gold standard in the second phase. Naive estimates of prevalence in two-phase studies can be biased (verification bias). Imputation and re-weighting estimators are often used to avoid this bias. We contrast the forms and attributes of the various prevalence estimators. Distribution theory and simulation studies are used to investigate their bias and efficiency. We conclude that the semiparametric efficient approach is the preferred method for prevalence estimation in two-phase studies. It is more robust and comparable in its efficiency to imputation and other re-weighting estimators. It is also easy to implement. We use this approach to examine the prevalence of depression in adolescents with data from the Great Smoky Mountain Study.
Targeted Delivery by Smart Capsules for Controlling Two-phase Flow in Porous Media
Fan, J.; Weitz, D.
2015-12-01
Understanding and controlling two-phase flow in porous media are of particular importance to the relevant industry applications, such as enhanced oil recovery, CO2 sequestration, and groundwater remediation. We develop a variety of smart microcapsules that can deliver and release specific substances to the target location in the porous medium, and therefore change the fluid property or medium geometry at certain locations. In this talk, I will present two types of smart capsules for (a) delivering surfactant to the vicinity of oil-water interface and (b) delivering microgels to the high permeability region and therefore blocking the pore space there, respectively. We also show that flooding these two capsules into porous media effectively reduces the trapped oil and improves the homogeneity of the medium, respectively. Besides of its industrial applications, this technique also opens a new window to study the mechanism of two-phase flow in porous media.
Numerical Fractional-Calculus Model for Two-Phase Flow in Fractured Media
Directory of Open Access Journals (Sweden)
Wenwen Zhong
2013-01-01
Full Text Available Numerical simulation of two-phase flow in fractured porous media is an important topic in the subsurface flow, environmental problems, and petroleum reservoir engineering. The conventional model does not work well in many cases since it lacks the memory property of fracture media. In this paper, we develop a new numerical formulation with fractional time derivative for two-phase flow in fractured porous media. In the proposed formulation, the different fractional time derivatives are applied to fracture and matrix regions since they have different memory properties. We further develop a two-level time discrete method, which uses a large time step for the pressure and a small time step size for the saturation. The pressure equation is solved implicitly in each large time step, while the saturation is updated by an explicit fractional time scheme in each time substep. Finally, the numerical tests are carried out to demonstrate the effectiveness of the proposed numerical model.
Experimental Two-Phase Liquid-Metal Magnetohydrodynamic Generator Program
1979-04-01
efficiencies in excess of 0.8 are attainable. Initial measurements of local flow parameters in a NaK -nitrogen two-phase liquid - metal MHD generator...hot liquid metals . Thus, the concept of using surface-active aaents in MHD generators can be evaluated more rapidly and inexpensively with NaK , the...describe this aggregation of bchbles as a foam. When the Ba- NaK solution was transferred, helium was blown under the surface of the liquid metal with the
Recurrent pyogenic cholangitis : efficacy of two-phase helical CT
Energy Technology Data Exchange (ETDEWEB)
Jeong, Ki Ho; Cho, June Sik; Shin, Kyung Sook; Lee, Se Hyo; Yu, Ho Jun; Park, Jin Yong; Kim, Young Min [College of Medicine, Chungnam National University, Taejon (Korea, Republic of)
2000-01-01
To evaluate the usefulness of two-phase helical CT in patients with recurrent pyogenic cholangitis (RPC) for the detection of acute inflammation and assessment of the degree of portal vein (PV) stenosis as a cause of hepatic parenchymal atrophy. We retrospectively reviewed two-phase CT findings in 30 patients with RPC diagnosed by CT, ERCP (endoscopic retrograde cholangiopancreatography), and surgery. Two-phase helical CT scans were obtained 30 sec (arterial phase, AP) and 70 sec (portal phase, PP) after the start of IV administration of contrast material. Without prior information, we analyzed periductal parenchymal and ductal wall enhancement during the AP and PP, and the degree of PV stenosis during the PP. Acute inflammation was diagnosed on the basis of symptoms and laboratory findings. To evaluate the relationship between parenchymal a trophy and PV stenosis, the degree of PV stenosis in affected parenchyma was classified as one of three types (mild, less than 25%; moderate, 25-75%; severe, greater than 75%), as compared with the diameter of normal PV in unaffected parenchyma. Ten of the 30 patients underwent CT during the acute inflammatory stage and 20 during the remission stage. Of the ten patients with acute inflammation, eight (80%) showed transient periductal parenchymal enhancement during the AP (p less than 0.05), which correlated closely with acute inflammation. Only three (15%) of the 20 patients with remission, however, showed transient parenchymal enhancement during this phase, at which time ductal wall enhancement was seen in three (30%) of the ten patients with acute inflammation and in seven (35%) of the 20 who showed remission (p greater than 0.05). There was no significant difference in parenchymal and ductal wall enhancement during the PP between patients with acute inflammation and those who showed remission (p greater than 0.05). Hepatic parenchymal atrophy of the lesion was seen in 24 patients. Among these, PV stenosis was mild in five
Two algorithms for two-phase Stefan type problems
Institute of Scientific and Technical Information of China (English)
LIAN Xiao-peng; CHENG Xiao-liang; HAN Wei-min
2009-01-01
In this paper, the relaxation algorithm and two Uzawa type algorithms for solving discretized variational inequalities arising from the two-phase Stefan type problem are proposed. An analysis of their convergence is presented and the upper bounds of the convergence rates are derived. Some numerical experiments are shown to demonstrate that for the second Uzawa algorithm which is an improved version of the first Uzawa algorithm, the convergence rate is uniformly bounded away from 1 if τh-2 is kept bounded, where τ is the time step size and h the space mesh size.
Stochastic analysis of particle-fluid two-phase flows
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This paper is devoted to exploring approaches to understanding the stochastic characteristics of particle-fluid two-phase flow. By quantifying the forces dominating the particle motion and modelling the less important and/or unclear forces as random forces, a stochastic differential equation is proposed to describe the complex behavior of a particle motion. An exploratory simulation has shown satisfactory agreement with phase doppler particle analyzer (PDPA) measurements, which indicates that stochastic analysis is a potential approach for revealing the details of particle-fluid flow phenomena.
Experimental and numerical investigation on two-phase flow instabilities
Energy Technology Data Exchange (ETDEWEB)
Ruspini, Leonardo Carlos
2013-03-01
Two-phase flow instabilities are experimentally and numerically studied within this thesis. In particular, the phenomena called Ledinegg instability, density wave oscillations and pressure drop oscillations are investigated. The most important investigations regarding the occurrence of two-phase flow instabilities are reviewed. An extensive description of the main contributions in the experimental and analytical research is presented. In addition, a critical discussion and recommendations for future investigations are presented. A numerical framework using a hp-adaptive method is developed in order to solve the conservation equations modelling general thermo-hydraulic systems. A natural convection problem is analysed numerically in order to test the numerical solver. Moreover, the description of an adaptive strategy to solve thermo-hydraulic problems is presented. In the second part of this dissertation, a homogeneous model is used to study Ledinegg, density wave and pressure drop oscillations phenomena numerically. The dynamic characteristics of the Ledinegg (flow excursion) phenomenon are analysed through the simulation of several transient examples. In addition, density wave instabilities in boiling and condensing systems are investigated. The effects of several parameters, such as the fluid inertia and compressibility volumes, on the stability limits of Ledinegg and density wave instabilities are studied, showing a strong influence of these parameters. Moreover, the phenomenon called pressure drop oscillations is numerically investigated. A discussion of the physical representation of several models is presented with reference to the obtained numerical results. Finally, the influence of different parameters on these phenomena is analysed. In the last part, an experimental investigation of these phenomena is presented. The designing methodology used for the construction of the experimental facility is described. Several simulations and a non
Two-phase nozzle flow and the subcharacteristic condition
DEFF Research Database (Denmark)
Linga, Gaute; Aursand, Peder; Flåtten, Tore
2015-01-01
We consider nozzle flow models for two-phase flow with phase transfer. Such models are based on energy considerations applied to the frozen and equilibrium limits of the underlying relaxation models. In this paper, we provide an explicit link between the mass flow rate predicted by these models a...... leakage of CO2 is presented, indicating that the frozen and equilibrium models provide significantly different predictions. This difference is comparable in magnitude to the modeling error introduced by applying simple ideal-gas/incompressible-liquid equations-of-state for CO2....
Droplets Formation and Merging in Two-Phase Flow Microfluidics
Directory of Open Access Journals (Sweden)
Hao Gu
2011-04-01
Full Text Available Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i the emulsification step should lead to a very well controlled drop size (distribution; and (ii the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.
Experimental study of two-phase natural circulation circuit
Energy Technology Data Exchange (ETDEWEB)
Lemos, Wanderley Freitas; Su, Jian, E-mail: wlemos@lasme.coppe.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose Luiz Horacio, E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), RIo de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental
2012-07-01
This paper reports an experimental study on the behavior of fluid flow in natural circulation under single-and two-phase flow conditions. The natural circulation circuit was designed based on concepts of similarity and scale in proportion to the actual operating conditions of a nuclear reactor. This test equipment has similar performance to the passive system for removal of residual heat presents in Advanced Pressurized Water Reactors (A PWR). The experiment was carried out by supplying water to primary and secondary circuits, as well as electrical power resistors installed inside the heater. Power controller has available to adjust the values for supply of electrical power resistors, in order to simulate conditions of decay of power from the nuclear reactor in steady state. Data acquisition system allows the measurement and control of the temperature at different points by means of thermocouples installed at several points along the circuit. The behavior of the phenomenon of natural circulation was monitored by a software with graphical interface, showing the evolution of temperature measurement points and the results stored in digital format spreadsheets. Besides, the natural circulation flow rate was measured by a flowmeter installed on the hot leg. A flow visualization technique was used the for identifying vertical flow regimes of two-phase natural circulation. Finally, the Reynolds Number was calculated for the establishment of a friction factor correlation dependent on the scale geometrical length, height and diameter of the pipe. (author)
Two-phase electrochemical lithiation in amorphous silicon.
Wang, Jiang Wei; He, Yu; Fan, Feifei; Liu, Xiao Hua; Xia, Shuman; Liu, Yang; Harris, C Thomas; Li, Hong; Huang, Jian Yu; Mao, Scott X; Zhu, Ting
2013-02-13
Lithium-ion batteries have revolutionized portable electronics and will be a key to electrifying transport vehicles and delivering renewable electricity. Amorphous silicon (a-Si) is being intensively studied as a high-capacity anode material for next-generation lithium-ion batteries. Its lithiation has been widely thought to occur through a single-phase mechanism with gentle Li profiles, thus offering a significant potential for mitigating pulverization and capacity fade. Here, we discover a surprising two-phase process of electrochemical lithiation in a-Si by using in situ transmission electron microscopy. The lithiation occurs by the movement of a sharp phase boundary between the a-Si reactant and an amorphous Li(x)Si (a-Li(x)Si, x ~ 2.5) product. Such a striking amorphous-amorphous interface exists until the remaining a-Si is consumed. Then a second step of lithiation sets in without a visible interface, resulting in the final product of a-Li(x)Si (x ~ 3.75). We show that the two-phase lithiation can be the fundamental mechanism underpinning the anomalous morphological change of microfabricated a-Si electrodes, i.e., from a disk shape to a dome shape. Our results represent a significant step toward the understanding of the electrochemically driven reaction and degradation in amorphous materials, which is critical to the development of microstructurally stable electrodes for high-performance lithium-ion batteries.
Droplets formation and merging in two-phase flow microfluidics.
Gu, Hao; Duits, Michel H G; Mugele, Frieder
2011-01-01
Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.
Acute cholecystitis: two-phase spiral CT finding
Energy Technology Data Exchange (ETDEWEB)
Oh, Eung Young; Yoon, Myung Hwan; Yang, Dal Mo; Chun Seok; Bae, Jun Gi; Kim, Hak Soo; Kim, Hyung Sik [Chungang Ghil Hospital, Incheon (Korea, Republic of)
1998-07-01
To describe the two-phase spiral CT findings of acute cholecystitis. Materials and Methods : CT scans of nine patients with surgically-proven acute cholecystitis were retrospectively reviewed for wall thickening, enhancement pattern of the wall, attenuation of the liver adjacent to the gallbladder, gallstones,gallbladder distension, gas collection within the gallbladder, pericholecystic fluid and infiltration of pericholecystic fat. Results : In all cases, wall thickening of the gallbladder was seen, though this was more distinct on delayed images, Using high-low-high attenuation, one layer was seen in five cases, nd three layers in four. On arterial images, eight cases showed transient focal increased attenuation of the liver adjacent to the gall bladder;four of these showed curvilinear attenuation and four showed subsegmental attenuation. One case showed curvilinear decreased attenuation between increased attenuation of the liver and the gallbladder, and during surgery, severe adhesion between the liver and gallbladder was confirmed. Additional CT findings were infiltration of pericholecystic fat (n=9), gallstones (n=7), gallbladder distension (n=6), pericholecystic fluid(n=3), and gas collection within the gallbladder (n=2). Conclusion : In patients with acute cholecystitis,two-phase spiral CT revealed wall thickening in one or three layers ; on delayed images this was more distinct. In many cases, arterial images showed transient focal increased attenuation of the liver adjacent to the gallbladder.
Experimental study of a two-phase surface jet
Perret, Matias; Esmaeilpour, Mehdi; Politano, Marcela S.; Carrica, Pablo M.
2013-04-01
Results of an experimental study of a two-phase jet are presented, with the jet issued near and below a free surface, parallel to it. The jet under study is isothermal and in fresh water, with air injectors that allow variation of the inlet air volume fraction between 0 and 13 %. Measurements of water velocity have been performed using LDV, and the jet exit conditions measured with PIV. Air volume fraction, bubble velocity and chord length distributions were measured with sapphire optical local phase detection probes. The mean free surface elevation and RMS fluctuations were obtained using local phase detection probes as well. Visualization was performed with laser-induced fluorescence. Measurements reveal that the mean free surface elevation and turbulent fluctuations significantly increase with the injection of air. The water normal Reynolds stresses are damped by the presence of bubbles in the bulk of the liquid, but very close to the free surface the effect is reversed and the normal Reynolds stresses increase slightly for the bubbly flow. The Reynolds shear stresses time it takes the bubbles to pierce the free surface, resulting in a considerable increase in the local air volume fraction. In addition to first explore a bubbly surface jet, the comprehensive dataset reported herein can be used to validate two-phase flow models and computational tools.
Experimental study of two phase flow in inclined channel
Energy Technology Data Exchange (ETDEWEB)
Park, Goon Cherl; Lee, Tae Ho; Lee, Sang Won [Seoul National University, Seoul (Korea, Republic of)
1997-07-01
Local two-phase flow parameters were measured to investigate the internal flow structures of steam-water boiling flow in an inclined channel. The vapor phase local flow parameters, such as void fraction, bubble frequency, vapor velocity, interfacial area concentration and chord length, were measured, using two conductivity probe method, and local liquid phase velocity was measured by pitot tube. In order to investigate the effects of channel inclination on two phase flow structure, the experiments were conducted for three angles of inclination; 0 degree(vertical), 30 degree and 60 degree. The experimental flow conditions were confined to the liquid superficial velocities less than 1.4 m/sec and nearly atmospheric pressure, and the flow regime was limited to the subcooled boiling. Using the measured distributions of the local phasic parameters, correlations for the drift-flux parameters such as distribution parameter and drift velocity were proposed. Those correlations were compared with the available correlation applicable to the inclined channel by the calculation of average void fraction using the present data. 44 refs., 4 tabs., 88 figs. (author)
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
In the investigation of effect of KSCN on the partitioning of lysozyme in PEG2000/ammonium sulfate aqueous two-phase system, it was found that the KSCN could alter the pH difference between the two phases, and thus affect the partition of lysozyme. The relationship between partition coefficients of lysozyme and pH differences between two phases was discussed.
Contrast enhanced two-phase spiral CT of urinary bladder
Energy Technology Data Exchange (ETDEWEB)
Park, Jeung Uk; Cha, Seong Sook; Ryu, Ji Hwa; Oh, Jeong Geun; Chang, Seung Kuk; Choi, Seok Jin; Eun, Choong Kie [Inje Univ. College of Medicine, Pusan (Korea, Republic of); Seo, Chang Hye [Daedong General Hospital, Pusan (Korea, Republic of)
1997-10-01
To determine optimal scan time for the early phase of two-phase spiral CT and to evaluate its usefulness in the detection and assessment of extension of urinary bladder lesions. In four normal adults, we performed dynamic scanning and obtained time-density curves for internal and external iliac arteries and veins, and the wall of the urinary bladder. Sixty patients with 68 lesions of the urinary bladder or prostate underwent precontrast and two-phase spiral CT scanning. After injection of 100ml of noninonic contrast material, images for the early and delayed phases were obtained at 60 seconds and 5 minutes, respectively. We measured CT H. U. of the wall, the lesion, and lumen of urinary bladder as seen on axial scanning, in each image in which the lesion was best shown. For the detection of bladder lesions and assessment of their extension, precontrast, early-, and delayed phsed images were compared. Dynamic study of normal adults showed maximum enhancement of bladder wall between 60 and 100 seconds. The difference of CT H. U. between bladder wall and the lesion was greatest in the early phase. The best detection rate(98.5%) was seen during this phase, and for the detection of bladder lesion, this same phase was superior or equal (66/68, 97.1%) to the delayed phase. The precontrast image was also superior or equal (31/68, 45.6%) to that of the delayed phase. For the assessment of extension of bladder lesion, the early phase was superior (36/68, 52.9%) to the delayed phase, and precontrast image was superiour (1/68, 1.5%) to that of the delayed phase. For determining the stage of bladder cancer, the early phase was most accurate if the stages was below B{sub 2} or D, while for stage C, the delayed phase was most accurate. In two-hpase spiral CT scanning, we consider the optimal time for the early phase to be between 60 and 100 seconds after injection of contrast material. For the detection and assessment of extension of urinary bladder lesion, the early phase was
Prediction of shear bands in sand based on granular flow model and two-phase equilibrium
Institute of Scientific and Technical Information of China (English)
张义同; 齐德瑄; 杜如虚; 任述光
2008-01-01
In contrast to the traditional interpretation of shear bands in sand as a bifurcation problem in continuum mechanics,shear bands in sand are considered as high-strain phase(plastic phase) of sand and the materials outside the bands are still in low-strain phase(elastic phase),namely,the two phases of sand can coexist under certain condition.As a one-dimensional example,the results show that,for materials with strain-softening behavior,the two-phase solution is a stable branch of solutions,but the method to find two-phase solutions is very different from the one for bifurcation analysis.The theory of multi-phase equilibrium and the slow plastic flow model are applied to predict the formation and patterns of shear bands in sand specimens,discontinuity of deformation gradient and stress across interfaces between shear bands and other regions is considered,the continuity of displacements and traction across interfaces is imposed,and the Maxwell relation is satisfied.The governing equations are deduced.The critical stress for the formation of a shear band,both the stresses and strains inside the band and outside the band,and the inclination angle of the band can all be predicted.The predicted results are consistent with experimental measurements.
Two-phase PIV measurements of particle suspension in a forced impinging jet
Mulinti, Rahul; Kiger, Ken
2010-11-01
The condition of rotorcraft brownout is characterized by intense dust suspension that is uplifted during landing and takeoff operations in regions covered with loose sediment. To predict particle suspension and sedimentation within coupled particle-laden flows, detailed characterization of the micro-scale mechanics is needed within a prototypical flow that captures the essence of the rotorcraft/ground wake interactions. Two-phase PIV has been used to study the interaction of a sediment bed made of glass spheres with characteristic flow structures reminiscent from flow within a rotor wake. In order to make reliable simultaneous two-phase PIV measurements, a phase discrimination algorithm from a single two-phase image has been implemented. The validity of the separation is checked by processing images that consisted only of the very small tracer particles, or only the dispersed phase particles, and examining how much "cross-talk" was present between the phases. The mobilization and wall-normal flux of particulates by the vortex-wall interaction will be reported for several different operational conditions, and correlated to the local vortex conditions.
Modelling of two-phase flow based on separation of the flow according to velocity
Energy Technology Data Exchange (ETDEWEB)
Narumo, T. [VTT Energy, Espoo (Finland). Nuclear Energy
1997-12-31
The thesis concentrates on the development work of a physical one-dimensional two-fluid model that is based on Separation of the Flow According to Velocity (SFAV). The conventional way to model one-dimensional two-phase flow is to derive conservation equations for mass, momentum and energy over the regions occupied by the phases. In the SFAV approach, the two-phase mixture is divided into two subflows, with as distinct average velocities as possible, and momentum conservation equations are derived over their domains. Mass and energy conservation are treated equally with the conventional model because they are distributed very accurately according to the phases, but momentum fluctuations follow better the flow velocity. Submodels for non-uniform transverse profile of velocity and density, slip between the phases within each subflow and turbulence between the subflows have been derived. The model system is hyperbolic in any sensible flow conditions over the whole range of void fraction. Thus, it can be solved with accurate numerical methods utilizing the characteristics. The characteristics agree well with the used experimental data on two-phase flow wave phenomena Furthermore, the characteristics of the SFAV model are as well in accordance with their physical counterparts as of the best virtual-mass models that are typically optimized for special flow regimes like bubbly flow. The SFAV model has proved to be applicable in describing two-phase flow physically correctly because both the dynamics and steady-state behaviour of the model has been considered and found to agree well with experimental data This makes the SFAV model especially suitable for the calculation of fast transients, taking place in versatile form e.g. in nuclear reactors. 45 refs. The thesis includes also five previous publications by author.
Interfacial Tension Effect on Cell Partition in Aqueous Two-Phase Systems.
Atefi, Ehsan; Joshi, Ramila; Mann, Jay Adin; Tavana, Hossein
2015-09-30
Aqueous two-phase systems (ATPS) provide a mild environment for the partition and separation of cells. We report a combined experimental and theoretical study on the effect of interfacial tension of polymeric ATPS on the partitioning of cells between two phases and their interface. Two-phase systems are generated using polyethylene glycol and dextran of specific properties as phase-forming polymers and culture media as the solvent component. Ultralow interfacial tensions of the solutions are precisely measured using an axisymmetric drop shape analysis method. Partition experiments show that two-phase systems with an interfacial tension of 30 μJ/m(2) result in distribution of majority of cells to the bottom dextran phase. An increase in the interfacial tension results in a distribution of cells toward the interface. An independent cancer cell spheroid formation assay confirms these observations: a drop of the dextran phase containing cancer cells is dispensed into the immersion polyethylene glycol phase to form a cell-containing drop. Only at very small interfacial tensions do cells remain within the drop to aggregate into a spheroid. We perform a thermodynamic modeling of cell partition to determine variations of free energy associated with displacement of cells in ATPS with respect to the ultralow interfacial tensions. This modeling corroborates with the experimental results and demonstrates that at the smallest interfacial tension of 30 μJ/m(2), the free energy is a minimum with cells in the bottom phase. Increasing the interfacial tension shifts the minimum energy and partition of cells toward the interfacial region of the two aqueous phases. Examining differences in the partition behavior and minimum free energy modeling of A431.H9 cancer cells and mouse embryonic stem cells shows that the surface properties of cells further modulate partition in ATPS. This combined approach provides a fundamental understanding of interfacial tension role on cell partition in
A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces
Shao, Sihong
2012-01-01
We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager principle of minimum energy dissipation. This approach was first presented in the derivation of a continuum hydrodynamic model for moving contact line in neutral two-phase immiscible flows (Qian, Wang, and Sheng, J. Fluid Mech. 564, 333-360 (2006)). Physically, the electroosmotic effect can be formulated by the Onsager principle as well in the linear response regime. Therefore, the same variational approach is applied here to the derivation of the continuum hydrodynamic model for charged two-phase immiscible flows where one fluid component is an electrolyte exhibiting electroosmotic effect on a charged surface. A phase field is employed to model the diffuse interface between two immiscible fluid components, one being the electrolyte and the other a nonconductive fluid, both allowed to slip at solid surfaces. Our model consists of the incompressible Navier-Stokes equation for momentum transport, the Nernst-Planck equation for ion transport, the Cahn-Hilliard phase-field equation for interface motion, and the Poisson equation for electric potential, along with all the necessary boundary conditions. In particular, all the dynamic boundary conditions at solid surfaces, including the generalized Navier boundary condition for slip, are derived together with the equations of motion in the bulk region. Numerical examples in two-dimensional space, which involve overlapped electric double layer fields, have been presented to demonstrate the validity and applicability of the model, and a few salient features of the two-phase immiscible electroosmotic flows at solid surface. The wall slip in the vicinity of moving contact line and the Smoluchowski slip in the electric double layer are both investigated. © 2012 Global-Science Press.
Stability of stratified two-phase flows in horizontal channels
Barmak, Ilya; Ullmann, Amos; Brauner, Neima; Vitoshkin, Helen
2016-01-01
Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems the stratified flow with smooth interface is stable only in confined zone of relatively lo...
Two-phase microfluidics: thermophysical fundamentals and engineering concepts
Kuznetsov, V. V.
2016-10-01
Thermophysical fundamentals and engineering concepts of the two-phase microfluidic devises based on controlled liquid decay are discussed in this paper. The results of an experimental study of the explosive evaporation at a thin film heater of the MEMS devise in application to thermal inkjet printing are presented. The peculiarities of homogeneous nucleation and bubble growth in the liquid subjected to pulse heating are discussed. Using experimental data a simple equation suitable for predicting the growth rate of a vapor bubble in a non-uniformly superheated liquid was obtained and used to complete a mathematical model of the self-consistent nucleation and vapor bubbles growth in the induced pressure field. The results of numerical calculations according to the proposed model showed good agreement with the experimental data on a time of nucleation and duration of the initial stage of an explosive evaporation of water.
Mathematical model of two-phase flow in accelerator channel
Directory of Open Access Journals (Sweden)
О.Ф. Нікулін
2010-01-01
Full Text Available The problem of two-phase flow composed of energy-carrier phase (Newtonian liquid and solid fine-dispersed phase (particles in counter jet mill accelerator channel is considered. The mathematical model bases goes on the supposition that the phases interact with each other like independent substances by means of aerodynamics’ forces in conditions of adiabatic flow. The mathematical model in the form of system of differential equations of order 11 is represented. Derivations of equations by base physical principles for cross-section-averaged quantity are produced. The mathematical model can be used for estimation of any kinematic and thermodynamic flow characteristics for purposely parameters optimization problem solving and transfer functions determination, that take place in counter jet mill accelerator channel design.
Two phase coexistence for the hydrogen-helium mixture
Fantoni, Riccardo
2015-01-01
We use our newly constructed quantum Gibbs ensemble Monte Carlo algorithm to perform computer experiments for the two phase coexistence of a hydrogen-helium mixture. Our results are in quantitative agreement with the experimental results of C. M. Sneed, W. B. Streett, R. E. Sonntag, and G. J. Van Wylen. The difference between our results and the experimental ones is in all cases less than 15% relative to the experiment, reducing to less than 5% in the low helium concentration phase. At the gravitational inversion between the vapor and the liquid phase, at low temperatures and high pressures, the quantum effects become relevant. At extremely low temperature and pressure the first component to show superfluidity is the helium in the vapor phase.
Phase appearance or disappearance in two-phase flows
Cordier, Floraine; Kumbaro, Anela
2011-01-01
This paper is devoted to the treatment of specific numerical problems which appear when phase appearance or disappearance occurs in models of two-phase flows. Such models have crucial importance in many industrial areas such as nuclear power plant safety studies. In this paper, two outstanding problems are identified: first, the loss of hyperbolicity of the system when a phase appears or disappears and second, the lack of positivity of standard shock capturing schemes such as the Roe scheme. After an asymptotic study of the model, this paper proposes accurate and robust numerical methods adapted to the simulation of phase appearance or disappearance. Polynomial solvers are developed to avoid the use of eigenvectors which are needed in usual shock capturing schemes, and a method based on an adaptive numerical diffusion is designed to treat the positivity problems. An alternate method, based on the use of the hyperbolic tangent function instead of a polynomial, is also considered. Numerical results are presente...
Two-phase flow simulation of aeration on stepped spillway
Institute of Scientific and Technical Information of China (English)
CHENG Xiangju; LUO Lin; ZHAO Wenqian; LI Ran
2004-01-01
Stepped spillways have existed as escape works for a very long time. It is found that water can trap a lot of air when passing through steps and then increasing oxygen content in water body, so stepped spillways can be used as a measure of re-aeration and to improve water quality of water body. However, there is no reliable theoretical method on quantitative calculation of re-aeration ability for the stepped spillways. By introducing an air-water two-phase flow model, this paper used k-ε turbulence model to calculate the characteristic variables of free-surface aeration on stepped spillway. The calculated results fit with the experimental results well. It supports that the numerical modeling method is reasonable and offers firm foundation on calculating re-aeration ability of stepped spillways. The simulation approach can provide a possible optimization tool for designing stepped spillways of more efficient aeration capability.
A TWO-PHASE APPROACH TO FUZZY SYSTEM IDENTIFICATION
Institute of Scientific and Technical Information of China (English)
Ta-Wei HUNG; Shu-Cherng FANG; Henry L.W.NUTTLE
2003-01-01
A two-phase approach to fuzzy system identification is proposed. The first phase produces a baseline design to identify a prototype fuzzy system for a target system from a coIlection of input-output data pairs. It uses two easily implemented clustering techniques: the subtractive clustering method and the fuzzy c-means (FCM) clustering algorithm. The second phase (fine tuning)is executed to adjust the parameters identified in the baseline design. This phase uses the steepest descent and recursive least-squares estimation methods. The proposed approach is validated by applying it to both a function approximation type of problem and a classification type of problem. An analysis of the learning behavior of the proposed approach for the two test problems is conducted for further confirmation.
Emerging Two-Phase Cooling Technologies for Power Electronic Inverters
Energy Technology Data Exchange (ETDEWEB)
Hsu, J.S.
2005-08-17
In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The
Two-Phase Algorithm for Optimal Camera Placement
Directory of Open Access Journals (Sweden)
Jun-Woo Ahn
2016-01-01
Full Text Available As markers for visual sensor networks have become larger, interest in the optimal camera placement problem has continued to increase. The most featured solution for the optimal camera placement problem is based on binary integer programming (BIP. Due to the NP-hard characteristic of the optimal camera placement problem, however, it is difficult to find a solution for a complex, real-world problem using BIP. Many approximation algorithms have been developed to solve this problem. In this paper, a two-phase algorithm is proposed as an approximation algorithm based on BIP that can solve the optimal camera placement problem for a placement space larger than in current studies. This study solves the problem in three-dimensional space for a real-world structure.
Two-phase flow instabilities in a vertical annular channel
Energy Technology Data Exchange (ETDEWEB)
Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)
1995-09-01
An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.
Equations of two-phase flow in spray chamber
Institute of Scientific and Technical Information of China (English)
李新禹; 张志红; 金星; 徐杰
2009-01-01
The downstream water-air heat and moisture transfer system in a moving coordinate was studied. The relationship between the diameter of the misted droplets and the spray pressure was determined. Based on the theory of the relative velocity,the two-phase flow mode of the spray chamber and the efficiency equation for heat and moisture exchange were established. Corrections were carried out for the efficiency equation with spray pressure of 157 kPa. The results show that the pressure plays an important part in determining the efficiency of heat and moisture exchange. When the spray pressure is less than 157 kPa,better coincidence is noticed between the theoretical analysis and the test results with the error less than 6%. Greater error will be resulted in the case when the spray pressure is beyond 157 kPa. After the correction treatment,the coincidence between the theoretical and the experimental results is greatly improved.
Transient thermohydraulic modeling of two-phase fluid systems
Blet, N.; Delalandre, N.; Ayel, V.; Bertin, Y.; Romestant, C.; Platel, V.
2012-11-01
This paper presents a transient thermohydraulic modeling, initially developed for a capillary pumped loop in gravitational applications, but also possibly suitable for all kinds of two-phase fluid systems. Using finite volumes method, it is based on Navier-Stokes equations for transcribing fluid mechanical aspects. The main feature of this 1D-model is based on a network representation by analogy with electrical. This paper also proposes a parametric study of a counterflow condenser following the sensitivity to inlet mass flow rate and cold source temperature. The comparison between modeling results and experimental data highlights a good numerical evaluation of temperatures. Furthermore, the model is able to represent a pretty good dynamic evolution of hydraulic variables.
Flooding in counter-current two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Ragland, W.A.; Ganic, E.N.
1982-01-01
Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.
Note on Two-Phase Phenomena in Financial Markets
Institute of Scientific and Technical Information of China (English)
JIANG Shi-Mei; CAI Shi-Min; ZHOU Wao; ZHOU Pei-Ling
2008-01-01
The two-phase behaviour in financial markets actually means the bifurcation phenomenon, which represents the change of the conditional probability from an unimodal to a bimodal distribution. We investigate the bifurcation phenomenon in Hang-Seng index. It is observed that the bifurcation phenomenon in financial index is not universal, but specific under certain conditions. For Hang-Seng index and randomly generated time series, the phenomenon just emerges when the power-law exponent of absolute increment distribution is between i and 2 with appropriate period. Simulations on a randomly generated time series suggest the bifurcation phenomenon itself is subject to the statistics of absolute increment, thus it may not be able to reflect essential financial behaviours. However, even under the same distribution of absolute increment, the range where bifurcation phenomenon occurs is far different from real market to artificial data, which may reflect certain market information.
Thirty-two phase sequences design with good autocorrelation properties
Indian Academy of Sciences (India)
S P Singh; K Subba Rao
2010-02-01
Polyphase Barker Sequences are ﬁnite length, uniform complex sequences; the magnitude of their aperiodic autocorrelation sidelobes are bounded by 1. Such sequences have been used in numerous real-world applications such as channel estimation, radar and spread spectrum communication. In this paper, thirty-two phase Barker sequences up to length 24 with an alphabet size of only 32 are presented. The sequences from length 25 to 289 have autocorrelation properties better than well-known Frank codes. Because of the complex structure the sequences are very difﬁcult to detect and analyse by an enemy’s electronic support measures (ESMs). The synthesized sequences are promising for practical application to radar and spread spectrum communication systems. These sequences are found using the Modiﬁed Simulated Annealing Algorithm (MSAA). The convergence rate of the algorithm is good.
Two-phase methanization of food wastes in pilot scale.
Lee, J P; Lee, J S; Park, S C
1999-01-01
A 5 ton/d pilot scale two-phase anaerobic digester was constructed and tested to treat Korean food wastes in Anyang city near Seoul. The easily degradable presorted food waste was efficiently treated in the two-phase anaerobic digestion process. The waste contained in plastic bags was shredded and then screened for the removal of inert materials such as fabrics and plastics, and subsequently put into the two-stage reactors. Heavy and light inerts such as bones, shells, spoons, and plastic pieces were again removed by gravity differences. The residual organic component was effectively hydrolyzed and acidified in the first reactor with 5 d space time at pH of about 6.5. The second, methanization reactor converted the acids into methane with pH between 7.4 and 7.8. The space time for the second reactor was 15 d. The effluent from the second reactor was recycled to the first reactor to provide alkalinities. The process showed stable steady-state operation with the maximum organic loading rate of 7.9 kg volatile solid (VS)/m3/d and the volatile solid reduction efficiency of about 70%. The total of 3.6 tons presorted MSW containing 2.9 tons of food organic was treated to produce about 230 m3 of biogas with 70% (v/v) of methane and 80 kg of humus. This process is extended to full-scale treating 15 tons of food waste a day in Euiwang city and the produced biogas is utilized for the heating/cooling of adjacent buildings.
Two phase continuous digestion of solid manure on-farm
Energy Technology Data Exchange (ETDEWEB)
Schaefer, W.; Lehto, M. [MTT Agrifood Research Finland, Vihti (Finland). Animal Production Research; Evers, L.; Granstedt, A. [Biodynamic Research Inst., Jaerna (Sweden)
2007-07-01
Present commercially available biogas plants are mainly suitable for slurry and co-substrates. Cattle, horse and poultry farms using a solid manure chain experience a crucial competitive disadvantage, because conversion to slurry technology requires additional investments. Based on the technological progress of anaerobic digestion of municipal solid waste, so called 'dry fermentation' prototype plants were developed for anaerobic digestion of organic material containing 15-50% total solids (Hoffman, 2001). These plants show added advantages compared to slurry digestion plants: Less reactor volume, less process energy, less transport capacity, less odour emissions. On-farm research (Gronauer and Aschmann, 2004; Kusch and Oechsner, 2004) and prototype research (Linke, 2004) on dry fermentation in batch reactors show that loading and discharging of batch reactors remains difficult and/or time-consuming compared to slurry reactors. Additionally a constant level of gas generation requires offset operation of several batch reactors. Baserga et al. (1994) developed a pilot plant of 9.6 m{sup 3} capacity for continuous digestion of solid beef cattle manure on-farm. However, on-farm dry fermentation plants are not common and rarely commercially available. We assume that lack of tested technical solutions and scarceness of on-farm research results are the main reason for low acceptance of dry fermentation technology on-farm. We report about an innovative two phase farm-scale biogas plant. The plant continuously digests dairy cattle manure and organic residues of the farm and the surrounding food processing units. The two phase reactor technology was chosen for two reasons: first it offers the separation of a liquid fraction and a solid fraction for composting after hydrolysis and secondly the methanation of the liquid fraction using fixed film technology results in a very short hydraulic retention time, reduction in reactor volume, and higher methane content of the
Correct numerical simulation of a two-phase coolant
Kroshilin, A. E.; Kroshilin, V. E.
2016-02-01
Different models used in calculating flows of a two-phase coolant are analyzed. A system of differential equations describing the flow is presented; the hyperbolicity and stability of stationary solutions of the system is studied. The correctness of the Cauchy problem is considered. The models' ability to describe the following flows is analyzed: stable bubble and gas-droplet flows; stable flow with a level such that the bubble and gas-droplet flows are observed under and above it, respectively; and propagation of a perturbation of the phase concentration for the bubble and gas-droplet media. The solution of the problem about the breakdown of an arbitrary discontinuity has been constructed. Characteristic times of the development of an instability at different parameters of the flow are presented. Conditions at which the instability does not make it possible to perform the calculation are determined. The Riemann invariants for the nonlinear problem under consideration have been constructed. Numerical calculations have been performed for different conditions. The influence of viscosity on the structure of the discontinuity front is studied. Advantages of divergent equations are demonstrated. It is proven that a model used in almost all known investigating thermohydraulic programs, both in Russia and abroad, has significant disadvantages; in particular, it can lead to unstable solutions, which makes it necessary to introduce smoothing mechanisms and a very small step for describing regimes with a level. This does not allow one to use efficient numerical schemes for calculating the flow of two-phase currents. A possible model free from the abovementioned disadvantages is proposed.
Supporting universal prevention programs: a two-phased coaching model.
Becker, Kimberly D; Darney, Dana; Domitrovich, Celene; Keperling, Jennifer Pitchford; Ialongo, Nicholas S
2013-06-01
Schools are adopting evidence-based programs designed to enhance students' emotional and behavioral competencies at increasing rates (Hemmeter et al. in Early Child Res Q 26:96-109, 2011). At the same time, teachers express the need for increased support surrounding implementation of these evidence-based programs (Carter and Van Norman in Early Child Educ 38:279-288, 2010). Ongoing professional development in the form of coaching may enhance teacher skills and implementation (Noell et al. in School Psychol Rev 34:87-106, 2005; Stormont et al. 2012). There exists a need for a coaching model that can be applied to a variety of teacher skill levels and one that guides coach decision-making about how best to support teachers. This article provides a detailed account of a two-phased coaching model with empirical support developed and tested with coaches and teachers in urban schools (Becker et al. 2013). In the initial universal coaching phase, all teachers receive the same coaching elements regardless of their skill level. Then, in the tailored coaching phase, coaching varies according to the strengths and needs of each teacher. Specifically, more intensive coaching strategies are used only with teachers who need additional coaching supports, whereas other teachers receive just enough support to consolidate and maintain their strong implementation. Examples of how coaches used the two-phased coaching model when working with teachers who were implementing two universal prevention programs (i.e., the PATHS curriculum and PAX Good Behavior Game [PAX GBG]) provide illustrations of the application of this model. The potential reach of this coaching model extends to other school-based programs as well as other settings in which coaches partner with interventionists to implement evidence-based programs.
Jin, Cheng-Jie; Wang, Wei; Jiang, Rui
2016-08-01
The proper setting of traffic signals at signalized intersections is one of the most important tasks in traffic control and management. This paper has evaluated the four-phase traffic signal plans at a four-leg intersection via cellular automaton simulations. Each leg consists of three lanes, an exclusive left-turn lane, a through lane, and a through/right-turn lane. For a comparison, we also evaluate the two-phase signal plan. The diagram of the intersection states in the space of inflow rate versus turning ratio has been presented, which exhibits four regions: In region I/II/III, congestion will propagate upstream and laterally and result in queue spillover with both signal plans/two-phase signal plan/four-phase signal plan, respectively. Therefore, neither signal plan works in region I, and only the four-phase signal plan/two-phase signal plan works in region II/III. In region IV, both signal plans work, but two-phase signal plan performs better in terms of average delays of vehicles. Finally, we study the diagram of the intersection states and average delays in the asymmetrical configurations.
Directory of Open Access Journals (Sweden)
Nuttapong Muangchan
2015-06-01
Full Text Available This paper presents the concept of a speed estimation of sensorless control for asymmetrical parameter type two-phase induction motor drive, by using the adaptive observer system. The motor speed is estimated on the rotor-flux reference frame to simplicity for application. The design guideline of the gain of speed estimate system for a motor has speed change. The experimental results for all test conditions show that the responses of current, torque and speed are stable for the entire operating region.
Simulation Experiments in Electromagnetic Tomography Well Logging in Two-phase flow
Institute of Scientific and Technical Information of China (English)
Wu Xiling; Zhao Yanwei
2006-01-01
Electromagnetic Computer Tomography (ECT) is a method to probe the interior of an inhomogeneous medium via surface measurement in a non-linear way. Due to the great differences in conductivity and permittivity between oil and water in the well, Electromagnetic Tomography Well Logging (ETWL), a new flow imaging measurement system, is proposed to describe the distribution and movement of oil/water two-phase flow in the well by scanning the detected region and applying a suitable data processing algorithm. The results of the numerical simulation and physical modeling show that the system could provide a clear image of the flow profile.
Two-phase micro- and macro-time scales in particle-laden turbulent channel flows
Institute of Scientific and Technical Information of China (English)
Bing Wang; Michael Manhart
2012-01-01
The micro- and macro-time scales in two-phase turbulent channel flows are investigated using the direct numerical simulation and the Lagrangian particle trajectory methods for the fluid- and the particle-phases,respectively.Lagrangian and Eulerian time scales of both phases are calculated using velocity correlation functions.Due to flow anisotropy,micro-time scales are not the same with the theoretical estimations in large Reynolds number (isotropic) turbulence.Lagrangian macro-time scales of particle-phase and of fluid-phase seen by particles are both dependent on particle Stokes number.The fluid-phase Lagrangian integral time scales increase with distance from the wall,longer than those time scales seen by particles.The Eulerian integral macro-time scales increase in near-wall regions but decrease in out-layer regions.The moving Eulerian time scales are also investigated and compared with Lagrangian integral time scales,and in good agreement with previous measurements and numerical predictions.For the fluid particles the micro Eulerian time scales are longer than the Lagrangian ones in the near wall regions,while away from the walls the micro Lagrangian time scales are longer.The Lagrangian integral time scales are longer than the Eulerian ones.The results are useful for further understanding two-phase flow physics and especially for constructing accurate prediction models of inertial particle dispersion.
Creep of Two-Phase Microstructures for Microelectronic Applications
Energy Technology Data Exchange (ETDEWEB)
Reynolds, Heidi Linch [Univ. of California, Berkeley, CA (United States)
1998-12-01
The mechanical properties of low-melting temperature alloys are highly influenced by their creep behavior. This study investigates the dominant mechanisms that control creep behavior of two-phase, low-melting temperature alloys as a function of microstructure. The alloy systems selected for study were In-Ag and Sn-Bi because their eutectic compositions represent distinctly different microstructure.” The In-Ag eutectic contains a discontinuous phase while the Sn-Bi eutectic consists of two continuous phases. In addition, this work generates useful engineering data on Pb-free alloys with a joint specimen geometry that simulates microstructure found in microelectronic applications. The use of joint test specimens allows for observations regarding the practical attainability of superplastic microstructure in real solder joints by varying the cooling rate. Steady-state creep properties of In-Ag eutectic, Sn-Bi eutectic, Sn-xBi solid-solution and pure Bi joints have been measured using constant load tests at temperatures ranging from O°C to 90°C. Constitutive equations are derived to describe the steady-state creep behavior for In-Ageutectic solder joints and Sn-xBi solid-solution joints. The data are well represented by an equation of the form proposed by Dom: a power-law equation applies to each independent creep mechanism. Rate-controlling creep mechanisms, as a function of applied shear stress, test temperature, and joint microstructure, are discussed. Literature data on the steady-state creep properties of Sn-Bi eutectic are reviewed and compared with the Sn-xBi solid-solution and pure Bi joint data measured in the current study. The role of constituent phases in controlling eutectic creep behavior is discussed for both alloy systems. In general, for continuous, two-phase microstructure, where each phase exhibits significantly different creep behavior, the harder or more creep resistant phase will dominate the creep behavior in a lamellar microstructure. If a
Statistical descriptions of polydisperse turbulent two-phase flows
Minier, Jean-Pierre
2016-12-01
Disperse two-phase flows are flows containing two non-miscible phases where one phase is present as a set of discrete elements dispersed in the second one. These discrete elements, or 'particles', can be droplets, bubbles or solid particles having different sizes. This situation encompasses a wide range of phenomena, from nano-particles and colloids sensitive to the molecular fluctuations of the carrier fluid to inertia particles transported by the large-scale motions of turbulent flows and, depending on the phenomenon studied, a broad spectrum of approaches have been developed. The aim of the present article is to analyze statistical models of particles in turbulent flows by addressing this issue as the extension of the classical formulations operating at a molecular or meso-molecular level of description. It has a three-fold purpose: (1) to bring out the thread of continuity between models for discrete particles in turbulent flows (above the hydrodynamical level of description) and classical mesoscopic formulations of statistical physics (below the hydrodynamical level); (2) to reveal the specific challenges met by statistical models in turbulence; (3) to establish a methodology for modeling particle dynamics in random media with non-zero space and time correlations. The presentation is therefore centered on organizing the different approaches, establishing links and clarifying physical foundations. The analysis of disperse two-phase flow models is developed by discussing: first, approaches of classical statistical physics; then, by considering models for single-phase turbulent flows; and, finally, by addressing current formulations for discrete particles in turbulent flows. This brings out that particle-based models do not cease to exist above the hydrodynamical level and offer great interest when combined with proper stochastic formulations to account for the lack of equilibrium distributions and scale separation. In the course of this study, general results
An experimental study of single-phase and two-phase flows in microchannels
Chung, Peter Mang-Yu
. The channel shape did not affect the two-phase frictional pressure drop or the void fraction-to-volumetric quality relationship. A region of ring-slug flow that appears in the circular microchannel collapsed in the square microchannel, possibly due to the suppression of the liquid-ring film in the corners of the square channel.
Effects of two-phase flow on the deflagration of porous energetic materials
Energy Technology Data Exchange (ETDEWEB)
Margolis, S.B. [Sandia National Labs., Livermore, CA (United States); Williams, F.A. [Univ. of California, San Diego, La Jolla, CA (United States). Dept. of Applied Mechanics and Engineering Sciences
1994-07-01
Theoretical analyses are developed for the multi-phase deflagration of porous energetic solids, such as degraded nitramine propellants, that experience significant gas flow in the solid preheat region and are characterized by the presence of exothermic reactions in a bubbling melt layer at their surfaces. Relative motion between the gas and condensed phases is taken into account in both regions, and expressions for the mass burning rate and other quantities of interest, such as temperature and volume-fraction profiles, are derived by activation-energy asymptotics. The model extends recent work by allowing for gas flow in the unburned solid, and by incorporating pressure effects through the gas-phase equation of state. As a consequence, it is demonstrated how most aspects of the deflagration wave, including its structure, propagation speed and final temperature, depend on the local pressure in the two-phase regions.
Interstellar Cloud Formation through Aggregation of Cold Blobs in a Two-Phase Gas Mixture
Kamaya, Hideyuki
1997-05-01
We propose a new formation scenario for interstellar clouds through the aggregation of dense cold blobs (phase II [PII]), which drift in a diffuse warm medium (phase I [PI]). We examine how important it is that there exist numerous PII blobs when the properties of such a two-phase flow are studied. First, we solve a one-dimensional shock-tube problem and find that the shock wave in the mixture is considerably damped because of the drag force between the two phases. This is because the PII blobs are left behind the shock front, since their inertia is larger than that of PI, thus suppressing large spatial variations of PI gas via the drag force. The PII blobs thus play the role of anchors. Therefore, mass aggregation by shocks may be ineffective in a two-phase medium. However, the PII blobs can still aggregate through a kind of fluid dynamical instability. We next suppose that the PI gas is accelerated upward by shocks against downward gravity, while the PII blobs are at rest because of balance between the drag force due to PI and gravity. If we put a positive perturbation in the number density of PII blobs, the upward PI flow above the perturbation is decelerated by the enhanced drag force, and the velocity difference between PI and PII is thereby reduced. Then the PII blobs above the perturbation are accelerated downward, since the gravity on PII now dominates the reduced drag force. As a result, the blobs will fall onto this perturbed region, and this region becomes denser and denser. This is the mechanism of the instability. Therefore, we expect efficient cloud formation by this instability in spiral arms, even when galactic shocks are extremely damped.
Particle migration in two-phase, viscoelastic flows
Jaensson, Nick; Hulsen, Martien; Anderson, Patrick
2014-11-01
Particles suspended in creeping, viscoelastic flows can migrate across stream lines due to gradients in normal stresses. This phenomenon has been investigated both numerically and experimentally. However, particle migration in the presence of fluid-fluid interfaces is hardly studied. We present results of simulations in 2D and 3D of rigid spherical particles in two-phase flows, where either one or both of the fluids are viscoelastic. The fluid-fluid interface is assumed to be diffuse and is described using Cahn-Hilliard theory. The particle boundary is assumed to be sharp and is described by a boundary-fitted, moving mesh. The governing equations are solved using the finite element method. We show that differences in normal stresses between the two fluids can induce a migration of the particle towards the interface in a shear flow. Depending on the magnitude of the surface tension and the properties of the fluids, particle migration can be halted due to the induced Laplace pressure, the particle can be adsorbed at the interface, or the particle can cross the interface into the other fluid. Dutch Polymer Institute (DPI), P.O. Box 902, 5600 AX Eindhoven, The Netherlands.
Criteria for guaranteed breakdown in two-phase inhomogeneous bodies
Bardsley, Patrick; Primrose, Michael S.; Zhao, Michael; Boyle, Jonathan; Briggs, Nathan; Koch, Zoe; Milton, Graeme W.
2017-08-01
Lower bounds are obtained on the maximum field strength in one or both phases in a body containing two-phases. These bounds only incorporate boundary data that can be obtained from measurements at the surface of the body, and thus may be useful for determining if breakdown has necessarily occurred in one of the phases, or that some other nonlinearities have occurred. It is assumed the response of the phases is linear up to the point of electric, dielectric, or elastic breakdown, or up to the point of the onset of nonlinearities. These bounds are calculated for conductivity, with one or two sets of boundary conditions, for complex conductivity (as appropriate at fixed frequency when the wavelength is much larger than the body, i.e. for quasistatics), and for two-dimensional elasticity. Sometimes the bounds are optimal when the field is constant in one of the phases, and using the algorithm of Kang, Kim, and Milton (2012) a wide variety of inclusion shapes having this property, for appropriately chosen bodies and appropriate boundary conditions, are numerically constructed. Such inclusions are known as E_Ω -inclusions.
Diagnosing Traffic Anomalies Using a Two-Phase Model
Institute of Scientific and Technical Information of China (English)
Bin Zhang; Jia-Hai Yang; Jian-Ping Wu; Ying-Wu Zhu
2012-01-01
Network traffic anomalies are unusual changes in a network,so diagnosing anomalies is important for network management.Feature-based anomaly detection models (ab)normal network traffic behavior by analyzing packet header features. PCA-subspace method (Principal Component Analysis) has been verified as an efficient feature-based way in network-wide anomaly detection.Despite the powerful ability of PCA-subspace method for network-wide traffic detection,it cannot be effectively used for detection on a single link.In this paper,different from most works focusing on detection on flow-level traffic,based on observations of six traffc features for packet-level traffic,we propose a new approach B6SVM to detect anomalies for packet-level traffic on a single link.The basic idea of B6-SVM is to diagnose anomalies in a multi-dimensional view of traffic features using Support Vector Machine (SVM).Through two-phase classification,B6-SVM can detect anomalies with high detection rate and low false alarm rate.The test results demonstrate the effectiveness and potential of our technique in diagnosing anomalies.Further,compared to previous feature-based anomaly detection approaches,B6-SVM provides a framework to automatically identify possible anomalous types.The framework of B6-SVM is generic and therefore,we expect the derived insights will be helpful for similar future research efforts.
Thermal performance of closed two-phase thermosyphon using nanofluids
Energy Technology Data Exchange (ETDEWEB)
Khandekar, Sameer; Mehta, Balkrishna [Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Joshi, Yogesh M. [Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)
2008-06-15
Nanofluids, stabilized suspensions of nanoparticles typically <100 nm in conventional fluids, are evolving as potential enhanced heat transfer fluids due to their improved thermal conductivity, increase in single phase heat transfer coefficient and significant increase in critical boiling heat flux. In the present paper, we investigate the overall thermal resistance of closed two-phase thermosyphon using pure water and various water based nanofluids (of Al{sub 2}O{sub 3}, CuO and laponite clay) as working fluids. We observe that all these nanofluids show inferior thermal performance than pure water. Furthermore, we observe that the wettability of all nanofluids on copper substrate, having the same average roughness as that of the thermosyphon container pipe, is better than that of pure water. A scaling analysis is presented which shows that the increase in wettability and entrapment of nanoparticles in the grooves of the surface roughness cause decrease in evaporator side Peclet number that finally leads to poor thermal performance. (author)
Aqueous Nanofluid as a Two-Phase Coolant for PWR
Directory of Open Access Journals (Sweden)
Pavel N. Alekseev
2012-01-01
Full Text Available Density fluctuations in liquid water consist of two topological kinds of instant molecular clusters. The dense ones have helical hydrogen bonds and the nondense ones are tetrahedral clusters with ice-like hydrogen bonds of water molecules. Helical ordering of protons in the dense water clusters can participate in coherent vibrations. The ramified interface of such incompatible structural elements induces clustering impurities in any aqueous solution. These additives can enhance a heat transfer of water as a two-phase coolant for PWR due to natural forming of nanoparticles with a thermal conductivity higher than water. The aqueous nanofluid as a new condensed matter has a great potential for cooling applications. It is a mixture of liquid water and dispersed phase of extremely fine quasi-solid particles usually less than 50 nm in size with the high thermal conductivity. An alternative approach is the formation of gaseous (oxygen or hydrogen nanoparticles in density fluctuations of water. It is possible to obtain stable nanobubbles that can considerably exceed the molecular solubility of oxygen (hydrogen in water. Such a nanofluid can convert the liquid water in the nonstoichiometric state and change its reduction-oxidation (RedOx potential similarly to adding oxidants (or antioxidants for applying 2D water chemistry to aqueous coolant.
Stability of stratified two-phase flows in horizontal channels
Barmak, I.; Gelfgat, A.; Vitoshkin, H.; Ullmann, A.; Brauner, N.
2016-04-01
Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems, the stratified flow with a smooth interface is stable only in confined zone of relatively low flow rates, which is in agreement with experiments, but is not predicted by long-wave analysis. Depending on the flow conditions, the critical perturbations can originate mainly at the interface (so-called "interfacial modes of instability") or in the bulk of one of the phases (i.e., "shear modes"). The present analysis revealed that there is no definite correlation between the type of instability and the perturbation wavelength.
Microporous silica gels from alkylsilicate-water two phase hydrolysis
Energy Technology Data Exchange (ETDEWEB)
Chu, L.; Tejedor-Tejedor, M.I.; Anderson, M.A. [Univ. of Wisconsin, Madison, WI (United States). Water Chemistry Program
1994-12-31
Microporous silica gels have been synthesized through a nano-particulate sol-gel route. These gels have uniformly distributed and extremely small pores(< 15 {angstrom} in diameter). Hydrolysis and condensation reactions leading to these gels were carried out in an alkyl silicate-water (ammonia) two phase system. These reactions took place at the alkyl silicate droplet-water interfacial boundary. No alcohol was added. A clear, stable and uniformly distributed colloidal silica suspension having an average particle size less than 6 nm was prepared by this method. Fast hydrolysis, slow condensation and low solubility all contribute to a high supersaturation level and result in the formation of small particles. This process is consistent with classic nucleation theory. When the particles are produced under acidic rather than under basic reaction conditions, smaller particles are formed due to the slower condensation rate and lower solubility of these silica particles in acidic conditions. At the same pH, alkylsilicates having smaller alkyl groups react faster with water leading to smaller primary particles. Homogeneous nucleation conditions are achieved when the water/alkylsilicate ratio is high.
Pressure transient analysis of two-phase flow problems
Energy Technology Data Exchange (ETDEWEB)
Chu, W.C.; Reynolds, A.C.; Raghavan, R.
1986-04-01
This paper considers the analysis of pressure drawdown and buildup data for two-phase flow problems. Of primary concern is the analysis of data influenced by saturation gradients that exist within the reservoir. Wellbore storage effects are assumed to be negligible. The pressure data considered are obtained from a two-dimensional (2D) numerical coning model for an oil/water system. The authors consider constant-rate production followed by a buildup period and assume that the top, bottom, and outer boundaries of the reservoir are sealed. First, they consider the case where the producing interval is equal to the total formation thickness. Second, they discuss the effect of partial penetration. In both cases, they show that average pressure can be estimated by the Matthews-Brons-Hazebroek method and consider the computation of the skin factor. They also show that a reservoir limit test can estimate reservoir PV only if the total mobility adjacent to the wellbore does not vary with time.
Two-Phase Flow Hydrodynamics in Superhydrophobic Channels
Stevens, Kimberly; Crockett, Julie; Maynes, Daniel; Iverson, Brian
2015-11-01
Superhydrophobic surfaces promote drop-wise condensation and droplet removal leading to the potential for increased thermal transport. Accordingly, great interest exists in using superhydrophobic surfaces in flow condensing environments, such as power generation and desalination. Adiabatic air-water mixtures were used to gain insight into the effect of hydrophobicity on two-phase flows and the hydrodynamics present in flow condensation. Pressure drop and onset of various flow regimes in hydrophilic, hydrophobic, and superhydrophobic mini (0.5 x 10 mm) channels were explored. Data for air/water mixtures with superficial Reynolds numbers from 20-200 and 250-1800, respectively, were obtained. Agreement between experimentally obtained pressure drops and correlations in literature for the conventional smooth control surfaces was better than 20 percent. Transitions between flow regimes for the hydrophobic and hydrophilic channels were similar to commonly recognized flow types. However, the superhydrophobic channel demonstrated significantly different flow regime behavior from conventional surfaces including a different shape of the air slugs, as discussed in the presentation.
An automated two-phase system for hydrogel microbead production.
Coutinho, Daniela F; Ahari, Amir F; Kachouie, Nezamoddin N; Gomes, Manuela E; Neves, Nuno M; Reis, Rui L; Khademhosseini, Ali
2012-09-01
Polymeric beads have been used for protection and delivery of bioactive materials, such as drugs and cells, for different biomedical applications. Here, we present a generic two-phase system for the production of polymeric microbeads of gellan gum or alginate, based on a combination of in situ polymerization and phase separation. Polymer droplets, dispensed using a syringe pump, formed polymeric microbeads while passing through a hydrophobic phase. These were then crosslinked, and thus stabilized, in a hydrophilic phase as they crossed through the hydrophobic-hydrophilic interface. The system can be adapted to different applications by replacing the bioactive material and the hydrophobic and/or the hydrophilic phases. The size of the microbeads was dependent on the system parameters, such as needle size and solution flow rate. The size and morphology of the microbeads produced by the proposed system were uniform, when parameters were kept constant. This system was successfully used for generating polymeric microbeads with encapsulated fluorescent beads, cell suspensions and cell aggregates proving its ability for generating bioactive carriers that can potentially be used for drug delivery and cell therapy.
Two-Phase Flow Field Simulation of Horizontal Steam Generators
Directory of Open Access Journals (Sweden)
Ataollah Rabiee
2017-02-01
Full Text Available The analysis of steam generators as an interface between primary and secondary circuits in light water nuclear power plants is crucial in terms of safety and design issues. VVER-1000 nuclear power plants use horizontal steam generators which demand a detailed thermal hydraulics investigation in order to predict their behavior during normal and transient operational conditions. Two phase flow field simulation on adjacent tube bundles is important in obtaining logical numerical results. However, the complexity of the tube bundles, due to geometry and arrangement, makes it complicated. Employment of porous media is suggested to simplify numerical modeling. This study presents the use of porous media to simulate the tube bundles within a general-purpose computational fluid dynamics code. Solved governing equations are generalized phase continuity, momentum, and energy equations. Boundary conditions, as one of the main challenges in this numerical analysis, are optimized. The model has been verified and tuned by simple two-dimensional geometry. It is shown that the obtained vapor volume fraction near the cold and hot collectors predict the experimental results more accurately than in previous studies.
Unsteady flow analysis of a two-phase hydraulic coupling
Hur, N.; Kwak, M.; Lee, W. J.; Moshfeghi, M.; Chang, C.-S.; Kang, N.-W.
2016-06-01
Hydraulic couplings are being widely used for torque transmitting between separate shafts. A mechanism for controlling the transmitted torque of a hydraulic system is to change the amount of working fluid inside the system. This paper numerically investigates three-dimensional turbulent flow in a real hydraulic coupling with different ratios of charged working fluid. Working fluid is assumed to be water and the Realizable k-ɛ turbulence model together with the VOF method are used to investigate two-phase flow inside the wheels. Unsteady simulations are conducted using the sliding mesh technique. The primary wheel is rotating at a fixed speed of 1780 rpm and the secondary wheel rotates at different speeds for simulating different speed ratios. Results are investigated for different blade angles, speed ratios and also different water volume fractions, and are presented in the form of flow patterns, fluid average velocity and also torques values. According to the results, blade angle severely affects the velocity vector and the transmitted torque. Also in the partially-filled cases, air is accumulated in the center of the wheel forming a toroidal shape wrapped by water and the transmitted torque sensitively depends on the water volume fraction. In addition, in the fully-filled case the transmitted torque decreases as the speed ration increases and the average velocity associated with lower speed ratios are higher.
Passive Two-Phase Cooling of Automotive Power Electronics: Preprint
Energy Technology Data Exchange (ETDEWEB)
Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.
2014-08-01
Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.
Simulation and modeling of two-phase bubbly flows
Energy Technology Data Exchange (ETDEWEB)
Sylvain L Pigny; Pierre F Coste [DEN/DER/SSTH, CEA/Grenoble, 38054 Grenoble Cedex 9 (France)
2005-07-01
Full text of publication follows: Phenomena related to bubbles in two-phase recirculating flows are investigated, via the computational code SIMMER, concerning an experiment in which air is injected in the lower part of a tank filled of water and initially at rest. Averaged mass and momentum transport equations are solved for air and water. Close to the injector, the formation of individual large bubbles is represented in the calculations, via direct simulation. Small scale phenomena, related to small bubbles behavior or turbulence in the liquid continuous phase, are modeled, in a statistical way, via classical closure laws. In a first calculation, the splitting of large bubbles is not represented. It is shown that this phenomenon, the space scale of which is close to the cell size, cannot be simulated, in view of the present computational resources. Nevertheless, relatively fine meshes are used, for an accurate description of hydrodynamical phenomena, and the splitting phenomenon is too large to be modeled via closure laws. A specific approach for the intermediate scales is therefore developed to represent it. (authors)
Hendricks, R. C.; Braun, M. J.; Mullen, R. L.
1986-01-01
In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.
STUDIES OF TWO-PHASE PLUMES IN STRATIFIED ENVIRONMENTS
Energy Technology Data Exchange (ETDEWEB)
Scott A. Socolofsky; Brian C. Crounse; E. Eric Adams
1998-11-18
Two-phase plumes play an important role in the more practical scenarios for ocean sequestration of CO{sub 2}--i.e. dispersing CO{sub 2} as a buoyant liquid from either a bottom-mounted or ship-towed pipeline. Despite much research on related applications, such as for reservoir destratification using bubble plumes, our understanding of these flows is incomplete, especially concerning the phenomenon of plume peeling in a stratified ambient. To address this deficiency, we have built a laboratory facility in which we can make fundamental measurements of plume behavior. Although we are using air, oil and sediments as our sources of buoyancy (rather than CO{sub 2}), by using models, our results can be directly applied to field scale CO{sub 2} releases to help us design better CO{sub 2} injection systems, as well as plan and interpret the results of our up-coming international field experiment. The experimental facility designed to study two-phase plume behavior similar to that of an ocean CO{sub 2} release includes the following components: 1.22 x 1.22 x 2.44 m tall glass walled tank; Tanks and piping for the two-tank stratification method for producing step- and linearly-stratified ambient conditions; Density profiling system using a conductivity and temperature probe mounted to an automated depth profiler; Lighting systems, including a virtual point source light for shadowgraphs and a 6 W argon-ion laser for laser induced fluorescence (LIF) imaging; Imaging system, including a digital, progressive scanning CCD camera, computerized framegrabber, and image acquisition and analysis software; Buoyancy source diffusers having four different air diffusers, two oil diffusers, and a planned sediment diffuser; Dye injection method using a Mariotte bottle and a collar diffuser; and Systems integration software using the Labview graphical programming language and Windows NT. In comparison with previously reported experiments, this system allows us to extend the parameter range of
Numerical flow analyses of a two-phase hydraulic coupling
Energy Technology Data Exchange (ETDEWEB)
Hur, N.; Kwak, M.; Moshfeghi, M. [Sogang University, Seoul (Korea, Republic of); Chang, C.-S.; Kang, N.-W. [VS Engineering, Seoul (Korea, Republic of)
2017-05-15
We investigated flow characteristics in a hydraulic coupling at different charged water conditions and speed ratios. Hence, simulations were performed for three-dimensional two-phase flow by using the VOF method. The realizable k-ε turbulence model was adopted. To resolve the interaction of passing blades of the primary and secondary wheels, simulations were conducted in the unsteady framework using a sliding grid technique. The results show that the water-air distribution inside the wheel is strongly dependent upon both amount of charged water and speed ratio. Generally, air is accumulated in the center of the wheel, forming a toroidal shape wrapped by the circulating water. The results also show that at high speed ratios, the solid-body-like rotation causes dry areas on the periphery of the wheels and, hence, considerably decreases the circulating flow rate and the transmitted torque. Furthermore, the momentum transfer was investigated through the concept of a mass flux triangle based on the local velocity multiplied by the local mixture density instead of the velocity triangle commonly used in a single-phase turbomachine analysis. Also, the mass fluxes along the radius of the coupling in the partially charged and fully charged cases were found to be completely different. It is shown that the flow rate at the interfacial plane and also the transmitted torque are closely related and are strongly dependent upon both the amount of charged water and speed ratio. Finally, a conceptual categorization together with two comprehensive maps was provided for the torque transmission and also circulating flow rates. These two maps in turn exhibit valuable engineering information and can serve as bases for an optimal design of a hydraulic coupling.
Two Phase Flow Mapping and Transition Under Microgravity Conditions
Parang, Masood; Chao, David F.
1998-01-01
In this paper, recent microgravity two-phase flow data for air-water, air-water-glycerin, and air- water-Zonyl FSP mixtures are analyzed for transition from bubbly to slug and from slug to annular flow. It is found that Weber number-based maps are inadequate to predict flow-pattern transition, especially over a wide range of liquid flow rates. It is further shown that slug to annular flow transition is dependent on liquid phase Reynolds number at high liquid flow rate. This effect may be attributed to growing importance of liquid phase inertia in the dynamics of the phase flow and distribution. As a result a new form of scaling is introduced to present data using liquid Weber number based on vapor and liquid superficial velocities and Reynolds number based on liquid superficial velocity. This new combination of the dimensionless parameters seem to be more appropriate for the presentation of the microgravity data and provides a better flow pattern prediction and should be considered for evaluation with data obtained in the future. Similarly, the analysis of bubble to slug flow transition indicates a strong dependence on both liquid inertia and turbulence fluctuations which seem to play a significant role on this transition at high values of liquid velocity. A revised mapping of data using a new group of dimensionless parameters show a better and more consistent description of flow transition over a wide range of liquid flow rates. Further evaluation of the proposed flow transition mapping will have to be made after a wider range of microgravity data become available.
Numerical simulation of two-phase flow behavior in Venturi scrubber by interface tracking method
Energy Technology Data Exchange (ETDEWEB)
Horiguchi, Naoki, E-mail: s1430215@u.tsukuba.ac.jp [Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan); Yoshida, Hiroyuki [Japan Atomic Energy Agency, 2-4, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Abe, Yutaka [University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577 (Japan)
2016-12-15
Highlights: • Self-priming occur because of pressure balance between inside and outside of throat is confirmed. • VS has similar flow with a Venturi tube except of disturbance and burble flow is considered. • Some of atomization simulated are validated qualitatively by comparison with previous studies. - Abstract: From the viewpoint of protecting a containment vessel of light water reactor and suppressing the diffusion of radioactive materials from a light water reactor, it is important to develop the device which allows a filtered venting of contaminated high pressure gas. In the filtered venting system that used in European reactors, so called Multi Venturi scrubbers System is used to realize filtered venting without any power supply. This system is able to define to be composed of Venturi scrubbers (VS) and a bubble column. In the VS, scrubbing of contaminated gas is promoted by both gas releases through the submerged VS and gas-liquid contact with splay flow formed by liquid suctioned through a hole provided by the pressure difference between inner and outer regions of a throat part of the VS. However, the scrubbing mechanism of the self-priming VS including effects of gas mass flow rate and shape of the VS are understood insufficiently in the previous studies. Therefore, we started numerical and experimental study to understand the detailed two-phase flow behavior in the VS. In this paper, to understand the VS operation characteristics for the filtered venting, we performed numerical simulations of two-phase flow behavior in the VS. In the first step of this study, we perform numerical simulations of supersonic flow by the TPFIT to validate the applicability of the TPFIT for high velocity flow like flow in the VS. In the second step, numerical simulation of two-phase flow behavior in the VS including self-priming phenomena. As the results, dispersed flow in the VS was reproduced in the numerical simulation, as same as the visualization experiments.
A modified Rusanov scheme for shallow water equations with topography and two phase flows
Mohamed, Kamel; Benkhaldoun, F.
2016-06-01
In this work, we introduce a finite volume method for numerical simulation of shallow water equations with source terms in one and two space dimensions, and one-pressure model of two-phase flows in one space dimension. The proposed method is composed of two steps. The first, called predictor step, depends on a local parameter allowing to control the numerical diffusion. A strategy based on limiters theory enables to control this parameter. The second step recovers the conservation equation. The scheme can thus be turned to order 1 in the regions where the flow has a strong variation, and order 2 in the regions where the flow is regular. The numerical scheme is applied to several test cases in one and two space dimensions. This scheme demonstrates its well-balanced property, and that it is an efficient and accurate approach for solving shallow water equations with and without source terms, and water faucet problem.
48 CFR 36.301 - Use of two-phase design-build selection procedures.
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Use of two-phase design... ACQUISITION REGULATION SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Two-Phase Design-Build Selection Procedures 36.301 Use of two-phase design-build selection procedures....
24 CFR 115.201 - The two phases of substantial equivalency certification.
2010-04-01
... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false The two phases of substantial... ENFORCEMENT AGENCIES Certification of Substantially Equivalent Agencies § 115.201 The two phases of.... The Department has developed a two-phase process of substantial equivalency certification....
Role of Nucleation and Growth in Two-Phase Microstructure Formation
Energy Technology Data Exchange (ETDEWEB)
Shin, Jong Ho [Iowa State Univ., Ames, IA (United States)
2007-01-01
oscillatory microstructures that depend on the imposed velocity and the size of the sample. At low thermal gradient to velocity ratio, a steady-state composite microstructure is observed. Two mechanisms of composite microstructure formation were examined: (1) the formation of the peritectic phase in the intercellular region of the primary phase where the solute rejected by the primary phase is absorbed by the peritectic phase. The peritectic phase forms a small distance behind the growing primary phase front. (2) The second mechanism is the coupled growth of the two phases with a macroscopically planar interface, as in the case of eutectic growth. Detailed studies showed that this composite microstructure, although it appears as a eutectic microstructure, did not grow in the coupled manner at the advancing interface in the Sn-cd system. However, a new observation was made when experiments were carried out in thin ampoule of Ta. The peritectic phase nucleated at the wall-interface triple junction and grew along the wall, while the primary phase continued to grow at the center, giving rise to a steady-state couple growth at some specific velocity. The mechanism of coupled growth in this case was shown to be operative due to the presence of a finite contact angle at the wall, and this was demonstrated by including the contact angle effect at the wall in the rod eutectic growth model. The experimental results were summarized to map out the conditions of thermal gradient and velocity on the regimes of composite and oscillatory microstructure formation. The formation of complex time-dependent microstructures was then discussed in terms of the time-dependent dynamics of planar interface growth.
Gradient Augmented Level Set Method for Two Phase Flow Simulations with Phase Change
Anumolu, C. R. Lakshman; Trujillo, Mario F.
2016-11-01
A sharp interface capturing approach is presented for two-phase flow simulations with phase change. The Gradient Augmented Levelset method is coupled with the two-phase momentum and energy equations to advect the liquid-gas interface and predict heat transfer with phase change. The Ghost Fluid Method (GFM) is adopted for velocity to discretize the advection and diffusion terms in the interfacial region. Furthermore, the GFM is employed to treat the discontinuity in the stress tensor, velocity, and temperature gradient yielding an accurate treatment in handling jump conditions. Thermal convection and diffusion terms are approximated by explicitly identifying the interface location, resulting in a sharp treatment for the energy solution. This sharp treatment is extended to estimate the interfacial mass transfer rate. At the computational cell, a d-cubic Hermite interpolating polynomial is employed to describe the interface location, which is locally fourth-order accurate. This extent of subgrid level description provides an accurate methodology for treating various interfacial processes with a high degree of sharpness. The ability to predict the interface and temperature evolutions accurately is illustrated by comparing numerical results with existing 1D to 3D analytical solutions.
Experimental study of two-phase flows under reduced gravity conditions
Energy Technology Data Exchange (ETDEWEB)
Roy, T., E-mail: tirthankar.roy@ntnu.no [Purdue Univ., West Lafayette, Indiana (United States); Norwegian Univ. of Science and Tech., Trondheim (Norway); Liu, Y.; Chen, S.-W.; Hibiki, T.; Ishii, M., E-mail: liu130@purdue.edu, E-mail: hibiki@purdue.edu, E-mail: ishii@purdue.edu [Purdue Univ., West Lafayette, Indiana (United States); Duval, W., E-mail: walter.m.duval@nasa.gov [NASA Glenn Research Center, Cleveland, Ohio (United States)
2011-07-01
Study of gas-liquid two-phase flows under reduced gravity conditions is very important for space applications such as active thermal control systems. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to dynamically predict the behavior of such two-phase flows under normal and reduced gravity conditions. As part of a big program experiments were carried out in a 304 mm inner diameter test facility on earth to generate a detailed experimental data base which is required for the evaluation of two-fluid model along with IATE under reduced gravity conditions. In the present case reduced gravity condition is simulated using two-liquids of similar densities. Such a large diameter test section was chosen to study the development of drops to their full. Twelve flow conditions were chosen around predicted bubbly flow to cap-bubbly flow transition region. Detailed local data was obtained at ten radial locations for each of three axial locations using double-sensor conductivity probes. Some of the results are presented here and discussed. (author)
Experimental Study on Two-Phase Flow in Horizontal Rectangular Minichannel with Y-Junction
Directory of Open Access Journals (Sweden)
Agus Santoso
2016-03-01
Full Text Available An experimental study was conducted to investigate two-phase air-water flow characteristics, in horizontal rectangular minichannel with Y-junction. The width (W, the height (H and the hydraulic diameter (DH of the rectangular cross section for the upstream side of the junction are 4.60 mm, 2.50 mm and 3.24 mm, while those for the downstream side are 2.36 mm, 2.50 mm and 2.43 mm. The entire test section was machined from transparent acrylic block, so that the flow structure could be visualized. Liquid single-phase and air-liquid twophase flow experiments were conducted at room temperature. The flow pattern, the bubble velocity, the bubble length, and the void fraction were measured with a high-speed video camera. Pressure profile upstream and downstream from the junction was also measured for the respective flows, and the pressure loss due to the contraction at the junction was determined from the pressure profiles. Two flow patterns, i.e., slug and annular flows, were observed in the fully-developed region apart from the junction. In the analysis, the frictional pressure drop data, the two-phase frictional multiplier data, bubble velocity data, bubble length data and void fraction data were compared with calculations by some correlations in literatures. In addition, new pressure loss coefficient correlations for the pressure drop at the junction has been proposed. Results of such experiment and analysis are described in the present paper.
Stability of stratified two-phase flows in inclined channels
Barmak, I.; Gelfgat, A. Yu.; Ullmann, A.; Brauner, N.
2016-08-01
Linear stability of the stratified gas-liquid and liquid-liquid plane-parallel flows in the inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict the parameter regions in which the stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in the inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of the non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of the steady state solutions are presented on the flow pattern map and are accompanied by the critical wavenumbers and the spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by the streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of two stable stratified flow configurations in a region of low flow rates in the countercurrent liquid-liquid flows. These configurations become unstable with respect to the shear mode of instability. It was revealed that in slightly upward inclined flows the lower and middle solutions for the holdup are stable in the part of the triple solution region, while the upper solution is always unstable. In the case of downward flows, in the triple solution region, none of the solutions are stable with respect to the short-wave perturbations. These flows are stable only in the single solution region at low flow rates of the heavy phase, and the long-wave perturbations are the most unstable ones.
On the Stable Numerical Approximation of Two-Phase Flow with Insoluble Surfactant
Barrett, John W; Nürnberg, Robert
2013-01-01
We present a parametric finite element approximation of two-phase flow with insoluble surfactant. This free boundary problem is given by the Navier--Stokes equations for the two-phase flow in the bulk, which are coupled to the transport equation for the insoluble surfactant on the interface that separates the two phases. We combine the evolving surface finite element method with an approach previously introduced by the authors for two-phase Navier--Stokes flow, which maintains good mesh properties. The derived finite element approximation of two-phase flow with insoluble surfactant can be shown to be stable. Several numerical simulations demonstrate the practicality of our numerical method.
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Hideo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1996-05-01
The slug flow transitions and related phenomena for horizontal two-phase flows were studied for a better prediction of two-phase flows that typically appear during the reactor loss-of-coolant accidents (LOCAs). For better representation of the flow conditions experimentally, two large-scaled facility: TPTF for high-pressure steam/water two-phase flows and large duct test facility for air/water two-phase flows, were used. The visual observation of the flow using a video-probe was performed in the TPTF experiments for good understanding of the phenomena. The currently-used models and correlations based mostly on the small-scale low-pressure experiments were reviewed and improved based on these experimental results. The modified Taitel-Dukler model for prediction of transition into slug flow from wavy flow and the modified Steen-Wallis correlation for prediction of onset of liquid entrainment from the interfacial waves were obtained. An empirical correlation for the gas-liquid interfacial friction factor was obtained further for prediction of liquid levels at wavy flow. The region of slug flow regime that is generally under influences of the channel height and system pressure was predicted well when these models and correlations were applied together. (author). 90 refs.
Stability of stratified two-phase flows in inclined channels
Barmak, Ilya; Ullmann, Amos; Brauner, Neima
2016-01-01
Linear stability of stratified gas-liquid and liquid-liquid plane-parallel flows in inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict parameter regions in which stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of steady state solutions are presented on the flow pattern map and are accompanied by critical wavenumbers and spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of ...
Laryngeal two-phase flow in realistic breathing conditions
Scheinherr, Adam; Bailly, Lucie; Boiron, Olivier; Legou, Thierry; Lagier, Aude; Caillibotte, Georges; Pichelin, Marine
2013-01-01
International audience; Liquid aerosols are efficient vectors for drug delivery in upper and lower respiratory tract. Characteristics of inhaled particles, flow properties, and airway morphology represent the main influential factors of the transport mechanisms. Numerous works have been carried out to characterize the airflow behaviour during human breathing [Baier, 1977; Brancatisano, 1983], and to determine the trajectories of inhaled particles through the extrathoracic region. Recent studi...
Modeling of Two-Phase Immiscible Flow with Moving Contact Lines
Abu Alsaud, Moataz; Soulaine, Cyprien; Riaz, Amir; Tchelepi, Hamdi; Stanford University Collaboration; University of Maryland, College Park Collaboration
2015-11-01
A new numerical method based on the implicit interface approach on Cartesian grids is proposed for modeling two-phase immiscible flow with moving contact lines. The reinitialization of level-set function by computing the minimum distance to linearly reconstructed interface to obtain signed distance function is extended to include the contact angle boundary condition. The physics of contact line dynamics is implemented using the Cox-Voinov hydrodynamic theory that efficiently captures the effect of the microscopic contact line region. The numerical method is validated through various examples. Parasitic currents are studied in the case of static and constantly advected parabolic interface intersecting the domain boundary with an imposed contact angle. Moving contact line in the viscous dominated regime is studied and verified through comparison with experiments.
Theoretical analysis and numerical computation of dilute solid/liquid two_phase pipe flow
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Starting with the kinetic theory for dilute solid/liquid two_phase flow, a mathematical model is established to predict the flow in a horizontal square pipe and the predictions are compared with LDV measurements. The present model predicts correctly two types of patterns of the vertical distribution of particle concentration observed in experiments, and also gives different patterns of the distribution of particle fluctuating energy. In the core region of the pipe, the predicted mean velocity of particles is smaller than that of liquid, but near the pipe bottom the reverse case occurs. In addition, full attention is paid to the mechanism for the vertical distribution of the average properties of particles such as concentration and mean velocity. From the kinetic_theory point of view, the cause of formation for different patterns of the vertical concentration distribution is not only related to the lift force exerted on a particle, but also related to the distribution of particle fluctuating energy.
Indian Academy of Sciences (India)
B Nageswara Sarma; S Srinivas Prasad; S Vijayvergiya; V Bharath Kumar; S Lele
2003-06-01
The thermodynamic origin of various types of phase diagrams in simple binary systems exhibiting two phases (e.g. a liquid and a solid phase) has been examined using the regular solution model. The necessary conditions for the occurrence of each of these types are identified in terms of the appropriate intersections of the miscibility gap boundaries (in solid/liquid phases) and the liquidus/solidus/iso- curves. Thus, the regions of occurrence of the different types of possible phase diagrams in the space of the regular solution interchange energy parameters (, ) are clearly delineated. This analysis makes it easier to make intelligent initial selections of model (energy) parameters for their optimization in the calculation of phase diagrams using thermodynamic models such as CALPHAD/CVM.
Ice melting and downward transport of meltwater by two-phase flow in Europa's ice shell
Kalousová, Klára; Souček, Ondřej; Tobie, Gabriel; Choblet, Gaël.; Čadek, Ondřej
2014-03-01
With its young surface, very few impact craters, and the abundance of tectonic and cryovolcanic features, Europa has likely been subjected to relatively recent endogenic activity. Morphological analyses of chaos terrains and double ridges suggest the presence of liquid water within the ice shell a few kilometers below the surface, which may result from enhanced tidal heating. A major issue concerns the thermal/gravitational stability of these water reservoirs. Here we investigate the conditions under which water can be generated and transported through Europa's ice shell. We address particularly the downward two-phase flow by solving the equations for a two-phase mixture of water ice and liquid water in one-dimensional geometry. In the case of purely temperate ice, we show that water is transported downward very efficiently in the form of successive porosity waves. The time needed to transport the water from the subsurface region to the underlying ocean varies between ˜1 and 100 kyr, depending mostly on the ice permeability. We further show that water produced in the head of tidally heated hot plumes never accumulates at shallow depths and is rapidly extracted from the ice shell (within less than a few hundred kiloyears). Our calculations indicate that liquid water will be largely absent in the near subsurface, with the possible exception of cold conductive regions subjected to strong tidal friction. Recently active double ridges subjected to large tidally driven strike-slip motions are perhaps the most likely candidates for the detection of transient water lenses at shallow depths on Europa.
Heat transfer studies in a spiral plate heat exchanger for water: palm oil two phase system
Directory of Open Access Journals (Sweden)
S. Ramachandran
2008-09-01
Full Text Available Experimental studies were conducted in a spiral plate heat exchanger with hot water as the service fluid and the two-phase system of water palm oil in different mass fractions and flow rates as the cold process fluid. The two phase heat transfer coefficients were correlated with Reynolds numbers (Re in the form h = a Re m, adopting an approach available in literature for two phase fluid flow. The heat transfer coefficients were also related to the mass fraction of palm oil for identical Reynolds numbers. The two-phase multiplier (ratio of the heat transfer coefficient of the two phase fluid and that of the single phase fluid was correlated with the Lockhart Martinelli parameter in a polynomial form. This enables prediction of the two-phase coefficients using single-phase data. The predicted coefficients showed a spread of ± 10 % in the laminar range.
Rao, Wenwei; Wang, Yun; Han, Juan; Wang, Lei; Chen, Tong; Liu, Yan; Ni, Liang
2015-06-25
The cloud point of thermosensitive triblock polymer L61, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO), was determined in the presence of various electrolytes (K2HPO4, (NH4)3C6H5O7, and K3C6H5O7). The cloud point of L61 was lowered by the addition of electrolytes, and the cloud point of L61 decreased linearly with increasing electrolyte concentration. The efficacy of electrolytes on reducing cloud point followed the order: K3C6H5O7 > (NH4)3C6H5O7 > K2HPO4. With the increase in salt concentration, aqueous two-phase systems exhibited a phase inversion. In addition, increasing the temperature reduced the concentration of salt needed that could promote phase inversion. The phase diagrams and liquid-liquid equilibrium data of the L61-K2HPO4/(NH4)3C6H5O7/K3C6H5O7 aqueous two-phase systems (before the phase inversion but also after phase inversion) were determined at T = (25, 30, and 35) °C. Phase diagrams of aqueous two-phase systems were fitted to a four-parameter empirical nonlinear expression. Moreover, the slopes of the tie-lines and the area of two-phase region in the diagram have a tendency to rise with increasing temperature. The capacity of different salts to induce aqueous two-phase system formation was the same order as the ability of salts to reduce the cloud point.
Exact Integral Solutions for Two-Phase Flow
McWhorter, David B.; Sunada, Daniel K.
1990-03-01
Exact integral solutions for the horizontal, unsteady flow of two viscous, incompressible fluids are derived. Both one-dimensional and radial displacements are calculated with full consideration of capillary drive and for arbitrary capillary-hydraulic properties. One-dimensional, unidirectional displacement of a nonwetting phase is shown to occur increasingly like a shock front as the pore-size distribution becomes wider. This is in contrast to the situation when an inviscid nonwetting phase is displaced. The penetration of a nonwetting phase into porous media otherwise saturated by a wetting phase occurs in narrow, elongate distributions. Such distributions result in rapid and extensive penetration by the nonwetting phase. The process is remarkably sensitive to the capillary-hydraulic properties that determine the value of knw/kw at large wetting phase saturations, a region in which laboratory measurements provide the least resolution. The penetration of a nonwetting phase can be expected to be dramatically affected by the presence of fissures, worm holes, or other macropores. Calculations for radial displacement of a nonwetting phase resident at a small initial saturation show the displacement to be inefficient. The fractional flow of the nonwetting phase falls rapidly and, for a specific example, becomes 1% by the time one pore volume of water has been injected.
Meso-Scale Modeling of Spall in a Heterogeneous Two-Phase Material
Energy Technology Data Exchange (ETDEWEB)
Springer, Harry Keo [Univ. of California, Davis, CA (United States)
2008-07-11
The influence of the heterogeneous second-phase particle structure and applied loading conditions on the ductile spall response of a model two-phase material was investigated. Quantitative metallography, three-dimensional (3D) meso-scale simulations (MSS), and small-scale spall experiments provided the foundation for this study. Nodular ductile iron (NDI) was selected as the model two-phase material for this study because it contains a large and readily identifiable second- phase particle population. Second-phase particles serve as the primary void nucleation sites in NDI and are, therefore, central to its ductile spall response. A mathematical model was developed for the NDI second-phase volume fraction that accounted for the non-uniform particle size and spacing distributions within the framework of a length-scale dependent Gaussian probability distribution function (PDF). This model was based on novel multiscale sampling measurements. A methodology was also developed for the computer generation of representative particle structures based on their mathematical description, enabling 3D MSS. MSS were used to investigate the effects of second-phase particle volume fraction and particle size, loading conditions, and physical domain size of simulation on the ductile spall response of a model two-phase material. MSS results reinforce existing model predictions, where the spall strength metric (SSM) logarithmically decreases with increasing particle volume fraction. While SSM predictions are nearly independent of applied load conditions at lower loading rates, which is consistent with previous studies, loading dependencies are observed at higher loading rates. There is also a logarithmic decrease in SSM for increasing (initial) void size, as well. A model was developed to account for the effects of loading rate, particle size, matrix sound-speed, and, in the NDI-specific case, the probabilistic particle volume fraction model. Small-scale spall experiments were designed
Zeng, Chao-Xi; Xin, Rui-Pu; Qi, Sui-Jian; Yang, Bo; Wang, Yong-Hua
2016-02-01
Aqueous two-phase systems, based on the use of natural quaternary ammonium compounds, were developed to establish a benign biotechnological route for efficient protein separation. In this study, aqueous two-phase systems of two natural resources betaine and choline with polyethyleneglycol (PEG400/600) or inorganic salts (K2 HPO4 /K3 PO4 ) were formed. It was shown that in the K2 HPO4 -containing aqueous two-phase system, hydrophobic interactions were an important driving force of protein partitioning, while protein size played a vital role in aqueous two-phase systems that contained polyethylene glycol. An extraction efficiency of more than 90% for bovine serum albumin in the betaine/K2 HPO4 aqueous two-phase system can be obtained, and this betaine-based aqueous two-phase system provided a gentle and stable environment for the protein. In addition, after investigation of the cluster phenomenon in the betaine/K2 HPO4 aqueous two-phase systems, it was suggested that this phenomenon also played a significant role for protein extraction in this system. The development of aqueous two-phase systems based on natural quaternary ammonium compounds not only provided an effective and greener method of aqueous two-phase system to meet the requirements of green chemistry but also may help to solve the mystery of the compartmentalization of biomolecules in cells.
Institute of Scientific and Technical Information of China (English)
WANG; Jiang; SHI; Mingheng
2006-01-01
Based on the requirement of water management for a direct methanol fuel cell, this paper analyzes qualitatively the mechanism of occurrence and development of a two-phase countercurrent flow with corresponding transport phenomenon in the PEM. A one-dimensional, steady state quantitative model of heat and mass transfer in internal volumetric ohmic heating porous media saturated by liquid and vapor phases is developed. The effects of capillarity, electro-osmotic drag and phase change are included. Two important formulas to calculate the theoretical length of two-phase zone δt and determine the critical criterion |-ω/γ|cr for dryout in PEM are deduced. By use of these two dimensionless parameters, dryout of PEM can be easily predicted. Theoretical temperature, pressure and saturation profiles within the two-phase region are obtained numerically, which can help to explore the performance of a DMFC operating in its ohmic polarization region. The simulation results can be used to determine the catalyst content of cathode catalyst layer and the corresponding optimal thickness of PEM.
Energy Technology Data Exchange (ETDEWEB)
Bai Bofeng, E-mail: bfbai@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Liu Maolong; Lv Xiaofei; Yan Junjie [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Yan Xiao; Xiao Zejun [Lab of Bubble Physics and Natural Circulation, Nuclear Power Institute of China, Chengdu 610041 (China)
2011-12-15
An experimental study was conducted on the pressure drop of the single phase and the air-water two-phase flow in the bed of rectangular cross sections densely filled with uniform spheres. Three kinds of glass spheres with different equivalent diameters (3 mm, 6 mm, and 8 mm) were used for the establishment of the test sections. The Reynolds number in the experiment ranged from a dozen to thousands for the single-phase flow and from hundreds to tens of thousands for the two-phase flow. In the present flow-regime model, the bed was subdivided into a near-wall region and a central region in order to take the wall effect into account to improve the prediction at low tube-to-particle diameter ratios. Improved correlations are obtained based on the previous study to consider the single-phase flow pressure drops for finite pebble beds with spherical particles and nonspherical particles by fitting the coefficients of that equation to both the database and the present experiment. The correlation is consistent with the observed physical behavior which explains its comparatively good agreement with the experimental data. A new empirical correlation for the prediction of two-phase flow pressure drops was proposed based on the gas phase relative permeability as a function of the gas phase saturation and the void fraction. The correlation fit well for both experimental data of spherical particles and nonspherical particles.
Line profiles of the two-phase medium broad-line region in active galactic nuclei
Institute of Scientific and Technical Information of China (English)
薛随建; 林宣滨; 程福臻; John Kwan
1996-01-01
In the framework of BLR in AGNs, i.e. large number of small, cold and dense emission-line clouds immerging in an intercloud hot medium, a delicate radiation model for a typical emission cloud is established, in which the backside photoionization of the cloud against the central continuum source by the scattered diffuse continuum in the hot medium is considered. Under the assumption of the radial kinematics of the BLR clouds, the line profiles for the two important UV emission-lines, Lya and CIV/11549 are computed; and based on these calculations, various physical factors that affect the properties of the emission-line profiles are discussed. It is concluded that: (i) when the BLR clouds is inflow, there exists a confining hot medium with density around 2 x 105 cm-3. In this case, theoretical line profiles agree well with the observational; (ii) both symmetric Lya and nearly symmetric CIV line profiles show blue velocity shifts, the quantities of which are sensitive to the cutoff of the outer radius of t
Finite temperature collective modes in a two phase coexistence region of asymmetric nuclear matter
Aguirre, R M
2010-01-01
The relation between collective modes and the phase transition in low density nuclear matter is examined. The dispersion relations for collective modes in a linear approach are evaluated within a Landau-Fermi liquid scheme by assuming coexisting phases in thermodynamical equilibrium. Temperature and isospin composition are taken as relevant parameters. The in-medium nuclear interaction is taken from a recently proposed density functional model. We found significative modifications in the energy spectrum, within certain range of temperatures and isospin asymmetry, due to the separation of matter into independent phases. We conclude that detailed calculations should not neglect this effect.
A two-scale second-order moment two-phase turbulence model for simulating dense gas-particle flows
Institute of Scientific and Technical Information of China (English)
Zhuoxiong Zeng; Lixing Zhou; Jian Zhang; Keren Wang
2005-01-01
A two-scale second-order moment two-phase turbulence model accounting for inter-particle collision is developed, based on the concepts of particle large-scale fluctuation due to turbulence and particle small-scale fluctuation due to collision and through a unified treatment of these two kinds of fluctuations. The proposed model is used to simulate gas-particle flows in a channel and in a downer. Simulation results are in agreement with the experimental results reported in references and are near the results obtained using the single-scale second-order moment two-phase turbulence model superposed with a particle collision model (USM-θ model)in most regions.
CALCULATION ON TWO-PHASE FLOW TRANSIENTS AND THEIR EXPERIMENTAL RESEARCH
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
From basic equations of gas-liquid, solid-liquid, solid-gas two-phase flow, the calculating method on flowtransients of two-phase flow is developed by means of characteristic method. As one example, a gas-liquid flow transientis calculated and it agrees well with the experimental result. It is shown that the method is satisfactory for engineeringdemand.
48 CFR 570.105-2 - Two-phase design-build selection procedures.
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Two-phase design-build... ADMINISTRATION SPECIAL CONTRACTING PROGRAMS ACQUIRING LEASEHOLD INTERESTS IN REAL PROPERTY General 570.105-2 Two..., you must use the two-phase design-build selection procedures in section 303M of the Federal Property...
Two-phase flow experimental studies in micro-models (Utrecht Studies in Earth Sciences 034)
Karadimitriou, N.K.
2013-01-01
The aim of this research project was to put more physics into theories of two-phase flow. The significance of including interfacial area as a separate variable in two-phase flow and transport models was investigated. In order to investigate experimentally the significance of the inclusion of interfa
Chiaramonte, Francis; Motil, Brian; McQuillen, John
2014-01-01
The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage.
NUMERICAL SIMULATION OF CHARGED GAS-LIQUID TWO PHASE JET FLOW IN ELECTROSTATIC SPRAYING
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Multi-fluid k-ε-kp two phase turbulence model is used to simulate charged gas-liquid two phase coaxial jet, which is the transorting flow field in electrostatic spraying. Compared with the results of experiment, charged gas-liquid twophase turbulence can be well predicted by this model.
Solutions of Green s function for Lamb s problem of a two-phase saturated medium
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The solutions of Green's function are significant for simplification of problem on a two-phase saturated medium.Using transformation of axisymmetric cylindrical coordinate and Sommerfeld's integral,superposition of the influence field on a free surface,authors obtained the solutions of a two-phase saturated medium subjected to a concentrated force on the semi-space.
Symmetrical components and power analysis for a two-phase microgrid system
DEFF Research Database (Denmark)
Alibeik, M.; Santos Jr., E. C. dos; Blaabjerg, Frede
2014-01-01
This paper presents a mathematical model for the symmetrical components and power analysis of a new microgrid system consisting of three wires and two voltages in quadrature, which is designated as a two-phase microgrid. The two-phase microgrid presents the following advantages: 1) constant power...
Experimental Study of gas-liquid two-phase flow affected by wall surface wettability
Energy Technology Data Exchange (ETDEWEB)
Takamasa, T. [Faculty of Marine Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima, Koto, Tokyo 135-8533 (Japan); Hazuku, T. [Faculty of Marine Technology, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima, Koto, Tokyo 135-8533 (Japan)], E-mail: hazuku@kaiyodai.ac.jp; Hibiki, T. [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017 (United States)
2008-12-15
To evaluate the effect of wall surface wettability on the characteristics of upward gas-liquid two-phase flow in a vertical pipe, an experimental study was performed using three test pipes: an acrylic pipe, a hydrophilic pipe and a hydrophobic pipe. Basic flow characteristics such as flow patterns, pressure drop and void fraction were measured in these three pipes. In the hydrophilic pipe, a slug to churn flow transition boundary was shifted to a higher gas velocity at a given liquid velocity, whereas a churn to annular flow transition boundary was shifted to a lower gas velocity at a given liquid velocity. In the hydrophobic pipe, an inverted-churn flow regime was observed in the region where the churn flow regime was observed in the acrylic pipe, while a droplet flow regime was observed in the region where an annular flow regime was observed in the acrylic pipe. At a high gas flow rate, the mean void fraction in the hydrophobic pipe was higher than in the acrylic pipe. The effect of surface wettability on frictional pressure loss was confirmed to be insignificant under the present experimental conditions.
Majhi, Bijoy Kumar; Jash, Tushar
2016-12-01
Biogas production from vegetable market waste (VMW) fraction of municipal solid waste (MSW) by two-phase anaerobic digestion system should be preferred over the single-stage reactors. This is because VMW undergoes rapid acidification leading to accumulation of volatile fatty acids and consequent low pH resulting in frequent failure of digesters. The weakest part in the two-phase anaerobic reactors was the techniques applied for solid-liquid phase separation of digestate in the first reactor where solubilization, hydrolysis and acidogenesis of solid organic waste occur. In this study, a two-phase reactor which consisted of a solid-phase reactor and a methane reactor was designed, built and operated with VMW fraction of Indian MSW. A robust type filter, which is unique in its implementation method, was developed and incorporated in the solid-phase reactor to separate the process liquid produced in the first reactor. Experiments were carried out to assess the long term performance of the two-phase reactor with respect to biogas production, volatile solids reduction, pH and number of occurrence of clogging in the filtering system or choking in the process liquid transfer line. The system performed well and was operated successfully without the occurrence of clogging or any other disruptions throughout. Biogas production of 0.86-0.889m(3)kg(-1)VS, at OLR of 1.11-1.585kgm(-3)d(-1), were obtained from vegetable market waste, which were higher than the results reported for similar substrates digested in two-phase reactors. The VS reduction was 82-86%. The two-phase anaerobic digestion system was demonstrated to be stable and suitable for the treatment of VMW fraction of MSW for energy generation.
A MODEL FOR PREDICTING PHASE INVERSION IN OIL-WATER TWO-PHASE PIPE FLOW
Institute of Scientific and Technical Information of China (English)
GONG Jing; LI Qing-ping; YAO Hai-yuan; YU Da
2006-01-01
Experiments of phase inversion characteristics for horizontal oil-water two-phase flow in a stainless steel pipe loop (25.7 mm inner diameter,52 m long) are conducted. A new viewpoint is brought forward about the process of phase inversion in oil-water two-phase pipe flow. Using the relations between the total free energies of the pre-inversion and post-inversion dispersions, a model for predicting phase inversion in oil-water two-phase pipe flow has been developed that considers the characteristics of pipe flow. This model is compared against other models with relevant data of phase inversion in oil-water two-phase pipe flow. Results indicate that this model is better than other models in terms of calculation precision and applicability. The model is useful for guiding the design for optimal performance and safety in the operation of oil-water two-phase pipe flow in oil fields.
Two-phase aqueous micellar systems: an alternative method for protein purification
Directory of Open Access Journals (Sweden)
Rangel-Yagui C. O.
2004-01-01
Full Text Available Two-phase aqueous micellar systems can be exploited in separation science for the extraction/purification of desired biomolecules. This article reviews recent experimental and theoretical work by Blankschtein and co-workers on the use of two-phase aqueous micellar systems for the separation of hydrophilic proteins. The experimental partitioning behavior of the enzyme glucose-6-phosphate dehydrogenase (G6PD in two-phase aqueous micellar systems is also reviewed and new results are presented. Specifically, we discuss very recent work on the purification of G6PD using: i a two-phase aqueous micellar system composed of the nonionic surfactant n-decyl tetra(ethylene oxide (C10E4, and (ii a two-phase aqueous mixed micellar system composed of C10E4 and the cationic surfactant decyltrimethylammonium bromide (C10TAB. Our results indicate that the two-phase aqueous mixed (C10E4/C10TAB micellar system can improve significantly the partitioning behavior of G6PD relative to that observed in the two-phase aqueous C10E4 micellar system.
Numerical investigation on the characteristics of two-phase flow in fuel assemblies with spacer grid
Energy Technology Data Exchange (ETDEWEB)
Chen, D.; Yang, Z.; Zhong, Y.; Xiao, Y.; Hu, L. [Chongqing Univ. (China). Key Lab. of Low-grade Energy Utilization Technologies and Systems
2016-07-15
In pressurized water reactors (PWRs), the spacer grids of the fuel assembly has significant impact on the thermal-hydraulic performance of the fuel assembly. Particularly, the spacer grids with the mixing vanes can dramatically enhance the secondary flow and have significant effect on the void distribution in the fuel assembly. In this paper, the CFD study has been carried out to analyze the effects of the spacer grid with the steel contacts, dimples and mixing vanes on the boiling two-phase flow characteristics, such as the two-phase flow field, the void distribution, and so on. Considered the influence of the boiling phase change on two-phase flow, a boiling model was proposed and applied in the CFD simulation by using the UDF (User Defined Function) method. Furthermore, in order to analyze the effects of the spacer grid with mixing vanes, the adiabatic (without boiling) two-phase flow has also been investigated as comparison with the boiling two-phase flow in the fuel assembly with spacer grids. The CFD simulation on two-phase flow in the fuel assembly with the proposed boiling model can predict the characteristics of two-phase flow better.
Interfacial area and two-phase flow structure development measured by a double-sensor probe
Energy Technology Data Exchange (ETDEWEB)
Leung, Waihung; Revankar, S.T.; Ishii, Yoshihiko; Ishii, Mamoru
1992-06-01
In this report, we studied the local phasic characters of dispersed flow regime both at the entrance and at the fully developed regions. Since the dispersed phase is distributed randomly in the medium and enclosed in relatively small interfaces, the phasic measurement becomes difficult to obtain. Local probe must be made with a miniaturized sensor in order to reduce the interface distortion. The double-sensor resistivity probe has been widely used in local void fraction and interface velocity measurements because the are small in comparison with the interfaces. It has been tested and proved to be an accurate local phasic measurement tool. In these experiments, a double-sensor probe was employed to measure the local void fraction and interface velocity in an air-water system. The test section was flow regime can be determined by visualization. Furthermore, local phasic measurements can be verified by photographic studies. We concentrated our study on the bubbly flow regime only. The local measurements were conducted at two axial locations, L/D = 8 and 60, in which the first measurement represents the entrance region where the flow develops, and the second measurement represents the fully developed flow region where the radial profile does not change as the flow moves along the axial direction. Four liquid flow rates were chosen in combination with four different gas injection rates. The superficial liquid velocities were j{sub t} = 1.0, 0.6,0.4, and 0.1 m/s and superficial gas velocities were j{sub g} = 0.0965, 0.0696, 0.0384, and 0.0192 m/s. These combinations put the two-phase flow well in the bubbly flow regime. In this sequence of phenomenological studies, the local void fraction, interface area concentration, sauter mean diameter, bubble velocity and bubble frequency were measured.
Patel, Sonal; Wilding, W Vincent; Rowley, Richard L
2011-01-14
Molecular dynamics simulations were performed to determine two-phase configurations of model propane molecules below the critical point and in the near-critical, two-phase region. A postprocessor that uses a Monte Carlo method for determination of volumes attributable to each molecule was used to obtain density histograms of the particles from which the bulk coexisting equilibrium vapor and liquid densities were determined. This method of analyzing coexisting densities in a two-phase simulation is straightforward and can be easily implemented for complex, multisite models. Various degrees of internal flexibility in the propane models have little effect on the coexisting densities at temperatures 40 K or more below the critical point, but internal flexibility (angle bending and bond vibrations) does affect the saturated liquid densities in the near-critical region, changing the critical temperature by approximately 20 K. Shorter cutoffs were also found to affect the phase dome and the location of the critical point.
Spacecraft Thermal Management using Advanced Hybrid Two-Phase Loop Technology
2007-02-01
HYBRID TWO-PHASE LOOPS The schematic of the Hybrid Two-Phase Loop (HTPL) used for a thermal testing is shown in Figure 3. Main components for the...hybrid two-phase loop with single evaporator. The thermal test starts first by turning on the liquid pump to circulate liquid along the loop. Once the...Vapor Out Evaporator Body (E1) Evaporator Body (E2) Total Heat Input Heat Input (E1) Heat Input (E2) Thermal Resistance (E1) FIGURE 10. Thermal test results
Two phase flow bifurcation due to turbulence: transition from slugs to bubbles
Górski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej
2015-09-01
The bifurcation of slugs to bubbles within two-phase flow patterns in a minichannel is analyzed. The two-phase flow (water-air) occurring in a circular horizontal minichannel with a diameter of 1 mm is examined. The sequences of light transmission time series recorded by laser-phototransistor sensor is analyzed using recurrence plots and recurrence quantification analysis. Recurrence parameters allow the two-phase flow patterns to be found. On changing the water flow rate we identified partitioning of slugs or aggregation of bubbles.
Numerical simulation of bubbly two-phase flow using the lattice Boltzmann method
Energy Technology Data Exchange (ETDEWEB)
Watanabe, Tadashi; Ebihara, Kenichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
2000-09-01
The two-component two-phase lattice Boltzmann method, in which two distribution functions are used to represent two phases, is used to simulate bubbly flows as one of the fundamental two-phase flow phenomena in nuclear application fields. The inlet flow condition is proposed to simulate steady-state flow fields. The time variation and the spatial distribution of the volume fraction and the interfacial area are measured numerically. The simulation program is parallelized in one direction by the domain decomposition method using the MPI (Message Passing Interface) libraries, and parallel computations are performed on a workstation cluster. (author)
On the nonequilibrium segregation state of a two-phase mixture in a porous column
DEFF Research Database (Denmark)
Shapiro, Alexander; Stenby, Erling Halfdan
1996-01-01
The problem of segregation of a two-phase multicomponent mixture under the action of thermal gradient, gravity and capillary forces is studied with respect to component distribution in a thick oil-gas-condensate reservoir. Governing equations are derived on the basis of nonequilibrium thermodynam...... thermodynamics. A steady state of the two-phase mixture with nonzero diffusion fluxes and exchange between phases is described. In the case of binary mixtures analytical formulae for saturation, component distribution and flow in the two-phase zone are obtained....
Studies of Two-Phase Gas-Liquid Flow in Microgravity. Ph.D. Thesis, Dec. 1994
Bousman, William Scott
1995-01-01
Two-phase gas-liquid flows are expected to occur in many future space operations. Due to a lack of buoyancy in the microgravity environment, two-phase flows are known to behave differently than those in earth gravity. Despite these concerns, little research has been conducted on microgravity two-phase flow and the current understanding is poor. This dissertation describes an experimental and modeling study of the characteristics of two-phase flows in microgravity. An experiment was operated onboard NASA aircraft capable of producing short periods of microgravity. In addition to high speed photographs of the flows, electronic measurements of void fraction, liquid film thickness, bubble and wave velocity, pressure drop and wall shear stress were made for a wide range of liquid and gas flow rates. The effects of liquid viscosity, surface tension and tube diameter on the behavior of these flows were also assessed. From the data collected, maps showing the occurrence of various flow patterns as a function of gas and liquid flow rates were constructed. Earth gravity two-phase flow models were compared to the results of the microgravity experiments and in some cases modified. Models were developed to predict the transitions on the flow pattern maps. Three flow patterns, bubble, slug and annular flow, were observed in microgravity. These patterns were found to occur in distinct regions of the gas-liquid flow rate parameter space. The effect of liquid viscosity, surface tension and tube diameter on the location of the boundaries of these regions was small. Void fraction and Weber number transition criteria both produced reasonable transition models. Void fraction and bubble velocity for bubble and slug flows were found to be well described by the Drift-Flux model used to describe such flows in earth gravity. Pressure drop modeling by the homogeneous flow model was inconclusive for bubble and slug flows. Annular flows were found to be complex systems of ring-like waves and a
Two-phase flow characteristics across sudden expansion in small rectangular channels
Energy Technology Data Exchange (ETDEWEB)
Chen, Ing Youn [Mechanical Engineering Department, National Yunlin University of Science and Technology, Yunlin 640 (China); Liu, Chung-Che; Chien, Kuo-Hsiang; Wang, Chi-Chuan [D100, Energy and Environment Research Laboratories, Industrial Technology Research Institute, Bldg. 64, 195-6 Section 4, Chung Hsing Road, Chutung, Hsinchu 310 (China)
2007-11-15
This study examines the two-phase flow pattern change and frictional pressure loss pertaining to the sudden flow area expansion from a small diameter tube into small rectangular channels. It is found that a unique flow pattern ''liquid jet-like flow pattern'' occurs at a very low quality region of G=100kg/ m{sup 2} s in a test section of 3mm x 9mm. This flow pattern is almost inconceivable for the 3mm x 6mm test section. The pressure difference usually increases with vapor quality but a setback is encountered provided that the liquid jet flow pattern prevails. A phenomenal observation suggests that a conceivable reduction of the pressure difference is related to the liquid jet-like flow pattern, yet a flat or level-off of the pressure difference is seen when the liquid jet-like flow is less pronounced. By contrast, an appreciable increase of pressure difference is seen when the liquid jet-like flow pattern is completely gone. The measured pressure differences are compared with existing correlations/models, whereas none of them gives satisfactory predictions against the present data. It is found that a slight modification to the empirical constant K of Wadle's correlation may give rise to a fair improvement of the predictive ability. (author)
AGN Dusty Tori as a Clumpy Two-Phase Medium: The 10 Micron Silicate Feature
Stalevski, Marko; Baes, Maarten; Nakos, Theodoros; Popovic, Luka C
2011-01-01
We investigated the emission of active galactic nuclei dusty tori in the infrared domain, with a focus on the 10 micron silicate feature. We modeled the dusty torus as a clumpy two-phase medium with high-density clumps and a low-density medium filling the space between the clumps. We employed a three-dimensional radiative transfer code to obtain spectral energy distributions and images of tori at different wavelengths. We calculated a grid of models for different parameters and analyzed the influence of these parameters on the shape of the mid-infrared emission. A corresponding set of clumps-only models and models with a smooth dust distribution is calculated for comparison. We found that the dust distribution, the optical depth and a random arrangement of clumps in the innermost region, all have an impact on the shape and strength of the silicate feature. The 10 micron silicate feature can be suppressed for some parameters, but models with smooth dust distribution are also able to produce a wide range of the...
Numerical Simulations of Two-Phase Flow in a Dorr-Oliver Flotation Cell Model
Directory of Open Access Journals (Sweden)
Hassan Fayed
2013-08-01
Full Text Available Two-phase (water and air flow in the forced-air mechanically-stirred Dorr-Oliver machine has been investigated using computational fluid dynamics (CFD. A 6 m3 model is considered. The flow is modeled by the Euler-Euler approach, and transport equations are solved using software ANSYS-CFX5. Unsteady simulations are conducted in a 180-degree sector with periodic boundary conditions. Air is injected into the rotor at the rate of 2.63 m3/min, and a uniform bubble diameter is specified. The effects of bubble diameter on velocity field and air volume fraction are determined by conducting simulations for three diameters of 0.5, 1.0, and 2.0 mm. Air volume fraction contours, velocity profiles, and turbulent kinetic energy profiles in different parts of the machine are presented and discussed. Results have been compared to experimental data, and good agreement is obtained for the mean velocity and turbulent kinetic energy profiles in the rotor-stator gap and in the jet region outside stator blades.
Cracking kinetics of two-phase stainless steel alloys in hydrogen gas
Perng, T.-P.; Altstetter, C. J.
1988-01-01
The kinetics of hydrogen-induced slow crack growth (SCG) under constant load was studied in two stainless steel alloys containing mixtures of bcc and fcc phases. FERRALIUM 255, a duplex stainless steel, consisting of ˜50 pct austenite in a ferrite matrix, was tested in hydrogen gas at 0 to 100 °C with the loading axis both perpendicular and parallel to the rolling direction. In addition, specimens of AISI 301 were deformed in air in different ways to produce various amounts of bcc phase in an austenite matrix prior to testing in H2 gas at room temperature. The kinetics of subcritical slow crack growth (SCG) in these alloys was compared with that for austenitic and for ferritic stainless steels. The SCG rates were rationalized in terms of differences in hydrogen permeation in the two phases. The results confirm that a higher rate of supply and accumulation of hydrogen in the region ahead of the crack tip allows a higher cracking velocity.
Inamuro, Takaji; Yokoyama, Takaaki; Tanaka, Kentaro; Taniguchi, Motoki
2013-11-01
We propose a new LBM for two-phase fluid flows with high density ratios by improving the pressure computing of Inamuro et al.'s method (2004) [J. Comput. Phys. 198 (2004) 628] without solving the pressure Poisson equation. In the proposed method, the velocity and pressure fields are computed by using a single velocity distribution function even for high density ratios and by adjusting the speed of sound in a high density region to satisfy the continuity equation. In order to show the validity of the method, we apply the method to the simulations of a stationary drop, binary droplet collision, rising bubbles, and a milk crown. In a stationary drop, pressure and density profiles are computed, and the effect of a sound speed on time evolution of the pressure field in the drop. In the simulations of a binary droplet collision and rising bubbles, the computed results by the proposed method are compared with those by Inamuro et al.'s method (2004). A thin sheet and tiny drops can be computed in the simulation of a milk crown.
Flow regime transition criteria for two-phase flow in a vertical annulus
Energy Technology Data Exchange (ETDEWEB)
Julia, J. Enrique, E-mail: bolivar@emc.uji.es [Departamento de Ingenieria Mecanica y Construccion, Universitat Jaume I., Campus de Riu Sec, 12071 Castellon (Spain); Hibiki, Takashi [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)
2011-10-15
Highlights: > Flow regime transition model is presented for two-phase flows in a vertical annulus. > The transition criteria is easy to be implemented in computational codes. > Final equations do not need experimental input. > New developed model shows better predicting capabilities than existing correlations. > New developed model shows good predicting capabilities in boiling flow. - Abstract: In this work, a new flow regime transition model is proposed for two-phase flows in a vertical annulus. Following previous works, the flow regimes considered are bubbly (B), slug (S) or cap-slug (CS), churn (C) and annular (A). The B to CS transition is modeled using the maximum bubble package criteria of small bubbles. The S to C transition takes place for small annulus perimeter flow channels and it is assumed to occur when the mean void fraction over the entire region exceeds that over the slug-bubble section. If the annulus perimeter is larger that the distorted bubble limit the cap-slug flow regime will be considered since in these conditions it is not possible to distinguish between cap and partial-slug bubbles. The CS to C transition is modeled using the maximum bubble package criteria. However, this transition considers the coalescence of cap and spherical bubbles in order to take into account the flow channel geometry. Finally, the C to A transition is modeled assuming two different mechanisms, (a) flow reversal in the liquid film section along large bubbles; (b) destruction on liquid slugs or large waves by entrainment or deformation. In the S to C and C to A flow regime transitions the annulus flow channel is considered as a rectangular flow channel with no side walls. In all the modeled transitions the drift-flux model is used to obtain the final correlations. The final equations for every flow regime transition are easy to be implemented in computational codes and not experimental input is needed. The prediction accuracy of the newly developed model has been
Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase
Barsky, Eugene
2010-01-01
This book brings to light peculiarities of the formation of critical regimes of two-phase flows with a polydisperse solid phase. A definition of entropy is formulated on the basis of statistical analysis of these peculiarities. The physical meaning of entropy and its correlation with other parameters determining two-phase flows are clearly defined. The interrelations and main differences between this entropy and the thermodynamic one are revealed. The main regularities of two-phase flows both in critical and in other regimes are established using the notion of entropy. This parameter serves as a basis for a deeper insight into the physics of the process and for the development of exhaustive techniques of mass exchange estimation in such flows. The book is intended for graduate and postgraduate students of engineering studying two-phase flows, and to scientists and engineers engaged in specific problems of such fields as chemical technology, mineral dressing, modern ceramics, microelectronics, pharmacology, po...
New results in gravity dependent two-phase flow regime mapping
Kurwitz, Cable; Best, Frederick
2002-01-01
Accurate prediction of thermal-hydraulic parameters, such as the spatial gas/liquid orientation or flow regime, is required for implementation of two-phase systems. Although many flow regime transition models exist, accurate determination of both annular and slug regime boundaries is not well defined especially at lower flow rates. Furthermore, models typically indicate the regime as a sharp transition where data may indicate a transition space. Texas A&M has flown in excess of 35 flights aboard the NASA KC-135 aircraft with a unique two-phase package. These flights have produced a significant database of gravity dependent two-phase data including visual observations for flow regime identification. Two-phase flow tests conducted during recent zero-g flights have added to the flow regime database and are shown in this paper with comparisons to selected transition models. .
Concurrent two-phase downflow measurement with an induced voltage electro-magnetic flowmeter
Opara, Uroš; Bajsič, Ivan
2015-01-01
With a set of polynomial approximations a possibility is shown of the use of an induced voltage electromagnetic flowmeter in the area of measuring cocurrent two-phase downflow in tubes. The principle of the meter operation remains hereby unchanged
Numerical simulation of multi-dimensional two-phase flow based on flux vector splitting
Energy Technology Data Exchange (ETDEWEB)
Staedtke, H.; Franchello, G.; Worth, B. [Joint Research Centre - Ispra Establishment (Italy)
1995-09-01
This paper describes a new approach to the numerical simulation of transient, multidimensional two-phase flow. The development is based on a fully hyperbolic two-fluid model of two-phase flow using separated conservation equations for the two phases. Features of the new model include the existence of real eigenvalues, and a complete set of independent eigenvectors which can be expressed algebraically in terms of the major dependent flow parameters. This facilitates the application of numerical techniques specifically developed for high speed single-phase gas flows which combine signal propagation along characteristic lines with the conservation property with respect to mass, momentum and energy. Advantages of the new model for the numerical simulation of one- and two- dimensional two-phase flow are discussed.
Directory of Open Access Journals (Sweden)
Mosdorf Romuald
2015-06-01
Full Text Available The two-phase flow (water-air occurring in square minichannel (3x3 mm has been analysed. In the minichannel it has been observed: bubbly flow, flow of confined bubbles, flow of elongated bubbles, slug flow and semi-annular flow. The time series recorded by laser-phototransistor sensor was analysed using the recurrence quantification analysis. The two coefficients:Recurrence rate (RR and Determinism (DET have been used for identification of differences between the dynamics of two-phase flow patterns. The algorithm which has been used normalizes the analysed time series before calculating the recurrence plots.Therefore in analysis the quantitative signal characteristicswas neglected. Despite of the neglect of quantitative signal characteristics the analysis of its dynamics (chart of DET vs. RR allows to identify the two-phase flow patterns. This confirms that this type of analysis can be used to identify the two-phase flow patterns in minichannels.
Reversible, on-demand generation of aqueous two-phase microdroplets
Energy Technology Data Exchange (ETDEWEB)
Collier, Charles Patrick; Retterer, Scott Thomas; Boreyko, Jonathan Barton; Mruetusatorn, Prachya
2017-08-15
The present invention provides methods of on-demand, reversible generation of aqueous two-phase microdroplets core-shell microbeads, microparticle preparations comprising the core-shell microbeads, and drug delivery formulation comprising the microparticle preparations. Because these aqueous microdroplets have volumes comparable to those of cells, they provide an approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Hence, the present methods generate femtoliter aqueous two-phase droplets within a microfluidic oil channel using gated pressure pulses to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microbead states are obtained via evaporation-induced dehydration and water rehydration.
Research of Characteristics of Gas-liquid Two-phase Pressure Drop in Microreactor
Directory of Open Access Journals (Sweden)
Li Dan
2015-01-01
Full Text Available With the research system of nitrogen and deionized water, this paper researches the pressure drop of gas-liquid two-phase flow in the circular microchannel with an inner diameter which is respectively 0.9mm and 0.5mm, analyzes the effect of microchannel diameter on gas-liquid two-phase frictional pressure drop in the microchannel reactor, and compares with the result of frictional pressure drop and the predicting result of divided-phase flow pattern. The result shows that, the gas-liquid two-phase frictional pressure drop in the microchannel significantly increases with the decreasing microchannel diameter; Lockhart-Martinelli relationship in divided-phase flow pattern can preferably predict the gas-liquid two-phase frictional pressure drop in the microchannel, but the Tabular constant needs to be corrected.
Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary
2014-06-10
A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.
Formation of a two-phase microstructure in Fe-Cr-Ni alloy during directional solidification
Fu, J. W.; Yang, Y. S.; Guo, J. J.; Ma, J. C.; Tong, W. H.
2008-12-01
The formation and evolution of a two-phase coupled growth microstructure in AISI 304 stainless steel are investigated using a quenching method during directional solidification. It is found that the two-phase microstructure, which is composed of coupled growth of thin lathy delta ferrite (δ) and austenite (γ), forms from the melt first during solidification. As solidification proceeds, the retained liquid transforms into austenite directly. On cooling, the subsequent incomplete solid-state transformation from ferrite to austenite results in the disappearance of the thinner lathy delta ferrite, and the final two-phase coupled growth microstructure is formed. The formation mechanism of the two-phase coupled growth microstructure is analyzed theoretically based on the nucleation and constitutional undercooling (NCU) criterion. Transmission electron microscope (TEM) and EDS analyses were carried out to identify the phases and determine the phase composition, respectively.
Experimental study on transient behavior of semi-open two-phase thermosyphon
Institute of Scientific and Technical Information of China (English)
朱华; 王建新; 张巧惠; 屠传经
2004-01-01
An experimental system was set up to measure the temperature, pressure, heat transfer rate and mass flow rate in a semi-open two-phase thermosyphon. The behaviors of a semi-open two-phase thermosyphon during startup, shutdown and lack of water were studied to get complete understanding of its thermal characteristics. The variation of wall temperature, heat-exchange condition and pressure fluctuations of semi-open two-phase thermosyphons showed that the startup of SOTPT needs about 60-70 min; the startup speed of SOTPT is determined by the startup speed of the condensation section; the average pressure in the heat pipe is equal to the environmental pressure usually; the shutdown of SOTPT needs about 30-50min; a semi-open two-phase thermosyphon has good response to lack of water accident.
A Rotational Pressure-Correction Scheme for Incompressible Two-Phase Flows with Open Boundaries.
Dong, S; Wang, X
2016-01-01
Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries.
Single and two-phase flow pressure drop for CANFLEX bundle
Energy Technology Data Exchange (ETDEWEB)
Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E. [Atomic Energy of Canada Limited, Ontario (Canada)
1998-12-31
Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-134a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLEX bundle is found to be about 20% higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within {+-} 5% error. 11 refs., 5 figs. (Author)
Bioconversion of apigenin-7-O-β-glucoside in aqueous two-phase system
Ilić Sanja M.; Đaković Sanja D.; Cvejić Jelena H.; Antov Mirjana G.; Zeković Zoran P.
2005-01-01
The study is concerned with the conversion of apigenin-7-O-β-glucoside into apigenin in polyethylene glycol 6000 / dextran 20000 aqueous two-phase system by β-glucosidase. Apigenin was separated from apigenin-7-O-β-glucoside and β-glucosidase by their partition into opposite phases. In 14% PEG / 22.5% DEX aqueous two-phase system obtained yield of apigenin in top phase was 108%.
Bioconversion of apigenin-7-O-β-glucoside in aqueous two-phase system
Directory of Open Access Journals (Sweden)
Ilić Sanja M.
2005-01-01
Full Text Available The study is concerned with the conversion of apigenin-7-O-β-glucoside into apigenin in polyethylene glycol 6000 / dextran 20000 aqueous two-phase system by β-glucosidase. Apigenin was separated from apigenin-7-O-β-glucoside and β-glucosidase by their partition into opposite phases. In 14% PEG / 22.5% DEX aqueous two-phase system obtained yield of apigenin in top phase was 108%.
CURE OF A MICROGEL-EPOXY RESIN TWO-PHASE POLYMER WITH ETHYLENE DIAMINE
Institute of Scientific and Technical Information of China (English)
SONG Aiteng; HUANG Wei; YU Yunzhao
1992-01-01
The curing of a microgel-epoxy resin two phase polymer prepared by in situ copolymerization of unsaturated polyester with acrylic monomer was studied. The unsaturated unit reacted with N- H during the cure of the resin with ethylene diamine. The Michael type reaction was ten times more rapid than the addition of N -H to epoxide .This was accounted for the lower apparent activation energy of the curing of the two phase resin.
Estimation of the sugar cane cultivated area from LANDSAT images using the two phase sampling method
Parada, N. D. J. (Principal Investigator); Cappelletti, C. A.; Mendonca, F. J.; Lee, D. C. L.; Shimabukuro, Y. E.
1982-01-01
A two phase sampling method and the optimal sampling segment dimensions for the estimation of sugar cane cultivated area were developed. This technique employs visual interpretations of LANDSAT images and panchromatic aerial photographs considered as the ground truth. The estimates, as a mean value of 100 simulated samples, represent 99.3% of the true value with a CV of approximately 1%; the relative efficiency of the two phase design was 157% when compared with a one phase aerial photographs sample.
Numerical investigation of confined swirling gas-solid two phase jet
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
This paper presents a k-ε-kp multi-fluid model for simulating confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. A series of numerical simulations of the two-phase flow of 30 μm, 45 μm, 60 μm diameter particles respectively yielded results fitting well with published experimental data.
Numerical Simulation of Swirling Gas-solid Two Phase Flow through a Pipe Expansion
Institute of Scientific and Technical Information of China (English)
Jin Hanhui; Xia Jun; Fan Jianren; Cen Kefa
2001-01-01
A k- ε -kp multi-fluid model is stated and adopted to simulate swirling gas-solid two phase flow. A particle-laden flow from a center tube and a swirling air stream from the coaxial annular enter the test section. A series of numerical simulations of the two-phase flow are performed based on 30 μ m, 45 μ m, 60 μ m diameter particles respectively. The results fit well with published experimental data.
Numerical investigation of confined swirling gas-solid two phase jet
Institute of Scientific and Technical Information of China (English)
金晗辉; 夏钧; 樊建人; 岑可法
2002-01-01
This paper presents a k-e-kp multi-fluid model for simulating confined swirling gas-solid two phase jet comprised of particle-laden flow from a center tube and a swirling air stream entering the test section from the coaxial annular. A series of numerical simulations of the two-phase flow of 30μm, 45μm, 60μm diameter particles respectively yielded results fitting well with published experimental data.
CHOOSING STRUCTURE-DEPENDENT DRAG COEFFICIENT IN MODELING GAS-SOLID TWO-PHASE FLOW
Institute of Scientific and Technical Information of China (English)
Ning Yang; Wei Wang; Wei Ge; Jinghai Li
2003-01-01
@@ Introduction Gas-solid two-phase flow is often encountered in chemical reactors for the process industry. For industrial users, design, scale-up, control and optimization for these reactors require a good understanding of the hydrodynamics of gas-solid two-phase flow. For researchers, exploration and prediction of the complex phenomena call for a good comprehension of the heterogeneous structure and of the dominant mechanisms of gas-solid and solid-solid interactions.
Scaling analysis of gas-liquid two-phase flow pattern in microgravity
Lee, Jinho
1993-01-01
A scaling analysis of gas-liquid two-phase flow pattern in microgravity, based on the dominant physical mechanism, was carried out with the goal of predicting the gas-liquid two-phase flow regime in a pipe under conditions of microgravity. The results demonstrated the effect of inlet geometry on the flow regime transition. A comparison of the predictions with existing experimental data showed good agreement.
Energy Technology Data Exchange (ETDEWEB)
Yoon, Son Ho; Goo, Jin Mo; Lee, Chang Hyun; Lee, You Kyung; Jin, Kwang Nam; Choo, Ji Yung; Lee, Nyoung Keun [Seoul National University College of Medicine, Seoul (Korea, Republic of); Jung, Julip; Hong, Helen [Dept. of Multimedia Engineering, Seoul Women' s University, Seoul (Korea, Republic of)
2014-06-15
To evaluate the technical feasibility, performance, and interobserver agreement of a computer-aided classification (CAC) system for regional ventilation at two-phase xenon-enhanced CT in patients with chronic obstructive pulmonary disease (COPD). Thirty-eight patients with COPD underwent two-phase xenon ventilation CT with resulting wash-in (WI) and wash-out (WO) xenon images. The regional ventilation in structural abnormalities was visually categorized into four patterns by consensus of two experienced radiologists who compared the xenon attenuation of structural abnormalities with that of adjacent normal parenchyma in the WI and WO images, and it served as the reference. Two series of image datasets of structural abnormalities were randomly extracted for optimization and validation. The proportion of agreement on a per-lesion basis and receiver operating characteristics on a per-pixel basis between CAC and reference were analyzed for optimization. Thereafter, six readers independently categorized the regional ventilation in structural abnormalities in the validation set without and with a CAC map. Interobserver agreement was also compared between assessments without and with CAC maps using multirater κ statistics. Computer-aided classification maps were successfully generated in 31 patients (81.5%). The proportion of agreement and the average area under the curve of optimized CAC maps were 94% (75/80) and 0.994, respectively. Multirater k value was improved from moderate (k=0.59: 95% confidence interval [CI], 0.56-0.62) at the initial assessment to excellent with the CAC map.
Tecklenburg, Jan; Neuweiler, Insa; Carrera, Jesus; Dentz, Marco
2016-05-01
We study modeling of two-phase flow in highly heterogeneous fractured and porous media. The flow behaviour is strongly influenced by mass transfer between a highly permeable (mobile) fracture domain and less permeable (immobile) matrix blocks. We quantify the effective two-phase flow behavior using a multirate rate mass transfer (MRMT) approach. We discuss the range of applicability of the MRMT approach in terms of the pertinent viscous and capillary diffusion time scales. We scrutinize the linearization of capillary diffusion in the immobile regions, which allows for the formulation of MRMT in the form of a non-local single equation model. The global memory function, which encodes mass transfer between the mobile and the immobile regions, is at the center of this method. We propose two methods to estimate the global memory function for a fracture network with given fracture and matrix geometry. Both employ a scaling approach based on the known local memory function for a given immobile region. With the first method, the local memory function is calculated numerically, while the second one employs a parametric memory function in form of truncated power-law. The developed concepts are applied and tested for fracture networks of different complexity. We find that both physically based parameter estimation methods for the global memory function provide predictive MRMT approaches for the description of multiphase flow in highly heterogeneous porous media.
Tecklenburg, Jan; Carrera, Jesus; Dentz, Marco
2016-01-01
We study modeling of two-phase flow in highly heterogeneous fractured and porous media. The flow behaviour is strongly influenced by mass transfer between a highly permeable (mobile) fracture domain and less permeable (immobile) matrix blocks. We quantify the effective two-phase flow behaviour using a multirate rate mass transfer (MRMT) approach. We discuss the range of applicability of the MRMT approach in terms of the pertinent viscous and capillary diffusion time scales. We scrutinize the linearization of capillary diffusion in the immobile regions, which allows for the formulation of MRMT in the form of a non-local single equation model. The global memory function, which encodes mass transfer between the mobile and the immobile regions, is at the center of this method. We propose two methods to estimate the global memory function for a fracture network with given fracture and matrix geometry. Both employ a scaling approach based on the known local memory function for a given immobile region. With the firs...
Measurement of local two-phase flow parameters of nanofluids using conductivity double-sensor probe
Directory of Open Access Journals (Sweden)
Park Yu sun
2011-01-01
Full Text Available Abstract A two-phase flow experiment using air and water-based γ-Al2O3 nanofluid was conducted to observe the basic hydraulic phenomenon of nanofluids. The local two-phase flow parameters were measured with a conductivity double-sensor two-phase void meter. The void fraction, interfacial velocity, interfacial area concentration, and mean bubble diameter were evaluated, and all of those results using the nanofluid were compared with the corresponding results for pure water. The void fraction distribution was flattened in the nanofluid case more than it was in the pure water case. The higher interfacial area concentration resulted in a smaller mean bubble diameter in the case of the nanofluid. This was the first attempt to measure the local two-phase flow parameters of nanofluids using a conductivity double-sensor two-phase void meter. Throughout this experimental study, the differences in the internal two-phase flow structure of the nanofluid were identified. In addition, the heat transfer enhancement of the nanofluid can be resulted from the increase of the interfacial area concentration which means the available area of the heat and mass transfer.
Oppermann, Sebastian; Stein, Florian; Kragl, Udo
2011-02-01
The development of biotechnological processes using novel two-phase systems based on molten salts known as ionic liquids (ILs) got into the focus of interest. Many new approaches for the beneficial application of the interesting solvent have been published over the last years. ILs bring beneficial properties compared to organic solvents like nonflammability and nonvolatility. There are two possible ways to use the ILs: first, the hydrophobic ones as a substitute for organic solvents in pure two-phase systems with water and second, the hydrophilic ones in aqueous two-phase systems (ATPS). To effectively utilise IL-based two-phase systems or IL-based ATPS in biotechnology, extensive experimental work is required to gain the optimal system parameters to ensure selective extraction of the product of interest. This review will focus on the most actual findings dealing with the basic driving forces for the target extraction in IL-based ATPS as well as presenting some selected examples for the beneficial application of ILs as a substitute for organic solvents. Besides the research focusing on IL-based two-phase systems, the "green aspect" of ILs, due to their negligible vapour pressure, is widely discussed. We will present the newest results concerning ecotoxicity of ILs to get an overview of the state of the art concerning ILs and their utilisation in novel two-phase systems in biotechnology.
Living between two worlds: two-phase culture systems for producing plant secondary metabolites.
Malik, Sonia; Hossein Mirjalili, Mohammad; Fett-Neto, Arthur Germano; Mazzafera, Paulo; Bonfill, Mercedes
2013-03-01
The two-phase culture system is an important in vitro strategy to increase the production of secondary metabolites (SMs) by providing an enhanced release of these compounds from plant cells. Whereas the first phase supports cell growth, the second phase provides an additional site or acts as a metabolic sink for the accumulation of SMs and also reduces feedback inhibition. This review is focused on several aspects of the two-phase culture system and aims to show the diverse possibilities of employing this technique for the in vitro production of SMs from plant cells. Depending on the material used in the secondary phase, two-phase culture systems can be broadly categorised as liquid-liquid or liquid-solid. The choice of material for the second phase depends on the type of compound to be recovered and the compatibility with the other phase. Different factors affecting the efficiency of two-phase culture systems include the choice of material for the secondary phase, its concentration, volume, and time of addition. Factors such as cell elicitation, immobilization, and permeabilization, have been suggested as important strategies to make the two-phase culture system practically reliable on a commercial scale. Since there are many possibilities for designing a two-phase system, more detailed studies are needed to broaden the range of secondary phases compatible with the various plant species producing SMs with potential applications, mainly in the food and pharmacology industries.
IMPROVED SUBGRID SCALE MODEL FOR DENSE TURBULENT SOLID-LIQUID TWO-PHASE FLOWS
Institute of Scientific and Technical Information of China (English)
TANG Xuelin; QIAN Zhongdong; WU Yulin
2004-01-01
The dense solid-phase governing equations for two-phase flows are obtained by using the kinetic theory of gas molecules. Assuming that the solid-phase velocity distributions obey the Maxwell equations, the collision term for particles under dense two-phase flow conditions is also derived.In comparison with the governing equations of a dilute two-phase flow, the solid-particle's governing equations are developed for a dense turbulent solid-liquid flow by adopting some relevant terms from the dilute two-phase governing equations. Based on Cauchy-Helmholtz theorem and Smagorinsky model,a second-order dynamic sub-grid-scale (SGS) model, in which the sub-grid-scale stress is a function of both the strain-rate tensor and the rotation-rate tensor, is proposed to model the two-phase governing equations by applying dimension analyses. Applying the SIMPLEC algorithm and staggering grid system to the two-phase discretized governing equations and employing the slip boundary conditions on the walls, the velocity and pressure fields, and the volumetric concentration are calculated. The simulation results are in a fairly good agreement with experimental data in two operating cases in a conduit with a rectangular cross-section and these comparisons imply that these models are practical.
Mixed Model for Silt-Laden Solid-Liquid Two-Phase Flows
Institute of Scientific and Technical Information of China (English)
唐学林; 徐宇; 吴玉林
2003-01-01
The kinetic theory of molecular gases was used to derive the governing equations for dense solid-liquid two-phase flows from a microscopic flow characteristics viewpoint by multiplying the Boltzmann equation for each phase by property parameters and integrating over the velocity space. The particle collision term was derived from microscopic terms by comparison with dilute two-phase flow but with consideration of the collisions between particles for dense two-phase flow conditions and by assuming that the particle-phase velocity distribution obeys the Maxwell equations. Appropriate terms from the dilute two-phase governing equations were combined with the dense particle collision term to develop the governing equations for dense solid-liquid turbulent flows. The SIMPLEC algorithm and a staggered grid system were used to solve the discretized two-phase governing equations with a Reynolds averaged turbulence model. Dense solid-liquid turbulent two-phase flows were simulated for flow in a duct. The simulation results agree well with experimental data.
Directory of Open Access Journals (Sweden)
Michal Prazenica
2011-01-01
Full Text Available This paper deals with the two-stage two-phase electronic systems with orthogonal output voltages and currents - DC/AC/AC. Design of two-stage DC/AC/AC high frequency converter with two-phase orthogonal output using single-phase matrix converter is also introduced. Output voltages of them are strongly nonharmonic ones, so they must be pulse-modulated due to requested nearly sinusoidal currents with low total harmonic distortion. Simulation experiment results of matrix converter for both steady and transient states for IM motors are given in the paper, also experimental verification under R-L load, so far. The simulation results confirm a very good time-waveform of the phase current and the system seems to be suitable for low-cost application in automotive/aerospace industries and application with high frequency voltage sources.
Mass transport of carbon in one and two phase iron-nickel alloys in a temperature gradient
Energy Technology Data Exchange (ETDEWEB)
Okafor, I.C.I.; Carlson, O.N.; Martin, D.M.
1983-10-01
The flux of carbon atoms induced by an applied temperature gradient on a specimen was investigated for an Fe-32.5 wt pct Ni alloy for six carbon concentrations. Carbon was found to migrate to the higher temperature region in the low carbon single phase alloys. However, in the higher carbon alloys an abrupt jump in carbon concentrations results when a portion of the specimen is in a two-phase region while the portion in the one-phase region exhibits the usual solute migration toward the higher temperature. A value of -12.2 + or - 0.4 kJ mol/sup -1/ was obtained for the heat of transport of carbon in the ..gamma..-phase Fe-Ni alloys for a wide range of carbon concentrations. A model for diffusion and thermotransport in multiphase systems is presented to explain the observed results.
DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS
Energy Technology Data Exchange (ETDEWEB)
X. Wang; X. Sun; H. Zhao
2011-09-01
In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in
FOSSIL EVIDENCE FOR THE TWO-PHASE FORMATION OF ELLIPTICAL GALAXIES
Energy Technology Data Exchange (ETDEWEB)
Huang Song [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Ho, Luis C. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Peng, Chien Y. [Giant Magellan Telescope Organization, 251 South Lake Avenue, Suite 300, Pasadena, CA 91101 (United States); Li Zhaoyu [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Barth, Aaron J. [Department of Physics and Astronomy, 4129 Frederick Reines Hall, University of California, Irvine, CA 92697-4575 (United States)
2013-05-10
Massive early-type galaxies (ETGs) have undergone dramatic structural evolution over the last 10 Gyr. A companion paper shows that nearby elliptical galaxies with M{sub *} {>=} 1.3 Multiplication-Sign 10{sup 11} M{sub Sun} generically contain three photometric subcomponents: a compact inner component with effective radius R{sub e} {approx}< 1 kpc, an intermediate-scale middle component with R{sub e} Almost-Equal-To 2.5 kpc, and an extended outer envelope with R{sub e} Almost-Equal-To 10 kpc. Here we attempt to relate these substructures with the properties of ETGs observed at higher redshifts. We find that a hypothetical structure formed from combining the inner and middle components of local ellipticals follows a strikingly tight stellar mass-size relation, one that resembles the distribution of ETGs at z Almost-Equal-To 1. Outside of the central kpc, the median stellar mass surface density profiles of this composite structure agree closest with those of massive galaxies that have similar cumulative number density at 1.5 < z < 2.0 within the uncertainty. We propose that the central substructures in nearby ellipticals are the evolutionary descendants of the ''red nuggets'' formed under highly dissipative (''wet'') conditions at high redshifts, as envisioned in the initial stages of the two-phase formation scenario recently advocated for massive galaxies. Subsequent accretion, plausibly through dissipationless (''dry'') minor mergers, builds the outer regions of the galaxy identified as the outer envelope in our decomposition. The large scatter exhibited by this component on the stellar mass-size plane testifies to the stochastic nature of the accretion events.
A two-phase restricted equilibrium model for combustion of metalized solid propellants
Sabnis, J. S.; Dejong, F. J.; Gibeling, H. J.
1992-01-01
An Eulerian-Lagrangian two-phase approach was adopted to model the multi-phase reacting internal flow in a solid rocket with a metalized propellant. An Eulerian description was used to analyze the motion of the continuous phase which includes the gas as well as the small (micron-sized) particulates, while a Lagrangian description is used for the analysis of the discrete phase which consists of the larger particulates in the motor chamber. The particulates consist of Al and Al2O3 such that the particulate composition is 100 percent Al at injection from the propellant surface with Al2O3 fraction increasing due to combustion along the particle trajectory. An empirical model is used to compute the combustion rate for agglomerates while the continuous phase chemistry is treated using chemical equilibrium. The computer code was used to simulate the reacting flow in a solid rocket motor with an AP/HTPB/Al propellant. The computed results show the existence of an extended combustion zone in the chamber rather than a thin reaction region. The presence of the extended combustion zone results in the chamber flow field and chemical being far from isothermal (as would be predicted by a surface combustion assumption). The temperature in the chamber increases from about 2600 K at the propellant surface to about 3350 K in the core. Similarly the chemical composition and the density of the propellant gas also show spatially non-uniform distribution in the chamber. The analysis developed under the present effort provides a more sophisticated tool for solid rocket internal flow predictions than is presently available, and can be useful in studying apparent anomalies and improving the simple correlations currently in use. The code can be used in the analysis of combustion efficiency, thermal load in the internal insulation, plume radiation, etc.
Modeling of Immiscible, Two-Phase Flows in a Natural Rock Fracture
Energy Technology Data Exchange (ETDEWEB)
Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H
2009-01-01
One potential method of geologically sequestering carbon dioxide (CO2) is to inject the gas into brine-filled, subsurface formations. Within these low-permeability rocks, fractures exist that can act as natural fluid conduits. Understanding how a less viscous fluid moves when injected into an initially saturated rock fracture is important for the prediction of CO2 transport within fractured rocks. Our study examined experimentally and numerically the motion of immiscible fluids as they were transported through models of a fracture in Berea sandstone. The natural fracture geometry was initially scanned using micro-computerized tomography (CT) at a fine volume-pixel (voxel) resolution by Karpyn et al. [1]. This CT scanned fracture was converted into a numerical mesh for two-phase flow calculations using the finite-volume solver FLUENT® and the volume-of-fluid method. Additionally, a translucent experimental model was constructed using stereolithography. The numerical model was shown to agree well with experiments for the case of a constant rate injection of air into the initially water-saturated fracture. The invading air moved intermittently, quickly invading large-aperture regions of the fracture. Relative permeability curves were developed to describe the fluid motion. These permeability curves can be used in reservoir-scale discrete fracture models for predictions of fluid motion within fractured geological formations. The numerical model was then changed to better mimic the subsurface conditions at which CO2 will move into brine saturated fractures. The different fluid properties of the modeled subsurface fluids were shown to increase the amount of volume the less-viscous invading gas would occupy while traversing the fracture.
Two-phase simulations of the full load surge in Francis turbines
Wack, J.; Riedelbauch, S.
2016-11-01
At off-design conditions, Francis turbines experience cavitation which may reduce the power output and can cause severe damage in the machine. Certain conditions can cause self-excited oscillations of the vortex rope in the draft tube at full load operating point. For the presented work, two-phase simulations are carried out at model scale on a domain ranging from the inlet of the spiral case to the outlet of the draft tube. At different locations, wall pressure measurements are available and compared to the simulation results. Furthermore, the dynamics of the cavity volume in the draft tube cone and at the trailing edge of the runner blades are investigated by comparing with high speed visualization. To account for the selfexcited behaviour, proper boundary conditions need to be set. In this work, the focus lies on the treatment of the boundary condition at the inlet. In the first step, the dynamic behaviour of the cavity regions is investigated using a constant mass flow. Thereafter, oscillations of the total pressure and mass flow rate are prescribed using various frequencies and amplitudes. This methodology enables to examine the response of the cavity dynamics due to different excitations. It can be observed that setting a constant mass flow boundary condition is not suitable to account for the self-excited behaviour. Prescribing the total pressure has the result that the frequency of the vapour volume oscillation is the same as the frequency of the excitation signal. Contrary to that, for an excitation with a mass flow boundary condition, the response of the system is not equal to the excitation.
Dynamic behavior of pipes conveying gas–liquid two-phase flow
Energy Technology Data Exchange (ETDEWEB)
An, Chen, E-mail: anchen@cup.edu.cn [Offshore Oil/Gas Research Center, China University of Petroleum-Beijing, Beijing 102249 (China); Su, Jian, E-mail: sujian@lasme.coppe.ufrj.br [Nuclear Engineering Program, COPPE, Universidade Federal do Rio de Janeiro, CP 68509, Rio de Janeiro 21941-972 (Brazil)
2015-10-15
Highlights: • Dynamic behavior of pipes conveying gas–liquid two-phase flow was analyzed. • The generalized integral transform technique (GITT) was applied. • Excellent convergence behavior and long-time stability were shown. • Effects of volumetric quality and volumetric flow rate on dynamic behavior were studied. • Normalized volumetric-flow-rate stability envelope of dynamic system was determined. - Abstract: In this paper, the dynamic behavior of pipes conveying gas–liquid two-phase flow was analytically and numerically investigated on the basis of the generalized integral transform technique (GITT). The use of the GITT approach in the analysis of the transverse vibration equation lead to a coupled system of second order differential equations in the dimensionless temporal variable. The Mathematica's built-in function, NDSolve, was employed to numerically solve the resulting transformed ODE system. The characteristics of gas–liquid two-phase flow were represented by a slip-ratio factor model that was devised and used for similar problems. Good convergence behavior of the proposed eigenfunction expansions is demonstrated for calculating the transverse displacement at various points of pipes conveying air–water two-phase flow. Parametric studies were performed to analyze the effects of the volumetric gas fraction and the volumetric flow rate on the dynamic behavior of pipes conveying air–water two-phase flow. Besides, the normalized volumetric-flow-rate stability envelope for the dynamic system was obtained.
Gas-liquid two-phase flow across a bank of micropillars
Krishnamurthy, Santosh; Peles, Yoav
2007-04-01
Adiabatic nitrogen-water two-phase flow across a bank of staggered circular micropillars, 100μm long with a diameter of 100μm and a pitch-to-diameter ratio of 1.5, was investigated experimentally for Reynolds number ranging from 5 to 50. Flow patterns, void fraction, and pressure drop were obtained, discussed, and compared to large scale as well as microchannel results. Two-phase flow patterns were determined by flow visualization, and a flow map was constructed as a function of gas and liquid superficial velocities. Significant deviations from conventional scale systems, with respect to flow patterns and trend lines, were observed. A unique flow pattern, driven by surface tension, was observed and termed bridge flow. The applicability of conventional scale models to predict the void fraction and two-phase frictional pressure drop was also assessed. Comparison with a conventional scale void fraction model revealed good agreement, but was found to be in a physically wrong form. Thus, a modified physically based model for void fraction was developed. A two-phase frictional multiplier was found to be a strong function of mass flux, unlike in previous microchannel studies. It was observed that models from conventional scale systems did not adequately predict the two-phase frictional multiplier at the microscale, thus, a modified model accounting for mass flux was developed.
Multi-needle capacitance probe for non-conductive two-phase flows
Monrós-Andreu, G.; Martinez-Cuenca, R.; Torró, S.; Escrig, J.; Hewakandamby, B.; Chiva, S.
2016-07-01
Despite its variable degree of application, intrusive instrumentation is the most accurate way to obtain local information in a two-phase flow system, especially local interfacial velocity and local interfacial area parameters. In this way, multi-needle probes, based on conductivity or optical principles, have been extensively used in the past few decades by many researchers in two-phase flow investigations. Moreover, the signal processing methods used to obtain the time-averaged two-phase flow parameters in this type of sensor have been thoroughly discussed and validated by many experiments. The objective of the present study is to develop a miniaturized multi-needle probe, based on capacitance measurements applicable to a wide range of non-conductive two-phase flows and, thus, to extend the applicability of multi-needle sensor whilst also maintaining a signal processing methodology provided in the literature for conductivity probes. Results from the experiments performed assess the applicability of the proposed sensor measurement principle and signal processing method for the bubbly flow regime. These results also provide an insight into the sensor application for more complex two-phase flow regimes.
A new two-phase erosion-deposition model for mass flows
Pudasaini, Shiva P.; Fischer, Jan-Thomas
2016-04-01
Erosion, entrainment and deposition are complex and dominant, but yet poorly understood, mechanical processes in geophysical mass flows. Here, we propose a novel, two-phase, erosion-deposition model capable of adequately describing these complex phenomena commonly observed in landslides, avalanches, debris flows and bedload transports. The model enhances an existing general two-phase mass flow model (Pudasaini, 2012) by introducing a two-phase variably saturated erodible basal morphology. The adaptive basal morphology allows for the evolution of erosion-deposition-depths, incorporating the inherent physical process and rheological changes of the flowing mixture. With rigorous derivation, we show that appropriate incorporation of the mass and momentum productions and losses in conservative model formulation is essential for the physically correct and mathematically consistent description of erosion-entrainment-deposition processes. Simulation indicates a sharp erosion-front and steady-state-rear erosion depth. The model appropriately captures the emergence and propagation of complex frontal surge dynamics associated with the frontal ambient-drag which is a new hypothesis associated with erosion. The novel enhanced real two-phase model also allows for simulating fluid-run-off during the deposition process. The model resembles laboratory experiments for particle-fluid mixture flows and reveals some major aspects of the mechanics associated with erosion, entrainment and deposition. Reference: Shiva P. Pudasaini (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.
Performance characteristics of two-phase-flow turbo-expanders used in water-cooled chillers
Energy Technology Data Exchange (ETDEWEB)
Brasz, J.J. [United Technologies Carrier, New York, NY (United States)
1999-07-01
Use of two-phase-flow throttle loss recovery devices in water-cooled chillers requires satisfactory part-load operation. This paper describes the results of two-phase-flow impulse turbine testing and the data reduction of the test results into a two-phase-flow turbine off-design performance model. It was found that the main parameter controlling the efficiency of two-phase-flow turbine is the ratio of the nozzle spouting velocity to the rotor speed. The turbine mass flow rate is mainly controlled by inlet subcooling of the entering liquid. The strong sensitivity of turbine mass flow rate on inlet subcooling allows the use of a conventional float valve upstream of the turbine as an effective means of controlling the turbine during part-load operation. For a well-designed two-phase-flow turbine, nozzle spouting velocity and therefore turbine efficiency is hardly affected by the amount of inlet subcooling. Also, capacity can be substantially reduced by a reduction in the amount of inlet subcooling entering the turbine nozzles. Hence, turbine part-load efficiency equals its full-load efficiency over a wide range of flow rates using this control concept. (Author)
DSMC simulation of two-phase plume flow with UV radiation
Energy Technology Data Exchange (ETDEWEB)
Li, Jie; Liu, Ying; Wang, Ning; Jin, Ling [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073 (China)
2014-12-09
Rarefied gas-particle two-phase plume in which the phase of particles is liquid or solid flows from a solid propellant rocket of hypersonic vehicle flying at high altitudes, the aluminum oxide particulates not only impact the rarefied gas flow properties, but also make a great difference to plume radiation signature, so the radiation prediction of the rarefied gas-particle two-phase plume flow is very important for space target detection of hypersonic vehicles. Accordingly, this project aims to study the rarefied gas-particle two-phase flow and ultraviolet radiation (UV) characteristics. Considering a two-way interphase coupling of momentum and energy, the direct simulation Monte Carlo (DSMC) method is developed for particle phase change and the particle flow, including particulate collision, coalescence as well as separation, and a Monte Carlo ray trace model is implemented for the particulate UV radiation. A program for the numerical simulation of the gas-particle two-phase flow and radiation in which the gas flow nonequilibrium is strong is implemented as well. Ultraviolet radiation characteristics of the particle phase is studied based on the calculation of the flow field coupled with the radiation calculation, the radiation model for different size particles is analyzed, focusing on the effects of particle emission, absorption, scattering as well as the searchlight emission of the nozzle. A new approach may be proposed to describe the rarefied gas-particle two-phase plume flow and radiation transfer characteristics in this project.
Design and evaluation of a two-phase turbine for low quality steam--water mixtures
Energy Technology Data Exchange (ETDEWEB)
Comfort, W.J. III
1977-05-16
A new two-phase turbine was designed and built for testing in the laboratory, using a low quality steam-water mixture as a working fluid. The measured performance compares well with performance predictions of a numerical model of the expander. Details of the selection of the type of expander are given. The design of an experimental expander for use in a clean two-phase flow laboratory experiment and the development of a numerical model for performance analysis and extrapolations are described. Experiments including static cascade performance with two-phase fluid, disk friction and windage measurements, and two-phase performance measurements of the experimental expander are reported. Comparisons of the numerical model and experimental results, and the prediction of the performance of an advanced design, indicating how performance improvements can be achieved, are also included. An engine efficiency of 23 percent for a single-nozzle test was measured. Full admission performance, based upon the numerical model and achievable nozzle thrust coefficients indicate that an engine efficiency of between 38 and 48 percent can be realized with present technology. If maximum liquid removal loss is assumed, this performance range is predicted to be 38 to 41 percent. Droplet size reduction and the development and implementation of enhanced two-phase flow analysis techniques should make it possible to achieve the research goal of 70 percent engine efficiency.
Two phase convective heat transfer augmentation in swirl flow with non-boiling
Energy Technology Data Exchange (ETDEWEB)
Cha, K.O. [Myong Ji University, Kyonggi-do (Korea, Republic of); Kim, J.G. [Myongji University Graduate School, Kyonggi-do (Korea, Republic of)
1995-10-01
Two phase flow phenomena are observed in many industrial facilities and make much importance of optimum design for nuclear power plant and various heat exchangers. This experimental study has been investigated the classification of the flow pattern, the local void distribution and convective heat transfer in swirl and non-swirl two phase flow under the isothermal and nonisothermal conditions. The convective heat transfer coefficients in the single phase water flow were measured and compared with the calculated results from the Sieder-Tate correlation. These coefficients were used for comparisons with the two-phase heat transfer coefficients in the flow orientations. The experimental results indicate, that the void probe signal and probability density function of void distribution can used into classify the flow patterns, no significant difference in voidage distribution was observed between isothermal and non-isothermal condition in non-swirl flow, the values of two phase heat transfer coefficients increase when superficial air velocities increase, and the enhancement of the values is observed to be most pronounced at the highest superficial water velocity in non-swirl flow. Also two phase heat transfer coefficients in swirl flow are increased when the twist ratios are decreased. (author). 13 refs., 15 figs.
Two-Phase Cooling of Targets and Electronics for Particle Physics Experiments
Thome, J R; Park, J E
2009-01-01
An overview of the LTCM lab’s decade of experience with two-phase cooling research for computer chips and power electronics will be described with its possible beneficial application to high-energy physics experiments. Flow boiling in multi-microchannel cooling elements in silicon (or aluminium) have the potential to provide high cooling rates (up to as high as 350 W/cm2), stable and uniform temperatures of targets and electronics, and lightweight construction while also minimizing the fluid inventory. An overview of two-phase flow and boiling research in single microchannels and multi-microchannel test elements will be presented together with video images of these flows. The objective is to stimulate discussion on the use of two-phase cooling in these demanding applications, including the possible use of CO2.
Numerical simulation of the two-phase flow produced by spraying a liquid by a nozzle
Simakov, N. N.
2017-07-01
A numerical experiment on the simulation of the two-phase flow formed during spraying of a liquid by a nozzle has been described. The radial and axial velocity profiles of the droplets and gas in the free spray and in the two-phase flow through a cylindrical apparatus have been calculated and represented taking into account the early drag crisis of droplets and peculiarities of turbulent friction in the gas, which was detected in previous experiments. The distinguishing feature of the numerical model of the two-phase flow is that it employs the differential equations describing the nonstationary flow of a compressible gas as the initial equations. In transition to their difference analog, the familiar Lax-Wendorff algorithm has been used. A comparison of the results of calculations based on this model with experimental data has demonstrated their concordance.
Selective separation and enrichment of proteins in aqueous two-phase extraction system
Institute of Scientific and Technical Information of China (English)
Feng Qu; Hao Qin; Min Dong; Dong Xu Zhao; Xin Ying Zhao; Jing Hua Zhang
2009-01-01
A simple aqueous two-phase extraction system(ATPS)of PEG/phosphate was proposed for selective separation and enrichment of proteins.The combination of ATPE with HPLC was applied to identify the partition of proteins in two phases.Five proteins (bovine serum albumin,Cytochrome C,lysozyme,myoglobin,and trypsin)were used as model proteins to study the effect of phosphate concentration and pH on proteins partition.The PEG/phosphate system was firstly applied to real human saliva and plasma samples,some proteins showed obviously different partition in two phases.The primary results manifest the selective separation and enrichment of proteins in ATPS provided the potential for high abundance proteins depletion in proteomics.
Two-phase pressure drop across a hydrofoil-based micro pin device using R-123
Energy Technology Data Exchange (ETDEWEB)
Kosar, Ali [Mechatronics Engineering Program, Sabanci University, Orhanli, Tuzla, 34956 Istanbul (Turkey)
2008-05-15
The two-phase pressure drop in a hydrofoil-based micro pin fin heat sink has been investigated using R-123 as the working fluid. Two-phase frictional multipliers have been obtained over mass fluxes from 976 to 2349 kg/m{sup 2} s and liquid and gas superficial velocities from 0.38 to 1.89 m/s and from 0.19 to 24 m/s, respectively. It has been found that the two-phase frictional multiplier is strongly dependent on flow pattern. The theoretical prediction using Martinelli parameter based on the laminar fluid and laminar gas flow represented the experimental data fairly well for the spray-annular flow. For the bubbly and wavy-intermittent flow, however, large deviations from the experimental data were recorded. The Martinelli parameter was successfully used to determine the flow patterns, which were bubbly, wavy-intermittent, and spray-annular flow in the current study. (author)
Reduced-gravity two-phase flow experiments in the NASA KC-135
Cuta, Judith M.; Michener, Thomas E.; Best, Frederick R.; Kachnik, Leo J.
1988-01-01
An adequate understanding is sought of flow and heat transfer behavior in reduced and zero gravity conditions. Microgravity thermal-hydraulic analysis capabilities were developed for application to space nuclear power systems. A series of reduced gravity two phase flow experiments using the NASA KC-135 were performed. The objective was to supply basic thermal hydraulic information that could be used in development of analytical tools for design of space power systems. The experiments are described. Two main conclusions were drawn. First, the tests demonstrate that the KC-135 is a suitable test environment for obtaining two phase flow and heat transfer data in reduced gravity conditions. Second, the behavior of two phase flow in low gravity is sufficiently different from that obtained in 1 g to warrant intensive investigation of the phenomenon if adequate analytical tools are to be developed for microgravity conditions.
Entropy analysis on non-equilibrium two-phase flow models
Energy Technology Data Exchange (ETDEWEB)
Karwat, H.; Ruan, Y.Q. [Technische Universitaet Muenchen, Garching (Germany)
1995-09-01
A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.
Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces
Energy Technology Data Exchange (ETDEWEB)
Brauner, N.; Rovinsky, J.; Maron, D.M. [Tel-Aviv Univ. (Israel)
1995-09-01
The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.
On Riemann Solvers and Kinetic Relations for Isothermal Two-Phase Flows with Surface Tension
Rohde, Christian
2016-01-01
We consider a sharp-interface approach for the inviscid isothermal dynamics of compressible two-phase flow, that accounts for phase transition and surface tension effects. To fix the mass exchange and entropy dissipation rate across the interface kinetic relations are frequently used. The complete uni-directional dynamics can then be understood by solving generalized two-phase Riemann problems. We present new well-posedness theorems for the Riemann problem and corresponding computable Riemann solvers, that cover quite general equations of state, metastable input data and curvature effects. The new Riemann solver is used to validate different kinetic relations on physically relevant problems including a comparison with experimental data. Riemann solvers are building blocks for many numerical schemes that are used to track interfaces in two-phase flow. It is shown that the new Riemann solver enables reliable and efficient computations for physical situations that could not be treated before.
Investigation of two-phase heat transfer coefficients of argon-freon cryogenic mixed refrigerants
Baek, Seungwhan; Lee, Cheonkyu; Jeong, Sangkwon
2014-11-01
Mixed refrigerant Joule Thomson refrigerators are widely used in various kinds of cryogenic systems these days. Although heat transfer coefficient estimation for a multi-phase and multi-component fluid in the cryogenic temperature range is necessarily required in the heat exchanger design of mixed refrigerant Joule Thomson refrigerators, it has been rarely discussed so far. In this paper, condensation and evaporation heat transfer coefficients of argon-freon mixed refrigerant are measured in a microchannel heat exchanger. A Printed Circuit Heat Exchanger (PCHE) with 340 μm hydraulic diameter has been developed as a compact microchannel heat exchanger and utilized in the experiment. Several two-phase heat transfer coefficient correlations are examined to discuss the experimental measurement results. The result of this paper shows that cryogenic two-phase mixed refrigerant heat transfer coefficients can be estimated by conventional two-phase heat transfer coefficient correlations.
The Two-Phase Hell-Shaw Flow: Construction of an Exact Solution
Malaikah, K. R.
2013-03-01
We consider a two-phase Hele-Shaw cell whether or not the gap thickness is time-dependent. We construct an exact solution in terms of the Schwarz function of the interface for the two-phase Hele-Shaw flow. The derivation is based upon the single-valued complex velocity potential instead of the multiple-valued complex potential. As a result, the construction is applicable to the case of the time-dependent gap. In addition, there is no need to introduce branch cuts in the computational domain. Furthermore, the interface evolution in a two-phase problem is closely linked to its counterpart in a one-phase problem
Adaptive sampling in two-phase designs: a biomarker study for progression in arthritis
McIsaac, Michael A; Cook, Richard J
2015-01-01
Response-dependent two-phase designs are used increasingly often in epidemiological studies to ensure sampling strategies offer good statistical efficiency while working within resource constraints. Optimal response-dependent two-phase designs are difficult to implement, however, as they require specification of unknown parameters. We propose adaptive two-phase designs that exploit information from an internal pilot study to approximate the optimal sampling scheme for an analysis based on mean score estimating equations. The frequency properties of estimators arising from this design are assessed through simulation, and they are shown to be similar to those from optimal designs. The design procedure is then illustrated through application to a motivating biomarker study in an ongoing rheumatology research program. Copyright © 2015 © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. PMID:25951124
Two-Phase Master Sintering Curve for 17-4 PH Stainless Steel
Jung, Im Doo; Ha, Sangyul; Park, Seong Jin; Blaine, Deborah C.; Bollina, Ravi; German, Randall M.
2016-11-01
The sintering behavior of 17-4 PH stainless steel has been efficiently characterized by a two-phase master sintering curve model (MSC). The activation energy for the sintering of gas-atomized and water-atomized 17-4 PH powders is derived using the mean residual method, and the relative density of both powders is well predicted by the two-phase MSC model. The average error between dilatometry data and MSC model has been reduced by 68 pct for gas-atomized powder and by 45 pct for water-atomized powder through the consideration of phase transformation of 17-4 PH in MSC model. The effect of δ-ferrite is considered in the two-phase MSC model, leading to excellent explanation of the sintering behavior for 17-4 PH stainless steel. The suggested model is useful in predicting the densification and phase change phenomenon during sintering of 17-4 PH stainless steel.
An Implicit Numerical Method for the Simulation of Two-phase Flow
Energy Technology Data Exchange (ETDEWEB)
Yoon, Han Young; Lee, Seung-Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeong, Jae Jun [Pusan National University, Busan (Korea, Republic of)
2015-10-15
An implicit numerical method is presented for the analysis of two-phase flows in PWRs. Numerical stability and efficiency are improved by decoupling energy equations from the pressure equation. All the convection and diffusion terms are calculated implicitly. The proposed numerical method is verified against conceptual two-phase flow problems. An implicit numerical method has been proposed for two-phase calculation where energy equations are decoupled from the pressure equation. Convection and diffusion terms are calculated implicitly. The calculation results are the same for PME-explicit, PM explicit, and PM-implicit. Large time step size has been tested with PM-implicit-c and the results are also the same.
Numerical Study of Void Fraction Distribution Propagation in Gas-Liquid Two-Phase Flow
Institute of Scientific and Technical Information of China (English)
YANG Jianhui; LI Qing; LU Wenqiang
2005-01-01
A dynamic propagation model was developed for waves in two-phase flows by assuming that continuity waves and dynamic waves interact nonlinearly for certain flow conditions. The drift-flux model is solved with the one-dimensional continuity equation for gas-liquid two-phase flows as an initial-boundary value problem solved using the characteristic-curve method. The numerical results give the void fraction distribution propagation in a gas-liquid two-phase flow which shows how the flow pattern transition occurs. The numerical simulations of different flow patterns show that the void fraction distribution propagation is determined by the characteristics of the drift-flux between the liquid and gas flows and the void fraction range. Flow pattern transitions begin around a void fraction of 0.27 and end around 0.58. Flow pattern transitions do not occur for very high void concentrations.
Numerical Simulation of Erosion-Corrosion in the Liquid Solid Two-Phase Flow
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Erosion-corrosion of liquid-solid two-phase flow occurring in a pipe with sudden expansion in cross section is numerically simulated in this paper. The global model for erosion-corrosion process includes three main components: the liquid-solid two-phase flow model, erosion model and corrosion model. The Euierian-Lagranglan approach is used to simulate liquid-solid two-phase flow, while the stochastic trajectory model was adopted to obtain properties of particle phase. Two-way coupling effect between the fluid and the particle phase is considered in the model. The accuracy of the models is tested by the data in the reference. The comparison shows that the model is basically correct and feasible.
The solidification of two-phase heterogeneous materials: Theory versus experiment
Institute of Scientific and Technical Information of China (English)
ZHANG Bin; KIM Tongbeum; LU TianJian
2009-01-01
The solidification behavior of two-phase heterogeneous materials such as close-celled aluminum foams was analytically studied. The proposed analytical model can precisely predict the location of solidification front as well as the full solidification time for a two-phase heterogeneous material composed of aluminum melt and non-conducting air pores. Experiments using distilled water simulating the aluminum melt to be solidified (frozen) were subsequently conducted to validate the analytical model for two selected porosities (ε), ε=0 and 0.5. Full numerical simulations with the method of finite difference were also performed to examine the influence of pore shape on solidification. The remarkable agreement between theory and experiment suggests that the delay of solidification in the two-phase heterogeneous material is mainly caused by the reduction of bulk thermal conductivity due to the presence of pores, as this is the sole mechanism accounted for by the analytical model for solidification in a porous medium.
Thermodynamic properties and mixing thermodynamic parameters of two-phase metallic melts
Institute of Scientific and Technical Information of China (English)
Jian Zhang
2005-01-01
Based on the calculating model of metallic melts involving eutectic, the calculating equations of mixing thermodynamic parameters for two phase metallic melts have been formulated in the light of those equations of homogeneous solutions. Irrespective as to whether the activity deviation relative to Raoultian behavior is positive or negative, or the deviation is symmetrical or unsymmetrical, the evaluated results not only agree well with experimental values, but also strictly obey the mass action law. This testifies that these equations can authentically reflect the structural reality and mixing thermodynamic characteristics of two-phase metallic melts. The calculating equations of mixing thermodynamic parameters for the model of two phase metallic melts offer two practical criteria (activity and mixing thermodynamic parameters) and one theoretical criterion (the mass action law).
Thermodynamic calculations of a two-phase thermosyphon loop for cold neutron sources
de Haan, Victor-O.; Gommers, René; Rowe, J. Michael
2017-07-01
A new method is described for thermodynamic calculations of a two-phase thermosyphon loop based on a one-dimensional finite element division, where each time-step is split up in a change of enthalpy and a change in entropy. The method enables the investigation of process responses for a cooling loop from room temperature down to cryogenic temperatures. The method is applied for the simulation of two distinct thermosyphon loops: a two-phase deuterium and a two-phase hydrogen thermosyphon loop. The simulated process responses are compared to measurements on these loops. The comparisons show that the method can be used to optimize the design of such loops with respect to performance and resulting void fractions.
OPTIMIZATION DESIGN OF GAS-PARTICLE TWO-PHASE AXIAL-FLOW FAN
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Based on the shaping theory of writhed blade in streamline design, the geometric shape of blade is designed and then computational formulas for the dynamic design of fan with writhed the blades in gas-particle two-phase axial-flow are derived with the two-phase continuum coupling model. Concurrently, the correlation between the structure of impeller and flow-field dynamic functional parameters is presented. Further, the software for the optimization design of gas-particle two-phase axial-flow fan with writhed blades is obtained. By means of the available software, a sample fan is formed with its all dynamic characteristic curves and geometric shape. Finally, the conclusion on the effect of particles on fan running is reached, quantitatively and qualitatively, as is expected in the fan industry.
Numerical simulation of the two-phase flows in a hydraulic coupling by solving VOF model
Luo, Y.; Zuo, Z. G.; Liu, S. H.; Fan, H. G.; Zhuge, W. L.
2013-12-01
The flow in a partially filled hydraulic coupling is essentially a gas-liquid two-phase flow, in which the distribution of two phases has significant influence on its characteristics. The interfaces between the air and the liquid, and the circulating flows inside the hydraulic coupling can be simulated by solving the VOF two-phase model. In this paper, PISO algorithm and RNG k-ɛ turbulence model were employed to simulate the phase distribution and the flow field in a hydraulic coupling with 80% liquid fill. The results indicate that the flow forms a circulating movement on the torus section with decreasing speed ratio. In the pump impeller, the air phase mostly accumulates on the suction side of the blades, while liquid on the pressure side; in turbine runner, air locates in the middle of the flow passage. Flow separations appear near the blades and the enclosing boundaries of the hydraulic coupling.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume II. Chapters 6-10)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume III. Chapters 11-14)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume IV. Chapters 15-19)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume I. Chapters 1-5)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Stability of Wavy Films in Gas-Liquid Two-Phase Flows at Normal and Microgravity Conditions
Balakotaiah, V.; Jayawardena, S. S.
1996-01-01
For flow rates of technological interest, most gas-liquid flows in pipes are in the annular flow regime, in which, the liquid moves along the pipe wall in a thin, wavy film and the gas flows in the core region. The waves appearing on the liquid film have a profound influence on the transfer rates, and hence on the design of these systems. We have recently proposed and analyzed two boundary layer models that describe the characteristics of laminar wavy films at high Reynolds numbers (300-1200). Comparison of model predictions to 1-g experimental data showed good agreement. The goal of our present work is to understand through a combined program of experimental and modeling studies the characteristics of wavy films in annular two-phase gas-liquid flows under normal as well as microgravity conditions in the developed and entry regions.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Based on the Biot's theory about two-phase saturated medium, according to the character of d function, the Green function on two-phase saturated medium by the point source under concentrated force can be derived. By the Betti's theorem for the two-phase saturated medium field, the source vector and static displacement field by elastic dislocation on the two-phase saturated medium were comprehensively discussed.
RESEARCH ON THE FLOW STABILITY IN A CYLINDRICAL PARTICLE TWO-PHASE BOUNDARY LAYER
Institute of Scientific and Technical Information of China (English)
林建忠; 聂德明
2003-01-01
Based on the momentum and constitutive equations, the modified Orr-Sommerfeld equation describing the flow stability in a cylindrical particle two-phase flow was derived. For a cylindrical particle two-phase boundary layer, the neutral stability curves and critical Reynolds number were given with numerical simulation. The results show that the cylindrical particles have a suppression effect on the flow instability, the larger the particle volume fraction and the particle aspect-ratio are, the more obvious the suppression effect is.
Investigation on two-phase flow instability in steam generator of integrated nuclear reactor
Institute of Scientific and Technical Information of China (English)
无
1996-01-01
In the pressure range of 3-18MPa,high pressure steam-water two-phase flow density wave instability in vertical upward parallel pipes with inner diameter of 12mm is studied experimentally.The oscillation curves of two-phase flow instability and the effects of several parameters on the oscillation threshold of the system are obtained.Based on the small pertubation linearization method and the stability principles of automatic control system,a mathematical model is developed to predict the characteristics of density wave instability threshold.The predictions of the model are in good agreement with the experimental results.
Position Control of Synchronous Motor Drive by Modified Adaptive Two-phase Sliding Mode Controller
Institute of Scientific and Technical Information of China (English)
Mohamed Said Sayed Ahmed; Ping Zhang; Yun-Jie Wu
2008-01-01
A modified adaptive two-phase sliding mode controller for the synchronous motor drive that is highly robust to uncertain-ties and external disturbances is proposed in this paper. The proposed controller uses two-phase sliding mode control (SMC) where the 1st phase mainly controls the system in steady states and disturbed states-it is a smoothing phase. The 2nd phase is used mainly in the case of disturbed states. Also, it is an autotuning phase and uses a simple adaptive algorithm to tune the gain of conventional variable structure control (VSC). The modified controller is useful in position control of a permanent magnet synchronous drive.
A phenomenological model of two-phase (air/fuel droplet developing and breakup
Directory of Open Access Journals (Sweden)
Pavlović Radomir R.
2013-01-01
Full Text Available Effervescent atomization namely the air-filled liquid atomization comprehends certain complex two-phase phenomenon that are difficult to be modeled. Just a few researchers have found the mathematical expressions for description of the complex atomization model of the two-phase mixture air/diesel fuel. In the following review, developing model of twophase (air/fuel droplet of Cummins spray pump-injector is shown. The assumption of the same diameters of the droplet and the opening of the atomizer is made, while the air/fuel mass ratio inside the droplet varies.
Camomile autofermentation in polyethylene glycol/dextran two-phase system
Directory of Open Access Journals (Sweden)
Đaković Sanja D.
2008-01-01
Full Text Available The objective of this study was the investigation of the extractive bioconversion of apigenin-7-O-β-glucoside in camomile ligulate flowers into apigenin by autofermentation in polyethylene glycol 6000/dextran 200000 two-phase system. In 22.5% polyethylene glycol/14% dextran aqueous two-phase system the obtained yield of apigenin in the top phase was 96.5%. In the presence of plant material that partiotioned to the interphase, the yield of apigenin in the top phase was 3.5 times higher in comparison to the model system.
Preliminary Two-Phase Terry Turbine Nozzle Models for RCIC Off-Design Operation Conditions
Energy Technology Data Exchange (ETDEWEB)
Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2017-06-12
This report presents the effort to extend the single-phase analytical Terry turbine model to cover two-phase off-design conditions. The work includes: (1) adding well-established two-phase choking models – the Isentropic Homogenous Equilibrium Model (IHEM) and Moody’s model, and (2) theoretical development and implementation of a two-phase nozzle expansion model. The two choking models provide bounding cases for the two-phase choking mass flow rate. The new two-phase Terry turbine model uses the choking models to calculate the mass flow rate, the critical pressure at the nozzle throat, and steam quality. In the divergent stage, we only consider the vapor phase with a similar model for the single-phase case by assuming that the liquid phase would slip along the wall with a much slower speed and will not contribute the impulse on the rotor. We also modify the stagnation conditions according to two-phase choking conditions at the throat and the cross-section areas for steam flow at the nozzle throat and at the nozzle exit. The new two-phase Terry turbine model was benchmarked with the same steam nozzle test as for the single-phase model. Better agreement with the experimental data is observed than from the single-phase model. We also repeated the Terry turbine nozzle benchmark work against the Sandia CFD simulation results with the two-phase model for the pure steam inlet nozzle case. The RCIC start-up tests were simulated and compared with the single-phase model. Similar results are obtained. Finally, we designed a new RCIC system test case to simulate the self-regulated Terry turbine behavior observed in Fukushima accidents. In this test, a period inlet condition for the steam quality varying from 1 to 0 is applied. For the high quality inlet period, the RCIC system behaves just like the normal operation condition with a high pump injection flow rate and a nominal steam release rate through the turbine, with the net addition of water to the primary system; for
Two-phase flow stability structure in a natural circulation system
Energy Technology Data Exchange (ETDEWEB)
Zhou, Zhiwei [Nuclear Engineering Laboratory Zurich (Switzerland)
1995-09-01
The present study reports a numerical analysis of two-phase flow stability structures in a natural circulation system with two parallel, heated channels. The numerical model is derived, based on the Galerkin moving nodal method. This analysis is related to some design options applicable to integral heating reactors with a slightly-boiling operation mode, and is also of general interest to similar facilities. The options include: (1) Symmetric heating and throttling; (2) Asymmetric heating and symmetric throttling; (3) Asymmetric heating and throttling. The oscillation modes for these variants are discussed. Comparisons with the data from the INET two-phase flow stability experiment have qualitatively validated the present analysis.
Problems of heat transfer and hydraulics of two-phase media
Kutateladze, S S
1969-01-01
Problems of Heat Transfer and Hydraulics of Two-Phase Media presents the theory of heat transfer and hydrodynamics. This book discusses the various aspects of heat transfer and the flow of two-phase systems. Organized into two parts encompassing 22 chapters, this book starts with an overview of the laws of similarity for heat transfer to or from a flowing liquid with various physical properties and allowed for variation in viscosity and thermal conductivity. This book then explores the general functional relationship that exists between viscosity and thermal conductivity for thermodynamically
Research of Characteristics of Gas-liquid Two-phase Pressure Drop in Microreactor
Li Dan
2015-01-01
With the research system of nitrogen and deionized water, this paper researches the pressure drop of gas-liquid two-phase flow in the circular microchannel with an inner diameter which is respectively 0.9mm and 0.5mm, analyzes the effect of microchannel diameter on gas-liquid two-phase frictional pressure drop in the microchannel reactor, and compares with the result of frictional pressure drop and the predicting result of divided-phase flow pattern. The result shows that, the gas-liquid two-...
Two-Phase Flow in Geothermal Wells: Development and Uses of a Good Computer Code
Energy Technology Data Exchange (ETDEWEB)
Ortiz-Ramirez, Jaime
1983-06-01
A computer code is developed for vertical two-phase flow in geothermal wellbores. The two-phase correlations used were developed by Orkiszewski (1967) and others and are widely applicable in the oil and gas industry. The computer code is compared to the flowing survey measurements from wells in the East Mesa, Cerro Prieto, and Roosevelt Hot Springs geothermal fields with success. Well data from the Svartsengi field in Iceland are also used. Several applications of the computer code are considered. They range from reservoir analysis to wellbore deposition studies. It is considered that accurate and workable wellbore simulators have an important role to play in geothermal reservoir engineering.
Determination of production-shipment policy using a two-phase algebraic approach
Directory of Open Access Journals (Sweden)
Huei-Hsin Chang
2012-04-01
Full Text Available The optimal production-shipment policy for end products using mathematicalmodeling and a two-phase algebraic approach is investigated. A manufacturing systemwith a random defective rate, a rework process, and multiple deliveries is studied with thepurpose of deriving the optimal replenishment lot size and shipment policy that minimisestotal production-delivery costs. The conventional method uses differential calculus on thesystem cost function to determine the economic lot size and optimal number of shipmentsfor such an integrated vendor-buyer system, whereas the proposed two-phase algebraicapproach is a straightforward method that enables practitioners who may not havesufficient knowledge of calculus to manage real-world systems more effectively.
The performance of a cryogenic pump for the two-phase flow condition
YAMADA, HITOSHI; WATANABE, Mitsuo; Hasegawa, Satoshi; Kamijo, Kenjiro; 山田, 仁; 渡辺, 光男; 長谷川, 敏; 上條, 謙二郎
1985-01-01
An experimental investigation was carried out in order to obtain the performance characteristics of a cryogenic pump under a two-phase flow condition. The experiment used an oxygen pump with an inducer and liquid nitrogen as the test fluid. The vapor volumetric fraction at the pump inlet was calculated with an assumption of a constant enthalpy process across an orifice which was used to generate the two-phase flow at the pump inlet. The results showed that the pump head rise did hardly decrea...
Estimation of flow velocity for a debris flow via the two-phase fluid model
Directory of Open Access Journals (Sweden)
S. Guo
2014-06-01
Full Text Available The two-phase fluid model is applied in this study to calculate the steady velocity of a debris flow along a channel bed. By using the momentum equations of the solid and liquid phases in the debris flow together with an empirical formula to describe the interaction between two phases, the steady velocities of the solid and liquid phases are obtained theoretically. The comparison of those velocities obtained by the proposed method with the observed velocities of two real-world debris flows shows that the proposed method can estimate accurately the velocity for a debris flow.
Characterization of annular two-phase gas-liquid flows in microgravity
Bousman, W. Scott; Mcquillen, John B.
1994-01-01
A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.
Thermal Marangoni Convection of Two-phase Dusty Fluid Flow along a Vertical Wavy Surface
Directory of Open Access Journals (Sweden)
S. Siddiqa
2017-01-01
Full Text Available The paper considers the influence of thermal Marangoni convection on boundary layer flow of two-phase dusty fluid along a vertical wavy surface. The dimensionless boundary layer equations for two-phase problem are reduced to a convenient form by primitive variable transformations (PVF and then integrated numerically by employing the implicit finite difference method along with the Thomas Algorithm. The effect of thermal Marangoni convection, dusty water and sinusoidal waveform are discussed in detail in terms of local heat transfer rate, skin friction coefficient, velocity and temperature distributions. This investigation reveals the fact that the water-particle mixture reduces the rate of heat transfer, significantly.
Two-dimensional Rarefaction Waves in the High-speed Two-phase Flow
Nakagawa, Masafumi; Harada, Atsushi
Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. The purpose of the present study is to elucidate theoretically the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. Two-dimensional basic equations for the compressible two-phase flow are introduced considering the inter-phase momentum transfer. Sound velocities are obtained from these equations by using monochromatic wave approximation. Those depend on the relaxation time that determines the momentum transfer. The two-phase flow with large relaxation times has a frozen sound velocity, and with small one has an equilibrium sound velocity. Rarefaction waves which occurred behind the two-phase flow nozzle are calculated by the CIP method. Although the frozen Mach number, below one, controls these basic equations, the rarefaction waves appeared for small relaxation time. The Mach line behind which the expansion starts depends on the inlet velocity and the relaxation time. Those relationships are shown in this paper. The pressure expansion curves are only a function of the revolution angle around the corner of the nozzle outlet for the relaxation time less than 0.1. For the larger relaxation time, the pressure decays because of internal friction caused by inter phase momentum transfer, and the expansion curves are a function of not only the angle but also the flow direction. The calculated expansion curves are compared with the experimental ones
Conceptual design of two-phase fluid mechanics and heat transfer facility for spacelab
North, B. F.; Hill, M. E.
1980-01-01
Five specific experiments were analyzed to provide definition of experiments designed to evaluate two phase fluid behavior in low gravity. The conceptual design represents a fluid mechanics and heat transfer facility for a double rack in Spacelab. The five experiments are two phase flow patterns and pressure drop, flow boiling, liquid reorientation, and interface bubble dynamics. Hardware was sized, instrumentation and data recording requirements defined, and the five experiments were installed as an integrated experimental package. Applicable available hardware was selected in the experiment design and total experiment program costs were defined.
On the peculiarities of LDA method in two-phase flows with high concentrations of particles
Poplavski, S. V.; Boiko, V. M.; Nesterov, A. U.
2016-10-01
Popular applications of laser Doppler anemometry (LDA) in gas dynamics are reviewed. It is shown that the most popular method cannot be used in supersonic flows and two-phase flows with high concentrations of particles. A new approach to implementation of the known LDA method based on direct spectral analysis, which offers better prospects for such problems, is presented. It is demonstrated that the method is suitable for gas-liquid jets. Owing to the progress in laser engineering, digital recording of spectra, and computer processing of data, the method is implemented at a higher technical level and provides new prospects of diagnostics of high-velocity dense two-phase flows.
Investigation of heat transfer and pressure drop of CO(2) two-phase flow in a horizontal minichannel
Wu, J; Haug, F; Franke, C; Bremer, J; Eisel, T; Koettig, T
2011-01-01
An innovative cooling system based on evaporative CO(2) two-phase flow is under investigation for the tracker detectors upgrade at CERN (European Organization for Nuclear Research). The radiation hardness and the excellent thermodynamic properties emphasize carbon dioxide as a cooling agent in the foreseen minichannels. A circular stainless steel tube in horizontal orientation with an inner diameter of 1.42 mm and a length of 0.3 m has been used as a test section to perform the step-wise scanning of the vapor quality in the entire two-phase region. To characterize the heat transfer and the pressure drop depending on the vapor quality in the tube, measurements have been performed by varying the mass flux from 300 to 600 kg/m(2) s, the heat flux from 7.5 to 29.8 kW/m(2) and the saturation temperature from -40 to 0 degrees C (reduced pressures from 0.136 to 0.472). Heat transfer coefficients between 4 kW/m(2) K and 28 kW/m(2) K and pressure gradients up to 75 kPa/m were registered. The measured data was analyzed...
Mao, W. Y.; Song, P. Y.; Deng, Q. G.; Xu, H. J.
2016-05-01
With the purpose of studying performance of the vortex pump for transporting solid-liquid two-phase with light particles whose relative density smaller than 1, the numerical simulation of solid-liquid two phase flowing in the whole channel of a vortex pump with the particle diameter being 0.5 mm, 1 mm, 2 mm, 3 mm and the initial solid phase volume concentrations being 10%, 20% and 30% are respectively carried out by using the commercial software ANSYS Fluent by adopting RNG κ-ɛ turbulent flow model, Eulerian-Eulerian multi-phase flow model and SIMPLEC algorithm. The simulation results show that in the impeller region, the particles concentrate on the non-working surface of the blades, and the particles are rare on the working surface of the blades. As the initial solid phase volume concentration and particle diameter increase, the pump delivery head of vortex pump decrease. The pump delivery head of vortex pump with different initial solid phase concentrations and different particle diameters are predicted and compared with those obtained by an empirical formula, and they shows good agreement.
Comparison of two-phase and three-phase methanol synthesis processes
van de Graaf, G.H; Beenackers, A.A C M
1996-01-01
A comparison is made between the ICI (two-phase) methanol synthesis process and a three-phase slurry process based on a multi-stage agitated reactor. The process calculations are based on a complete reactor system consisting of the reactor itself, a recycling system and a gas-liquid separator. The b
Pressure Buildup Analysis for Two-Phase Geothermal Wells: Application to the Baca Geothermal Field
Riney, T. D.; Garg, S. K.
1985-03-01
The recently published pressure transient analysis methods for two-phase geothermal wells are employed to analyze the pressure buildup data for several wells located in the Redondo Creek area of the Baca geothermal field in New Mexico. The downhole drilling information and pressure/temperature surveys are first interpreted to locate zones at which fluid enters the well bore from the formation and to estimate the initial reservoir temperature and pressure in these zones. All of the Baca wells considered here induced flashing in the formation upon production. Interpretation of the buildup data for each well considers well bore effects (e.g., phase change in the well bore fluid and location of the pressure sensor with respect to the permeable horizon) and the carbon dioxide content of the fluid and its effects on the phase behavior of the reservoir fluids and differentiates between the single- and two-phase portions of the pressure buildup data. Different straight-line approximations to the two portions (i.e., single- and two-phase) of the data on the Homer plot are used to obtain corresponding estimates for the single- and two-phase mobilities. Estimates for the formation permeability-thickness (kH) product are also given.
Effects of Macroparticle Sizes on Two-phase Mixture Discharge Under DC Voltage
Institute of Scientific and Technical Information of China (English)
YAO Wenjun; HE Zhenghao; DENG Heming; WANG Guoli; ZHANG Man; MA Jun; LI Jin; YE Qizheng; HU Hui
2012-01-01
The discharge laws of the two-phase mixtures are of significance to the lightning protection and external insulation of HV transmission lines under the influence of severe climatic conditions. The initiation and propagation of discharge and its influence factors are the fundamental problems to be studied.
Institute of Scientific and Technical Information of China (English)
袁益让
2002-01-01
For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estinates in L2 norm are derived to determine the error in the approximate solution.
Vincent, Charles C.J.; Kok, Jacobus B.W.
1992-01-01
The two-phase closed loop thermosyphon is investigated with emphasis on the overall performance in transient operation. The control volume approach is the base of a global analysis describing the motion of vapor and liquid phases of the thermosyphon system in one-dimensional equations. Interfacial s
Affinity partitioning of human antibodies in aqueous two-phase systems
Rosa, P. A. J.; Azevedo, A. M.; Ferreira, I. F.; de Vries, J.; Korporaal, R.; Verhoef, H. J.; Visser, T. J.; Aires-Barros, M. R.
2007-01-01
The partitioning of human immunoglobulin (IgG) in a polymer-polymer and polymer-salt aqueous two-phase system (ATPS) in the presence of several functionalised polyethylene glycols (PEGs) was studied. As a first approach, the partition studies were performed with pure IgG using systems in which the t
Measurements of solids concentration and axial solids velocity in gas-solid two-phase flows.
Nieuwland, J.J.; Meijer, R.; Kuipers, J.A.M.; Swaaij, van W.P.M.
1996-01-01
Several techniques reported in the literature for measuring solids concentration and solids velocity in (dense) gas-solid two-phase flow have been briefly reviewed. An optical measuring system, based on detection of light reflected by the suspended particles, has been developed to measure local soli
A Dual-Stage Two-Phase Model of Selective Attention
Hubner, Ronald; Steinhauser, Marco; Lehle, Carola
2010-01-01
The dual-stage two-phase (DSTP) model is introduced as a formal and general model of selective attention that includes both an early and a late stage of stimulus selection. Whereas at the early stage information is selected by perceptual filters whose selectivity is relatively limited, at the late stage stimuli are selected more efficiently on a…
A FINITE ELEMENT COLLOCATION METHOD FOR TWO-PHASE INCOMPRESSIBLE IMMISCIBLE PROBLEMS
Institute of Scientific and Technical Information of China (English)
Ma Ning
2007-01-01
Two-phase, incompressible, immiscible flow in porous media is governed by a coupled system of nonlinear partial differential equations. The pressure equation is elliptic,whereas the concentration equation is parabolic, and both are treated by the collocation scheme. Existence and uniqueness of solutions of the algorithm are proved. A optimal convergence analysis is given for the method.
Two-phase (bio)catalytic reactions in a table-top centrifugal contact separator
Kraai, Gerard N.; Zwol, Floris van; Schuur, Boelo; Heeres, Hero J.; Vries, Johannes G. de
2008-01-01
A new spin on catalysis: A table-top centrifugal contact separator allows for fast continuous two-phase reactions to be performed by intimately mixing two immiscible phases and then separating them. Such a device has been used to produce biodiesel from sunflower oil and MeOH/NaOMe. A lipase-catalyze
Energy Technology Data Exchange (ETDEWEB)
Kang, Han-Ok; Han, Hun Sik; Kim, Young-In; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-05-15
Reduction of installation space for steam generators can lead to much smaller reactor vessel with resultant decrease of overall manufacturing cost for the components. A PCHE(Printed Circuit Heat Exchanger) is one of the compact types of heat exchangers available as an alternative to conventional shell and tube heat exchangers. Its name is derived from the procedure used to manufacture the flat metal plates that form the core of the heat exchanger, which is done by chemical milling. These plates are then stacked and diffusion bonded, converting the plates into a solid metal block containing precisely engineered fluid flow passages. PCSG(Printed Circuit Steam Generator) is a potential candidate to be applied to the integral reactor with its compactness and mechanical robustness. For the introduction of new steam generator, design requirement for the two-phase flow instability should be considered. This paper describes two-phase flow instability characteristics of PCSG for the low pressure condition. PCSG is a potential candidate to be applied to the integral reactor with its compactness and mechanical robustness. Interconnecting flow path was developed to mitigate the two-phase flow instability in the cold side. The flow characteristics of two-phase flow instability at the PCSG is examined experimentally in this study.
Comparison of two-phase and three-phase methanol synthesis processes
van de Graaf, G.H; Beenackers, A.A C M
1996-01-01
A comparison is made between the ICI (two-phase) methanol synthesis process and a three-phase slurry process based on a multi-stage agitated reactor. The process calculations are based on a complete reactor system consisting of the reactor itself, a recycling system and a gas-liquid separator. The
Effects of gravity and inlet location on a two-phase countercurrent imbibition in porous media
El-Amin, Mohamed
2012-01-01
We introduce a numerical investigation of the effect of gravity on the problem of two-phase countercurrent imbibition in porous media. We consider three cases of inlet location, namely, from, side, top, and bottom. A 2D rectangular domain is considered for numerical simulation. The results indicate that gravity has a significant effect depending on open-boundary location.
A Chebyshev collocation method for solving two-phase flow stability problems
Boomkamp, P.A.M.; Boersma, B.J.; Miesen, R.H.M.; Beijnon, G.V.
1997-01-01
This paper describes a Chebyshev collocation method for solving the eigenvalue problem that governs the stability of parallel two-phase flow. The method is based on the expansion of the eigenfunctions in terms of Chebyshev polynomials, point collocation, and the subsequent solution of the resulting
Lamb's integral formulas of two-phase saturated medium for soil dynamic with drainage
Institute of Scientific and Technical Information of China (English)
Bo-yang DING; Gai-hong DANG; Jin-hua YUAN
2010-01-01
When dynamic force is applied to a saturated porous soil,drainage is common.In this paper,the saturated porous soil with a two-phase saturated medium is simulated,and Lamb's integral formulas with drainage and stress formulas for a two-phase saturated medium are given based on Biot's equation and Betti's theorem(the reciprocal theorem).According to the basic solution to Biot's equation,Green's function Gij and three terms of Green's function G4i,Gi4,and G44 of a two-phase saturated medium subject to a concentrated force on a spherical coordinate are presented.The displacement field with drainage,the magnitude of drainage,and the pore pressure of the center explosion source are obtained in computation.The results of the classical Sharpe's solutions and the solutions of the two-phase saturated medium that decays to a single-phase medium are compared.Good agreement is observed.
Approaches to myosin modelling in a two-phase flow model for cell motility
Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.
2016-04-01
A wide range of biological processes rely on the ability of cells to move through their environment. Mathematical models have been developed to improve our understanding of how cells achieve motion. Here we develop models that explicitly track the cell's distribution of myosin within a two-phase flow framework. Myosin is a small motor protein which is important for contracting the cell's actin cytoskeleton and enabling cell motion. The two phases represent the actin network and the cytosol in the cell. We start from a fairly general description of myosin kinetics, advection and diffusion in the two-phase flow framework, then identify a number of sub-limits of the model that may be relevant in practice, two of which we investigate further via linear stability analyses and numerical simulations. We demonstrate that myosin-driven contraction of the actin network destabilizes a stationary steady state leading to cell motion, but that rapid diffusion of myosin and rapid unbinding of myosin from the actin network are stabilizing. We use numerical simulation to investigate travelling-wave solutions relevant to a steadily gliding cell and we consider a reduction of the model in which the cell adheres strongly to the substrate on which it is crawling. This work demonstrates that a number of existing models for the effect of myosin on cell motility can be understood as different sub-limits of our two-phase flow model.
Theoretical aspects of electrical power generation from two-phase flow streaming potentials
Sherwood, J.D.; Xie, Yanbo; van den Berg, Albert; Eijkel, Jan C.T.
A theoretical analysis of the generation of electrical streaming currents and electrical power by two-phase flow in a rectangular capillary is presented. The injection of a second, non-conducting fluid phase tends to increase the internal electrical resistance of the electrical generator, thereby
Effects of Particles Collision on Separating Gas–Particle Two-Phase Turbulent Flows
Sihao, L. V.
2013-10-10
A second-order moment two-phase turbulence model incorporating a particle temperature model based on the kinetic theory of granular flow is applied to investigate the effects of particles collision on separating gas–particle two-phase turbulent flows. In this model, the anisotropy of gas and solid phase two-phase Reynolds stresses and their correlation of velocity fluctuation are fully considered using a presented Reynolds stress model and the transport equation of two-phase stress correlation. Experimental measurements (Xu and Zhou in ASME-FED Summer Meeting, San Francisco, Paper FEDSM99-7909, 1999) are used to validate this model, source codes and prediction results. It showed that the particles collision leads to decrease in the intensity of gas and particle vortices and takes a larger effect on particle turbulent fluctuations. The time-averaged velocity, the fluctuation velocity of gas and particle phase considering particles colli-sion are in good agreement with experimental measurements. Particle kinetic energy is always smaller than gas phase due to energy dissipation from particle collision. Moreover, axial– axial and radial–radial fluctuation velocity correlations have stronger anisotropic behaviors. © King Fahd University of Petroleum and Minerals 2013
Two-Phase Flow in Rotating Hele-Shaw Cells with Coriolis Effects
Escher, Joachim; Walker, Christoph
2011-01-01
The free boundary problem of a two phase flow in a rotating Hele-Shaw cell with Coriolis effects is studied. Existence and uniqueness of solutions near spheres is established, and the asymptotic stability and instability of the trivial solution is characterized in dependence on the fluid densities.
Liquid-liquid extraction of enzymes by affinity aqueous two-phase systems
Directory of Open Access Journals (Sweden)
Xu Yan
2003-12-01
Full Text Available From analytical to commercial scale, aqueous two-phase systems have their application in the purification, characterization and study of biomaterials. In order to improve the selectivity of the systems, the biospecific affinity ligands were introduced. In the affinity partitioning aqueous two-phase system, have many enzymes been purified. This review discusses the partitioning of some enzymes in the affinity aqueous two-phase systems in regard to the different ligands, including reactive dyes, metal ions and other ligands. Some integration of aqueous two-phase system with other techniques for more effective purification of enzymes are also presented.Tanto em escala de laboratório como industrial, os sistemas de duas fases aquosas podem ser utilizados para a purificação, caracterização e estudos de biomateriais. Para aumentar a seletividade desse sistema, ligantes de afinidade bioespecíficos podem ser utilizados. No sistema de duas fases aquosas por afinidade, muitas enzimas podem ser purificadas. Neste artigo de revisão, a partição de algumas enzimas por esse tipo de afinidade, utilizando diferentes ligantes como corantes e íons metálicos, são discutidas. Além disso, a integração desse sistema de duas fases aquosas com outras técnicas de purificação estão sendo apresentados, com o objetivo mostrar a melhoria da eficiência do processo.
Two-phase (bio)catalytic reactions in a table-top centrifugal contact separator
Kraai, Gerard N.; Zwol, Floris van; Schuur, Boelo; Heeres, Hero J.; Vries, Johannes G. de
2008-01-01
A new spin on catalysis: A table-top centrifugal contact separator allows for fast continuous two-phase reactions to be performed by intimately mixing two immiscible phases and then separating them. Such a device has been used to produce biodiesel from sunflower oil and MeOH/NaOMe. A lipase-catalyze
Kraai, Gerard N.; Schuur, Boelo; van Zwol, Floris; Haak, Robert M.; Minnaard, Adriaan J.; Feringa, Ben L.; Heeres, Hero J.; de Vries, Johannes G.; Prunier, ML
2009-01-01
Production of fine chemicals is mostly performed in batch reactors. Use of continuous processes has many advantages which may reduce the cost of production. We have developed the use of centrifugal contact separators (CCSs) for continuous two-phase catalytic reactions. This equipment has previously
Visualization and research of gas-liquid two phase flow structures in cylindrical channel
Directory of Open Access Journals (Sweden)
Stefański Sebastian
2017-01-01
Full Text Available Two-phase flows are commonly found in many industries, especially in systems, where efficient and correct functioning depend on specific values of flow parameters. In thermal engineering and chemical technology the most popular types of two-phase mixture are gas-liquid or liquid-vapour mixtures. Bubbles can create in flow different structures and determine diverse properties of flow (velocity of phase, void fraction, fluctuations of pressure, pipe vibrations, etc.. That type of flow is difficult to observe, especially in liquid-vapour mixture, where vapour is being made by heating the medium. Production of vapour and nucleation process are very complicated issues, which are important part of two-phase flow phenomenon. Gas-liquid flow structures were observed and described with figures, but type of structure depends on many parameters. Authors of this paper made an attempt to simulate gas-liquid flow with air and water. In the paper there was presented specific test stand built to observe two-phase flow structures, methodology of experiment and conditions which were maintained during observation. The paper presents also the structures which were observed and the analysis of results with reference to theoretical models and diagrams available in literature.
Numerical Simulation of Hydrodynamic Wave Loading by a Compressible Two-Phase Model
Wemmenhove, R.; Loots, G.E.; Veldman, A.E.P.
2006-01-01
The numerical simulation of hydrodynamic wave loading on different types of offshore structures is important to predict forces on and water motion around these structures. This paper presents a numerical study of the effects of two-phase flow on an offshore structure subject to breaking waves. The
Lattice-Boltzmann-based two-phase thermal model for simulating phase change
Kamali, M.R.; Gillissen, J.J.J.; Van den Akker, H.E.A.; Sundaresan, S.
2013-01-01
A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A
An ALE Finite Element Approach for Two-Phase Flow with Phase Change
Gros, Erik; Anjos, Gustavo; Thome, John; Ltcm Team; Gesar Team
2016-11-01
In this work, two-phase flow with phase change is investigated through the Finite Element Method (FEM) in the Arbitrary Lagrangian-Eulerian (ALE) framework. The equations are discretized on an unstructured mesh where the interface between the phases is explicitly defined as a sub-set of the mesh. The two-phase interface position is described by a set of interconnected nodes which ensures a sharp representation of the boundary, including the role of the surface tension. The methodology proposed for computing the curvature leads to very accurate results with moderate programming effort and computational costs. Such a methodology can be employed to study accurately many two-phase flow and heat transfer problems in industry such as oil extraction and refinement, design of refrigeration systems, modelling of microfluidic and biological systems and efficient cooling of electronics for computational purposes. The latter is the principal aim of the present research. The numerical results are discussed and compared to analytical solutions and reference results, thereby revealing the capability of the proposed methodology as a platform for the study of two-phase flow with phase change.
Nonequilibrium capillarity effects in two-phase flow through porous media at different scales
Bottero, S.; Hassanizadeh, S.M.; Kleingeld, P.J.; Heimovaara, T.J.
2011-01-01
A series of primary drainage experiments was carried out in order to investigate nonequilibrium capillarity effects in two-phase flow through porous media. Experiments were performed with tetrachloroethylene (PCE) and water as immiscible fluids in a sand column 21 cm long. Four drainage experiments
Trapping and hysteresis in two-phase flow in porous media: A pore-network study
Joekar-Niasar, V.|info:eu-repo/dai/nl/30484229X; Doster, F.; Armstrong, R.T.; Wildenschild, D.; Celia, M.A.
2013-01-01
Several models for two-phase ﬂow in porous media identify trapping and connectivityof ﬂuids as an important contribution to macroscale hysteresis. This is especially true forhysteresis in relative permeabilities. The trapping models propose trajectories from theinitial saturation to the end saturati
Jafari, Davoud; Di Marco, Paolo; Filippeschi, Sauro; Franco, Alessandro
2017-01-01
Abstract Two-phase closed thermosyphons (TPCTs) are excellent thermal transfer devices that their integration into heat exchangers has been shown a strong potential for energy savings. The scope of this study is an experimental evaluation of the evaporation and condensation heat transfer of a TPCT
Effects of a two-phase oil-water mouthwash on halitosis.
Yaegaki, K; Sanada, K
1992-01-01
Many oral microorganisms possess hydrophobic outer surfaces. A two-phase, oil-water mouthwash has, therefore, recently been developed to remove such oral microorganisms. The oil phase consists of olive oil and other essential oils. The aqueous phase includes cetylpyridinium chloride, which is a disinfectant that promotes the adhesion of microorganisms to oil droplets. This study determined the effects of this mouthwash on the production of volatile sulfide in vivo and in vitro. Neither rinsing with water nor brushing teeth decreased the concentration of sulfide in mouth air at 3.5 h after treatment. A reduction of only 30% of sulfide was observed when a commercial mouthwash was used. However, this study demonstrated that use of the two-phase mouthwash led to approximately 80% reduction of sulfide. Furthermore, volatile sulfide and 2-ketobutyrate productions from methionine in a saliva putrefaction system were completely inhibited by the two-phase mouthwash; and consumption of methionine was decreased by 65 percent. It is concluded that the two-phase mouthwash strongly inhibits the production of volatile sulfide.
Gravity Effect on Two-Phase Immiscible Flows in Communicating Layered Reservoirs
DEFF Research Database (Denmark)
Zhang, Xuan; Shapiro, Alexander; Stenby, Erling Halfdan
2012-01-01
An upscaling method is developed for two-phase immiscible incompressible flows in layered reservoirs with good communication between the layers. It takes the effect of gravity into consideration. Waterflooding of petroleum reservoirs is used as a basic example for application of this method...... for gravity segregation. The effects of gravity are analyzed....
Generating a Two-Phase Lesson for Guiding Beginners to Learn Basic Dance Movements
Yang, Yang; Leung, Howard; Yue, Lihua; Deng, Liqun
2013-01-01
In this paper, an automated lesson generation system for guiding beginners to learn basic dance movements is proposed. It analyzes the dance to generate a two-phase lesson which can provide a suitable cognitive load thus offering an efficient learning experience. In the first phase, the dance is divided into small pieces which are patterns, and…
Forced Two-Phase Helium Cooling Scheme for the Mu2e Transport Solenoid
Energy Technology Data Exchange (ETDEWEB)
Tatkowski, G. [Fermilab; Cheban, S. [Fermilab; Dhanaraj, N. [Fermilab; Evbota, D. [Fermilab; Lopes, M. [Fermilab; Nicol, T. [Fermilab; Sanders, R. [Fermilab; Schmitt, R. [Fermilab; Voirin, E. [Fermilab
2015-01-01
The Mu2e Transport Solenoid (TS) is an S-shaped magnet formed by two separate but similar magnets, TS-u and TS-d. Each magnet is quarter-toroid shaped with a centerline radius of approximately 3 m utilizing a helium cooling loop consisting of 25 to 27 horizontal-axis rings connected in series. This cooling loop configuration has been deemed adequate for cooling via forced single phase liquid helium; however it presents major challenges to forced two-phase flow such as “garden hose” pressure drop, concerns of flow separation from tube walls, difficulty of calculation, etc. Even with these disadvantages, forced two-phase flow has certain inherent advantages which make it a more attractive option than forced single phase flow. It is for this reason that the use of forced two-phase flow was studied for the TS magnets. This paper will describe the analysis using helium-specific pressure drop correlations, conservative engineering approach, helium properties calculated and updated at over fifty points, and how the results compared with those in literature. Based on the findings, the use of forced-two phase helium is determined to be feasible for steady-state cooling of the TS solenoids
THE LINEAR HOMOGENEOUS FLOW MODEL FOR TWO-PHASE FLOW INSTABILITY IN BOILING CHANNELS
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
This paper presents liner homogeneous model describing two-phase flow instability. Dimensionless parameter η was derived by using the linear homogeneous model. Using parameter η the stability of a system could be easily judged. The calculated results agree with the experimental data well.
Extraction of peptide tagged cutinase in detergent-based aqueous two-phase systems
Rodenbrock, A.; Selber, K.; Egmond, M.R.; Kula, M.-R.
2010-01-01
Detergent-based aqueous two-phase systems have the advantage to require only one auxiliary chemical to induce phase separation above the cloud point. In a systematic study the efficiency of tryptophan-rich peptide tags was investigated to enhance the partitioning of an enzyme to the detergent-rich p
Effects of Gravity and Inlet Location on a Two-Phase Countercurrent Imbibition in Porous Media
Directory of Open Access Journals (Sweden)
M. F. El-Amin
2012-01-01
Full Text Available We introduce a numerical investigation of the effect of gravity on the problem of two-phase countercurrent imbibition in porous media. We consider three cases of inlet location, namely, from, side, top, and bottom. A 2D rectangular domain is considered for numerical simulation. The results indicate that gravity has a significant effect depending on open-boundary location.
Model description of bactrial 3-methylcatechol production in one- and two-phase systems
Husken, L.E.; Hoogakker, J.; Bont, de J.A.M.; Tramper, J.; Beeftink, H.H.
2003-01-01
Pseudomonas putida MC2 produces 3-methylcatechol from toluene in aqueous medium. A second phase of 1-octanol may improve total product accumulation. To optimise the design of such a biphasic process, a process model was developed, both for one- and two-phase applications. The insights obtained by th
Multi-scale symbolic time reverse analysis of gas-liquid two-phase flow structures
Wang, Hongmei; Zhai, Lusheng; Jin, Ningde; Wang, Youchen
Gas-liquid two-phase flows are widely encountered in production processes of petroleum and chemical industry. Understanding the dynamic characteristics of multi-scale gas-liquid two-phase flow structures is of great significance for the optimization of production process and the measurement of flow parameters. In this paper, we propose a method of multi-scale symbolic time reverse (MSTR) analysis for gas-liquid two-phase flows. First, through extracting four time reverse asymmetry measures (TRAMs), i.e. Euclidean distance, difference entropy, percentage of constant words and percentage of reversible words, the time reverse asymmetry (TRA) behaviors of typical nonlinear systems are investigated from the perspective of multi-scale analysis, and the results show that the TRAMs are sensitive to the changing of dynamic characteristics underlying the complex nonlinear systems. Then, the MSTR analysis is used to study the conductance signals from gas-liquid two-phase flows. It is found that the multi-scale TRA analysis can effectively reveal the multi-scale structure characteristics and nonlinear evolution properties of the flow structures.
Milking microalga Dunaliella salina for Beta-carotene production in two-phase bioreactors
Hejazi, M.; Holwerda, E.; Wijffels, R.H.
2004-01-01
A new method was developed for production of beta-carotene from Dunaliella salina. Cells were grown in low light intensity and then transferred to a production bioreactor illuminated at a higher light intensity. It was a two-phase bioreactor consisting of an aqueous and a biocompatible organic phase
Lattice-Boltzmann-based two-phase thermal model for simulating phase change
Kamali, M.R.; Gillissen, J.J.J.; Van den Akker, H.E.A.; Sundaresan, S.
2013-01-01
A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A
Generating a Two-Phase Lesson for Guiding Beginners to Learn Basic Dance Movements
Yang, Yang; Leung, Howard; Yue, Lihua; Deng, Liqun
2013-01-01
In this paper, an automated lesson generation system for guiding beginners to learn basic dance movements is proposed. It analyzes the dance to generate a two-phase lesson which can provide a suitable cognitive load thus offering an efficient learning experience. In the first phase, the dance is divided into small pieces which are patterns, and…
Well logging interpretation of production profile in horizontal oil-water two phase flow pipes
Zhai, Lu-Sheng; Jin, Ning-De; Gao, Zhong-Ke; Zheng, Xi-Ke
2012-03-01
Due to the complicated distribution of local velocity and local phase hold up along the radial direction of pipe in horizontal oil-water two phase flow, it is difficult to measure the total flow rate and phase volume fraction. In this study, we carried out dynamic experiment in horizontal oil-water two phases flow simulation well by using combination measurement system including turbine flowmeter with petal type concentrating diverter, conductance sensor and flowpassing capacitance sensor. According to the response resolution ability of the conductance and capacitance sensor in different range of total flow rate and water-cut, we use drift flux model and statistical model to predict the partial phase flow rate, respectively. The results indicate that the variable coefficient drift flux model can self-adaptively tone the model parameter according to the oil-water two phase flow characteristic, and the prediction result of partial phase flow rate of oil-water two phase flow is of high accuracy.
23 CFR 636.202 - When are two-phase design-build selection procedures appropriate?
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false When are two-phase design-build selection procedures appropriate? 636.202 Section 636.202 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS DESIGN-BUILD CONTRACTING Selection Procedures, Award Criteria §...
Experimental study on two-phase flow pressure drop in small diameter bends
Directory of Open Access Journals (Sweden)
A.T. Autee
2016-09-01
Full Text Available Measurement of two-phase flow pressure drop and its prediction across curved tubes and bends is important for the enhancement of the performance and safety of the heat exchangers and flow transmitting devices. The comparative study of some of the available two-phase pressure drop correlations reveals that the predicted values of pressure drops by these leading methods may differ by large. The applicability of these correlations to the small diameter tubes of range 4.0–8.0 mm and different bend angles of the range 90–180° is not fully established. The basic objective of the present experimental investigation is to generate the experimental data to develop the unified correlation applicable for the small diameter tubes of range 4.0–8.0 mm and different bend angles of the range 90–180°. Hence, experimental facility was developed to conduct the experiments to generate the data and to assess the predictive capability of some of the available two-phase pressure drop correlations. It was observed that the correlations considered for comparisons were unable to satisfactorily predict the measured experimental data within the ±50% error bands. A new correlation is developed in terms of curvature multiplier to the straight tube two-phase pressure drop. The correlation is validated with the present measured experimental data. The statistical analysis suggests that correlation shows satisfactory results.
A two phase algorithm for solving a class of hard satissfiability problems
J.P. Warners; H. van Maaren
1998-01-01
textabstractThe DIMACS suite of satisfiability (SAT) benchmarks contains a set of instances that are very hard for existing algorithms. These instances arise from learning the parity function on 32 bits. In this paper we develop a two phase algorithm that is capable of solving these instances. In
Two-phase flow-induced forces on bends in small scale tubes
Cargnelutti, M.F.; Belfroid, S.P.C.; Schiferli, W.
2010-01-01
Two-phase flow occurs in many situations in industry. Under certain circumstances, it can be a source of flow-induced vibrations. The forces generated can be sufficiently large to affect the performance or efficiency of an industrial device. In the worst-case scenario, the mechanical forces that ari
Implementation of the interfacial area transport equation in trace for boiling two-phase flows
Bernard, Matthew S.
Correctly predicting the interfacial area concentration (a i) is vital to the overall accuracy of the two-fluid model because ai describes the amount of surface area that exists between the two-phases, and is therefore directly related to interfacial mass, momentum and energy transfer. The conventional method for specifying ai in the two-fluid model is through flow regime-based empirical correlations coupled with regime transition criteria. However, a more physically consistent approach to predicting ai is through the interfacial area transport equation (IATE), which can address the deficiencies of the flow regime-based approach. Some previous studies have been performed to demonstrate the feasibility of IATE in developmental versions of the nuclear reactor systems analysis code, TRACE. However, a full TRACE version capable of predicting boiling two-phase flows with the IATE has not been established. Therefore, the current work develops a version of TRACE that is capable of predicting boiling two-phase flows using the IATE. The development is carried out in stages. First, a version of TRACE which employs the two-group IATE for adiabatic, vertical upward, air-water conditions is developed. An in-depth assessment on the existing experimental database is performed to select reliable experimental data for code assessment. Then, the implementation is assessed against the qualified air-water two-phase flow experimental data. Good agreement is observed between the experimental data for ai and the TRACE code with an average error of +/-9% for all conditions. Following the initial development, one-group IATE models for vertical downward and horizontal two-phase flows are implemented and assessed against qualified data. Finally, IATE models capable of predicting subcooled boiling two-phase flows are implemented. An assessment of the models shows that TRACE is capable of generating ai in subcooled boiling two-phase flows with the IATE and that heat transfer effects dominate
Comparison of Experimental and Numerical Two-Phase Flows in a Porous Micro-Model
Directory of Open Access Journals (Sweden)
Dustin Crandall
2009-12-01
Full Text Available Characterizing two-phase flow in porous media is important to provide estimates of sweep efficiency in enhanced oil recovery and storage estimates in potential geological CO2 sequestration repositories. To further the current understanding of two-phase flow in porous media a micro-model of interconnected channels was designed and fabricated using stereolithography to experimentally study gas-liquid flows. This flowcell was created with a wide variability of throat dimensions to represent naturally occurring porous media. Low flow rate experiments of immiscible two-phase drainage were performed within this cell. Additionally, a computational model for analyzing two-phase flows in the same flowcell was developed and used to simulate conditions not possible with our laboratory settings. The computational model was first tested for the identical conditions used in the experimental studies, and was shown to be in good agreement with the experimentally determined fractal dimension of the invading gas structure, time until breakthrough, and fluid saturation. The numerical model was then used to study two-phase air-water flows in flowcells with the same geometry and different gas-liquid-solid contact angles. The percent saturation of air and the motion of the fluids through the cell were found to vary with changes in these parameters. Finally, to simulate flows expected during geologic carbon sequestration, the fluid properties and interface conditions were set to model the flow of CO2 into a brine-saturated porous medium at representative subsurface conditions. The CO2 flows were shown to have larger gas saturations than the previous air into water studies. Thus the accuracy of the computational model was supported by the flowcell experiments, and the computational model extended the laboratory results to conditions not possible with the apparatus used in the experiments.
Two-phase flow and boiling heat transfer in two vertical narrow annuli
Energy Technology Data Exchange (ETDEWEB)
Peng Changhong [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xian 710049 (China)]. E-mail: pxm321@163.com; Guo Yun [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xian 710049 (China); Qiu Suizheng [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xian 710049 (China); Jia Dounan [Department of Nuclear and Thermal Power Engineering, Xi' an Jiaotong University, Xian 710049 (China); Nie Changhua [Nuclear Power Institute of China, Chengdu 610041 (China)
2005-07-01
Experimental study associated with two-phase flow and heat transfer during flow boiling in two vertical narrow annuli has been conducted. The parameters examined were: mass flux from 38.8 to 163.1 kg/m{sup 2} s; heat flux from 4.9 to 50.7 kW/m{sup 2} for inside tube and from 4.2 to 78.8 kW/m{sup 2} for outside tube; equilibrium mass quality from 0.02 to 0.88; system pressure from 1.5 to 6.0 MPa. It was found that the boiling heat transfer was strongly influenced by heat flux, while the effect of mass velocity and mass quality were not very significant. This suggested that the boiling heat transfer was mainly via nucleate boiling. The data were used to develop a new correlation for boiling heat transfer in the narrow annuli. In the two-phase flow study, the comparison with the correlation of Chisholm [Chisholm, D., 1967. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow. Int. J. Heat Mass Transfer 10, 1767-1778] and Mishima and Hibiki [Mishima, K., Hibiki, T., 1996. Some characteristics of air-water two-phase flow in small diameter vertical tubes. Int. J. Multiphase Flow 22, 703-712] indicated that the existing correlations could not predict the two-phase multiplier in the narrow annuli well. Based on the experimental data, a new correlation was developed.
Robust risk prediction with biomarkers under two-phase stratified cohort design.
Payne, Rebecca; Yang, Ming; Zheng, Yingye; Jensen, Majken K; Cai, Tianxi
2016-12-01
Identification of novel biomarkers for risk prediction is important for disease prevention and optimal treatment selection. However, studies aiming to discover which biomarkers are useful for risk prediction often require the use of stored biological samples from large assembled cohorts, and thus the depletion of a finite and precious resource. To make efficient use of such stored samples, two-phase sampling designs are often adopted as resource-efficient sampling strategies, especially when the outcome of interest is rare. Existing methods for analyzing data from two-phase studies focus primarily on single marker analysis or fitting the Cox regression model to combine information from multiple markers. However, the Cox model may not fit the data well. Under model misspecification, the composite score derived from the Cox model may not perform well in predicting the outcome. Under a general two-phase stratified cohort sampling design, we present a novel approach to combining multiple markers to optimize prediction by fitting a flexible nonparametric transformation model. Using inverse probability weighting to account for the outcome-dependent sampling, we propose to estimate the model parameters by maximizing an objective function which can be interpreted as a weighted C-statistic for survival outcomes. Regardless of model adequacy, the proposed procedure yields a sensible composite risk score for prediction. A major obstacle for making inference under two phase studies is due to the correlation induced by the finite population sampling, which prevents standard inference procedures such as the bootstrap from being used for variance estimation. We propose a resampling procedure to derive valid confidence intervals for the model parameters and the C-statistic accuracy measure. We illustrate the new methods with simulation studies and an analysis of a two-phase study of high-density lipoprotein cholesterol (HDL-C) subtypes for predicting the risk of coronary heart
A two-phase solid/fluid model for dense granular flows including dilatancy effects
Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys
2016-04-01
Describing grain/fluid interaction in debris flows models is still an open and challenging issue with key impact on hazard assessment [{Iverson et al.}, 2010]. We present here a two-phase two-thin-layer model for fluidized debris flows that takes into account dilatancy effects. It describes the velocity of both the solid and the fluid phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure [{Bouchut et al.}, 2016]. The model is derived from a 3D two-phase model proposed by {Jackson} [2000] based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work [{Bouchut et al.}, 2015]. In particular, {Pitman and Le} [2005] replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's model by closing the mixture equations by a weak compressibility relation following {Roux and Radjai} [1998]. This relation implies that the occurrence of dilation or contraction of the granular material in the model depends on whether the solid volume fraction is respectively higher or lower than a critical value. When dilation occurs, the fluid is sucked into the granular material, the pore pressure decreases and the friction force on the granular phase increases. On the contrary, in the case of contraction, the fluid is expelled from the mixture, the pore pressure increases and the friction force diminishes. To
Self-annealing in a two-phase Pb-Sn alloy after processing by high-pressure torsion
Energy Technology Data Exchange (ETDEWEB)
Zhang, Nian Xian [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Chinh, Nguyen Q. [Department of Materials Physics, Eötvös Loránd University, 1117 Budapest, Pázmány Péter s. 1/A. (Hungary); Kawasaki, Megumi [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Huang, Yi, E-mail: Y.Huang@soton.ac.uk [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Langdon, Terence G. [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States)
2016-06-01
A Pb-62% Sn two-phase eutectic alloy was processed by high-pressure torsion (HPT) and stored at room temperature (RT) to investigate the occurrence of self-annealing. The microstructural characteristics and mechanical properties were recorded during self-annealing using scanning electron microscopy, tensile testing and nanoindentation. Processing by HPT produces a weakening effect but storage at RT leads to a gradual increase in the hardness together with significant grain growth. Nanoindentation tests were performed by applying both the indentation depth-time (h-t) relationship at the holding stage and the hardness, H, at various loading rates in order to explore the evolution of the strain rate sensitivity (SRS), m. The results obtained by tensile testing and nanoindentation are consistent despite the large difference in the volumes of the examined regions, thereby confirming the validity of using nanoindentation to measure the strain rate sensitivity.
Dahms, Rainer N.; Oefelein, Joseph C.
2013-09-01
A theory that explains the operating pressures where liquid injection processes transition from exhibiting classical two-phase spray atomization phenomena to single-phase diffusion-dominated mixing is presented. Imaging from a variety of experiments have long shown that under certain conditions, typically when the pressure of the working fluid exceeds the thermodynamic critical pressure of the liquid phase, the presence of discrete two-phase flow processes become diminished. Instead, the classical gas-liquid interface is replaced by diffusion-dominated mixing. When and how this transition occurs, however, is not well understood. Modern theory still lacks a physically based model to quantify this transition and the precise mechanisms that lead to it. In this paper, we derive a new model that explains how the transition occurs in multicomponent fluids and present a detailed analysis to quantify it. The model applies a detailed property evaluation scheme based on a modified 32-term Benedict-Webb-Rubin equation of state that accounts for the relevant real-fluid thermodynamic and transport properties of the multicomponent system. This framework is combined with Linear Gradient Theory, which describes the detailed molecular structure of the vapor-liquid interface region. Our analysis reveals that the two-phase interface breaks down not necessarily due to vanishing surface tension forces, but due to thickened interfaces at high subcritical temperatures coupled with an inherent reduction of the mean free molecular path. At a certain point, the combination of reduced surface tension, the thicker interface, and reduced mean free molecular path enter the continuum length scale regime. When this occurs, inter-molecular forces approach that of the multicomponent continuum where transport processes dominate across the interfacial region. This leads to a continuous phase transition from compressed liquid to supercritical mixture states. Based on this theory, a regime diagram for
Interfacial area transport for reduced-gravity two-phase flows
Vasavada, Shilp
An extensive experimental and theoretical study of two-phase flow behavior in reduced-gravity conditions has been performed as part of the current research and the results of the same are presented in this thesis. The research was undertaken to understand the behavior of two-phase flows in an environment where the gravity field is reduced as compared to that on earth. The goal of the study was to develop a model capable of predicting the flow behavior. An experimental program was developed and accomplished which simulated reduced-gravity conditions on earth by using two liquids of similar density, thereby decreasing the body force effect akin to actual reduced-gravity conditions. The justification and validation of this approach has been provided based on physical arguments as well as comparison of acquired data with that obtained aboard parabolic flights by previous researchers. The experimental program produced an extensive dataset of local and averaged two-phase flow parameters using state-of-the-art instrumentation. Such data were acquired for a wide range of flow conditions at different radial and axial locations in a 25 mm inner diameter test facility. The current dataset is, in the author's opinion, the most extensive and detailed dataset available for such conditions at present. Analysis of the data revealed important differences between two-phase flows in normal and reduced-gravity conditions. The data analysis also highlighted key interaction mechanisms between the fluid particles and physical phenomena occurring in two-phase flows under reduced-gravity conditions. The interfacial area transport equation (IATE) for reduced-gravity conditions has been developed by considering two groups of bubbles/drops and mechanistically modeling the interaction mechanisms. The developed model has been benchmarked against the acquired data and the predictions of the model compared favorably against the experimental data. This signifies the success achieved in modeling
Zhang, G; Stillinger, F H; Torquato, S
2016-12-28
Disordered hyperuniform many-particle systems have attracted considerable recent attention, since they behave like crystals in the manner in which they suppress large-scale density fluctuations, and yet also resemble statistically isotropic liquids and glasses with no Bragg peaks. One important class of such systems is the classical ground states of "stealthy potentials." The degree of order of such ground states depends on a tuning parameter χ. Previous studies have shown that these ground-state point configurations can be counterintuitively disordered, infinitely degenerate, and endowed with novel physical properties (e.g., negative thermal expansion behavior). In this paper, we focus on the disordered regime (0 two-phase media by circumscribing each point with a possibly overlapping sphere of a common radius a: the "particle" and "void" phases are taken to be the space interior and exterior to the spheres, respectively. The hyperuniformity of such two-phase media depends on the sphere sizes: While it was previously analytically proven that the resulting two-phase media maintain hyperuniformity if spheres do not overlap, here we show numerically that they lose hyperuniformity whenever the spheres overlap. We study certain transport properties of these systems, including the effective diffusion coefficient of point particles diffusing in the void phase as well as static and time-dependent characteristics associated with diffusion-controlled reactions. Besides these effective transport properties, we also investigate several related structural properties, including pore-size functions, quantizer error, an order metric, and percolation thresholds. We show that these transport, geometrical, and topological properties of our two-phase media derived from decorated stealthy ground states are distinctly different from those of equilibrium hard-sphere systems and spatially uncorrelated overlapping spheres. As the extent of short-range order increases, stealthy disordered
Strongly coupled dispersed two-phase flows; Ecoulements diphasiques disperses fortement couples
Energy Technology Data Exchange (ETDEWEB)
Zun, I.; Lance, M.; Ekiel-Jezewska, M.L.; Petrosyan, A.; Lecoq, N.; Anthore, R.; Bostel, F.; Feuillebois, F.; Nott, P.; Zenit, R.; Hunt, M.L.; Brennen, C.E.; Campbell, C.S.; Tong, P.; Lei, X.; Ackerson, B.J.; Asmolov, E.S.; Abade, G.; da Cunha, F.R.; Lhuillier, D.; Cartellier, A.; Ruzicka, M.C.; Drahos, J.; Thomas, N.H.; Talini, L.; Leblond, J.; Leshansky, A.M.; Lavrenteva, O.M.; Nir, A.; Teshukov, V.; Risso, F.; Ellinsen, K.; Crispel, S.; Dahlkild, A.; Vynnycky, M.; Davila, J.; Matas, J.P.; Guazelli, L.; Morris, J.; Ooms, G.; Poelma, C.; van Wijngaarden, L.; de Vries, A.; Elghobashi, S.; Huilier, D.; Peirano, E.; Minier, J.P.; Gavrilyuk, S.; Saurel, R.; Kashinsky, O.; Randin, V.; Colin, C.; Larue de Tournemine, A.; Roig, V.; Suzanne, C.; Bounhoure, C.; Brunet, Y.; Tanaka, A.T.; Noma, K.; Tsuji, Y.; Pascal-Ribot, S.; Le Gall, F.; Aliseda, A.; Hainaux, F.; Lasheras, J.; Didwania, A.; Costa, A.; Vallerin, W.; Mudde, R.F.; Van Den Akker, H.E.A.; Jaumouillie, P.; Larrarte, F.; Burgisser, A.; Bergantz, G.; Necker, F.; Hartel, C.; Kleiser, L.; Meiburg, E.; Michallet, H.; Mory, M.; Hutter, M.; Markov, A.A.; Dumoulin, F.X.; Suard, S.; Borghi, R.; Hong, M.; Hopfinger, E.; Laforgia, A.; Lawrence, C.J.; Hewitt, G.F.; Osiptsov, A.N.; Tsirkunov, Yu. M.; Volkov, A.N.
2003-07-01
This document gathers the abstracts of the Euromech 421 colloquium about strongly coupled dispersed two-phase flows. Behaviors specifically due to the two-phase character of the flow have been categorized as: suspensions, particle-induced agitation, microstructure and screening mechanisms; hydrodynamic interactions, dispersion and phase distribution; turbulence modulation by particles, droplets or bubbles in dense systems; collective effects in dispersed two-phase flows, clustering and phase distribution; large-scale instabilities and gravity driven dispersed flows; strongly coupled two-phase flows involving reacting flows or phase change. Topic l: suspensions particle-induced agitation microstructure and screening mechanisms hydrodynamic interactions between two very close spheres; normal stresses in sheared suspensions; a critical look at the rheological experiments of R.A. Bagnold; non-equilibrium particle configuration in sedimentation; unsteady screening of the long-range hydrodynamic interactions of settling particles; computer simulations of hydrodynamic interactions among a large collection of sedimenting poly-disperse particles; velocity fluctuations in a dilute suspension of rigid spheres sedimenting between vertical plates: the role of boundaries; screening and induced-agitation in dilute uniform bubbly flows at small and moderate particle Reynolds numbers: some experimental results. Topic 2: hydrodynamic interactions, dispersion and phase distribution: hydrodynamic interactions in a bubble array; A 'NMR scattering technique' for the determination of the structure in a dispersion of non-brownian settling particles; segregation and clustering during thermo-capillary migration of bubbles; kinetic modelling of bubbly flows; velocity fluctuations in a homogeneous dilute dispersion of high-Reynolds-number rising bubbles; an attempt to simulate screening effects at moderate particle Reynolds numbers using an hybrid formulation; modelling the two-phase
Experimental study on steam-water two-phase flow frictional pressure drops in helical coils
Institute of Scientific and Technical Information of China (English)
无
1997-01-01
Experiments of steam-water two-phase flow frictional pressure drop in a vertical helical coil were carried out in the high-pressure water test loop of Xi'an jiaotong University,The coil is made of stainless steel tube with an inner diameter of 16mm,the helix diameter measured from tube axis to tube axis is 1.3m,and helix angle of the coil is 3.65°,The experimental conditions are:pressurep=4-18MPa,mass velocity G=400-1400kg/(m2.s),inner wall heat flux q=100-700kW/m2,Based on these data,a correlation for predicting the steam-water two-phase flow frictional pressure drop was derived,it can be used for the design of steam generator of HTGR.
ESTIMATION OF MEAN IN PRESENCE OF MISSING DATA UNDER TWO-PHASE SAMPLING SCHEME
Directory of Open Access Journals (Sweden)
Narendra Singh Thakur
2011-01-01
Full Text Available To estimate the population mean with imputation i.e. the technique of substitutingmissing data, there are a number of techniques available in literature like Ratio method ofimputation, Compromised method of imputation, Mean method of imputation, Ahmed method ofimputation, F-T method of imputation, and so on. If population mean of auxiliary information isunknown then these methods are not useful and the two-phase sampling is used to obtain thepopulation mean. This paper presents some imputation methods of for missing values in twophasesampling. Two different sampling designs in two-phase sampling are compared underimputed data. The bias and m.s.e of suggested estimators are derived in the form of populationparameters using the concept of large sample approximation. Numerical study is performed overtwo populations using the expressions of bias and m.s.e and efficiency compared with Ahmedestimators.
Two-phase SPH modelling of waves caused by dam break over a movable bed
Institute of Scientific and Technical Information of China (English)
Seyedeh Leila RAZAVITOOSI; Seyed Ali AYYOUBZADEH; Alireza VALIZADEH
2014-01-01
This paper describes the application of the Smoothed Particle Hydrodynamics (SPH) method for modeling two dimensional waves caused by dam break over a movable bed in two dimensions. The two phase SPH method is developed to solve the Navier-Stokes equations. Both fluid and sediment phases are described by particles as weakly compressible fluids and the incompressibility is achieved by the equation of state. The sediment phase is modeled as a non-Newtonian fluid using three alternative approaches of artificial viscosity and Bingham Model. In this paper, the new formulations for two-phase flows are proposed. The numerical results obtained from the developed SPH model show acceptable accuracy with comparison to experimental data.
Two-phase flow patterns in adiabatic and diabatic corrugated plate gaps
Polzin, A.-E.; Kabelac, S.; de Vries, B.
2016-09-01
Correlations for two-phase heat transfer and pressure drop can be improved considerably, when they are adapted to specific flow patterns. As plate heat exchangers find increasing application as evaporators and condensers, there is a need for flow pattern maps for corrugated plate gaps. This contribution presents experimental results on flow pattern investigations for such a plate heat exchanger background, using an adiabatic visualisation setup as well as a diabatic setup. Three characteristic flow patterns were observed in the considered range of two-phase flow: bubbly flow, film flow and slug flow. The occurrence of these flow patterns is a function of mass flux, void fraction, fluid properties and plate geometry. Two different plate geometries having a corrugation angle of 27° and 63°, respectively and two different fluids (water/air and R365mfc liquid/vapor) have been analysed. A flow pattern map using the momentum flux is presented.
Simon, Moritz
2013-01-01
Motivated by applications in subsurface CO2 sequestration, we investigate constrained optimal control problems with partially miscible two-phase flow in porous media. The objective is, e.g., to maximize the amount of trapped CO2 in an underground reservoir after a fixed period of CO2 injection, where the time-dependent injection rates in multiple wells are used as control parameters. We describe the governing two-phase two-component Darcy flow PDE system and formulate the optimal control problem. For the discretization we use a variant of the BOX method, a locally conservative control-volume FE method. The timestep-wise Lagrangian of the control problem is implemented as a functional in the PDE toolbox Sundance, which is part of the HPC software Trilinos. The resulting MPI parallelized Sundance state and adjoint solvers are linked to the interior point optimization package IPOPT. Finally, we present some numerical results in a heterogeneous model reservoir.
A splitting technique for analytical modelling of two-phase multicomponent flow in porous media
DEFF Research Database (Denmark)
Pires, A.P.; Bedrikovetsky, P.G.; Shapiro, Alexander
2006-01-01
In this paper we discuss one-dimensional models for two-phase Enhanced Oil Recovery (EOR) floods (oil displacement by gases, polymers, carbonized water, hot water, etc.). The main result presented here is the splitting of the EOR mathematical model into thermodynamical and hydrodynamical parts....... The introduction of a potential associated with one of the conservation laws and its use as a new independent coordinate reduces the number of equations by one. The (n)x(n) conservation law model for two-phase n-component EOR flows in new coordinates is transformed into a reduced (n-1)x(n-1) auxiliary system...... containing just thermodynamical variables (equilibrium fractions of components, sorption isotherms) and one lifting equation containing just hydrodynamical parameters (phase relative permeabilities and viscosities). The algorithm to solve analytically the problem includes solution of the reduced auxiliary...
Thermal test results of the two-phase thermal bus technology demonstration loop
Edelstein, Fred; Liandris, Maria; Rankin, J. Gary
1987-01-01
A two-phase heat transport system, the Thermal Bus Technology Demonstrator, has been built and tested for NASA Johnson Space Center for application on Space Station. The loop is a separated two-phase system that uses evaporator flow control valves and liquid condenser flooding to achieve temperature control. Both ambient and thermal vacuum tests have been completed in NASA's Chamber A, initially using Freon-11 and then ammonia as the working fluid. Overall, the tests were quite successful, with the bus achieving all major test objectives, including operation at 19.5 kW and set points at 35 F (1.7 C), 70 F (21.1 C) and 104 F (40.0 C), load sharing, asymmetrical heating and isothermality around the loop. Low plate to vapor temperature drops were obtained for the monogroove cold plate using ammonia and are indicative of the high evaporative film coefficients obtainable with this design.
Design of an ammonia two-phase Prototype Thermal Bus for Space Station
Brown, Richard F.; Gustafson, Eric; Parish, Richard
1987-07-01
The feasibility of two-phase heat transport systems for use on Space Station was demonstrated by testing the Thermal Bus Technology Demonstrator (TBTD) as part of the Integrated Two-Phase System Test in NASA-JSC's Thermal Test Bed. Under contract to NASA-JSC, Grumman is currently developing the successor to the TBTD, the Prototype Thermal Bus System (TBS). The TBS design, which uses ammonia as the working fluid, is intended to achieve a higher fidelity level than the TBTD by incorporating both improvements based on TBTD testing and realistic design margins, and by addressing Space Station issues such as redundancy and maintenance. The TBS is currently being fabricated, with testing scheduled for late 1987/early 1988. This paper describes the TBS design which features fully redundant plumbing loops, five evaporators designed to represent different heat acquisition interfaces, 14 condensers which mate with either space radiators or facility heat exchangers, and several modular components.
Modeling the behavior of a two-phase flow apparatus in microgravity
Baker, Eric W.; Tuttle, Ronald F.
1992-01-01
There are many unknown parameters in two-phase flow in microgravity environment. The database is incomplete and therefore correlations are unknown. This has prompted theoretical and experimental work in the area. A Phillips Laboratory program is currently exploring this area. The Phillips Laboratory experiment is a closed loop rankine cycle with a boiler, condenser/subcooler, accumulator and a pump. The work reported herein attempts to model the Phillips Laboratory Apparatus using a thermal-hydraulic software modeling system called Sim-Tool, developed by Mainstream Engineering. This work also explores the limitations of software modeling a microgravity environment. Results of this modeling effort indicate that Sim-Tool needs further development in order to correctly predict two-phase flow in a microgravity environment.
Performance Prediction of Two-Phase Geothermal Reservoir using Lumped Parameter Model
Nurlaela, F.; Sutopo
2016-09-01
Many studies have been conducted to simulate performance of low-temperature geothermal reservoirs using lumped parameter method. Limited work had been done on applying non-isothermal lumped parameter models to higher temperature geothermal reservoirs. In this study, the lumped parameter method was applied to high-temperature two phase geothermal reservoirs. The model couples both energy and mass balance equations thus can predict temperature, pressure and fluid saturation changes in the reservoir as a result of production, reinjection of water, and/or natural recharge. This method was validated using reservoir simulation results of TOUGH2. As the results, the two phase lumped parameter model simulation without recharge shows good matching, however reservoir model with recharge condition show quite good conformity.
Velocity measurements in the liquid metal flow driven by a two-phase inductor
Pedcenko, A; Priede, J; Gerbeth, G; Hermann, R
2013-01-01
We present the results of velocity measurements obtained by ultrasonic Doppler velocimetry and local potential probes in the flow of GaInSn eutectic melt driven by a two-phase inductor in a cylindrical container. This type of flow is expected in a recent modification to the floating zone technique for the growth of small-diameter single intermetallic compound crystals. We show that the flow structure can be changed from the typical two toroidal vortices to a single vortex by increasing the phase shift between the currents in the two coils from 0 to 90 degrees. The latter configuration is thought to be favourable for the growth of single crystals. The flow is also computed numerically and a reasonable agreement with the experimental results is found. The obtained results may be useful for the design of combined two-phase electromagnetic stirrers and induction heaters for metal or semiconductor melts.
A state-of-the-art report on two-phase critical flow modelling
Energy Technology Data Exchange (ETDEWEB)
Jung, Jae Joon; Jang, Won Pyo; Kim, Dong Soo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1993-09-01
This report reviews and analyses two-phase, critical flow models. The purposes of the report are (1) to make a knowledge base for the full understanding and best-estimate of two-phase, critical flow, (2) to analyse the model development trend and to derive the direction of further studies. A wide range of critical flow models are reviewed. Each model, in general, predicts critical flow well only within specified conditions. The critical flow models of best-estimate codes are special process model included in the hydrodynamic model. The results of calculations depend on the nodalization, discharge coefficient, and other user`s options. The following topics are recommended for continuing studies: improvement of two-fluid model, development of multidimensional model, data base setup and model error evaluation, and generalization of discharge coefficients. 24 figs., 5 tabs., 80 refs. (Author).
Adaptive moving grid methods for two-phase flow in porous media
Dong, Hao
2014-08-01
In this paper, we present an application of the moving mesh method for approximating numerical solutions of the two-phase flow model in porous media. The numerical schemes combine a mixed finite element method and a finite volume method, which can handle the nonlinearities of the governing equations in an efficient way. The adaptive moving grid method is then used to distribute more grid points near the sharp interfaces, which enables us to obtain accurate numerical solutions with fewer computational resources. The numerical experiments indicate that the proposed moving mesh strategy could be an effective way to approximate two-phase flows in porous media. © 2013 Elsevier B.V. All rights reserved.
Two-phase velocity measurements around cylinders using particle image velocimetry
Energy Technology Data Exchange (ETDEWEB)
Hassan, Y.A.; Philip, O.G.; Schmidl, W.D. [Texas A& M Univ., College Station, TX (United States)] [and others
1995-09-01
The particle Image Velocimetry flow measurement technique was used to study both single-phase flow and two-phase flow across a cylindrical rod inserted in a channel. First, a flow consisting of only a single-phase fluid was studied. The experiment consisted of running a laminar flow over four rods inserted in a channel. The water flow rate was 126 cm{sup 3}/s. Then a two-phase flow was studied. A mixture of water and small air bubbles was used. The water flow rate was 378 cm{sup 3}/s and the air flow rate was approximately 30 cm{sup 3}/s. The data are analyzed to obtain the velocity fields for both experiments. After interpretation of the velocity data, forces acting on a bubble entrained by the vortex were calculated successfully. The lift and drag coefficients were calculated using the velocity measurements and the force data.
A two-phase tabu search approach to scheduling optimization in container terminals
Institute of Scientific and Technical Information of China (English)
ZENG Qing-cheng; YANG Zhong-zhen
2007-01-01
An optimization model for scheduling of quay cranes (QCs) and yard trailers was proposed to improve the overall efficiency of container terminals. To implement this model, a two-phase tabu search algorithra was designed. In the QCs scheduling phase of the algorithm, a search was performed to determine a good QC unloading operation order. For each QC unloading operation order generated during the QC's scheduling phase, another search was run to obtain a good yard trailer routing for the given QC's unloading order. Using this information, the time required for the operation was estimated,then the time of return to availability of the units was fed back to the QC scheduler. Numerical tests show that the two-phase Tabu Search algorithm searches the solution space efficiently, decreases the empty distance yard trailers must travel, decreases the number of trailers needed, and thereby reduces time and costs and improves the integration and reliability of container terminal operation systems.
Kou, Jisheng
2013-01-01
A class of discontinuous Galerkin methods with interior penalties is presented for incompressible two-phase flow in heterogeneous porous media with capillary pressures. The semidiscrete approximate schemes for fully coupled system of two-phase flow are formulated. In highly heterogeneous permeable media, the saturation is discontinuous due to different capillary pressures, and therefore, the proposed methods incorporate the capillary pressures in the pressure equation instead of saturation equation. By introducing a coupling approach for stability and error estimates instead of the conventional separate analysis for pressure and saturation, the stability of the schemes in space and time and a priori hp error estimates are presented in the L2(H 1) for pressure and in the L∞(L2) and L2(H1) for saturation. Two time discretization schemes are introduced for effectively computing the discrete solutions. © 2013 Societ y for Industrial and Applied Mathematics.
Drop volumes and terminal velocities in aqueous two-phase systems
Energy Technology Data Exchange (ETDEWEB)
Bhavasar, P. M.; Jafarabad, K. R.; Pandit, A. B.; Sawant, S. B.; Joshi, J. B. [Bombay Univ. (India). Dept. of Chemical Technology
1996-12-01
Two phase aqueous extraction techniques employed in liquid-liquid extraction equipment such as spray columns and plate columns were studied, with particular attention to predicting drop sizes prior to jetting, and their terminal velocity. In the particular system studied, the values obtained by conventional models as found in the literature were considered inapplicable. A generalised model was constructed using video photographic measurements, and a correlation was developed for the terminal velocities of the drops in aqueous two-phase systems. This simplified model was found to be successful in expressing the terminal rise/fall velocities of droplets covering a specific range of Morton numbers (representing physical properties) from 0.00211 to 11050 and Eotvos numbers (representative of drop size) from 0.091 to 288. 22 refs., 6 figs.
Bondar, A; Dolgov, A; Nosov, V; Shekhtman, L; Shemyakina, E; Sokolov, A
2016-01-01
A two-phase Cryogenic Avalanche Detector (CRAD) with electroluminescence (EL) gap, operated in argon doped with a minor (49$\\pm$7 ppm) admixture of nitrogen, has been studied. The EL gap was optically read out using cryogenic PMTs located on the perimeter of the gap. We present the results of the measurements of the N$_2$ content, detector sensitivity to X-ray-induced signals, EL gap yield and electron lifetime in the liquid. The detector sensitivity, at a drift field in liquid Ar of 0.6 kV/cm, was measured to be 9 and 16 photoelectrons recorded at the PMTs per keV of deposited energy at 23 and 88 keV respectively. Such two-phase detectors, with enhanced sensitivity to the S2 (ionization-induced) signal, are relevant in the field of argon detectors for dark matter search and low energy neutrino detection.
Measurement of average density and relative volumes in a dispersed two-phase fluid
Sreepada, Sastry R.; Rippel, Robert R.
1992-01-01
An apparatus and a method are disclosed for measuring the average density and relative volumes in an essentially transparent, dispersed two-phase fluid. A laser beam with a diameter no greater than 1% of the diameter of the bubbles, droplets, or particles of the dispersed phase is directed onto a diffraction grating. A single-order component of the diffracted beam is directed through the two-phase fluid and its refraction is measured. Preferably, the refracted beam exiting the fluid is incident upon a optical filter with linearly varing optical density and the intensity of the filtered beam is measured. The invention can be combined with other laser-based measurement systems, e.g., laser doppler anemometry.
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
ten Eikelder, M. F. P.; Daude, F.; Koren, B.; Tijsseling, A. S.
2017-02-01
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splitting approach. The results are in good agreement with reference results and exact solutions.
Use of two-phase flow heat transfer method in spacecraft thermal system
Hye, A.
1985-01-01
In space applications, weight, volume and power are critical parameters. Presently liquid freon is used in the radiator planels of the Space Shuttle to dissipate heat. This requires a large amount of freon, large power for pumps, large volume and weight. Use of two-phase flow method to transfer heat can reduce them significantly. A modified commercial vapor compression refrigerator/freezer was sucessfully flown in STS-4 to study the effect of zero-gravity on the system. The duty cycle was about 5 percent higher in flight as compared to that on earth due to low flow velocity in condenser. The vapor Reynolds number at exit was about 4000 as compared to about 12,000. Efforts are underway to design a refrigerator/freezer using an oil-free compressor for Spacelab Mission 4 scheduled to fly in January 1986. A thermal system can be designed for spacecraft using the two-phase flow to transfer heat economically.
Two-phase dusty fluid flow along a cone with variable properties
Siddiqa, Sadia; Begum, Naheed; Hossain, Md. Anwar; Mustafa, Naeem; Gorla, Rama Subba Reddy
2016-09-01
In this paper numerical solutions of a two-phase natural convection dusty fluid flow are presented. The two-phase particulate suspension is investigated along a vertical cone by keeping variable viscosity and thermal conductivity of the carrier phase. Comprehensive flow formations of the gas and particle phases are given with the aim to predict the behavior of heat transport across the heated cone. The influence of (1) air with particles, (2) water with particles and (3) oil with particles are shown on shear stress coefficient and heat transfer coefficient. It is recorded that sufficient increment in heat transport rate can be achieved by loading the dust particles in the air. Further, distribution of velocity and temperature of both the carrier phase and the particle phase are shown graphically for the pure fluid (air, water) as well as for the fluid with particles (air-metal and water-metal particle mixture).
Numerical simulation of oil-water two-phase flow in horizontal pipes
Energy Technology Data Exchange (ETDEWEB)
Santos, Michelly Martuchele; Ramirez, Ramiro Gustavo [Federal University of Itajuba (UNIFEI), MG (Brazil)], E-mail: ramirez@unifei.edu.br
2010-07-01
The numerical simulation of two phase flow through the CFD techniques have become of great interest due to the complexity of this type of flow. The present work aims to simulate the oil-water two-phase flow in horizontal pipes for stratification analysis of the mixture. In numerical simulations, incompressible flow, isothermal, steady state and laminar flow were considered. Numerical analysis of flow stratification was carried out for horizontal straight and curved pipe. FLUENT was the commercial software employed in the simulation. Three-dimensional mesh generated by ICEM-CFD program was used for numerical simulation. The numerical analysis flow pattern was carried out employing the Eulerian model, considering the drag and lift interphase forces. The simulation results for the horizontal straight pipe were qualitatively validated with experimental data obtained in the Laboratory of Phase Separation of UNIFEI. (author)
Simulation of non-equilibrium two-phase flow in single component fluid systems
Energy Technology Data Exchange (ETDEWEB)
Hoyer, Norbert [Scandpower A/S, Kjeller (Norway)
1996-12-31
Traditionally, two-phase flow has been modelled by separate correlations for void fraction, pressure drop and flow regimes. A more unified approach, which treats flow regimes as an integral part of the two-fluid model is described in this work. A general, transient simulator for steam-water/inert gas systems has been developed. MONA is based on a full two-fluid, three field, nonequilibrium, nonhomogeneous two-phase flow model. It includes further an extensive heat and mass transfer package. The major contribution for MONA validation comes from the FRIGG loop experiments, covering a wide range of parameters like geometry, flow, subcooling, pressure and heat flux. Both validation against steady state and dynamic experiments has been carried out, the former comprising void fractions, pressure drops as well as natural and forced circulation flow rates while the latter consists of boiling instability analysis. 69 refs., 41 figs., 5 tabs.
Membrane-less micro fuel cell based on two-phase flow
Hashemi, S. M. H.; Neuenschwander, M.; Hadikhani, P.; Modestino, M. A.; Psaltis, D.
2017-04-01
Most microfluidic fuel cells use highly soluble fuels and oxidants in streams of liquid electrolytes to overcome the mass transport limitations that result from the low solubility of gaseous reactants such as hydrogen and oxygen. In this work, we address these limitations by implementing controlled two-phase flows of these gases in a set of microchannels electrolytically connected through a narrow gap. Annular flows of the gases reshape the concentration boundary layer over the surface of electrodes and increase the mass-transport limited current density in the system. Our results show that the power density of a two-phase system with hydrogen and oxygen streams is an order of magnitude higher than that of single phase system consisting of liquid electrolytes saturated with the same reactants. The reactor design described here can be employed to boost the performance of MFFCs and put them in a more competitive position compared to membrane based fuel cells.
Energy Technology Data Exchange (ETDEWEB)
1991-07-01
The possible head degradation of the SRPR pumps may be attributable to two independent phenomena, one due to the inception of cavitation and the other due to the two-phase flow phenomena. The head degradation due to the appearance of cavitation on the pump blade is hardly likely in the conventional pressurized water reactor (PWR) since the coolant circulating line is highly pressurized so that the cavitation is difficult to occur even at LOCA (loss of coolant accident) conditions. On the other hand, the suction pressure of SRPR pump is order-of-magnitude smaller than that of PWR so that the cavitation phenomena, may prevail, should LOCA occur, depending on the extent of LOCA condition. In this study, therefore, both cavitation phenomena and two-phase flow phenomena were investigated for the SRPR pump by using various analytical tools and the numerical results are presented herein.
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
Energy Technology Data Exchange (ETDEWEB)
Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Daude, F. [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); IMSIA, UMR EDF-CNRS-CEA-ENSTA 9219, Université Paris Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau (France); Koren, B.; Tijsseling, A.S. [Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands)
2017-02-15
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splitting approach. The results are in good agreement with reference results and exact solutions.
Interfacial structures of confined air-water two-phase bubbly flow
Energy Technology Data Exchange (ETDEWEB)
Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.
2000-08-01
The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.
Two-Phase Algorithm for Multi-warehouse and Multi-task Based Logistics Delivery
Institute of Scientific and Technical Information of China (English)
ZHANG Jun-wei; MA Fan-yuan
2005-01-01
To a scaled logistic company, assigning is an important part of logistic, and further development will make the optimized assigning of multi-warehouse and multi-task possible. This paper provided a two-phase multiwarehouse and multi-task based algorithm which has two phases. In the first phase, it combines sweep algorithm,saving algorithm and virtual task point to present a method. And in the second phase it provides an algorithm for the arrangement of goods loading which is based on the constraints of time-window and attributes of goods and vehicle. It uses the computing results of the first phase to form more detailed delivery scheme based on the constraints of time-window and attributes of vehicle and goods.
Ultrafast synthesis of LTA nanozeolite using a two-phase segmented fluidic microreactor.
Zhou, Jianhai; Jiang, Hao; Xu, Jian; Hu, Jun; Liu, Honglai; Hu, Ying
2013-08-01
Fast synthesis of nanosized zeolite is desirable for many industrial applications. An ultrafast synthesis of LTA nanozeolite by the organic-additive-free method in a two-phase segmented fluidic microreactor has been realized. The results reveal that the obtained LTA nanozeolites through microreactor are much smaller and higher crystallinity than those under similar conditions through conventional macroscale batch reactor. By investing various test conditions, such as the crystallization temperature, the flow rate, the microchannel length, and the aging time of gel solution, this two-phase segmented fluidic microreactor system enables us to develop an ultrafast method for nanozeolite production. Particularly, when using a microreactor with the microchannel length of 20 m, it only takes 10 min for the crystallization and no aging process to successfully produce the crystalline LTA nanozeolites at 95 degrees C.
Tang, Malcolm S. Y.; Ng, Eng-Poh; Juan, Joon Ching; Ooi, Chien Wei; Ling, Tau Chuan; Woon, Kai Lin; Loke Show, Pau
2016-08-01
It is known that carbon nanotubes show desirable physical and chemical properties with a wide array of potential applications. Nonetheless, their potential has been hampered by the difficulties in acquiring high purity, chiral-specific tubes. Considerable advancement has been made in terms of the purification of carbon nanotubes, for instance chemical oxidation, physical separation, and myriad combinations of physical and chemical methods. The aqueous two-phase separation technique has recently been demonstrated to be able to sort carbon nanotubes based on their chirality. The technique requires low cost polymers and salt, and is able to sort the tubes based on their diameter as well as metallicity. In this review, we aim to provide a review that could stimulate innovative thought on the progress of a carbon nanotubes sorting method using the aqueous two-phase separation method, and present possible future work and an outlook that could enhance the methodology.
Microstructures and Mechanical Properties of Two-Phase Alloys Based on NbCr(2)
Energy Technology Data Exchange (ETDEWEB)
Cady, C.M.; Chen, K.C.; Kotula, P.G.; Mauro, M.E.; Thoma, D.J.
1998-12-07
A two-phase, Nb-Cr-Ti alloy (bee+ C15 Laves phase) has been developed using several alloy design methodologies. In effort to understand processing-microstructure-property relationships, diffment processing routes were employed. The resulting microstructure and mechanical properties are discussed and compared. Plasma arc-melted samples served to establish baseline, . . . as-cast properties. In addition, a novel processing technique, involving decomposition of a supersaturated and metastable precursor phase during hot isostatic pressing (HIP), was used to produce a refined, equilibrium two-phase microstructure. Quasi-static compression tests as a ~ function of temperature were performed on both alloy types. Different deformation mechanisms were encountered based upon temperature and microstructure.
Dynamic characteristics of two-phase thermal control system for spacecraft
Malozemov, Vladimir V.; Kudryavtseva, Natal'ya S.; Antonov, Viktor A.; Zagar, Oleg V.; Chernobaev, Nikolaj N.
1992-07-01
This paper deals with review of the issues associated with modelling the dynamic processes in the spacecraft two-phase thermal control systems. The work presents the results of modelling the nonstationary conditions of the evaporative and condensation heat exchangers functioning, investigates their response to the characteristic external influences. Disclosed are the results of the computer-aided modelling the two-phase thermal control system with a pump. The dynamic characteristics of the change in the inputs of pressures, temperatures and vapor content of a coolant in various branches of the system, as well as the lengths of the heat transfer zones in the evaporator and condenser under effect of the typical disturbing actions are obtained. The attained transients are analyzed.
Gas-driven subharmonic waves in a vibrated two-phase granular material.
Matas, J-P; Uehara, J; Behringer, R P
2008-04-01
Vibrated powders exhibit striking phenomena: subharmonic waves, oscillons, convection, heaping, and even bubbling. We demonstrate novel rectangular profile subharmonic waves for vibrated granular material, that occur uniquely in the two-phase case of grains, and a fluid, such as air. These waves differ substantially from those for the gas-free case, exhibit different dispersion relations, and occur for specific shaking parameters and air pressure, understandable with gas-particle flow models. These waves occur when the gas diffusively penetrates the granular layer in a time comparable to the shaker period. As the pressure is lowered towards P =0, the granular-gas system exhibits a Knudsen regime. This instability provides an opportunity to quantitatively test models of two-phase flow.
Cerroni, D.; Fancellu, L.; Manservisi, S.; Menghini, F.
2016-06-01
In this work we propose to study the behavior of a solid elastic object that interacts with a multiphase flow. Fluid structure interaction and multiphase problems are of great interest in engineering and science because of many potential applications. The study of this interaction by coupling a fluid structure interaction (FSI) solver with a multiphase problem could open a large range of possibilities in the investigation of realistic problems. We use a FSI solver based on a monolithic approach, while the two-phase interface advection and reconstruction is computed in the framework of a Volume of Fluid method which is one of the more popular algorithms for two-phase flow problems. The coupling between the FSI and VOF algorithm is efficiently handled with the use of MEDMEM libraries implemented in the computational platform Salome. The numerical results of a dam break problem over a deformable solid are reported in order to show the robustness and stability of this numerical approach.
A continuum theory for two-phase flows of particulate solids: application to Poiseuille flows
Monsorno, Davide; Varsakelis, Christos; Papalexandris, Miltiadis V.
2015-11-01
In the first part of this talk, we present a novel two-phase continuum model for incompressible fluid-saturated granular flows. The model accounts for both compaction and shear-induced dilatancy and accommodates correlations for the granular rheology in a thermodynamically consistent way. In the second part of this talk, we exercise this two-phase model in the numerical simulation of a fully-developed Poiseuille flow of a dense suspension. The numerical predictions are shown to compare favorably against experimental measurements and confirm that the model can capture the important characteristics of the flow field, such as segregation and formation of plug zones. Finally, results from parametric studies with respect to the initial concentration, the magnitude of the external forcing and the width of the channel are presented and the role of these physical parameters is quantified. Financial Support has been provided by SEDITRANS, an Initial Training Network of the European Commission's 7th Framework Programme
STUDY OF IDENTIFICATION OF TWO-PHASE FLOW PARAMETERS BY PRESSURE FLUCTUATION ANALYSIS
Directory of Open Access Journals (Sweden)
Ondrej Burian
2016-12-01
Full Text Available This paper deals with identification of parameters of simple pool boiling in a vertical rectangular channel by analysis of pressure fluctuation. In this work is introduced a small experimental facility about 9 kW power, which was used for simulation of pool boiling phenomena and creation of steam-water volume. Several pressure fluctuations measurements and differential pressure fluctuations measurements at warious were carried out. Main changed parameters were power of heaters and hydraulics resistance of channel internals. Measured pressure data was statistically analysed and compared with goal to find dependencies between parameters of two-phase flow and statistical properties of pressure fluctuation. At the end of this paper are summarized final results and applicability of this method for parameters determination of two phase flow for pool boiling conditions at ambient pressure.
RELAP5 simulation for one and two-phase natural circulation phenomenon
Energy Technology Data Exchange (ETDEWEB)
Sabundjian, Gaiane; Andrade, Delvonei Alves de; Umbehaun, Pedro Ernesto; Torres, Walmir Maximo; Castro, Alfredo Jose Alvim de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mails: gdjian@ipen.br; delvonei@ig.com.br; umbehaun@ipen.br; wmtorres@ipen.br; Braz Filho, Francisco A.; Borges, Eduardo Madeira [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados]. E-mails: eduardo@ieav.cta.br; fbraz@ieav.cta.br; Belchior Junior, Antonio; Rocha, Ricardo Takeshi Vieira da [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil)]. E-mails: belchior@bol.com.br; rtvrocha@uol.com.br; Damy, Osvaldo Luiz Almeida; Torres, Eduardo [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica]. E-mails: osvaldo.damy@poli.usp.br; etorres@pac.ind.br
2007-07-01
The objective of this paper is to study the natural circulation phenomenon in one and two-phase regime. There has been a crescent interest in the scientific community in the study of the natural circulation. New generation of compact nuclear reactors uses the natural circulation for residual heat removal in case of accident or shutdown. For this study, the modeling and the simulation of the experimental circuit is performed with the RELAP5 code. The experimental circuit is mounted in the Chemical Engineering Department of the University of Sao Paulo. It is presented in this work the theoretical/experimental comparison for one and two-phase flow. These results will be stored in a database to validate RELAP5 calculations. This work was also used to training some users of RELAP5 from IEAv. (author)
Computer code for gas-liquid two-phase vortex motions: GLVM
Yeh, T. T.
1986-01-01
A computer program aimed at the phase separation between gas and liquid at zero gravity, induced by vortex motion, is developed. It utilizes an explicit solution method for a set of equations describing rotating gas-liquid flows. The vortex motion is established by a tangential fluid injection. A Lax-Wendroff two-step (McCormack's) numerical scheme is used. The program can be used to study the fluid dynamical behavior of the rotational two-phase fluids in a cylindrical tank. It provides a quick/easy sensitivity test on various parameters and thus provides the guidance for the design and use of actual physical systems for handling two-phase fluids.
DESIGN OF TWO-PHASE SINUSOIDAL POWER CLOCK AND CLOCKED TRANSMISSION GATE ADIABATIC LOGIC CIRCUIT
Institute of Scientific and Technical Information of China (English)
Wang Pengjun; Yu Junjun
2007-01-01
First the research is conducted on the design of the two-phase sinusoidal power clock generator in this paper. Then the design of the new adiabatic logic circuit adopting the two-phase sinusoidal power clocks-Clocked Transmission Gate Adiabatic Logic (CTGAL) circuit is presented. This circuit makes use of the clocked transmission gates to sample the input signals, then the output loads are charged and discharged in a fully adiabatic manner by using bootstrapped N-Channel Metal Oxide Semiconductor (NMOS) and Complementary Metal Oxide Semiconductor (CMOS) latch structure.Finally, with the parameters of Taiwan Semiconductor Manufacturing Company (TSMC) 0.25 μm CMOS device, the transient energy consumption of CTGAL, Bootstrap Charge-Recovery Logic (BCRL)and Pass-transistor Adiabatic Logic (PAL) including their clock generators is simulated. The simulation result indicates that CTGAL circuit has the characteristic of remarkably low energy consumption.
Bondar, A.; Buzulutskov, A.; Dolgov, A.; Nosov, V.; Shekhtman, L.; Shemyakina, E.; Sokolov, A.
2017-02-01
A two-phase Cryogenic Avalanche Detector (CRAD) with electroluminescence (EL) gap, operated in argon doped with a minor (49±7 ppm) admixture of nitrogen, has been studied. The EL gap was optically read out using cryogenic PMTs located on the perimeter of the gap. We present the results of the measurements of the N2 content, detector sensitivity to X-ray-induced signals, EL gap yield and electron lifetime in the liquid. The detector sensitivity, at a drift field in liquid Ar of 0.6 kV/cm, was measured to be 9 and 16 photoelectrons recorded at the PMTs per keV of deposited energy at 23 and 88 keV respectively. Such two-phase detectors, with enhanced sensitivity to the S2 (ionization-induced) signal, are relevant in the field of argon detectors for dark matter search and low energy neutrino detection.
A Batch Arrival Retrial Queue with Two Phases of Service and Bernoulli Vacation Schedule
Institute of Scientific and Technical Information of China (English)
Gautam Choudhury; Kandarpa Deka
2013-01-01
We consider an MX/G/1 queueing system with two phases of heterogeneous service and Bernoulli vacation schedule which operate under a linear retrial policy.In addition,each individual customer is subject to a control admission policy upon the arrival.This model generalizes both the classical M/G/1 retrial queue with arrivals in batches and a two phase batch arrival queue with a single vacation under Bernoulli vacation schedule.We will carry out an extensive stationary analysis of the system,including existence of the stationary regime,embedded Markov chain,steady state distribution of the server state and number of customer in the retrial group,stochastic decomposition and calculation of the first moment.
Two-Phase Reactions in Microdroplets without the Use of Phase-Transfer Catalysts.
Yan, Xin; Cheng, Heyong; Zare, Richard N
2017-02-22
Many important chemical transformations occur in two-phase reactions, which are widely used in chemical, pharmaceutical, and polymer manufacturing. We present an efficient method for performing two-phase reactions in microdroplets sheared by sheath gas without using a phase-transfer catalyst. This avoids disadvantages such as thermal instability, high cost, and, especially, the need to separate and recycle the catalysts. We show that various alcohols can be oxidized to the corresponding aldehydes and ketones within milliseconds in moderate to good yields (50-75 %). The scale-up of the present method was achieved at an isolated rate of 1.2 mg min(-1) for the synthesis of 4-nitrobenzylaldehyde from 4-nitrobenzyl alcohol in the presence of sodium hypochlorite. The biphasic nature of this process, which avoids use of a phase-transfer catalyst, greatly enhances synthetic effectiveness.
Well-posed Euler model of shock-induced two-phase flow in bubbly liquid
Tukhvatullina, R. R.; Frolov, S. M.
2017-07-01
A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.
Monte Carlo simulation of a two-phase flow in an unsaturated porous media
Directory of Open Access Journals (Sweden)
Xu Peng
2012-01-01
Full Text Available Relative permeability is a significant transport property which describes the simultaneous flow of immiscible fluids in porous media. A pore-scale physical model is developed for the two-phase immiscible flow in an unsaturated porous media according to the statistically fractal scaling laws of natural porous media, and a predictive calculation of two-phase relative permeability is presented by Monte Carlo simulation. The tortuosity is introduced to characterize the highly irregular and convoluted property of capillary pathways for fluid flow through a porous medium. The computed relative permeabilities are compared with empirical formulas and experimental measurements to validate the current model. The effect of fractal dimensions and saturation on the relative permeabilities is also discussed
Experimental study of two-phase water flow in vertical thin rectangular channels
Wright, Christopher T.; O'Brien, James E.; Anderson, Elgin A.
2001-11-01
An experimental heat transfer study of two-phase water flow in vertical thin rectangular channels with side vents is conducted. A multiple, heated channel configuration with up- and down-flow conditions is investigated. Parallel heated and unheated flow channels test the effects of cross flow on the onset of nucleate boiling (ONB) and critical heat flux (CHF). The test apparatus provides pressure and substrate temperature data and visual data of the boiling regimes and side-vent flow patterns. The objectives are to determine the two-phase, heat and mass transfer characteristics between adjacent channels as permitted by side-vent cross flow. These data will help develop ONB and CHF correlations for flow geometries typical of plate-type nuclear reactors and heat exchangers. Fundamentally, the data shows how the geometry, flow conditions, and channel configurations affect the heat transfer characteristics of interior channel flows, essential in understanding the ONB and CHF phenomena.
Numerical simulation of air-water two-phase flow over stepped spillways
Institute of Scientific and Technical Information of China (English)
CHENG; Xiangju; CHEN; Yongcan
2006-01-01
Stepped spillways for significant energy dissipation along the chute have gained interest and popularity among researchers and dam engineers. Due to the complexity of air-water two-phase flow over stepped spillways, the finite volume computational fluid dynamics module of the FLUENT software was used to simulate the main characteristics of the flow. Adopting the RNG k-ε turbulence model, the mixture flow model for air-water two-phase flow was used to simulate the flow field over stepped spillway with the PISO arithmetic technique. The numerical result successfully reproduced the complex flow over a stepped spillway of an experiment case, including the interaction between entrained air bubbles and cavity recirculation in the skimming flow regime, velocity distribution and the pressure profiles on the step surface as well. The result is helpful for understanding the detailed information about energy dissipation over stepped spillways.
Effect of grain size reduction on high temperature oxidation ofbinary two-phase alloys
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The effect of grain size reduction on the high temperature oxidation of binary two-phase alloys was discussed based on the recent research progress. The results show that for those two-phase alloys with coarse grain prepared by the conventional methods, complex oxide scales are easily formed after oxidation under high oxygen pressure or under oxygen pressure below the stability limit of the less reactive component oxides. On the contrary, for the nano-sized alloys, an exclusive external oxidation of the most reactive component usually occurs during oxidation in air or pure oxygen even for much lower content of the most reactive component. So the gain size reduction is not always beneficial to improve the oxidation resistance of the materials, but exhibits different effects depending mainly on the protective feature of the scales. The transition mechanisms between the different oxidation modes are discussed with respect to the thermodynamic and dynamic aspects.
Jain, Ashu N; Khan, Tanya R; Daugulis, Andrew J
2010-11-01
The bioproduction of benzaldehyde from benzyl alcohol using Pichia pastoris was examined in a solid-liquid two-phase partitioning bioreactor (TPPB) to reduce substrate and product inhibition. Rational polymer selection identified Elvax 40W as an effective sequestering phase, possessing partition coefficients for benzyl alcohol and benzaldehyde of 3.5 and 35.4, respectively. The use of Elvax 40W increased the overall mass of benzaldehyde produced by approx. 300% in a 5 l bioreactor, relative to a single phase biotransformation. The two-phase system had a molar yield of 0.99, indicating that only minor losses occurred. These results provide a promising starting point for solid-liquid TPPBs to enhance benzaldehyde production, and suggest that multiple, targeted polymers may provide relief for transformations characterized by multiple inhibitory substrates/product/by-products.
On modeling shape memory polymers as elastic two-phase composite materials
Gilormini, Pierre; Diani, Julie
2012-01-01
International audience; A model has been proposed recently, which describes the experimentally observed mechanical behavior of some shape memory polymers. It considers a purely thermoelastic behavior, without strain rate effects, and assumes essentially that the polymer can be considered as a two-phase composite, with glassy and rubbery phases having volume fractions that depend on temperature only. Since a uniform stress hypothesis was used in the original formulation, with an inconsistency ...
Two-phase flow modelling of sediment suspension in the Ems/Dollard estuary
Xu, Chunyang; Dong, Ping
2017-05-01
Understanding and quantifying mud suspension and sediment transport processes are of great importance for effective exploitation and sustainable management of estuarine environments. Event-based predictive models are widely used to identify the key interactions and mechanisms that govern the dynamics involved and to provide the essential parameterisation for assessing the long-term morphodynamic evolution of the estuaries. This study develops a one-dimensional-vertical (1DV) Reynolds averaged two-phase model for cohesive sediments resuspension driven by tidal flows. To capture the time-dependent flocculation process more accurately, a new drag force closure which relates empirically to settling velocity of mud flocs with suspended sediment concentration (SSC) is incorporated into the two-phase model. The model is then applied to simulate mud suspension in the Ems/Dollard estuary during two periods (June and August 1996) of tidal forcing. Numerical predictions of bed shear stresses and sediment concentrations at different elevations above the bed are compared with measured variations. The results confirm the importance of including flocculation effects in calculating the settling velocity of mud flocs and demonstrates the sensitivity of prediction with the settling velocity in terms of flocs concentration. Although the two-phase modelling approach can in principle better capture the essential interactions between fluid and sediment phases, its practical advantages over the simpler single phase approach cannot be confirmed for the data periods simulated, partly because the overall suspended sediment concentration measured is rather low and the interaction between the two phases is weak and also because the uncertainties in the relationship between the settling velocity and flocs concentration.
Heat pipes et two-phase loops for spacecraft applications. ESA programmes
Energy Technology Data Exchange (ETDEWEB)
Supper, W. [European Space Agency / ESTEC. Thermal control and life support division (France)
1996-12-31
This document is a series of transparencies presenting the current and future applications of heat pipes in spacecraft and the activities in the field of capillary pumped two-phase loops: thermal tests, high-efficiency low pressure drop condensers, theoretical understanding of evaporator function, optimization of liquid and vapor flows, trade-off between low and high conductivity wicks, development of high capillary capacity wicks etc.. (J.S.)
INFLUENCE OF SURFACTANT ON TWO-PHASE FLOW REGIME AND PRESSURE DROP IN UPWARD INCLINED PIPES
Institute of Scientific and Technical Information of China (English)
XIA Guo-dong; CHAI Lei
2012-01-01
The influence of a surfactant on the two-phase flow regime and the pressure drop in upward inclined pipes is investigated for various gas/liquid flow rates.The air/water and air/100 ppm sodium dodecyl sulphate aqueous solution are used as the working fluids.The influence of the surfactant on the two-phase flow regime in upward inclined pipes is investigated using the electrical tomographic technique.For 0°,2.5° and 5° pipe inclinations,the surfactant has obvious effect on the transition from the stratified wavy flow to the annular flow,and the range of the stratified smooth flow regime is also extended to higher gas velocities.For 10°pipe inclination,no stratified flow regime is observed in the air/water flow.In the air/surfactant solution system,however,the stratified flow regime can be found in the range of USG =10m/s-28m/s and USL =0.07 m/s-0.2 m/s.For all inclination angles,the changes of the pressure gradient characteristics are accompanied with the flow pattern transitions.Adding surfactant in a two-phase flow would reduce the pressure gradient significantly in the slug flow and annular flow regimes.In the annular flow regime,the pressure gradient gradually becomes free of the influence of the upward inclined angle,and is only dependent on the property of the two-phase flow.
Kharin, Stanislav N.; Sarsengeldin, Merey M.; Nouri, Hassan
2016-08-01
On the base of the Holm model, we represent two phase spherical Stefan problem and its analytical solution, which can serve as a mathematical model for diverse thermo-physical phenomena in electrical contacts. Suggested solution is obtained from integral error function and its properties which are represented in the form of series whose coefficients have to be determined. Convergence of solution series is proved.
A Heat Transfer Investigation of Liquid and Two-Phase Methane
VanNoord, Jonathan
2010-01-01
A heat transfer investigation was conducted for liquid and two-phase methane. The tests were conducted at the NASA Glenn Research Center Heated Tube Facility (HTF) using resistively heated tube sections to simulate conditions encountered in regeneratively cooled rocket engines. This testing is part of NASA s Propulsion and Cryogenics Advanced Development (PCAD) project. Nontoxic propellants, such as liquid oxygen/liquid methane (LO2/LCH4), offer potential benefits in both performance and safety over equivalently sized hypergolic propulsion systems in spacecraft applications. Regeneratively cooled thrust chambers are one solution for high performance, robust LO2/LCH4 engines, but cooling data on methane is limited. Several test runs were conducted using three different diameter Inconel 600 tubes, with nominal inner diameters of 0.0225-, 0.054-, and 0.075-in. The mass flow rate was varied from 0.005 to 0.07 lbm/sec. As the current focus of the PCAD project is on pressure fed engines for LO2/LCH4, the average test section outlet pressures were targeted to be 200 psia or 500 psia. The heat flux was incrementally increased for each test condition while the test section wall temperatures were monitored. A maximum average heat flux of 6.2 Btu/in.2 sec was achieved and, at times, the temperatures of the test sections reached in excess of 1800 R. The primary objective of the tests was to produce heat transfer correlations for methane in the liquid and two-phase regime. For two-phase flow testing, the critical heat flux values were determined where the fluid transitions from nucleate boiling to film boiling. A secondary goal of the testing was to measure system pressure drops in the two-phase regime.
A two-phase free boundary problem for a nonlinear diffusion-convection equation
Energy Technology Data Exchange (ETDEWEB)
De Lillo, S; Lupo, G [Dipartimento di Matematica e Informatica, Universita degli Studi di Perugia, Via Vanvitelli 1, 06123 Perugia (Italy)], E-mail: silvana.delillo@pg.infn.it
2008-04-11
A two-phase free boundary problem associated with a diffusion-convection equation is considered. The problem is reduced to a system of nonlinear integral equations, which admits a unique solution for small times. The system admits an explicit two-component solution corresponding to a two-component shock wave of the Burgers equation. The stability of such a solution is also discussed.
Institute of Scientific and Technical Information of China (English)
袁益让
1999-01-01
For compressible two-phase displacement problem, a kind of characteristic finite difference fractional steps schemes is put forward and thick and thin grids are used to form a complete set. Some techniques, such as piecewise biquadratic interpolation, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L~2 norm are derived to determine the error in the approximate solution.
Homogenization of. beta. -solid solution during fast heating of two-phase titanium alloys
Energy Technology Data Exchange (ETDEWEB)
Gridnev, V.N.; Zhuravlev, A.F.; Zhuravlev, B.F.; Ivasishin, O.M.; Markovskij, P.E. (AN Ukrainskoj SSR, Kiev. Inst. Metallofiziki)
1985-01-01
Using model alloy Ti-10%Mo as an example the homogenization of high-temperature ..beta..-phase during fast heating has been studied by calculational and experimental methods. The effect of heating rate and the initial structure disoersion on the homogenization is shown. A method is suggested for evaluation of the concentration state of ..beta..-solid solution depleted parts of commercial two-phase titanium alloys. The method has been used to study the homogenization process.
Heat transfer performance of two-phase closed thermosyphon with oxidized CNT/water nanofluids
Zeinali Heris, Saeed; Fallahi, Marjan; Shanbedi, Mehdi; Amiri, Ahmad
2016-01-01
In this paper, the effects of different acids on the thermal performance of oxidized carbon nanotubes (CNT)/water nanofluids in a two-phase closed thermosyphon were studied. The structures morphology and functionalization degree were studied concurrently. The results indicated that strong oxidants increased dispersivity of CNT in the nanofluids. In other words, as the number of COOH groups increased in the nanofluids, an upward trend was also observed in the thermal efficiency of the thermosyphon.
Separation of Recombinant Î²-Glucuronidase from Transgenic Tobacco by Aqueous Two-Phase Extraction
2008-01-01
Separation of Recombinant Ã -Glucuronidase from Transgenic Tobacco by Aqueous Two-Phase Extraction Kristin Coby Ross Abstract Biopharmaceutical manufacturing is a rigorous and expensive process. Due to the medicinal nature of the product, a high purity level is required and several expensive purification steps must be utilized. Cost-effective production and purification is essential for any biopharmaceutical product to be successful and development of the fastest, most economical, ...
Stable response of axisymmetric two-phase water-saturated soil
Institute of Scientific and Technical Information of China (English)
蔡袁强; 孟楷; 徐长节
2004-01-01
Biot's dynamic consolidation equations and Hankel transform were used to derive the integral solutions of stress and displacement for axisymmetric harmonic excitations in the two-phase saturated soil with subjacent rock-stratum. The influence of the coefficient of permeability and loading frequency on the soil displacement at the ground surface were studied. The results showed that higher loading frequency led to more dynamic characteristics; and that the effect of the soil permeability was more obvious at higher frequencies.
Lattice-Boltzmann-based two-phase thermal model for simulating phase change
Kamali, M.R.; Gillissen, J.J.J.; Van den Akker, H.E.A.; Sundaresan, S.
2013-01-01
A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A nonideal equation of state (EOS) is introduced by using a pseudopotential LB model. The evolution equation for the pseudotemperature variable is constructed in such a manner that in the continuum l...
Study of two-phase flows in reduced gravity using ground based experiments
Energy Technology Data Exchange (ETDEWEB)
Vasavada, S.; Ishii, M. [Purdue University, School of Nuclear Engineering, West Lafayette, IN (United States); Sun, X. [Ohio State University, Department of Mechanical Engineering, Columbus, OH (United States); Duval, W. [NASA Glenn Research Center, Fluid Physics and Transport Branch, Cleveland, OH (United States)
2007-07-15
Experimental studies have been carried out to support the development of a framework of the two-fluid model along with an interfacial area transport equation applicable to reduced gravity two-phase flows. The experimental study simulates the reduced gravity condition in ground based facilities by using two immiscible liquids of similar density namely, water as the continuous phase and Therminol 59 {sup registered} as the dispersed phase. We have acquired a total of eleven data sets in the bubbly flow and bubbly to slug flow transition regimes. These flow conditions have area-averaged void (volume) fractions ranging from 3 to 30% and channel Reynolds number for the continuous phase between 2,900 and 8,800. Flow visualization has been performed and a flow regime map developed which is compared with relevant bubbly to slug flow regime transition criteria. The comparison shows that the transition boundary is well predicted by the criterion based on critical void fraction. The value of the critical void fraction at transition was experimentally determined to be approximately 25%. In addition, important two-phase flow local parameters, including the void fraction, interfacial area concentration, droplet number frequency and droplet velocity, have been acquired at two axial locations using state-of-the-art multi-sensor conductivity probe. The radial profiles and axial development of the two-phase flow parameters show that the coalescence mechanism is enhanced by either increasing the continuous or dispersed phase Reynolds number. Evidence of turbulence induced particle interaction mechanism is highlighted. The data presented in this paper clearly show the marked differences in terms of bubble (droplet) size, phase distribution and phase interaction in two-phase flow between normal and reduced gravity conditions. (orig.)
Numerical method for nonlinear two-phase displacement problem and its application
Institute of Scientific and Technical Information of China (English)
YUAN Yi-rang; LIANG Dong; RUI Hong-xing; DU Ning; WANG Wen-qia
2008-01-01
For the three-dimensional nonlinear two-phase displacement problem, the modified upwind finite difference fractional steps schemes were put forward. Some techniques, such as calculus of variations, induction hypothesis, decomposition of high order difference operators, the theory of prior estimates and techniques were used. Optimal order estimates were derived for the error in the approximation solution. These methods have been successfully used to predict the consequences of seawater intrusion and protection projects.
PREPARATION OF MICROGEL-EPOXY RESIN TWO-PHASE POLYMERS BY IN SITU POLYMERIZATION
Institute of Scientific and Technical Information of China (English)
YU Yunzhao; WU Xianghong; SONG Aiteng
1991-01-01
Microgel-epoxy resin two-phase polymers were prepared by in situ copolymerization of ethylenic monomers with unsaturated polyesters. The choice of monomers and the effect of monomer concentration on microgel particle size were discussed. Agglomeration of particles played a significant role in the early stage of polymerization. The microgel dispersion in epoxy resin was stable after the finish of polymerization. Upon curing the particles remained well dispersed.
Multiphysics modeling of two-phase film boiling within porous corrosion deposits
Energy Technology Data Exchange (ETDEWEB)
Jin, Miaomiao, E-mail: mmjin@mit.edu; Short, Michael, E-mail: hereiam@mit.edu
2016-07-01
Porous corrosion deposits on nuclear fuel cladding, known as CRUD, can cause multiple operational problems in light water reactors (LWRs). CRUD can cause accelerated corrosion of the fuel cladding, increase radiation fields and hence greater exposure risk to plant workers once activated, and induce a downward axial power shift causing an imbalance in core power distribution. In order to facilitate a better understanding of CRUD's effects, such as localized high cladding surface temperatures related to accelerated corrosion rates, we describe an improved, fully-coupled, multiphysics model to simulate heat transfer, chemical reactions and transport, and two-phase fluid flow within these deposits. Our new model features a reformed assumption of 2D, two-phase film boiling within the CRUD, correcting earlier models' assumptions of single-phase coolant flow with wick boiling under high heat fluxes. This model helps to better explain observed experimental values of the effective CRUD thermal conductivity. Finally, we propose a more complete set of boiling regimes, or a more detailed mechanism, to explain recent CRUD deposition experiments by suggesting the new concept of double dryout specifically in thick porous media with boiling chimneys. - Highlights: • A two-phase model of CRUD's effects on fuel cladding is developed and improved. • This model eliminates the formerly erroneous assumption of wick boiling. • Higher fuel cladding temperatures are predicted when accounting for two-phase flow. • Double-peaks in thermal conductivity vs. heat flux in experiments are explained. • A “double dryout” mechanism in CRUD is proposed based on the model and experiments.
Two phase continuous digestion of solid manure on-farm: design, mass and nutrient balance
Schäfer, Winfried; Evers, Lars; Lehto, Marja; Sorvala, Sanna; Teye, Frederick; Granstedt, Artur
2005-01-01
During the last decade some so called ‘dry fermentation’ prototype plants were developed for anaerobic digestion of organic material containing 15-50 % total solids. These plants show added advantages com-pared to slurry digestion plants: Less reactor volume, less process energy, less transport capacity, less odour emissions. However on-farm dry fermentation plants are not common and rarely commercially available. This paper reports about an innovative two phase prototype biogas plant designe...
Numerical modelling of the temperature distribution in a two-phase closed thermosyphon
Fadhl, B; Wrobel, LC; Jouhara, H
2013-01-01
Interest in the use of heat pipe technology for heat recovery and energy saving in a vast range of engineering applications has been on the rise in recent years. Heat pipes are playing a more important role in many industrial applications, particularly in improving the thermal performance of heat exchangers and increasing energy savings in applications with commercial use. In this paper, a comprehensive CFD modelling was built to simulate the details of the two-phase flow and heat transfer ph...
Two-Phase Working Fluids for the Temperature Range 50 to 350 C
Saaski, E. W.; Owzarski, P. C.
1977-01-01
The decomposition and corrosion of two-phase heat transfer liquids and metal envelopes have been investigated on the basis of molecular bond strengths and chemical thermodynamics. Potentially stable heat transfer fluids for the temperature range 100 C to 350 C have been identified, and reflux heat pipes tests initiated with 10 fluids and carbon steel and aluminum envelopes to experimentally establish corrosion behavior and noncondensable gas generation rates.
Konovalenko, Alexander; Basso, Simone; Kudinov, Pavel
2014-01-01
Melt fragmentation, quenching and long term coolability in a deep pool of water under reactor vessel are employed as a severe accident mitigation strategy in several designs of light water reactors. Success of the strategy is contingent upon effectiveness of natural circulation in removing the decay heat generated by the porous debris bed. Geometrical configuration of the bed is one of the factors which affect coolability of the bed. Boiling and two-phase turbulent flows in the pool serve as ...
One- and two-phase anaerobic digestion of ley crop silage with and without liquid recirculation
Energy Technology Data Exchange (ETDEWEB)
Nordberg, Aa.
1996-10-01
In this study the effects of liquid recirculation on hydrolysis and methanogenesis in one- and two-phase biogas processes were investigated in comparison with water-diluted processes. The operation of a water-diluted one-phase process resulted in process imbalances at a low loading rate. In a water-diluted two-phase process the fibre degrading capability was lost. The reason for the poor process performance was due to a deficiency in trace elements, since the supplementation of cobalt resulted in an increased conversion rate of acetate. The recirculation of process liquid resulted in an accumulation of different compounds which initially stabilized one-phase processes and stimulated the hydrolysis and the methane production in the liquefaction-acidogenesis stage of a two-phase process. However, upon continuous recirculation the concentration of free ammonia reached toxic levels, which resulted in a decrease in the methane yield both in the methanogenic reactor of the two-phase process and in the one-phase process. Due to the decreased methane production, acids started to accumulate which subsequently inhibited the hydrolysis in the one-phase process. The systematic variation in the processes were evaluated using principal component analysis and principal component regression. The interpretation of the dynamic behaviour of the processes was facilitated by the use of score plots and loading plots. The results indicate that ley crops do not meet the nutrient requirements of the bacteria in anaerobic digestion. Thus, the low content of trace elements and the high content of protein which subsequently will cause toxic levels of ammonia in digesting system with low water consumption, suggests co-digestion with supplementary feedstocks. 95 refs, 5 figs, 3 tabs
NUMERICAL SIMULATION ON 2-D WATER-AIR TWO-PHASE FLOW OVER TOP OUTLET
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Flood discharge over top outlet of dam is simu-lated by 2-dimension water-air two-phase mathematical model.Distribution of dynamic pressure, turbulent kinetic energy (k), turbulent dissipation rate (ε) , free water surface and veloci-ty field have been obtained. The simulated results were testedby physical model, which shows that the computed results areidentical with that of the physical model.
Lattice Boltzmann Methods to Address Fundamental Boiling and Two-Phase Problems
Energy Technology Data Exchange (ETDEWEB)
Uddin, Rizwan
2012-01-01
This report presents the progress made during the fourth (no cost extension) year of this three-year grant aimed at the development of a consistent Lattice Boltzmann formulation for boiling and two-phase flows. During the first year, a consistent LBM formulation for the simulation of a two-phase water-steam system was developed. Results of initial model validation in a range of thermo-dynamic conditions typical for Boiling Water Reactors (BWRs) were shown. Progress was made on several fronts during the second year. Most important of these included the simulation of the coalescence of two bubbles including the surface tension effects. Work during the third year focused on the development of a new lattice Boltzmann model, called the artificial interface lattice Boltzmann model (AILB model) for the 3 simulation of two-phase dynamics. The model is based on the principle of free energy minimization and invokes the Gibbs-Duhem equation in the formulation of non-ideal forcing function. This was reported in detail in the last progress report. Part of the efforts during the last (no-cost extension) year were focused on developing a parallel capability for the 2D as well as for the 3D codes developed in this project. This will be reported in the final report. Here we report the work carried out on testing the AILB model for conditions including the thermal effects. A simplified thermal LB model, based on the thermal energy distribution approach, was developed. The simplifications are made after neglecting the viscous heat dissipation and the work done by pressure in the original thermal energy distribution model. Details of the model are presented here, followed by a discussion of the boundary conditions, and then results for some two-phase thermal problems.
Modeling and simulation of nanoparticles transport in a two-phase flow in porous media
El-Amin, Mohamed
2012-01-01
In the current paper, a mathematical model to describe the nanoparticles transport carried by a two-phase flow in a porous medium is presented. Both capillary forces as well as Brownian diffusion are considered in the model. A numerical example of countercurrent water-oil imbibition is considered. We monitor the changing of the fluid and solid properties due to the addition of the nanoparticles using numerical experiments. Variation of water saturation, nanoparticles concentration and porosity ratio are investigated.
Influences of physical properties of two-phase mixture on void fraction in an annular vessel
Institute of Scientific and Technical Information of China (English)
LI Xiao-Ming; BI Qin-Cheng; FENG Quan-Ke; CHEN Ting-Kuan; DU She-Jiao
2004-01-01
To keep the void fraction of two-phase hydrogen in the moderator cell of the cold neutron source (CNS)of China Advanced Research Reactor (CARR) to a specified range, an annular vessel with the same size as the actual moderator cell was used as test section. Deionized water and alcohol, sucrose, and sodium chloride solutions with different concentrations were used as working fluid to find out influences of physical properties, such as density, viscosity and surface tension, of the two-phase mixture on void fraction. The tests proved that the ratio of surface tension to density of liquid phase has great influence on void fraction: the larger the ratio, the smaller the void fraction.Since the ratio of surface tension to density of Freon 113 is lower than that of liquid hydrogen, Freon 113 can be used as a working fluid to study the void fraction in the two-phase hydrogen thermosiphon loop in the CNS of CARR and the results will be conservative.
Two-phase Flow Ejector as Water Refrigerant by Using Waste Heat
Yamanaka, H.; Nakagawa, M.
2013-04-01
Energy saving and the use of clean energy sources have recently become significant issues. It is expected that clean energy sources such as solar panels and fuel cells will be installed in many private dwellings. However, when electrical power is generated, exhaust heat is simultaneously produced. Especially for the summer season, the development of refrigeration systems that can use this waste heat is highly desirable. One approach is an ejector that can reduce the mechanical compression work required in a normal refrigeration cycle. We focus on the use of water as a refrigerant, since this can be safely implemented in private dwellings. Although the energy conversion efficiency is low, it is promising because it can use heat that would otherwise be discarded. However, a steam ejector refrigeration cycle requires a large amount of energy to change saturated water into vapour. Thus, we propose a more efficient two-phase flow ejector cycle. Experiments were carried out in which the quality of the two-phase flow from a tank was varied, and the efficiency of the ejector and nozzle was determined. The results show that a vacuum state can be achieved and suction exerted with a two-phase flow state at the ejector nozzle inlet.
Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows
Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Tittelmeier, Kai; Bromberger, Benjamin; Prasser, Horst-Michael
Neutron imaging, in general, is a useful technique for visualizing low-Z materials (such as water or plastics) obscured by high-Z materials. However, when significant amounts of both materials are present and full-bodied samples have to be examined, cold and thermal neutrons rapidly reach their applicability limit as the samples become opaque. In such cases one can benefit from the high penetrating power of fast neutrons. In this work we demonstrate the feasibility of time-resolved, fast neutron radiography of generic air-water two-phase flows in a 1.5 cm thick flow channel with Aluminum walls and rectangular cross section. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany. Exposure times down to 3.33 ms have been achieved at reasonable image quality and acceptable motion artifacts. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two-phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured.
Application of stereology for two-phase flow structure validation in fluidized bed reactors
Directory of Open Access Journals (Sweden)
Anweiler Stanisław
2016-01-01
Full Text Available Paper describes a novel method for two-phase gas-solid flow structure validation in fluidized bed reactors. Investigation is based on application of stereology techniques. This is an innovative approach in the field of fluidization phenomena research. Study is focused on the analysis of flow structure images, obtained with high-speed visualization of the fluidization process. Fluidization is conducted in transparent narrow channel, where plastic balls are fluidized by air. Applied stereological analysis is grounded on the linear method and on the method of random and directed secants. This enables 2-dimensional image measurement and 3-dimensional stereological extrapolation. The major result is that for each two-phase gas-solid flow structure a set of stereological parameters exists. This enables quantification of the process. It has been found that the observation of inter-relation of all stereological parameters, during the changing of the flow structure, can be used for system control. The basic conclusion is that knowledge about the character of the changes may be used for constant process adjustment for various two phase systems such as gas-solid or gas-liquid.
Numerical Simulation of Flow Field in the New Reactor with Two-Phase Fluid
Directory of Open Access Journals (Sweden)
Shu Xu
2013-03-01
Full Text Available On the basic of the PIV flows field measurement, mature commercial software to fit and test heat plate reactor momentum transfer mathematical model are used and the flow field in various operation conditions of heat plate reactor is simulated. The transfer process of two-phases flow is complicated, the ideal even bubbles model is used to simulate, analyze and calculate, the deviation values of temperature profile of two-phases flow and flow profile of H2O-Air are minor, but they are high than that of homogeneous phase flow. We use the mature business software (CFX of CFD not only to fit, prove the momentum and heat transfer model in reactor with the experiment data of flow profile and temperature profile, but also to simulate the whole flow profile and temperature profile of two-phase fluids, their deviation values between the calculated values and experiment value are lower than the values simulated by traditional empirical formula, these will provide analysis of the transfer process in reactor with reliable mechanism model and computing method.
Influence of lactic acid on the two-phase anaerobic digestion of kitchen wastes
Institute of Scientific and Technical Information of China (English)
ZHANG Bo; CAI Wei-min; HE Pin-jing
2007-01-01
To evaluate the influence of lactic acid on the methanogenesis, anaerobic digestion of kitchen wastes was firstly conducted in a two-phase anaerobic digestion process, and performance of two digesters fed with lactic acid and glucose was subsequently compared.The results showed that the lactic acid was the main fermentation products of hydrolysis-acidification stage in the two-phase anaerobic digestion process for kitchen wastes. The lactic acid concentration constituted approximately 50% of the chemical oxygen demand (COD) concentration in the hydrolysis-acidification liquid. The maximum organic loading rate was lower in the digester fed with lactic acid than that fed with glucose. Volatile fatty acids (VFAs) and COD removal were deteriorated in the methanogenic reactor fed with to the high concentration of lactic acid fed. It could be concluded that avoiding the presence of the lactic acid is necessary in the hydrolysis-acidification process for the improvement of the two-phase anaerobic digestion process of kitchen wastes.
Two-phase flow patterns characteristics analysis based on image and conductance sensors
Wang, Zhenya; Jin, Ningde; Wang, Chun; Wang, Jinxiang
2008-10-01
In order to study the temporal and spatial evolution characteristics of gas-liquid two-phase flow pattern, the two-phase flow monitoring system composed of high-speed dynamic camera and Vertical Multi-Electrode Array conductance sensor (VMEA) was utilized to shoot dynamic images and acquire the conductance fluctuating signals of 5 typical vertical gas-liquid two-phase flow patterns in a 125mm i.d. upward pipe. Gray level co-occurrence matrix (GLCM) was used to extract four time-varying characteristic parameter indices which represented different flow image texture structures and also Lempel-Ziv complexity of them were calculated. Then the transition of flow structure and flow property were comprehensively analyzed, combining the result derived from image information with recurrence plots (RPs) and Lempel-Ziv complexity of conductance fluctuating signals. The study showed that the line texture structure of RPs enabled to indicate flow pattern characteristics; the flow image texture structure characteristic parameters sequence described the variance of flow structure and dynamical complexity of different flow patterns.
Central upwind scheme for a compressible two-phase flow model.
Directory of Open Access Journals (Sweden)
Munshoor Ahmed
Full Text Available In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.
Electrical Capacitance Probe Characterization in Vertical Annular Two-Phase Flow
Directory of Open Access Journals (Sweden)
Grazia Monni
2013-01-01
Full Text Available The paper presents the experimental analysis and the characterization of an electrical capacitance probe (ECP that has been developed at the SIET Italian Company, for the measurement of two-phase flow parameters during the experimental simulation of nuclear accidents, as LOCA. The ECP is used to investigate a vertical air/water flow, characterized by void fraction higher than 95%, with mass flow rates ranging from 0.094 to 0.15 kg/s for air and from 0.002 to 0.021 kg/s for water, corresponding to an annular flow pattern. From the ECP signals, the electrode shape functions (i.e., the signals as a function of electrode distances in single- and two-phase flows are obtained. The dependence of the signal on the void fraction is derived and the liquid film thickness and the phase’s velocity are evaluated by means of rather simple models. The experimental analysis allows one to characterize the ECP, showing the advantages and the drawbacks of this technique for the two-phase flow characterization at high void fraction.
Thick GEM versus thin GEM in two-phase argon avalanche detectors
Bondar, A; Grebenuk, A; Pavlyuchenko, D; Tikhonov, Y; Breskin, Amos
2008-01-01
The performance of thick GEMs (THGEMs) was compared to that of thin GEMs in two-phase Ar avalanche detectors, in view of their potential application in coherent neutrino-nucleus scattering, dark-matter search and in other rare-event experiments. The detectors comprised a 1 cm thick liquid-Ar layer followed by either a double-THGEM or a triple-GEM multiplier, operated in the saturated vapor above the liquid phase. Three types of THGEMs were studied: those made of G10 and Kevlar and that with resistive electrodes (RETHGEM). Only the G10-made THGEM showed a stable performance in two-phase Ar with gains reaching 3000. Successful operation of two-phase Ar avalanche detectors with either thin- or thick-GEM multipliers was demonstrated at low detection thresholds, of 4 and 20 primary electrons respectively. Compared to the triple-GEM the double-THGEM multiplier yielded slower anode signals; this allowed applying a pulse-shape analysis to effectively reject noise signals. Noise rates of both multipliers were evaluate...
Proportional electroluminescence in two-phase argon and its relevance to rare-event experiments
Bondar, A; Dolgov, A; Nosov, V; Shekhtman, L; Shemyakina, E; Sokolov, A
2015-01-01
Proportional electroluminescence (EL) in gaseous Ar has for the first time been systematically studied in the two-phase mode, at 87 K and 1.00 atm. Liquid Ar had a minor (56 ppm) admixture of N2, which allowed to understand, inter alia, the effect of N2 doping on the EL mechanism in rare-event experiments using two-phase Ar detectors. The measurements were performed in a two-phase Cryogenic Avalanche Detector (CRAD) with EL gap located directly above the liquid-gas interface. The EL gap was optically read out in the Vacuum Ultraviolet (VUV), near 128 nm (Ar excimer emission), and in the near Ultraviolet (UV), at 300-450 nm (N2 Second Positive System emission), via cryogenic PMTs and a Geiger-mode APD (GAPD). Proportional electroluminescence was measured to have an amplification parameter of 109+-10 photons per drifting electron per kV overall in the VUV and UV, of which 51+-6% were emitted in the UV. The measured EL threshold, at an electric field of 3.7+-0.2 kV/cm, was in accordance with that predicted by th...
A 3D moving mesh Finite Element Method for two-phase flows
Anjos, G. R.; Borhani, N.; Mangiavacchi, N.; Thome, J. R.
2014-08-01
A 3D ALE Finite Element Method is developed to study two-phase flow phenomena using a new discretization method to compute the surface tension forces. The computational method is based on the Arbitrary Lagrangian-Eulerian formulation (ALE) and the Finite Element Method (FEM), creating a two-phase method with an improved model for the liquid-gas interface. An adaptive mesh update procedure is also proposed for effective management of the mesh to remove, add and repair elements, since the computational mesh nodes move according to the flow. The ALE description explicitly defines the two-phase interface position by a set of interconnected nodes which ensures a sharp representation of the boundary, including the role of the surface tension. The proposed methodology for computing the curvature leads to accurate results with moderate programming effort and computational cost. Static and dynamic tests have been carried out to validate the method and the results have compared well to analytical solutions and experimental results found in the literature, demonstrating that the new proposed methodology provides good accuracy to describe the interfacial forces and bubble dynamics. This paper focuses on the description of the proposed methodology, with particular emphasis on the discretization of the surface tension force, the new remeshing technique, and the validation results. Additionally, a microchannel simulation in complex geometry is presented for two elongated bubbles.
Wiederhold, A.; Boeck, T.; Resagk, C.
2017-08-01
We report a method to detect and to measure the size and velocity of elongated bubbles or drops in a dispersed two-phase flow. The difference of the magnetic susceptibilities between two phases causes a force on the interface between both phases when it is exposed to an external magnetic field. The force is measured with a state-of-the-art electromagnetic compensation balance. While the front and the back of the bubble pass the magnetic field, two peaks in the force signal appear, which can be used to calculate the velocity and geometry parameters of the bubble. We achieve a substantial advantage over other bubble detection techniques because this technique is contactless, non-invasive, independent of the electrical conductivity and can be applied to opaque or aggressive fluids. The measurements are performed in an inclined channel with air bubbles and paraffin oil drops in water. The bubble length is in the range of 0.1-0.25 m and the bubble velocity lies between 0.02-0.22 m s-1. Furthermore we show that it is possible to apply this measurement principle for nondestructive testing (NDT) of diamagnetic and paramagnetic materials like metal, plastics or glass, provided that defects are in the range of 10‒2 m. This technique opens up new possibilities in industrial applications to measure two-phase flow parameters and in material testing.
NONUNIFORMITIES OF TWO-PHASE COOLANT DISTRIBUTION IN A HEAT GENERATING PARTICLES BED
Directory of Open Access Journals (Sweden)
V. V. Sorokin
2014-01-01
Full Text Available Sufficient atomic power generation safety increase may be done with microfuel adapting to reactor plants with water coolant. Microfuel particle is a millimeter size grain containing fission material core in a protecting coverage. The coverage protects fuel contact with coolant and provides isolation of fission products inside. Well thermophysical properties of microfuel bed in a direct contact with water coolant excludes fuel overheating when accidents. Microfuel use was suggested for a VVER, а direct flow reactor for superheat steam generation, a reactor with neutron spectra adjustment by the steam partial content varying in the coolant.Nonuniformities of two-phase coolant distribution in a heat generating particles bed are predicted by calculations in this text. The one is due to multiple-valuedness of pressure drop across the bed on the steam quality dependency. The nonuniformity decreases with flow rate and particle size growths absolute pressure diminishing while porosity effect is weak. The worse case is for pressure quality of order of one. Some pure steam filled pores appears parallel to steam water mixture filled pores, latter steam quality is less than the mean of the bed. Considering this regime for the direct flow reactor for superheat steam generation we predict some water drops at the exit flow. The two-phase coolant filtration with subcooled water feed is unstable to strong disturbance effects are found. Uniformity of two-phase coolant distribution is worse than for one-phase in the same radial type reactor.
Vibration response of a pipe subjected to two-phase flow: Analytical formulations and experiments
Energy Technology Data Exchange (ETDEWEB)
Ortiz-Vidal, L. Enrique, E-mail: leortiz@sc.usp.br [Department of Mechanical Engineering, Sao Carlos School of Engineering, University of Sao Paulo (USP), Av., Trabalhador São-carlense, 400, 13566-970 São Carlos, SP (Brazil); Mureithi, Njuki W., E-mail: njuki.mureithi@polymtl.ca [Department of Mechanical Engineering, Polytechnique Montreal, Département de Géniemécanique 2900, H3T 1J7 Montreal, QC (Canada); Rodriguez, Oscar M.H., E-mail: oscarmhr@sc.usp.br [Department of Mechanical Engineering, Sao Carlos School of Engineering, University of Sao Paulo (USP), Av., Trabalhador São-carlense, 400, 13566-970 São Carlos, SP (Brazil)
2017-03-15
Highlights: • Analytical formulations for two-phase flow-induced vibration (2-FIV) are presented. • Standard deviation of acceleration pipe response is a function of the square of shear velocity. • Peak frequency is correlated to hydrodynamic mass and consequently to void fraction. • Dynamic pipe response increases with increasing mixture velocity and void fraction. • Hydrodynamic mass in 2-FIV in horizontal pipe is proportional to mixture density. - Abstract: This paper treats the two-phase flow-induced vibration in pipes. A broad range of two-phase flow conditions, including bubbly, dispersed and slug flow, were tested in a clamped-clamped straight horizontal pipe. The vibration response of both transversal directions for two span lengths was measured. From experimental results, an in-depth discussion on the nature of the flow excitation and flow-parameters influence is presented. The hydrodynamic mass parameter is also studied. Experimental results suggest that it is proportional to mixture density. On the other hand, two analytical formulations were developed and tested against experimental results. One formulation predicts the quadratic trend between standard deviation of acceleration and shear velocity found in experiments. The other formulation indicates that the peak-frequency of vibration response depends strongly on void fraction. It provides accurate predictions of peak-frequency, predicting 97.6% of the data within ±10% error bands.
Simulation experiments for hot-leg U-bend two-phase flow phenomena
Energy Technology Data Exchange (ETDEWEB)
Ishii, M.; Hsu, J.T.; Tucholke, D.; Lambert, G.; Kataoka, I.
1986-01-01
In order to study the two-phase natural circulation and flow termination during a small break loss of coolant accident in LWR, simulation experiments have been performed. Based on the two-phase flow scaling criteria developed under this program, an adiabatic hot leg U-bend simulation loop using nitrogen gas and water and a Freon 113 boiling and condensation loop were built. The nitrogen-water system has been used to isolate key hydrodynamic phenomena from heat transfer problems, whereas the Freon loop has been used to study the effect of phase changes and fluid properties. Various tests were carried out to establish the basic mechanism of the flow termination and reestablishment as well as to obtain essential information on scale effects of parameters such as the loop frictional resistance, thermal center, U-bend curvature and inlet geometry. In addition to the above experimental study, a preliminary modeling study has been carried out for two-phase flow in a large vertical pipe at relatively low gas fluxes typical of natural circulation conditions.
STABILITY OF VORTEX STREET IN GAS-LIQUID TWO-PHASE FLOW
Institute of Scientific and Technical Information of China (English)
Li Yong-guang; Lin Zong-hu
2003-01-01
The stability of the Karmen vortex street in gas-liquid two-phase flow was studied experimentally and theoretically. The values of the parameter h/l characterizing the vortex street structure (I.e., the ratio of the vortex street width to the distance between two vortexes) for a stable vortex street in gas-liquid two-phase flow were obtained for the first time. The parameter h/l was proved to be a variable, not a constant as in single-phase flow. H/l is related to the upstream fluid void fraction. In gas-liquid two-phase fluid flow to form a steady vortex street is more difficult than in a single-phase fluid flow. Because in the unsteady vortex shedding the vortex shedding band frequency is broader than the one in the single phase fluid flow, so it is easier to induce the cross-cylinder resonance than in the single phase fluid flow, and this case should give rise to the attention of engineers.
Binary image encryption based on interference of two phase-only masks.
Jia, Wei; Wen, Fung Jacky; Chow, Yuk Tak; Zhou, Changhe
2012-07-20
Optical image encryption based on interference has attracted a lot of attention recently. The technique employs two pure phase masks derived from the complex field of the image in the Fresnel diffraction domain. The image decryption procedure can be carried out by inverse Fresnel transformation of the summation of two pure phase masks. However, the silhouette of the original image, which is recovered by either of the two phase-only masks, impedes the application of this technique. In this paper, a very simple method for binary image encryption based on interference of two phase-only masks is proposed without any silhouette problem. The binary image in combination with a random phase mask is separated into two phase-only masks directly, and the decryption by summation of the two masks can be performed digitally or optically. In this paper, the encryption and decryption processes are analyzed, after which both the optical simulation and the experimental results based on single-beam holography are given to demonstrate the feasibility of the encryption method. As information nowadays is mainly digitized into binary codes, the proposed encryption method may find applications in the information processing field.
Karimi, Amir
1991-01-01
NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.
The solidification of two-phase heterogeneous materials:Theory versus experiment
Institute of Scientific and Technical Information of China (English)
KIM; Tongbeum
2009-01-01
The solidification behavior of two-phase heterogeneous materials such as close-celled aluminum foams was analytically studied.The proposed analytical model can precisely predict the location of solidification front as well as the full solidification time for a two-phase heterogeneous material composed of aluminum melt and non-conducting air pores.Experiments using distilled water simulating the aluminum melt to be solidified(frozen)were subsequently conducted to validate the analytical model for two selected porosities(ε),ε=0 and 0.5.Full numerical simulations with the method of finite difference were also performed to examine the influence of pore shape on solidification.The remarkable agreement between theory and experiment suggests that the delay of solidification in the two-phase heterogeneous material is mainly caused by the reduction of bulk thermal conductivity due to the presence of pores,as this is the sole mechanism accounted for by the analytical model for solidification in a porous medium.
A Simple and Efficient Diffuse Interface Method for Compressible Two-Phase Flows
Energy Technology Data Exchange (ETDEWEB)
Ray A. Berry; Richard Saurel; Fabien Petitpas
2009-05-01
In nuclear reactor safety and optimization there are key issues that rely on in-depth understanding of basic two-phase flow phenomena with heat and mass transfer. For many reasons, to be discussed, there is growing interest in the application of two-phase flow models to provide diffuse, but nevertheless resolved, simulation of interfaces between two immiscible compressible fluids – diffuse interface method (DIM). Because of its ability to dynamically create interfaces and to solve interfaces separating pure media and mixtures for DNS-like (Direct Numerical Simulation) simulations of interfacial flows, we examine the construction of a simple, robust, fast, and accurate numerical formulation for the 5-equation Kapila et al. [1] reduced two-phase model. Though apparently simple, the Kapila et al. model contains a volume fraction differential transport equation containing a nonlinear, non-conservative term which poses serious computational challenges. To circumvent the difficulties encountered with the single velocity and single pressure Kapila et al. [1] multiphase flow model, a 6-equation relaxation hyperbolic model is built to solve interface problems with compressible fluids. In this approach, pressure non-equilibrium is first restored, followed by a relaxation to an asymptotic solution which is convergent to the solutions of the Kapila et al. reduced model. The apparent complexity introduced with this extended hyperbolic model actually leads to considerable simplifications regarding numerical resolution, and the various ingredients used by this method are general enough to consider future extensions to problems involving complex physics.
Gravitational instability in two-phase disks and the origin of the moon
Thompson, Christopher; Stevenson, David J.
1988-01-01
Two-phase disks may be gravitationally unstable at temperatures or surface densities at which a disk composed of either single phase would be highly stable. It is argued that two-phase disks can achieve a marginally unstable state (in addition to a highly unstable state that leads to fragmentation), limited by the ability of the photosphere to radiate the energy dissipated in the disk. A self-consistent prescription for the viscosity induced by the slow instabilities is provided. Two-phase disks are more centrally condensed than single-phase disks, and their secular cooling time may be comparable to their spreading time. A circumterrestrial disk of sufficient mass to form the moon provides a detailed example of all the preceding points. Its stability, structure, and dynamical evolution are investigated, and it is concluded that its spreading time is short (about 100 yr); the moon is formed molten, or partially molten; the moon's initial orbit lies in the earth's equatorial plane; and only a small fraction of the disk mass is lost in a wind, although this may represent a substantial fraction of volatiles. Most of these conclusions are independent of how the disk was formed, e.g., from a giant impact.
An improved large eddy simulation of two-phase flows in a pump impeller
Institute of Scientific and Technical Information of China (English)
Xuelin Tang; Fujun Wang; Yulin Wu
2007-01-01
An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating coordi-nate system, and continuity is conserved by a mass-weighted method to solve the filtered governing equations. In the cur-rent second-order SGS model, the SGS stress is a function of both the resolved strain-rate and rotation-rate tensors, and the model parameters are obtained from the dimensional consis-tency and the invariants of the strain-rate and the rotation-rate tensors. In the numerical calculation, the finite volume method is used to discretize the governing equations with a staggered grid system. The SIMPLEC algorithm is applied for the solution of the discretized governing equations. Body-fitted coordinates are used to simulate the two-phase flows in complex geometries. Finally the second-order dynamic SGS model is successfully applied to simulate the dense turbu-lent particle-liquid two-phase flows in a centrifugal impeller. The predicted pressure and velocity distributions are in good agreement with experimental results.
de Brito Cardoso, Gustavo; Souza, Isabela Nascimento; Pereira, Matheus M; Freire, Mara G; Soares, Cleide Mara Faria; Lima, Álvaro Silva
2014-11-05
In this work, it is shown that novel aqueous two-phase systems can be formed by the combination of acetonitrile and polysaccharides, namely dextran. Several ternary phase diagrams were determined at 25 °C for the systems composed of water + acetonitrile + dextran. The effect of the dextran molecular weight (6,000, 40,000 and 100,000 g.mol(-1)) was ascertained toward their ability to undergo liquid-liquid demixing. An increase in the dextran molecular weight favors the phase separation. Furthermore, the effect of temperature (25, 35 and 45 °C) was evaluated for the system constituted by the dextran of higher molecular weight. Lower temperatures are favorable for phase separation since lower amounts of dextran and acetonitrile are required for the creation of aqueous two-phase systems. In general, acetonitrile is enriched in the top phase while dextran is majorly concentrated in the bottom phase. The applicability of this new type of two-phase systems as liquid-liquid extraction approaches was also evaluated by the study of the partition behavior of a well-known antioxidant - vanillin - and used here as a model biomolecule. The optimized conditions led to an extraction efficiency of vanillin of 95% at the acetonitrile-rich phase.
Preparative crystallization of a single chain antibody using an aqueous two-phase system.
Huettmann, Hauke; Berkemeyer, Matthias; Buchinger, Wolfgang; Jungbauer, Alois
2014-11-01
A simultaneous crystallization and aqueous two-phase extraction of a single chain antibody was developed, demonstrating process integration. The process conditions were designed to form an aqueous two-phase system, and to favor crystallization, using sodium sulfate and PEG-2000. At sufficiently high concentrations of PEG, a second phase was generated in which the protein crystallization occurred simultaneously. The single chain antibody crystals were partitioned to the top, polyethylene glycol-rich phase. The crystal nucleation took place in the sodium sulfate-rich phase and at the phase boundary, whereas crystal growth was progressing mainly in the polyethylene glycol-rich phase. The crystals in the polyethylene glycol-rich phase grew to a size of >50 µm. Additionally, polyethylene glycol acted as an anti-solvent, thus, it influenced the crystallization yield. A phase diagram with an undersaturation zone, crystallization area, and amorphous precipitation zone was established. Only small differences in polyethylene glycol concentration caused significant shifts of the crystallization yield. An increase of the polyethylene glycol content from 2% (w/v) to 4% (w/v) increased the yield from approximately 63-87%, respectively. Our results show that crystallization in aqueous two-phase systems is an opportunity to foster process integration.
Two-phase distribution in the vertical flow line of a domestic wet central heating system
Directory of Open Access Journals (Sweden)
Ge Y.T.
2013-04-01
Full Text Available The theoretical and experimental aspects of bubble distribution in bubbly two-phase flow are reviewed in the context of the micro bubbles present in a domestic gas fired wet central heating system. The latter systems are mostly operated through the circulation of heated standard tap water through a closed loop circuit which often results in water supersaturated with dissolved air. This leads to micro bubble nucleation at the primary heat exchanger wall, followed by detachment along the flow. Consequently, a bubbly two-phase flow characterises the flow line of such systems. The two-phase distribution across the vertical and horizontal pipes was measured through a consideration of the volumetric void fraction, quantified through photographic techniques. The bubble distribution in the vertical pipe in down flow conditions was measured to be quasi homogenous across the pipe section with a negligible reduction in the void fraction at close proximity to the pipe wall. Such a reduction was more evident at lower bulk fluid velocities.
Two-phase distribution in the vertical flow line of a domestic wet central heating system
Fsadni, A.-M.; Ge, Y. T.
2013-04-01
The theoretical and experimental aspects of bubble distribution in bubbly two-phase flow are reviewed in the context of the micro bubbles present in a domestic gas fired wet central heating system. The latter systems are mostly operated through the circulation of heated standard tap water through a closed loop circuit which often results in water supersaturated with dissolved air. This leads to micro bubble nucleation at the primary heat exchanger wall, followed by detachment along the flow. Consequently, a bubbly two-phase flow characterises the flow line of such systems. The two-phase distribution across the vertical and horizontal pipes was measured through a consideration of the volumetric void fraction, quantified through photographic techniques. The bubble distribution in the vertical pipe in down flow conditions was measured to be quasi homogenous across the pipe section with a negligible reduction in the void fraction at close proximity to the pipe wall. Such a reduction was more evident at lower bulk fluid velocities.
A Novel Hyperbolization Procedure for The Two-Phase Six-Equation Flow Model
Energy Technology Data Exchange (ETDEWEB)
Samet Y. Kadioglu; Robert Nourgaliev; Nam Dinh
2011-10-01
We introduce a novel approach for the hyperbolization of the well-known two-phase six equation flow model. The six-equation model has been frequently used in many two-phase flow applications such as bubbly fluid flows in nuclear reactors. One major drawback of this model is that it can be arbitrarily non-hyperbolic resulting in difficulties such as numerical instability issues. Non-hyperbolic behavior can be associated with complex eigenvalues that correspond to characteristic matrix of the system. Complex eigenvalues are often due to certain flow parameter choices such as the definition of inter-facial pressure terms. In our method, we prevent the characteristic matrix receiving complex eigenvalues by fine tuning the inter-facial pressure terms with an iterative procedure. In this way, the characteristic matrix possesses all real eigenvalues meaning that the characteristic wave speeds are all real therefore the overall two-phase flowmodel becomes hyperbolic. The main advantage of this is that one can apply less diffusive highly accurate high resolution numerical schemes that often rely on explicit calculations of real eigenvalues. We note that existing non-hyperbolic models are discretized mainly based on low order highly dissipative numerical techniques in order to avoid stability issues.
Nonlinear analysis of gas-water/oil-water two-phase flow in complex networks
Gao, Zhong-Ke; Wang, Wen-Xu
2014-01-01
Understanding the dynamics of multi-phase flows has been a challenge in the fields of nonlinear dynamics and fluid mechanics. This chapter reviews our work on two-phase flow dynamics in combination with complex network theory. We systematically carried out gas-water/oil-water two-phase flow experiments for measuring the time series of flow signals which is studied in terms of the mapping from time series to complex networks. Three network mapping methods were proposed for the analysis and identification of flow patterns, i.e. Flow Pattern Complex Network (FPCN), Fluid Dynamic Complex Network (FDCN) and Fluid Structure Complex Network (FSCN). Through detecting the community structure of FPCN based on K-means clustering, distinct flow patterns can be successfully distinguished and identified. A number of FDCN’s under different flow conditions were constructed in order to reveal the dynamical characteristics of two-phase flows. The FDCNs exhibit universal power-law degree distributions. The power-law exponent ...
Institute of Scientific and Technical Information of China (English)
2008-01-01
Single-phase and gas-liquid two-phase pressure drops caused by a sudden con-traction in microtubes were experimentally investigated at room temperature and atmospheric pressure,using nitrogen and water. The experimental results on pressure drop with a novel measurement method,the tiny gaps on the tubes,were used to characterize the sudden contraction pressure drop for tube diameters from 850 to 330 μm. The ranges of the gas and liquid superficial velocity were 2.55―322.08 and 0.98―9.78 m/s in the smaller tube respectively. In single-phase flow experiments,the contraction loss coefficients were larger than the experimental results from conventional tubes in the laminar flow. While in the turbulent flow,the contraction loss coefficients were slightly smaller than those from conventional tubes and predicted well by Kc=0.5×(1-σ2)0.75. In two-phase flow experiments,the slip flow model with a velocity slip ratio S=(ρL/ρG)1/3 showed a good prediction that reveals the occurrence of velocity slip. An empirical correlation for two-phase flow pressure drops caused by the sudden contraction was developed based on the proposed contraction loss coefficients correlation for single-phase flow and Mar-tinelli factor.
Enrichment of membrane proteins by partitioning in detergent/polymer aqueous two-phase systems.
Everberg, Henrik; Gustavasson, Niklas; Tjerned, Folke
2008-01-01
Methods that combine efficient solubilization with enrichment of proteins and intact protein complexes are of central interest in current membrane proteomics. We have developed methods based on nondenaturing detergent extraction of yeast mitochondrial membrane proteins followed by enrichment of hydrophobic proteins in aqueous two-phase system. Combining the zwitterionic detergent Zwittergent 3-10 and the nonionic detergent Triton X-114 results in a complementary solubilization of proteins, which is similar to that of the anionic detergent sodium dodecyl sulfate (SDS) but with the important advantage of being nondenaturing. Detergent/polymer two-phase system partitioning offers removal of soluble proteins that can be further improved by manipulation of the driving forces governing protein distribution between the phases. Integral and peripheral membrane protein subunits from intact membrane protein complexes partition to the detergent phase while soluble proteins are found in the polymer phase. An optimized solubilization protocol is presented in combination with detergent/polymer two-phase partitioning as a mild and efficient method for initial enrichment of membrane proteins and membrane protein complexes in proteomic studies.
Shadow imaging in bubbly gas-liquid two-phase flow in porous structures
Altheimer, Marco; Häfeli, Richard; Wälchli, Carmen; Rudolf von Rohr, Philipp
2015-09-01
Shadow imaging is used for the investigation of bubbly gas-liquid two-phase flow in a porous structure. The porous structure is made of Somos WaterShed XC 11122, a clear epoxy resin used in rapid prototyping. Optical access is provided by using an aqueous solution of sodium iodide and zinc iodide having the same refractive index as the structure material (). Nitrogen is injected into the continuous phase at volumetric transport fractions in the range of resulting in a hold-up of . The obtained images of overlapping bubble shadows are processed to measure the bubble dimensions. Therefore, a new processing sequence is developed to determine bubble dimensions from overlapping bubble shadows by ellipse fitting. The accuracy of the bubble detection and sizing routine is assessed processing synthetic images. It is shown that the developed technique is suitable for volumetric two-phase flow measurements. Important global quantities such as gas hold-up and total interfacial area can be measured with only one camera. Operation parameters for gas-liquid two-phase flows are determined to improve mass and heat transfer between the phases.
Experimental Assessment of the Two-Phase Flow in a Large Inclined Channel
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Thanh Hung; Song, Ki Won; Revankar, Shripad T; Park, Hyun Sun [Pohang University of Science and Technology, Pohang (Korea, Republic of)
2014-10-15
In order to assess the cooling performance of the core catcher system, a model facility has been constructed in POSTECH using scaling analysis. This facility consists of horizontal, inclined and vertical section. To investigate the flow parameters in each section, the instrumentation is developed to measure two-phase characteristics such as local void fraction, bubble velocity and bubble size. To date, there has been a considerable amount of research conducted on the internal structure of two-phase flow in pipe. However, the number of attempts made on the experiment regarding large inclined channels has been still limited. One of the reasons for this lack of data is the difficulty in constructing experimental facility. In this paper, the parameters of the flow in the inclined section are presented. The inclined channel is 10 degree from the horizontal with the rectangular cross section of 300 cm{sup 2}. The distributions of local parameters are evaluated through the data of double sensor conductivity probes installed at different locations along the inclined section. The data sets of the structure of two-phase flow in an inclined large channel was acquired. The air was injected through the metal foam installed on the top surface wall of the inclined section. Water level was kept below the top of the inclined section so the amount of water was fixed during the experiment. 9 probes set up at the different locations to get the data of local two-phase parameters. The measurement at each location was conducted in 5 minutes to determine the mean value of each parameter. The result of local void fraction profiles at different locations indicates that the void distribution primarily changes along the height of the inclined section. The slug flow occurs in the channel which results in most bubbles attached to the top surface wall. This fact explains the high local void fraction near the top wall and its rapid decline towards the bottom wall of the inclined section. The
Energy Technology Data Exchange (ETDEWEB)
Park, Sun; Cho, Soon Gu; Kim, Mi Young; Woo, Je Hong; Shin, Seok Hwan; Lee, Kykung Hee; Suh, Chang Hae [Inha Univ. College of Medicine, Inchon (Korea, Republic of)
2001-04-01
To determine whether an analysis of two-phase CT features provides a sound basis for differential diagnosis between gallbladder carcinoma and cholecystitis. We reviewed a total of 89 cases of gallbladder carcinoma (n=35) or cholecystitis (n=54) in patients who had undergone two-phase spiral CT. For this, a GE Highspeed Advantage scanner (GE Medical Systems, Milwaukee, U . S . A .) was used. A total of 120ml of contrast material was injected at a rate of 2-3 ml/sec. Arterial and venous phase scans were obtained 35 and 65 seconds, respectively, after the initiation of contrast infusion. All cases of gallbladder carcinoma and 468 of cholecystitis (of a total of 482) were confirmed by histopathology. We reviewed the two phase spiral CT features, analyzing and assessing thickness of the lesion, the enhancement pattern seen during the arterial and the venous phase, invasion of liver, pericholecystic fat infiltration, dilatation of intrahepatic ducts, and other associated findings. Mean wall thickness was 12.6 mm in the gallbladder carcinoma group, and 7.2 mm in the cholecystitis group. The common enhancement patterns seen in gallbladder carcinoma were 1) a highly enhanced thick inner wall layer during the arterial phase which became iso attenuated with adjacent liver parenchyma during the venous phase (16/35; 45.7%) and 2) highly enhanced thick inner wall layer during both the arterial and venous phase (8/35; 22.9%). The most common enhancement pattern in cholecystitis cases was an iso attenuated thin inner wall layer during both the arterial and the venous phase (44/54; 81.5%). Findings of intrahepatic mass formation by direct invasion (9/35), lymph node enlargement (12/35), and metastasis to other organs (7/35) occurred only in cases of gallbladder carcinoma (18/35, 51.4%) than of cholecystitis (10/54, 18.5%). The incidence of pericholecystic fat infiltration and fluid collection was not significantly different between the gallbladder cancer and cholecystitis groups
Two-Phase Flow Simulations In a Natural Rock Fracture using the VOF Method
Energy Technology Data Exchange (ETDEWEB)
Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant
2010-01-01
Standard models of two-phase flow in porous media have been shown to exhibit several shortcomings that might be partially overcome with a recently developed model based on thermodynamic principles (Hassanizadeh and Gray, 1990). This alternative two-phase flow model contains a set of new and non-standard parameters, including specific interfacial area. By incorporating interfacial area production, destruction, and propagation into functional relationships that describe the capillary pressure and saturation, a more physical model has been developed. Niessner and Hassanizadeh (2008) have examined this model numerically and have shown that the model captures saturation hysteresis with drainage/imbibition cycles. Several static experimental studies have been performed to examine the validity of this new thermodynamically based approach; these allow the determination of static parameters of the model. To date, no experimental studies have obtained information about the dynamic parameters required for the model. A new experimental porous flow cell has been constructed using stereolithography to study two-phase flow phenomena (Crandall et al. 2008). A novel image analysis tool was developed for an examination of the evolution of flow patterns during displacement experiments (Crandall et al. 2009). This analysis tool enables the direct quantification of interfacial area between fluids by matching known geometrical properties of the constructed flow cell with locations identified as interfaces from images of flowing fluids. Numerous images were obtained from two-phase experiments within the flow cell. The dynamic evolution of the fluid distribution and the fluid-fluid interface locations were determined by analyzing these images. In this paper, we give a brief introduction to the thermodynamically based two-phase flow model, review the properties of the stereolithography flow cell, and show how the image analysis procedure has been used to obtain dynamic parameters for the
Features of two-phase flow patterns in horizontal rectangular microchannels of height 50 μm
Directory of Open Access Journals (Sweden)
Ron’shin Fedor
2016-01-01
Full Text Available The horizontal microchannel with the height of 50 micrometres and width of 40 mm of a rectangular cross-section has been used to study two-phase flow. The classical patterns of two-phase flow in the channel (bubble, stratified, churn, jet, and annular have been detected. Experimental information allows us to define the characteristics of the regimes and to determine precisely the boundaries between the patterns of the two-phase flows.
Burkholder, Michael B.; Litster, Shawn
2016-05-01
In this study, we analyze the stability of two-phase flow regimes and their transitions using chaotic and fractal statistics, and we report new measurements of dynamic two-phase pressure drop hysteresis that is related to flow regime stability and channel water content. Two-phase flow dynamics are relevant to a variety of real-world systems, and quantifying transient two-phase flow phenomena is important for efficient design. We recorded two-phase (air and water) pressure drops and flow images in a microchannel under both steady and transient conditions. Using Lyapunov exponents and Hurst exponents to characterize the steady-state pressure fluctuations, we develop a new, measurable regime identification criteria based on the dynamic stability of the two-phase pressure signal. We also applied a new experimental technique by continuously cycling the air flow rate to study dynamic hysteresis in two-phase pressure drops, which is separate from steady-state hysteresis and can be used to understand two-phase flow development time scales. Using recorded images of the two-phase flow, we show that the capacitive dynamic hysteresis is related to channel water content and flow regime stability. The mixed-wettability microchannel and in-channel water introduction used in this study simulate a polymer electrolyte fuel cell cathode air flow channel.
Energy Technology Data Exchange (ETDEWEB)
Burkholder, Michael B.; Litster, Shawn, E-mail: litster@andrew.cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)
2016-05-15
In this study, we analyze the stability of two-phase flow regimes and their transitions using chaotic and fractal statistics, and we report new measurements of dynamic two-phase pressure drop hysteresis that is related to flow regime stability and channel water content. Two-phase flow dynamics are relevant to a variety of real-world systems, and quantifying transient two-phase flow phenomena is important for efficient design. We recorded two-phase (air and water) pressure drops and flow images in a microchannel under both steady and transient conditions. Using Lyapunov exponents and Hurst exponents to characterize the steady-state pressure fluctuations, we develop a new, measurable regime identification criteria based on the dynamic stability of the two-phase pressure signal. We also applied a new experimental technique by continuously cycling the air flow rate to study dynamic hysteresis in two-phase pressure drops, which is separate from steady-state hysteresis and can be used to understand two-phase flow development time scales. Using recorded images of the two-phase flow, we show that the capacitive dynamic hysteresis is related to channel water content and flow regime stability. The mixed-wettability microchannel and in-channel water introduction used in this study simulate a polymer electrolyte fuel cell cathode air flow channel.
Analysis and Comparison of Two-Phase Ejector Performance Metrics for R134a and CO2 Ejectors
Lawrence, Neal; Elbel, Stefan
2014-01-01
Two-phase ejectors have been gaining increased attention in recent years due to their ability to directly improve the COP of the cycle. Of common interest in two-phase ejector studies is how the ejector improves cycle COP. However, less emphasis is often given to the performance of the two-phase ejector itself. The amount of COP improvement offered by an ejector cycle is very strongly influenced by the performance of the two-phase ejector; thus, it is important to understand the operation and...
Non-thermal equilibrium two-phase flow for melt migration and ascent
Schmeling, Harro; Marquart, Gabriele
2017-04-01
We develop a theory for heat exchange between a fluid phase in a solid porous matrix where the temperature of the fluid and of the matrix are different, i. e. not in thermal equilibrium. The formulation considers moving of the fluid within the porous matrix as well as moving of the matrix in an Eulerian grid. The theory can be applied to melts in partially molten rocks, particularly aiming at the transitional regime between melt percolation and flow through dikes, as well as to brine transport in porous rocks. The theory involves the energy conservation equations for the fluid and the solid phase which are coupled by a heat exchange term. We derive an expression based on a Fourier decomposition of a periodic half-waves for a macroscopic description of the non-equal temperatures in the fluid and the solid considering the relative volumetric fractions and surface to volume relations of the pores. We present a formulation for the heat exchange between the two phases taking into account different thermal conductivities of the fluid and the solid and considering the temporal evolution of the heat exchange. The latter leads to a convolution integral in case of a resting matrix. The evolution of the temperature in both phases with time is derived upon inserting the heat exchange term in the energy equations. We test the theory for a simple 1D case of sudden temperature difference between fluid and solid and vary fluid fractions and differential velocities between fluid and solid to obtain the requisites for the maximum Fourier coefficient and the time increments for numerical integration. The necessary time increments are small (between 10^-3 d2 / κ to 10^-5 d^2/ κ, where d is a scaling length, e.g. the pore radius and κ is a scaling diffusivity, e.g. the mean diffusivity) and strongly depend on the fluid fraction. The maximum Fourier coefficient need to be as high as 500 to resolve properly the sudden heat exchange between fluid and solid. Our results agree well with
Shaw, Sachin; Murthy, P V S N
2010-09-01
The present investigation deals with finding the trajectories of the drug dosed magnetic carrier particle in a microvessel with two-phase fluid model which is subjected to the external magnetic field. The radius of the microvessel is divided into the endothelial glycocalyx layer in which the blood is assumed to obey Newtonian character and a core and plug regions where the blood obeys the non-Newtonian Herschel-Bulkley character which is suitable for the microvessel of radius 50 microm. The carrier particles, bound with nanoparticles and drug molecules are injected into the vascular system upstream from malignant tissue, and captured at the tumor site using a local applied magnetic field. The applied magnetic field is produced by a cylindrical magnet positioned outside the body and near the tumor position. The expressions for the fluidic force for the carrier particle traversing in the two-phase fluid in the microvessel and the magnetic force due to the external magnetic field are obtained. Several factors that influence the magnetic targeting of the carrier particles in the microvasculature, such as the size of the carrier particle, the volume fraction of embedded magnetic nanoparticles, and the distance of separation of the magnet from the axis of the microvessel are considered in the present problem. An algorithm is given to solve the system of coupled equations for trajectories of the carrier particle in the invasive case. The trajectories of the carrier particle are found for both invasive and noninvasive targeting systems. A comparison is made between the trajectories in these cases. Also, the present results are compared with the data available for the impermeable microvessel with single-phase fluid flow. Also, a prediction of the capture of therapeutic magnetic nanoparticle in the impermeable microvasculature is made for different radii, distances and volume fractions in both the invasive and noninvasive cases.
Hejranfar, Kazem; Ezzatneshan, Eslam
2015-11-01
A high-order compact finite-difference lattice Boltzmann method (CFDLBM) is extended and applied to accurately simulate two-phase liquid-vapor flows with high density ratios. Herein, the He-Shan-Doolen-type lattice Boltzmann multiphase model is used and the spatial derivatives in the resulting equations are discretized by using the fourth-order compact finite-difference scheme and the temporal term is discretized with the fourth-order Runge-Kutta scheme to provide an accurate and efficient two-phase flow solver. A high-order spectral-type low-pass compact nonlinear filter is used to regularize the numerical solution and remove spurious waves generated by flow nonlinearities in smooth regions and at the same time to remove the numerical oscillations in the interfacial region between the two phases. Three discontinuity-detecting sensors for properly switching between a second-order and a higher-order filter are applied and assessed. It is shown that the filtering technique used can be conveniently adopted to reduce the spurious numerical effects and improve the numerical stability of the CFDLBM implemented. A sensitivity study is also conducted to evaluate the effects of grid size and the filtering procedure implemented on the accuracy and performance of the solution. The accuracy and efficiency of the proposed solution procedure based on the compact finite-difference LBM are examined by solving different two-phase systems. Five test cases considered herein for validating the results of the two-phase flows are an equilibrium state of a planar interface in a liquid-vapor system, a droplet suspended in the gaseous phase, a liquid droplet located between two parallel wettable surfaces, the coalescence of two droplets, and a phase separation in a liquid-vapor system at different conditions. Numerical results are also presented for the coexistence curve and the verification of the Laplace law. Results obtained are in good agreement with the analytical solutions and also
Numerical modeling of two-phase binary fluid mixing using mixed finite elements
Sun, Shuyu
2012-07-27
Diffusion coefficients of dense gases in liquids can be measured by considering two-phase binary nonequilibrium fluid mixing in a closed cell with a fixed volume. This process is based on convection and diffusion in each phase. Numerical simulation of the mixing often requires accurate algorithms. In this paper, we design two efficient numerical methods for simulating the mixing of two-phase binary fluids in one-dimensional, highly permeable media. Mathematical model for isothermal compositional two-phase flow in porous media is established based on Darcy\\'s law, material balance, local thermodynamic equilibrium for the phases, and diffusion across the phases. The time-lag and operator-splitting techniques are used to decompose each convection-diffusion equation into two steps: diffusion step and convection step. The Mixed finite element (MFE) method is used for diffusion equation because it can achieve a high-order and stable approximation of both the scalar variable and the diffusive fluxes across grid-cell interfaces. We employ the characteristic finite element method with moving mesh to track the liquid-gas interface. Based on the above schemes, we propose two methods: single-domain and two-domain methods. The main difference between two methods is that the two-domain method utilizes the assumption of sharp interface between two fluid phases, while the single-domain method allows fractional saturation level. Two-domain method treats the gas domain and the liquid domain separately. Because liquid-gas interface moves with time, the two-domain method needs work with a moving mesh. On the other hand, the single-domain method allows the use of a fixed mesh. We derive the formulas to compute the diffusive flux for MFE in both methods. The single-domain method is extended to multiple dimensions. Numerical results indicate that both methods can accurately describe the evolution of the pressure and liquid level. © 2012 Springer Science+Business Media B.V.
Energy Technology Data Exchange (ETDEWEB)
Yoon, Dae Young; Choi, Byung Ihn; Han, Joon Koo; Han, Man Chung [College of Medicine, Seoul National University, Seoul (Korea, Republic of)
1994-12-15
The purpose of this study was to characterize the enhancing patterns of hepatocellular carcinoma (HCC) on two-phase dynamic incremental liver scan with spiral CT. Two-phase dynamic incremental liver scan using spiral CT was performed on 230 lesions in 107 patients with HCC. CT scanning was performed with a table speed of 13 mm/sec and a section thickness of 10 mm; 120 mL of contrast medium was injected intravenously with a automatic injector at the rate of 3 mL/sec. CT scans were started 35 sec(early phase) and 3 min(delayed phase) after beginning injection of contrast medium. The tumors were divided into 2 groups according to size({<=}3cm and > 3cm), the contrast enhancement patterns of HCCs and capsules in the early and delayed phases were analyzed in each group. Most of HCCs appeared as high-attenuating lesions in the early phase(75% in tumors smaller than 3cm and 61 % in tumors larger than 3cm), and as low-attenuating lesions in the delayed phase(68% in tumors smaller than 3cm and 90% in tumors larger than 3cm). Forty-eight percent of HCCs smaller than 3cm and 58% of HCCs larger than 3 cm were high-attenuating in the early phase and low-attenuating in the delayed phase. Thirty-two percent of capsules were low- or iso-attenuating in the early phase and high-attenuating in the delayed phase. Capsules were demonstrated in 22% in HCCs smaller than 3cm and 67% in HCCs larger than 3 cm (p <. 01). Two-phase dynamic scan with spiral CT is useful in the diagnosis of HCC because of a precise display of hemodynamic characteristics of HCCs.
Modeling of fluidelastic instability in tube bundle subjected to two-phase cross-flow
Energy Technology Data Exchange (ETDEWEB)
Sawadogo, T.P.; Mureithi, N.W.; Azizian, R.; Pettigrew, M.J. [Ecole Polytechnique, Dept. of Mechanical Engineering, BWC/AECL/NSERC Chair of Fluid-Structure Interaction, Montreal, Quebec (Canada)
2009-07-01
Tube arrays in steam generators and heat exchangers operating in two-phase cross-flow are subjected sometimes to strong vibration due mainly to turbulence buffeting and fluidelastic forces. This can lead to tube damage by fatigue or fretting wear. A computer implementation of a fluidelastic instability model is proposed to determine with improved accuracy the fluidelastic forces and hence the critical instability flow velocity. Usually the fluidelastic instability is 'predicted', using the Connors relation with K=3. While the value of K can be determined experimentally to get an accurate prediction of the instability, the Connors relation does not allow good estimation of the fluid forces. Consequently the RMS value of the magnitude of vibration of the tube bundle, necessary to evaluate the work rate and the tube wear is only poorly estimated. The fluidelastic instability analysis presented here is based on the quasi-steady model, originally developed for single phase flow. The fluid forces are expressed in terms of the quasi-static drag and lift force coefficients and their derivatives which are determined experimentally. The forces also depend on the tube displacement and velocity. In the computer code ABAQUS, the fluid forces are provided in the user subroutines VDLOAD or VUEL. A typical simulation of the vibration of a single flexible tube within an array in two phase cross-flow is done in ABAQUS and the results are compared with the experimental measurements for a tube with similar physical properties. For a cantilever tube, in two phase cross-flow of void fraction 60%, the numerical critical flow velocity was 2.0 m/s compared to 1.8 m/s obtained experimentally. The relative error was 5% compared to 26.6% for the Connors relation with K=3. The simulation of the vibration of a typical tube in a steam generator is also presented. The numerical results show good agreement with experimental measurements. (author)
Energy Technology Data Exchange (ETDEWEB)
Qian, Junfeng [Jiangsu Provincial Key Laboratory of Fine Petrochemical Engineering, Jiangsu Polytechnic University, Changzhou 213016 (China); College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Yun, Zhi; Shi, Haixian [College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China)
2010-12-15
In the present work, the preparation of biodiesel from cottonseed oil produced by two-phase solvent extraction (TSE) was studied. The experimental results of TSE process of cottonseed showed that the optimal extraction conditions were 30 g samples, 240 mL extraction solvent mixture and methanol/petroleum ether volume ratio 60:40, extraction temperature 30 C, extraction time 30 min. Under the extraction conditions, the extraction rate of cottonseed oil could achieve 98.3%, the free fatty acid (FFA) and water contents of cottonseed oil were reduced to 0.20% and 0.037%, respectively, which met the requirement of alkali-catalyzed transesterification. The free gossypol (FG) content in cottonseed meal produced from two-phase solvent extraction could reduce to 0.014% which was far below the FAO standard. And the nontoxic cottonseed meal could be used as animal protein feed resources. After the TSE process of cottonseed, the investigations were carried out on transesterification of methanol with oil-petroleum ether solution coming from TSE process in the presence of sodium hydroxide (CaO) as the solid base catalyst. The influences of weight ratio of petroleum ether to cottonseed oil, reaction temperature, molar ratio of methanol to oil, alkali catalyst amount and reaction time on cottonseed oil conversion were respectively investigated by mono-factor experiments. The conversion of cottonseed oil into fatty acid methyl ester (FAME) could achieve 98.6% with 3:1 petroleum ether/oil weight ratio, 65 C reaction temperature, 9:1 methanol/oil mole ratio, 4% (catalyst/oil weight ratio, w/w) solid base catalyst amount and 3 h reaction time. The properties of FAME product prepared from cottonseed oil produced by two-phase solvent extraction met the ASTM specifications for biodiesel. (author)
Energy Technology Data Exchange (ETDEWEB)
Qian Junfeng, E-mail: qianjunfeng80@126.co [Jiangsu Provincial Key Laboratory of Fine Petrochemical Engineering, Jiangsu Polytechnic University, Changzhou 213016 (China) and College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Yun Zhi; Shi Haixian [College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China)
2010-12-15
In the present work, the preparation of biodiesel from cottonseed oil produced by two-phase solvent extraction (TSE) was studied. The experimental results of TSE process of cottonseed showed that the optimal extraction conditions were 30 g samples, 240 mL extraction solvent mixture and methanol/petroleum ether volume ratio 60:40, extraction temperature 30 deg. C, extraction time 30 min. Under the extraction conditions, the extraction rate of cottonseed oil could achieve 98.3%, the free fatty acid (FFA) and water contents of cottonseed oil were reduced to 0.20% and 0.037%, respectively, which met the requirement of alkali-catalyzed transesterification. The free gossypol (FG) content in cottonseed meal produced from two-phase solvent extraction could reduce to 0.014% which was far below the FAO standard. And the nontoxic cottonseed meal could be used as animal protein feed resources. After the TSE process of cottonseed, the investigations were carried out on transesterification of methanol with oil-petroleum ether solution coming from TSE process in the presence of sodium hydroxide (CaO) as the solid base catalyst. The influences of weight ratio of petroleum ether to cottonseed oil, reaction temperature, molar ratio of methanol to oil, alkali catalyst amount and reaction time on cottonseed oil conversion were respectively investigated by mono-factor experiments. The conversion of cottonseed oil into fatty acid methyl ester (FAME) could achieve 98.6% with 3:1 petroleum ether/oil weight ratio, 65 deg. C reaction temperature, 9:1 methanol/oil mole ratio, 4% (catalyst/oil weight ratio, w/w) solid base catalyst amount and 3 h reaction time. The properties of FAME product prepared from cottonseed oil produced by two-phase solvent extraction met the ASTM specifications for biodiesel.
Adaptive, multi-domain techniques for two-phase flow computations
Uzgoren, Eray
Computations of immiscible two-phase flows deal with interfaces that may move and/or deform in response to the dynamics within the flow field. As interfaces move, one needs to compute the new shapes and the associated geometric information (such as curvatures, normals, and projected areas/volumes) as part of the solution. The present study employs the immersed boundary method (IBM), which uses marker points to track the interface location and continuous interface methods to model interfacial conditions. The large transport property jumps across the interface, and the considerations of the mechanism including convection, diffusion, pressure, body force and surface tension create multiple time/length scales. The resulting computational stiffness and moving boundaries make numerical simulations computationally expensive in three-dimensions, even when the computations are performed on adaptively refined 3D Cartesian grids that efficiently resolve the length scales. A domain decomposition method and a partitioning strategy for adaptively refined grids are developed to enable parallel computing capabilities. Specifically, the approach consists of multilevel additive Schwarz method for domain decomposition, and Hilbert space filling curve ordering for partitioning. The issues related to load balancing, communication and computation, convergence rate of the iterative solver in regard to grid size and the number of sub-domains and interface shape deformation, are studied. Moreover, interfacial representation using marker points is extended to model complex solid geometries for single and two-phase flows. Developed model is validated using a benchmark test case, flow over a cylinder. Furthermore, overall algorithm is employed to further investigate steady and unsteady behavior of the liquid plug problem. Finally, capability of handling two-phase flow simulations in complex solid geometries is demonstrated by studying the effect of bifurcation point on the liquid plug, which
Advanced numerical methods for three dimensional two-phase flow calculations
Energy Technology Data Exchange (ETDEWEB)
Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)
1997-07-01
This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.
Exact Jacobians in an implicit Newton method for two-phase flow in porous media
Büsing, H.; Clauser, C.
2012-04-01
Geological storage of CO2 is one option for mitigating the effects of CO2 emissions on global warming. Since extensive on-site monitoring of the CO2 plume propagation is expensive, numerical simulations are an attractive alternative for gaining deeper insight in the dynamics of this system. We consider a model for two-phase flow in porous media for representing the injection stage of a CO2 sequestration scenario, when the plume propagation is dominated by advection. The porous medium filled by the two phases CO2 and brine is modelled as an initial-boundary-value problem consisting of two nonlinear, coupled partial differential equations, which are complemented by appropriate boundary and initial conditions. We present a new numerical approach to solve this fully coupled system using exact Jacobians. The method is based on the finite element, finite volume, box method [Huber & Helmig(2000)] for the space discretization and, since stability of the method is one of the main concerns, the fully implicit Euler method for the time discretization. A simple first order upwind method takes into account advective contributions. The resulting system of nonlinear algebraic equations is linearized by Newton's method. The required Jacobians can be obtained elegantly by automatic differentiation (AD) [Griewank & Walther(2008), Rall(1981)], a source code transformation giving exact derivatives of the discretized equations with respect to primary variables. The resulting system of linear equations is then solved by an iterative method (BiCGStab) with ILU0 preconditioning in every Newton step. We compare the forward AD differentiation mode to the standard finite difference method in terms of precision and performance. It turns out that AD performs favourable in both aspects. We also illustrate the advantages of exact Jacobians for two-phase flow in a sequestration scenario investigating the evolution of pressure and saturation.
Directory of Open Access Journals (Sweden)
Ivana Rukavina
2011-01-01
Full Text Available Polyphenols are one of the most numerous and widespread groups of compounds in the plant world. Nowadays, organic solvents such as methanol, ethanol, acetone, dimethylformamide, ethyl acetate and diethylether are mainly used for the extraction of polyphenols. These solvents require special process conditions and special care in the disposal of the used solvents. In this paper, the extraction of polyphenols from the model solution was performed using the aqueous two-phase system which contains 80.90 % water and represents low burden on the environment. The aqueous solution of gallic acid (GA was used as a model solution of polyphenols. The extraction was performed in the aqueous two-phase system containing PEG6000/H2O/(NH42SO4 in a macroextractor (V=10 mL and microextractor (V=14 μL. The influence of the process parameters, the concentration of gallic acid, pH and composition of the aqueous two-phase system was investigated in order to maximize the partition coefficient. The method of multifactor experimental planning was used to optimize the extraction process and the results were statistically analysed using the evolutionary operation method (EVOP. Optimal operating conditions of the extraction process were pH=6.50, γGA=4.50 g/L, the mass fraction of polyethylene glycol (PEG wPEG=0.1037 g/g and the mass fraction of ammonium sulphate (AMS wAMS=0.0925 g/g. Under these conditions the maximal partition coefficient of K=5.54 and the extraction efficiency of E=89.11 % were achieved and successfully applied for total phenol extraction from white wine in the macro- and microextractor. Approximately the same partition coefficients and extraction efficiency were achieved in the microextractor within a 60-fold shorter residence time.
Identification of two-phase flow regimes under variable gravity conditions
Energy Technology Data Exchange (ETDEWEB)
Kamiel S Gabriel [University of Ontario Institute of Technology 2000 Simcoe Street North, Oshawa, ON L1H 7K4 (Canada); Huawei Han [Mechanical Engineering Department, University of Saskatchewan 57 Campus Dr., Saskatoon, Saskatchewan, S7N 5A9 (Canada)
2005-07-01
Full text of publication follows: Two-phase flow is becoming increasingly important as we move into new and more aggressive technologies in the twenty-first century. Some of its many applications include the design of efficient heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers and energy transport systems. Two-phase flow has many applications in reduced gravity environments experienced in orbiting spacecraft and earth observation satellites. Examples are heat transport systems, the transfer and storage of cryogenic fluids, and condensation and flow boiling processes in heat exchangers. A concave parallel plate capacitance sensor has been developed to measure void fraction for the purpose of objectively identifying flow regimes. The sensor has been used to collect void-fraction data at microgravity conditions aboard the NASA and ESA zero-gravity aircraft. It is shown that the flow regimes can be objectively determined from the probability density functions of the void fraction signals. It was shown that under microgravity conditions four flow regimes exist: bubbly flow, characterized by discrete gas bubbles flowing in the liquid; slug flow, consisting of Taylor bubbles separated by liquid slugs which may or may not contain several small gas bubbles; transitional flow, characterized by the liquid flowing as a film at the tube wall, and the gas phase flowing in the center with the frequent appearance of chaotic, unstable slugs; and annular flow in which the liquid flows as a film along the tube wall and the gas flows uninterrupted through the center. Since many two-phase flow models are flow regime dependent, a method that can accurately and objectively determine flow regimes is required. (authors)
Two-Phase Immiscible Flows in Porous Media: The Mesocopic Maxwell–Stefan Approach
DEFF Research Database (Denmark)
Shapiro, Alexander
2015-01-01
We develop an approach to coupling between viscous flows of the two phases in porous media, based on the Maxwell–Stefan formalism. Two versions of the formalism are presented: the general form, and the form based on the interaction of the flowing phases with the interface between them. The last...... approach is supported by the description of the flow on the mesoscopic level, as coupled boundary problems for the Brinkmann or Stokes equations. It becomes possible, in some simplifying geometric assumptions, to derive exact expressions for the phenomenological coefficients in the Maxwell–Stefan transport...
Study on law of negative corona discharge in microparticle-air two-phase flow media
Directory of Open Access Journals (Sweden)
Bo He
2016-03-01
Full Text Available To study the basic law of negative corona discharge in solid particle-air two-phase flow, corona discharge experiments in a needle-plate electrode system at different voltage levels and different wind speed were carried out in the wind tunnel. In this paper, the change law of average current and current waveform were analyzed, and the observed phenomena were systematically explained from the perspectives of airflow, particle charging, and particle motion with the help of PIV (particle image velocity measurements and ultraviolet observations.
Multi-level adaptive simulation of transient two-phase flow in heterogeneous porous media
Chueh, C.C.
2010-10-01
An implicit pressure and explicit saturation (IMPES) finite element method (FEM) incorporating a multi-level shock-type adaptive refinement technique is presented and applied to investigate transient two-phase flow in porous media. Local adaptive mesh refinement is implemented seamlessly with state-of-the-art artificial diffusion stabilization allowing simulations that achieve both high resolution and high accuracy. Two benchmark problems, modelling a single crack and a random porous medium, are used to demonstrate the robustness of the method and illustrate the capabilities of the adaptive refinement technique in resolving the saturation field and the complex interaction (transport phenomena) between two fluids in heterogeneous media. © 2010 Elsevier Ltd.
Computation of Space Shuttle high-pressure cryogenic turbopump ball bearing two-phase coolant flow
Chen, Yen-Sen
1990-01-01
A homogeneous two-phase fluid flow model, implemented in a three-dimensional Navier-Stokes solver using computational fluid dynamics methodology is described. The application of the model to the analysis of the pump-end bearing coolant flow of the high-pressure oxygen turbopump of the Space Shuttle main engine is studied. Results indicate large boiling zones and hot spots near the ball/race contact points. The extent of the phase change of the liquid oxygen coolant flow due to the frictional and viscous heat fluxes near the contact areas has been investigated for the given inlet conditions of the coolant.
Gas-liquid two-phase flows in double inlet cyclones for natural gas separation
DEFF Research Database (Denmark)
Yang, Yan; Wang, Shuli; Wen, Chuang
2017-01-01
The gas-liquid two-phase flow within a double inlet cyclone for natural gasseparation was numerically simulated using the discrete phase model. The numericalapproach was validated with the experimental data, and the comparison resultsagreed well with each other. The simulation results showed......-outlet. The swirling flow was concentric dueto the design of the double inlet for the cyclonic separator, which greatly improvedthe separating efficiency. The separating efficiency was greater than 90% with theparticle diameter of more than 100 μm....
Application of a two-phase thermosyphon loop with minichannels and a minipump in computer cooling
Directory of Open Access Journals (Sweden)
Bieliński Henryk
2016-03-01
Full Text Available This paper focuses on the computer cooling capacity using the thermosyphon loop with minichannels and minipump. The one-dimensional separate model of two-phase flow and heat transfer in a closed thermosyphon loop with minichannels and minipump has been used in calculations. The latest correlations for minichannels available in literature have been applied. This model is based on mass, momentum, and energy balances in the evaporator, rising tube, condenser and the falling tube. A numerical analysis of the mass flux and heat transfer coefficient in the steady state has been presented.
Institute of Scientific and Technical Information of China (English)
Yi-rang Yuan
2004-01-01
For compressible two-phase displacement problem,the modified upwind finite difference fractional steps schemes are put forward.Some techniques,such as calculus of variations,commutative law of multiplication of difference operators,decomposition of high order difference operators,the theory of prior estimates and techniques are used.Optimal order estimates in L 2 norm are derived for the error in the approximate solution.This method has already been applied to the numerical simulation of seawater intrusion and migration-accumulation of oil resources.
Improvement of projection-type associative memories by using a two-phase recalling procedure.
Lee, D L; Wang, W J
1996-05-01
In this letter, we propose a Two-Phase Recalling Procedure (TPRP) to improve the recall capability of the projection-type associative memory. It is known that the conventional projection dynamic sometimes produces spurious states that do not belong to the space spanned by the prototype vectors (memory space). The proposed TPRP provides a trapped spurious state another chance to project onto the memory space such that the recall capability of the projection-type associative memories can be greatly improved. Finally a simulation result demonstrates the effectiveness of the TPRP.
NUMERICAL CALCULATION OF SOLID-LIQUID TWO PHASE FLOW BETWEEN STAY VANES IN HYDRAULIC TURBINE
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
In this paper, an energy equation of silt-laden water flow is educed based on the energy equation of continuum fluid flow. The dissipation functions of liquid phase and solid phase are presented respectively. Then the extremity law of energy dissipation rate is introduced for the research of the silt-laden water flow and a new mathematical model is developed. The corresponding procedure based on the finite difference method (FDM) is developed to calculate the two phase flow in hydraulic turbine. The method is applied to analyze the silt-laden water flow between stay vanes, and the numerical results are in good agreement with the experimental ones.
Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
Yang, Zhaochu; Dong, Tao; Halvorsen, Einar
2014-01-01
This work describes a capacitive sensor for identification of microfluidic two-phase flow in lab-on-chip devices. With interdigital electrodes and thin insulation layer utilized, this sensor is capable of being integrated with the microsystems easily. Transducing principle and design considerations are presented with respect to the microfluidic gas/liquid flow patterns. Numerical simulation results verify the operational principle. And the factors affecting the performance of the sensor are discussed. Besides, a feasible process flow for the fabrication is also proposed.
Analysis of heat and mass transfers in two-phase flow by coupling optical diagnostic techniques
Energy Technology Data Exchange (ETDEWEB)
Lemaitre, P.; Porcheron, E. [Institut de Radioprotection et de Surete Nucleaire, Saclay (France)
2008-08-15
During the course of a hypothetical accident in a nuclear power plant, spraying might be actuated to reduce static pressure in the containment. To acquire a better understanding of the heat and mass transfers between a spray and the surrounding confined gas, non-intrusive optical measurements have to be carried out simultaneously on both phases. The coupling of global rainbow refractometry with out-of-focus imaging and spontaneous Raman scattering spectroscopy allows us to calculate the local Spalding parameter B{sub M}, which is useful in describing heat transfer associated with two-phase flow. (orig.)
Two-phase treatment of patients with crossbite and tendency toward skeletal Class III malocclusion
Directory of Open Access Journals (Sweden)
Maria de Lourdes Machado Bayerl
2014-08-01
Full Text Available Angle Class III malocclusion is characterized by an inadequate anteroposterior dental relationship which may or may not be accompanied by skeletal changes. In general, patients are distressed by a significantly compromised facial aspect which, when associated with a deficient middle third, encourages patients to seek treatment. This article reports a two-phase treatment carried out in a female patient aged six years and six months with a tendency towards a Class III skeletal pattern. This case was presented to the Brazilian Board of Orthodontics and Facial Orthopedics (BBO. It is representative of the Discrepancy Index (DI category, and fulfills part of the requirements for obtaining BBO Diploma.
Numerical simulation for a two-phase porous medium flow problem with rate independent hysteresis
Brokate, M.
2012-05-01
The paper is devoted to the numerical simulation of a multiphase flow in porous medium with a hysteretic relation between the capillary pressures and the saturations of the phases. The flow model we use is based on Darcys law. The hysteretic relation between the capillary pressures and the saturations is described by a play-type hysteresis operator. We propose a numerical algorithm for treating the arising system of equations, discuss finite element schemes and present simulation results for the case of two phases. © 2011 Elsevier B.V. All rights reserved.
Numerical Investigation of Nanofluid Thermocapillary Convection Based on Two-Phase Mixture Model
Jiang, Yanni; Xu, Zelin
2017-08-01
Numerical investigation of nanofluid thermocapillary convection in a two-dimensional rectangular cavity was carried out, in which the two-phase mixture model was used to simulate the nanoparticles-fluid mixture flow, and the influences of volume fraction of nanoparticles on the flow characteristics and heat transfer performance were discussed. The results show that, with the increase of nanoparticle volume fraction, thermocapillary convection intensity weakens gradually, and the heat conduction effect strengthens; meanwhile, the temperature gradient at free surface increases but the free surface velocity decreases gradually. The average Nusselt number of hot wall and the total entropy generation decrease with nanoparticle volume fraction increasing.
Vector Controlled Two Phase Induction Motor and To A Three Phase Induction Motor
Directory of Open Access Journals (Sweden)
K.krishna Rao (PG student
2014-12-01
Full Text Available This paper presents vector controlled of single phase induction motor. some problems are with vector controlled SPIM.As SPIM’s are typically to maintain speed and also about the complex implementation of vector controlled SPIM.the implemantion of the proposed vector controlled TPIM compared to the vector controlled SPIM. The general modal sutable for vector control of the unsymmentrical two phase induction motor and also stator flux oriented controlled strategies are analized. the comparative performance of both has been presented in this work with help of a practical three phase motor.
SIMULATION OF LOW-CONCENTRATION SEDIMENT-LADEN FLOW BASED ON TWO-PHASE FLOW THEORY
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Low concentration sediment-laden flow is usually involved in water conservancy, environmental protection, navigation and so on. In this article, a mathematical model for low-concentration sediment-laden flow was suggested based on the two-phase flow theory, and a solving scheme for the mathematical model in curvilinear grids was worked out. The observed data in the Zhang River in China was used for the verification of the model, and the calculated results of the water level, velocity and river bed deformation are in agreement with the observed ones.
Dynamics of a two-phase flow through a minichannel: Transition from churn to slug flow
Górski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej
2016-04-01
The churn-to-slug flow bifurcations of two-phase (air-water) flow patterns in a 2mm diameter minichannel were investigated. With increasing a water flow rate, we observed the transition of slugs to bubbles of different sizes. The process was recorded by a digital camera. The sequences of light transmission time series were recorded by a laser-phototransistor sensor, and then analyzed using the recurrence plots and recurrence quantification analysis (RQA). Due to volume dependence of bubbles velocities, we observed the formation of periodic modulations in the laser signal.
A two-phase linear programming approach for redundancy allocation problems
Directory of Open Access Journals (Sweden)
Hsieh Yi-Chih
2002-01-01
Full Text Available Provision of redundant components in parallel is an efficient way to increase the system reliability, however, the weight, volume and cost of the system will increase simultaneously. This paper proposes a new two-phase linear programming approach for solving the nonlinear redundancy allocation problems subject to multiple linear constraints. The first phase is used to approximately allocate the resource by using a general linear programming, while the second phase is used to re-allocate the slacks of resource by using a 0-1 integer linear programming. Numerical results demonstrate the effectiveness and efficiency of the proposed approach.
Finite Element Approximation for the Dynamics of Fluidic Two-Phase Biomembranes
Barrett, John W; Nürnberg, Robert
2016-01-01
Biomembranes and vesicles consisting of multiple phases can attain a multitude of shapes, undergoing complex shape transitions. We study a Cahn--Hilliard model on an evolving hypersurface coupled to Navier--Stokes equations on the surface and in the surrounding medium to model these phenomena. The evolution is driven by a curvature energy, modelling the elasticity of the membrane, and by a Cahn--Hilliard type energy, modelling line energy effects. A stable semidiscrete finite element approximation is introduced and, with the help of a fully discrete method, several phenomena occurring for two-phase membranes are computed.
Measurements of viscosity and permeability of two phase miscible fluid flow in rock cores.
Williams, J L; Taylor, D G
1994-01-01
This paper describes the application of 1H magnetic resonance imaging (MRI) to the measurement of fluid viscosity and rock core plug permeability during two phase miscible displacements in certain rock types. The core plug permeability was determined by monitoring glycerol solutions displacing D2O. Simple physical principles were used to calculate the core permeability from the measured displacement angle for a set of Lochaline sandstone core plugs. In a further experiment the viscosity of polyacrylamide solution 1500 ppm was determined in the core plug. The permeability and viscosity results compared well to conventional core analysis methods.
Fractionation of wheat gliadins by counter-current distribution using an organic two-phase system.
Truust, H; Johansson, G
1998-06-26
A liquid liquid two-phase system based on N,N-dimethylformamide and the two polymers, poly(ethyleneglycol) and Ficoll, useful for partitioning of hydrophobic proteins, has been developed. The system has been applied to a counter-current distribution process in 56 steps for analysing the heterogeneity of proteins extracted with N,N-dimethylformamide from wheat flour. The counter-current distribution patterns of proteins, extracted from eight kinds of wheat, have been analysed. The minimum number of hypothetical proteins necessary to describe the patterns was found to be seven. The relative amount of these hypothetical components varied among the wheats.
Single and two-phase flows on chemical and biomedical engineering
Antonio, Martins; Rui, Lima
2012-01-01
""Single or two-phase flows are ubiquitous in most natural process and engineering systems. Examples of systems or process include, packed bed reactors, either single phase or multiphase, absorber and adsorber separation columns, filter beds, plate heat exchangers, flow of viscoelastic fluids in polymer systems, or the enhanced recovery of oil, among others. In each case the flow plays a central role in determining the system or process behaviour and performance. A better understanding of the underlying physical phenomena and the ability to describe the phenomena properly are both crucial to