Visual Analysis of Inclusion Dynamics in Two-Phase Flow.
Karch, Grzegorz Karol; Beck, Fabian; Ertl, Moritz; Meister, Christian; Schulte, Kathrin; Weigand, Bernhard; Ertl, Thomas; Sadlo, Filip
2018-05-01
In single-phase flow visualization, research focuses on the analysis of vector field properties. In two-phase flow, in contrast, analysis of the phase components is typically of major interest. So far, visualization research of two-phase flow concentrated on proper interface reconstruction and the analysis thereof. In this paper, we present a novel visualization technique that enables the investigation of complex two-phase flow phenomena with respect to the physics of breakup and coalescence of inclusions. On the one hand, we adapt dimensionless quantities for a localized analysis of phase instability and breakup, and provide detailed inspection of breakup dynamics with emphasis on oscillation and its interplay with rotational motion. On the other hand, we present a parametric tightly linked space-time visualization approach for an effective interactive representation of the overall dynamics. We demonstrate the utility of our approach using several two-phase CFD datasets.
Directory of Open Access Journals (Sweden)
Mosdorf Romuald
2015-06-01
Full Text Available The two-phase flow (water-air occurring in square minichannel (3x3 mm has been analysed. In the minichannel it has been observed: bubbly flow, flow of confined bubbles, flow of elongated bubbles, slug flow and semi-annular flow. The time series recorded by laser-phototransistor sensor was analysed using the recurrence quantification analysis. The two coefficients:Recurrence rate (RR and Determinism (DET have been used for identification of differences between the dynamics of two-phase flow patterns. The algorithm which has been used normalizes the analysed time series before calculating the recurrence plots.Therefore in analysis the quantitative signal characteristicswas neglected. Despite of the neglect of quantitative signal characteristics the analysis of its dynamics (chart of DET vs. RR allows to identify the two-phase flow patterns. This confirms that this type of analysis can be used to identify the two-phase flow patterns in minichannels.
International Nuclear Information System (INIS)
Hsu, Y.Y.
1974-01-01
The following papers related to two-phase flow are summarized: current assumptions made in two-phase flow modeling; two-phase unsteady blowdown from pipes, flow pattern in Laval nozzle and two-phase flow dynamics; dependence of radial heat and momentum diffusion; transient behavior of the liquid film around the expanding gas slug in a vertical tube; flooding phenomena in BWR fuel bundles; and transient effects in bubble two-phase flow. (U.S.)
Dynamic analysis of slug flow regime in two-phase flow
International Nuclear Information System (INIS)
Kwak, Nam Yee; Lee, Jae Young; Kim, Man Woong
2008-01-01
The bubble dynamics in the two-phase flow is complicated to be modeled but we have reliable model to estimate fortunately. However, they are working well for the one dimensional analysis only. Also, the three dimensional knowledge is requested in the industry strongly, but we have still confusion in the two-phase analysis. Especially recent arguments are set at the several points: (1) the flow regime transition between the slug flow and churn flow (2) flow regimes for the inclined tubes. We have been studied flow regime map for the inclined tube and we met both unsolved issues. In the center of the debate there was a slug bubble phenomenon. Therefore, we decided to study the dynamic and geometric characteristics of slug bubble in terms of the inclination and analytic understanding. As a first step of the study, we finished to design and construct the facility and instrumentation. And we are now studying the existing analytical models and comparing them with our experimental data
Present status of numerical analysis on transient two-phase flow
International Nuclear Information System (INIS)
Akimoto, Masayuki; Hirano, Masashi; Nariai, Hideki.
1987-01-01
The Special Committee for Numerical Analysis of Thermal Flow has recently been established under the Japan Atomic Energy Association. Here, some methods currently used for numerical analysis of transient two-phase flow are described citing some information given in the first report of the above-mentioned committee. Many analytical models for transient two-phase flow have been proposed, each of which is designed to describe a flow by using differential equations associated with conservation of mass, momentum and energy in a continuous two-phase flow system together with constructive equations that represent transportation of mass, momentum and energy though a gas-liquid interface or between a liquid flow and the channel wall. The author has developed an analysis code, called MINCS, that serves for systematic examination of conservation equation and constructive equations for two-phase flow models. A one-dimensional, non-equilibrium two-liquid flow model that is used as the basic model for the code is described. Actual procedures for numerical analysis is shown and some problems concerning transient two-phase analysis are described. (Nogami, K.)
International Nuclear Information System (INIS)
Delaje, Dzh.
1984-01-01
General hypothesis used to simplify the equations, describing two-phase flows, are considered. Two-component and one-component models of two-phase flow, as well as Zuber and Findlay model for actual volumetric steam content, and Wallis model, describing the given phase rates, are presented. The conclusion is made, that the two-component model, in which values averaged in time are included, is applicable for the solving of three-dimensional tasks for unsteady two-phase flow. At the same time, using the two-component model, including values, averaged in space only one-dimensional tasks for unsteady two-phase flow can be solved
Analysis of forced convective transient boiling by homogeneous model of two-phase flow
International Nuclear Information System (INIS)
Kataoka, Isao
1985-01-01
Transient forced convective boiling is of practical importance in relation to the accident analysis of nuclear reactor etc. For large length-to-diameter ratio, the transient boiling characteristics are predicted by transient two-phase flow calculations. Based on homogeneous model of two-phase flow, the transient forced convective boiling for power and flow transients are analysed. Analytical expressions of various parameters of transient two-phase flow have been obtained for several simple cases of power and flow transients. Based on these results, heat flux, velocity and time at transient CHF condition are predicted analytically for step and exponential power increases, and step, exponential and linear velocity decreases. The effects of various parameters on heat flux, velocity and time at transient CHF condition have been clarified. Numerical approach combined with analytical method is proposed for more complicated cases. Solution method for pressure transient are also described. (author)
Flow visualization analysis of two-phase flow through contraction using shadow-image and PIV
International Nuclear Information System (INIS)
Watanabe, Satoshi; Morimoto, Yuichiro; Ishikawa, Masaaki; Okamoto, Koji; Madarame, Haruki
2004-01-01
Gas-liquid two-phase flow through contraction was visualized and analyzed using shadow-image and PIV. The flow channel has reducer, where the width was contracted from 50mm to 20mm. Bubble deformation and concurrent velocity fluctuation was investigated varying superficial liquid flow rate from 0.4m/s to 8.0m/s. (author)
International Nuclear Information System (INIS)
Cacuci, D.G.
1984-07-01
This report presents a self-contained mathematical formalism for deterministic sensitivity analysis of two-phase flow systems, a detailed application to sensitivity analysis of the homogeneous equilibrium model of two-phase flow, and a representative application to sensitivity analysis of a model (simulating pump-trip-type accidents in BWRs) where a transition between single phase and two phase occurs. The rigor and generality of this sensitivity analysis formalism stem from the use of Gateaux (G-) differentials. This report highlights the major aspects of deterministic (forward and adjoint) sensitivity analysis, including derivation of the forward sensitivity equations, derivation of sensitivity expressions in terms of adjoint functions, explicit construction of the adjoint system satisfied by these adjoint functions, determination of the characteristics of this adjoint system, and demonstration that these characteristics are the same as those of the original quasilinear two-phase flow equations. This proves that whenever the original two-phase flow problem is solvable, the adjoint system is also solvable and, in principle, the same numerical methods can be used to solve both the original and adjoint equations
Analysis of two-phase flow induced vibrations in perpendiculary supported U-type piping systems
International Nuclear Information System (INIS)
Hiramatsu, Tsutomu; Komura, Yoshiaki; Ito, Atsushi.
1984-01-01
The perpose of this analysis is to predict the vibration level of a pipe conveying a two-phase flowing fluid. Experiments were carried out with a perpendiculary supported U-type piping system, conveying an air-water two-phase flow in a steady state condition. Fluctuation signals are observed by a void signal sensor, and power spectral densities and probability density functions are obtained from the void signals. Theoretical studies using FEM and an estimation of the exciting forces from the PSD of void signals, provided a good predictional estimation of vibration responses of the piping system. (author)
Development of a large-scale general purpose two-phase flow analysis code
International Nuclear Information System (INIS)
Terasaka, Haruo; Shimizu, Sensuke
2001-01-01
A general purpose three-dimensional two-phase flow analysis code has been developed for solving large-scale problems in industrial fields. The code uses a two-fluid model to describe the conservation equations for two-phase flow in order to be applicable to various phenomena. Complicated geometrical conditions are modeled by FAVOR method in structured grid systems, and the discretization equations are solved by a modified SIMPLEST scheme. To reduce computing time a matrix solver for the pressure correction equation is parallelized with OpenMP. Results of numerical examples show that the accurate solutions can be obtained efficiently and stably. (author)
International Nuclear Information System (INIS)
Boure, J.A.
1974-12-01
Two-phase flow instabilities are classified according to three criteria: the static or dynamic nature of the phenomenon, the necessity or not of a triggering phenomenon, and the pure or compound character of the phenomenon. Tables give the elementary instability phenomena, and the practical types of instability. Flow oscillations (or dynamic instabilities) share a number of characteristics which are dealt with, they are caused by the dynamic interactions between the flow parameters (flow rate, density, pressure, enthalpy and their distributions). Oscillation types are discussed: pure oscillations are density wave oscillations, acoustic oscillations may also occur, various compound oscillations involve either the density wave or the acoustic wave mechanism, interacting with some of the boundary conditions in the device. The analysis of slow oscillations has been made either by means of a simplified model (prediction of the thresholds) or of computer codes. Numerous computer codes are available [fr
Entropy analysis on non-equilibrium two-phase flow models
Energy Technology Data Exchange (ETDEWEB)
Karwat, H.; Ruan, Y.Q. [Technische Universitaet Muenchen, Garching (Germany)
1995-09-01
A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.
Electric capacitance tomography and two-phase flow for the nuclear reactor safety analysis
International Nuclear Information System (INIS)
Lee, Jae Young
2008-01-01
Recently electric capacitance tomography has been developed to be used in the analysis of two-phase flow. Although its electric field is not focused as the hard ray tomography such as the X-ray or gamma ray, its convenience of easy access to the system and easy maintenance due to no requirement of radiation shielding benefits us in its application in the two-phase flow study, one of important area in the nuclear safety analysis. In the present paper, the practical technologies in the electric capacitance tomography are represented in both parts of hardware and software. In the software part, both forward problem and inverse problem are discussed and the method of regularization. In the hardware part, the brief discussion of the electronics circuits is made which provides femto farad resolution with a reasonable speed (150 frame/sec for 16 electrodes). Some representative ideal cases are studied to demonstrate its potential capability for the two-phase flow analysis. Also, some variations of the tomography such as axial tomography, and three dimensional tomography are discussed. It was found that the present ECT is expected to become a useful tool to understand the complicated three dimensional two-phase flow which may be an important feature to be equipped by the safety analysis codes. (author)
Mechanistic multidimensional analysis of two-phase flow in horizontal tube with 90 deg elbow
International Nuclear Information System (INIS)
Tselishcheva, E.A.; Antal, St.P.; Podowski, M.Z.; Marshall, S.
2007-01-01
The development of modeling and simulation capabilities of two-phase flow and heat transfer is very important for the design, operation and safety of nuclear reactors. Whereas a significant progress in this field has been made over the recent years, further advancements are clearly needed for new concepts of advanced (Generation-IV in particular) reactors. Difficulties in analyzing gas/liquid flows are due to the fact that such two-phase mixtures can assume several different flow patterns, each characterized by flow-regime specific interfacial phenomena of mass, momentum and energy transfer. The level of difficulty increases even further in the case of a complex tube geometries and spatial orientations. The purpose of this paper is to discuss the results of the analysis of a two-phase flow in a horizontal pipe with a 90-degree elbow. The overall objective of the present work is the development of a 3-dimensional computational model of a two-phase high-Reynolds number turbulent flow. The overall new model has been encoded in the next-generation Computational Multiphase Fluid Dynamics (CMFD) computer code, NPHASE. The model has been tested parametrically and the results of NPHASE calculations have been compared against experimental data. It has been demonstrated that the proposed model is consistent both physically and numerically, the predictions are in a reasonable agreement with the measurements
Nonlinear analysis of gas-water/oil-water two-phase flow in complex networks
Gao, Zhong-Ke; Wang, Wen-Xu
2014-01-01
Understanding the dynamics of multi-phase flows has been a challenge in the fields of nonlinear dynamics and fluid mechanics. This chapter reviews our work on two-phase flow dynamics in combination with complex network theory. We systematically carried out gas-water/oil-water two-phase flow experiments for measuring the time series of flow signals which is studied in terms of the mapping from time series to complex networks. Three network mapping methods were proposed for the analysis and identification of flow patterns, i.e. Flow Pattern Complex Network (FPCN), Fluid Dynamic Complex Network (FDCN) and Fluid Structure Complex Network (FSCN). Through detecting the community structure of FPCN based on K-means clustering, distinct flow patterns can be successfully distinguished and identified. A number of FDCN’s under different flow conditions were constructed in order to reveal the dynamical characteristics of two-phase flows. The FDCNs exhibit universal power-law degree distributions. The power-law exponent ...
Ultrafast X-ray tomography for two-phase flow analysis in centrifugal pumps
International Nuclear Information System (INIS)
Schaefer, Thomas; Hampel, Uwe; Technische Univ. Dresden
2017-01-01
The unsteady behavior of gas-liquid two-phase flow in a centrifugal pump impeller has been visualized, using ultrafast X-ray tomography. Based on the reconstructed tomographic images an evaluation and detailed analysis of the flow conditions has been done. Here, the high temporal resolution of the tomographic images offered the opportunity to get a deep insight into the flow to perform a detailed description of the transient gas-liquid phase distribution inside the impeller. Significant properties of the occurring two-phase flow and characteristic flow patterns have been disclosed. Furthermore, the effects of different air entrainment conditions have been investigated and typical phase distributions inside the impeller have been shown.
Ultrafast X-ray tomography for two-phase flow analysis in centrifugal pumps
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Thomas [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Fluid Dynamics; Hampel, Uwe [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Fluid Dynamics; Technische Univ. Dresden (Germany). AREVA Endowed Chair of Imaging Techniques in Energy and Process Engineering
2017-07-15
The unsteady behavior of gas-liquid two-phase flow in a centrifugal pump impeller has been visualized, using ultrafast X-ray tomography. Based on the reconstructed tomographic images an evaluation and detailed analysis of the flow conditions has been done. Here, the high temporal resolution of the tomographic images offered the opportunity to get a deep insight into the flow to perform a detailed description of the transient gas-liquid phase distribution inside the impeller. Significant properties of the occurring two-phase flow and characteristic flow patterns have been disclosed. Furthermore, the effects of different air entrainment conditions have been investigated and typical phase distributions inside the impeller have been shown.
Pigging analysis for gas-liquid two phase flow in pipelines
International Nuclear Information System (INIS)
Kohda, K.; Suzukawa, Y.; Furukawa, H.
1988-01-01
A new method to analyze transient phenomena caused by pigging in gas-liquid two-phase flow is developed. During pigging, a pipeline is divided into three sections by two moving boundaries, namely the pig and the leading edge of the liquid slug in front of the pig. The basic equations are mass, momentum and energy conservation equations. The boundary conditions at the moving boundaries are determined from the mass conservation across the boundaries, etc. A finite difference method is used to solve the equations numerically. The method described above is also capable of analyzing transient two-phase flow caused by pressure and flow rate changes. Thus the over-all analysis of transient two-phase flow in pipelines becomes possible. A series of air-water two-phase flow pigging experiments was conducted using 105.3 mm diameter and 1436.5 m long test pipeline. The agreement between the measured and the calculated results is very good
Two-phase flow instrumentation
International Nuclear Information System (INIS)
Brand, B.; Emmerling, R.; Fischer, C.; Gaul, H.P.; Umminger, K.
1992-01-01
A careful measurement of the relevant two-phase flow parameters is the basis for the understanding of many thermohydraulic processes. Especially in the nuclear safety research where accident scenarios have to be simulated in experimental setups and predicted by complex computer code systems a reliable tow-phase instrumentation is substantial for the connection between analysis and experiment. Ambitious development programs have been carried out in many institutions and countries to promote two-phase instrumentation. Advantages as well as limitations of some of these systems will be discussed in the paper. In the last 10 - 15 years good progress has been made. However there are still goals for further developments and there is still the fact that in many cases - measured data taken from large experimental facilities cannot be compared directly to the parameters calculated by the codes. Careful comparison and interpretation of both calculated and measured results by experienced researchers will be the key for the thermohydraulic understanding of complex two-phase phenomena also in the future. (authors). 19 figs., 2 tabs., 18 refs
Evaluation of the Sensitivity of Two-Phase Flow Model for the Steam Separator Analysis
International Nuclear Information System (INIS)
Michio Murase; Masao Chaki
2006-01-01
Reducing of the pressure losses of steam separator systems of boiling water reactor (BWR) plants is useful to reduce the required pump head and enhance core stability design margin. The need to reduce the pressure losses of steam separator systems is especially important in BWR plants that have high power density cores and natural circulation systems. The core flow rate of a BWR plant with a natural circulation system is affected by the pressure losses of steam separator systems. In BWR plants with high power density cores, the core stability design margin is affected by these pressure losses. Generally, reducing the pressure losses of the steam separator systems leads to increased carry-under and carryover. Reducing the pressure losses while keeping the characteristics of both carry-under and carryover is desired, so many studies have been done. The steam separator of a BWR plant consists of a standpipe section, a swirl vane section and three-barrel sections. Two-phase flow of steam and water enters the steam separator through the standpipe section and reaches the swirl vane section. In the swirl vane section, the two-phase flow is given centrifugal force and is basically separated into steam and water. Therefore investigating the two-phase flow characteristics of the swirl vane section is very important. After the swirl vane section, the two-phase flow enters the barrel sections. Each barrel has a pick-off ring. The water in the barrel section is mainly removed by these pick-off rings because the water mainly flows upward as a liquid film in the barrel section due to the centrifugal force given in the swirl vane section. We researched the effect of using the drag force model of the swirling two-phase flow in analyzing a steam separator and we found that the drag force model greatly affects the results of the analysis. (authors)
Analysis of water hammer in two-component two-phase flows
International Nuclear Information System (INIS)
Warde, H.; Marzouk, E.; Ibrahim, S.
1989-01-01
The water hammer phenomena caused by a sudden valve closure in air-water two-phase flows must be clarified for the safety analysis of LOCA in reactors and further for the safety of boilers, chemical plants, pipe transport of fluids such as petroleum and natural gas. In the present work water hammer phenomena caused by sudden valve closure in two-component two-phase flows are investigated theoretically and experimentally. The phenomena are more complicated than in single phase-flows due to the fact of the presence of compressible component. Basic partial differential equations based on a one-dimensional homogeneous flow model are solved by the method of characteristic. The analysis is extended to include friction in a two-phase mixture depending on the local flow pattern. The profiles of the pressure transients, the propagation velocity of pressure waves and the effect of valve closure on the transient pressure are found. Different two-phase flow pattern and frictional pressure drop correlations were used including Baker, Chesholm and Beggs and Bril correlations. The effect of the flow pattern on the characteristic of wave propagation is discussed primarily to indicate the effect of void fraction on the velocity of wave propagation and on the attenuation of pressure waves. Transient pressure in the mixture were recorded at different air void fractions, rates of uniform valve closure and liquid flow velocities with the aid of pressure transducers, transient wave form recorders interfaced with an on-line pc computer. The results are compared with computation, and good agreement was obtained within experimental accuracy
Xie, Wei-Yang; Li, Xiao-Ping; Zhang, Lie-Hui; Tan, Xiao-Hua; Wang, Jun-Chao; Wang, Hai-Tao
2015-01-01
After multistage fracturing, the flowback of fracturing fluid will cause two-phase flow through hydraulic fractures in shale gas reservoirs. With the consideration of two-phase flow and desorbed gas transient diffusion in shale gas reservoirs, a two-phase transient flow model of multistage fractured horizontal well in shale gas reservoirs was created. Accurate solution to this flow model is obtained by the use of source function theory, Laplace transform, three-dimensional eigenvalue method, ...
Steady state flow analysis of two-phase natural circulation in multiple parallel channel loop
Energy Technology Data Exchange (ETDEWEB)
Bhusare, V.H. [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Bagul, R.K. [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Joshi, J.B., E-mail: jbjoshi@gmail.com [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Department of Chemical Engineering, Institute of Chemical Technology, Matunga, Mumbai 400019 (India); Nayak, A.K. [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Kannan, Umasankari [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Reactor Physics Design Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Pilkhwal, D.S. [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Vijayan, P.K. [Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)
2016-08-15
Highlights: • Liquid circulation velocity increases with increasing superficial gas velocity. • Total two-phase pressure drop decreases with increasing superficial gas velocity. • Channels with larger driving force have maximum circulation velocities. • Good agreement between experimental and model predictions. - Abstract: In this work, steady state flow analysis has been carried out experimentally in order to estimate the liquid circulation velocities and two-phase pressure drop in air–water multichannel circulating loop. Experiments were performed in 15 channel circulating loop. Single phase and two-phase pressure drops in the channels have been measured experimentally and have been compared with theoretical model of Joshi et al. (1990). Experimental measurements show good agreement with model.
Analysis of one-dimensional nonequilibrium two-phase flow using control volume method
International Nuclear Information System (INIS)
Minato, Akihiko; Naitoh, Masanori
1987-01-01
A one-dimensional numerical analysis model was developed for prediction of rapid flow transient behavior involving boiling. This model was based on six conservation equations of time averaged parameters of gas and liquid behavior. These equations were solved by using a control volume method with an explicit time integration. This model did not use staggered mesh scheme, which had been commonly used in two-phase flow analysis. Because void fraction and velocity of each phase were defined at the same location in the present model, effects of void fraction on phase velocity calculation were treated directly without interpolation. Though non-staggered mesh scheme was liable to cause numerical instability with zigzag pressure field, stability was achieved by employing the Godunov method. In order to verify the present analytical model, Edwards' pipe blow down and Zaloudek's initially subcooled critical two-phase flow experiments were analyzed. Stable solutions were obtained for rarefaction wave propagation with boiling and transient two-phase flow behavior in a broken pipe by using this model. (author)
Analysis of Two-Phase Flow in Damper Seals for Cryogenic Turbopumps
Arauz, Grigory L.; SanAndres, Luis
1996-01-01
Cryogenic damper seals operating close to the liquid-vapor region (near the critical point or slightly su-cooled) are likely to present two-phase flow conditions. Under single phase flow conditions the mechanical energy conveyed to the fluid increases its temperature and causes a phase change when the fluid temperature reaches the saturation value. A bulk-flow analysis for the prediction of the dynamic force response of damper seals operating under two-phase conditions is presented as: all-liquid, liquid-vapor, and all-vapor, i.e. a 'continuous vaporization' model. The two phase region is considered as a homogeneous saturated mixture in thermodynamic equilibrium. Th flow in each region is described by continuity, momentum and energy transport equations. The interdependency of fluid temperatures and pressure in the two-phase region (saturated mixture) does not allow the use of an energy equation in terms of fluid temperature. Instead, the energy transport is expressed in terms of fluid enthalpy. Temperature in the single phase regions, or mixture composition in the two phase region are determined based on the fluid enthalpy. The flow is also regarded as adiabatic since the large axial velocities typical of the seal application determine small levels of heat conduction to the walls as compared to the heat carried by fluid advection. Static and dynamic force characteristics for the seal are obtained from a perturbation analysis of the governing equations. The solution expressed in terms of zeroth and first order fields provide the static (leakage, torque, velocity, pressure, temperature, and mixture composition fields) and dynamic (rotordynamic force coefficients) seal parameters. Theoretical predictions show good agreement with experimental leakage pressure profiles, available from a Nitrogen at cryogenic temperatures. Force coefficient predictions for two phase flow conditions show significant fluid compressibility effects, particularly for mixtures with low mass
Development of computational two-phase flow analysis code with interfacial area transport equation
International Nuclear Information System (INIS)
Bae, B.U.; Park, G.C.; Yoon, H.Y.; Euh, D.J.; Song, C.H.
2007-01-01
In the two-phase flow analysis with two-fluid model, interfacial area concentration (IAC) is a dominant factor governing the interfacial transfer of momentum and energy. In order to overcome the shortcomings of experimental correlation for IAC, such as the dependency on the flow regime, multi-dimensional computational fluid dynamics (CFD) code was developed with the interfacial area transport equation. The code is based on two-fluid model and simplified marker and cell (SMAC) algorithm using the finite volume method, and the conventional approach in single-phase flow has been modified in order to consider the term of phase change. Also, instead of a static one-dimensional correlation for IAC, the code adopted the one-group interfacial area transport equation which includes source terms with respect to the coalescence and breakup of bubbles, and the phase change such as evaporation or condensation. As benchmark problems of single-phase flow and two-phase flow, the natural convection in rectangular cavity and the subcooled boiling in vertical annulus channel were analyzed, respectively. In the calculation for single-phase flow, the developed code predicted reasonable behavior of buoyancy-driven flow depending on Rayleigh number, so that the robustness in calculation capability of each phase has been confirmed. In the analysis for the subcooled boiling experiment performed in Seoul National University, the calculation results represented the reasonable capability in predicting the multi-dimensional phenomena such as vapor generation and void propagation. (authors)
Development of computational two-phase flow analysis code with interfacial area transport equation
Energy Technology Data Exchange (ETDEWEB)
Bae, B.U.; Park, G.C. [Seoul National Univ., Dept. of Nuclear Engineering (Korea, Republic of); Yoon, H.Y.; Euh, D.J.; Song, C.H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2007-07-01
In the two-phase flow analysis with two-fluid model, interfacial area concentration (IAC) is a dominant factor governing the interfacial transfer of momentum and energy. In order to overcome the shortcomings of experimental correlation for IAC, such as the dependency on the flow regime, multi-dimensional computational fluid dynamics (CFD) code was developed with the interfacial area transport equation. The code is based on two-fluid model and simplified marker and cell (SMAC) algorithm using the finite volume method, and the conventional approach in single-phase flow has been modified in order to consider the term of phase change. Also, instead of a static one-dimensional correlation for IAC, the code adopted the one-group interfacial area transport equation which includes source terms with respect to the coalescence and breakup of bubbles, and the phase change such as evaporation or condensation. As benchmark problems of single-phase flow and two-phase flow, the natural convection in rectangular cavity and the subcooled boiling in vertical annulus channel were analyzed, respectively. In the calculation for single-phase flow, the developed code predicted reasonable behavior of buoyancy-driven flow depending on Rayleigh number, so that the robustness in calculation capability of each phase has been confirmed. In the analysis for the subcooled boiling experiment performed in Seoul National University, the calculation results represented the reasonable capability in predicting the multi-dimensional phenomena such as vapor generation and void propagation. (authors)
STUDY OF IDENTIFICATION OF TWO-PHASE FLOW PARAMETERS BY PRESSURE FLUCTUATION ANALYSIS
Directory of Open Access Journals (Sweden)
Ondrej Burian
2016-12-01
Full Text Available This paper deals with identification of parameters of simple pool boiling in a vertical rectangular channel by analysis of pressure fluctuation. In this work is introduced a small experimental facility about 9 kW power, which was used for simulation of pool boiling phenomena and creation of steam-water volume. Several pressure fluctuations measurements and differential pressure fluctuations measurements at warious were carried out. Main changed parameters were power of heaters and hydraulics resistance of channel internals. Measured pressure data was statistically analysed and compared with goal to find dependencies between parameters of two-phase flow and statistical properties of pressure fluctuation. At the end of this paper are summarized final results and applicability of this method for parameters determination of two phase flow for pool boiling conditions at ambient pressure.
Two-phase flow modeling in the rod bundle subchannel analysis
International Nuclear Information System (INIS)
Hisashi, Ninokata
2006-01-01
In order to practice a design-by-analysis of thermohydraulics design of BWR fuel rod bundles, the subchannel analysis would play a major role. There, the immediate concern is improvement in its predictive capability of CHF due in particular to the film dryout (boiling transition phenomena: BT) on the fuel rod surface. Constitutive equations in the subchannel analysis formulation are responsible for the quality of calculated results. The constitutive equations are a result of integration of the local and instantaneous description of two-phase flows over the subchannel control volume. In general, they are expressed in terms of subchannel-control-volume- as well as area-averaged two-phase flow state variables. In principle the information on local and instantaneous physical phenomena taking place inside subchannels must be counted for in the algebraic form of the equations on the basis of a more mechanistic modeling approach. They should include also influences of the multi-dimensional subchannel geometry and fluid material properties. Thermohydraulics phenomena of interests in this deed are: 1) vapor-liquid re-distribution by inter-subchannel exchanges due to the diversion cross flow, turbulent mixing and void drift, 2) liquid film behaviors, 3) transition of two-phase flow regimes, 4) droplet entrainment and deposition and 5) spacer-droplet interactions. These are considered to be five key factors in understanding the BT in BWR fuel rod bundles. In Japan, a university-industry consortium has been formed under the sponsorship of the Ministry of Economics, Trade and Industry. This paper describes an outline of the on-going project and, first, an outline of the current efforts is presented in developing a new two-fluid three field subchannel code NASCA being aimed at predicting onset of BT, and post BT phenomena in advanced BWR fuel rod bundles including those of the tight lattice configuration for a higher conversion. Then the current methodology adopted to improve
Two-phase flow modeling in the rod bundle subchannel analysis
International Nuclear Information System (INIS)
Hisashi, Ninokata
2004-01-01
Full text of publication follows:In order to practice a design-by-analysis of thermohydraulics design of BWR fuel rod bundles, the subchannel analysis would play a major role. There, the immediate concern is improvement in its predictive capability of CHF due in particular to the film dryout (boiling transition phenomena: BT) on the fuel rod surface. Constitutive equations in the subchannel analysis formulation are responsible for the quality of calculated results. The constitutive equations are a result of integration of the local and instantaneous description of two-phase flows over the subchannel control volume. In general, they are expressed in terms of subchannel-control-volume- as well as area-averaged two-phase flow state variables. In principle the information on local and instantaneous physical phenomena taking place inside subchannels must be counted for in the algebraic form of the equations on the basis of a more mechanistic modeling approach. They should include also influences of the multi-dimensional subchannel geometry and fluid material properties. Thermohydraulics phenomena of interests in this deed are: 1) vapor-liquid re-distribution by inter-subchannel exchanges due to the diversion cross flow, turbulent mixing and void drift, 2) liquid film behaviors, 3) transition of two-phase flow regimes, 4) droplet entrainment and deposition and 5) spacer-droplet interactions. These are considered to be five key factors in understanding the BT in BWR fuel rod bundles. In Japan, a university-industry consortium has been formed under the sponsorship of the Ministry of Economics, Trade and Industry. This paper describes an outline of the on-going project and, first, an outline of the current efforts is presented in developing a new two-fluid three field subchannel code NASCA being aimed at predicting onset of BT, and post BT phenomena in advanced BWR fuel rod bundles including those of the tight lattice configuration for a higher conversion. Then the current
Directory of Open Access Journals (Sweden)
Wei-Yang Xie
2015-01-01
Full Text Available After multistage fracturing, the flowback of fracturing fluid will cause two-phase flow through hydraulic fractures in shale gas reservoirs. With the consideration of two-phase flow and desorbed gas transient diffusion in shale gas reservoirs, a two-phase transient flow model of multistage fractured horizontal well in shale gas reservoirs was created. Accurate solution to this flow model is obtained by the use of source function theory, Laplace transform, three-dimensional eigenvalue method, and orthogonal transformation. According to the model’s solution, the bilogarithmic type curves of the two-phase model are illustrated, and the production decline performance under the effects of hydraulic fractures and shale gas reservoir properties are discussed. The result obtained in this paper has important significance to understand pressure response characteristics and production decline law of two-phase flow in shale gas reservoirs. Moreover, it provides the theoretical basis for exploiting this reservoir efficiently.
Analysis for transient temperature distribution two phase flow using test section QUEEN-02
International Nuclear Information System (INIS)
Ainur Rosidi; Joko Prasetio; Edy Sumarno; Kiswanta; Heru Bambang
2013-01-01
Experiments on the transient temperature distribution using a two-phase flow test facility QUEEN-02 and BETA test loop was conducted. Purpose of the experiment is to study temperature distribution during the transient cooling process. Experiments performed with the variation of the initial temperature of hot rod test section QUEEN-02 of 350 °C and 500 °C as well as the flow of cooling water temperature is 90 °C with the direction of flow from the bottom up from the BETA test loop. The analysis shows that temperature have the same downward trend in its every point thermocouple for the same initial temperature during cooling. Initial temperature of 350 °C hot rods produced when temperatures drop to 90 °C (the same as the temperature of the cooling water) for 78 seconds while the initial temperature of 500 °C produces hot rod drop time 190 seconds. (author)
Multivariate recurrence network analysis for characterizing horizontal oil-water two-phase flow.
Gao, Zhong-Ke; Zhang, Xin-Wang; Jin, Ning-De; Marwan, Norbert; Kurths, Jürgen
2013-09-01
Characterizing complex patterns arising from horizontal oil-water two-phase flows is a contemporary and challenging problem of paramount importance. We design a new multisector conductance sensor and systematically carry out horizontal oil-water two-phase flow experiments for measuring multivariate signals of different flow patterns. We then infer multivariate recurrence networks from these experimental data and investigate local cross-network properties for each constructed network. Our results demonstrate that a cross-clustering coefficient from a multivariate recurrence network is very sensitive to transitions among different flow patterns and recovers quantitative insights into the flow behavior underlying horizontal oil-water flows. These properties render multivariate recurrence networks particularly powerful for investigating a horizontal oil-water two-phase flow system and its complex interacting components from a network perspective.
Complex network analysis in inclined oil–water two-phase flow
International Nuclear Information System (INIS)
Zhong-Ke, Gao; Ning-De, Jin
2009-01-01
Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil–water two-phase flow is one of the most complex systems. In this paper, we use complex networks to study the inclined oil–water two-phase flow. Two different complex network construction methods are proposed to build two types of networks, i.e. the flow pattern complex network (FPCN) and fluid dynamic complex network (FDCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K-means clustering, useful and interesting results are found which can be used for identifying three inclined oil–water flow patterns. To investigate the dynamic characteristics of the inclined oil–water two-phase flow, we construct 48 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of the inclined oil–water two-phase flow. In this paper, from a new perspective, we not only introduce a complex network theory into the study of the oil–water two-phase flow but also indicate that the complex network may be a powerful tool for exploring nonlinear time series in practice. (general)
Geometric analysis of the solutions of two-phase flows: two-fluid model
International Nuclear Information System (INIS)
Kestin, J.; Zeng, D.L.
1984-01-01
This report contains a lightly edited draft of a study of the two-fluid model in two-phase flow. The motivation for the study stems from the authors' conviction that the construction of a computer code for any model should be preceded by a geometrical analysis of the pattern of trajectories in the phase space appropriate for the model. Such a study greatly facilitates the understanding of the phenomenon of choking and anticipates the computational difficulties which arise from the existence of singularities. The report contains a derivation of the six conservation equations of the model which includes a consideration of the simplifications imposed on a one-dimensional treatment by the presence of boundary layers at the wall and between the phases. The model is restricted to one-dimensional adiabatic flows of a single substance present in two phases, but thermodynamic equilibrium between the phases is not assumed. The role of closure conditions is defined but no specific closure conditions, or explicit equations of state, are introduced
International Nuclear Information System (INIS)
Mesquita, R.N. de; Masotti, P.H.F.; Penha, R.M.L.; Andrade, D.A.; Sabundjian, G.; Torres, W.M.
2012-01-01
Highlights: ► A fuzzy classification system for two-phase flow instability patterns is developed. ► Flow patterns are classified based on images of natural circulation experiments. ► Fuzzy inference is optimized to use single grayscale profiles as input. - Abstract: Two-phase flow on natural circulation phenomenon has been an important theme on recent studies related to nuclear reactor designs. The accuracy of heat transfer estimation has been improved with new models that require precise prediction of pattern transitions of flow. In this work, visualization of natural circulation cycles is used to study two-phase flow patterns associated with phase transients and static instabilities of flow. A Fuzzy Flow-type Classification System (FFCS) was developed to classify these patterns based only on image extracted features. Image acquisition and temperature measurements were simultaneously done. Experiments in natural circulation facility were adjusted to generate a series of characteristic two-phase flow instability periodic cycles. The facility is composed of a loop of glass tubes, a heat source using electrical heaters, a cold source using a helicoidal heat exchanger, a visualization section and thermocouples positioned over different loop sections. The instability cyclic period is estimated based on temperature measurements associated with the detection of a flow transition image pattern. FFCS shows good results provided that adequate image acquisition parameters and pre-processing adjustments are used.
Analysis of phase dynamics in two-phase flow using latticegas automata
International Nuclear Information System (INIS)
Ohashi, H.; Hashimoto, Y.; Tsumaya, A.; Chen, Y.; Akiyama, M.
1998-01-01
In this paper, we describe lattice gas automaton models appropriate for two-phase flow simulation and their applications to study various phase dynamics of two-fluid mixtures. Several algorithms are added to the original immiscible Lattice Gas model to adjust surface tension and to introduce density difference between two fluids. Surface tension is controlled by the collision rules an difference in density is due to nonlocal forces between automaton particles. We simulate the relative motion of the dispersed phase in another continuous fluid. Deformation and disintegration of rising drops are reproduced. The interaction between multiple drops is also observed in calculations. Furutre, we obtain the transition of the two-phase flow pattern from bubbly, slug to annular flow. Density difference of two phase is one of the key ingredients to generate the annular flow pattern
Analysis of data obtained in two-phase flow tests of primary heat transport pumps
International Nuclear Information System (INIS)
Currie, T.C.
1986-06-01
This report analyzes data obtained in two-phase flow tests of primary heat transport pumps performed during the period 1980-1983. Phenomena which have been known to cause pump-induced flow oscillations in pressurized piping systems under two-phase conditions are reviewed and the data analyzed to determine whether any of the identified phenomena could have been responsible for the instabilities observed in those tests. Tentative explanations for the most severe instabilities are given based on those analyses. It is shown that suction pipe geometry probably plays an important role in promoting instabilities, so additional experiments to investigate the effect of suction pipe geometry on the stability of flow in a closed pipe loop under two-phase conditions are recommended
Wavelet analysis of interfacial waves in cocurrent two-phase flow in horizontal duct
International Nuclear Information System (INIS)
Kondo, Masaya; Kukita, Yutaka
1996-07-01
Wavelet analysis was applied to spatially-growing interfacial waves in a cocurrent gas/liquid two-phase flow. The wave growth plays a key role in the transition from stratified-wavy to slug flow, which is an important phenomena in many engineering applications. Of particular interest to the present study was the quick growth or decay of particular waves which were observed in experiments together with the general growth of waves with distance in the flow direction. Among the several wavelet functions tested in the present study, the Morlet wavelet and the Gabor function were found to have spectral and spatial resolutions suitable to the analysis of interfacial wave data taken by the authors. The analysis revealed that 1) the spectral components composing the interfacial waves are propagating at different phase velocities which agree to the theoretical velocities of deep-water waves, 2) the group velocity of the waves also agrees to the deep-water theory, and 3) the quick growth and decay of particular waves occur as a result of the superposition of spectral components with different phase velocities. (author)
CFD Analysis of Two-Phase Flow Characteristics in a 90 Degree Elbow
Directory of Open Access Journals (Sweden)
Quamrul H. Mazumder
2011-09-01
Full Text Available Computational fluid dynamics (CFD analysis was performed for a two-phase air-water flow through a horizontal to vertical 900 elbow with a 12.7 mm pipe diameter. Three different air velocities of 15.24, 30.48, and 45.72 m/sec along with three different water velocities of 0.1, 1.0, and 10.0 m/sec were used in this study. To analyze the flow behavior in the elbow, pressure and velocity profiles at six different upstream and downstream locations of the elbow were compared. Computational fluid dynamics (CFD analysis was performed for 9 different cases using FLUENT commercial code. A mixture model was used to account for different gas and liquid velocities to solve continuity, momentum and energy equations. CFD analysis results showed a decrease in pressure as fluid leaves the elbow in addition to a larger pressure drop at higher air velocities. No significant change in pressure was observed when water velocity was increased from 0.1 to 1.0 m/sec compared to water velocity change from 1.0 to 10.0 m/sec. The normalized pressure drop was larger at lower air velocities compared to higher water velocities. CFD analysis results were compared with available experimental data showing a reasonably good agreement.
Modeling and numerical analysis of non-equilibrium two-phase flows
International Nuclear Information System (INIS)
Rascle, P.; El Amine, K.
1997-01-01
We are interested in the numerical approximation of two-fluid models of nonequilibrium two-phase flows described by six balance equations. We introduce an original splitting technique of the system of equations. This technique is derived in a way such that single phase Riemann solvers may be used: moreover, it allows a straightforward extension to various and detailed exchange source terms. The properties of the fluids are first approached by state equations of ideal gas type and then extended to real fluids. For the construction of numerical schemes , the hyperbolicity of the full system is not necessary. When based on suitable kinetic unwind schemes, the algorithm can compute flow regimes evolving from mixture to single phase flows and vice versa. The whole scheme preserves the physical features of all the variables which remain in the set of physical states. Several stiff numerical tests, such as phase separation and phase transition are displayed in order to highlight the efficiency of the proposed method. The document is a PhD thesis divided in 6 chapters and two annexes. They are entitled: 1. - Introduction (in French), 2. - Two-phase flow, modelling and hyperbolicity (in French), 3. - A numerical method using upwind schemes for the resolution of two-phase flows without exchange terms (in English), 4. - A numerical scheme for one-phase flow of real fluids (in English), 5. - An upwind numerical for non-equilibrium two-phase flows (in English), 6. - The treatment of boundary conditions (in English), A.1. The Perthame scheme (in English) and A.2. The Roe scheme (in English)
Analysis of nanoscale two-phase flow of argon using molecular dynamics
Energy Technology Data Exchange (ETDEWEB)
Verma, Abhishek Kumar; Kumar, Rakesh [Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur - 208016 (India)
2014-12-09
Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.
Numerical and dimensional analysis of nanoparticles transport with two-phase flow in porous media
El-Amin, Mohamed
2015-04-01
In this paper, a mathematical model and numerical simulation are developed to describe the imbibition of nanoparticles-water suspension into two-phase flow in a porous medium. The flow system may be changed from oil-wet to water-wet due to nanoparticles (which are also water-wet) deposition on surface of the pores. So, the model is extended to include the negative capillary pressure and mixed-wet relative permeability correlations to fit with the mixed-wet system. Moreover, buoyancy and capillary forces as well as Brownian diffusion and mechanical dispersion are considered in the mathematical model. An example of countercurrent imbibition in a core of small scale is considered. A dimensional analysis of the governing equations is introduced to examine contributions of each term of the model. Several important dimensionless numbers appear in the dimensionless equations, such as Darcy number Da, capillary number Ca, and Bond number Bo. Throughout this investigation, we monitor the changing of the fluids and solid properties due to addition of the nanoparticles using numerical experiments.
Microgravity Two-Phase Flow Transition
Parang, M.; Chao, D.
1999-01-01
Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.
Analysis of the two-fluid model in fully-developed two-phase flow
International Nuclear Information System (INIS)
Azpitarte, Osvaldo Enrique
2003-01-01
The two fluid model is analysed and applied to solve vertical fully-developed bubbly two-phase flows, both in laminar and turbulent conditions.The laminar model is reduced to two differential equations to solve the gas fraction (ε G ) and the velocity (υ L ).For the turbulent condition, a k - ε model for low Reynolds number is implemented, resulting in a set of differential equations to solve the four variables (ε G , υ L , k and ε) along the whole radial domain (including the laminar sub layer).For laminar condition, the system is initially reduced to a single non-dimensional ordinary equation (O D E) to solve ε G in the central region of the duct, without considering the effect of the wall.The equation is solved using Mathematic a.Analysing the solutions it can be concluded that an exact compensation of the applied pressure gradient with the hydrostatic force ρ e ff g occurs (ρ e ff : effective density of the mixture).This compensation implies that the value of ε G at the center of the duct only depends on the applied pressure gradient (dependency is linear), and that the ε G and υ L profiles are necessarily fl ato The complete problem is dealt numerically through the implementation of a finite element co deo The effect of the walls is included via a model of wall force.When the code is applied to a laminar condition, the conclusions previously obtained solving the O D E are confirmed.It is also possible to analyse the regime in which the pressure gradient is greater than the weight of the pure liquid, in which case a region of strictly zero void fraction develops surrounding the axis of the duct (in upward flow).When the code is applied to a turbulent condition, it is shown that the conclusions obtained for laminar condition can also be applied, but within a range of pressure gradient limited by two transition values (θ 1 and θ 2 ).An analysis of transitions θ 1 and θ 2 allows u s to conclude that their origin is a sudden increase of lateral
International Nuclear Information System (INIS)
Mesquita, R.N.; Libardi, R.M.P.; Masotti, P.H.F.; Sabundjian, G.; Andrade, D.A.; Umbehaun, P.E.; Torres, W.M.; Conti, T.N.; Macedo, L.A.
2009-01-01
Visualization of natural circulation test loop cycles is used to study two-phase flow patterns associated with phase transients and static instabilities of flow. Experimental studies on natural circulation flow were originally related to accidents and transient simulations relative to nuclear reactor systems with light water refrigeration. In this regime, fluid circulation is mainly caused by a driving force ('thermal head') which arises from density differences due to temperature gradient. Natural circulation phenomenon has been important to provide residual heat removal in cases of 'loss of pump power' or plant shutdown in nuclear power plant accidents. The new generation of compact nuclear reactors includes natural circulation of their refrigerant fluid as a security mechanism in their projects. Two-phase flow patterns have been studied for many decades, and the related instabilities have been object of special attention recently. Experimental facility is an all glass-made cylindrical tubes loop which contains about twelve demineralized water liters, a heat source by an electrical resistor immersion heater controlled by a Variac, and a helicoidal heat exchanger working as cold source. Data is obtained through thermo-pairs distributed over the loop and CCD cameras. Artificial intelligence based algorithms are used to improve (bubble) border detection and patterns recognition, in order to estimate and characterize, phase transitions patterns and correlate them with the periodic static instability (chugging) cycle observed in this circuit. Most of initial results show good agreement with previous numerical studies in this same facility. (author)
Analysis of heat and mass transfers in two-phase flow by coupling optical diagnostic techniques
International Nuclear Information System (INIS)
Lemaitre, P.; Porcheron, E.
2008-01-01
During the course of a hypothetical accident in a nuclear power plant, spraying might be actuated to reduce static pressure in the containment. To acquire a better understanding of the heat and mass transfers between a spray and the surrounding confined gas, non-intrusive optical measurements have to be carried out simultaneously on both phases. The coupling of global rainbow refractometry with out-of-focus imaging and spontaneous Raman scattering spectroscopy allows us to calculate the local Spalding parameter B M , which is useful in describing heat transfer associated with two-phase flow. (orig.)
Analysis of heat and mass transfers in two-phase flow by coupling optical diagnostic techniques
Energy Technology Data Exchange (ETDEWEB)
Lemaitre, P.; Porcheron, E. [Institut de Radioprotection et de Surete Nucleaire, Saclay (France)
2008-08-15
During the course of a hypothetical accident in a nuclear power plant, spraying might be actuated to reduce static pressure in the containment. To acquire a better understanding of the heat and mass transfers between a spray and the surrounding confined gas, non-intrusive optical measurements have to be carried out simultaneously on both phases. The coupling of global rainbow refractometry with out-of-focus imaging and spontaneous Raman scattering spectroscopy allows us to calculate the local Spalding parameter B{sub M}, which is useful in describing heat transfer associated with two-phase flow. (orig.)
International Nuclear Information System (INIS)
Stekelenburg, A.J.C.; Hagen, T.H.J.J. van der
1996-01-01
In this paper, the state of the art of the measurement of two-phase flow variables in a boiling water reactor (BWR) by analysis of in-core neutron detector noise signals is given. It is concluded that the neutronic processes involved in neutron noise are quite well understood, but that little is known about the density fluctuations in two-phase flow which are the main cause of the neutron noise. For this reason, the neutron noise measurements, like the well known two-detector velocity measurements, are still difficult to interpret. By analyzing neutron noise measurements in a natural circulation cooled BWR, it is illustrated that, once a theory on the density fluctuations is developed, two-phase flow can be monitored with a single in-core detector. (author). 70 refs, 4 figs
Quasistatic analysis on configuration of two-phase flow in Y-shaped tubes
Zhong, Hua
2014-12-01
We investigate the two-phase flow in a horizontally placed Y-shaped tube with different Young\\'s angle and width in each branch. By using a quasistatic approach, we can determine the specific contact position and the equilibrium contact angle of fluid in each branch based on the minimization problem of the free energy of the system. The wettability condition and the width of the two branches play important roles in the distribution of fluid in each branch. We also consider the effect of gravity. Some fluid in the upper branch will be pulled down due to the competition of the surface energy and the gravitational energy. The result provides some insights on the theory of two-phase flow in porous media. In particular, it highlights that the inhomogeneous wettability distribution affects the direction of the fluid penetrating a given porous medium domain. It also sheds light on the current debate whether relative permeability may be considered as a full tensor rather than a scalar.
International Nuclear Information System (INIS)
Ebihara, Ken-ichi
2005-03-01
Two-phase flow is one of the important phenomena in nuclear reactors and heat exchangers at nuclear plants. It is desired for the optimum design and safe operation of such equipment to understand and predict the two-phase flow phenomenon by numerical analysis. In the present, the two-fluid model is widely used for the numerical analysis of two-phase flow. The numerical analysis method using the two-fluid model solves macroscopic hydrodynamic equations, in which fluid is regarded as continuum, with the boundary conditions at the wall, the inlet and outlet, and the interface between two phases. Since the interfacial and the wall boundary conditions utilized by this method are given as the model, such as the flow regime map and correlation, which is usually constructed on the basis of experimental results, the accuracy of the two-phase flow analysis using the two-fluid model depends on that of the utilized model or the experiment result for modeling. Tremendous progress of the computer performance and the development of new computational methods make the numerical simulation of two-phase flow with the interfacial motion possible in resent years. In such circumstances, the lattice-gas method and the lattice Boltzmann method, which represent fluid by many particles or the particle distribution function on the spatial lattice, was proposed in 1990s and these methods are applied to the numerical simulation of two-phase flow. The main feature of the two-phase fluid model of those methods is the capability of the simulation of two-phase flow without the procedure for tracking the interfacial position and shape owing to the inlet-particle potential generating the interface. Therefore it is expected that the lattice-gas method and the lattice Boltzmann method possess the predictability of the experiment by the numerical analysis of two-phase flow as well as the possibility of giving the substitute of the flow regime map and the correlation used by the two-fluid model. In this
Energy Technology Data Exchange (ETDEWEB)
Ninokata, H. [Tokyo Institute of Technology (Japan); Deguchi, A. [ENO Mathematical Analysis, Tokyo (Japan); Kawahara, A. [Kumamoto Univ., Kumamoto (Japan)
1995-09-01
A new void drift model for the subchannel analysis method is presented for the thermohydraulics calculation of two-phase flows in rod bundles where the flow model uses a two-fluid formulation for the conservation of mass, momentum and energy. A void drift model is constructed based on the experimental data obtained in a geometrically simple inter-connected two circular channel test sections using air-water as working fluids. The void drift force is assumed to be an origin of void drift velocity components of the two-phase cross-flow in a gap area between two adjacent rods and to overcome the momentum exchanges at the phase interface and wall-fluid interface. This void drift force is implemented in the cross flow momentum equations. Computational results have been successfully compared to experimental data available including 3x3 rod bundle data.
Complex network analysis of phase dynamics underlying oil-water two-phase flows
Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De
2016-01-01
Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows. PMID:27306101
Two-phase flow models in unbounded two-phase critical flows
International Nuclear Information System (INIS)
Celata, G.P.; Cumo, M.; Farello, G.E.
1985-01-01
With reference to a Loss-of-Coolant Accident in Light Water Reactors, an analysis of the unbounded two-phase critical flow (i.e. the issuing two-phase jet) has been accomplished. Considering jets external shape, obtained by means of photographic pictures; pressure profiles inside the jet, obtained by means of a movable ''Pitot;'' and jet phases distribution information, obtained by means of X-rays pictures; a characterization of the flow pattern in the unbounded region of a two-phase critical flow is given. Jets X-ray pictures show the existence of a central high density ''core'' gradually evaporating all around, which gives place to a characteristic ''dartflow'' the length of which depends on stagnation thermodynamic conditions
International Nuclear Information System (INIS)
Seleghim, Paulo
1996-01-01
This work concerns the development of a methodology which objective is to characterize and diagnose two-phase flow regime transitions. The approach is based on the fundamental assumption that a transition flow is less stationary than a flow with an established regime. In a first time, the efforts focused on: 1) the design and construction of an experimental loop, allowing to reproduce the main horizontal two-phase flow patterns, in a stable and controlled way, 2) the design and construction of an electrical impedance probe, providing an imaged information of the spatial phase distribution in the pipe, the systematic study of the joint time-frequency and time-scale analysis methods, which permitted to define an adequate parameter quantifying the un-stationary degree. In a second time, in order to verify the fundamental assumption, a series of experiments were conducted, which objective was to demonstrate the correlation between un-stationary and regime transition. The un-stationary degree was quantified by calculating the Gabor's transform time-frequency covariance of the impedance probe signals. Furthermore, the phenomenology of each transition was characterized by the joint moments and entropy. The results clearly show that the regime transitions are correlated with local-time frequency covariance peaks, which demonstrates that these regime transitions are characterized by a loss of stationarity. Consequently, the time-frequency covariance constitutes an objective two-phase flow regime transition indicator. (author) [fr
Directory of Open Access Journals (Sweden)
J. Novotný
2005-01-01
Full Text Available This paper presents the results of experiments with moist wet steam. The aim of the experiment was to measure the velocity of the growth of a condensing nucleus in wet steam dependent on the velocity of condensation. For the experiments in wet steam an experimental setup was designed and constructed, which generated superheated steam at lowered pressure and a temperature of 50 °C. Low pressure and temperature of the hot vapour was chosen in order to minimize the risk of accidental disruption of the wall. The size of the condensing nucleus was measured by the method of Interferometric Particle Imaging (IPI. The IPI method is a technique for determining the particle size of transparent and spherical particles based on calculating the fringes captured on a CCD array. The number of fringes depends on the particle size and on the optical configuration. The experimental setup used is identical with the setup for measuring flow by the stereo PIV method. The only difference is the use of a special camera mount comprising a transparent mirror and enabling both cameras to be focused to one point. We present the results of the development of the growth of a condensing nucleus and histograms of the sizes of all measured particles depending on position and condensation velocity.
System identification on two-phase flow stability
International Nuclear Information System (INIS)
Wu Shaorong; Zhang Youjie; Wang Dazhong; Bo Jinghai; Wang Fei
1996-01-01
The theoretical principle, experimental method and results of interrelation analysis identification for the instability of two-phase flow are described. A completely new concept of test technology and method on two-phase flow stability was developed by using he theory of information science on system stability and system identification for two-phase flow stability in thermo-physics field. Application of this method would make it possible to identify instability boundary of two-phase flow under stable operation conditions of two-phase flow system. The experiment was carried out on the thermohydraulic test system HRTL-5. Using reverse repeated pseudo-random sequences of heating power as input signal sources and flow rate as response function in the test, the two-phase flow stability and stability margin of the natural circulation system are investigated. The effectiveness and feasibility of identifying two-phase flow stability by using this system identification method were experimentally demonstrated. Basic data required for mathematics modeling of two-phase flow and analysis of two-phase flow stability were obtained, which are useful for analyzing, monitoring of the system operation condition, and forecasting of two-phase flow stability in engineering system
Two-phase flow in refrigeration systems
Gu, Junjie; Gan, Zhongxue
2013-01-01
Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b
Energy Technology Data Exchange (ETDEWEB)
Zhang, Y.J.; Yang, X.T.; Jiang, S.Y. [Tsinghua Univ., Beijing, BJ (China). Inst. of Nuclear Energy Technology
2004-08-01
The experiments were performed on the test loop HRTL-5, which simulates the geometry and system design of the 5 MW nuclear heating reactor. In a wide range of inlet sub-cooling, various flow instabilities were observed at p = 0.1 MPa and p = 1.5 MPa. Because of the different geometry design and operating conditions between the heating reactors and the boiling water reactors, the flow behavior presents great difference. Analysis shows: (1) under heating reactor conditions, sub-cooled boiling, condensation and void flashing are the fundamental thermodynamic processes; (2) sub-cooled boiling, condensation, void flashing and the compressibility of the steam space play an important role in the flow instabilities of the natural circulation system; (3) sub-cooled boiling instability, flashing instability, and flow excursion are the special instabilities at nuclear heating reactor conditions. (orig.)
Two-phased flow component loss data
International Nuclear Information System (INIS)
Fairhurst, C.P.
1983-01-01
Pressure loss measurements were made for valves and orifice plates under horizontal and vertical two-phase, air/water flow. The results displayed similar trends and were successfully correlated using a semi-empirical approach. (author)
Directory of Open Access Journals (Sweden)
HAN YOUNG YOON
2014-10-01
Full Text Available The CUPID code has been developed at KAERI for a transient, three-dimensional analysis of a two-phase flow in light water nuclear reactor components. It can provide both a component-scale and a CFD-scale simulation by using a porous media or an open media model for a two-phase flow. In this paper, recent advances in the CUPID code are presented in three sections. First, the domain decomposition parallel method implemented in the CUPID code is described with the parallel efficiency test for multiple processors. Then, the coupling of CUPID-MARS via heat structure is introduced, where CUPID has been coupled with a system-scale thermal-hydraulics code, MARS, through the heat structure. The coupled code has been applied to a multi-scale thermal-hydraulic analysis of a pool mixing test. Finally, CUPID-SG is developed for analyzing two-phase flows in PWR steam generators. Physical models and validation results of CUPID-SG are discussed.
Analysis and testing the performance of a centrifugal two phase flow separator
Energy Technology Data Exchange (ETDEWEB)
Mirza-Moghadam, A V
1979-01-01
Analysis and testing the performance of an 8 in., 1.72 ft high centrifugal cyclone separator for flows up to 4.0 lbs/s and pressures ranging from 10 to 60 psig. Conclusions drawn are based on inlet steam qualities of 23 to 27 percent (x% = m/sub s//m /sub t/) .99% and better steam quality is achieved up to 3 lbs/s under 50 and 60 psig. Breakdown flow rate is found to be a linear function of separator pressure.
Tan, Chao; Zhao, Jia; Dong, Feng
2015-03-01
Flow behavior characterization is important to understand gas-liquid two-phase flow mechanics and further establish its description model. An Electrical Resistance Tomography (ERT) provides information regarding flow conditions at different directions where the sensing electrodes implemented. We extracted the multivariate sample entropy (MSampEn) by treating ERT data as a multivariate time series. The dynamic experimental results indicate that the MSampEn is sensitive to complexity change of flow patterns including bubbly flow, stratified flow, plug flow and slug flow. MSampEn can characterize the flow behavior at different direction of two-phase flow, and reveal the transition between flow patterns when flow velocity changes. The proposed method is effective to analyze two-phase flow pattern transition by incorporating information of different scales and different spatial directions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Computational issues in the analysis of nonlinear two-phase flow dynamics
Energy Technology Data Exchange (ETDEWEB)
Rosa, Mauricio A. Pinheiro [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados. Div. de Energia Nuclear], e-mail: pinheiro@ieav.cta.br; Podowski, Michael Z. [Rensselaer Polytechnic Institute, New York, NY (United States)
2001-07-01
This paper is concerned with the issue of computer simulations of flow-induced instabilities in boiling channels and systems. A computational model is presented for the time-domain analysis of nonlinear oscillations in interconnected parallel boiling channels. The results of model testing and validation are shown. One of the main concerns here has been to show the importance in performing numerical testing regarding the selection of a proper numerical integration method and associated nodalization and time step as well as to demonstrate the convergence of the numerical solution prior to any analysis. (author)
Energy Technology Data Exchange (ETDEWEB)
Delhaye, J M; Jones, Jr, O C
1976-06-01
Much work has been done in the study of two-phase gas-liquid flows. Although it has been recognized superficially that such flows are not homogeneous in general, little attention has been paid to the inherent discreteness of the two-phase systems. Only relatively recently have fluctuating characteristics of two-phase flows been studied in detail. As a result, new experimental devices and techniques have been developed for use in measuring quantities previously ignored. This report reviews and summarizes most of these methods in an effort to emphasize the importance of the fluctuating nature of these flows and as a guide to further research in this field.
Two Phase Flow Simulation Using Cellular Automata
International Nuclear Information System (INIS)
Marcel, C.P.
2002-01-01
channel. It was noticed that the CHF phenomena generally starts in cells located at the boundary.The fact that the phenomena can be well described by using simple rules shows that the related physics and even the physics with stochastic characteristics, has been captured with t his simple model. Some fractal properties of automata were also studied, arriving at the conclusion that the internal dynamics present fractal characteristics.Findings hint towards a new approach to solve open issues.Finally, a calculus related to the Australian reactor designed by INVAP was performed.The problem consists of a simulation of helium bubble production by the mechanism of mass diffusion in heavy water.It was verified that cellular automata systems are a powerful tool for describing problems with high complexity and short reach interactions between components.It was proved that two-phase flows could be described very well with this model.The approach is a powerful tool to describe non-equilibrium features, such as boiling flow development and interfacial topological transitions.A novel computer model of boiling crisis was encountered following this type of analysis.By means of this research, without invalidating the important advances obtained in other directions, a new tool is offered which can be useful regarding the modeling of boiling heat transfer systems
International Nuclear Information System (INIS)
Leavell, W.H.; Mullens, J.A.
1981-01-01
A computational algorithm has been developed to measure transient, phase-interface velocity in two-phase, steam-water systems. The algorithm will be used to measure the transient velocity of steam-water mixture during simulated PWR reflood experiments. By utilizing signals produced by two, spatially separated impedance probes immersed in a two-phase mixture, the algorithm computes the average transit time of mixture fluctuations moving between the two probes. This transit time is computed by first, measuring the phase shift between the two probe signals after transformation to the frequency domain and then computing the phase shift slope by a weighted least-squares fitting technique. Our algorithm, which has been tested with both simulated and real data, is able to accurately track velocity transients as fast as 4 m/s/s
Directory of Open Access Journals (Sweden)
Zhangxin Chen
1999-12-01
Full Text Available This is the third paper of a three-part series where we develop and analyze a finite element approximation for a degenerate elliptic-parabolic partial differential system which describes the flow of two incompressible, immiscible fluids in porous media. The approximation uses a mixed finite element method for the pressure equation and a Galerkin finite element method for the saturation equation. It is based on a regularization of the saturation equation. In the first paper cite{RckA} we analyzed the regularized differential system and presented numerical results. In the second paper cite{RckB} we obtained error estimates. In the present paper we describe a perturbation analysis for the saturation equation and numerical experiments for complementing this analysis.
Apparatus for monitoring two-phase flow
Sheppard, John D.; Tong, Long S.
1977-03-01
A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.
Apparatus for monitoring two-phase flow
International Nuclear Information System (INIS)
Sheppard, J.D.; Tong, L.S.
1977-01-01
A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods. 3 claims, 9 figures
A renormalization group scaling analysis for compressible two-phase flow
International Nuclear Information System (INIS)
Chen, Y.; Deng, Y.; Glimm, J.; Li, G.; Zhang, Q.; Sharp, D.H.
1993-01-01
Computational solutions to the Rayleigh--Taylor fluid mixing problem, as modeled by the two-fluid two-dimensional Euler equations, are presented. Data from these solutions are analyzed from the point of view of Reynolds averaged equations, using scaling laws derived from a renormalization group analysis. The computations, carried out with the front tracking method on an Intel iPSC/860, are highly resolved and statistical convergence of ensemble averages is achieved. The computations are consistent with the experimentally observed growth rates for nearly incompressible flows. The dynamics of the interior portion of the mixing zone is simplified by the use of scaling variables. The size of the mixing zone suggests fixed-point behavior. The profile of statistical quantities within the mixing zone exhibit self-similarity under fixed-point scaling to a limited degree. The effect of compressibility is also examined. It is found that, for even moderate compressibility, the growth rates fail to satisfy universal scaling, and moreover, increase significantly with increasing compressibility. The growth rates predicted from a renormalization group fixed-point model are in a reasonable agreement with the results of the exact numerical simulations, even for flows outside of the incompressible limit
Numerical Thermodynamic Analysis of Two-Phase Solid-Liquid Abrasive Flow Polishing in U-Type Tube
Directory of Open Access Journals (Sweden)
Junye Li
2014-08-01
Full Text Available U-type tubes are widely used in military and civilian fields and the quality of the internal surface of their channel often determines the merits and performance of a machine in which they are incorporated. Abrasive flow polishing is an effective method for improving the channel surface quality of a U-type tube. Using the results of a numerical analysis of the thermodynamic energy balance equation of a two-phase solid-liquid flow, we carried out numerical simulations of the heat transfer and surface processing characteristics of a two-phase solid-liquid abrasive flow polishing of a U-type tube. The distribution cloud of the changes in the inlet turbulent kinetic energy, turbulence intensity, turbulent viscosity, and dynamic pressure near the wall of the tube were obtained. The relationships between the temperature and the turbulent kinetic energy, between the turbulent kinetic energy and the velocity, and between the temperature and the processing velocity were also determined to develop a theoretical basis for controlling the quality of abrasive flow polishing.
Two-phase flow in fractured rock
International Nuclear Information System (INIS)
Davies, P.; Long, J.; Zuidema, P.
1993-11-01
This report gives the results of a three-day workshop on two-phase flow in fractured rock. The workshop focused on two-phase flow processes that are important in geologic disposal of nuclear waste as experienced in a variety of repository settings. The goals and objectives of the workshop were threefold: exchange information; describe the current state of understanding; and identify research needs. The participants were divided into four subgroups. Each group was asked to address a series of two-phase flow processes. The following groups were defined to address these processes: basic flow processes; fracture/matrix interactions; complex flow processes; and coupled processes. For each process, the groups were asked to address these four issues: (1) describe the two-phase flow processes that are important with respect to repository performance; (2) describe how this process relates to the specific driving programmatic issues given above for nuclear waste storage; (3) evaluate the state of understanding for these processes; and (4) suggest additional research to address poorly understood processes relevant to repository performance. The reports from each of the four working groups are given here
Nonlinear dynamics of two-phase flow
International Nuclear Information System (INIS)
Rizwan-uddin
1986-01-01
Unstable flow conditions can occur in a wide variety of laboratory and industry equipment that involve two-phase flow. Instabilities in industrial equipment, which include boiling water reactor (BWR) cores, steam generators, heated channels, cryogenic fluid heaters, heat exchangers, etc., are related to their nonlinear dynamics. These instabilities can be of static (Ledinegg instability) or dynamic (density wave oscillations) type. Determination of regions in parameters space where these instabilities can occur and knowledge of system dynamics in or near these regions is essential for the safe operation of such equipment. Many two-phase flow engineering components can be modeled as heated channels. The set of partial differential equations that describes the dynamics of single- and two-phase flow, for the special case of uniform heat flux along the length of the channel, can be reduced to a set of two coupled ordinary differential equations [in inlet velocity v/sub i/(t) and two-phase residence time tau(t)] involving history integrals: a nonlinear ordinary functional differential equation and an integral equation. Hence, to solve these equations, the dependent variables must be specified for -(nu + tau) ≤ t ≤ 0, where nu is the single-phase residence time. This system of nonlinear equations has been solved analytically using asymptotic expansion series for finite but small perturbations and numerically using finite difference techniques
Energy Technology Data Exchange (ETDEWEB)
Kock, Ingo; Larue, Juergen; Fischer, Heidi; Frieling, Gerd; Navarro, Martin; Seher, Holger [Department of Final Disposal, GRS mbH, Schwertnergasse 1, 50667 Cologne (Germany)
2013-07-01
Rock salt is one of the possible host rock formations for the disposal of high-level radioactive wastes in Germany. The Preliminary Safety Analysis of the Gorleben Site (Vorlaeufige Sicherheitsanalyse Gorleben, VSG) evaluates the long-term safety of a hypothetical repository in the salt dome of Gorleben, Germany. A mature repository concept and detailed knowledge of the site allowed a detailed process analysis within the project by numerical modeling of single-phase and two-phase flow. The possibility of liquid transport from the shafts to the emplacement drifts is one objective of the present study. Also, the implications of brine inflow on radionuclide transport and gas generation are investigated. Pressure build-up due to rock convergence and gas generation, release of volatile radionuclides from the waste and pressure-driven contaminant transport were considered, too. The study confirms that the compaction behavior of salt grit backfill is one of the most relevant factors for the hydrodynamic evolution of the repository and the transport of contaminants. Due to the interaction between compaction, saturation and pore pressure, complex flow patterns evolve. Emplacement drifts serve as gas sinks or sources at different times. In most calculation cases, the backfill reaches its final porosity after a few hundred years. The repository is then sealed and radionuclides can only be transported by diffusion in the liquid phase. Estimates for the final porosity of compacted backfill range between 0 % and 2 %. The exact properties of the backfill regarding single- and two-phase flow are not well known for this porosity range. The study highlights that this uncertainty has a profound impact on flow and transport processes over long time-scales. Therefore, more research is needed to characterize the properties of crushed salt grit at low porosities or to reduce the adverse effects of possible higher porosities by repository optimization. (authors)
Thermo-Fluid Dynamics of Two-Phase Flow
Ishii, Mamrou
2011-01-01
"Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part
Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De
2016-02-02
High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow.
International Nuclear Information System (INIS)
Lahey, Richard T.; Drew, Donald A.
2001-01-01
This paper reviews the state-of-the-art in the prediction of multidimensional multiphase flow and heat transfer phenomena using a four field, two-fluid model. It is shown that accurate mechanistic computational fluid dynamic (CFD) predictions are possible for a wide variety of adiabatic and diabatic flows using this computational model. In particular, the model is able to predict the bubbly air/water upflow data of Serizawa (Serizawa, A., 1974. Fluid dynamic characteristics of two-phase flow. Ph.D. thesis, (Nuclear Engineering), Kyoto University, Japan), the downflow data of Wang et al. (Wang, S.K., Lee, S.J., Lahey Jr., R.T., Jones, O.C., 1987. 3-D turbulence structure and phase distribution measurements in bubbly two-phase flows. Int. J. Multiphase Flow 13 (3), 327-343), the isosceles triangle upflow data of Lopez de Bertodano et al. (Lopez de Bertodano, M., Lahey Jr., R.T., Jones, O.C., 1994b. Phase distribution in bubbly two-phase flow in vertical ducts. Int. J. Multiphase Flow 20 (5), 805-818), the heated annular R-113 subcooled boiling data of Velidandala, et al. (Velidandla, V., Pulta, S., Roy, P., Kaira, S.P., 1995. Velocity field in turbulent subcooled boiling flow. ASME Preprint HTD-314, 107-123) and the R-113 CHF data of Hino and Ueda (Hino, R., Ueda, T., 1985. Studies on heat transfer and flow characteristics in subcooled boiling-part 2, flow characteristics. Int. J. Multiphase Flow 11, 283-297). It can also predict external two-phase flows, such as those for spreading two-phase jets (Bonetto, F., Lahey Jr., R.T., 1993. An experimental study on air carryunder due to a plunging liquid jet. Int. J. Multiphase Flow 19 (2), 281-294) and multiphase flows around the hull of naval surface ships (Carrica, P.M., Bonetto, F., Drew, D.A., Lahey, R.T., 1999. A polydispersed model for bubbly two-phase flow around a surface ship. Int. J. Multiphase Flow 25 (2), 257-305)
Two-phase Flow in Micro and Nanofluidic Devices
Shui, Lingling
2009-01-01
This thesis provides experimental data and theoretical analysis on two-phase flow in devices with different layouts of micrometer or nanometer-size channels. A full flow diagram is presented for oil and water flow in head-on microfluidic devices. Morphologically different flow regimes (dripping,
Geometrical automata for two phase flow simulation
International Nuclear Information System (INIS)
Herrero, V.; Guido-Lavalle, G.; Clausse, A.
1996-01-01
An automaton is an entity defined by a mathematical state which changes following iterative rules representing the interaction with the neighborhood. A model of automata for two-phase flow simulation consisting in a field of disks which are allowed to change their radii and move in a plane is presented. The model is more general than the classical cellular automata in two respects: (1) the grid of cellular automata is dismissed in favor of a trajectory generator; and (2) the rules of interaction involve parameters intended to represent some of the most relevant variables governing the actual physical interactions between phases. Computational experiments show that the algorithm captures the essential physics underlying two-phase flow problems such as bubbly-slug pattern transition and void fraction development along tubes. A comparison with experimental data of void fraction profiles is presented, showing excellent agreement. (orig.)
Stability of oscillatory two phase Couette flow
Coward, Adrian V.; Papageorgiou, Demetrios T.
1993-01-01
We investigate the stability of two phase Couette flow of different liquids bounded between plane parallel plates. One of the plates has a time dependent velocity in its own plane, which is composed of a constant steady part and a time harmonic component. In the absence of time harmonic modulations, the flow can be unstable to an interfacial instability if the viscosities are different and the more viscous fluid occupies the thinner of the two layers. Using Floquet theory, we show analytically in the limit of long waves, that time periodic modulations in the basic flow can have a significant influence on flow stability. In particular, flows which are otherwise unstable for extensive ranges of viscosity ratios, can be stabilized completely by the inclusion of background modulations, a finding that can have useful consequences in many practical applications.
The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow
Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao
2016-01-01
Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results. PMID:27563907
The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow.
Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao
2016-08-24
Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.
The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow
Directory of Open Access Journals (Sweden)
Weihang Kong
2016-08-01
Full Text Available Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM. Firstly, using the finite element method (FEM, the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.
Coupling Two-Phase Fluid Flow with Two-Phase Darcy Flow in Anisotropic Porous Media
Directory of Open Access Journals (Sweden)
Jie Chen
2014-06-01
Full Text Available This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow.
Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media
Chen, J.
2014-06-03
This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow. 2014 Jie Chen et al.
Refrigeration. Two-Phase Flow. Flow Regimes and Pressure Drop
DEFF Research Database (Denmark)
Knudsen, Hans-Jørgen Høgaard
2002-01-01
The note gives the basic definitions used in two-phase flow. Flow regimes and flow regimes map are introduced. The different contributions to the pressure drop are stated together with an imperical correlation from the litterature.......The note gives the basic definitions used in two-phase flow. Flow regimes and flow regimes map are introduced. The different contributions to the pressure drop are stated together with an imperical correlation from the litterature....
Moerk, J. Steven (Inventor); Youngquist, Robert C. (Inventor); Werlink, Rudy J. (Inventor)
1999-01-01
A quality and/or flow meter employs a capacitance probe assembly for measuring the dielectric constant of flow stream, particularly a two-phase flow stream including liquid and gas components.ne dielectric constant of the flow stream varies depending upon the volume ratios of its liquid and gas components, and capacitance measurements can therefore be employed to calculate the quality of the flow, which is defined as the volume ratio of liquid in the flow to the total volume ratio of gas and liquid in the flow. By using two spaced capacitance sensors, and cross-correlating the time varying capacitance values of each, the velocity of the flow stream can also be determined. A microcontroller-based processing circuit is employed to measure the capacitance of the probe sensors.The circuit employs high speed timer and counter circuits to provide a high resolution measurement of the time interval required to charge each capacitor in the probe assembly. In this manner, a high resolution, noise resistant, digital representation of each of capacitance value is obtained without the need for a high resolution A/D converter, or a high frequency oscillator circuit. One embodiment of the probe assembly employs a capacitor with two ground plates which provide symmetry to insure that accurate measurements are made thereby.
One- and Two-Phase Nozzle Flows.
1980-01-31
PROJECT. TASK The Aerospace Corporation El Segundo, Calif. 90245 11. CONTROLLING OFFICE NAME AND ADDRESS Space Division31jnv 087 Air Force Systems Command...and identify by block .eintber) Gas-particle Two- phase Nozzle Transonic Flow Corn utational Method 20. AS Tf ACT (Continue an reverse side it...Dec. 1978. -51- 74.22 in. Fig.~~~~~~~ U 28.L USmalMOTOR Itro ofgrto n AEXI Fig. 2. BFC Gridl foor Smaio CUonfM igrtho n Somutaterged Noeglock x -344in
Kou, Jisheng
2013-06-20
We analyze a combined method consisting of the mixed finite element method for pressure equation and the discontinuous Galerkin method for saturation equation for the coupled system of incompressible two-phase flow in porous media. The existence and uniqueness of numerical solutions are established under proper conditions by using a constructive approach. Optimal error estimates in L2(H1) for saturation and in L∞(H(div)) for velocity are derived. Copyright © 2013 John Wiley & Sons, Ltd.
Determination and analysis of a non-permanent two phase flow in a non-saturated porous media
International Nuclear Information System (INIS)
Giorgetti, M.F.; Popi, O.
1982-01-01
The water two-phase flow were determined in a soil from Sao Carlos region and in a quartzose sand with uniform granulometry. The humidity measures were done by the gamma attenuation technique. The diffusion and conduction coefficient were determined by the Bruce and Klute method, from the data of horizontal one-dimensional infiltration tests and the humidity retention curve. The flow differential equation is submitted to a Kirchhoff transformation. This equation is discussed, showing its similarity with the advection - diffusion equation. Methods of solution are discussed, showing the new possibilities and necessities of research in this area. (E.G.) [pt
A Well-Posed Two Phase Flow Model and its Numerical Solutions for Reactor Thermal-Fluids Analysis
Energy Technology Data Exchange (ETDEWEB)
Kadioglu, Samet Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Berry, Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-08-01
A 7-equation two-phase flow model and its numerical implementation is presented for reactor thermal-fluids applications. The equation system is well-posed and treats both phases as compressible flows. The numerical discretization of the equation system is based on the finite element formalism. The numerical algorithm is implemented in the next generation RELAP-7 code (Idaho National Laboratory (INL)’s thermal-fluids code) built on top of an other INL’s product, the massively parallel multi-implicit multi-physics object oriented code environment (MOOSE). Some preliminary thermal-fluids computations are presented.
Marrone, Salvatore; Colagrossi, Andrea; Di Mascio, Andrea; Le Touzé, David
2016-05-01
The study of energetic free-surface flows is challenging because of the large range of interface scales involved due to multiple fragmentations and reconnections of the air-water interface with the formation of drops and bubbles. Because of their complexity the investigation of such phenomena through numerical simulation largely increased during recent years. Actually, in the last decades different numerical models have been developed to study these flows, especially in the context of particle methods. In the latter a single-phase approximation is usually adopted to reduce the computational costs and the model complexity. While it is well known that the role of air largely affects the local flow evolution, it is still not clear whether this single-phase approximation is able to predict global flow features like the evolution of the global mechanical energy dissipation. The present work is dedicated to this topic through the study of a selected problem simulated with both single-phase and two-phase models. It is shown that, interestingly, even though flow evolutions are different, energy evolutions can be similar when including or not the presence of air. This is remarkable since, in the problem considered, with the two-phase model about half of the energy is lost in the air phase while in the one-phase model the energy is mainly dissipated by cavity collapses.
Two-phase flow induced parametric vibrations in structural systems
International Nuclear Information System (INIS)
Hara, Fumio
1980-01-01
This paper is divided into two parts concerning piping systems and a nuclear fuel pin system. The significant experimental results concerning the random vibration induced in an L-shaped pipe by air-water two-phase flow and the theoretical analysis of the vibration are described in the first part. It was clarified for the first time that the parametric excitation due to the periodic changes of system mass, centrifugal force and Coriolis force was the mechanism of exciting the vibration. Moreover, the experimental and theoretical analyses of the mechanism of exciting vibration by air-water two-phase flow in a straight, horizontal pipe were carried out, and the first natural frequency of the piping system was strongly related to the dominant frequency of void signals. The experimental results on the vibration of a nuclear fuel pin model in parallel air-water two-phase flow are reported in the latter part. The relations between vibrational strain variance and two-phase flow velocity or pressure fluctuation, and the frequency characteristics of vibrational strain variance were obtained. The theoretical analysis of the dynamic interaction between air-water two-phase flow and a fuel pin structure, and the vibrational instability of fuel pins in alternate air and water slugs or in large bubble flow are also reported. (Kako, I.)
El-Amin, Mohamed
2017-08-29
Purpose In this paper, we introduce modeling, numerical simulation, and convergence analysis of the problem nanoparticles transport carried by a two-phase flow in a porous medium. The model consists of equations of pressure, saturation, nanoparticles concentration, deposited nanoparticles concentration on the pore-walls, and entrapped nanoparticles concentration in pore-throats. Design/methodology/approach Nonlinear iterative IMPES-IMC (IMplicit Pressure Explicit Saturation–IMplicit Concentration) scheme is used to solve the problem under consideration. The governing equations are discretized using the cell-centered finite difference (CCFD) method. The pressure and saturation equations are coupled to calculate the pressure, then the saturation is updated explicitly. Therefore, the equations of nanoparticles concentration, the deposited nanoparticles concentration on the pore walls and the entrapped nanoparticles concentration in pore throats are computed implicitly. Then, the porosity and the permeability variations are updated. Findings We stated and proved three lemmas and one theorem for the convergence of the iterative method under the natural conditions and some continuity and boundedness assumptions. The theorem is proved by induction states that after a number of iterations the sequences of the dependent variables such as saturation and concentrations approach solutions on the next time step. Moreover, two numerical examples are introduced with convergence test in terms of Courant–Friedrichs–Lewy (CFL) condition and a relaxation factor. Dependent variables such as pressure, saturation, concentration, deposited concentrations, porosity and permeability are plotted as contours in graphs, while the error estimations are presented in table for different values of number of time steps, number of iterations and mesh size. Research limitations/implications The domain of the computations is relatively small however, it is straightforward to extend this method
Bubble parameters analysis of gas-liquid two-phase sparse bubbly flow based on image method
International Nuclear Information System (INIS)
Zhou Yunlong; Zhou Hongjuan; Song Lianzhuang; Liu Qian
2012-01-01
The sparse rising bubbles of gas-liquid two-phase flow in vertical pipe were measured and studied based on image method. The bubble images were acquired by high-speed video camera systems, the characteristic parameters of bubbles were extracted by using image processing techniques. Then velocity variation of rising bubbles were drawn. Area and centroid variation of single bubble were also drawn. And then parameters and movement law of bubbles were analyzed and studied. The test results showed that parameters of bubbles had been analyzed well by using image method. (authors)
Multiparticle imaging velocimetry measurements in two-phase flow
International Nuclear Information System (INIS)
Hassan, Y.A.
1998-01-01
The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being extended to determine the velocity fields in two and three-dimensional, two-phase fluid flows. In the past few years, the technique has attracted quite a lot of interest. PIV enables fluid velocities across a region of a flow to be measured at a single instant in time in global domain. This instantaneous velocity profile of a given flow field is determined by digitally recording particle (microspheres or bubbles) images within the flow over multiple successive video frames and then conducting flow pattern identification and analysis of the data. This paper presents instantaneous velocity measurements in various two and three- dimensional, two-phase flow situations. (author)
Two-Phase Flow in Wire Coating with Heat Transfer Analysis of an Elastic-Viscous Fluid
Directory of Open Access Journals (Sweden)
Zeeshan Khan
2016-01-01
Full Text Available This work considers two-phase flow of an elastic-viscous fluid for double-layer coating of wire. The wet-on-wet (WOW coating process is used in this study. The analytical solution of the theoretical model is obtained by Optimal Homotopy Asymptotic Method (OHAM. The expression for the velocity field and temperature distribution for both layers is obtained. The convergence of the obtained series solution is established. The analytical results are verified by Adomian Decomposition Method (ADM. The obtained velocity field is compared with the existing exact solution of the same flow problem of second-grade fluid and with analytical solution of a third-grade fluid. Also, emerging parameters on the solutions are discussed and appropriate conclusions are drawn.
Development of a Two-Phase Flow Analysis Code based on a Unstructured-Mesh SIMPLE Algorithm
Energy Technology Data Exchange (ETDEWEB)
Kim, Jong Tae; Park, Ik Kyu; Cho, Heong Kyu; Yoon, Han Young; Kim, Kyung Doo; Jeong, Jae Jun
2008-09-15
For analyses of multi-phase flows in a water-cooled nuclear power plant, a three-dimensional SIMPLE-algorithm based hydrodynamic solver CUPID-S has been developed. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields represent a continuous liquid, a dispersed droplets, and a vapour field. The governing equations are discretized by a finite volume method on an unstructured grid to handle the geometrical complexity of the nuclear reactors. The phasic momentum equations are coupled and solved with a sparse block Gauss-Seidel matrix solver to increase a numerical stability. The pressure correction equation derived by summing the phasic volume fraction equations is applied on the unstructured mesh in the context of a cell-centered co-located scheme. This paper presents the numerical method and the preliminary results of the calculations.
Turbine flow meter response in two-phase flows
International Nuclear Information System (INIS)
Shim, W.J.; Dougherty, T.J.; Cheh, H.Y.
1996-01-01
The purpose of this paper is to suggest a simple method of calibrating turbine flow meters to measure the flow rates of each phase in a two-phase flow. The response of two 50.8 mm (2 inch) turbine flow meters to air-water, two-phase mixtures flowing vertically in a 57 mm I.D. (2.25 inch) polycarbonate tube has been investigated for both upflow and downflow. The flow meters were connected in series with an intervening valve to provide an adjustable pressure difference between them. Void fractions were measured by two gamma densitometers, one upstream of the flow meters and the other downstream. The output signal of the turbine flow meters was found to depend only on the actual volumetric flow rate of the gas, F G , and liquid, F L , at the location of the flow meter
Thermo-fluid dynamics of two-phase flow
Ishii, Mamoru; Ishii, Mamoru; Ishii, M
2006-01-01
Provides a very systematic treatment of two phase flow problems from a theoretical perspectiveProvides an easy to follow treatment of modeling and code devlopemnt of two phase flow related phenomenaCovers new results of two phase flow research such as coverage of fuel cells technology.
International Nuclear Information System (INIS)
Silva, M.C.
1981-04-01
The application of the dynamic slip technique to modify the conservation of the thermodynamic model use in Relap4/Mod5 is aimed at. The new model contain additional terms which allow take in account the influence of separated flows. The modified code has been submitted to a test. A simulation of a small LOCA has been performed with an equivalent area of 181.045 cm 2 in the piping between the reactor vessel and one of the main coolant pumps of Angra 1 plant. The same procedure was performed by using the original version of the code. The comparison between results of both versions show that the dynamic slip model gives more realistic (less conservative) results. (E.G.) [pt
International Nuclear Information System (INIS)
Murakawa, H.; Antal, S.P.; Lahey, R T.
2008-01-01
The object of this work was to simulate developing multidimensional velocity and void fraction distributions in bubbly and churn turbulent two-phase flows. An advanced Computational Multiphase Fluid Dynamics (CMFD) code, NPHASE, was used to perform three-dimensional, multi-field simulations of the developing phasic velocity and phase distributions in vertical adiabatic conduits. The NPHASE code employed a multi-field two-fluid model, in which, for churn turbulent flow, the vapor phase was divided into small and large, cap bubble fields. In addition, state-of-the-art interfacial area density and field-to-field mass transfer models were used for both the small and large, cap bubbles. In particular, the bubble breakup and coalescence processes were quantified using a two-group interfacial area density transport equation. This allowed the CMFD simulation of developing churn turbulent flows in an ESBWR with and without vertical riser channels in the chimney region above the core. Based on these simulations it was concluded that riser channels have little adverse effect on the induced natural circulation flow through the core and the stability characteristics of an ESBWR. (authors)
Characterization of horizontal air–water two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Kong, Ran; Kim, Seungjin, E-mail: skim@psu.edu
2017-02-15
Highlights: • A visualization study is performed to develop flow regime map in horizontal flow. • Database in horizontal bubbly flow is extended using a local conductivity probe. • Frictional pressure drop analysis is performed in horizontal bubbly flow. • Drift flux analysis is performed in horizontal bubbly flow. - Abstract: This paper presents experimental studies performed to characterize horizontal air–water two-phase flow in a round pipe with an inner diameter of 3.81 cm. A detailed flow visualization study is performed using a high-speed video camera in a wide range of two-phase flow conditions to verify previous flow regime maps. Two-phase flows are classified into bubbly, plug, slug, stratified, stratified-wavy, and annular flow regimes. While the transition boundaries identified in the present study compare well with the existing ones (Mandhane et al., 1974) in general, some discrepancies are observed for bubbly-to-plug/slug, and plug-to-slug transition boundaries. Based on the new transition boundaries, three additional test conditions are determined in horizontal bubbly flow to extend the database by Talley et al. (2015a). Various local two-phase flow parameters including void fraction, interfacial area concentration, bubble velocity, and bubble Sauter mean diameter are obtained. The effects of increasing gas flow rate on void fraction, bubble Sauter mean diameter, and bubble velocity are discussed. Bubbles begin to coalesce near the gas–liquid layer instead of in the highly packed region when gas flow rate increases. Using all the current experimental data, two-phase frictional pressure loss analysis is performed using the Lockhart–Martinelli method. It is found that the coefficient C = 24 yields the best agreement with the data with the minimum average difference. Moreover, drift flux analysis is performed to predict void-weighted area-averaged bubble velocity and area-averaged void fraction. Based on the current database, functional
Pressure Loss across Tube Bundles in Two-phase Flow
International Nuclear Information System (INIS)
Sim, Woo Gun; Banzragch, Dagdan
2016-01-01
An analytical model was developed by Sim to estimate the two-phase damping ratio for upward two-phase flow perpendicular to horizontal tube bundles. The parameters of two-phase flow, such as void fraction and pressure loss evaluated in the model, were calculated based on existing experimental formulations. However, it is necessary to implement a few improvements in the formulations for the case of tube bundles. For the purpose of the improved formulation, we need more information about the two-phase parameters, which can be found through experimental test. An experiment is performed with a typical normal square array of cylinders subjected to the two-phase flow of air-water in the tube bundles, to calculate the two-phase Euler number and the two-phase friction multiplier. The pitch-to-diameter ratio is 1.35 and the diameter of cylinder is 18mm. Pressure loss along the flow direction in the tube bundles is measured with a pressure transducer and data acquisition system to calculate the two-phase Euler number and the two-phase friction multiplier. The void fraction model by Feenstra et al. is used to estimate the void fraction of the two-phase flow in tube bundles. The experimental results of the two phase friction multiplier and two-phase Euler number for homogeneous and non-homogeneous two-phase flows are compared and evaluated against the analytical results given by Sim's model
A void fraction model for annular two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Tandon, T.N.; Gupta, C.P.; Varma, H.K.
1985-01-01
An analytical model has been developed for predicting void fraction in two-phase annular flow. In the analysis, the Lockhart-Martinelli method has been used to calculate two-phase frictional pressure drop and von Karman's universal velocity profile is used to represent the velocity distribution in the annular liquid film. Void fractions predicted by the proposed model are generally in good agreement with a available experimental data. This model appears to be as good as Smith's correlation and better than the Wallis and Zivi correlations for computing void fraction.
International Nuclear Information System (INIS)
Galvao, O.B.; Amorim, E.S. do; D'Oliveira, A.B.
1981-03-01
Under special conditions a water-cooled reactor or other multiphase process can be subject to instabilities as the so called density-wave oscillations phenomenon. The purpose of this investigation is to derive the stability limits of a boiling channel for the dynamic response to an inlet velocity perturbation. The solution scheme allowed a coupling for the single and two-phase regions together with a model for the dynamic thermal response of the heated surface. The frequency response of a rational transfer function is obtained and a Nyquist plot is used for stability analysis. The model is, although simplified, quite capable of predicting the threshold for self-excited system or the trends given by more exact solution. (Author) [pt
A review of damping of two-phase flows
International Nuclear Information System (INIS)
Hara, Fumio
1993-01-01
Damping of two-phase flows has been recognized as one of the most unknown parameters in analyzing vibrational characteristics of structures subjected to two-phase flows since it seems to be influenced by many physical parameters involved in the physics of dynamic energy dissipation of a vibrating structure, for example, liquid viscosity, surface tension, flow velocity, mass ratio, frequency, void fraction, flow regime and so forth. This paper deals with a review of scientific works done to date on the damping of two phase flows and discussions about what has been clarified and what has not been known to us, or what kinds of research are needed about two-phase flow damping. The emphasis is put on the definition of two-phase fluid damping, damping measurement techniques, damping characteristics in relation to two phase flow configurations, and damping generation mechanisms
Yang, Yuming; Liang, Yung C.
For the past decade, extensive mathematical modelling has been conducted on the design and optimization of liquid-feed direct methanol fuel cells (DMFCs). Detailed modelling of DMFC operations reveals that a two-phase flow phenomenon at the anode and under-rib convection due to the pressure difference between the adjacent channels both contribute significantly to mass-transfer in a DMFC and its output performance. In practice, comprehensive simulations based on the finite volume technique for two-phase flow require a high level of numerical complexity in computation. This study presents a complexity-reduced mathematical model that is developed to cover both phenomena for a realistic, but fast, in computation for the prediction and analysis of a DMFC prototype design. The simulation results are validated against experimental data with good agreement. Analysis of the DMFC mass-transfer is made to investigate methanol distribution at anode and its crossover through the proton-exchange membrane. From a comparison of the influence of two-phase flow and under-rib mass-transfer on DMFC performance, the significance of gas-phase methanol transport is established. Simulation results suggest that both the optimization of the flow-field structure and the fuel cell operating parameters (flow rate, methanol concentration and operating temperature) are important factors for competitive DMFC performance output.
International Nuclear Information System (INIS)
Hwang, D.H.; Yoo, Y.J.; Kim, K.K.
1998-08-01
A linear model, named ALFS, is developed for the analysis of two-phase flow instabilities caused by density wave oscillation and flow excursion in a vertical boiling channel with constant pressure drop conditions. The ALFS code can take into account the effect of the phase velocity difference and the thermally non-equilibrium phenomena, and the neutral boundary of the two-phase flow instability was analyzed by D-partition method. Three representative two-phase flow models ( i.e. HEM, DEM, and DNEM) were examined to investigate the effects on the stability analysis. As the results, it reveals that HEM shows the most conservative prediction of heat flux at the onset of flow instability. three linear models, Ishiis DEM, Sahas DNEM, and ALFS model, were applied to Sahas experimental data of density wave oscillation, and as the result, the mean and standard deviation of the predicted-to-measured heat flux at the onset of instability were calculated as 0.93/0.162, 0.79/0.112, and 0.95/0.143, respectively. For the long test section, however, ALFS model tends to predict the heat fluxes about 30 % lower than the measured values. (author). 14 refs
High speed motion neutron radiography of two-phase flow
International Nuclear Information System (INIS)
Robinson, A.H.; Wang, S.L.
1983-01-01
Current research in the area of two-phase flow utilizes a wide variety of sensing devices, but some limitations exist on the information which can be obtained. Neutron radiography is a feasible alternative to ''see'' the two-phase flow. A system to perform neutron radiographic analysis of dynamic events which occur on the order of several milliseconds has been developed at Oregon State University. Two different methods have been used to radiograph the simulated two-phase flow. These are pulsed, or ''flash'' radiography, and high speed movie neutron radiography. The pulsed method serves as a ''snap-shot'' with an exposure time ranging from 10 to 20 milliseconds. In high speed movie radiography, a scintillator is used to convert neutrons into light which is enhanced by an optical intensifier and then photographed by a high speed camera. Both types of radiography utilize the pulsing capability of the OSU TRIGA reactor. The principle difficulty with this type of neutron radiography is the fogging of the image due to the large amount of scattering in the water. This difficulty can be overcome by using thin regions for the two-phase flow or using heavy water instead of light water. The results obtained in this paper demonstrate the feasibility of using neutron radiography to obtain data in two-phase flow situations. Both movies and flash radiographs have been obtained of air bubbles in water and boiling from a heater element. The neutron radiographs of the boiling element show both nucleate boiling and film boiling. (Auth.)
Two-phase flow dynamics in ECC
International Nuclear Information System (INIS)
Albraaten, P.J.
1981-07-01
The present report summarizes the achievements within the project ''Two-phase Systems and ECC''. The results during 1978 - 1980 are accounted for in brief as they have been documented in earlier reports. The results during the first half of 1981 are accounted for in greater detail. They contain a new model for the Basset force and test runs with this model using the test code RISQUE. Furthermore, test runs have been performed with TRAC-PD2 MOD 1. This code was implemented on Edwards Pipe Blowdown experiment (a standard test case) and UC-Berkeley Reflooding experiment (a non-standard test case.) (Auth.)
An objective indicator for two-phase flow pattern transition
International Nuclear Information System (INIS)
Hervieua, E.; Seleghim, P. Jr.
1998-01-01
This work concerns the development of a methodology the objective of which is to characterize and diagnose two-phase flow regime transitions. The approach is based on the fundamental assumption that a transition flow is less stationary than a flow with an established regime. During the first time, the efforts focused on: (1) the design and construction of an experimental loop, allowing to reproduce the main horizontal two-phase flow patterns, in a stable and controlled way; (2) the design and construction of an electrical impedance probe, providing an imaged information of the spatial phase distribution in the pipe; and (3) the systematic study of the joint time-frequency and time-scale analysis methods, which permitted to define an adequate parameter quantifying the unstationarity degree. During the second time, in order to verify the fundamental assumption, a series of experiments were conducted, the objective of which was to demonstrate the correlation between unstationarity and regime transition. The unstationarity degree was quantified by calculating the Gabor's transform time-frequency covariance of the impedance probe signals. Furthermore, the phenomenology of each transition was characterized by the joint moments and entropy. The results clearly show that the regime transitions are correlated with local time-frequency covariance peaks, which demonstrates that these regime transitions are characterized by a loss of stationarity. Consequently, the time-frequency covariance constitutes an objective two-phase flow regime transition indicator. (orig.)
An objective indicator for two-phase flow pattern transition
International Nuclear Information System (INIS)
Hervieu, E.; Seleghim, P. Jr.
1998-01-01
This work concerns the development of a methodology which objective is to characterize and diagnose two-phase flow regime transitions. The approach is based on the fundamental assumption that a transition flow is less stationary than a flow with an established regime. In a first time, the efforts focused on: the design and construction of an experimental loop, allowing to reproduce the main horizontal two-phase flow patterns, in a stable and controlled way; the design and construction of an electrical impedance probe, providing an imaged information of the spatial phase distribution in the pipe; the systematic study of the joint time-frequency and time-scale analysis methods, which permitted to define an adequate parameter quantifying the unstationarity degree. In a second time, in order to verify the fundamental assumption, a series of experiments were conducted, which objective was to demonstrate the correlation between unstationarity and regime transition. The unstationarity degree was quantified by calculating the Gabor's transform time-frequency covariance of the impedance probe signals. Furthermore, the phenomenology of each transition was characterized by the joint moments and entropy. The results clearly show that the regime transitions are correlated with local time-frequency covariance peaks, which demonstrates that these regime transitions are characterized by a loss of stationarity. Consequently, the time-frequency covariance constitutes an objective two-phase flow regime transition indicator. (author)
Two-phase flow boiling pressure drop in small channels
International Nuclear Information System (INIS)
Sardeshpande, Madhavi V.; Shastri, Parikshit; Ranade, Vivek V.
2016-01-01
Highlights: • Study of typical 19 mm steam generator tube has been undertaken in detail. • Study of two phase flow boiling pressure drop, flow instability and identification of flow regimes using pressure fluctuations is the main focus of present work. • Effect of heat and mass flux on pressure drop and void fraction was studied. • Flow regimes identified from pressure fluctuations data using FFT plots. • Homogeneous model predicted pressure drop well in agreement. - Abstract: Two-phase flow boiling in small channels finds a variety of applications in power and process industries. Heat transfer, boiling flow regimes, flow instabilities, pressure drop and dry out are some of the key issues related to two-phase flow boiling in channels. In this work, the focus is on pressure drop in two-phase flow boiling in tubes of 19 mm diameter. These tubes are typically used in steam generators. Relatively limited experimental database is available on 19 mm ID tube. Therefore, in the present work, the experimental set-up is designed for studying flow boiling in 19 mm ID tube in such a way that any of the different flow regimes occurring in a steam generator tube (from pre-heating of sub-cooled water to dry-out) can be investigated by varying inlet conditions. The reported results cover a reasonable range of heat and mass flux conditions such as 9–27 kW/m 2 and 2.9–5.9 kg/m 2 s respectively. In this paper, various existing correlations are assessed against experimental data for the pressure drop in a single, vertical channel during flow boiling of water at near-atmospheric pressure. A special feature of these experiments is that time-dependent pressures are measured at four locations along the channel. The steady-state pressure drop is estimated and the identification of boiling flow regimes is done with transient characteristics using time series analysis. Experimental data and corresponding results are compared with the reported correlations. The results will be
Varsakelis, Christos
2012-01-01
In this Doctoral Thesis we are concerned with the theoretical and numerical analysis of hydrostatics and low-Mach number flows of fluid saturated granular materials. In the first part, we generalize the concept of low-Mach number approximation to multi-phase flows and apply it to derive the low-Mach number equations for the mixtures of interest. In the second part, we develop a projection-type, successive-over-relaxation method for the computation of hydrostatics of such mixtures. We also pro...
Constitutive equations for two-phase flows
International Nuclear Information System (INIS)
Boure, J.A.
1974-12-01
The mathematical model of a system of fluids consists of several kinds of equations complemented by boundary and initial conditions. The first kind equations result from the application to the system, of the fundamental conservation laws (mass, momentum, energy). The second kind equations characterize the fluid itself, i.e. its intrinsic properties and in particular its mechanical and thermodynamical behavior. They are the mathematical model of the particular fluid under consideration, the laws they expressed are so called the constitutive equations of the fluid. In practice the constitutive equations cannot be fully stated without reference to the conservation laws. Two classes of model have been distinguished: mixture model and two-fluid models. In mixture models, the mixture is considered as a single fluid. Besides the usual friction factor and heat transfer correlations, a single constitutive law is necessary. In diffusion models, the mixture equation of state is replaced by the phasic equations of state and by three consitutive laws, for phase change mass transfer, drift velocity and thermal non-equilibrium respectively. In the two-fluid models, the two phases are considered separately; two phasic equations of state, two friction factor correlations, two heat transfer correlations and four constitutive laws are included [fr
Two-phase flow experimental studies in micro-models
Karadimitriou, N.K.
2013-01-01
The aim of this research project was to put more physics into theories of two-phase flow. The significance of including interfacial area as a separate variable in two-phase flow and transport models was investigated. In order to investigate experimentally the significance of the inclusion of
Stochastic modelling of two-phase flows including phase change
International Nuclear Information System (INIS)
Hurisse, O.; Minier, J.P.
2011-01-01
Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)
Energy Technology Data Exchange (ETDEWEB)
HELTON,JON CRAIG; BEAN,J.E.; ECONOMY,K.; GARNER,J.W.; MACKINNON,ROBERT J.; MILLER,JOEL D.; SCHREIBER,J.D.; VAUGHN,PALMER
2000-05-22
Uncertainty and sensitivity analysis results obtained in the 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) are presented for two-phase flow in the vicinity of the repository under disturbed conditions resulting from drilling intrusions. Techniques based on Latin hypercube sampling, examination of scatterplots, stepwise regression analysis, partial correlation analysis and rank transformations are used to investigate brine inflow, gas generation repository pressure, brine saturation and brine and gas outflow. Of the variables under study, repository pressure and brine flow from the repository to the Culebra Dolomite are potentially the most important in PA for the WIPP. Subsequent to a drilling intrusion repository pressure was dominated by borehole permeability and generally below the level (i.e., 8 MPa) that could potentially produce spallings and direct brine releases. Brine flow from the repository to the Culebra Dolomite tended to be small or nonexistent with its occurrence and size also dominated by borehole permeability.
International Nuclear Information System (INIS)
Galaup, Jean-Pierre
1975-01-01
In a two-flow ascending water-air flow, three types of local probes (optical, resistivity, and hot-film) were tested. Furthermore, the optical probe was improved and particular signal conditioning means are described. The measurements of the fraction of gas present are compared with the results of a general method based on the absorption of gamma rays. Measurements of the local velocity of the liquid by means of a hot-film conical probe and of the local velocity of the gas by means of an optical or resistivity bi probe are compared to the liquid and gas flows, respectively. Finally, a statistical study of a two-phase flow is developed. By exploiting signals from an optical probe, it makes it possible to obtain the particulate size distribution and the specific area of a flow with bubbles. (author) [fr
Studies on shock phenomena in two-phase flow, 2
International Nuclear Information System (INIS)
Akagawa, Koji; Fujii, Terushige; Ito, Yutaka; Fukuhara, Kazuya; Yamaguchi, Toshiaki.
1982-01-01
Shock phenomena caused by a rapid valve closure in a slug flow region were investigated. The experiment was conducted in a horizontal acrylic tube of 20.7 mm ID, 4.85 mm in thickness, and 18.5 m in length. The profiles of the transient pressure caused by a rapid valve closure in slug flow are affected by the flow configuration adjacent to the valve, and these are classified into two types according to the existence of a gas slug or a liquid slug at the valve at the instant of valve closure. The characteristics of the transient pressure in the former were analyzed by an oscillation system model composed of a mass (liquid slug) and a compressible capacity (gas slug). Those in the latter were also analyzed for a homogeneous two-phase flow model by a similar method to that in a waterhammer analysis. The experimental results were well explained by these analyses. (author)
State of the art: two-phase flow calibration techniques
International Nuclear Information System (INIS)
Stanley, M.L.
1977-01-01
The nuclear community faces a particularly difficult problem relating to the calibration of instrumentation in a two-phase flow steam/water environment. The rationale of the approach to water reactor safety questions in the United States demands that accurate measurements of mass flows in a decompressing two-phase flow be made. An accurate measurement dictates an accurate calibration. This paper addresses three questions relating to the state of the art in two-phase calibration: (1) What do we mean by calibration. (2) What is done now. (3) What should be done
Modeling two-phase flow in PEM fuel cell channels
Energy Technology Data Exchange (ETDEWEB)
Wang, Yun; Basu, Suman; Wang, Chao-Yang [Electrochemical Engine Center (ECEC), and Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)
2008-05-01
This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M{sup 2} formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels. (author)
A device for two-phase flow control in nanochannels
Shui, Lingling; van den Berg, Albert; Eijkel, Jan C.T.; Kim, Tae Song; Lee, Yoon-Sik; Chung, Twek-Dong; Jeon, Noo Li; Lee, Sang-Hoon; Suh, Kahp-Yang; Choo, Jaebm; Kim, Yong-Kweon
2009-01-01
We developed a novel method to control two-phase flow in nanochannels using regulating microchannels connected to the nanochannels. The flow rate inside a nanochannel can be regulated based on the pressure drops along the channel network. Stable flows with flow rates as low as 10-5 �?�L.min-1 (<
A real two-phase submarine debris flow and tsunami
International Nuclear Information System (INIS)
Pudasaini, Shiva P.; Miller, Stephen A.
2012-01-01
The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the
Experimental and numerical investigation on two-phase flow instabilities
Energy Technology Data Exchange (ETDEWEB)
Ruspini, Leonardo Carlos
2013-03-01
-dimensional similitude analysis are used to support the design, regarding the occurrence of two-phase flow instabilities. Some experimental results are presented in order to validate the current design. A full characterisation of the pressure drop losses in the facility is presented. Both, distributed and local pressure drop losses are investigated and the experimental results are compared with the main correlations used in the literature for the analysis of pressure drop in two-phase flow systems. Finally, pressure drop and density wave oscillations are studied experimentally, with main focus on the interaction of these two oscillation modes. In addition, the influence of compressibility volumes on the stability limits for the density wave phenomenon is analysed.(Author)
Research on one-dimensional two-phase flow
International Nuclear Information System (INIS)
Adachi, Hiromichi
1988-10-01
In Part I the fundamental form of the hydrodynamic basic equations for a one-dimensional two-phase flow (two-fluid model) is described. Discussions are concentrated on the treatment of phase change inertial force terms in the equations of motion and the author's equations of motion which have a remarkable uniqueness on the following three points. (1) To express force balance of unit mass two-phase fluid instead of that of unit volume two-phase fluid. (2) To pick up the unit existing mass and the unit flowing mass as the unit mass of two-phase fluid. (3) To apply the kinetic energy principle instead of the momentum low in the evaluation of steady inertial force term. In these three, the item (1) is for excluding a part of momentum change or kinetic energy change due to mass change of the examined part of fluid, which is independent of force. The item (2) is not to introduce a phenomenological physical model into the evaluation of phase change inertial force term. And the item (3) is for correctly applying the momentum law taking into account the difference of representative velocities between the main flow fluid (vapor phase or liquid phase) and the phase change part of fluid. In Part II, characteristics of various kinds of high speed two-phase flow are clarified theoretically by the basic equations derived. It is demonstrated that the steam-water two-phase critical flow with violent flashing and the airwater two-phase critical flow without phase change can be described with fundamentally the same basic equations. Furthermore, by comparing the experimental data from the two-phase critical discharge test and the theoretical prediction, the two-phase discharge coefficient, C D , for large sharp-edged orifice is determined as the value which is not affected by the experimental facility characteristics, etc. (author)
Digital image processing for two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Lee, Jae Young; Lim, Jae Yun [Cheju National University, Cheju (Korea, Republic of); No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1992-07-01
A photographic method to measure the key parameters of two-phase flow is realized by using a digital image processing technique. The 8 bit gray level and 256 x 256 pixels are used to generates the image data which is treated to get the parameters of two-phase flow. It is observed that the key parameters could be identified by treating data obtained by the digital image processing technique.
Numerical simulation of two phase flows in heat exchangers
International Nuclear Information System (INIS)
Grandotto Biettoli, M.
2006-04-01
The report presents globally the works done by the author in the thermohydraulic applied to nuclear reactors flows. It presents the studies done to the numerical simulation of the two phase flows in the steam generators and a finite element method to compute these flows. (author)
Dynamic Modeling of Phase Crossings in Two-Phase Flow
DEFF Research Database (Denmark)
Madsen, Søren; Veje, Christian; Willatzen, Morten
2012-01-01
Two-phase flow and heat transfer, such as boiling and condensing flows, are complicated physical phenomena that generally prohibit an exact solution and even pose severe challenges for numerical approaches. If numerical solution time is also an issue the challenge increases even further. We present...... here a numerical implementation and novel study of a fully distributed dynamic one-dimensional model of two-phase flow in a tube, including pressure drop, heat transfer, and variations in tube cross-section. The model is based on a homogeneous formulation of the governing equations, discretized...... of the variables and are usually very slow to evaluate. To overcome these challenges, we use an interpolation scheme with local refinement. The simulations show that the method handles crossing of the saturation lines for both liquid to two-phase and two-phase to gas regions. Furthermore, a novel result obtained...
Computer simulation of two-phase flow in nuclear reactors
International Nuclear Information System (INIS)
Wulff, W.
1993-01-01
Two-phase flow models dominate the requirements of economic resources for the development and use of computer codes which serve to analyze thermohydraulic transients in nuclear power plants. An attempt is made to reduce the effort of analyzing reactor transients by combining purpose-oriented modelling with advanced computing techniques. Six principles are presented on mathematical modeling and the selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited than the two-fluid model for the analysis of two-phase flow in nuclear reactors, because of the latter's closure problems. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost. (orig.)
A turbulent two-phase flow model for nebula flows
International Nuclear Information System (INIS)
Champney, J.M.; Cuzzi, J.N.
1990-01-01
A new and very efficient turbulent two-phase flow numericaly model is described to analyze the environment of a protoplanetary nebula at a stage prior to the formation of planets. Focus is on settling processes of dust particles in flattened gaseous nebulae. The model employs a perturbation technique to improve the accuracy of the numerical simulations of such flows where small variations of physical quantities occur over large distance ranges. The particles are allowed to be diffused by gas turbulence in addition to settling under gravity. Their diffusion coefficients is related to the gas turbulent viscosity by the non-dimensional Schmidt number. The gas turbulent viscosity is determined by the means of the eddy viscosity hypothesis that assumes the Reynolds stress tensor proportional to the mean strain rate tensor. Zero- and two-equation turbulence models are employed. Modeling assumptions are detailed and discussed. The numerical model is shown to reproduce an existing analytical solution for the settling process of particles in an inviscid nebula. Results of nebula flows are presented taking into account turbulence effects of nebula flows. Diffusion processes are found to control the settling of particles. 24 refs
Directory of Open Access Journals (Sweden)
T Andrade
2016-09-01
Full Text Available In the oil industry the multiphase flow occur throughout the production chain, from reservoir rock until separation units through the production column, risers and pipelines. During the whole process the fluid flows through the horizontal pipes, curves, connections and T joints. Today, technological and economic challenges facing the oil industry is related to heavy oil transportation due to its unfavourable characteristics such as high viscosity and high density that provokes high pressure drop along the flow. The coreflow technique consists in the injection of small amounts of water into the pipe to form a ring of water between the oil and the wall of the pipe which provides the reduction of friction pressure drop along the flow. This paper aim to model and simulate the transient two-phase flow (water-heavy oil in a horizontal pipe and T joint by numerical simulation using the software ANSYS CFX® Release 12.0. Results of pressure and volumetric fraction distribution inside the horizontal pipe and T joint are presented and analysed.
Construction of the two-phase critical flow test facility
International Nuclear Information System (INIS)
Chung, C. H.; Chang, S. K.; Park, H. S.; Min, K. H.; Choi, N. H.; Kim, C. H.; Lee, S. H.; Kim, H. C.; Chang, M. H.
2002-03-01
The two-phase critical test loop facility has been constructed in the KAERI engineering laboratory for the simulation of small break loss of coolant accident entrained with non-condensible gas of SMART. The test facility can operate at 12 MPa of pressure and 0 to 60 C of sub-cooling with 0.5 kg/s of non- condensible gas injection into break flow, and simulate up to 20 mm of pipe break. Main components of the test facility were arranged such that the pressure vessel containing coolant, a test section simulating break and a suppression tank inter-connected with pipings were installed vertically. As quick opening valve opens, high pressure/temperature coolant flows through the test section forming critical two-phase flow into the suppression tank. The pressure vessel was connected to two high pressure N2 gas tanks through a control valve to control pressure in the pressure vessel. Another N2 gas tank was also connected to the test section for the non-condensible gas injection. The test facility operation was performed on computers supported with PLC systems installed in the control room, and test data such as temperature, break flow rate, pressure drop across test section, gas injection flow rate were all together gathered in the data acquisition system for further data analysis. This test facility was classified as a safety related high pressure gas facility in law. Thus the loop design documentation was reviewed, and inspected during construction of the test loop by the regulatory body. And the regulatory body issued permission for the operation of the test facility
Entrainment in vertical annular two-phase flow
International Nuclear Information System (INIS)
Sawant, Pravin; Ishii, Mamoru; Mori, Michitsugu
2009-01-01
Prediction of amount of entrained droplets or entrainment fraction in annular two-phase flow is essential for the estimation of dryout condition and analysis of post dryout heat transfer in light water nuclear reactors and steam boilers. In this study, air-water and organic fluid (Freon-113) annular flow entrainment experiments have been carried out in 9.4 and 10.2 mm diameter test sections, respectively. Both the experiments covered three distinct pressure conditions and wide range of liquid and gas flow conditions. The organic fluid experiments simulated high pressure steam-water annular flow conditions. In each of the experiments, measurements of entrainment fraction, droplet entrainment rate and droplet deposition rate have been performed by using a liquid film extraction method. A simple, explicit and non-dimensional correlation developed by Sawant et al. (2008a) for the prediction of entrainment fraction is further improved in this study in order to account for the existence of critical gas and liquid flow rates below which no entrainment is possible. Additionally, a new correlation is proposed for the estimation of minimum liquid film flow rate at the maximum entrainment fraction condition. The improved correlation successfully predicted the newly collected air-water and Freon-113 entrainment fraction data. Furthermore, the correlations satisfactorily compared with the air-water, helium-water and air-genklene experimental data measured by Willetts (1987). (author)
Two-dimensional analysis of two-phase reacting flow in a firing direct-injection diesel engine
Nguyen, H. Lee
1989-01-01
The flow field, spray penetration, and combustion in two-stroke diesel engines are described. Fuel injection begins at 345 degrees after top dead center (ATDC) and n-dodecane is used as the liquid fuel. Arrhenius kinetics is used to calculate the reaction rate term in the quasi-global combustion model. When the temperature, fuel, and oxygen mass fraction are within suitable flammability limits, combustion begins spontaneously. No spark is necessary to ignite a localized high temperature region. Compression is sufficient to increase the gaseous phase temperature to a point where spontaneous chemical reactions occur. Results are described for a swirl angle of 22.5 degrees.
Statistical descriptions of polydisperse turbulent two-phase flows
Minier, Jean-Pierre
2016-12-01
Disperse two-phase flows are flows containing two non-miscible phases where one phase is present as a set of discrete elements dispersed in the second one. These discrete elements, or 'particles', can be droplets, bubbles or solid particles having different sizes. This situation encompasses a wide range of phenomena, from nano-particles and colloids sensitive to the molecular fluctuations of the carrier fluid to inertia particles transported by the large-scale motions of turbulent flows and, depending on the phenomenon studied, a broad spectrum of approaches have been developed. The aim of the present article is to analyze statistical models of particles in turbulent flows by addressing this issue as the extension of the classical formulations operating at a molecular or meso-molecular level of description. It has a three-fold purpose: (1) to bring out the thread of continuity between models for discrete particles in turbulent flows (above the hydrodynamical level of description) and classical mesoscopic formulations of statistical physics (below the hydrodynamical level); (2) to reveal the specific challenges met by statistical models in turbulence; (3) to establish a methodology for modeling particle dynamics in random media with non-zero space and time correlations. The presentation is therefore centered on organizing the different approaches, establishing links and clarifying physical foundations. The analysis of disperse two-phase flow models is developed by discussing: first, approaches of classical statistical physics; then, by considering models for single-phase turbulent flows; and, finally, by addressing current formulations for discrete particles in turbulent flows. This brings out that particle-based models do not cease to exist above the hydrodynamical level and offer great interest when combined with proper stochastic formulations to account for the lack of equilibrium distributions and scale separation. In the course of this study, general results
Thermalhydraulic instability analysis of a two phase natural circulation loop
International Nuclear Information System (INIS)
Sesini, Paula Aida
1998-01-01
This work presents an analysis of a loop operating in natural circulation regime. Experiments were done in a rectangular closed circuit in one and two-phase flows. Numerical analysis were performed initially with the CIRNAT code and afterwards with RELAP5/MOD2. The limitations of CIRNAT were studied and new developments for this code are proposed. (author)
Method and apparatus for monitoring two-phase flow. [PWR
Sheppard, J.D.; Tong, L.S.
1975-12-19
A method and apparatus for monitoring two-phase flow is provided that is particularly related to the monitoring of transient two-phase (liquid-vapor) flow rates such as may occur during a pressurized water reactor core blow-down. The present invention essentially comprises the use of flanged wire screens or similar devices, such as perforated plates, to produce certain desirable effects in the flow regime for monitoring purposes. One desirable effect is a measurable and reproducible pressure drop across the screen. The pressure drop can be characterized for various known flow rates and then used to monitor nonhomogeneous flow regimes. Another useful effect of the use of screens or plates in nonhomogeneous flow is that such apparatus tends to create a uniformly dispersed flow regime in the immediate downstream vicinity. This is a desirable effect because it usually increases the accuracy of flow rate measurements determined by conventional methods.
TWO PHASE FLOW SPLIT MODEL FOR PARALLEL CHANNELS
African Journals Online (AJOL)
Ifeanyichukwu Onwuka
A model has been developed for the determination of two phase flow distributions between multiple parallel channels which ... transients, up to ten parallel flow paths, simple and complicated geometries, including the boilers of fossil steam generators and ..... The above model and numerical technique were programmed in ...
Experimental investigation two phase flow in direct methanol fuel cells
International Nuclear Information System (INIS)
Mat, M. D.; Kaplan, Y.; Celik, S.; Oeztural, A.
2007-01-01
Direct methanol fuel cells (DMFC) have received many attentions specifically for portable electronic applications since it utilize methanol which is in liquid form in atmospheric condition and high energy density of the methanol. Thus it eliminates the storage problem of hydrogen. It also eliminates humidification requirement of polymeric membrane which is a problem in PEM fuel cells. Some electronic companies introduced DMFC prototypes for portable electronic applications. Presence of carbon dioxide gases due to electrochemical reactions in anode makes the problem a two phase problem. A two phase flow may occur at cathode specifically at high current densities due to the excess water. Presence of gas phase in anode region and liquid phase in cathode region prevents diffusion of fuel and oxygen to the reaction sites thus reduces the performance of the system. Uncontrolled pressure buildup in anode region increases methanol crossover through membrane and adversely effect the performance. Two phase flow in both anode and cathode region is very effective in the performance of DMYC system and a detailed understanding of two phase flow for high performance DMFC systems. Although there are many theoretical and experimental studies available on the DMFC systems in the literature, only few studies consider problem as a two-phase flow problem. In this study, an experimental set up is developed and species distributions on system are measured with a gas chromatograph. System performance characteristics (V-I curves) is measured depending on the process parameters (temperature, fuel ad oxidant flow rates, methanol concentration etc)
Sweijen, Thomas; Hartog, Niels; Marsman, Annemieke; Keijzer, Thomas J S
2014-06-01
Mercury is a contaminant of global concern. The use of elemental mercury in various (former) industrial processes, such as chlorine production at chlor-alkali plants, is known to have resulted in soil and groundwater contaminations worldwide. However, the subsurface transport behaviour of elemental mercury as an immiscible dense non-aqueous phase liquid (DNAPL) in porous media has received minimal attention to date. Even though, such insight would aid in the remediation effort of mercury contaminated sites. Therefore, in this study a detailed field characterization of elemental mercury DNAPL distribution with depth was performed together with two-phase flow modelling, using STOMP. This is to evaluate the dynamics of mercury DNAPL migration and the controls on its distribution in saturated porous media. Using a CPT-probe mounted with a digital camera, in-situ mercury DNAPL depth distribution was obtained at a former chlor-alkali-plant, down to 9 m below ground surface. Images revealing the presence of silvery mercury DNAPL droplets were used to quantify its distribution, characteristics and saturation, using an image analysis method. These field-observations with depth were compared with results from a one-dimensional two-phase flow model simulation for the same transect. Considering the limitations of this approach, simulations reasonably reflected the variability and range of the mercury DNAPL distribution. To further explore the impact of mercury's physical properties in comparison with more common DNAPLs, the migration of mercury and PCE DNAPL in several typical hydrological scenarios was simulated. Comparison of the simulations suggest that mercury's higher density is the overall controlling factor in controlling its penetration in saturated porous media, despite its higher resistance to flow due to its higher viscosity. Based on these results the hazard of spilled mercury DNAPL to cause deep contamination of groundwater systems seems larger than for any other
Mathematical modeling of disperse two-phase flows
Morel, Christophe
2015-01-01
This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, a...
The Condensation effect on the two-phase flow stability
International Nuclear Information System (INIS)
Abdou Mohamed, Hesham Nagah
2005-01-01
A one-dimensional analytical model has been developed to be used for the linear analysis of density-wave oscillations in a parallel heated channel and a natural circulation loop.The heater and the riser sections are divided into a single-phase and a two-phase region.The two-phase region is represented by the drift-flux model. The model accounts for aphasic slip and subcooled boiling.The localized friction at the heater and the riser exit is treated considering the two-phase mixture.Also the effects of the condensation in the riser and the change in the system pressure have been studied.The exact equation for the heated channel and the total loop pressure drop is perturbed around the steady state.he stability characteristics of the heated channel and the loop are investigated using the Root finding method criterion.The results are summarized on instability maps in the plane of subcooled boiling number vs. phase change number (i.e., inlet subcooling vs. heater heat flux).The predictions of the model are compared with experimental results published in open literature. The results show that, the treatment effect of localized friction in two-phase mixtures stabilizes the system and improves the agreement of the calculations with the experimental results.For a parallel heated channel, the results indicate a more stable system with high inlet restriction, low outlet restriction, and high inlet velocity. And for a natural circulation loop, an increase in the inlet restriction broadened the range of the continuous circulation mode and stabilized the system, a decrease in the exit restriction or the liquid charging level shifted to the right the range of the continuous circulation mode and stabilized the system and an increase in the riser condensation shifted to the right the range of the continuous circulation mode and stabilized the system.The results show that the model agrees well with the available experimental data. In particular, the results show the significance of
Two-phase flow measurement based on oblique laser scattering
Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cícero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.
2015-07-01
Multiphase flow measurements play a crucial role in monitoring productions processes in many industries. To guarantee the safety of processes involving multiphase flows, it is important to detect changes in the flow conditions before they can cause damage, often in fractions of seconds. Here we demonstrate how the scattering pattern of a laser beam passing a two-phase flow under an oblique angle to the flow direction can be used to detect derivations from the desired flow conditions in microseconds. Applying machine-learning techniques to signals obtained from three photo-detectors we achieve a compact, versatile, low-cost sensor design for safety applications.
Modulating patterns of two-phase flow with electric fields.
Liu, Dingsheng; Hakimi, Bejan; Volny, Michael; Rolfs, Joelle; Anand, Robbyn K; Turecek, Frantisek; Chiu, Daniel T
2014-07-01
This paper describes the use of electro-hydrodynamic actuation to control the transition between three major flow patterns of an aqueous-oil Newtonian flow in a microchannel: droplets, beads-on-a-string (BOAS), and multi-stream laminar flow. We observed interesting transitional flow patterns between droplets and BOAS as the electric field was modulated. The ability to control flow patterns of a two-phase fluid in a microchannel adds to the microfluidic tool box and improves our understanding of this interesting fluid behavior.
Qualitative behaviour of incompressible two-phase flows with phase ...
Indian Academy of Sciences (India)
... consistent model for incompressible two-phase flows with phase transitions is considered mathematically. The model is based on first principles, i.e., balance of mass, momentum and energy. In the isothermal case, this problem is analysed to obtain local well-posedness, stability of non-degenerate equilibria, and global ...
Two Phase Flow Split Model for Parallel Channels | Iloeje | Nigerian ...
African Journals Online (AJOL)
A model has been developed for the determination of two phase flow distributions between multiple parallel channels which communicate between a common upper and a common lower plenum. It utilizes the requirement of equal plenum to plenum pressure drops through the channels, continuity equations at the lower ...
Controlling two-phase flow in microfluidic systems using electrowetting
Gu, H.
2011-01-01
Electrowetting (EW)-based digital microfluidic systems (DMF) and droplet-based two-phase flow microfluidic systems (TPF) with closed channels are the most widely used microfluidic platforms. In general, these two approaches have been considered independently. However, integrating the two
Droplets formation and merging in two-phase flow microfluidics
Gu, H.; Duits, Michael H.G.; Mugele, Friedrich Gunther
2011-01-01
Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key
Study on flow instabilities in two-phase mixtures
International Nuclear Information System (INIS)
Ishii, M.
1976-03-01
Various mechanisms that can induce flow instabilities in two-phase flow systems are reviewed and their relative importance discussed. In view of their practical importance, the density-wave instabilities have been analyzed in detail based on the one-dimensional two-phase flow formulation. The dynamic response of the system to the inlet flow perturbations has been derived from the model; thus the characteristic equation that predicts the onset of instabilities has been obtained. The effects of various system parameters, such as the heat flux, subcooling, pressure, inlet velocity, inlet orificing, and exit orificing on the stability boundary have been analyzed. In addition to numerical solutions, some simple stability criteria under particular conditions have been obtained. Both results have been compared with various experimental data, and a satisfactory agreement has been demonstrated
Advances in two-phase flow and heat transfer fundamentals and applications volumes I and II
International Nuclear Information System (INIS)
Kakac, S.; Ishil, M.
1983-01-01
Two-phase flow applications are found in a wide range of engineering systems, such as nuclear and conventional power plants, evaporators of refrigeration systems and a wide variety of evaporative and condensive heat exchangers in the chemical industry. This publication is based on the invited lectures presented at the NATO Advanced Research Workshop on the Advances in Two-Phase Flow and Heat Transfer. Leading scientists and practicing engineers from NATO and non-NATO countries convened to discuss two-phase flow and heat transfer and formulated recommendations for future research directions. These two volumes incorporate a systematic approach to two-phase flow analysis, and present both basic and applied information. The volumes identify the unresolved problem areas and provide suggestions for priority research topics in the field of two-phase flow and heat transfer
Phenomenological studies of two-phase flow processes for nuclear waste isolation
International Nuclear Information System (INIS)
Pruess, K.; Finsterle, S.; Persoff, P.; Oldenburg, C.
1994-01-01
The US civilian radioactive waste management program is unique in its focus on a site in the unsaturated zone, at Yucca Mountain, Nevada. Two-phase flow phenomena can also play an important role in repositories beneath the water table where gas is generated by corrosion, hydrolysis, and biological degradation of the waste packages. An integrated program has been initiated to enhance our understanding of two-phase flow behavior in fractured rock masses. The studies include two-phase (gas-liquid) flow experiments in laboratory specimens of natural rock fractures, analysis and modeling of heterogeneity and instability effects in two-phase flow, and design and interpretation of field experiments by means of numerical simulation. We present results that identify important aspects of two-phase flow behavior on different space and time scales which are relevant to nuclear waste disposal in both unsaturated and saturated formations
Two phase flow instabilities in horizontal straight tube evaporator
2010-01-01
Abstract It is essential to ensure the stability of a refrigeration system if the oscillation in evaporation process is the primary cause for the whole system instability. This paper is concerned with an experimental investigation of two phase flow instabilities in a horizontal straight tube evaporator of a refrigeration system. The relationship between pressure drop and mass flow with constant heat flux and evaporation pressure is measured and determined. It is found that there is...
Computational methods for two-phase flow and particle transport
Lee, Wen Ho
2013-01-01
This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.
Numerical simulation of compressible, turbulent, two-phase flow
Coakley, t. J.; Champney, J. M.
1985-01-01
A computer program for numerically simulating compressible, turbulent, two-phase flows is described and applied. Special attention is given to flows in which dust is ingested into the turbulent boundary layer behind shock waves moving over the earth's surface. it is assumed that the two phases are interpenetrating continua which are coupled by drag forces and heat transfer. The particle phase is assumed to be dilute, and turbulent effects are modeled by zero- and two-equation eddy viscosity models. An important feature of the turbulence modeling is the treatment of surface boundary conditions which control the ingestion of particles into the boundary layer by turbulent friction and diffusion. The numerical method uses second-order implicit upwind differencing of the inviscid terms of the equations and second-order central differencing of the viscous terms. A diagonal form of the implicit algorithm is used to improve efficiency, and the transformation to a curvilinear coordinate system is accomplished by the finite volume techniques. Applications to a series of representative flows include a two-phase nozzle flow, the steady flow of air over a sand bed, and the air flow behind a normal shock wave in uniform motion over a sand bed. Results of the latter two applications are compared with experimental results.
Design and construction of two phases flow meter
International Nuclear Information System (INIS)
Nor Paiza Mohamad Hasan
2002-01-01
This paper deals with design of the gamma ray correlometer and flow loop system for measuring the velocity between two parallel cross-sections of a pipeline. In the laboratory, the radioisotope source and detector were collimated by brass with small beam slit respectively. The flow loop system consists of transparent pipeline, adjustable frequency pump and water container. As a result, when the construction of the flow loop and correlometer is completed, the velocity of two phases flow can be measured by the cross-correlation techniques. (Author)
Two-phase flow instabilities in a vertical annular channel
Energy Technology Data Exchange (ETDEWEB)
Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)
1995-09-01
An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.
Non-Darcy behavior of two-phase channel flow.
Xu, Xianmin; Wang, Xiaoping
2014-08-01
We study the macroscopic behavior of two-phase flow in porous media from a phase-field model. A dissipation law is first derived from the phase-field model by homogenization. For simple channel geometry in pore scale, the scaling relation of the averaged dissipation rate with the velocity of the two-phase flow can be explicitly obtained from the model which then gives the force-velocity relation. It is shown that, for the homogeneous channel surface, Dacry's law is still valid with a significantly modified permeability including the contribution from the contact line slip. For the chemically patterned surfaces, the dissipation rate has a non-Darcy linear scaling with the velocity, which is related to a depinning force for the patterned surface. Our result offers a theoretical understanding on the prior observation of non-Darcy behavior for the multiphase flow in either simulations or experiments.
Development of two-phase Flow Model, 'SOBOIL', for Sodium
International Nuclear Information System (INIS)
Hahn, Do Hee; Chang, Won Pyo; Kim, In Chul; Kwon, Young Min; Lee, Yong Bum
2000-03-01
The objective of this research is to develop a sodium two-phase flow analysis model, 'SOBOIL', for the assessment of the initial stage of the KALIMER HCDA (Hypotherical Core Disruptive Accident). The 'SOBOIL' is basically similar to the multi-bubble slug ejection model used in SAS2A[1]. When a bubble is formed within the liquid slug, the bubble fills the whole cross section of the coolant channel except for a film left on the cladding or on the structure. Up to nine bubbles, separated by the liquid slugs, are allowed in the channel at any time. Each liquid slug flow rate in the model is performed in 2 steps. In the first step, the preliminary flow rate in the liquid slug is calculated neglecting the effect of changes in the vapor bubble pressures over the time step. The temperature and pressure distributions, and interface velocity at the interface between the liquid slug and vapor bubble are also calculated during this process. The new vapor temperature and pressure are then determined from the balance between the net energy transferred into the vapor and the change of the vapor energy. The liquid flow is finally calculated considering the change of the vapor pressure over a time step and the calculation is repeated until specified elapsed time is met. Continuous effort, therefore, must be made on the examination and improvement for the model to become reliable. To this end, much interest must be concentrated in the relevant international collaborations for access to a reference model or test data for the verification
Three-dimensional investigation of the two-phase flow structure in a bubbly pipe flow
International Nuclear Information System (INIS)
Schmidl, W.; Hassan, Y.A.; Ortiz-Villafuerte, J.
1996-01-01
Particle image velocimetry (PIV) is a nonintrusive measurement technique that can be used to study the structure of various fluid flows. PIV is used to measure the time-varying, full-field velocity data of a particle-seeded flow field within either a two-dimensional plane or three-dimensional volume. PIV is a very efficient measurement technique since it can obtain both qualitative and quantitative spatial information about the flow field being studied. The quantitative spatial velocity information can be further processed into information of flow parameters such as vorticity and turbulence over extended areas. The objective of this study was to apply recent advances and improvements in the PIV flow measurement technique to the full-field, nonintrusive analysis of a three-dimensional, two-phase fluid flow system in such a manner that both components of the two-phase system could be experimentally quantified
International Nuclear Information System (INIS)
Chenu, A.
2011-10-01
liquid film after dryout onset. The validation of the extended TRACE code has been achieved through the successful simulation of out-of-pile experiments. A review of available sodium boiling test data has first been carried out, and complementary tests have been selected to assess the quality of the different physical models like the pressure drop and cooling limits under quasi steady-state conditions, as well as the simulation of a loss-of-flow transient. The extended TRACE code has demonstrated its capacity to predict the main thermal-hydraulics characteristics such as the single- and two-phase pressure drop and heat transfer, as also the boiling inception, void fraction evolution and expansion of the boiling region, pressure evolution, as well as coolant and clad temperatures. The natural convection test conducted in 2009 in the Phenix reactor has been used to validate TRACE single-phase sodium flow modelling. Data from the Phenix test have been used for the validation of the FAST code system. Analyses based on a point-kinetics TRACE model and on coupled TRACE/PARCS 3D-kinetics modelling have enabled an in-depth understanding of the transient behaviour of a sodium-cooled fast reactor core, leading to potential improvements in the FAST code system. The experimental power evolution could be satisfactorily reproduced within the measurement uncertainties with both models, and the detailed analysis of the core neutronics has enabled one to define the most important reactivity feedbacks taking place during the considered transient. The developed tool has been applied to the simulation of a hypothetical, unprotected loss-of-flow event for one of the European SFR core concepts. This study has demonstrated the new calculation tool’s capability to adequately simulate the core response through the modelling of single- and two-phase sodium flow, coupled to 3D neutron kinetics. Thereby, the space-dependent reactivity feedbacks, such as the void and Doppler effects, have been
Measurement of Two-Phase Flow Characteristics Under Microgravity Conditions
Keshock, E. G.; Lin, C. S.; Edwards, L. G.; Knapp, J.; Harrison, M. E.; Xhang, X.
1999-01-01
This paper describes the technical approach and initial results of a test program for studying two-phase annular flow under the simulated microgravity conditions of KC-135 aircraft flights. A helical coil flow channel orientation was utilized in order to circumvent the restrictions normally associated with drop tower or aircraft flight tests with respect to two-phase flow, namely spatial restrictions preventing channel lengths of sufficient size to accurately measure pressure drops. Additionally, the helical coil geometry is of interest in itself, considering that operating in a microgravity environment vastly simplifies the two-phase flows occurring in coiled flow channels under 1-g conditions for virtually any orientation. Pressure drop measurements were made across four stainless steel coil test sections, having a range of inside tube diameters (0.95 to 1.9 cm), coil diameters (25 - 50 cm), and length-to-diameter ratios (380 - 720). High-speed video photographic flow observations were made in the transparent straight sections immediately preceding and following the coil test sections. A transparent coil of tygon tubing of 1.9 cm inside diameter was also used to obtain flow visualization information within the coil itself. Initial test data has been obtained from one set of KC-135 flight tests, along with benchmark ground tests. Preliminary results appear to indicate that accurate pressure drop data is obtainable using a helical coil geometry that may be related to straight channel flow behavior. Also, video photographic results appear to indicate that the observed slug-annular flow regime transitions agree quite reasonably with the Dukler microgravity map.
Current capabilities of transient two-phase flow instruments
International Nuclear Information System (INIS)
Solbrig, C.W.; Kondic, N.N.
1979-01-01
The measurement of two phase flow phenomena in transient conditions representative of a Loss-of-Coolant Accident requires the use of sophisticated instruments and the further development of other instruments. Measurements made in large size pipes are often flow regime dependent. The flow regimes encountered depend upon the system geometry, transient effects, heat transfer, etc. The geometries in which these measurements must be made, the instruments which are currently used, new instruments being developed, the facilities used to calibrate these instruments, and the improvements which must be made to measurement capabilities are described
Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment
Keshock, Edward G.; Lin, Chin S.
1996-01-01
A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized.
Characteristics of two-phase flows in large diameter channels
Energy Technology Data Exchange (ETDEWEB)
Schlegel, J.P., E-mail: schlegelj@mst.edu [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, 301 W 14th St., Rolla, MO 65401 (United States); Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907 (United States)
2016-12-15
Two-phase flows in large diameter channels have a great deal of importance in a wide variety of industrial applications. Nuclear systems, petroleum refineries, and chemical processes make extensive use of larger systems. Flows in such channels have very different properties from flows in smaller channels which are typically used in experimental research. In this paper, the various differences between flows in large and small channels are highlighted using the results of previous experimental and analytical research. This review is followed by a review of recent experiments in and model development for flows in large diameter channels performed by the authors. The topics of these research efforts range from void fraction and interfacial area concentration measurement to flow regime identification and modeling, drift-flux modeling for high void fraction conditions, and evaluation of interfacial area transport models for large diameter channels.
Laser Doppler measurements in two-phase flows
International Nuclear Information System (INIS)
Durst, F.; Zare, M.
1976-01-01
Basic theory for laser-Doppler velocity measurements of large reflecting or refracting surfaces is provided. It is shown that the Doppler-signals contain information of the velocity and size of the large bodies, and relationships for transforming velocity and radius of curvature of moving spheres are presented. Preliminary experiments verified the analytical findings and demonstrated the applicability of the method to some two-phase flows
Recent advances in two-phase flow numerics
Energy Technology Data Exchange (ETDEWEB)
Mahaffy, J.H.; Macian, R. [Pennsylvania State Univ., University Park, PA (United States)
1997-07-01
The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques.
Recent advances in two-phase flow numerics
International Nuclear Information System (INIS)
Mahaffy, J.H.; Macian, R.
1997-01-01
The authors review three topics in the broad field of numerical methods that may be of interest to individuals modeling two-phase flow in nuclear power plants. The first topic is iterative solution of linear equations created during the solution of finite volume equations. The second is numerical tracking of macroscopic liquid interfaces. The final area surveyed is the use of higher spatial difference techniques
Two-phase flow instability and propagation of disturbances
International Nuclear Information System (INIS)
Yadigaroglu, G.
1984-01-01
Various mechanisms of static and dynamic macroinstabilities, appearing in two-phase flows, have been considered. Types of instabilities, conditioned by the form of hydraulic characteristics of the channel and density waves are analyzed in detail. Problems of instabilities in nuclear reactor circuits, in particular problems of instabilities, conditioned by water and steam mixing and vapour condensation, and problems of steam generator operation instability are discussed
Measurement of Liquid-Metal Two-Phase Flow with a Dynamic Neutron Radiography
International Nuclear Information System (INIS)
Cha, J. E.; Lim, I. C.; Kim, H. R.; Kim, C. M.; Nam, H. Y.; Saito, Y.
2005-01-01
The dynamic neutron radiography(DNR) has complementary characteristics to X-ray radiography and is suitable to visualization and measurement of a multi-phase flow research in a metallic duct and liquid metal flow. The flow-field information of liquid metal system is very important for the safety analysis of fast breeder reactor and the design of the spallation target of accelerator driven system. A DNR technique was applied to visualize the flow field in the gas-liquid metal two-phase flow with the HANARO-beam facility. The lead bismuth eutectic and the nitrogen gas were used to construct the two-phase flow field in the natural circulation U-channel. The two-phase flow images in the riser were taken at various combinations of the liquid flow and gas flow with high frame-rate neutron radiography at 1000 fps
Interfacial area measurements in two-phase flow
International Nuclear Information System (INIS)
Veteau, J.-M.
1979-08-01
A thorough understanding of two-phase flow requires the accurate measurement of the time-averaged interfacial area per unit volume (also called the time-averaged integral specific area). The so-called 'specific area' can be estimated by several techniques described in the literature. These different methods are reviewed and the flow conditions which lead to a rigourous determination of the time-averaged integral specific area are clearly established. The probe technique, involving local measurements seems very attractive because of its large range of application [fr
Numerical simulation of two phase flows in heat exchangers
International Nuclear Information System (INIS)
Grandotto Biettoli, M.
2006-04-01
The author gives an overview of his research activity since 1981. He first gives a detailed presentation of properties and equations of two-phase flows in heat exchangers, and of their mathematical and numerical investigation: semi-local equations (mass conservation, momentum conservation and energy conservation), homogenized conservation equations (mass, momentum and enthalpy conservation, boundary conditions), equation closures, discretization, resolution algorithm, computational aspects and applications. Then, he reports the works performed in the field of turbulent flows, hyperbolic methods, low Mach methods, the Neptune project, and parallel computing
International Nuclear Information System (INIS)
Mimouni, S.; Archambeau, F.; Boucker, M.; Lavieville, J.; Morel, C.
2010-01-01
High-thermal performance PWR (pressurized water reactor) spacer grids require both low-pressure loss and high critical heat flux (CHF) properties. Numerical investigations on the effect of angles and position of mixing vanes and to understand in more details the main physical phenomena (wall boiling, entrainment of bubbles in the wakes, recondensation) are required. In the field of fuel assembly analysis or design by means of CFD codes, the overwhelming majority of the studies are carried out using two-equation Eddy Viscosity Models (EVM), especially the standard K-ε model, while the use of Reynolds Stress Transport Models (RSTM) remains exceptional. The simulation of swirling flow generated by the mixing vanes plays an important role for the prediction of the CHF for the fuel assemblies. For this reason, according to , rotation effects and RSTM model are more specifically addressed in the paper. Before comparing performance of EVM and RSTM models on fuel assembly geometry, we performed calculations with simpler geometries, the DEBORA case and the ASU-annular channel case. ASU-annular channel case has already been addressed in . Then, a geometry closer to actual fuel assemblies is considered. It consists of a rectangular test section in which a 2 x 2 rod bundle equipped with a simple spacer grid with mixing vanes is inserted. The influence of the turbulence model on target variables linked to CHF limitation will be discussed. Moreover, the sensitivity to the mesh refinement will be particularly examined. The study of this case is a further step towards the modelling of the two-phase boiling flow in real-life grids and rod bundles.
International Nuclear Information System (INIS)
Han Bin; Tong Yunxian; Wu Shaorong
1992-11-01
It is a classical method by using analysis of differential pressure fluctuation signal to identify two-phase flow pattern. The method which uses trait peak in the frequency-domain will result confusion between bubble flow and intermittent flow due to the influence of gas speed. Considering the spatial geometric significance of two-phase slow patterns and using the differential pressure gauge as a sensor, the Strouhal number 'Sr' is taken as the basis for distinguishing flow patterns. Using Strouhal number 'Sr' to identify flow pattern has clear physical meaning. The experimental results using the spatial analytical technique to measure the flow pattern are also given
Critical Regimes of Two-Phase Flows with a Polydisperse Solid Phase
Barsky, Eugene
2010-01-01
This book brings to light peculiarities of the formation of critical regimes of two-phase flows with a polydisperse solid phase. A definition of entropy is formulated on the basis of statistical analysis of these peculiarities. The physical meaning of entropy and its correlation with other parameters determining two-phase flows are clearly defined. The interrelations and main differences between this entropy and the thermodynamic one are revealed. The main regularities of two-phase flows both in critical and in other regimes are established using the notion of entropy. This parameter serves as a basis for a deeper insight into the physics of the process and for the development of exhaustive techniques of mass exchange estimation in such flows. The book is intended for graduate and postgraduate students of engineering studying two-phase flows, and to scientists and engineers engaged in specific problems of such fields as chemical technology, mineral dressing, modern ceramics, microelectronics, pharmacology, po...
Developing two-phase flow modelling concepts for rock fractures
International Nuclear Information System (INIS)
Keto, V.
2010-01-01
The Finnish nuclear waste disposal company, Posiva Oy, is planning an underground repository for spent nuclear fuel to be constructed on the island of Olkiluoto on the south-west coast of Finland. One element of the site investigations conducted at Olkiluoto is the excavation of the underground rock characterisation facility (ONKALO) that will be extended to the final disposal depth (approximately -400 m). The bedrock around the excavated tunnel volume is fully saturated with groundwater, which water commonly contains a mixture of dissolved gases. These gases remain dissolved due to the high hydrostatic pressure. During tunnel excavation work the natural hydrostatic pressure field is disturbed and the water pressure will decrease close to the atmospheric pressure in the immediate vicinity of the tunnel. During this pressure drop two-phase flow conditions (combined flow of both water and gas) may develop in the vicinity of the underground opening, as the dissolved gas is exsoluted under the low pressure (the term exsolution refers here to release of the dissolved gas molecules from the water phase into a separate gas phase). This report steers towards concept development for numerical two-phase flow modeling for fractured rock. The focus is on the description of gas phase formation process under disturbed hydraulic conditions by exsolution of dissolved gases from groundwater, and on understanding the effects of a possibly formed gas phase on groundwater flow conditions in rock fractures. A mathematical model of three mutually coupled nonlinear partial differential equations for two-phase flow is presented and corresponding constitutional relationships are introduced and discussed. Illustrative numerical simulations are performed in a simplified setting using COMSOL Multiphysics 3.5a - software package. Shortcomings and conceptual problems are discussed. (orig.)
Numerical study for two phase flow in the near nozzle region of turbine combustors
International Nuclear Information System (INIS)
Pervez, K.; Mushtaq, S.
1999-01-01
In the present study flow conditions in the near nozzle region of the combustion chamber have been investigated. There exists two-phase flow in this region. The overall performance and pollutant formation in the combustion chamber have been investigated. There exists two-phase flow in this region. The overall performance and pollutant formation in the combustion zone largely depends on the spray field in the near nozzle region the studies are conducted to determined the effects of multi jets on the flow pattern in the near nozzle region The phase doppler particle analyzer (PDPA) has been used to measure the velocities and sizes of the droplets. The flow field of two-phase liquid drop-air jets is formed from three injectors arranged in t line. Furthermore the two-phase flow field has been analyzed numerically also. The numerical analysis consists of two computational models, namely (i) 3 non-evaporating two-phase jets, (II) 3 evaporating two phase jets. The Eulerian-Eulerian approach in incorporated in both the numerical models. Since the flow is turbulent, a two-equation model (k-Epsilon) is implemented in the numerical analysis. Numerical solution of the conservation equation is obtained using PHOENICS computer code. Boundary conditions are provided from the experimental measurements. Numerical domain for the two models of the analysis starts at some distance (about 10 diameters of the injector orifice) where the atomization process is complete and droplet size and velocity could be measured experimentally. (author)
Gulping phenomena in transient countercurrent two-phase flow
International Nuclear Information System (INIS)
Tehrani, Ali A.K.
2001-04-01
Apart from previous work on countercurrent gas-liquid flow, transient tank drainage through horizontal off-take pipes is described, including experimental procedure, flow pattern on observations and countercurrent flow limitation results. A separate chapter is devoted to countercurrent two-phase flow in a pressurised water reactor hot-leg scaled model. Results concerning low head flooding, high head and loss of bowl flooding, transient draining of the steam generator and pressure variation and bubble detachment are presented. The following subjects are covered as well: draining of sealed tanks of vertical pipes, unsteady draining of closed vessel via vertical tube, unsteady filling of a closed vessel via vertical tube from a constant head reservoir. Practical significance of the results obtained is discussed
CFD Simulations of Pb-Bi Two-Phase Flow
International Nuclear Information System (INIS)
Dostal, Vaclav; Zelezny, Vaclav; Zacha, Pavel
2008-01-01
In a Pb-Bi cooled direct contact steam generation fast reactor water is injected directly above the core, the produced steam is separated at the top and is send to the turbine. Neither the direct contact phenomenon nor the two-phase flow simulations in CFD have been thoroughly described yet. A first attempt in simulating such two-phase flow in 2D using the CFD code Fluent is presented in this paper. The volume of fluid explicit model was used. Other important simulation parameters were: pressure velocity relation PISO, discretization scheme body force weighted for pressure, second order upwind for momentum and CISCAM for void fraction. Boundary conditions were mass flow inlet (Pb-Bi 0 kg/s and steam 0.07 kg/s) and pressure outlet. The effect of mesh size (0.5 mm and 0.2 mm cells) was investigated as well as the effect of the turbulent model. It was found that using a fine mesh is very important in order to achieve larger bubbles and the turbulent model (k-ε realizable) is necessary to properly model the slug flow. The fine mesh and unsteady conditions resulted in computationally intense problem. This may pose difficulties in 3D simulations of the real experiments. (authors)
Personal view of educating two-phase flow and human resource development as a nuclear engineer
International Nuclear Information System (INIS)
Hotta, Akitoshi
2010-01-01
As an engineer who has devoted himself in the nuclear industry for almost three decades, the author gave a personal view on educating two-phase flow and developing human resources. An expected role of universities in on-going discussions of collaboration among industry-government-academia is introduced. Reformation of two-phase flow education is discussed from two extreme viewpoints, the basic structure of physics and the practical system analysis. (author)
International Nuclear Information System (INIS)
Markicevic, B.; Djilali, N.
2005-01-01
Understanding of two-phase transport in fuel cell gas diffusion electrodes is of critical importance to efficient operation. A number of fundamental issues need to be addressed to further our basic understanding of this type of flow: what are the transport mechanisms and driving forces for liquid water; what is the role of surface tension (i.e. hydrophilic/ hydrophobic materials); what are the functional variations of the macroscopic parameters used in continuum models? This paper presents a discrete capillary network model developed to model two-phase flow through porous media and to predict the relative permeability and the capillary pressure dependence on the saturation (s). The results show that the relative permeability (k r ) is a power function of the saturation (s) in the form (k r ∼s n ) for particular porous media. However, it is possible to alter the power (n) by varying the porous medium heterogeneity (χ). Thus as (χ) increases, the influence of low resistive flow paths become dominant leading to high (k r ) with high exponent (n). This implies that one can control the relative permeability law to achieve a different relationship (k r ∼s). On the other hand, the capillary pressure (p c ), which is defined as a pressure difference between two phases, shows no variation with (s), but is mainly influenced by (χ). The fact that (p c ) does not depend on the saturation (s) might be attributed to the fact that, regardless of (s), the size distribution of the throats at the interface remains the same, resulting in the same average throat size and hence constant capillary pressure. (author)
International Nuclear Information System (INIS)
Park, Chan Wook; Lee, Sung Su
2008-01-01
Two-phase compressible flow fields of air-water are investigated numerically in the fixed Eulerian grid framework. The phase interface is captured via volume fractions of ech phase. A way to model two phase compressible flows as a single phase one is found based on an equivalent equation of states of Tait's type for a multiphase cell. The equivalent single phase field is discretized using the Roe's approximate Riemann solver. Two approaches are tried to suppress the pressure oscillation phenomena at the phase interface, a passive advection of volume fraction and a direct pressure relaxation with the compressible form of volume fraction equation. The direct pressure equalizing method suppresses pressure oscillation successfully and generates sharp discontinuities, transmitting and reflecting acoustic waves naturally at the phase interface. In discretizing the compressible form of volume fraction equation, phase interfaces are geometrically reconstructed to minimize the numerical diffusion of volume fraction and relevant variables. The motion of a projectile in a water-filled tube which is fired by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one, and several design factors affecting the projectile movement are investigated
Two-phase flow simulations in pore-geometries
Heimann, F.; Engwer, C.; Bastian, P.; Ippisch, O.
2012-04-01
Pore scale simulations of multi phase flow in porous media present a promising approach in the development and verification of continuum scale models as well as in the understanding of the underlying processes of flow phenomena like hysteresis or the peculiarities of the capillary fringe. As typical pore geometries involve complicated geometries with peculiar topological properties, the generation of a computational mesh, required by finite element (FE) based simulation approaches, becomes a limiting obstacle. We present a numerical discretization based on discontinuous Galerkin methods which does not require a grid which is fitted to the computational domain. In this approach, the resolution of the domain boundaries may be chosen independent of the FE basis. Furthermore, we will present discretization techniques allowing for an accurate representation of the interface conditions i.e. the jump in the pressure and the velocity derivatives. First results of simulations for two-phase flow in pore geometries are discussed.
Mathematical model of two-phase flow in accelerator channel
Directory of Open Access Journals (Sweden)
О.Ф. Нікулін
2010-01-01
Full Text Available The problem of two-phase flow composed of energy-carrier phase (Newtonian liquid and solid fine-dispersed phase (particles in counter jet mill accelerator channel is considered. The mathematical model bases goes on the supposition that the phases interact with each other like independent substances by means of aerodynamics’ forces in conditions of adiabatic flow. The mathematical model in the form of system of differential equations of order 11 is represented. Derivations of equations by base physical principles for cross-section-averaged quantity are produced. The mathematical model can be used for estimation of any kinematic and thermodynamic flow characteristics for purposely parameters optimization problem solving and transfer functions determination, that take place in counter jet mill accelerator channel design.
Analytical study of solids-gas two phase flow
International Nuclear Information System (INIS)
Hosaka, Minoru
1977-01-01
Fundamental studies were made on the hydrodynamics of solids-gas two-phase suspension flow, in which very small solid particles are mixed in a gas flow to enhance the heat transfer characteristics of gas cooled high temperature reactors. Especially, the pressure drop due to friction and the density distribution of solid particles are theoretically analyzed. The friction pressure drop of two-phase flow was analyzed based on the analytical result of the single-phase friction pressure drop. The calculated values of solid/gas friction factor as a function of solid/gas mass loading are compared with experimental results. Comparisons are made for Various combinations of Reynolds number and particle size. As for the particle density distribution, some factors affecting the non-uniformity of distribution were considered. The minimum of energy dispersion was obtained with the variational principle. The suspension density of particles was obtained as a function of relative distance from wall and was compared with experimental results. It is concluded that the distribution is much affected by the particle size and that the smaller particles are apt to gather near the wall. (Aoki, K.)
Virtual mass effects in two-phase flow. Topical report
International Nuclear Information System (INIS)
Cheng, L.Y.; Drew, D.A.; Lahey, R.T. Jr.
1978-03-01
The effect of virtual mass on phase separation during the acceleration of a two-phase mixture was studied. Virtual mass can be regarded as an induced inertia on the dispersed phase which is accelerating relative to the continuous phase, and it was found that the virtual mass acceleration is objective, implying an invariance with respect to reference frame. An objective form of the virtual acceleration was derived and required parameters were determined for limiting cases. Analyses determined that experiments on single bubble nozzle/diffuser flow cannot readily discriminate between various virtual mass acceleration models
Application of two-phase flow for cooling of hybrid microchannel PV cells: A comparative study
International Nuclear Information System (INIS)
Valeh-e-Sheyda, Peyvand; Rahimi, Masoud; Karimi, Ebrahim; Asadi, Masomeh
2013-01-01
Highlights: ► Showing cooling potential of gas–liquid two-phase flow in microchannels for PV cell. ► Introducing the concept of using slug flow in microchannels for cooling of PV cells. ► In single-phase flow, increasing the liquid flow rate enhances the PV power. ► Showing that in two-phase flow the output power related the fluid flow regime. ► By coupling PV and microchannel an increase up to 38% in output power was observed. - Abstract: This paper reports the experimental data from performance of two-phase flows in a small hybrid microchannel solar cell. Using air and water as two-phase fluid, the experiments were conducted at indoor condition in an array of rectangular microchannels with a hydraulic diameter of 0.667 mm. The gas superficial velocity ranges were between 0 and 3.27 m s −1 while liquid flow rate was 0.04 m s −1 . The performance analysis of the PV cell at slug and transitional slug/annular flow regimes are the focus of this study. The influence of two-phase working fluid on PV cell cooling was compared with single-phase. In addition, the great potential of slug flow for heat removal enhancement in PV/T panel was investigated. The obtained data showed the proposed hybrid system could substantially increases the output power of PV solar cells
Two-Phase Flow Hydrodynamics in Superhydrophobic Channels
Stevens, Kimberly; Crockett, Julie; Maynes, Daniel; Iverson, Brian
2015-11-01
Superhydrophobic surfaces promote drop-wise condensation and droplet removal leading to the potential for increased thermal transport. Accordingly, great interest exists in using superhydrophobic surfaces in flow condensing environments, such as power generation and desalination. Adiabatic air-water mixtures were used to gain insight into the effect of hydrophobicity on two-phase flows and the hydrodynamics present in flow condensation. Pressure drop and onset of various flow regimes in hydrophilic, hydrophobic, and superhydrophobic mini (0.5 x 10 mm) channels were explored. Data for air/water mixtures with superficial Reynolds numbers from 20-200 and 250-1800, respectively, were obtained. Agreement between experimentally obtained pressure drops and correlations in literature for the conventional smooth control surfaces was better than 20 percent. Transitions between flow regimes for the hydrophobic and hydrophilic channels were similar to commonly recognized flow types. However, the superhydrophobic channel demonstrated significantly different flow regime behavior from conventional surfaces including a different shape of the air slugs, as discussed in the presentation.
Turbulent transition modification in dispersed two-phase pipe flow
Winters, Kyle; Longmire, Ellen
2014-11-01
In a pipe flow, transition to turbulence occurs at some critical Reynolds number, Rec , and transition is associated with intermittent swirling structures extending over the pipe cross section. Depending on the magnitude of Rec , these structures are known either as puffs or slugs. When a dispersed second liquid phase is added to a liquid pipe flow, Rec can be modified. To explore the mechanism for this modification, an experiment was designed to track and measure these transitional structures. The facility is a pump-driven circuit with a 9m development and test section of diameter 44mm. Static mixers are placed upstream to generate an even dispersion of silicone oil in a water-glycerine flow. Pressure signals were used to identify transitional structures and trigger a high repetition rate stereo-PIV system downstream. Stereo-PIV measurements were obtained in planes normal to the flow, and Taylor's Hypothesis was employed to infer details of the volumetric flow structure. The presentation will describe the sensing and imaging methods along with preliminary results for the single and two-phase flows. Supported by Nanodispersions Technology.
Droplets formation and merging in two-phase flow microfluidics.
Gu, Hao; Duits, Michel H G; Mugele, Frieder
2011-01-01
Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.
Droplets Formation and Merging in Two-Phase Flow Microfluidics
Directory of Open Access Journals (Sweden)
Hao Gu
2011-04-01
Full Text Available Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i the emulsification step should lead to a very well controlled drop size (distribution; and (ii the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.
Flooding in counter-current two-phase flow
International Nuclear Information System (INIS)
Ragland, W.A.; Ganic, E.N.
1982-01-01
Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding
Interfacial shear modeling in two-phase annular flow
International Nuclear Information System (INIS)
Kumar, R.; Edwards, D.P.
1996-07-01
A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment
Flooding in counter-current two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Ragland, W.A.; Ganic, E.N.
1982-01-01
Flooding is a phenomenon which is best described as the transition from counter-current to co-current flow. Early notice was taken of this phenomenon in the chemical engineering industry. Flooding also plays an important role in the field of two-phase heat transfer since it is a limit for many systems involving counter-current flow. Practical applications of flooding limited processes include wickless thermosyphons and the emergency core cooling system (ECCS) of pressurized water nuclear reactors. The phenomenon of flooding also is involved in the behavior of nuclear reactor core materials during severe accident conditions where flooding is one of the mechanisms governing the motion of the molten fuel pin cladding.
Enhanced mixing in two-phase Taylor-Couette flows
International Nuclear Information System (INIS)
Dherbecourt, Diane
2015-01-01
In the scope of the nuclear fuel reprocessing, Taylor-Couette flows between two concentric cylinders (the inner one in rotation and the outer one at rest) are used at laboratory scale to study the performances of new liquid/liquid extraction processes. Separation performances are strongly related to the mixing efficiency, the quantification of the latter is therefore of prime importance. A previous Ph.D. work has related the mixing properties to the hydrodynamics parameters in single-phase flow, using both experimental and numerical investigations. The Reynolds number, flow state and vortices height (axial wavelength) impacts were thus highlighted. This Ph.D. work extends the previous study to two-phase configurations. For experimental simplification, and to avoid droplets coalescence or breakage, spherical solid particles of PMMA from 800 μm to 1500 μm diameter are used to model rigid droplets. These beads are suspended in an aqueous solution of dimethyl sulfoxide (DMSO) and potassium Thiocyanate (KSCN). The experimental setup uses coupled Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF) to access simultaneously the hydrodynamic and the mixing properties. Although the two phases are carefully chosen to match in density and refractive index, these precautions are not sufficient to ensure a good measurement quality, and a second PLIF channel is added to increase the precision of the mixing quantification. The classical PLIF channel monitors the evolution of Rhodamine WT concentration, while the additional PLIF channel is used to map a Fluorescein dye, which is homogeneously concentrated inside the gap. This way, a dynamic mask of the bead positions can be created and used to correct the Rhodamine WT raw images. Thanks to this experimental setup, a parametric study of the particles size and concentration is achieved. A double effect of the dispersed phase is evidenced. On one hand, the particles affect the flow hydrodynamic properties
Directory of Open Access Journals (Sweden)
Mohamed F. El-Amin
2017-01-01
Full Text Available In this paper, the magnetic nanoparticles are injected into a water-oil, two-phase system under the influence of an external permanent magnetic field. We lay down the mathematical model and provide a set of numerical exercises of hypothetical cases to show how an external magnetic field can influence the transport of nanoparticles in the proposed two-phase system in porous media. We treat the water-nanoparticles suspension as a miscible mixture, whereas it is immiscible with the oil phase. The magnetization properties, the density, and the viscosity of the ferrofluids are obtained based on mixture theory relationships. In the mathematical model, the phase pressure contains additional term to account for the extra pressures due to fluid magnetization effect and the magnetostrictive effect. As a proof of concept, the proposed model is applied on a countercurrent imbibition flow system in which both the displacing and the displaced fluids move in opposite directions. Physical variables, including water-nanoparticles suspension saturation, nanoparticles concentration, and pore wall/throat concentrations of deposited nanoparticles, are investigated under the influence of the magnetic field. Two different locations of the magnet are studied numerically, and variations in permeability and porosity are considered.
El-Amin, Mohamed
2017-08-28
In this paper, the magnetic nanoparticles are injected into a water-oil, two-phase system under the influence of an external permanent magnetic field. We lay down the mathematical model and provide a set of numerical exercises of hypothetical cases to show how an external magnetic field can influence the transport of nanoparticles in the proposed two-phase system in porous media. We treat the water-nanoparticles suspension as a miscible mixture, whereas it is immiscible with the oil phase. The magnetization properties, the density, and the viscosity of the ferrofluids are obtained based on mixture theory relationships. In the mathematical model, the phase pressure contains additional term to account for the extra pressures due to fluid magnetization effect and the magnetostrictive effect. As a proof of concept, the proposed model is applied on a countercurrent imbibition flow system in which both the displacing and the displaced fluids move in opposite directions. Physical variables, including waternanoparticles suspension saturation, nanoparticles concentration, and pore wall/throat concentrations of deposited nanoparticles, are investigated under the influence of the magnetic field. Two different locations of the magnet are studied numerically, and variations in permeability and porosity are considered.
Modelling compressible dense and dilute two-phase flows
Saurel, Richard; Chinnayya, Ashwin; Carmouze, Quentin
2017-06-01
Many two-phase flow situations, from engineering science to astrophysics, deal with transition from dense (high concentration of the condensed phase) to dilute concentration (low concentration of the same phase), covering the entire range of volume fractions. Some models are now well accepted at the two limits, but none are able to cover accurately the entire range, in particular regarding waves propagation. In the present work, an alternative to the Baer and Nunziato (BN) model [Baer, M. R. and Nunziato, J. W., "A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials," Int. J. Multiphase Flow 12(6), 861 (1986)], initially designed for dense flows, is built. The corresponding model is hyperbolic and thermodynamically consistent. Contrarily to the BN model that involves 6 wave speeds, the new formulation involves 4 waves only, in agreement with the Marble model [Marble, F. E., "Dynamics of a gas containing small solid particles," Combustion and Propulsion (5th AGARD Colloquium) (Pergamon Press, 1963), Vol. 175] based on pressureless Euler equations for the dispersed phase, a well-accepted model for low particle volume concentrations. In the new model, the presence of pressure in the momentum equation of the particles and consideration of volume fractions in the two phases render the model valid for large particle concentrations. A symmetric version of the new model is derived as well for liquids containing gas bubbles. This model version involves 4 characteristic wave speeds as well, but with different velocities. Last, the two sub-models with 4 waves are combined in a unique formulation, valid for the full range of volume fractions. It involves the same 6 wave speeds as the BN model, but at a given point of space, 4 waves only emerge, depending on the local volume fractions. The non-linear pressure waves propagate only in the phase with dominant volume fraction. The new model is tested numerically on various
Interaction between local parameters of two-phase flow and random forces on a cylinder
International Nuclear Information System (INIS)
Sylviane Pascal-Ribot; Yves Blanchet; Franck Baj; Phillippe Piteau
2005-01-01
Full text of publication follows: In the frame of assessments of steam generator tube bundle vibrations, a study was conducted in order to investigate the effects of an air/water flow on turbulent buffeting forces induced on a cylinder. The main purpose is to relate the physical parameters characterizing an air/water two-phase crossflow with the structural loading of a fixed cylindrical tube. In this first approach, the experiments are carried out in a rectangular acrylic test section supplied with a vertical upward bubbly flow. This flow is transversally impeded by a fixed rigid 12,15 mm diameter cylinder. Different turbulence grids are used in order to modify two-phase characteristics such as bubble diameter, void fraction profile, fluctuation parameters. Preliminarily, a dimensional analysis of fluid-structure interaction under two-phase turbulent solicitations has enabled to identify a list of physically relevant variables which must be measured to evaluate the random forces. The meaning of these relevant parameters as well as the effect of flow patterns are discussed. Direct measurements of two-phase flow parameters are performed simultaneously with measurements of forces exerted on the cylinder. The main descriptive parameters of a two-phase flow are measured using a bi-optical probe, in particular void fraction profiles, interfacial velocities, bubble diameters, void fraction fluctuations. In the same time, the magnitude of random forces caused by two-phase flow is measured with a force transducer. A thorough analysis of the experimental data is then undertaken in order to correlate physical two-phase mechanisms with the random forces exerted on the cylinder. The hypotheses made while applying the dimensional analysis are verified and their pertinence is discussed. Finally, physical parameters involved in random buffeting forces applied on a transverse tube are proposed to scale the spectral magnitude of these forces and comparisons with other authors
Magnitude and sign correlations in conductance fluctuations of horizontal oil water two-phase flow
Zhu, L.; Jin, N. D.; Gao, Z. K.; Zong, Y. B.; Zhai, L. S.; Wang, Z. Y.
2012-05-01
In experiment we firstly define five typical horizontal oil-water flow patterns. Then we introduce an approach for analyzing signals by decomposing the original signals increment into magnitude and sign series and exploring their scaling properties. We characterize the nonlinear and linear properties of horizontal oil-water two-phase flow, which relate to magnitude and sign series respectively. We find that the joint distribution of different scaling exponents can effectively identify flow patterns, and the detrended fluctuation analysis (DFA) on magnitude and sign series can represent typical horizontal oil-water two-phase flow dynamics characteristics. The results indicate that the magnitude and sign decomposition method can be a helpful tool for characterizing complex dynamics of horizontal oil-water two-phase flow.
Simulating compressible-incompressible two-phase flows
Denner, Fabian; van Wachem, Berend
2017-11-01
Simulating compressible gas-liquid flows, e.g. air-water flows, presents considerable numerical issues and requires substantial computational resources, particularly because of the stiff equation of state for the liquid and the different Mach number regimes. Treating the liquid phase (low Mach number) as incompressible, yet concurrently considering the gas phase (high Mach number) as compressible, can improve the computational performance of such simulations significantly without sacrificing important physical mechanisms. A pressure-based algorithm for the simulation of two-phase flows is presented, in which a compressible and an incompressible fluid are separated by a sharp interface. The algorithm is based on a coupled finite-volume framework, discretised in conservative form, with a compressive VOF method to represent the interface. The bulk phases are coupled via a novel acoustically-conservative interface discretisation method that retains the acoustic properties of the compressible phase and does not require a Riemann solver. Representative test cases are presented to scrutinize the proposed algorithm, including the reflection of acoustic waves at the compressible-incompressible interface, shock-drop interaction and gas-liquid flows with surface tension. Financial support from the EPSRC (Grant EP/M021556/1) is gratefully acknowledged.
A contribution to the study of two-phase steam-water critical flow
International Nuclear Information System (INIS)
Reocreux, M.
1975-06-01
Conservation equations were derived to describe two phase flow systems and conditions were established in order to satisfy critical flow. The theoretical analysis performed to establish the above condition has demonstrated the important part played by transfer terms. Experimental studies on glass and metal channels showed the importance of the way evaporation was initiated. (R.L.)
Magnetic liquid metal two-phase flow research. Phase 1. Final report
International Nuclear Information System (INIS)
Graves, R.D.
1983-04-01
The Phase I research demonstrates the feasibility of the magnetic liquid metal (MLM) two-phase flow concept. A dispersion analysis is presented based on a complete set of two-phase-flow equations augmented to include stresses due to magnetic polarization of the fluid. The analysis shows that the stability of the MLM two-phase flow is determined by the magnetic Mach number, the slip ratio, geometry of the flow relative to the applied magnetic field, and by the voidage dependence of the interfacial forces. Results of a set of experiments concerned with magnetic effects on the dynamics of single bubble motion in an aqueous-based, viscous, conducting magnetic fluid are presented. Predictions in the theoretical literature are qualitatively verified using a bench-top experimental apparatus. In particular, applied magnetic fields are seen to lead to reduced bubble size at fixed generating orifice pressure
Two-phase flow heat transfer in nuclear reactor systems
International Nuclear Information System (INIS)
Koncar, Bostjan; Krepper, Eckhard; Bestion, Dominique; Song, Chul-Hwa; Hassan, Yassin A.
2013-01-01
Complete text of publication follows: Heat transfer and phase change phenomena in two-phase flows are often encountered in nuclear reactor systems and are therefore of paramount importance for their optimal design and safe operation.The complex phenomena observed especially during transient operation of nuclear reactor systems necessitate extensive theoretical and experimental investigations. This special issue brings seven research articles of high quality. Though small in number, they cover a wide range of topics, presenting high complexity and diversity of heat transfer phenomena in two-phase flow. In the last decades a vast amount of research has been devoted to theoretical work and computational simulations, yet the experimental work remains indispensable for understanding of two-phase flow phenomena and for model validation purposes. This is reflected also in this issue, where only one article is purely experimental, while three of them deal with theoretical modelling and the remaining three with numerical simulations. The experimental investigation of the critical heat flux (CHF) phenomena by means of photographic study is presented in the paper of J. Park et al. They have used a high-speed camera system to observe the transient boiling characteristics on a thin horizontal cylinder submerged in a pool of water or highly wetting liquid. Experiments show that the initial boiling process is strongly affected by the properties and wettability of the liquid. The authors have stressed the importance of the local scale observation leading to better understanding of the transient CHF phenomena. In the article of G. Espinosa-Paredes et al. a theoretical work concerning the derivation of transport equations for two-phase flow is presented. The author proposes a novel approach based on derivation of nonlocal volume averaged equations which contain new terms related to nonlocal transport effects. These non-local terms act as coupling elements between the phenomena
Numerical modeling of two-phase transonic flow
Czech Academy of Sciences Publication Activity Database
Halama, Jan; Benkhaldoun, F.; Fořt, Jaroslav
2010-01-01
Roč. 80, č. 88 (2010), s. 1624-1635 ISSN 0378-4754 Grant - others:GA ČR(CZ) GA201/08/0012 Program:GA Institutional research plan: CEZ:AV0Z20760514 Keywords : two - phase flow * condensation * fractional step method Subject RIV: BK - Fluid Dynamics Impact factor: 0.812, year: 2010 http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V0T-4VNK68X-2-R&_cdi=5655&_user=640952&_pii=S0378475409000421&_origin=search&_coverDate=04%2F30%2F2010&_sk=999199991&view=c&wchp=dGLzVlb-zSkWb&md5=5ba607428fac339a3e5f67035d3996d0&ie=/sdarticle.pdf
Direct numerical simulation of reactor two-phase flows enabled by high-performance computing
Energy Technology Data Exchange (ETDEWEB)
Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.; Feng, Jinyong; Gouws, Andre; Li, Mengnan; Bolotnov, Igor A.
2018-04-01
Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent research progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.
Two-phase flow stability structure in a natural circulation system
Energy Technology Data Exchange (ETDEWEB)
Zhou, Zhiwei [Nuclear Engineering Laboratory Zurich (Switzerland)
1995-09-01
The present study reports a numerical analysis of two-phase flow stability structures in a natural circulation system with two parallel, heated channels. The numerical model is derived, based on the Galerkin moving nodal method. This analysis is related to some design options applicable to integral heating reactors with a slightly-boiling operation mode, and is also of general interest to similar facilities. The options include: (1) Symmetric heating and throttling; (2) Asymmetric heating and symmetric throttling; (3) Asymmetric heating and throttling. The oscillation modes for these variants are discussed. Comparisons with the data from the INET two-phase flow stability experiment have qualitatively validated the present analysis.
Stratified steady and unsteady two-phase flows between two parallel plates
International Nuclear Information System (INIS)
Sim, Woo Gun
2006-01-01
To understand fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. Stratified steady and unsteady two-phase flows between two parallel plates have been studied to investigate the general characteristics of the flow related to flow-induced vibration. Based on the spectral collocation method, a numerical approach has been developed for the unsteady two-phase flow. The method is validated by comparing numerical result to analytical one given for a simple harmonic two-phase flow. The flow parameters for the steady two-phase flow, such as void fraction and two-phase frictional multiplier, are evaluated. The dynamic characteristics of the unsteady two-phase flow, including the void fraction effect on the complex unsteady pressure, are illustrated
International Nuclear Information System (INIS)
Assad, A.C.A.
1984-01-01
The present work deals with an experimental analysis of upward vertical two-phase flow in channels with circular and four-cusp cross-sections. The latter simulates the conditions of a typical nuclear reactor channel, degraded by a loss of coolant accident. Simultaneous flow of air and water has been employed to simulate adiabatic steam-water flow. The installation of air-water separators helped eliminate instabilities during pressure-drop measurements. The gamma ray attenuation was utilized for the void fraction determination. For the four-cusp geommetry, new criteria for two-phase flow regime transitions have been determined, as well as new correlatins for pressure drop and void fraction, as function of the Lockhart-Martinelli factor and vapour mass-fraction, respectively. (Author) [pt
On the use of nuclear magnetic resonance to characterize vertical two-phase bubbly flows
International Nuclear Information System (INIS)
Lemonnier, H.; Jullien, P.
2011-01-01
Research highlights: → We provide a complete theory of the PGSE measurement in single and two-phase flow. → Friction velocity can be directly determinated from measured velocity distributions. → Fast determination of moments shorten PGSE process with small loss of accuracy. → Turbulent diffusion measurements agree well with known trends and existing models. → We think NMR can be a tool to benchmark thermal anemometry in two-phase flow. - Abstract: Since the pioneering work of who showed that NMR can be used to measure accurately the mean liquid velocity and void fraction in two-phase pipe flow, it has been shown that NMR signal can also characterize the turbulent eddy diffusivity and velocity fluctuations. In this paper we provide an in depth validation of these statements together with a clarification of the nature of the mean velocity that is actually measured by NMR PFGSE sequence. The analysis shows that the velocity gradient at the wall is finely space-resolved and allows the determination of the friction velocity in single-phase flows. Next turbulent diffusion measurements in two-phase flows are presented, analyzed and compared to existing data and models. It is believed that NMR velocity measurement is sufficiently understood that it can be utilized to benchmark thermal anemometry in two-phase flows. Theoretical results presented in this paper also show how this can be undertaken.
A two-phase damping model on tube bundles subjected to two-phase cross-flow
Energy Technology Data Exchange (ETDEWEB)
Sim, Woo Gun [Hannam University, Daejeon (Korea, Republic of); Mureithi, N. W. [Ecole Polytechnique, Montreal (Canada)
2014-02-15
An analytical model is developed to estimate the two-phase damping ratio for upward cross-flow through horizontal tube bundles. The present model is formulated based on Feenstra's model (2000) for void fraction and various models (homogeneous, Levy, MartinelliNelson and Marchaterre) for two-phase friction multiplier. The analytical results of drag coefficient on a cylinder and two-phase Euler number are compared with the experimental results by Sim-Mureithi (2013). The correlation factor between frictional pressure drop and the hydraulic drag coefficient is evaluated by considering the experimental results. The two-phase damping ratios given by the analytical model are compared with existing experimental results. The model based on Marchaterre's model is suitable for air-water mixture, whereas the Martinelli-Nelson's model is suitable for steam-water and Freon mixtures. The two-phase damping ratio is independent of pitch mass flux for air-water mixture, but is more or less influenced by the mass flux for steam-water/Freon (134) mixtures. The two phase damping ratios given by the present model agree well with experimental results for a wide range of pitch mass ratio, quality, and p/d ratios.
Simulation of two-phase flows by domain decomposition
International Nuclear Information System (INIS)
Dao, T.H.
2013-01-01
This thesis deals with numerical simulations of compressible fluid flows by implicit finite volume methods. Firstly, we studied and implemented an implicit version of the Roe scheme for compressible single-phase and two-phase flows. Thanks to Newton method for solving nonlinear systems, our schemes are conservative. Unfortunately, the resolution of nonlinear systems is very expensive. It is therefore essential to use an efficient algorithm to solve these systems. For large size matrices, we often use iterative methods whose convergence depends on the spectrum. We have studied the spectrum of the linear system and proposed a strategy, called Scaling, to improve the condition number of the matrix. Combined with the classical ILU pre-conditioner, our strategy has reduced significantly the GMRES iterations for local systems and the computation time. We also show some satisfactory results for low Mach-number flows using the implicit centered scheme. We then studied and implemented a domain decomposition method for compressible fluid flows. We have proposed a new interface variable which makes the Schur complement method easy to build and allows us to treat diffusion terms. Using GMRES iterative solver rather than Richardson for the interface system also provides a better performance compared to other methods. We can also decompose the computational domain into any number of sub-domains. Moreover, the Scaling strategy for the interface system has improved the condition number of the matrix and reduced the number of GMRES iterations. In comparison with the classical distributed computing, we have shown that our method is more robust and efficient. (author) [fr
International Nuclear Information System (INIS)
Han, J; Dong, F; Xu, Y Y
2009-01-01
This paper introduces the fundamental of cross-section measurement system based on Electrical Resistance Tomography (ERT). The measured data of four flow regimes of the gas/liquid two-phase flow in horizontal pipe flow are obtained by an ERT system. For the measured data, five entropies are extracted to analyze the experimental data according to the different flow regimes, and the analysis method is examined and compared in three different perspectives. The results indicate that three different perspectives of entropy-based feature extraction are sensitive to the flow pattern transition in gas/liquid two-phase flow. By analyzing the results of three different perspectives with the changes of gas/liquid two-phase flow parameters, the dynamic structures of gas/liquid two-phase flow is obtained, and they also provide an efficient supplementary to reveal the flow pattern transition mechanism of gas/liquid two-phase flow. Comparison of the three different methods of feature extraction shows that the appropriate entropy should be used for the identification and prediction of flow regimes.
Interfacial Instability in Two-Phase Flow: Manipulating Coalescence and Condensation
National Aeronautics and Space Administration — Two-phase flow under microgravity conditions presents a number of technical challenges ( and ). Life support and habitation depend on systems that use two-phase flow...
Saad, Bilal Mohammed
2014-01-01
We study the convergence of a combined finite volume nonconforming finite element scheme on general meshes for a partially miscible two-phase flow model in anisotropic porous media. This model includes capillary effects and exchange between the phase. The diffusion term,which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh. The relative permeability of each phase is decentred according the sign of the velocity at the dual interface. The convergence of the scheme is proved thanks to an estimate on the two pressures which allows to show estimates on the discrete time and compactness results in the case of degenerate relative permeabilities. A key point in the scheme is to use particular averaging formula for the dissolution function arising in the diffusion term. We show also a simulation of CO2 injection in a water saturated reservoir and nuclear waste management. Numerical results are obtained by in-house numerical code. © Springer International Publishing Switzerland 2014.
International Nuclear Information System (INIS)
Kataoka, Isao; Ishii, Mamoru; Serizawa, Akimi
1994-01-01
Interfacial area concentration measurement is quite important in gas-liquid two-phase flow. To determine the accuracy of measurement of the interfacial area using electrical resistivity probes, numerical simulations of a passing bubble through sensors are carried out. The two-sensors method, the four-sensors method and the correlative method are tested and the effects of sensor spacing, bubble diameter and hitting angle of the bubbles on the accuracy of each measurement method are investigated. The results indicated that the two-sensors method is insensitive to the ratio between sensor spacing and bubble diameter, and hitting angle. It overestimates the interfacial area for small hitting angles while it gives a reasonable accuracy for smaller bubbles and large hitting angles. The four-sensors method gives accurate interfacial area measurements particularly for the larger bubble diameters and smaller hitting angles, while for smaller bubbles and larger hitting angles, the escape probability of bubbles through the sensors becomes large and the accuracy becomes worse. The correlative method gives an overall accuracy for interfacial area measurement. Particularly, it gives accurate measurements for large bubbles and larger hitting angles while for smaller hitting angles, the spatial dependence of the correlation functions affects the accuracy. (orig.)
Numerical methods for two-phase flow with contact lines
Energy Technology Data Exchange (ETDEWEB)
Walker, Clauido
2012-07-01
This thesis focuses on numerical methods for two-phase flows, and especially flows with a moving contact line. Moving contact lines occur where the interface between two fluids is in contact with a solid wall. At the location where both fluids and the wall meet, the common continuum descriptions for fluids are not longer valid, since the dynamics around such a contact line are governed by interactions at the molecular level. Therefore the standard numerical continuum models have to be adjusted to handle moving contact lines. In the main part of the thesis a method to manipulate the position and the velocity of a contact line in a two-phase solver, is described. The Navier-Stokes equations are discretized using an explicit finite difference method on a staggered grid. The position of the interface is tracked with the level set method and the discontinuities at the interface are treated in a sharp manner with the ghost fluid method. The contact line is tracked explicitly and its dynamics can be described by an arbitrary function. The key part of the procedure is to enforce a coupling between the contact line and the Navier-Stokes equations as well as the level set method. Results for different contact line models are presented and it is demonstrated that they are in agreement with analytical solutions or results reported in the literature.The presented Navier-Stokes solver is applied as a part in a multiscale method to simulate capillary driven flows. A relation between the contact angle and the contact line velocity is computed by a phase field model resolving the micro scale dynamics in the region around the contact line. The relation of the microscale model is then used to prescribe the dynamics of the contact line in the macro scale solver. This approach allows to exploit the scale separation between the contact line dynamics and the bulk flow. Therefore coarser meshes can be applied for the macro scale flow solver compared to global phase field simulations
Measurement of two phase flow properties using the nuclear reactor instruments
International Nuclear Information System (INIS)
Albrecht, R.W.; Washington Univ., Seattle; Crowe, R.D.; Dailey, D.J.; Kosaly, G.; Damborg, M.J.
1982-01-01
A procedure is introduced for characterizing one dimensional, two phase flow in terms of three properties; propagation, structure, and dynamics. It is shown that all of these properties can be measured by analyzing the response of the reactor neutron field to a two phase flow perturbation. Therefore, a nuclear reactor can be regarded as a two phase flow instrument. (author)
Analysis of the two-fluid model and the drift-flux model for numerical calculation of two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Munkejord, Svend Tollak
2006-05-11
This thesis analyses models for two-phase flows and methods for the numerical resolution of these models. It is therefore one contribution to the development of reliable design tools for multiphase applications. Such tools are needed and expected by engineers in a range of fields, including in the oil and gas industry. The approximate Riemann solver of Roe has been studied. Roe schemes for three different two-phase flow models have been implemented in the framework of a standard numerical algorithm for the solution of hyperbolic conservation laws. The schemes have been analysed by calculation of benchmark tests from the literature, and by comparison with each other. A Roe scheme for the four-equation one-pressure two-fluid model has been implemented, and a second-order extension based on wave decomposition and flux-difference splitting was shown to work well and to give improved results compared to the first-order scheme. The convergence properties of the scheme were tested on smooth and discontinuous solutions. A Roe scheme has been proposed for a five-equation two-pressure two-fluid model with pressure relaxation. The use of analogous numerical methods for the five-equation and four-equation models allowed for a direct comparison of a method with and without pressure relaxation. Numerical experiments demonstrated that the two approaches converged to the same results, but that the five-equation pressure-relaxation method was significantly more dissipative, particularly for contact discontinuities. Furthermore, even though the five-equation model with instantaneous pressure relaxation has real eigenvalues, the calculations showed that it produced oscillations for cases where the four-equation model had complex eigenvalues. A Roe scheme has been constructed for the drift-flux model with general closure laws. For the case of the Zuber-Findlay slip law describing bubbly flows, the Roe matrix is completely analytical. Hence the present Roe scheme is more efficient than
Li, Junye; Zhang, Hengfu; Wu, Guiling; Hu, Jinglei; Liu, Yang; Sun, Zhihui
2018-01-01
In many areas of precision machining abrasive flow polishing technology has an important role. In order to study the influence of abrasive flow on the polishing effect of variable diameter parts, the fifth step variable diameter tube was taken as the research object to analyze the dynamic pressure and turbulent kinetic energy distribution of inlet velocity on the fifth-order variable diameter tube influences. Through comparative analysis, the abrasive flow polished variable diameter pipe parts have very effective and significant polishing effect and the higher the inlet speed, the more significant the polishing effect.
Two-Phase Gas-Liquid Flow Structure Characteristics under Periodic Cross Forces Action
Directory of Open Access Journals (Sweden)
V. V. Perevezentsev
2015-01-01
Full Text Available The article presents a study of two-phase gas-liquid flow under the action of periodic cross forces. The work objective is to obtain experimental data for further analysis and have structure characteristics of the two-phase flow movement. For research, to obtain data without disturbing effect on the flow were used optic PIV (Particle Image Visualization methods because of their noninvasiveness. The cross forces influence was provided by an experimental stand design to change the angular amplitudes and the periods of channel movement cycle with two-phase flow. In the range of volume gas rates was shown a water flow rate versus the inclination angle of immovable riser section and the characteristic angular amplitudes and periods of riser section inclination cycle under periodic cross forces. Data on distribution of average water velocity in twophase flow in abovementioned cases were also obtained. These data allowed us to draw a conclusion that a velocity distribution depends on the angular amplitude and on the period of the riser section roll cycle. This article belongs to publications, which study two-phase flows with no disturbing effect on them. Obtained data give an insight into understanding a pattern of twophase gas-liquid flow under the action of periodic cross forces and can be used to verify the mathematical models of the CFD thermo-hydraulic codes. In the future, the work development expects taking measurements with more frequent interval in the ranges of angular amplitudes and periods of the channel movement cycle and create a mathematical model to show the action of periodic cross forces on two-phase gas-liquid flow.
Theoretical aspects of electrical power generation from two-phase flow streaming potentials
Sherwood, J.D.; Xie, Yanbo; van den Berg, Albert; Eijkel, Jan C.T.
A theoretical analysis of the generation of electrical streaming currents and electrical power by two-phase flow in a rectangular capillary is presented. The injection of a second, non-conducting fluid phase tends to increase the internal electrical resistance of the electrical generator, thereby
Conceptual plan: Two-Phase Flow Laboratory Program for the Waste Isolation Pilot Plant
International Nuclear Information System (INIS)
Howarth, S.M.
1993-07-01
The Salado Two-Phase Flow Laboratory Program was established to address concerns regarding two-phase flow properties and to provide WIPP-specific, geologically consistent experimental data to develop more appropriate correlations for Salado rock to replace those currently used in Performance Assessment models. Researchers in Sandia's Fluid Flow and Transport Department originally identified and emphasized the need for laboratory measurements of Salado threshold pressure and relative permeability. The program expanded to include the measurement of capillary pressure, rock compressibility, porosity, and intrinsic permeability and the assessment of core damage. Sensitivity analyses identified the anhydrite interbed layers as the most likely path for the dissipation of waste-generated gas from waste-storage rooms because of their relatively high permeability. Due to this the program will initially focus on the anhydrite interbed material. The program may expand to include similar rock and flow measurements on other WIPP materials including impure halite, pure halite, and backfill and seal materials. This conceptual plan presents the scope, objectives, and historical documentation of the development of the Salado Two-Phase Flow Program through January 1993. Potential laboratory techniques for assessing core damage and measuring porosity, rock compressibility, capillary and threshold pressure, permeability as a function of stress, and relative permeability are discussed. Details of actual test designs, test procedures, and data analysis are not included in this report, but will be included in the Salado Two-Phase Flow Laboratory Program Test Plan pending the results of experimental and other scoping activities in FY93
An Implicit Numerical Method for the Simulation of Two-phase Flow
Energy Technology Data Exchange (ETDEWEB)
Yoon, Han Young; Lee, Seung-Jun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Jeong, Jae Jun [Pusan National University, Busan (Korea, Republic of)
2015-10-15
An implicit numerical method is presented for the analysis of two-phase flows in PWRs. Numerical stability and efficiency are improved by decoupling energy equations from the pressure equation. All the convection and diffusion terms are calculated implicitly. The proposed numerical method is verified against conceptual two-phase flow problems. An implicit numerical method has been proposed for two-phase calculation where energy equations are decoupled from the pressure equation. Convection and diffusion terms are calculated implicitly. The calculation results are the same for PME-explicit, PM explicit, and PM-implicit. Large time step size has been tested with PM-implicit-c and the results are also the same.
Two-phase flow in steam turbines: EDF R and D division investigations
International Nuclear Information System (INIS)
Laali, A.R.
1992-05-01
This report outlines the investigations on wet steam flows in steam turbines. All the softwares developed in the framework of these studies enables analysis of different aspects of these types of flows. The use of two phase codes based on 2 fluid models, which has achieved a sufficient progress, and the integration of the condensation programme in a transonic non stationary code will constitute a second step for these studies, enhancing what has already been achieved in this field
Contribution to the study of helium two-phase vertical flow
International Nuclear Information System (INIS)
Augyrond, L.
1998-04-01
This work aims at a better understanding of the dynamics of helium two-phase flow in a vertical duct. The case of bubble flow is particularly investigated. The most descriptive parameter of two-phase flow is the void fraction. A sensor to measure this parameter was specially designed and calibrated, it is made of a radioactive source and a semiconductor detector. Sensors based on light attenuation were used to study the behaviour of this two-phase flow. The experimental set-up is described. The different flow types were photographed and video filmed. This visualization has allowed to measure the diameter of bubbles and to study their movements in the fluid. Bubble flow then churn and annular flows were observed but slug flow seems not to exist with helium. A modelling based on a Zuber model matches better the experimental results than a Levy type model. The detailed analysis of the signals given by the optical sensors has allowed to highlight a bubble appearance frequency directly linked to the flowrate. (A.C.)
Strongly coupled dispersed two-phase flows; Ecoulements diphasiques disperses fortement couples
Energy Technology Data Exchange (ETDEWEB)
Zun, I.; Lance, M.; Ekiel-Jezewska, M.L.; Petrosyan, A.; Lecoq, N.; Anthore, R.; Bostel, F.; Feuillebois, F.; Nott, P.; Zenit, R.; Hunt, M.L.; Brennen, C.E.; Campbell, C.S.; Tong, P.; Lei, X.; Ackerson, B.J.; Asmolov, E.S.; Abade, G.; da Cunha, F.R.; Lhuillier, D.; Cartellier, A.; Ruzicka, M.C.; Drahos, J.; Thomas, N.H.; Talini, L.; Leblond, J.; Leshansky, A.M.; Lavrenteva, O.M.; Nir, A.; Teshukov, V.; Risso, F.; Ellinsen, K.; Crispel, S.; Dahlkild, A.; Vynnycky, M.; Davila, J.; Matas, J.P.; Guazelli, L.; Morris, J.; Ooms, G.; Poelma, C.; van Wijngaarden, L.; de Vries, A.; Elghobashi, S.; Huilier, D.; Peirano, E.; Minier, J.P.; Gavrilyuk, S.; Saurel, R.; Kashinsky, O.; Randin, V.; Colin, C.; Larue de Tournemine, A.; Roig, V.; Suzanne, C.; Bounhoure, C.; Brunet, Y.; Tanaka, A.T.; Noma, K.; Tsuji, Y.; Pascal-Ribot, S.; Le Gall, F.; Aliseda, A.; Hainaux, F.; Lasheras, J.; Didwania, A.; Costa, A.; Vallerin, W.; Mudde, R.F.; Van Den Akker, H.E.A.; Jaumouillie, P.; Larrarte, F.; Burgisser, A.; Bergantz, G.; Necker, F.; Hartel, C.; Kleiser, L.; Meiburg, E.; Michallet, H.; Mory, M.; Hutter, M.; Markov, A.A.; Dumoulin, F.X.; Suard, S.; Borghi, R.; Hong, M.; Hopfinger, E.; Laforgia, A.; Lawrence, C.J.; Hewitt, G.F.; Osiptsov, A.N.; Tsirkunov, Yu. M.; Volkov, A.N.
2003-07-01
dissipation in particle-driven gravity current; a model for highly concentrated suspensions in a diffusive turbulence. Topic 6: strongly coupled two-phase flows involving reacting flows, phase change: microparticle formation in a reacting flow; crystallization and melting in two-phase flows from a non-equilibrium thermodynamics viewpoint; study of a statistical modeling of turbulent flows with very variable density, application to atomization; breakup mechanisms in coaxial atomization; application of Batchelor's fluidized bed stability analysis for wispy-annular flow; unsteady effects induced by non-uniformities of particle concentration in a two-phase boundary layer; one-way and two-way coupled gas-particle flows over a blunt body: the role of particle particle collisions and the shielding effect; particulate aerosols spreading in the planetary boundary layer on complex terrain. Model development and validation examples.
Two-group interfacial area concentration correlations of two-phase flows in large diameter pipes
International Nuclear Information System (INIS)
Shen, Xiuzhong; Hibiki, Takashi
2015-01-01
The reliable empirical correlations and models are one of the important ways to predict the interfacial area concentration (IAC) in two-phase flows. However, up to now, no correlation or model is available for the prediction of the IAC in the two-phase flows in large diameter pipes. This study collected an IAC experimental database of two-phase flows taken under various flow conditions in large diameter pipes and presented a systematic way to predict the IAC for two-phase flows from bubbly, cap-bubbly to churn flow in large diameter pipes by categorizing bubbles into two groups (group-1: spherical and distorted bubble, group-2: cap bubble). Correlations were developed to predict the group-1 void fraction from the void fraction of all bubble. The IAC contribution from group-1 bubbles was modeled by using the dominant parameters of group-1 bubble void fraction and Reynolds number based on the parameter-dependent analysis of Hibiki and Ishii (2001, 2002) using one-dimensional bubble number density and interfacial area transport equations. A new drift velocity correlation for two-phase flow with large cap bubbles in large diameter pipes was derived in this study. By comparing the newly-derived drift velocity correlation with the existing drift velocity correlation of Kataoka and Ishii (1987) for large diameter pipes and using the characteristics of the representative bubbles among the group 2 bubbles, we developed the model of IAC and bubble size for group 2 cap bubbles. The developed models for estimating the IAC are compared with the entire collected database. A reasonable agreement was obtained with average relative errors of ±28.1%, ±54.4% and ±29.6% for group 1, group 2 and all bubbles respectively. (author)
2017-05-01
circles, spokes on a bicycle wheel or combinations thereof. iii. Center of Gravity - tracks a regular, roughly circular shaped object that does not...analysis showed the velocities of 71 tracked points at varying level of qualities. These velocities were analyzed and the data from these experiments...each of the video recordings, two to six features were tracked that best represented the bulk liquid flow. The velocities of these features were
Two-phase flow in volatile oil reservoir using two-phase pseudo-pressure well test method
Energy Technology Data Exchange (ETDEWEB)
Sharifi, M.; Ahmadi, M. [Calgary Univ., AB (Canada)
2009-09-15
A study was conducted to better understand the behaviour of volatile oil reservoirs. Retrograde condensation occurs in gas-condensate reservoirs when the flowing bottomhole pressure (BHP) lowers below the dewpoint pressure, thus creating 4 regions in the reservoir with different liquid saturations. Similarly, when the BHP of volatile oil reservoirs falls below the bubblepoint pressure, two phases are created in the region around the wellbore, and a single phase (oil) appears in regions away from the well. In turn, higher gas saturation causes the oil relative permeability to decrease towards the near-wellbore region. Reservoir compositional simulations were used in this study to predict the fluid behaviour below the bubblepoint. The flowing bottomhole pressure was then exported to a well test package to diagnose the occurrence of different mobility regions. The study also investigated the use of a two-phase pseudo-pressure method on volatile and highly volatile oil reservoirs. It was concluded that this method can successfully predict the true permeability and mechanical skin. It can also distinguish between mechanical skin and condensate bank skin. As such, the two-phase pseudo-pressure method is particularly useful for developing after-drilling well treatment and enhanced oil recovery process designs. However, accurate relative permeability and PVT data must be available for reliable interpretation of the well test in volatile oil reservoirs. 18 refs., 3 tabs., 9 figs.
The influence of non condensible gas on two phase critical flow
International Nuclear Information System (INIS)
Celata, G.P.; Cumo, M.; D'Annibale, F.; Farello, G.E.
1987-01-01
With reference to Loss-of-Coolant Accidents in Pressurized Water Reactors and in the frame of the wide scientific landscape of blowdown experiments aiming to the improvement of two-phase critical flows knowledge, it is of interest the analysis of non condensible gas influence on the critical flow (radiolytic gases,metal-water reactions products etc.). The present paper deals with an experiment referring to two-phase steam-water critical flows from long tubes, in which known air flowrates are injected in the stagnation region. The aim of the experiment is to detect the influence of non-condensible gas on the two-phase critical flow behaviour (critical mass flow rate, pressure and temperature profiles along the discharge channel etc.) as well as to individuate the limit, in terms of air concentration, beyond which the critical flow is affected by the presence of the gas. The employed test section is a vertical, circular duct channel with an inner diameter of 4.6 mm and a length of 1500 mm (L/D = 325). Results of initially subcooled liquid experiments (together with some data of satured liquid discharges), up to 15 bars are reported with the analysis of non-condensible effects in the different stagnation conditions
Electrical Capacitance Probe Characterization in Vertical Annular Two-Phase Flow
Directory of Open Access Journals (Sweden)
Grazia Monni
2013-01-01
Full Text Available The paper presents the experimental analysis and the characterization of an electrical capacitance probe (ECP that has been developed at the SIET Italian Company, for the measurement of two-phase flow parameters during the experimental simulation of nuclear accidents, as LOCA. The ECP is used to investigate a vertical air/water flow, characterized by void fraction higher than 95%, with mass flow rates ranging from 0.094 to 0.15 kg/s for air and from 0.002 to 0.021 kg/s for water, corresponding to an annular flow pattern. From the ECP signals, the electrode shape functions (i.e., the signals as a function of electrode distances in single- and two-phase flows are obtained. The dependence of the signal on the void fraction is derived and the liquid film thickness and the phase’s velocity are evaluated by means of rather simple models. The experimental analysis allows one to characterize the ECP, showing the advantages and the drawbacks of this technique for the two-phase flow characterization at high void fraction.
Numerical simulation for gas-liquid two-phase flow in pipe networks
International Nuclear Information System (INIS)
Li Xiaoyan; Kuang Bo; Zhou Guoliang; Xu Jijun
1998-01-01
The complex pipe network characters can not directly presented in single phase flow, gas-liquid two phase flow pressure drop and void rate change model. Apply fluid network theory and computer numerical simulation technology to phase flow pipe networks carried out simulate and compute. Simulate result shows that flow resistance distribution is non-linear in two phase pipe network
Interfacial area transport for reduced-gravity two-phase flows
Vasavada, Shilp
An extensive experimental and theoretical study of two-phase flow behavior in reduced-gravity conditions has been performed as part of the current research and the results of the same are presented in this thesis. The research was undertaken to understand the behavior of two-phase flows in an environment where the gravity field is reduced as compared to that on earth. The goal of the study was to develop a model capable of predicting the flow behavior. An experimental program was developed and accomplished which simulated reduced-gravity conditions on earth by using two liquids of similar density, thereby decreasing the body force effect akin to actual reduced-gravity conditions. The justification and validation of this approach has been provided based on physical arguments as well as comparison of acquired data with that obtained aboard parabolic flights by previous researchers. The experimental program produced an extensive dataset of local and averaged two-phase flow parameters using state-of-the-art instrumentation. Such data were acquired for a wide range of flow conditions at different radial and axial locations in a 25 mm inner diameter test facility. The current dataset is, in the author's opinion, the most extensive and detailed dataset available for such conditions at present. Analysis of the data revealed important differences between two-phase flows in normal and reduced-gravity conditions. The data analysis also highlighted key interaction mechanisms between the fluid particles and physical phenomena occurring in two-phase flows under reduced-gravity conditions. The interfacial area transport equation (IATE) for reduced-gravity conditions has been developed by considering two groups of bubbles/drops and mechanistically modeling the interaction mechanisms. The developed model has been benchmarked against the acquired data and the predictions of the model compared favorably against the experimental data. This signifies the success achieved in modeling
Damping and fluidelastic instability in two-phase cross-flow heat exchanger tube arrays
Moran, Joaquin E.
flux, and its dependency is a function of void fraction. A dimensional analysis was carried out to investigate the relationship between damping and two-phase flow related parameters. As a result, the inclusion of surface tension in the form of the Capillary number appears to be useful when combined with the two-phase component of the damping ratio (interfacial damping). A strong dependence of damping on flow regime was observed when plotting the interfacial damping versus the void fraction, introducing an improvement over the previous result obtained by normalizing the two-phase damping, which does not exhibit this behaviour. The interfacial velocity model was selected to represent the fluidelastic data in two-phase experiments, due to the inclusion of the tube array geometry and density ratio effects, which does not exist for the pitch velocity approach. An essential component in reliably establishing the velocity threshold for fluidelastic instability, is a measure of the energy dissipation available in the system to balance the energy input from the flow. The present analysis argues that the damping in-flow is not an appropriate measure and demonstrates that the use of quiescent fluid damping provides a better measure of the energy dissipation, which produces a much more logical trend in the stability behaviour. This value of damping, combined with the RAD density and the interfacial velocity, collapses the available data well and provides the expected trend of two-phase flow stability data over the void fraction range from liquid to gas flows. The resulting stability maps represent a significant improvement over existing maps for predicting fluidelastic instability of tube bundles in two-phase flows. This result also tends to confirm the hypothesis that the basic mechanism of fluidelastic instability is the same for single and two-phase flows.
Numerical approach of multi-field two-phase flow models in the OVAP code
International Nuclear Information System (INIS)
Anela Kumbaro
2005-01-01
use full Eigen-structure information. Basic comparisons in terms of numerical results and physical modeling will be provided and interpreted. The intent is to provide guidelines for future development of such methods and models. References: [1] Lahey, R.T. Jr., Drew D.A. An Analysis of Two-Phase Flow and Heat Transfer using a Multidimensional, Multi-Field, Two-Fluid Computational Fluid Dynamics (CFD) Model, Japan/US Seminar on Two-Phase Flow Dynamics, California, June 5-8, 2000. [2] Lo S., Some recent developments and applications of CFD to multiphase flows in stirred reactors, AMIF-ESF Workshop, Computing two-phase flows, Aussois, 2000. [3] Roe P.L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comp. Phys., 43(2), 1981. [4] Toumi and A. Kumbaro, An Approximate Linearized Riemann Solver for a Two-Fluid Model, J. Comput. Phys., 124, 286-300, 1996. [5] A. Kumbaro, I. Toumi and V. Seignole, Numerical Modeling of Two-Phase Flows Using Advanced Two Fluid Systems, Tenth International Conference on Nuclear Engineering, April 14-18 2002, Arlington, Virginia, USA. (author)
Experimental and numerical studies of two-phase microfluidic flows
CSIR Research Space (South Africa)
Mbanjwa, MB
2010-09-01
Full Text Available Flow of immiscible fluids is important in microfluidics for applications such as generation of emulsions and vesicles, drug delivery capsules, cell encapsulation and chemical reactions. The behaviour of these flows differs from large scale flows...
Two-Phase Flow Simulations In a Natural Rock Fracture using the VOF Method
International Nuclear Information System (INIS)
Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H.; Bromhal, Grant
2010-01-01
Standard models of two-phase flow in porous media have been shown to exhibit several shortcomings that might be partially overcome with a recently developed model based on thermodynamic principles (Hassanizadeh and Gray, 1990). This alternative two-phase flow model contains a set of new and non-standard parameters, including specific interfacial area. By incorporating interfacial area production, destruction, and propagation into functional relationships that describe the capillary pressure and saturation, a more physical model has been developed. Niessner and Hassanizadeh (2008) have examined this model numerically and have shown that the model captures saturation hysteresis with drainage/imbibition cycles. Several static experimental studies have been performed to examine the validity of this new thermodynamically based approach; these allow the determination of static parameters of the model. To date, no experimental studies have obtained information about the dynamic parameters required for the model. A new experimental porous flow cell has been constructed using stereolithography to study two-phase flow phenomena (Crandall et al. 2008). A novel image analysis tool was developed for an examination of the evolution of flow patterns during displacement experiments (Crandall et al. 2009). This analysis tool enables the direct quantification of interfacial area between fluids by matching known geometrical properties of the constructed flow cell with locations identified as interfaces from images of flowing fluids. Numerous images were obtained from two-phase experiments within the flow cell. The dynamic evolution of the fluid distribution and the fluid-fluid interface locations were determined by analyzing these images. In this paper, we give a brief introduction to the thermodynamically based two-phase flow model, review the properties of the stereolithography flow cell, and show how the image analysis procedure has been used to obtain dynamic parameters for the
Lumped-parameter modeling of one-dimensional two-phase flow
International Nuclear Information System (INIS)
Wulff, W.
1978-01-01
An integral or lumped-parameter modeling technique is presented for the analysis of nonequilibrium, nonhomogeneous, one-dimensional two-phase flow. The method is designed to increase computing efficiency over standard finite difference techniques and to describe accurately the motion of flow regime interfaces. Computing efficiency is achieved by converting the partial differential equations of the conservation laws into ordinary differential equations and by introducing profile estimates. Flow regime interfaces are tracked with the aid of kinematic jump conditions. The governing equations are derived, and the method is elucidated on three applications. One application involves a closed-loop transient, the second one involves the dynamics of a liquid level, while the third application deals with the level swelling above a nonhomogeneous two-phase mixture. Comparisons are presented between lumped parameter modeling solutions, solutions from finite difference techniques and analytical solutions. The comparisons show good agreement. The important role of profile functions is discussed
1-D Two-phase Flow Investigation for External Reactor Vessel Cooling
International Nuclear Information System (INIS)
Kim, Jae Cheol
2007-02-01
During a severe accident, when a molten corium is relocated in a reactor vessel lower head, the RCF(Reactor Cavity Flooding) system for ERVC (External Reactor Vessel Cooling) is actuated and coolants are supplied into a reactor cavity to remove a decay heat from the molten corium. This severe accident mitigation strategy for maintaining a integrity of reactor vessel was adopted in the nuclear power plants of APR1400, AP600, and AP1000. Under the ERVC condition, the upward two-phase flow is driven by the amount of the decay heat from the molten corium. To achieve the ERVC strategy, the two-phase natural circulation in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. Also the natural circulation flow restriction has to be minimized. In this reason, it is needed to review the fundamental structure of insulation. In the existing power plants, the insulation design is aimed at minimizing heat losses under a normal operation. Under the ERVC condition, however, the ability to form the two-phase natural circulation is uncertain. Namely, some important factors, such as the coolant inlet/outlet areas, flow restriction, and steam vent etc. in the flow channel, should be considered for ERVC design. T-HEMES 1D study is launched to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled down as the half height and 1/238 channel area of the APR1400 reactor vessel. The air injection method was used to simulate the boiling at the external reactor vessel and generate the natural circulation two-phase flow. From the experimental results, the natural circulation flow rate highly depended on inlet/outlet areas and the circulation flow rate increased as the outlet height as well as the supplied water head increased. On the other hand, the simple analysis using the drift
Xiao, Jian; Luo, Xiaoping; Feng, Zhenfei; Zhang, Jinxin
2018-01-01
This work combines fuzzy logic and a support vector machine (SVM) with a principal component analysis (PCA) to create an artificial-intelligence system that identifies nanofluid gas-liquid two-phase flow states in a vertical mini-channel. Flow-pattern recognition requires finding the operational details of the process and doing computer simulations and image processing can be used to automate the description of flow patterns in nanofluid gas-liquid two-phase flow. This work uses fuzzy logic and a SVM with PCA to improve the accuracy with which the flow pattern of a nanofluid gas-liquid two-phase flow is identified. To acquire images of nanofluid gas-liquid two-phase flow patterns of flow boiling, a high-speed digital camera was used to record four different types of flow-pattern images, namely annular flow, bubbly flow, churn flow, and slug flow. The textural features extracted by processing the images of nanofluid gas-liquid two-phase flow patterns are used as inputs to various identification schemes such as fuzzy logic, SVM, and SVM with PCA to identify the type of flow pattern. The results indicate that the SVM with reduced characteristics of PCA provides the best identification accuracy and requires less calculation time than the other two schemes. The data reported herein should be very useful for the design and operation of industrial applications.
Directory of Open Access Journals (Sweden)
Jian Xiao
2018-01-01
Full Text Available This work combines fuzzy logic and a support vector machine (SVM with a principal component analysis (PCA to create an artificial-intelligence system that identifies nanofluid gas-liquid two-phase flow states in a vertical mini-channel. Flow-pattern recognition requires finding the operational details of the process and doing computer simulations and image processing can be used to automate the description of flow patterns in nanofluid gas-liquid two-phase flow. This work uses fuzzy logic and a SVM with PCA to improve the accuracy with which the flow pattern of a nanofluid gas-liquid two-phase flow is identified. To acquire images of nanofluid gas-liquid two-phase flow patterns of flow boiling, a high-speed digital camera was used to record four different types of flow-pattern images, namely annular flow, bubbly flow, churn flow, and slug flow. The textural features extracted by processing the images of nanofluid gas–liquid two-phase flow patterns are used as inputs to various identification schemes such as fuzzy logic, SVM, and SVM with PCA to identify the type of flow pattern. The results indicate that the SVM with reduced characteristics of PCA provides the best identification accuracy and requires less calculation time than the other two schemes. The data reported herein should be very useful for the design and operation of industrial applications.
Flow measurement in two-phase (gas-liquid) systems
International Nuclear Information System (INIS)
Hewitt, G.F.; Whalley, P.B.
1980-01-01
The main methods of measuring mass flow and quality in gas-liquid flows in industrial situations are reviewed. These include gamma densitometry coupled with differential pressure devices such as crifice plates, turbine flow meters and drag screens. For each method the principle of operation, and the advantages and disadvantages, are given. Some further techniques which are currently being investigated and developed for routine use are also described briefly. Finally the detailed flow measurements possible on a particular flow pattern - annular flow - is examined. (author)
Characteristics of low-mass-velocity vertical gas-liquid two-phase flow
International Nuclear Information System (INIS)
Adachi, Hiromichi; Abe, Yutaka; Kimura, Ko-ji
1995-01-01
In the present paper, characteristics of low mass velocity two-phase flow was analyzed based on a concept that pressure energy of two-phase flow is converted into acceleration work, gravitational work and frictional work, and the pressure energy consumption rate should be minimum at the stable two-phase flow condition. Experimental data for vertical upward air-water two-phase flow at atmospheric pressure was used to verify this concept and the turbulent model used in this method is optimized with the data. (author)
Application of ANN and PCA to two-phase flow evaluation using radioisotopes
Directory of Open Access Journals (Sweden)
Hanus Robert
2017-01-01
Full Text Available In the two-phase flow measurements a method involving the absorption of gamma radiation can be applied among others. Analysis of the signals from the scintillation probes can be used to determine the number of flow parameters and to recognize flow structure. Three types of flow regimes as plug, bubble, and transitional plug – bubble flows were considered in this work. The article shows how features of the signals in the time and frequency domain can be used to build the artificial neural network (ANN to recognize the structure of the gas-liquid flow in a horizontal pipeline. In order to reduce the number of signal features the principal component analysis (PCA was used. It was found that the reduction of signals features allows for building a network with better performance.
A study on two phase flows of linear compressors for the prediction of refrigerant leakage
International Nuclear Information System (INIS)
Hwang, Il Sun; Lee, Young Lim; Oh, Won Sik; Park, Kyeong Bae
2015-01-01
Usage of linear compressors is on the rise due to their high efficiency. In this paper, leakage of a linear compressor has been studied through numerical analysis and experiments. First, nitrogen leakage for a stagnant piston with fixed cylinder pressure as well as for a moving piston with fixed cylinder pressure was analyzed to verify the validity of the two-phase flow analysis model. Next, refrigerant leakage of a linear compressor in operation was finally predicted through 3-dimensional unsteady, two phase flow CFD (Computational fluid dynamics). According to the research results, the numerical analyses for the fixed cylinder pressure models were in good agreement with the experimental results. The refrigerant leakage of the linear compressor in operation mainly occurred through the oil exit and the leakage became negligible after about 0.4s following operation where the leakage became lower than 2.0x10 -4 kg/s.
Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly
International Nuclear Information System (INIS)
Andrey Ioilev; Maskhud Samigulin; Vasily Ustinenko; Simon Lo; Adrian Tentner
2005-01-01
Full text of publication follows: The goal of this project is to develop an advanced Computational Fluid Dynamics (CFD) computer code (CFD-BWR) that allows the detailed analysis of the two-phase flow and heat transfer phenomena in a Boiling Water Reactor (BWR) fuel bundle under various operating conditions. This code will include more fundamental physical models than the current generation of sub-channel codes and advanced numerical algorithms for improved computational accuracy, robustness, and speed. It is highly desirable to understand the detailed two-phase flow phenomena inside a BWR fuel bundle. These phenomena include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for the analysis of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is still too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Recent progress in Computational Fluid Dynamics (CFD), coupled with the rapidly increasing computational power of massively parallel computers, shows promising potential for the fine-mesh, detailed simulation of fuel assembly two-phase flow phenomena. However, the phenomenological models available in the commercial CFD programs are not as advanced as those currently being used in the sub-channel codes used in the nuclear industry. In particular, there are no models currently available which are able to reliably predict the nature of the flow regimes, and use the appropriate sub-models for those flow regimes. The CFD-BWR code is being developed as a customized module built on the foundation of the commercial CFD Code STAR-CD which provides general two-phase flow modeling capabilities. The paper describes the model development strategy which has been adopted by the development team for the
Horizontal two phase flow pattern identification by neural networks
International Nuclear Information System (INIS)
Crivelaro, Kelen Cristina Oliveira; Seleghim Junior, Paulo; Hervieu, Eric
1999-01-01
A multiphase fluid can flow according to several flow regimes. The problem associated with multiphase systems are basically related to the behavior of macroscopic parameters, such as pressure drop, thermal exchanges and so on, and their strong correlation to the flow regime. From the industrial applications point of view, the safety and longevity of equipment and systems can only be assured when they work according to the flow regimes for which they were designed to. This implies in the need to diagnose flow regimes in real time. The automatic diagnosis of flow regimes represents an objective of extreme importance, mainly for applications on nuclear and petrochemical industries. In this work, a neural network is used in association to a probe of direct visualization for the identification of a gas-liquid flow horizontal regimes, developed in an experimental circuit. More specifically, the signals produced by the probe are used to compose a qualitative image of the flow, which is promptly sent to the network for the recognition of the regimes. Results are presented for different transitions among the flow regimes, which demonstrate the extremely satisfactory performance of the diagnosis system. (author)
Kou, Jisheng
2013-01-01
A class of discontinuous Galerkin methods with interior penalties is presented for incompressible two-phase flow in heterogeneous porous media with capillary pressures. The semidiscrete approximate schemes for fully coupled system of two-phase flow are formulated. In highly heterogeneous permeable media, the saturation is discontinuous due to different capillary pressures, and therefore, the proposed methods incorporate the capillary pressures in the pressure equation instead of saturation equation. By introducing a coupling approach for stability and error estimates instead of the conventional separate analysis for pressure and saturation, the stability of the schemes in space and time and a priori hp error estimates are presented in the L2(H 1) for pressure and in the L∞(L2) and L2(H1) for saturation. Two time discretization schemes are introduced for effectively computing the discrete solutions. © 2013 Societ y for Industrial and Applied Mathematics.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume I. Chapters 1-5)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume III. Chapters 11-14)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume IV. Chapters 15-19)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume II. Chapters 6-10)
Energy Technology Data Exchange (ETDEWEB)
Guo, T.; Park, J.; Kojasoy, G.
2003-03-15
Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.
International Nuclear Information System (INIS)
Nalezny, C.L.; Chapman, R.L.; Martinell, J.S.; Riordon, R.P.; Solbrig, C.W.
1979-01-01
Mass flow is an important measured variable in the Loss-of-Fluid Test (LOFT) Program. Large uncertainties in mass flow measurements in the LOFT piping during LOFT coolant experiments requires instrument testing in a transient two-phase flow loop that simulates the geometry of the LOFT piping. To satisfy this need, a transient two-phase flow loop has been designed and built. The load cell weighing system, which provides reference mass flow measurements, has been analyzed to assess its capability to provide the measurements. The analysis consisted of first performing a thermal-hydraulic analysis using RELAP4 to compute mass inventory and pressure fluctuations in the system and mass flow rate at the instrument location. RELAP4 output was used as input to a structural analysis code SAPIV which is used to determine load cell response. The computed load cell response was then smoothed and differentiated to compute mass flow rate from the system. Comparison between computed mass flow rate at the instrument location and mass flow rate from the system computed from the load cell output was used to evaluate mass flow measurement capability of the load cell weighing system. Results of the analysis indicate that the load cell weighing system will provide reference mass flows more accurately than the instruments now in LOFT
Parallel two-phase-flow-induced vibrations in fuel pin model
International Nuclear Information System (INIS)
Hara, Fumio; Yamashita, Tadashi
1978-01-01
This paper reports the experimental results of vibrations of a fuel pin model -herein meaning the essential form of a fuel pin from the standpoint of vibration- in a parallel air-and-water two-phase flow. The essential part of the experimental apparatus consisted of a flat elastic strip made of stainless steel, both ends of which were firmly supported in a circular channel conveying the two-phase fluid. Vibrational strain of the fuel pin model, pressure fluctuation of the two-phase flow and two-phase-flow void signals were measured. Statistical measures such as power spectral density, variance and correlation function were calculated. The authors obtained (1) the relation between variance of vibrational strain and two-phase-flow velocity, (2) the relation between variance of vibrational strain and two-phase-flow pressure fluctuation, (3) frequency characteristics of variance of vibrational strain against the dominant frequency of the two-phase-flow pressure fluctuation, and (4) frequency characteristics of variance of vibrational strain against the dominant frequency of two-phase-flow void signals. The authors conclude that there exist two kinds of excitation mechanisms in vibrations of a fuel pin model inserted in a parallel air-and-water two-phase flow; namely, (1) parametric excitation, which occurs when the fundamental natural frequency of the fuel pin model is related to the dominant travelling frequency of water slugs in the two-phase flow by the ratio 1/2, 1/1, 3/2 and so on; and (2) vibrational resonance, which occurs when the fundamental frequency coincides with the dominant frequency of the two-phase-flow pressure fluctuation. (auth.)
Measurements of local two-phase flow parameters in a boiling flow channel
International Nuclear Information System (INIS)
Yun, Byong Jo; Park, Goon-CherI; Chung, Moon Ki; Song, Chul Hwa
1998-01-01
Local two-phase flow parameters were measured lo investigate the internal flow structures of steam-water boiling flow in an annulus channel. Two kinds of measuring methods for local two-phase flow parameters were investigated. These are a two-conductivity probe for local vapor parameters and a Pitot cube for local liquid parameters. Using these probes, the local distribution of phasic velocities, interfacial area concentration (IAC) and void fraction is measured. In this study, the maximum local void fraction in subcooled boiling condition is observed around the heating rod and the local void fraction is smoothly decreased from the surface of a heating rod to the channel center without any wall void peaking, which was observed in air-water experiments. The distributions of local IAC and bubble frequency coincide with those of local void fraction for a given area-averaged void fraction. (author)
One-dimensional transient unequal velocity two-phase flow by the method of characteristics
International Nuclear Information System (INIS)
Rasouli, F.
1981-01-01
An understanding of two-phase flow is important when one is analyzing the accidental loss of coolant or when analyzing industrial processes. If a pipe in the steam generator of a nuclear reactor breaks, the flow will remain critical (or choked) for almost the entire blowdown. For this reason the knowledge of the two-phase maximum (critical) flow rate is important. A six-equation model--consisting of two continuity equations, two energy equations, a mixture momentum equation, and a constitutive relative velocity equation--is solved numerically by the method of characteristics for one-dimensional, transient, two-phase flow systems. The analysis is also extended to the special case of transient critical flow. The six-equation model is used to study the flow of a nonequilibrium sodium-argon system in a horizontal tube in which the nonequilibrium sodium-argon system in a horizontal tube in which the critical flow condition is at the entrance. A four-equation model is used to study the pressure-pulse propagation rate in an isothermal air-water system, and the results that are found are compared with the experimental data. Proper initial and boundary conditions are obtained for the blowdown problem. The energy and mass exchange relations are evaluated by comparing the model predictions with results of void-fraction and heat-transfer experiments. A simplified two-equation model is obtained for the special case of two incompressible phases. This model is used in the preliminary analysis of batch sedimentation. It is also used to predict the shock formation in the gas-solid fluidized bed
Mathematical models for two-phase stratified pipe flow
Energy Technology Data Exchange (ETDEWEB)
Biberg, Dag
2005-06-01
The simultaneous transport of oil, gas and water in a single multiphase flow pipe line has for economical and practical reasons become common practice in the gas and oil fields operated by the oil industry. The optimal design and safe operation of these pipe lines require reliable estimates of liquid inventory, pressure drop and flow regime. Computer simulations of multiphase pipe flow have thus become an important design tool for field developments. Computer simulations yielding on-line monitoring and look ahead predictions are invaluable in day-to-day field management. Inaccurate predictions may have large consequences. The accuracy and reliability of multiphase pipe flow models are thus important issues. Simulating events in large pipelines or pipeline systems is relatively computer intensive. Pipe-lines carrying e.g. gas and liquefied gas (condensate) may cover distances of several hundred km in which transient phenomena may go on for months. The evaluation times associated with contemporary 3-D CFD models are thus not compatible with field applications. Multiphase flow lines are therefore normally simulated using specially dedicated 1-D models. The closure relations of multiphase pipe flow models are mainly based on lab data. The maximum pipe inner diameter, pressure and temperature in a multiphase pipe flow lab is limited to approximately 0.3 m, 90 bar and 60{sup o}C respectively. The corresponding field values are, however, much higher i.e.: 1 m, 1000 bar and 200{sup o}C respectively. Lab data does thus not cover the actual field conditions. Field predictions are consequently frequently based on model extrapolation. Applying field data or establishing more advanced labs will not solve this problem. It is in fact not practically possible to acquire sufficient data to cover all aspects of multiphase pipe flow. The parameter range involved is simply too large. Liquid levels and pressure drop in three-phase flow are e.g. determined by 13 dimensionless parameters
Evaluation method for two-phase flow and heat transfer in a feed-water heater
International Nuclear Information System (INIS)
Takamori, Kazuhide; Minato, Akihiko
1993-01-01
A multidimensional analysis code for two-phase flow using a two-fluid model was improved by taking into consideration the condensation heat transfer, film thickness, and film velocity, in order to develop an evaluation method for two-phase flow and heat transfer in a feed-water heater. The following results were obtained by a two-dimensional analysis of a feed-water heater for a power plant. (1) In the model, the film flowed downward in laminar flow due to gravity, with droplet entrainment and deposition. For evaluation of the film thickness, Fujii's equation was used in order to account for forced convection of steam flow. (2) Based on the former experimental data, the droplet deposition coefficient and droplet entrainment rate of liquid film were determined. When the ratio at which the liquid film directly flowed from an upper heat transfer tube to a lower heat transfer tube was 0.7, the calculated total heat transfer rate agreed with the measured value of 130 MW. (3) At the upper region of a heat transfer tube bundle where film thickness was thin, and at the outer region of a heat transfer tube bundle where steam velocity was high, the heat transfer rate was large. (author)
Modelling of two-phase flow based on separation of the flow according to velocity
Energy Technology Data Exchange (ETDEWEB)
Narumo, T. [VTT Energy, Espoo (Finland). Nuclear Energy
1997-12-31
The thesis concentrates on the development work of a physical one-dimensional two-fluid model that is based on Separation of the Flow According to Velocity (SFAV). The conventional way to model one-dimensional two-phase flow is to derive conservation equations for mass, momentum and energy over the regions occupied by the phases. In the SFAV approach, the two-phase mixture is divided into two subflows, with as distinct average velocities as possible, and momentum conservation equations are derived over their domains. Mass and energy conservation are treated equally with the conventional model because they are distributed very accurately according to the phases, but momentum fluctuations follow better the flow velocity. Submodels for non-uniform transverse profile of velocity and density, slip between the phases within each subflow and turbulence between the subflows have been derived. The model system is hyperbolic in any sensible flow conditions over the whole range of void fraction. Thus, it can be solved with accurate numerical methods utilizing the characteristics. The characteristics agree well with the used experimental data on two-phase flow wave phenomena Furthermore, the characteristics of the SFAV model are as well in accordance with their physical counterparts as of the best virtual-mass models that are typically optimized for special flow regimes like bubbly flow. The SFAV model has proved to be applicable in describing two-phase flow physically correctly because both the dynamics and steady-state behaviour of the model has been considered and found to agree well with experimental data This makes the SFAV model especially suitable for the calculation of fast transients, taking place in versatile form e.g. in nuclear reactors. 45 refs. The thesis includes also five previous publications by author.
Modelling of two-phase flow based on separation of the flow according to velocity
International Nuclear Information System (INIS)
Narumo, T.
1997-01-01
The thesis concentrates on the development work of a physical one-dimensional two-fluid model that is based on Separation of the Flow According to Velocity (SFAV). The conventional way to model one-dimensional two-phase flow is to derive conservation equations for mass, momentum and energy over the regions occupied by the phases. In the SFAV approach, the two-phase mixture is divided into two subflows, with as distinct average velocities as possible, and momentum conservation equations are derived over their domains. Mass and energy conservation are treated equally with the conventional model because they are distributed very accurately according to the phases, but momentum fluctuations follow better the flow velocity. Submodels for non-uniform transverse profile of velocity and density, slip between the phases within each subflow and turbulence between the subflows have been derived. The model system is hyperbolic in any sensible flow conditions over the whole range of void fraction. Thus, it can be solved with accurate numerical methods utilizing the characteristics. The characteristics agree well with the used experimental data on two-phase flow wave phenomena Furthermore, the characteristics of the SFAV model are as well in accordance with their physical counterparts as of the best virtual-mass models that are typically optimized for special flow regimes like bubbly flow. The SFAV model has proved to be applicable in describing two-phase flow physically correctly because both the dynamics and steady-state behaviour of the model has been considered and found to agree well with experimental data This makes the SFAV model especially suitable for the calculation of fast transients, taking place in versatile form e.g. in nuclear reactors
Mechanisms for two phase flow in porous media
International Nuclear Information System (INIS)
Weber, G.
1995-07-01
For a better understanding of transport mechanisms in soil for a system with two phases of immiscible liquids the physics of porous media gives again important contributions. In this report, the considerations mainly concentrate on horizontal transport. Our approach is based on the similarity solution of the transport equation which reduces a given nonlinear partial differential equation (PDE) to an ordinary differential equation (ODE). It can be seen, how dimensionless similarity solutions of the ODE depend, in addition to the similarity variable, on two parameters: - the capillary number Nc, giving the ratio of capillary forces and viscous forces, and - the ratio of the viscosities of the two liquid phases. It is shown, under which conditions different mechanisms of transport are to be expected, such as - a completely stable displacement or - an unstable displacement, related to viscous fingering (DLA, Diffusion Limited Aggregation) or to capillary fingering (IP, Invasion Percolation). These mechanisms are also strongly dependent on certain critical exponents (characteristic for DLA or IP). These relations are discussed in our report. Again, for some regions of saturation, mechanisms of displacement are either clearly dominated - by imbibition (e.g. water pushing oil) or - by drain (e.g. oil pushing water). Some of the results are also transformed again from the similarity solution of the ODE to a solution of the PDE (with space- and time coordinates). It is seen, that even with this somewhat simplified approach, we obtain a considerable spectrum of mechanisms. (orig.)
Two-phase flow modeling for low concentration spherical particle motion through a Newtonian fluid
CSIR Research Space (South Africa)
Smit GJF
2010-11-01
Full Text Available Models that are used for the simulation of two-phase flows in coastal dynamics make extensive use of empirical data. The main focus of this investigation is to develop models for specific aspects of two-phase flows that are based on physical...
Homogeneous non-equilibrium two-phase critical flow model
International Nuclear Information System (INIS)
Schroeder, J.J.; Vuxuan, N.
1987-01-01
An important aspect of nuclear and chemical reactor safety is the ability to predict the maximum or critical mass flow rate from a break or leak in a pipe system. At the beginning of such a blowdown, if the stagnation condition of the fluid is subcooled or slightly saturated thermodynamic non-equilibrium exists in the downstream, e.g. the fluid becomes superheated to a degree determined by the liquid pressure. A simplified non-equilibrium model, explained in this report, is valid for rapidly decreasing pressure along the flow path. It presumes that fluid has to be superheated by an amount governed by physical principles before it starts to flash into steam. The flow is assumed to be homogeneous, i.e. the steam and liquid velocities are equal. An adiabatic flow calculation mode (Fanno lines) is employed to evaluate the critical flow rate for long pipes. The model is found to satisfactorily describe critical flow tests. Good agreement is obtained with the large scale Marviken tests as well as with small scale experiments. (orig.)
Gravity Effect on Two-Phase Immiscible Flows in Communicating Layered Reservoirs
DEFF Research Database (Denmark)
Zhang, Xuan; Shapiro, Alexander; Stenby, Erling Halfdan
2012-01-01
An upscaling method is developed for two-phase immiscible incompressible flows in layered reservoirs with good communication between the layers. It takes the effect of gravity into consideration. Waterflooding of petroleum reservoirs is used as a basic example for application of this method....... An asymptotic analysis is applied to a system of 2D flow equations for incompressible fluids at high-anisotropy ratios, but low to moderate gravity ratios, which corresponds to the most often found reservoir conditions. The 2D Buckley–Leverett problem is reduced to a system of 1D parabolic equations...
Energy Technology Data Exchange (ETDEWEB)
Zakarian, E.
2000-03-10
Recent estimations predict that over half the remaining offshore oil and gas reserves are located in deep water and marginal fields. For such reserves, economic recovery methods are required. Then, multiphase flows are transported within pipelines and separated on treatment platforms built in shallow water or processed in onshore facilities. Unfortunately, hydrodynamic instabilities may occur whenever gas and liquid flow in a pipeline, generating serious operating problems. This dissertation presents a new way to model two-phase flows in pipelines such as pipeline-riser systems. Equations are algebraic and differential. Their smoothness depends on the closure laws of the problem such as slip or friction laws. Smooth forms of these closure laws are presented for the first time in this dissertation. Therefore, a mathematical analysis of our model fits into a classical frame: a linear analysis leads to an analytical expression of the boundary between stable and unstable flows. A nonlinear analysis provides for the first time, the bifurcation curves of gas-liquid flows in pipe-riser systems, locally round their stability boundary. (author)
Flow regime classification in air-magnetic fluid two-phase flow.
Kuwahara, T; De Vuyst, F; Yamaguchi, H
2008-05-21
A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.
Experimental on two sensors combination used in horizontal pipe gas-water two-phase flow
International Nuclear Information System (INIS)
Wu, Hao; Dong, Feng
2014-01-01
Gas-water two phase flow phenomenon widely exists in production and living and the measurement of it is meaningful. A new type of long-waist cone flow sensor has been designed to measure two-phase mass flow rate. Six rings structure of conductance probe is used to measure volume fraction and axial velocity. The calibration of them have been made. Two sensors have been combined in horizontal pipeline experiment to measure two-phase flow mass flow rate. Several model of gas-water two-phase flow has been discussed. The calculation errors of total mass flow rate measurement is less than 5% based on the revised homogeneous flow model
International Nuclear Information System (INIS)
Wang, Y.W.; Pei, B.S.
1990-01-01
A method based on noise analysis techniques that can be applied to the identification of two-phase flow patterns in nuclear reactors is proposed. The identifying criterion, the high-frequency contribution fraction (HFCF), offers new potential to the in-core recognition of two-phase flow patterns. By analyzing 76 sets of signals acquired from a research nuclear reactor where two-phase flow patterns are generated in an in-core air/water loop, the typical signal, autocorrelogram, and spectrum of each flow pattern are demonstrated and evaluated. The identification success rate is 87 or 93%, depending on whether churn flow is counted. A method to improve the identification rate is also presented. This study demonstrates that the fluctuation characteristics above 10 Hz are induced by two-phase flow itself and are independent of the driving source; thus, it is adequate to apply the HFCF to the identification of two-phase flow patters. This study shows that it is possible to identify two-phase flow patterns by HFCF values
Study of two-phase critical flows through small breaches
International Nuclear Information System (INIS)
Chalant, Jean Marc; Willocx, Marc
1981-06-01
The first part of this academic document reports experimental works performed for the design and realisation of an installation (DALIDA) aimed at the study of critical flow rates through a hole. As this experimental study had to be given up for practical reasons, the authors focused on the theoretical study of this phenomenon. Based on a model proposed by Lackme for critical flows in long tubes, the authors developed a model which could be applied to the case of a tube ended by a hole. Numerical results have been obtained which are still to be experimentally confirmed [fr
A continuum theory for two-phase flows of particulate solids: application to Poiseuille flows
Monsorno, Davide; Varsakelis, Christos; Papalexandris, Miltiadis V.
2015-11-01
In the first part of this talk, we present a novel two-phase continuum model for incompressible fluid-saturated granular flows. The model accounts for both compaction and shear-induced dilatancy and accommodates correlations for the granular rheology in a thermodynamically consistent way. In the second part of this talk, we exercise this two-phase model in the numerical simulation of a fully-developed Poiseuille flow of a dense suspension. The numerical predictions are shown to compare favorably against experimental measurements and confirm that the model can capture the important characteristics of the flow field, such as segregation and formation of plug zones. Finally, results from parametric studies with respect to the initial concentration, the magnitude of the external forcing and the width of the channel are presented and the role of these physical parameters is quantified. Financial Support has been provided by SEDITRANS, an Initial Training Network of the European Commission's 7th Framework Programme
Two phase flow combustion modelling of a ducted rocket
Stowe, R.A.; Dubois, C.; Harris, P.G.; Mayer, A.E.H.J.; Champlain, A. de; Ringuette, S.
2001-01-01
Under a co-operative program, the Defence Research Establishment Valcartier and Université Laval in Canada and the TNO Prins Maurits Laboratory in the Netherlands have studied the use of a ducted rocket for missile propulsion. Hot-flow direct-connect combustion experiments using both simulated and
Two-phase PIV of bubbly flows: status and trends
Deen, N.G.; Westerweel, Jerry; Delnoij, E.
2002-01-01
Particle Image Velocimetry (PIV) is a measurement technique that has received a lot of attention for this purpose in the last decade. PIV is an optical and thus non-intrusive measurement technique that gives instantaneous 2D velocity data for a whole plane in a 3D flow field. In this paper we will
Models for assessing the relative phase velocity in a two-phase flow. Status report
International Nuclear Information System (INIS)
Schaffrath, A.; Ringel, H.
2000-06-01
The knowledge of slip or drift flux in two phase flow is necessary for several technical processes (e.g. two phase pressure losses, heat and mass transfer in steam generators and condensers, dwell period in chemical reactors, moderation effectiveness of two phase coolant in BWR). In the following the most important models for two phase flow with different phase velocities (e.g. slip or drift models, analogy between pressure loss and steam quality, ε - ε models and models for the calculation of void distribution in reposing fluids) are classified, described and worked up for a further comparison with own experimental data. (orig.)
A simple delay model for two-phase flow dynamics
Energy Technology Data Exchange (ETDEWEB)
Clausse, A.; Delmastro, D.F.; Juanico`, L.E. [Centro Atomico Bariloche (Argentina)
1995-09-01
A model based in delay equations for density-wave oscillations is presented. High Froude numbers and moderate ones were considered. The equations were numerically analyzed and compared with more sophisticated models. The influence of the gravity term was studied. Different kinds of behavior were found, particularly sub-critical and super-critical Hopf bifurcations. Moreover the present approach can be used to better understand the complicated dynamics of boiling flows systems.
Radiogauging to investigate two phase flow. Graduation report
Energy Technology Data Exchange (ETDEWEB)
Corten, G.P.
1992-11-12
New measuring methods are developed and are tested with the small reactor simulator MIDAS (Mini Dodewaard ASsembly). The purpose of this work is to be able to measure accurately as many different properties of the flow as possible in the coming bigger simulator SIDAS (Simulated Dodewaard ASsembly). In SIDAS the flow around a fuel assembly of the Dutch Dodewaard reactor will be simulated. An extensive evaluation of the gamma detection system showed that the detection system could be simplified strongly. The simplified system is used to measure the radial and axial distribution of the void fraction in the core of MIDAS for three different operating conditions. Two new measuring methods have been developed and tested. A method to estimate the probability density of the void fraction in time. Due to the nonlinear relation between transmission and void fraction the determined average value of the void fraction in general will contain a systematic error. In this investigation it is shown that this error can be maximally 7.5% in MIDAS and maximally 25% in SIDAS. Therefore a new measuring method has been developed in which the true probability density of the void fraction in time is approximated by two different values of the void fraction, each with a certain probability. With this new method firstly the average void fraction can be determined much more precisely and secondly it often can be used to determine the flow pattern. (orig./WL).
A study of water hammer phenomena in a one-component two-phase bubbly flow
International Nuclear Information System (INIS)
Fujii, Terushige; Akagawa, Koji
2000-01-01
Water hammer phenomena caused by a rapid valve closure, that is, shock phenomena in two-phase flows, are an important problem for the safety assessment of a hypothetical LOCA. This paper presents the results of experimental and analytical studies of the water hammer phenomena in a one-component tow-phase bubbly flow. In order to clarify the characteristics of water hammer phenomena, experiments for a one-component two-phase flow of Freon R-113 were conducted and a numerical simulation of pressure transients was developed. An overall picture of the water hammer phenomena in a one-component two-phase flow is presented an discussed. (author)
Extension of CFD Codes Application to Two-Phase Flow Safety Problems - Phase 3
International Nuclear Information System (INIS)
Bestion, D.; Anglart, H.; Mahaffy, J.; Lucas, D.; Song, C.H.; Scheuerer, M.; Zigh, G.; Andreani, M.; Kasahara, F.; Heitsch, M.; Komen, E.; Moretti, F.; Morii, T.; Muehlbauer, P.; Smith, B.L.; Watanabe, T.
2014-11-01
The Writing Group 3 on the extension of CFD to two-phase flow safety problems was formed following recommendations made at the 'Exploratory Meeting of Experts to Define an Action Plan on the Application of Computational Fluid Dynamics (CFD) Codes to Nuclear Reactor Safety Problems' held in Aix-en-Provence, in May 2002. Extension of CFD codes to two-phase flow is significant potentiality for the improvement of safety investigations, by giving some access to smaller scale flow processes which were not explicitly described by present tools. Using such tools as part of a safety demonstration may bring a better understanding of physical situations, more confidence in the results, and an estimation of safety margins. The increasing computer performance allows a more extensive use of 3D modelling of two-phase Thermal hydraulics with finer nodalization. However, models are not as mature as in single phase flow and a lot of work has still to be done on the physical modelling and numerical schemes in such two-phase CFD tools. The Writing Group listed and classified the NRS problems where extension of CFD to two-phase flow may bring real benefit, and classified different modelling approaches in a first report (Bestion et al., 2006). First ideas were reported about the specification and analysis of needs in terms of validation and verification. It was then suggested to focus further activity on a limited number of NRS issues with a high priority and a reasonable chance to be successful in a reasonable period of time. The WG3-step 2 was decided with the following objectives: - selection of a limited number of NRS issues having a high priority and for which two-phase CFD has a reasonable chance to be successful in a reasonable period of time; - identification of the remaining gaps in the existing approaches using two-phase CFD for each selected NRS issue; - review of the existing data base for validation of two-phase CFD application to the selected NRS problems
effects of parallel channel interactions on two-phase flow split in ...
African Journals Online (AJOL)
Dr Obe
1982-09-01
Sep 1, 1982 ... varied so as to simulate different flow phenomena which might occur during a loss ... QCV - Quick Closing Valves. 2ϕ - Two-phase flow. lϕ - Single phase flow α - Void fraction. X - Flow quality. UP - Upper Plenum. LP - Lower Plenum. W - Flow rate kg/hr .... evident that gradual introduction of vapour into the ...
Enhanced two phase flow in heat transfer systems
Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D
2013-12-03
A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.
Experimental investigation of two-phase flow in rock salt
Energy Technology Data Exchange (ETDEWEB)
Malama, Bwalya [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Howard, Clifford L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2014-07-01
This Test Plan describes procedures for conducting laboratory scale flow tests on intact, damaged, crushed, and consolidated crushed salt to measure the capillary pressure and relative permeability functions. The primary focus of the tests will be on samples of bedded geologic salt from the WIPP underground. However, the tests described herein are directly applicable to domal salt. Samples being tested will be confined by a range of triaxial stress states ranging from atmospheric pressure up to those approximating lithostatic. Initially these tests will be conducted at room temperature, but testing procedures and equipment will be evaluated to determine adaptability to conducting similar tests under elevated temperatures.
Lv, Pengfei; Song, Yongchen; Liu, Yu; Wang, Bin; Jiang, Lanlan; Wu, Bohao; Liu, Shuyang; Chen, Junlin
2017-11-01
CO2 storage in saline aquifers is considered a potential solution for CO2 mitigation, owing to its significant capacity and worldwide distribution capability. It is therefore becoming more important to understand the underground CO2/brine flow mechanisms. CO2 migration is primarily controlled by the pore-scale subsurface flows in different saline aquifer sites with variable reservoir formation compositions and reservoir conditions. Variations occur in the state of CO2 phase (gas versus supercritical), brine salinity, and rock wettability, under different reservoir conditions, and may result in different subsurface CO2/brine migration phenomena. In this study, we investigate the drainage and imbibition procedures of CO2 and brine by injecting fluids into unconsolidated sand packs under different conditions of CO2 phase states, brine salinity, and wettability of sand packs. The pore-scale fluid distribution is visualized using micro X-ray computed tomography (micro-CT). It is found that the phase states of CO2, brine salinity, and wettability have low impacts on CO2 distribution during drainage. However, the increase in brine salinity significantly damages the connectedness of the water phase in pore structures and further decreases the CO2-brine interfacial areas. In addition, a pore-scale event called the droplet fragmentation of nonwetting phase is found to occur in the imbibition procedure, which is considered to be beneficial to the dissolution trapping in CO2 geological storages. It is experimentally demonstrated that the pore structure of rock cores is a factor that significantly contributes to droplet fragmentation.
Two-phase flow in a chemically active porous medium
International Nuclear Information System (INIS)
Darmon, Alexandre; Dauchot, Olivier; Benzaquen, Michael; Salez, Thomas
2014-01-01
We study the problem of the transformation of a given reactant species into an immiscible product species, as they flow through a chemically active porous medium. We derive the equation governing the evolution of the volume fraction of the species, in a one-dimensional macroscopic description, identify the relevant dimensionless numbers, and provide simple models for capillary pressure and relative permeabilities, which are quantities of crucial importance when tackling multiphase flows in porous media. We set the domain of validity of our models and discuss the importance of viscous coupling terms in the extended Darcy’s law. We investigate numerically the steady regime and demonstrate that the spatial transformation rate of the species along the reactor is non-monotonous, as testified by the existence of an inflection point in the volume fraction profiles. We obtain the scaling of the location of this inflection point with the dimensionless lengths of the problem. Eventually, we provide key elements for optimization of the reactor
Two-phase flows in the formed tornado funnel
Sinkevich, O. A.; Bortsova, A. A.
2017-10-01
At present, it is obvious that the problem of the tornado is important not only for our planetЮ to determine the conditions for the formation of a tornado, it is required to take into account a number of hydrodynamic and plasma processes [1 - 6]. Along to prediction of a tornado generation conditions [1 - 3] it is necessary to evaluate the characteristics of its quasi-stationary motion in a formed funnel: the mass of the moving moist air involved in the funnel and the size and form of the funnel. For a complete description of the phenomena, it is necessary to involve numerical calculations. We note that even for numerical calculations using powerful computers, the problem is very difficult because of the need to calculate multiphase turbulent flows with free, self-organizing boundaries [1, 6]. However, “strict” numerical calculations, it is impossible to do without the use of many, often mutually exclusive, models. For example, how to choice an adequate model of turbulence (algebraic, k-ε model, etc.) or the use of additional, often not accepted, hypotheses about certain processes used in calculations (mechanisms on the nature of moisture condensation, etc.). Therefore, along with numerical calculations of such flows, modeling problems that allow an exact solution and allow to determine the most important and observed characteristics of a tornado.
Exact Integral Solutions for Two-Phase Flow
McWhorter, David B.; Sunada, Daniel K.
1990-03-01
Exact integral solutions for the horizontal, unsteady flow of two viscous, incompressible fluids are derived. Both one-dimensional and radial displacements are calculated with full consideration of capillary drive and for arbitrary capillary-hydraulic properties. One-dimensional, unidirectional displacement of a nonwetting phase is shown to occur increasingly like a shock front as the pore-size distribution becomes wider. This is in contrast to the situation when an inviscid nonwetting phase is displaced. The penetration of a nonwetting phase into porous media otherwise saturated by a wetting phase occurs in narrow, elongate distributions. Such distributions result in rapid and extensive penetration by the nonwetting phase. The process is remarkably sensitive to the capillary-hydraulic properties that determine the value of knw/kw at large wetting phase saturations, a region in which laboratory measurements provide the least resolution. The penetration of a nonwetting phase can be expected to be dramatically affected by the presence of fissures, worm holes, or other macropores. Calculations for radial displacement of a nonwetting phase resident at a small initial saturation show the displacement to be inefficient. The fractional flow of the nonwetting phase falls rapidly and, for a specific example, becomes 1% by the time one pore volume of water has been injected.
Dessirier, Benoît; Frampton, Andrew; Jarsjö, Jerker
2015-11-01
Geological disposal of spent nuclear fuel in deep crystalline rock is investigated as a possible long term solution in Sweden and Finland. The fuel rods would be cased in copper canisters and deposited in vertical holes in the floor of deep underground tunnels, embedded within an engineered bentonite buffer. Recent experiments at the Äspö Hard Rock Laboratory (Sweden) showed that the high suction of unsaturated bentonite causes a de-saturation of the adjacent rock at the time of installation, which was also independently predicted in model experiments. Remaining air can affect the flow patterns and alter bio-geochemical conditions, influencing for instance the transport of radionuclides in the case of canister failure. However, thus far, observations and model realizations are limited in number and do not capture the conceivable range and combination of parameter values and boundary conditions that are relevant for the thousands of deposition holes envisioned in an operational final repository. In order to decrease this knowledge gap, we introduce here a formalized, systematic and fully integrated approach to study the combined impact of multiple factors on air saturation and dissolution predictions, investigating the impact of variability in parameter values, geometry and boundary conditions on bentonite buffer saturation times and on occurrences of rock de-saturation. Results showed that four parameters consistently appear in the top six influential factors for all considered output (target) variables: the position of the fracture intersecting the deposition hole, the background rock permeability, the suction representing the relative humidity in the open tunnel and the far field pressure value. The combined influence of these compared to the other parameters increases as one targets a larger fraction of the buffer reaching near-saturation. Strong interaction effects were found, which means that some parameter combinations yielded results (e.g., time to
Flow visualization study of inverted U-bend two-phase flow
International Nuclear Information System (INIS)
Ishii, M.; Kim, S.B.; Lee, R.
1986-12-01
A hot-leg U-bend experiment was performed. The experimental condition simulated the two-phase flow in a B and W primary loop during a small break loss of coolant accident or during some other abnormal transients. The loop design was based on the scaling criteria developed previously and the loop was operated either in a natural circulation mode or in a forced circulation mode using nitrogen gas and water. The two-phase flow regimes at the hot-leg were identified on the basis of visual observation. The phase separation at the top of the inverted U-bend was observed at low gas flow rate. The void fractions were measured using differential pressure transducers and compared with the prediction from the drift-flux model. The natural circulation flow interruption occurred in two different modes, namely, quasi-periodic and semi-permanent modes. This phenomenon is mainly dependent on the difference in the hydrostatic head in the riser and downcomer, and the flow regime at hot-leg. Besides this flow interruption phenomenon, dynamic flow instabilities of considerable amplitudes have been observed
Analytical solution for two-phase flow in a wellbore using the drift-flux model
Energy Technology Data Exchange (ETDEWEB)
Pan, L.; Webb, S.W.; Oldenburg, C.M.
2011-11-01
This paper presents analytical solutions for steady-state, compressible two-phase flow through a wellbore under isothermal conditions using the drift flux conceptual model. Although only applicable to highly idealized systems, the analytical solutions are useful for verifying numerical simulation capabilities that can handle much more complicated systems, and can be used in their own right for gaining insight about two-phase flow processes in wells. The analytical solutions are obtained by solving the mixture momentum equation of steady-state, two-phase flow with an assumption that the two phases are immiscible. These analytical solutions describe the steady-state behavior of two-phase flow in the wellbore, including profiles of phase saturation, phase velocities, and pressure gradients, as affected by the total mass flow rate, phase mass fraction, and drift velocity (i.e., the slip between two phases). Close matching between the analytical solutions and numerical solutions for a hypothetical CO{sub 2} leakage problem as well as to field data from a CO{sub 2} production well indicates that the analytical solution is capable of capturing the major features of steady-state two-phase flow through an open wellbore, and that the related assumptions and simplifications are justified for many actual systems. In addition, we demonstrate the utility of the analytical solution to evaluate how the bottomhole pressure in a well in which CO{sub 2} is leaking upward responds to the mass flow rate of CO{sub 2}-water mixture.
Two-phase interfacial area and flow regime modeling in FLOWTRAN-TF code
International Nuclear Information System (INIS)
Smith, F.G. III; Lee, S.Y.; Flach, G.P.; Hamm, L.L.
1992-01-01
FLOWTRAN-TF is a new two-component, two-phase thermal-hydraulics code to capture the detailed assembly behavior associated with loss-of-coolant accident analyses in multichannel assemblies of the SRS reactors. The local interfacial area of the two-phase mixture is computed by summing the interfacial areas contributed by each of three flow regimes. For smooth flow regime transitions, the code uses an interpolation technique in terms of component void fraction for each basic flow regime
Pressure distribution over tube surfaces of tube bundle subjected to two phase cross flow
International Nuclear Information System (INIS)
Sim, Woo Gun
2013-01-01
Two phase vapor liquid flows exist in many shell and tube heat exchangers such as condensers, evaporators and nuclear steam generators. To understand the fluid dynamic forces acting on a structure subjected to a two phase flow, it is essential to obtain detailed information about the characteristics of a two phase flow. The characteristics of a two phase flow and the flow parameters were introduced, and then, an experiment was performed to evaluate the pressure loss in the tube bundles and the fluid dynamic force acting on the cylinder owing to the pressure distribution. A two phase flow was pre mixed at the entrance of the test section, and the experiments were undertaken using a normal triangular array of cylinders subjected to a two phase cross flow. The pressure loss along the flow direction in the tube bundles was measured to calculate the two phase friction multiplier, and the multiplier was compared with the analytical value. Furthermore, the circular distributions of the pressure on the cylinders were measured. Based on the distribution and the fundamental theory of two phase flow, the effects of the void fraction and mass flux per unit area on the pressure coefficient and the drag coefficient were evaluated. The drag coefficient was calculated by integrating the measured pressure coefficient and the drag coefficient were evaluated. The drag coefficient was calculated by integrating the measured pressure on the tube by a numerical method. It was found that for low mass fluxes, the measured two phase friction multipliers agree well with the analytical results, and good agreement for the effect of the void fraction on the drag coefficients, as calculated by the measured pressure distributions, is shown qualitatively, as compared to the existing experimental results
Immiscible two-phase fluid flows in deformable porous media
Lo, Wei-Cheng; Sposito, Garrison; Majer, Ernest
Macroscopic differential equations of mass and momentum balance for two immiscible fluids in a deformable porous medium are derived in an Eulerian framework using the continuum theory of mixtures. After inclusion of constitutive relationships, the resulting momentum balance equations feature terms characterizing the coupling among the fluid phases and the solid matrix caused by their relative accelerations. These terms, which imply a number of interesting phenomena, do not appear in current hydrologic models of subsurface multiphase flow. Our equations of momentum balance are shown to reduce to the Berryman-Thigpen-Chen model of bulk elastic wave propagation through unsaturated porous media after simplification (e.g., isothermal conditions, neglect of gravity, etc.) and under the assumption of constant volume fractions and material densities. When specialized to the case of a porous medium containing a single fluid and an elastic solid, our momentum balance equations reduce to the well-known Biot model of poroelasticity. We also show that mass balance alone is sufficient to derive the Biot model stress-strain relations, provided that a closure condition for porosity change suggested by de la Cruz and Spanos is invoked. Finally, a relation between elastic parameters and inertial coupling coefficients is derived that permits the partial differential equations of the Biot model to be decoupled into a telegraph equation and a wave equation whose respective dependent variables are two different linear combinations of the dilatations of the solid and the fluid.
Strong enhancement of streaming current power by application of two phase flow
Xie, Yanbo; Sherwood, John D.; Shui, Lingling; van den Berg, Albert; Eijkel, Jan C.T.
2011-01-01
We show that the performance of a streaming-potential based microfluidic energy conversion system can be strongly en-hanced by the use of two phase flow. In single-phase systems, the internal conduction current induced by the streaming poten-tial limits the output power, while in a two-phase system
A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.
Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua
2016-01-27
Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.
Development of One Dimensional Hyperbolic Coupled Solver for Two-Phase Flows
International Nuclear Information System (INIS)
Kim, Eoi Jin; Kim, Jong Tae; Jeong, Jae June
2008-08-01
The purpose of this study is a code development for one dimensional two-phase two-fluid flows. In this study, the computations of two-phase flow were performed by using the Roe scheme which is one of the upwind schemes. The upwind scheme is widely used in the computational fluid dynamics because it can capture discontinuities clearly such as a shock. And this scheme is applicable to multi-phase flows by the extension methods which were developed by Toumi, Stadtke, etc. In this study, the extended Roe upwind scheme by Toumi for two-phase flow was implemented in the one-dimensional code. The scheme was applied to a shock tube problem and a water faucet problem. This numerical method seems efficient for non oscillating solutions of two phase flow problems, and also capable for capturing discontinuities
Development of One Dimensional Hyperbolic Coupled Solver for Two-Phase Flows
Energy Technology Data Exchange (ETDEWEB)
Kim, Eoi Jin; Kim, Jong Tae; Jeong, Jae June
2008-08-15
The purpose of this study is a code development for one dimensional two-phase two-fluid flows. In this study, the computations of two-phase flow were performed by using the Roe scheme which is one of the upwind schemes. The upwind scheme is widely used in the computational fluid dynamics because it can capture discontinuities clearly such as a shock. And this scheme is applicable to multi-phase flows by the extension methods which were developed by Toumi, Stadtke, etc. In this study, the extended Roe upwind scheme by Toumi for two-phase flow was implemented in the one-dimensional code. The scheme was applied to a shock tube problem and a water faucet problem. This numerical method seems efficient for non oscillating solutions of two phase flow problems, and also capable for capturing discontinuities.
Numerical simulation of multi-dimensional two-phase flow based on flux vector splitting
Energy Technology Data Exchange (ETDEWEB)
Staedtke, H.; Franchello, G.; Worth, B. [Joint Research Centre - Ispra Establishment (Italy)
1995-09-01
This paper describes a new approach to the numerical simulation of transient, multidimensional two-phase flow. The development is based on a fully hyperbolic two-fluid model of two-phase flow using separated conservation equations for the two phases. Features of the new model include the existence of real eigenvalues, and a complete set of independent eigenvectors which can be expressed algebraically in terms of the major dependent flow parameters. This facilitates the application of numerical techniques specifically developed for high speed single-phase gas flows which combine signal propagation along characteristic lines with the conservation property with respect to mass, momentum and energy. Advantages of the new model for the numerical simulation of one- and two- dimensional two-phase flow are discussed.
Identification of two-phase flow regimes by time-series modeling
International Nuclear Information System (INIS)
King, C.H.; Ouyang, M.S.; Pei, B.S.
1987-01-01
The identification of two-phase flow patterns in pipes or ducts is important to the design and operation of thermal-hydraulic systems, especially in the nuclear reactor cores of boiling water reactors or in the steam generators of pressurized water reactors. Basically, two-phase flow shows some fluctuating characteristics even at steady-state conditions. These fluctuating characteristics can be analyzed by statistical methods for obtaining flow signatures. There have been a number of experimental studies conducted that are concerned with the statistical properties of void fraction or pressure pulsation in two-phase flow. In this study, the authors propose a new technique of identifying the patterns of air-water two-phase flow in a vertical pipe. This technique is based on analyzing the statistic characteristics of the pressure signals of the test loop by time-series modeling
A model for non-equilibrium, non-homogeneous two-phase critical flow
International Nuclear Information System (INIS)
Bassel, Wageeh Sidrak; Ting, Daniel Kao Sun
1999-01-01
Critical two phase flow is a very important phenomena in nuclear reactor technology for the analysis of loss of coolant accident. Several recent papers, Lee and Shrock (1990), Dagan (1993) and Downar (1996) , among others, treat the phenomena using complex models which require heuristic parameters such as relaxation constants or interfacial transfer models. In this paper a mathematical model for one dimensional non equilibrium and non homogeneous two phase flow in constant area duct is developed. The model is constituted of three conservation equations type mass ,momentum and energy. Two important variables are defined in the model: equilibrium constant in the energy equation and the impulse function in the momentum equation. In the energy equation, the enthalpy of the liquid phase is determined by a linear interpolation function between the liquid phase enthalpy at inlet condition and the saturated liquid enthalpy at local pressure. The interpolation coefficient is the equilibrium constant. The momentum equation is expressed in terms of the impulse function. It is considered that there is slip between the liquid and vapor phases, the liquid phase is in metastable state and the vapor phase is in saturated stable state. The model is not heuristic in nature and does not require complex interface transfer models. It is proved numerically that for the critical condition the partial derivative of two phase pressure drop with respect to the local pressure or to phase velocity must be zero.This criteria is demonstrated by numerical examples. The experimental work of Fauske (1962) and Jeandey (1982) were analyzed resulting in estimated numerical values for important parameters like slip ratio, equilibrium constant and two phase frictional drop. (author)
An advanced ultrasonic technique for slow and void fraction measurements of two-phase flow
International Nuclear Information System (INIS)
Faccini, J.L.H.; Su, J.; Harvel, G.D.; Chang, J.S.
2004-01-01
In this paper, we present a hybrid type counterpropagating transmission ultrasonic technique (CPTU) for flow and time averaging ultrasonic transmission intensity void fraction measurements (TATIU) of air-water two-phase flow, which is tested in the new two-phase flow test section mounted recently onto an existing single phase flow rig. The circular pipe test section is made of 51.2 mm stainless steel, followed by a transparent extruded acrylic pipe aimed at flow visualization. The two-phase flow rig operates in several flow regimes: bubbly, smooth stratified, wavy stratified and slug flow. The observed flow patterns are compared with previous experimental and numerical flow regime map for horizontal two phase flows. These flow patterns will be identified by time averaging transmission intensity ultrasonic techniques which have been developed to meet this particular application. A counterpropagating transmission ultrasonic flowmeter is used to measure the flow rate of liquid phase. A pulse-echo TATIU ultrasonic technique used to measure the void fraction of the horizontal test section is presented. We can draw the following conclusions: 1) the ultrasonic system was able to characterize the 2 flow patterns simulated (stratified and plug flow); 2) the results obtained for water volumetric fraction require more experimental work to determine exactly the technique uncertainties but, a priori, they are consistent with earlier work; and 3) the experimental uncertainties can be reduced by improving the data acquisition system, changing the acquisition time interval from seconds to milliseconds
Numerical method for three dimensional steady-state two-phase flow calculations
International Nuclear Information System (INIS)
Raymond, P.; Toumi, I.
1992-01-01
This paper presents the numerical scheme which was developed for the FLICA-4 computer code to calculate three dimensional steady state two phase flows. This computer code is devoted to steady state and transient thermal hydraulics analysis of nuclear reactor cores 1,3 . The first section briefly describes the FLICA-4 flow modelling. Then in order to introduce the numerical method for steady state computations, some details are given about the implicit numerical scheme based upon an approximate Riemann solver which was developed for calculation of flow transients. The third section deals with the numerical method for steady state computations, which is derived from this previous general scheme and its optimization. We give some numerical results for steady state calculations and comparisons on required CPU time and memory for various meshing and linear system solvers
Flow Regime Identification of Co-Current Downward Two-Phase Flow With Neural Network Approach
International Nuclear Information System (INIS)
Hiroshi Goda; Seungjin Kim; Ye Mi; Finch, Joshua P.; Mamoru Ishii; Jennifer Uhle
2002-01-01
Flow regime identification for an adiabatic vertical co-current downward air-water two-phase flow in the 25.4 mm ID and the 50.8 mm ID round tubes was performed by employing an impedance void meter coupled with the neural network classification approach. This approach minimizes the subjective judgment in determining the flow regimes. The signals obtained by an impedance void meter were applied to train the self-organizing neural network to categorize these impedance signals into a certain number of groups. The characteristic parameters set into the neural network classification included the mean, standard deviation and skewness of impedance signals in the present experiment. The classification categories adopted in the present investigation were four widely accepted flow regimes, viz. bubbly, slug, churn-turbulent, and annular flows. These four flow regimes were recognized based upon the conventional flow visualization approach by a high-speed motion analyzer. The resulting flow regime maps classified by the neural network were compared with the results obtained through the flow visualization method, and consequently the efficiency of the neural network classification for flow regime identification was demonstrated. (authors)
Non-local two phase flow momentum transport in S BWR
Energy Technology Data Exchange (ETDEWEB)
Espinosa P, G.; Salinas M, L.; Vazquez R, A., E-mail: gepe@xanum.uam.mx [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Apdo. Postal 55-535, 09340 Ciudad de Mexico (Mexico)
2015-09-15
The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)
Experimental observation of capillary instabilities of two phase flow in a microfluidic T-junction
CSIR Research Space (South Africa)
Mbanjwa, MB
2010-01-01
Full Text Available This paper discusses the experimental observation of capillary instabilities of two-phase flow in a microfluidc T-junction. These instabilities are analogous to the classical Plateau-Rayleigh instabilities. The experiments were carried out...
A New Appraoch to Modeling Immiscible Two-phase Flow in Porous Media
DEFF Research Database (Denmark)
Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan
In this work we present a systematic literature review regarding the macroscopic approaches to modeling immiscible two-phase flow in porous media, the formulation process of the incorporate PDE based on Film Model(viscous coupling), the calculation of saturation profile around the transition zone...... to modeling immiscible two-phase flow in porous media. The suggested approach to immiscible two-phase flow in porous media describes the dispersed mesoscopic fluids’ interfaces which are highly influenced by the injected interfacial energy and the local interfacial energy capacity. It reveals a new...... possibility of modeling two-phase flow through energy balance. The saturation profile generated through the suggested approach is different from those through other approaches....
Future directions in two-phase flow and heat transfer in space
Bankoff, S. George
1994-01-01
Some areas of opportunity for future research in microgravity two-phase flow and heat transfer are pointed out. These satisfy the dual requirements of relevance to current and future needs, and scientific/engineering interest.
Non-local two phase flow momentum transport in S BWR
International Nuclear Information System (INIS)
Espinosa P, G.; Salinas M, L.; Vazquez R, A.
2015-09-01
The non-local momentum transport equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection, diffusion and transport properties for two-phase flow. For instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail. The S BWR was considered to study the non-local effects on the two-phase flow thermal-hydraulic core performance in steady-state, and the results were compared with the classical local averaging volume conservation equations. (Author)
Numerical simulation of the two-phase flows in a hydraulic coupling by solving VOF model
International Nuclear Information System (INIS)
Luo, Y; Zuo, Z G; Liu, S H; Fan, H G; Zhuge, W L
2013-01-01
The flow in a partially filled hydraulic coupling is essentially a gas-liquid two-phase flow, in which the distribution of two phases has significant influence on its characteristics. The interfaces between the air and the liquid, and the circulating flows inside the hydraulic coupling can be simulated by solving the VOF two-phase model. In this paper, PISO algorithm and RNG k–ε turbulence model were employed to simulate the phase distribution and the flow field in a hydraulic coupling with 80% liquid fill. The results indicate that the flow forms a circulating movement on the torus section with decreasing speed ratio. In the pump impeller, the air phase mostly accumulates on the suction side of the blades, while liquid on the pressure side; in turbine runner, air locates in the middle of the flow passage. Flow separations appear near the blades and the enclosing boundaries of the hydraulic coupling
Two-phase air-water stratified flow measurement using ultrasonic techniques
International Nuclear Information System (INIS)
Fan, Shiwei; Yan, Tinghu; Yeung, Hoi
2014-01-01
In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable
Fang, Hongwei
1996-02-01
Based on the tensor analysis of water-sediment two-phase flow, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turbulent flow. Furthermore, corresponding boundary conditions are also presented in connection with the composition and movement of non-uniform bed material. The theoretical results are applied to the calculation of the float open caisson in the construction period and good results are obtained.
Determination of drift-flux velocity as a function of two-phase flow patterns
International Nuclear Information System (INIS)
Austregesilo Filho, H.
1986-01-01
A method is suggested for the calculation of drift-flux velocity as a function of two-phase flow patterns determined analytically. This model can be introduced in computer codes for thermal hydraulic analyses based mainly on homogeneous assumptions, in order to achieve a more realis tic description of two-phase flow phenomena, which is needed for the simulation of accidents in nuclear power plants for which phase separation effects are dominant, e.g., small break accidents. (Author) [pt
In-step Two-phase Flow (TPF) Thermal Control Experiment
1992-01-01
The Two-Phase Flow Thermal Control Experiment is part of the NASA/OAST In-Space Technology Experiments (In-STEP) Program. The experiment is configured for the Hitchhiker Shuttle payload system and consists of a capillary pumped loop, heatpipe radiator, and two-phase flow heat exchanger. The flight experiment design approach, test plan, payload design, and test components are described in outline and graphic form.
Two-phase flow void fraction measurement using gamma ray attenuation technique
International Nuclear Information System (INIS)
Silva, R.D. da.
1985-01-01
The present work deals with experimental void fraction measurements in two-phase water-nitrogen flow, by using a gamma ray attenuation technique. Several upward two-phase flow regimes in a vertical tube were simulated. The water flow was varied from 0.13 to 0.44 m 3 /h while the nitrogen flow was varied between 0.01 and 0.1 m 3 /h. The mean volumetric void fraction was determined based on the measured linear void fraction for each flow condition. The results were compared with other authors data and showed a good agreement. (author) [pt
An investigation of two-phase flow instability using wavelet signal extraction technique
International Nuclear Information System (INIS)
Shang Zhi; Yang Ruichang; Cao Xuewu; Yang Yanhua
2004-01-01
When the oscillation periods of the instability of two-phase flow are sought with traditional methods of signal analysis, generally the Fourier transform must be employed and then the oscillation periods will be gotten at the location of the local maximum amplitude of frequency transform. However, Fourier transform will be difficult to clearly analyze the unsteady signals especially when the signals include many peaks and the noise interference is not generated by white noise in many areas of practical engineering like the oscillation of the instability of two-phase flow. The most effective solving method for the difficulty of Fourier transform is to analyze the signals directly in time domain. Wavelet analysis is able to search out the periods from time domain directly. It also has more excellent local characteristics than Fourier analysis in the both of time and frequency domains. In this paper, not only is a direct detecting method of the oscillation periods successfully applied based on the wavelet signal extraction techniques, but also the oscillation of density wave type of TYPE I is found as a kind of oscillations with a high-frequency harmonization
Pressure Drop Correlations of Single-Phase and Two-Phase Flow in Rolling Tubes
International Nuclear Information System (INIS)
Xia-xin Cao; Chang-qi Yan; Pu-zhen Gao; Zhong-ning Sun
2006-01-01
A series of experimental studies of frictional pressure drop for single phase and two-phase bubble flow in smooth rolling tubes were carried out. The tube inside diameters were 15 mm, 25 mm and 34.5 mm respectively, the rolling angles of tubes could be set as 10 deg. and 20 deg., and the rolling periods could be set as 5 s, 10 s and 15 s. Combining with the analysis of single-phase water motion, it was found that the traditional correlations for calculating single-phase frictional coefficient were not suitable for the rolling condition. Based on the experimental data, a new correlation for calculating single-phase frictional coefficient under rolling condition was presented, and the calculations not only agreed well with the experimental data, but also could display the periodically dynamic characteristics of frictional coefficients. Applying the new correlation to homogeneous flow model, two-phase frictional pressure drop of bubble flow in rolling tubes could be calculated, the results showed that the relative error between calculation and experimental data was less than ± 25%. (authors)
Effects of induced magnetic field on large scale pulsed MHD generator with two phase flow
International Nuclear Information System (INIS)
Ishikawa, M.; Koshiba, Y.; Matsushita, T.
2004-01-01
A large pulsed MHD generator 'SAKHALIN' was constructed in Russia (the former Soviet-Union) and operated with solid fuels. The 'SAKHALIN' with the channel length of 4.5 m could demonstrate the electric power output of 510 MW. The effects of induced magnetic field and two phase flow on the shock wave within the 'SAKHALIN' generator have been studied by time dependent, one dimensional analyses. It has been shown that the magnetic Reynolds number is about 0.58 for Run No. 1, and the induced magnetic flux density is about 20% at the entrance and exit of the MHD channel. The shock wave becomes stronger when the induced magnetic field is taken into account, when the operation voltage becomes low. The working gas plasma contains about 40% of liquid particles (Al 2 O 3 ) in weight, and the present analysis treats the liquid particles as another gas. In the case of mono-phase flow, the sharp shock wave is induced when the load voltage becomes small such as 500 V with larger Lorentz force, whereas in the case of two phase flow, the shock wave becomes less sharp because of the interaction with liquid particles
An experimental study of two-phase natural circulation in an adiabatic flow loop
International Nuclear Information System (INIS)
Tan, M.J.; Lambert, G.A.; Ishii, Mamoru.
1988-01-01
An experimental investigation was conducted to study the two-phase flow aspect of the phenomena of interruption and resumption of natural circulation, two-phase flow patterns and pattern transitions in the hot legs of B and W light water reactor systems. The test facility was a scaled adiabatic loop designed in accordance with the scaling criteria developed by Kocamustafaogullari and Ishii. The diameter and the height of the hot leg were 10 cm and 5.5 m, respectively; the working fluid pair was nitrogen-water. The effects of the thermal center in the steam generators, friction loss in the cold leg, and configuration of the inlet to the hot leg on the flow conditions in the hot leg were investigated by varying the water level in a gas separator, controlling the size of opening of a friction loss control valve, and using two inlet geometries. Methods for estimating the distribution parameter and the average drift velocity are proposed so that they may be used in the application of one-dimensional drift-flux model to the analysis of the interruption and resumption of natural circulation in a similar geometry. 7 refs., 17 figs., 4 tabs
A study of two-phase flow in a reduced gravity environment
Hill, D.; Downing, Robert S.
1987-01-01
A test loop was designed and fabricated for observing and measuring pressure drops of two-phase flow in reduced gravity. The portable flow test loop was then tested aboard the NASA-JSC KC135 reduced gravity aircraft. The test loop employed the Sundstrand Two-Phase Thermal Management System (TPTMS) concept which was specially fitted with a clear two-phase return line and condenser cover for flow observation. A two-phase (liquid/vapor) mixture was produced by pumping nearly saturated liquid through an evaporator and adding heat via electric heaters. The quality of the two-phase flow was varied by changing the evaporator heat load. The test loop was operated on the ground before and after the KC135 flight tests to create a one-gravity data base. The ground testing included all the test points run during the reduced gravity testing. Two days of reduced gravity tests aboard the KC135 were performed. During the flight tests, reduced-gravity, one-gravity, and nearly two-gravity accelerations were experienced. Data was taken during the entire flight which provided flow regime and pressure drop data for the three operating conditions. The test results show that two-phase pressure drops and flow regimes can be accurately predicted in zero-gravity.
DEFF Research Database (Denmark)
Petkov, K.P.; Puton, M; Madsen, Søren Peder
2014-01-01
is a one dimensional formulation in space and the equations incorporates the change in tubes and orifice diameter as formulated in (S. Madsen et.al., Dynamic Modeling of Phase Crossings in Two-Phase Flow, Communications in Computational Physics 12 (4), 1129-1147). The pressure changes in the flow...... are accounted for through both friction and acceleration as in a conventional formulation. However, in this analysis the acceleration term is both attributed geometrical effects through the area change and fluid dynamic effects through the expansion of the two-phase flow. The comparison of numerical...
Tan, C; Liu, W L; Dong, F
2016-06-28
Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).
Liu, W. L.; Dong, F.
2016-01-01
Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas–liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas–liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185959
Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces
Energy Technology Data Exchange (ETDEWEB)
Brauner, N.; Rovinsky, J.; Maron, D.M. [Tel-Aviv Univ. (Israel)
1995-09-01
The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.
Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces
International Nuclear Information System (INIS)
Brauner, N.; Rovinsky, J.; Maron, D.M.
1995-01-01
The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the 'flow monograms' describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the 'interface monograms', whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system 'operational monogram'. The 'operational monogram' enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop
International Nuclear Information System (INIS)
Gao Zhong-Ke; Hu Li-Dan; Jin Ning-De
2013-01-01
We generate a directed weighted complex network by a method based on Markov transition probability to represent an experimental two-phase flow. We first systematically carry out gas—liquid two-phase flow experiments for measuring the time series of flow signals. Then we construct directed weighted complex networks from various time series in terms of a network generation method based on Markov transition probability. We find that the generated network inherits the main features of the time series in the network structure. In particular, the networks from time series with different dynamics exhibit distinct topological properties. Finally, we construct two-phase flow directed weighted networks from experimental signals and associate the dynamic behavior of gas-liquid two-phase flow with the topological statistics of the generated networks. The results suggest that the topological statistics of two-phase flow networks allow quantitative characterization of the dynamic flow behavior in the transitions among different gas—liquid flow patterns. (general)
Single and two-phase flow pressure drop for CANFLEX bundle
Energy Technology Data Exchange (ETDEWEB)
Park, Joo Hwan; Jun, Ji Su; Suk, Ho Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Dimmick, G. R.; Bullock, D. E. [Atomic Energy of Canada Limited, Ontario (Canada)
1998-12-31
Friction factor and two-phase flow frictional multiplier for a CANFLEX bundle are newly developed and presented in this paper. CANFLEX as a 43-element fuel bundle has been developed jointly by AECL/KAERI to provide greater operational flexibility for CANDU reactor operators and designers. Friction factor and two-phase flow frictional multiplier have been developed by using the experimental data of pressure drops obtained from two series of Freon-134a (R-134a) CHF tests with a string of simulated CANFLEX bundles in a single phase and a two-phase flow conditions. The friction factor for a CANFLEX bundle is found to be about 20% higher than that of Blasius for a smooth circular pipe. The pressure drop predicted by using the new correlations of friction factor and two-phase frictional multiplier are well agreed with the experimental pressure drop data of CANFLEX bundle within {+-} 5% error. 11 refs., 5 figs. (Author)
International Nuclear Information System (INIS)
Wang, Y.W.; Pei, B.S.; King, C.H.; Lee, S.C.
1989-01-01
Recently, King et al. and Wang et al. analyzed the fluctuating characteristics of differential pressure and void fraction by the optimum modeling method and by spectral analysis, respectively. These two investigations presented some new concepts and deterministic criteria, which are based on purely empirical formulas, to identify two-phase flow patterns. These deterministic criteria on two-phase flow patterns' identification seem to show reasonable performance. In King's and Wang's studies, there are at least three problems that need further investigations for the applications to the nuclear reactor engineering field. These three problems are the following: 1. Is the response to a certain two-phase flow pattern, i.e., the fluctuating characteristics, of neutrons the same as that of differential pressure or void fraction? 2. Could those criteria developed from air/water flow be allowed to identify steam/water two-phase flow patterns? 3. Could those criteria be applied to identify two-phase flow patterns in rod bundles? In this paper, parts of the investigated results answer the first problem, and detailed comparisons with the previous work of the authors are given on a variety of items
Local wettability reversal during steady-state two-phase flow in porous media.
Sinha, Santanu; Grøva, Morten; Ødegården, Torgeir Bryge; Skjetne, Erik; Hansen, Alex
2011-09-01
We study the effect of local wettability reversal on remobilizing immobile fluid clusters in steady-state two-phase flow in porous media. We consider a two-dimensional network model for a porous medium and introduce a wettability alteration mechanism. A qualitative change in the steady-state flow patterns, destabilizing the percolating and trapped clusters, is observed as the system wettability is varied. When capillary forces are strong, a finite wettability alteration is necessary to move the system from a single-phase to a two-phase flow regime. When both phases are mobile, we find a linear relationship between fractional flow and wettability alteration.
Shanthi, C; Pappa, N
2017-05-01
Flow pattern recognition is necessary to select design equations for finding operating details of the process and to perform computational simulations. Visual image processing can be used to automate the interpretation of patterns in two-phase flow. In this paper, an attempt has been made to improve the classification accuracy of the flow pattern of gas/ liquid two- phase flow using fuzzy logic and Support Vector Machine (SVM) with Principal Component Analysis (PCA). The videos of six different types of flow patterns namely, annular flow, bubble flow, churn flow, plug flow, slug flow and stratified flow are recorded for a period and converted to 2D images for processing. The textural and shape features extracted using image processing are applied as inputs to various classification schemes namely fuzzy logic, SVM and SVM with PCA in order to identify the type of flow pattern. The results obtained are compared and it is observed that SVM with features reduced using PCA gives the better classification accuracy and computationally less intensive than other two existing schemes. This study results cover industrial application needs including oil and gas and any other gas-liquid two-phase flows. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Lokanathan, Manojkumar [School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907-2088 (United States); Hibiki, Takashi [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, IN 47907-2017 (United States)
2016-10-15
Highlights: • Downward flow regime maps and models were studied for 25.4 to 101.6 mm pipe diameters. • Effect of flow inlet on flow transition, void & interfacial area profile were studied. • Bubble void profiles were associated with the interfacial forces for downward flow. • Flow regime pressure drop and interfacial friction factor were studied. • The most applicable and accurate downward drift-flux correlation was determined. - Abstract: Downward two-phase flow is observed in light water reactor accident scenarios such as loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) due to loss of feed water or a secondary pipe break. Hence, a comprehensive literature review has been performed for the co-current downward two-phase flow with information on the flow regime transitions and flow characteristics for each regime in the downward flow. The review compares the experimental data of the flow regime map and the current available transition models. Objectivity of the data varies on the method utilized as a certain degree of subjectivity is still present in the most objective method. Nevertheless, experimental data through subjective methods such as direct visualization or analysis of a wire mesh sensor (WMS) data were still studied in this review. Despite the wide range of flow regime data for numerous pipe sizes, a consensus was not reached for the effect of pipe sizes on flow regime transition. However, it is known that a larger pipe results in greater degree of coalescence at lower gas flow rates (Hibiki et al., 2004). The introduction of a flow straightener at the inlet led to less coring and fluid rotation and inevitably, reduced bubble coalescence. This also resulted in the disappearance of the kinematic shock wave phenomenon, contrary to an inlet without a flow straightener. The effect of flow inlet, flow location, pipe diameter and bubble interfacial forces on the radial distribution as well as bubble coalescence and breakup rate
A component architecture for the two-phase flows simulation system Neptune
International Nuclear Information System (INIS)
Bechaud, C.; Boucker, M.; Douce, A.; Grandotto, M.; Tajchman, M.
2003-01-01
Electricite de France (EdF) and the French atomic energy commission (Cea) have planed a large project to build a new set of software in nuclear reactors analysis. One of the main idea is to allow coupled calculations in which several scientific domains are involved. This paper presents the software architecture of the two-phase flows simulation Neptune project. Neptune should allow computations of two-phase flows in 3 dimensions under normal operating conditions as well as safety conditions. Three scales are identified: the local scale where there is only homogenization between the two phases, an intermediate scale where solid internal structures are homogenized with the fluid and the system scale where some parts of the geometry under study are considered point-wise or subject to one dimensional simplifications. The main properties of this architecture are as follow: -) coupling with scientific domains, and between different scales, -) re-using of quite all or parts of existing validated codes, -) components usable by the different scales, -) easy introducing of new physical modeling as well as new numerical methods, -) local, distributed and parallel computing. The Neptune architecture is based on the component concept with stable and well suited interface. In the case of a distributed application the components are managed through a Corba bus. The building of the components is organized in shell: a programming shell (Fortran or C++ routines), a managing shell (C++ language), an interpreted shell (Python language), a Corba shell and a global driving shell (C++ or Python). Neptune will use the facilities offered by the Salome project: pre and post processors and controls. A data model has been built to have a common access to the information exchanged between the components (meshes, fields, physical and technical information). This architecture has first been setup and tested on some simple but significant cases and is now currently in use to build the Neptune
Measurement of local two-phase flow parameters of nanofluids using conductivity double-sensor probe.
Park, Yu Sun; Chang, Soon Heung
2011-04-04
A two-phase flow experiment using air and water-based γ-Al2O3 nanofluid was conducted to observe the basic hydraulic phenomenon of nanofluids. The local two-phase flow parameters were measured with a conductivity double-sensor two-phase void meter. The void fraction, interfacial velocity, interfacial area concentration, and mean bubble diameter were evaluated, and all of those results using the nanofluid were compared with the corresponding results for pure water. The void fraction distribution was flattened in the nanofluid case more than it was in the pure water case. The higher interfacial area concentration resulted in a smaller mean bubble diameter in the case of the nanofluid. This was the first attempt to measure the local two-phase flow parameters of nanofluids using a conductivity double-sensor two-phase void meter. Throughout this experimental study, the differences in the internal two-phase flow structure of the nanofluid were identified. In addition, the heat transfer enhancement of the nanofluid can be resulted from the increase of the interfacial area concentration which means the available area of the heat and mass transfer.
Mechanics of the Separating Surface for a Two-Phase Co-current Flow in a Porous Medium
DEFF Research Database (Denmark)
Shapiro, Alexander A.
2016-01-01
A mechanical description of an unsteady two-phase co-current flow in a porous medium is developed based on the analysis of the geometry and motion of the surface separating the two phases. It is demonstrated that the flow should be considered as essentially three-dimensional, even if the phase...... velocities are co-directed, since the phase interface is on average inclined to the direction of the flow. Kinematics of the flow is described, distinguishing between the average velocities of the bulk phases and their velocity near the interface between them. Dynamics of the flow is analyzed by means...... of the extended Maxwell-Stefan formalism, as in our previous paper (Shapiro 2015). Force balances are formulated in the directions parallel and orthogonal to the flow. A complete system of the flow equations, generalizing the traditional Buckley–Leverett and Rappoport–Leas system, is derived. Sample computations...
International Nuclear Information System (INIS)
Narabayashi, T.; Iwaki, C.; Mori, M.; Ohmori, S.
2004-01-01
A steam injector (SI) is a simple, compact and passive pump and also acts as an high-performance direct-contact compact heater. This provides SI with capability to serve also as a direct-contact feedwater heater that heats up feedwater by using extracted steam from the turbine. To develop high performance compact feedwater heater, it is necessary to quantify the characteristics between physical properties of the flow field. We carried out experiments to observe the internal behavior of the water jet using a laser doppler velocimetry. It's performance depends on the phenomena of steam condensation onto the water jet surface and heat transfer in the water jet due to turbulence on to the phase-interface. The analysis was also conducted by using CFD code embedded separate two-phase flow models and confirmed that the steam has a high-performance direct-contact heater that was suitable for compact feedwater heater. As it is compact equipment, SI is expected to bring about great simplification and materials-saving effects, while its simple structure ensures high reliability of its operation, thereby greatly contributing to the simplification of the power plant by replacing all low-pressure feedwater heaters with the four-stage SI system, having steam extraction pressures equal to those for the existing ABWR system. (author)
Experimental investigation of two-phase flow patterns in minichannels at horizontal orientation
Saljoshi, P. S.; Autee, A. T.
2017-09-01
Two-phase flow is the simplest case of multiphase flow in which two phases are present for a pure component. The mini channel is considered as diameter below 3.0-0.2 mm and conventional channel is considered diameter above 3.0 mm. An experiment was conducted to study the adiabatic two-phase flow patterns in the circular test section with inner diameter of 1.1, 1.63, 2.0, 2.43 and 3.0 mm for horizontal orientation using air and water as a fluid. Different types of flow patterns found in the experiment. The parameters that affect most of these patterns and their transitions are channel size, phase superficial velocities (air and liquid) and surface tension. The superficial velocity of liquid and gas ranges from 0.01 to 66.70 and 0.01 to 3 m/s respectively. Two-phase flow pattern photos were recorded using a high speed CMOS camera. In this experiment different flow patterns were identified for different tube diameters that confirm the diameter effect on flow patterns in two-phase flows. Stratified flow was not observed for tube diameters less than 3.0 mm. Similarly, wavy-annular flow pattern was not observed in 1.6 and 1.0 mm diameter tubes due to the surface-tension effect and decrease in tube diameter. Buoyancy effects were clearly visible in 2.43 and 3.0 mm diameter tubes flow pattern. It has also observed that as the test-section diameter decreases the transition lines shift towards the higher gas and liquid velocity. However, the result of flow pattern lines in the present study has good agreement with the some of the existing flow patterns maps.
Fast X-ray imaging of two-phase flows: Application to cavitating flows
International Nuclear Information System (INIS)
Khlifa, Ilyass
2014-01-01
A promising method based on fast X-ray imaging has been developed to investigate the dynamics and the structure of complex two-phase flows. It has been applied in this work on cavitating flows created inside a Venturi-type test section and helped therefore to better understand flows inside cavitation pockets. Seeding particles were injected into the flow to trace the liquid phase. Thanks to the characteristics of the beam provided by the APS synchrotron (Advance Photon Source, USA), high definition X-ray images of the flow containing simultaneously information for both liquid and vapour were obtained. Velocity fields of both phases were thus calculated using image cross-correlation algorithms. Local volume fractions of vapour have also been obtained using local intensities of the images. Beforehand however, image processing is required to separate phases for velocity measurements. Validation methods of all applied treatments were developed, they allowed to characterise the measurement accuracy. This experimental technique helped us to have more insight into the dynamic of cavitating flows and especially demonstrates the presence of significant slip velocities between phases. (author)
Three-dimensional investigation of the two-phase flow structure in a bubbly pipe flow
International Nuclear Information System (INIS)
Hassan, Y.A.; Schmidl, W.D.; Ortiz-Villafuerte, J.
1997-01-01
Particle Image Velocimetry (PIV) is a non-intrusive measurement technique, which can be used to study the structure of various fluid flows. PIV is used to measure the time varying full field velocity data of a particle-seeded flow field within either a two-dimensional plane or three-dimensional volume. PIV is a very efficient measurement technique since it can obtain both qualitative and quantitative spatial information about the flow field being studied. This information can be further processed into information such as vorticity and pathlines. Other flow measurement techniques (Laser Doppler Velocimetry, Hot Wire Anemometry, etc...) only provide quantitative information at a single point. PIV can be used to study turbulence structures if a sufficient amount of data can be acquired and analyzed, and it can also be extended to study two-phase flows if both phases can be distinguished. In this study, the flow structure around a bubble rising in a pipe filled with water was studied in three-dimensions. The velocity of the rising bubble and the velocity field of the surrounding water was measured. Then the turbulence intensities and Reynolds stresses were calculated from the experimental data. (author)
Energy Technology Data Exchange (ETDEWEB)
Shim, Hee-Sang; Kim, Kyung Mo; Hur, Do Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Seung Hyun; Kim, Ji Hyun [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)
2015-05-15
Since the occurrence of a Surry-2 pipe rupture accident, a lot of effort has been made to prevent FAC of carbon steel piping. Some of the chemicals were suggested as a corrosion inhibitor. A platinum decoration was applied as another prevention strategy of carbon steel thinning. The severe FAC-damaged carbon steel pipings were replaced by tolerant materials such as SA335 Gr.P22. However, some components such as the piping materials between moisture separator and turbine have still suffered from the FAC degradation. This work provides a coating method to prevent the FAC degradation of the SA106 Gr.B, which is a piping material between moisture separator and high-pressure turbine, under two-phase flow. We suggested the coating materials to prevent FAC of SA106Gr.B under two-phase water-vapor flow. The FAC resistance of SA106Gr.B was improved with 5 times by electroless-deposited Ni-P protective layer. Other coating materials also enhanced the tolerance up to 5 times for the FAC in a condition of 150 .deg. C and 3.8 bar at 9.5 compared to non-coated SA106Gr.B.
International Nuclear Information System (INIS)
Shim, Hee-Sang; Kim, Kyung Mo; Hur, Do Haeng; Kim, Seung Hyun; Kim, Ji Hyun
2015-01-01
Since the occurrence of a Surry-2 pipe rupture accident, a lot of effort has been made to prevent FAC of carbon steel piping. Some of the chemicals were suggested as a corrosion inhibitor. A platinum decoration was applied as another prevention strategy of carbon steel thinning. The severe FAC-damaged carbon steel pipings were replaced by tolerant materials such as SA335 Gr.P22. However, some components such as the piping materials between moisture separator and turbine have still suffered from the FAC degradation. This work provides a coating method to prevent the FAC degradation of the SA106 Gr.B, which is a piping material between moisture separator and high-pressure turbine, under two-phase flow. We suggested the coating materials to prevent FAC of SA106Gr.B under two-phase water-vapor flow. The FAC resistance of SA106Gr.B was improved with 5 times by electroless-deposited Ni-P protective layer. Other coating materials also enhanced the tolerance up to 5 times for the FAC in a condition of 150 .deg. C and 3.8 bar at 9.5 compared to non-coated SA106Gr.B
Experimental investigation of flow accelerated corrosion under two-phase flow conditions
International Nuclear Information System (INIS)
Ahmed, Wael H.; Bello, Mufatiu M.; El Nakla, Meamer; Al Sarkhi, Abdelsalam; Badr, Hassan M.
2014-01-01
Highlights: • Effect of two-phase flow on flow accelerated corrosion has been investigated experimentally. • Experiments were performed for different orifice to pipe diameter ratios. • The effect of flow patterns and mass quality on wear patterns is investigated. • The maximum FAC wear was found at approximately 2–5 pipe diameters downstream of the orifice. • The current study will help FAC engineers to prepare reliable plant inspection scope. - Abstract: The main objective of this paper is to experimentally study the effect of two-phase flow on flow-accelerated corrosion (FAC) downstream an orifice. FAC is a major safety and reliability issue affecting carbon-steel piping in nuclear and fossil power plants. This is because of its pipe wall wearing and thinning effects that could lead to sudden and sometimes catastrophic failures, as well as a huge economic loss. In the present study, FAC wear of carbon-steel piping was simulated experimentally by circulating air–water mixtures through hydrocal (CaSO 4 ·1/2H 2 O) test sections at liquid superficial Reynolds number, Re = 20,000, and different air mass flow rates. Experiments were performed for a test section with different orifice to pipe diameter ratios (d o /D = 0.25, 0.5 and 0.74). The observed flow patterns were compared with the available flow pattern maps. Surface wear patterns downstream the orifices were also analyzed. The maximum FAC wear was found to occur at approximately 2–5 pipe diameters downstream of the orifice. The obtained results were found to be consistent with those from a single-phase flow study reported earlier. Moreover, FAC was found to depend on the relative values of the mixture mass quality and the volumetric void fraction. Lower values of FAC wear rate were obtained for higher values of mass quality. A modified correlation is developed in order to predict FAC wear rate downstream of the pipe-restricting orifice with an average RMS accuracy of ±10%. However, the location
Hydraulic Behaviour of He II in Stratified Counter-Current Two-Phase Flow
Rousset, B; Jäger, B; Van Weelderen, R; Weisend, J G
1998-01-01
Future large devices using superconducting magnets or RF cavities (e.g. LHC or TESLA) need He II two-phase flow for cooling. The research carried out into counter-current superfluid two-phase flow was the continuation of work on co-current flow and benefited from all the knowledge acquired both experimentally and theoretically. Experiments were conducted on two different pipe diameters (40 and 65 m m I.D. tube) for slopes ranging between 0 and 2%, and for temperatures ranging between 1.8 and 2 K. This paper introduces the theoretical model, describes the tests, and provides a critical review of the results obtained in He II counter current two-phase flow.
A facility for the experimental investigation of single substance two phase flow
International Nuclear Information System (INIS)
Maeder, P.F.; Dickinson, D.A.; Nikitopoulos, D.E.; DiPippo, R.
1985-01-01
The paper describes a research facility dedicated to single-substance two-phase flow. The working fluid is dichlorotetrafluoroethane (or refrigerant R-114), allowing both operation at manageable pressures, temperatures and flowrates, and application of results to practical situations through similarity. Operation is in the blowdown mode. The control and data acquisition systems are fully automated and computer controlled. A range of flow conditions from predominantly liquid flow to high velocity, high void fraction choked flow can be attained
International Nuclear Information System (INIS)
Ishii, Mamoru; Sun, Xiaodong
2004-01-01
mechanistic prediction tool for two-phase flow analysis. Based on detailed modeling of the bubble interactions, the one-group and two-group interfacial area transport equations have been preliminarily developed. (author)
Phase distribution of nitrogen-water two-phase flow in parallel micro channels
Zhou, Mi; Wang, Shuangfeng; Zhou, You
2017-04-01
The present work experimentally investigated the phase splitting characteristics of gas-liquid two-phase flow passing through a horizontal-oriented micro-channel device with three parallel micro-channels. The hydraulic diameters of the header and the branch channels were 0.6 and 0.4 mm, respectively. Five different liquids, including de-ionized water and sodium dodecyl sulfate (SDS) solution with different concentration were employed. Different from water, the surface tension of SDS solution applied in this work decreased with the increment of mass concentration. Through series of visual experiments, it was found that the added SDS surfactant could obviously facilitate the two-phase flow through the parallel micro channels while SDS solution with low concentration would lead to an inevitable blockage of partial outlet branches. Experimental results revealed that the two phase distribution characteristics depended highly on the inlet flow patterns and the outlet branch numbers. To be specific, at the inlet of slug flow, a large amount of gas preferred flowing into the middle branch channel while the first branch was filled with liquid. However, when the inlet flow pattern was shifted to annular flow, all of the gas passed through the second and the last branches, with a little proportion of liquid flowing into the first channel. By comparison with the experimental results obtained from a microchannel device with five parallel micro-T channels, uneven distribution of the two phase can be markedly noticed in our present work.
A double parameters measurement of steam-water two-phase flow with single orifice
International Nuclear Information System (INIS)
Zhong Shuoping; Tong Yunxian; Yu Meiying
1992-08-01
A double parameters measurement of steam-water two-phase flow with single orifice is described. An on-line measurement device based on micro-computer has been developed. The measured r.m.s error of steam quality is less than 6.5% and the measured relative r.m.s. error of mass flow rate is less than 9%
Investigation of vertical slug flow with advanced two-phase flow instrumentation
International Nuclear Information System (INIS)
Mi, Y.; Ishii, M.; Tsoukalas, L.H.
2001-01-01
Extensive experiments of vertical slug flow were carried out with an electromagnetic flowmeter and an impedance void-meter in an air-water two-phase experimental loop. The basic principles of these instruments in vertical slug flow measurements are discussed. Time series of the liquid velocity and the impedance were separated into two parts corresponding to the Taylor bubble and the liquid slug. Characteristics of slug flow, such as the void fractions, probabilities and lengths of the Taylor bubble and liquid slug, slug unit velocity, area-averaged liquid velocity, and liquid film velocity of the Taylor bubble tail, etc., were obtained. For the first time, the area-averaged liquid velocity of slug flow was revealed by the electromagnetic flowmeter. It is realized that the void fraction of the liquid slug is determined by the turbulent intensity due to the relative liquid motion between the Taylor bubble tail region and its wake region. A correlation of the void fraction of the liquid slug is developed based on experimental results obtained from a test section with 50.8 mm i.d. The results of this study suggest a promising improvement in understanding of vertical slug flow
Two-phase flow and pressure drop in flow passages of compact heat exchangers
Energy Technology Data Exchange (ETDEWEB)
Wambsganss, M.W.; Jendrzejczyk, J.A.; France, D.M.
1992-02-01
Two-phase flow experiments were performed with air/water mixtures in a small rectangular channel measuring 9.52 {times} 1.59 mm (aspects ratio equal to 6), for applications to compact heat exchangers. Pressure drop and flow pattern definition data were obtained over a large range of mass qualities (0.0002 to 1), and in the case of flow pattern data, a large range of mass fluxes (50 to 2,000 kg/m{sup 2}s). A flow pattern map, based on visual observations and photographs of the flow patterns, is presented and compared with a map developed for a rectangular channel of the same aspect ratio but with dimensions twice those of the test channel, and with a map developed for a circular tube with the same hydraulic diameter of 3 mm. Pressure drop data are presented as a function of both mass quality and Martinelli parameter and are compared with state-of-the-art correlations and a modified Chisholm correlation. 13 refs.
Two-phase flow and pressure drop in flow passages of compact heat exchangers
Energy Technology Data Exchange (ETDEWEB)
Wambsganss, M.W.; Jendrzejczyk, J.A.; France, D.M.
1992-01-01
Two-phase flow experiments were performed with air/water mixtures in a small rectangular channel measuring 9.52 {times} 1.59 mm (aspects ratio equal to 6), for applications to compact heat exchangers. Pressure drop and flow pattern definition data were obtained over a large range of mass qualities (0.0002 to 1), and in the case of flow pattern data, a large range of mass fluxes (50 to 2,000 kg/m{sup 2}s). A flow pattern map, based on visual observations and photographs of the flow patterns, is presented and compared with a map developed for a rectangular channel of the same aspect ratio but with dimensions twice those of the test channel, and with a map developed for a circular tube with the same hydraulic diameter of 3 mm. Pressure drop data are presented as a function of both mass quality and Martinelli parameter and are compared with state-of-the-art correlations and a modified Chisholm correlation. 13 refs.
Measurement of void fraction and bubble size distribution in two-phase flow system
International Nuclear Information System (INIS)
Huahun, G.
1987-01-01
The importance of study two phase flow parameter and microstructure has appeared increasingly, with the development of two-phase flow discipline. In the paper, the measurement methods of several important microstructure parameter in a two phase flow vertical channel have been studied. Using conductance probe the two phase flow pattern and the average void fraction have been measured previously by the authors. This paper concerns microstructure of the bubble size distribution and local void fraction. The authors studied the methods of measuring bubble velocity, size distribution and local void fraction using double conductance probes and a set of apparatus. Based on our experiments and Yoshihiro work, a formula of calculated local void fraction has been deduced by using the statistical characteristics of bubbles in two phase flow and the relation between calculated bubble size and voltage has been determined. Finally the authors checked by using photograph and fast valve, which is classical but reliable. The results are the same with what has been studied before
Experimental study on local resistance of two-phase flow through spacer grid with rod bundle
International Nuclear Information System (INIS)
Yan Chaoxing; Yan Changqi; Sun Licheng; Tian Qiwei
2015-01-01
The experimental study on local resistance of single-phase and two-phase flows through a spacer grid in a vertical channel with 3 × 3 rod bundle was carried out under the normal temperature and pressure. For the case of single-phase flow, the liquid Reynolds number covered the range of 290-18 007. For the case of two-phase flow, the ranges of gas and liquid superficial velocities were 0.013-3.763 m/s and 0.076-1.792 m/s, respectively. A correlation for predicting local resistance of single-phase flow was given based on experimental results. Eight classical two-phase viscosity formulae for homogeneous model were evaluated against the experimental data of two-phase flow. The results show that Dukler model predicts the experimental data well in the range of Re 1 < 9000 while McAdams correlation is the best one for Re 1 ≥ 9000. For all experimental data, Dukler model provides the best prediction with the mean relative error of 29.03%. A new correlation is fitted for the range of Re 1 < 9000 by considering mass quality, two- phase Reynolds number and liquid and gas densities, resulting in a good agreement with the experimental data. (authors)
A Derivation of the Nonlocal Volume-Averaged Equations for Two-Phase Flow Transport
Directory of Open Access Journals (Sweden)
Gilberto Espinosa-Paredes
2012-01-01
Full Text Available In this paper a detailed derivation of the general transport equations for two-phase systems using a method based on nonlocal volume averaging is presented. The local volume averaging equations are commonly applied in nuclear reactor system for optimal design and safe operation. Unfortunately, these equations are limited to length-scale restriction and according with the theory of the averaging volume method, these fail in transition of the flow patterns and boundaries between two-phase flow and solid, which produce rapid changes in the physical properties and void fraction. The non-local volume averaging equations derived in this work contain new terms related with non-local transport effects due to accumulation, convection diffusion and transport properties for two-phase flow; for instance, they can be applied in the boundary between a two-phase flow and a solid phase, or in the boundary of the transition region of two-phase flows where the local volume averaging equations fail.
Simultaneous thermal and optical imaging of two-phase flow in a micro-model.
Karadimitriou, N K; Nuske, P; Kleingeld, P J; Hassanizadeh, S M; Helmig, R
2014-07-21
In the study of non-equilibrium heat transfer in multiphase flow in porous media, parameters and constitutive relations, like heat transfer coefficients between phases, are unknown. In order to study the temperature development of a relatively hot invading immiscible non-wetting fluid and, ultimately, approximate heat transfer coefficients, a transparent micro-model is used as an artificial porous medium. In the last few decades, micro-models have become popular experimental tools for two-phase flow studies. In this work, the design of an innovative, elongated, PDMS (polydimethylsiloxane) micro-model with dimensions of 14.4 × 39 mm(2) and a constant depth of 100 microns is described. A novel setup for simultaneous thermal and optical imaging of flow through the micro-model is presented. This is the first time that a closed flow cell like a micro-model is used in simultaneous thermal and optical flow imaging. The micro-model is visualized by a novel setup that allowed us to monitor and record the distribution of fluids throughout the length of the micro-model continuously and also record the thermal signature of the fluids. Dynamic drainage and imbibition experiments were conducted in order to obtain information about the heat exchange between the phases. In this paper the setup as well as analysis and qualitative results are presented.
Experimental study of low-titre critical two-phase flows
International Nuclear Information System (INIS)
Seynhaeve, Jean-Marie
1980-02-01
This report for engineering graduation addresses the analysis of two-phase critical flows obtained by expansion of a saturated or under-cooled liquid. For a titre greater than 0,1, theoretical studies give a rather good prediction of critical flow rates, whereas in the case of a lower titre, results obtained by published studies display some discrepancies, and the test duct geometry and important unbalances between phases seem to be at the origin of these discrepancies. In order to study these origins of discrepancies, three test campaigns have been performed: on a test duct provided by the CENG, on two long tubes, and on holes. Thus, after a bibliographical study which outlines drawbacks of previous studies, the author proposes a detailed description of experimental installations (creation of critical flows, measurement chain, measurement processing, measurement device calibration, quality and precision). Experimental results are then systematically explored, and differences are explained. The author then addresses the theoretical aspect of the determination of critical flow rates by reviewing calculation models and by comparing their results with experimental results. The validity of each model is thus discussed. The author then proposes a calculation model which can be applied to critical flows developed in holes. This model is notably inspired by experimental conclusions and gives very satisfying practical results
Cheng, Lixin; Bandarra Filho, Enio P; Thome, John R
2008-07-01
Nanofluids are a new class of fluids engineered by dispersing nanometer-size solid particles in base fluids. As a new research frontier, nanofluid two-phase flow and thermal physics have the potential to improve heat transfer and energy efficiency in thermal management systems for many applications, such as microelectronics, power electronics, transportation, nuclear engineering, heat pipes, refrigeration, air-conditioning and heat pump systems. So far, the study of nanofluid two-phase flow and thermal physics is still in its infancy. This field of research provides many opportunities to study new frontiers but also poses great challenges. To summarize the current status of research in this newly developing interdisciplinary field and to identify the future research needs as well, this paper focuses on presenting a comprehensive review of nucleate pool boiling, flow boiling, critical heat flux, condensation and two-phase flow of nanofluids. Even for the limited studies done so far, there are some controversies. Conclusions and contradictions on the available nanofluid studies on physical properties, two-phase flow, heat transfer and critical heat flux (CHF) are presented. Based on a comprehensive analysis, it has been realized that the physical properties of nanofluids such as surface tension, liquid thermal conductivity, viscosity and density have significant effects on the nanofluid two-phase flow and heat transfer characteristics but the lack of the accurate knowledge of these physical properties has greatly limited the study in this interdisciplinary field. Therefore, effort should be made to contribute to the physical property database of nanofluids as a first priority. Secondly, in particular, research on nanofluid two-phase flow and heat transfer in microchannels should be emphasized in the future.
Study of two-phase flow redistribution between two passes of a heat exchanger
International Nuclear Information System (INIS)
Mendes de Moura, L.F.
1989-04-01
The object of the present thesis deals with the study of two-phase flow redistribution between two passes of a heat exchanger. Mass flow rate measurements of each component performed at each channel outlet of the second pass allowed us to determine the influence of mass flow, gas quality, flow direction (upward or downward) and common header geometry upon flow redistribution. Local void fraction inside common header was measured with an optical probe. A two-dimensional two-phase flow computational code was developed from a two-fluid model. Modelling of interfacial momentum transfer was used in order to take into account twp-phase flow patterns in common headers. Numerical simulation results show qualitative agreement with experimental results. Present theoretical model limitations are analysed and future improvements are proposed [fr
Spectral Cascade-Transport Turbulence Model Development for Two-Phase Flows
Brown, Cameron Scott
Turbulence modeling remains a challenging problem in nuclear reactor applications, particularly for the turbulent multiphase flow conditions in nuclear reactor subchannels. Understanding the fundamental physics of turbulent multiphase flows is crucial for the improvement and further development of multiphase flow models used in reactor operation and safety calculations. Reactor calculations with Reynolds-averaged Navier-Stokes (RANS) approach continue to become viable tools for reactor analysis. The on-going increase in available computational resources allows for turbulence models that are more complex than the traditional two-equation models to become practical choices for nuclear reactor computational fluid dynamic (CFD) and multiphase computational fluid dynamic (M-CFD) simulations. Similarly, increased computational capabilities continue to allow for higher Reynolds numbers and more complex geometries to be evaluated using direct numerical simulation (DNS), thus providing more validation and verification data for turbulence model development. Spectral turbulence models are a promising approach to M-CFD simulations. These models resolve mean flow parameters as well as the turbulent kinetic energy spectrum, reproducing more physical details of the turbulence than traditional two-equation type models. Previously, work performed by other researchers on a spectral cascade-transport model has shown that the model behaves well for single and bubbly twophase decay of isotropic turbulence, single and two-phase uniform shear flow, and single-phase flow in a channel without resolving the near-wall boundary layer for relatively low Reynolds number. Spectral models are great candidates for multiphase RANS modeling since bubble source terms can be modeled as contributions to specific turbulence scales. This work focuses on the improvement and further development of the spectral cascadetransport model (SCTM) to become a three-dimensional (3D) turbulence model for use in M
Impedance void-meter and neural networks for vertical two-phase flows
International Nuclear Information System (INIS)
Mi, Y.; Li, M.; Xiao, Z.; Tsoukalas, L.H.; Ishii, M.
1998-01-01
Most two-phase flow measurements, including void fraction measurements, depend on correct flow regime identification. There are two steps towards successful identification of flow regimes: one is to develop a non-intrusive instrument to demonstrate area-averaged void fluctuations, the other to develop a non-linear mapping approach to perform objective identification of flow regimes. A non-intrusive impedance void-meter provides input signals to a neural mapping approach used to identify flow regimes. After training, both supervised and self-organizing neural network learning paradigms performed flow regime identification successfully. The methodology presented holds considerable promise for multiphase flow diagnostic and measurement applications. (author)
Phase separation and pressure drop of two-phase flow in vertical manifolds
International Nuclear Information System (INIS)
Zetzmann, K.
1982-01-01
The splitting of a two-phase mass flow in a tube manifold results in a separation between liquid and gas phase. A study is presented of the phase distribution and the related two-phase pressure drop for vertical manifolds in the technically relevant geometry and flow parameter region of an air-water-flow. At the outlet changes in the gas/fluid-radio are observed which are proportional to this ratio at the inlet. The separation characteristic strongly depends on the massflow through the junction. Empirical equations are given to calculate the separation. Measuring the pressure drop at main- and secondary tube of the manifold the additional pressure drop can be obtained. If these results are related with the dynamic pressure at the inlet, two-phase resistance coefficients can be deduced, which may be tested by empirical relations. (orig.) [de
Moving Boudary Models for Dynamic Simulations of Two-phase Flows
DEFF Research Database (Denmark)
Jensen, Jakob Munch; Tummelscheit, H.
2002-01-01
Two-phase flows are commonly found in components in energy systems such as evaporators and boilers. The performance of these components depends among others on the controller. Transient models describing the evaporation process are important tools for determining control parameters, and fast low...... order models are needed for this purpose. This article describes a general moving boundary (MB) model for modeling two-phase flows. Furthermore the general MB-model is reduced to model a typical dry-expansion evaporator. The reduced MB-model thus captures the phenomena as the general MB-model does...... but is less complex. The reduced MB-model is well suited for control purposes both for determining control parameters and for model based control strategies and examples of a controlled refrigeration system are shown. The general MB model divides the flow into three regions (liquid, two-phase and vapor...
Visualization of two-phase flow in metallic pipes using neutron radiographic technique
International Nuclear Information System (INIS)
Luiz, L.C.; Crispim, V.R.
2007-01-01
The study of two-phase flow is a matter of great interest both for the engineering and oil industries. The production of oil and natural gas involves the transportation of fluids in their liquid and gaseous states, respectively, to the processing plant for refinement. The forecasting of two-phase flow in oil pipes is of the utmost important yet an extremely difficult task. With the development of the electronic imaging system, installed in J-9 irradiation channel of the IEN/CNEN Argonauta Reactor, it is possible to visualize the different types of two phase air-water flows in small-diameter metallic pipes. After developing the captured image the liquid-gas drift flux correlation as well as the void fraction in relation to the injected air outflow for a fixed water outflow can be obtained. (author)
An Eulerian two-phase model for steady sheet flow using large-eddy simulation methodology
Cheng, Zhen; Hsu, Tian-Jian; Chauchat, Julien
2018-01-01
A three-dimensional Eulerian two-phase flow model for sediment transport in sheet flow conditions is presented. To resolve turbulence and turbulence-sediment interactions, the large-eddy simulation approach is adopted. Specifically, a dynamic Smagorinsky closure is used for the subgrid fluid and sediment stresses, while the subgrid contribution to the drag force is included using a drift velocity model with a similar dynamic procedure. The contribution of sediment stresses due to intergranular interactions is modeled by the kinetic theory of granular flow at low to intermediate sediment concentration, while at high sediment concentration of enduring contact, a phenomenological closure for particle pressure and frictional viscosity is used. The model is validated with a comprehensive high-resolution dataset of unidirectional steady sheet flow (Revil-Baudard et al., 2015, Journal of Fluid Mechanics, 767, 1-30). At a particle Stokes number of about 10, simulation results indicate a reduced von Kármán coefficient of κ ≈ 0.215 obtained from the fluid velocity profile. A fluid turbulence kinetic energy budget analysis further indicates that the drag-induced turbulence dissipation rate is significant in the sheet flow layer, while in the dilute transport layer, the pressure work plays a similar role as the buoyancy dissipation, which is typically used in the single-phase stratified flow formulation. The present model also reproduces the sheet layer thickness and mobile bed roughness similar to measured data. However, the resulting mobile bed roughness is more than two times larger than that predicted by the empirical formulae. Further analysis suggests that through intermittent turbulent motions near the bed, the resolved sediment Reynolds stress plays a major role in the enhancement of mobile bed roughness. Our analysis on near-bed intermittency also suggests that the turbulent ejection motions are highly correlated with the upward sediment suspension flux, while
International Nuclear Information System (INIS)
Ahmad, M.
2007-09-01
Maldistribution of liquid-vapour two phase flows causes a significant decrease of the thermal and hydraulic performance of evaporators in thermodynamic vapour compression cycles. A first experimental installation was used to visualize the two phase flow evolution between the expansion valve and the evaporator inlet. A second experimental set-up simulating a compact heat exchanger has been designed to identify the functional and geometrical parameters creating the best distribution of the two phases in the different channels. An analysis and a comprehension of the relation between the geometrical and functional parameters with the flow pattern inside the header and the two phase distribution, has been established. A numerical simulations of a stratified flow and a stratified jet flow have been carried out using two CFD codes: FLUENT and NEPTUNE. In the case of a fragmented jet configuration, a global definition of the interfacial area concentration for a separated phases and dispersed phases flow has been established and a model calculating the fragmented mass fraction has been developed. (author)
Gamma-ray CT from incomplete projections for two-phase pipe flow.
Xin, S; Wang, H X
2017-02-01
A low-energy low-dose γ-ray computed tomography (CT) system used in the gas-liquid two-phase pipe flow measurement has been studied at Tianjin University in recent years. The γ-ray CT system, having a third-generation X-ray CT scanning configuration, is comprised of one 300mCi 241 Am source and 17 CdZnTe detector units and achieves a spatial image resolution of about 7 mm. It is primarily intended to measure the two-phase pipe flow and provide improvement suggestions for industrial CT system. Recently we improve the design for image reconstruction from incomplete projection to optimize the scanning parameters and reduce the radiation dose. First, tomographic problem from incomplete projections is briefly described. Next, a system structure and a hardware circuit design are listed and explained, especially on time parameter setting of the pulse shaper. And then a detailed system analysis is provided in Section II, mainly focusing on spatial resolution, temporal resolution, system noise, and imaging algorithm. Finally, we carry on necessary static and dynamic experiments in a full scan (360°) and two sets of partial scan reconstruction tests to determine the feasibility of this γ-ray CT system for reconstructing the images from insufficient projections. And based on an A-variable algebraic reconstruction technique method, a specially designed algorithm, we evaluate the system performance and noise level of this CT system working quantitatively and qualitatively. Results of dynamic test indicate that the acceptable results can be acquired using a multi-source γ-ray CT system with the same parameters when the flow rate is less than 0.04 m/s and the imaging speed is slower than 33 frames/s.
Non-equilibrium effects on the two-phase flow critical phenomenon
International Nuclear Information System (INIS)
Sami, S.M.
1988-01-01
In the present study, the choking criterion for nonhomogeneous nonequilibrium two phase flow is obtained by solving the two-fluid model conservation equations. The method of characteristics is employed to predict the critical flow conditions. Critical flow is established after the magnitude of the characteristic slopes (velocities). Critical flow conditions are reached when the smallest characteristic slope becomes equal to zero. Several expression are developed to determine the nonequilibrium mass and heat exchanges in terms of the system dependent parameters derivatives. In addition, comprehensive transition flow regime maps are employed in the calculation of interfacial heat and momentum transfer rates. Numerical results reveal that the proposed model reliably predicts the critical two-phase flow phenomenon under different inlet conditions and compares well with other existing models
Analytical Simulation of Flow and Heat Transfer of Two-Phase Nanofluid (Stratified Flow Regime
Directory of Open Access Journals (Sweden)
Mohammad Abbasi
2014-01-01
Full Text Available Nanofluids have evoked immense interest from researchers all around the globe due to their numerous potential benefits and applications in important fields such as cooling electronic parts, cooling car engines and nuclear reactors. An analytical study of fluid flow of in-tube stratified regime of two-phase nanofluid has been carried out for CuO, Al2O2, TiO3, and Au as applied nanoparticles in water as the base liquid. Liquid film thickness, convective heat transfer coefficient, and dryout length have been calculated. Among the considered nano particles, Al2O3 and TiO2 because of providing more amounts of heat transfer along with longer lengths of dryout found as the most appropriate nanoparticles to achieve cooling objectives.
Simulation of incompressible two-phase flow in porous media with large timesteps
Cogswell, Daniel A.; Szulczewski, Michael L.
2017-09-01
Multiphase flow in porous media occurs in several disciplines including petroleum reservoir engineering, petroleum systems' analysis, and CO2 sequestration. While simulations often use a fully implicit discretization to increase the time step size, restrictions on the time step often exist due to non-convergence of the nonlinear solver (e.g. Newton's method). Here this problem is addressed for the Buckley-Leverett equations, which model incompressible, immiscible, two-phase flow with no capillary potential. The equations are recast as a gradient flow using the phase-field method, and a convex energy splitting scheme is applied to enable large timesteps, even for high degrees of heterogeneity in permeability and viscosity. By using the phase-field formulation as a homotopy map, the underlying hyperbolic flow equations can be solved with large timesteps. For a heterogeneous test problem, the new homotopy method allows the timestep to be increased by more than six orders of magnitude relative to the unmodified equations while maintaining convergence.
Design of internal structures of conductance sensors for gas-water two-phase flow measurement
Yu, Xuelian; Dong, Feng; Tan, Chao; Wei, Can
2012-03-01
Conductance sensor array is widely used in measuring two-phase flow parameters, in this paper we propose a new configuration of conductance sensors with six rectangular electrodes of same size from the pipe facing to an inner ring-type electrode and use it to measure gas cross-sectional-averaged water holdup value. The designed six rectangular electrodes are axially flush-mounted on the inside wall of an insulating duct. The geometry of six electrodes conductance sensor was determined with finite element numerical analysis. Sensor optimization of the electric field such as uniformity, spatial sensitivity is proposed. This configuration can improve measurement accuracy, through analyze sensitivity distribution, the role of soft field is discussed, and acquired the final size of the electrodes in the end. The simulation results were obtained from COMSOL Multiphysics finite element software.
Two-phase fluid flow measurements in small diameter channels using real-time neutron radiography
International Nuclear Information System (INIS)
Carlisle, B.S.; Johns, R.C.; Hassan, Y.A.
2004-01-01
A series of real-time, neutron radiography, experiments are ongoing at the Texas A and M Nuclear Science Center Reactor (NSCR). These tests determine the resolving capabilities for radiographic imaging of two phase water and air flow regimes through small diameter flow channels. Though both film and video radiographic imaging is available, the real-time video imaging was selected to capture the dynamic flow patterns with results that continue to improve. (author)
A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels
Directory of Open Access Journals (Sweden)
Huajun Li
2016-01-01
Full Text Available Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA. Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works.
Comparison of differential pressure model based on flow regime for gas/liquid two-phase flow
International Nuclear Information System (INIS)
Dong, F; Zhang, F S; Li, W; Tan, C
2009-01-01
Gas/liquid two-phase flow in horizontal pipe is very common in many industry processes, because of the complexity and variability, the real-time parameter measurement of two-phase flow, such as the measurement of flow regime and flow rate, becomes a difficult issue in the field of engineering and science. The flow regime recognition plays a fundamental role in gas/liquid two-phase flow measurement, other parameters of two-phase flow can be measured more easily and correctly based on the correct flow regime recognition result. A multi-sensor system is introduced to make the flow regime recognition and the mass flow rate measurement. The fusion system is consisted of temperature sensor, pressure sensor, cross-section information system and v-cone flow meter. After the flow regime recognition by cross-section information system, comparison of four typical differential pressure (DP) models is discussed based on the DP signal of v-cone flow meter. Eventually, an optimum DP model has been chosen for each flow regime. The experiment result of mass flow rate measurement shows it is efficient to classify the DP models by flow regime.
Propagation characteristics of pulverized coal and gas two-phase flow during an outburst.
Zhou, Aitao; Wang, Kai; Fan, Lingpeng; Tao, Bo
2017-01-01
Coal and gas outbursts are dynamic failures that can involve the ejection of thousands tons of pulverized coal, as well as considerable volumes of gas, into a limited working space within a short period. The two-phase flow of gas and pulverized coal that occurs during an outburst can lead to fatalities and destroy underground equipment. This article examines the interaction mechanism between pulverized coal and gas flow. Based on the role of gas expansion energy in the development stage of outbursts, a numerical simulation method is proposed for investigating the propagation characteristics of the two-phase flow. This simulation method was verified by a shock tube experiment involving pulverized coal and gas flow. The experimental and simulated results both demonstrate that the instantaneous ejection of pulverized coal and gas flow can form outburst shock waves. These are attenuated along the propagation direction, and the volume fraction of pulverized coal in the two-phase flow has significant influence on attenuation of the outburst shock wave. As a whole, pulverized coal flow has a negative impact on gas flow, which makes a great loss of large amounts of initial energy, blocking the propagation of gas flow. According to comparison of numerical results for different roadway types, the attenuation effect of T-type roadways is best. In the propagation of shock wave, reflection and diffraction of shock wave interact through the complex roadway types.
Propagation characteristics of pulverized coal and gas two-phase flow during an outburst
Zhou, Aitao; Wang, Kai; Fan, Lingpeng; Tao, Bo
2017-01-01
Coal and gas outbursts are dynamic failures that can involve the ejection of thousands tons of pulverized coal, as well as considerable volumes of gas, into a limited working space within a short period. The two-phase flow of gas and pulverized coal that occurs during an outburst can lead to fatalities and destroy underground equipment. This article examines the interaction mechanism between pulverized coal and gas flow. Based on the role of gas expansion energy in the development stage of outbursts, a numerical simulation method is proposed for investigating the propagation characteristics of the two-phase flow. This simulation method was verified by a shock tube experiment involving pulverized coal and gas flow. The experimental and simulated results both demonstrate that the instantaneous ejection of pulverized coal and gas flow can form outburst shock waves. These are attenuated along the propagation direction, and the volume fraction of pulverized coal in the two-phase flow has significant influence on attenuation of the outburst shock wave. As a whole, pulverized coal flow has a negative impact on gas flow, which makes a great loss of large amounts of initial energy, blocking the propagation of gas flow. According to comparison of numerical results for different roadway types, the attenuation effect of T-type roadways is best. In the propagation of shock wave, reflection and diffraction of shock wave interact through the complex roadway types. PMID:28727738
International Nuclear Information System (INIS)
Zhou, Xinquan; Doup, Benjamin; Sun, Xiaodong
2013-01-01
Liquid-phase turbulence measurements were performed in an air–water two-phase flow loop with a circular test section of 50 mm inner diameter using a particle image velocimetry (PIV) system. An optical phase separation method-–planar laser-induced fluorescence (PLIF) technique—which uses fluorescent particles and an optical filtration technique, was employed to separate the signals of the fluorescent seeding particles from those due to bubbles and other noises. An image pre-processing scheme was applied to the raw PIV images to remove the noise residuals that are not removed by the PLIF technique. In addition, four-sensor conductivity probes were adopted to measure the radial distribution of the void fraction. Two benchmark tests were performed: the first was a comparison of the PIV measurement results with those of similar flow conditions using thermal anemometry from previous studies; the second quantitatively compared the superficial liquid velocities calculated from the local liquid velocity and void fraction measurements with the global liquid flow rate measurements. The differences of the superficial liquid velocity obtained from the two measurements were bounded within ±7% for single-phase flows and two-phase bubbly flows with the area-average void fraction up to 18%. Furthermore, a preliminary uncertainty analysis was conducted to investigate the accuracy of the two-phase PIV measurements. The systematic uncertainties due to the circular pipe curvature effects, bubble surface reflection effects and other potential uncertainty sources of the PIV measurements were discussed. The purpose of this work is to facilitate the development of a measurement technique (PIV-PLIF) combined with image pre-processing for the liquid-phase turbulence in gas–liquid two-phase flows of relatively high void fractions. The high-resolution data set can be used to more thoroughly understand two-phase flow behavior, develop liquid-phase turbulence models, and assess high
Modeling of Two-Phase Flow in Rough-Walled Fracture Using Level Set Method
Directory of Open Access Journals (Sweden)
Yunfeng Dai
2017-01-01
Full Text Available To describe accurately the flow characteristic of fracture scale displacements of immiscible fluids, an incompressible two-phase (crude oil and water flow model incorporating interfacial forces and nonzero contact angles is developed. The roughness of the two-dimensional synthetic rough-walled fractures is controlled with different fractal dimension parameters. Described by the Navier–Stokes equations, the moving interface between crude oil and water is tracked using level set method. The method accounts for differences in densities and viscosities of crude oil and water and includes the effect of interfacial force. The wettability of the rough fracture wall is taken into account by defining the contact angle and slip length. The curve of the invasion pressure-water volume fraction is generated by modeling two-phase flow during a sudden drainage. The volume fraction of water restricted in the rough-walled fracture is calculated by integrating the water volume and dividing by the total cavity volume of the fracture while the two-phase flow is quasistatic. The effect of invasion pressure of crude oil, roughness of fracture wall, and wettability of the wall on two-phase flow in rough-walled fracture is evaluated.
Two-phase flow phenomena in broken recirculation line of BWR
International Nuclear Information System (INIS)
Kato, Masami; Arai, Kenji; Narabayashi, Tadashi; Amano, Osamu.
1986-01-01
When a primary recirculation line of BWR is ruptured, a primary recirculation pump may be subjected to very high velocity two-phase flow and its speed may be accelerated by this flow. It is important for safety evaluation to estimate the pump behavior during blowdown. There are two problems involved in analyzing this behavior. One problem concerns the pump characteristics under two-phase flow. The other involves the two-phase conditions at the pump inlet. If the rupture occurs at a suction side of the pump, choking is considered to occur at a broken jet pump nozzle. Then, a void fraction becomes larger downstream from the jet pump nozzle and volumetric flow through the pump will be very high. However, there is little experimental data available on two-phase flow downstream from a choking plane. Blowdown tests were performed using a simulated broken recirculation line and measured data were analyzed by TRAC-PlA. Analytical results agreed with measured data. (author)
Void fraction prediction in two-phase flows independent of the liquid phase density changes
International Nuclear Information System (INIS)
Nazemi, E.; Feghhi, S.A.H.; Roshani, G.H.
2014-01-01
Gamma-ray densitometry is a frequently used non-invasive method to determine void fraction in two-phase gas liquid pipe flows. Performance of flow meters using gamma-ray attenuation depends strongly on the fluid properties. Variations of the fluid properties such as density in situations where temperature and pressure fluctuate would cause significant errors in determination of the void fraction in two-phase flows. A conventional solution overcoming such an obstacle is periodical recalibration which is a difficult task. This paper presents a method based on dual modality densitometry using Artificial Neural Network (ANN), which offers the advantage of measuring the void fraction independent of the liquid phase changes. An experimental setup was implemented to generate the required input data for training the network. ANNs were trained on the registered counts of the transmission and scattering detectors in different liquid phase densities and void fractions. Void fractions were predicted by ANNs with mean relative error of less than 0.45% in density variations range of 0.735 up to 0.98 gcm −3 . Applying this method would improve the performance of two-phase flow meters and eliminates the necessity of periodical recalibration. - Highlights: • Void fraction was predicted independent of density changes. • Recorded counts of detectors/void fraction were used as inputs/output of ANN. • ANN eliminated necessity of recalibration in changeable density of two-phase flows
Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.
Gao, Zhongke; Jin, Ningde
2009-06-01
The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.
High-velocity two-phase flow two-dimensional modeling
International Nuclear Information System (INIS)
Mathes, R.; Alemany, A.; Thilbault, J.P.
1995-01-01
The two-phase flow in the nozzle of a LMMHD (liquid metal magnetohydrodynamic) converter has been studied numerically and experimentally. A two-dimensional model for two-phase flow has been developed including the viscous terms (dragging and turbulence) and the interfacial mass, momentum and energy transfer between the phases. The numerical results were obtained by a finite volume method based on the SIMPLE algorithm. They have been verified by an experimental facility using air-water as a simulation pair and a phase Doppler particle analyzer for velocity and droplet size measurement. The numerical simulation of a lithium-cesium high-temperature pair showed that a nearly homogeneous and isothermal expansion of the two phases is possible with small pressure losses and high kinetic efficiencies. In the throat region a careful profiling is necessary to reduce the inertial effects on the liquid velocity field
Numerical simulation of multi-dimensional two-phase transient flow across bundles
International Nuclear Information System (INIS)
Xu Liangwang; Jia Baoshan
2012-01-01
A multi-dimensional two-fluid model for two-phase flow across bundles is presented. The concept of porous media and distributed resistance are applied to derive the two-fluid Navier-Stokes equation of equivalent continuum, which is discretized with full implicit scheme on multi-dimensional staggered grid and solved with direct Strong Implicit Procedure (SIP). A numerical simulation of kettle reboiler experiment is implemented for model verification. Good agreement between the numerical results and experimental data is obtained, which proves that the suggested model is able to handle with two-phase instability numerically and suitable for the simulation of multi-dimensional two-phase transient flow across bundles. (authors)
International Nuclear Information System (INIS)
Chakraborty, Subhadeep; Keller, Eric; Talley, Justin; Srivastav, Abhishek; Ray, Asok; Kim, Seungjin
2009-01-01
This communication introduces a non-intrusive method for void fraction measurement and identification of two-phase flow regimes, based on ultrasonic sensing. The underlying algorithm is built upon the recently reported theory of a statistical pattern recognition method called symbolic dynamic filtering (SDF). The results of experimental validation, generated on a laboratory test apparatus, show a one-to-one correspondence between the flow measure derived from SDF and the void fraction measured by a conductivity probe. A sharp change in the slope of flow measure is found to be in agreement with a transition from fully bubbly flow to cap-bubbly flow. (rapid communication)
Validation of Friction Models in MARS-MultiD Module with Two-Phase Cross Flow Experiment
International Nuclear Information System (INIS)
Choi, Chi-Jin; Yang, Jin-Hwa; Cho, Hyoung-Kyu; Park, Goon-Cher; Euh, Dong-Jin
2015-01-01
In the downcomer of Advanced Power Reactor 1400 (APR1400) which has direct vessel injection (DVI) lines as an emergency core cooling system, multidimensional two-phase flow may occur due to the Loss-of-Coolant-Accident (LOCA). The accurate prediction about that is high relevance to evaluation of the integrity of the reactor core. For this reason, Yang performed an experiment that was to investigate the two-dimensional film flow which simulated the two-phase cross flow in the upper downcomer, and obtained the local liquid film velocity and thickness data. From these data, it could be possible to validate the multidimensional modules of system analysis codes. In this study, MARS-MultiD was used to simulate the Yang's experiment, and obtained the local variables. Then, the friction models used in MARS-MultiD were validated by comparing the two-phase flow experimental results with the calculated local variables. In this study, the two-phase cross flow experiment was modeled by the MARS-MultiD. Compared with the experimental results, the calculated results by the code properly presented mass conservation which could be known from the relation between the liquid film velocity and thickness at the same flow rate. The magnitude and direction of the liquid film, however, did not follow well with experimental results. According to the results of Case-2, wall friction should be increased, and interfacial friction should be decreased in MARS-MultiD. These results show that it is needed to modify the friction models in the MARS-MultiD to simulate the two-phase cross flow
Multiparticle imaging technique for two-phase fluid flows using pulsed laser speckle velocimetry
Energy Technology Data Exchange (ETDEWEB)
Hassan, T.A.
1992-12-01
The practical use of Pulsed Laser Velocimetry (PLV) requires the use of fast, reliable computer-based methods for tracking numerous particles suspended in a fluid flow. Two methods for performing tracking are presented. One method tracks a particle through multiple sequential images (minimum of four required) by prediction and verification of particle displacement and direction. The other method, requiring only two sequential images uses a dynamic, binary, spatial, cross-correlation technique. The algorithms are tested on computer-generated synthetic data and experimental data which was obtained with traditional PLV methods. This allowed error analysis and testing of the algorithms on real engineering flows. A novel method is proposed which eliminates tedious, undersirable, manual, operator assistance in removing erroneous vectors. This method uses an iterative process involving an interpolated field produced from the most reliable vectors. Methods are developed to allow fast analysis and presentation of sets of PLV image data. Experimental investigation of a two-phase, horizontal, stratified, flow regime was performed to determine the interface drag force, and correspondingly, the drag coefficient. A horizontal, stratified flow test facility using water and air was constructed to allow interface shear measurements with PLV techniques. The experimentally obtained local drag measurements were compared with theoretical results given by conventional interfacial drag theory. Close agreement was shown when local conditions near the interface were similar to space-averaged conditions. However, theory based on macroscopic, space-averaged flow behavior was shown to give incorrect results if the local gas velocity near the interface as unstable, transient, and dissimilar from the average gas velocity through the test facility.
Energy Technology Data Exchange (ETDEWEB)
Lemos, Wanderley F.; Su, Jian, E-mail: wlemos@con.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose L.H., E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental
2013-07-01
The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)
CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobic digesters.
Wu, Binxin
2010-07-01
This paper presents an Eulerian multiphase flow model that characterizes gas mixing in anaerobic digesters. In the model development, liquid manure is assumed to be water or a non-Newtonian fluid that is dependent on total solids (TS) concentration. To establish the appropriate models for different TS levels, twelve turbulence models are evaluated by comparing the frictional pressure drops of gas and non-Newtonian fluid two-phase flow in a horizontal pipe obtained from computational fluid dynamics (CFD) with those from a correlation analysis. The commercial CFD software, Fluent12.0, is employed to simulate the multiphase flow in the digesters. The simulation results in a small-sized digester are validated against the experimental data from literature. Comparison of two gas mixing designs in a medium-sized digester demonstrates that mixing intensity is insensitive to the TS in confined gas mixing, whereas there are significant decreases with increases of TS in unconfined gas mixing. Moreover, comparison of three mixing methods indicates that gas mixing is more efficient than mixing by pumped circulation while it is less efficient than mechanical mixing.
Analytical modeling of two-phase flow instability in parallel boiling channels
International Nuclear Information System (INIS)
Ming, X.; Xuejun, C.; Mingyuan, Z.
1990-01-01
Research on two-phase flow instabilities is of great importance for power and nuclear industries. Parallel channel boiling systems are most commonly used, for instance, in steam generators and boilers. Thus, to study the stability of these systems is very useful, especially for safety consideration. This paper is concerned with the analytical modeling of density-wave instability in parallel vertical boiling channels with or without cross-connections. A mathematical model is developed to analyze the system stability in the frequency domain by means of multivariable control system theory. Based on drift-flux model, this analysis accounts for subcooled boiling, arbitrary heat flux distribution, turbulent mixing and arbitrary flow paths for cross-connection, and thermodynamic nonequilibrium in different flow regions, etc.. The drift-flux model conservation equations, together with other constitutive relations including those for cross-connections are integrated in subsections, then perturbed and linearized and Laplace-transformed around the system's steadystate operation parameters. Finally, the multivariable nodal equations are obtained and cast into matrix forms, from which the characteristic equations for evaluation of the system's stability are deduced. And the coupling effects between channels, and between channels and external loop can be considered
The development of two-phase flow instrumentation at PNC O-arai Engineering Center
International Nuclear Information System (INIS)
Obata, T.; Kobori, T.; Hayamizu, Y.
1975-10-01
This paper reviews development works on the two-phase flow instrumentation carried out at PNC Oarai Engineering Center for FUGEN safety test. The paper describes heater surface temperature measurement, four types of void meters and two steam quality meters. (auth.)
Discontinuous Galerkin finite element method for shallow two-phase flows
Rhebergen, Sander; Bokhove, Onno; van der Vegt, Jacobus J.W.
We present a discontinuous Galerkin finite element method for two depth-averaged two-phase flow models. One of these models contains nonconservative products for which we developed a discontinuous Galerkin finite element formulation in Rhebergen et al. (2008) J. Comput. Phys. 227, 1887-1922. The
effects of parallel channel interactions on two-phase flow split in ...
African Journals Online (AJOL)
Dr Obe
1982-09-01
Sep 1, 1982 ... system pressures varied from near atmospheric to a little over 1.7 bar. ... history dependent. They depended also on the relative channel orifice restrictions, the state of two-phase mixture in each channel at the start of flow, the manner of initiation of the .... evident that gradual introduction of vapour into the ...
Turbulence equations in incompressible two-phase flow without mass transfer
International Nuclear Information System (INIS)
Lance, Michel; Marie, J.-L.; Charnay, Georges; Bataille, Jean
1979-01-01
In order to adapt the modelling methods of one-phase turbulence, the equations describing the evolution of the Reynolds stress tensor, of the dissipation and of the fluctuating pressure in each phase of an incompressible two-phase flow without mass transfer were established [fr
Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model
Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.
2016-03-01
Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.
Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model
International Nuclear Information System (INIS)
Shuard, Adrian M; Mahmud, Hisham B; King, Andrew J
2016-01-01
Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ω turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model. (paper)
Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model.
Delnoij, E.; Lammers, F.A.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria
1997-01-01
In this paper a detailed hydrodynamic model for gas-liquid two-phase flow will be presented. The model is based on a mixed Eulerian-Lagrangian approach and describes the time-dependent two-dimensional motion of small, spherical gas bubbles in a bubble column operating in the homogeneous regime. The
Effects of Parallel Channel Interactions on Two-Phase Flow Split in ...
African Journals Online (AJOL)
The tests would aid the development of a realistic transient computer model for tracking the distribution of two-phase flows into the multiple parallel channels of a Nuclear Reactor, during Loss of Coolant Accidents (LOCA), and were performed at the General Electric Nuclear Energy Division Laboratory, California. The test ...
An analytical model for prediction of two-phase (noncondensable) flow pump performance
International Nuclear Information System (INIS)
Furuya, O.
1985-01-01
During operational transients or a hypothetical LOCA (loss of coolant accident) condition, the recirculating coolant of PWR (pressurized water reactor) may flash into steam due to a loss of line pressure. Under such two-phase flow conditions, it is well known that the recirculation pump becomes unable to generate the same head as that of the single-phase flow case. Similar situations also exist in oil well submersible pumps where a fair amount of gas is contained in oil. Based on the one dimensional control volume method, an analytical method has been developed to determine the performance of pumps operating under two-phase flow conditions. The analytical method has incorporated pump geometry, void fraction, flow slippage and flow regime into the basic formula, but neglected the compressibility and condensation effects. During the course of model development, it has been found that the head degradation is mainly caused by higher acceleration on liquid phase and deceleration on gas phase than in the case of single-phase flows. The numerical results for head degradations and torques obtained with the model favorably compared with the air/water two-phase flow test data of Babcock and Wilcox (1/3 scale) and Creare (1/20 scale) pumps
Self-organizing maps applied to two-phase flow on natural circulation loop study
International Nuclear Information System (INIS)
Castro, Leonardo Ferreira
2016-01-01
Two-phase flow of liquid and gas is found in many closed circuits using natural circulation for cooling purposes. Natural circulation phenomenon is important on recent nuclear power plant projects for decay heat removal. The Natural Circulation Facility (Circuito de Circulacao Natural CCN) installed at Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, is an experimental circuit designed to provide thermal hydraulic data related to single and two-phase flow under natural circulation conditions. This periodic flow oscillation behavior can be observed thoroughly in this facility due its glass-made tubes transparency. The heat transfer estimation has been improved based on models that require precise prediction of pattern transitions of flow. This work presents experiments realized at CCN to visualize natural circulation cycles in order to classify two-phase flow patterns associated with phase transients and static instabilities of flow. Images are compared and clustered using Kohonen Self-organizing Maps (SOM's) applied on different digital image features. The Full Frame Discret Cosine Transform (FFDCT) coefficients were used as input for the classification task, enabling good results. FFDCT prototypes obtained can be associated to each flow pattern, enabling a better comprehension of each observed instability. A systematic test methodology was used to verify classifier robustness.
Two-Phase Immiscible Flows in Porous Media: The Mesocopic Maxwell–Stefan Approach
DEFF Research Database (Denmark)
Shapiro, Alexander
2015-01-01
We develop an approach to coupling between viscous flows of the two phases in porous media, based on the Maxwell–Stefan formalism. Two versions of the formalism are presented: the general form, and the form based on the interaction of the flowing phases with the interface between them. The last...... of mixing” between the flowing phases. Comparison to the available experimental data on the steady-state two-phase relative permeabilities is presented....... approach is supported by the description of the flow on the mesoscopic level, as coupled boundary problems for the Brinkmann or Stokes equations. It becomes possible, in some simplifying geometric assumptions, to derive exact expressions for the phenomenological coefficients in the Maxwell–Stefan transport...
Synchrotron 4-dimensional imaging of two-phase flow through porous media.
Kim, F H; Penumadu, D; Patel, P; Xiao, X; Garboczi, E J; Moylan, S P; Donmez, M A
2016-01-01
Near real-time visualization of complex two-phase flow in a porous medium was demonstrated with dynamic 4-dimensional (4D) (3D + time) imaging at the 2-BM beam line of the Advanced Photon Source (APS) at Argonne National Laboratory. Advancing fluid fronts through tortuous flow paths and their interactions with sand grains were clearly captured, and formations of air bubbles and capillary bridges were visualized. The intense X-ray photon flux of the synchrotron facility made 4D imaging possible, capturing the dynamic evolution of both solid and fluid phases. Computed Tomography (CT) scans were collected every 12 s with a pixel size of 3.25 µm. The experiment was carried out to improve understanding of the physics associated with two-phase flow. The results provide a source of validation data for numerical simulation codes such as Lattice-Boltzmann, which are used to model multi-phase flow through porous media.
Two phase choke flow in tubes with very large L/D
Hendricks, R. C.; Simoneau, R. J.
1977-01-01
Two phase and gaseous choked flow data for fluid nitrogen were obtained for a test section which was a long constant area duct of 16 200 L/D with a diverging diffuser attached to the exit. Flow rate data were taken along five isotherms (reduced temperature of 0.81, 0.96, 1.06, 1.12, and 2.34) for reduced pressures to 3. The flow rate data were mapped in the usual manner using stagnation conditions at the inlet mixing chamber upstream of the entrance length. The results are predictable by a two-phase homogeneous equilibrium choking flow model which includes wall fraction. A simplified theory which in essence decouples the long tube region from the high acceleration choking region also appears to predict the data reasonably well, but about 15 percent low.
Coupling of two-phase flow in fractured-vuggy reservoir with filling medium
Directory of Open Access Journals (Sweden)
Xie Haojun
2017-03-01
Full Text Available Caves in fractured-vuggy reservoir usually contain lots of filling medium, so the two-phase flow in formations is the coupling of free flow and porous flow, and that usually leads to low oil recovery. Considering geological interpretation results, the physical filled cave models with different filling mediums are designed. Through physical experiment, the displacement mechanism between un-filled areas and the filling medium was studied. Based on the experiment model, we built a mathematical model of laminar two-phase coupling flow considering wettability of the porous media. The free fluid region was modeled using the Navier-Stokes and Cahn-Hilliard equations, and the two-phase flow in porous media used Darcy's theory. Extended BJS conditions were also applied at the coupling interface. The numerical simulation matched the experiment very well, so this numerical model can be used for two-phase flow in fracture-vuggy reservoir. In the simulations, fluid flow between inlet and outlet is free flow, so the pressure difference was relatively low compared with capillary pressure. In the process of water injection, the capillary resistance on the surface of oil-wet filling medium may hinder the oil-water gravity differentiation, leading to no fluid exchange on coupling interface and remaining oil in the filling medium. But for the water-wet filling medium, capillary force on the surface will coordinate with gravity. So it will lead to water imbibition and fluid exchange on the interface, high oil recovery will finally be reached at last.
Numerical simulation of two-phase flow with front-capturing
International Nuclear Information System (INIS)
Tzanos, C.P.; Weber, D.P.
2000-01-01
Because of the complexity of two-phase flow phenomena, two-phase flow codes rely heavily on empirical correlations. This approach has a number of serious shortcomings. Advances in parallel computing and continuing improvements in computer speed and memory have stimulated the development of numerical simulation tools that rely less on empirical correlations and more on fundamental physics. The objective of this work is to take advantage of developments in massively parallel computing, single-phase computational fluid dynamics of complex systems, and numerical methods for front capturing in two-phase flows to develop a computer code for direct numerical simulation of two-phase flow. This includes bubble/droplet transport, interface deformation and topology change, bubble-droplet interactions, interface mass, momentum, and energy transfer. In this work, the Navier-Stokes and energy equations are solved by treating both phases as a single fluid with interfaces between the two phases, and a discontinuity in material properties across the moving interfaces. The evolution of the interfaces is simulated by using the front capturing technique of the level-set methods. In these methods, the boundary of a two-fluid interface is modeled as the zero level set of a smooth function φ. The level-set function φ is defined as the signed distance from the interface (φ is negative inside a droplet/bubble and positive outside). Compared to other front-capturing or front-tracking methods, the level-set approach is relatively easy to implement even in three-dimensional flows, and it has been shown to simulate well the coalescence and breakup of droplets/bubbles
Critical pressure of non-equilibrium two-phase critical flow
International Nuclear Information System (INIS)
Minzer, U.
1996-01-01
Critical pressure is defined as the pressure existing at the exit edge of the piping, when it remains constant despite a decrease in the back. According to this definition the critical pressure is larger than the back pressure and for two-phase conditions below saturation pressure. The two-phase critical pressure has a major influence on the two-phase critical flow characteristics. Therefore it is of High significance in calculations of critical mass flux and critical depressurization rate, which are important in the fields of Nuclear Reactor Safety and Industrial Safety. At the Nuclear Reactor Safety field is useful for estimations of the Reactor Cooling System depressurization, the core coolant level, and the pressure build-up in the containment. In the Industrial Safety field it is helpful for estimating the leakage rate of toxic gases Tom liquefied gas pressure vessels, depressurization of pressure vessels, and explosion conditions due to liquefied gas release. For physical description of non-equilibrium two-phase critical flow it would be convenient to divide the flow into two stages. The first stage is the flow of subcooled liquid at constant temperature and uniform pressure drop (i.e., the case of incompressible fluid and uniform piping cross section). The rapid flow of the liquid causes a delay in the boiling of the liquid, which begins to boil below saturation pressure, at thermal non-equilibrium. The boiling is the beginning of the second stage, characterized by a sharp increase of the pressure drop. The liquid temperature on the second stage is almost constant because most of the energy for vaporization is supplied from the large pressure drop The present work will focus on the two-phase critical pressure of water, since water serves as coolant in the vast majority of nuclear power reactors throughout the world. (author)
Numerical simulation of interface movement in gas-liquid two-phase flows with Level Set method
International Nuclear Information System (INIS)
Li Huixiong; Chinese Academy of Sciences, Beijing; Deng Sheng; Chen Tingkuan; Zhao Jianfu; Wang Fei
2005-01-01
Numerical simulation of gas-liquid two-phase flow and heat transfer has been an attractive work for a quite long time, but still remains as a knotty difficulty due to the inherent complexities of the gas-liquid two-phase flow resulted from the existence of moving interfaces with topology changes. This paper reports the effort and the latest advances that have been made by the authors, with special emphasis on the methods for computing solutions to the advection equation of the Level set function, which is utilized to capture the moving interfaces in gas-liquid two-phase flows. Three different schemes, i.e. the simple finite difference scheme, the Superbee-TVD scheme and the 5-order WENO scheme in combination with the Runge-Kutta method are respectively applied to solve the advection equation of the Level Set. A numerical procedure based on the well-verified SIMPLER method is employed to numerically calculate the momentum equations of the two-phase flow. The above-mentioned three schemes are employed to simulate the movement of four typical interfaces under 5 typical flowing conditions. Analysis of the numerical results shows that the 5-order WENO scheme and the Superbee-TVD scheme are much better than the simple finite difference scheme, and the 5-order WENO scheme is the best to compute solutions to the advection equation of the Level Set. The 5-order WENO scheme will be employed as the main scheme to get solutions to the advection equations of the Level Set when gas-liquid two-phase flows are numerically studied in the future. (authors)
An algebraic stress/flux model for two-phase turbulent flow
International Nuclear Information System (INIS)
Kumar, R.
1995-12-01
An algebraic stress model (ASM) for turbulent Reynolds stress and a flux model for turbulent heat flux are proposed for two-phase bubbly and slug flows. These mathematical models are derived from the two-phase transport equations for Reynolds stress and turbulent heat flux, and provide C μ , a turbulent constant which defines the level of eddy viscosity, as a function of the interfacial terms. These models also include the effect of heat transfer. When the interfacial drag terms and the interfacial momentum transfer terms are absent, the model reduces to a single-phase model used in the literature
Generalized network modeling of capillary-dominated two-phase flow.
Raeini, Ali Q; Bijeljic, Branko; Blunt, Martin J
2018-02-01
We present a generalized network model for simulating capillary-dominated two-phase flow through porous media at the pore scale. Three-dimensional images of the pore space are discretized using a generalized network-described in a companion paper [A. Q. Raeini, B. Bijeljic, and M. J. Blunt, Phys. Rev. E 96, 013312 (2017)2470-004510.1103/PhysRevE.96.013312]-which comprises pores that are divided into smaller elements called half-throats and subsequently into corners. Half-throats define the connectivity of the network at the coarsest level, connecting each pore to half-throats of its neighboring pores from their narrower ends, while corners define the connectivity of pore crevices. The corners are discretized at different levels for accurate calculation of entry pressures, fluid volumes, and flow conductivities that are obtained using direct simulation of flow on the underlying image. This paper discusses the two-phase flow model that is used to compute the averaged flow properties of the generalized network, including relative permeability and capillary pressure. We validate the model using direct finite-volume two-phase flow simulations on synthetic geometries, and then present a comparison of the model predictions with a conventional pore-network model and experimental measurements of relative permeability in the literature.
Generalized network modeling of capillary-dominated two-phase flow
Raeini, Ali Q.; Bijeljic, Branko; Blunt, Martin J.
2018-02-01
We present a generalized network model for simulating capillary-dominated two-phase flow through porous media at the pore scale. Three-dimensional images of the pore space are discretized using a generalized network—described in a companion paper [A. Q. Raeini, B. Bijeljic, and M. J. Blunt, Phys. Rev. E 96, 013312 (2017), 10.1103/PhysRevE.96.013312]—which comprises pores that are divided into smaller elements called half-throats and subsequently into corners. Half-throats define the connectivity of the network at the coarsest level, connecting each pore to half-throats of its neighboring pores from their narrower ends, while corners define the connectivity of pore crevices. The corners are discretized at different levels for accurate calculation of entry pressures, fluid volumes, and flow conductivities that are obtained using direct simulation of flow on the underlying image. This paper discusses the two-phase flow model that is used to compute the averaged flow properties of the generalized network, including relative permeability and capillary pressure. We validate the model using direct finite-volume two-phase flow simulations on synthetic geometries, and then present a comparison of the model predictions with a conventional pore-network model and experimental measurements of relative permeability in the literature.
Two-phase flow dynamics in a model steam generator under vertical acceleration oscillation field
International Nuclear Information System (INIS)
Ishida, T.; Teshima, N.; Sakurai, S.
1992-01-01
The influence of periodically varying acceleration on hydrodynamic response has been studied experimentally using an experimental rig which models a marine reactor subject to vertical motion. The effect on the primary loop is small, but the effect on the secondary loop is large. The variables of the secondary loop, such as circulation flow rate and water level, oscillate with acceleration. The variation of gains in frequency response is analysed. The variations of flow in the secondary loop and in the downcome water level, increase in proportion to the acceleration. The effect of the flow resistance in the secondary loop on the two-phase flow dynamics is clarified. (7 figures) (Author)
Simultaneous two-phase flow measurement techniques using Particle Image Velocimetry
Matinpour, Hadis; Atkinson, Joseph; Bennett, Sean
2017-11-01
Most geophysical and environmental flows in nature are turbulent flow and entrain suspended sediments. Turbulent-sediment interaction is one of the most challenging and complicated phenomenon. Many studies have investigated turbulent modulation by suspended sediments. However, there is little investigation on studying sediments in suspension as a two-phase flow, one phase of sediments and another phase of fluid. In this study, we designed and employed a state-of-the-art two-phase PIV method to measure each phase instantaneous velocities simultaneously and separately. The technique that we have developed is employing a computer-vision based method, which enables us to discriminate sediment particles from fluid tracer particles based on two thresholds, dissimilar particle sizes and different particle intensities. To validate two-phase PIV method, we also measured only fluid phase velocities by florescent tracer particles and a camera equipped with a narrow-band filter. Results from imaged processing method are compared with results from physically discriminated two phase method.
An ALE Finite Element Approach for Two-Phase Flow with Phase Change
Gros, Erik; Anjos, Gustavo; Thome, John; Ltcm Team; Gesar Team
2016-11-01
In this work, two-phase flow with phase change is investigated through the Finite Element Method (FEM) in the Arbitrary Lagrangian-Eulerian (ALE) framework. The equations are discretized on an unstructured mesh where the interface between the phases is explicitly defined as a sub-set of the mesh. The two-phase interface position is described by a set of interconnected nodes which ensures a sharp representation of the boundary, including the role of the surface tension. The methodology proposed for computing the curvature leads to very accurate results with moderate programming effort and computational costs. Such a methodology can be employed to study accurately many two-phase flow and heat transfer problems in industry such as oil extraction and refinement, design of refrigeration systems, modelling of microfluidic and biological systems and efficient cooling of electronics for computational purposes. The latter is the principal aim of the present research. The numerical results are discussed and compared to analytical solutions and reference results, thereby revealing the capability of the proposed methodology as a platform for the study of two-phase flow with phase change.
Single- and two-phase flow characterization using optical fiber bragg gratings.
Baroncini, Virgínia H V; Martelli, Cicero; da Silva, Marco José; Morales, Rigoberto E M
2015-03-17
Single- and two-phase flow characterization using optical fiber Bragg gratings (FBGs) is presented. The sensor unit consists of the optical fiber Bragg grating positioned transversely to the flow and fixed in the pipe walls. The hydrodynamic pressure applied by the liquid or air/liquid flow to the optical fiber induces deformation that can be detected by the FBG. Given that the applied pressure is directly related to the mass flow, it is possible to establish a relationship using the grating resonance wavelength shift to determine the mass flow when the flow velocity is well known. For two phase flows of air and liquid, there is a significant change in the force applied to the fiber that accounts for the very distinct densities of these substances. As a consequence, the optical fiber deformation and the correspondent grating wavelength shift as a function of the flow will be very different for an air bubble or a liquid slug, allowing their detection as they flow through the pipe. A quasi-distributed sensing tool with 18 sensors evenly spread along the pipe is developed and characterized, making possible the characterization of the flow, as well as the tracking of the bubbles over a large section of the test bed. Results show good agreement with standard measurement methods and open up plenty of opportunities to both laboratory measurement tools and field applications.
DEFF Research Database (Denmark)
Celia, Michael A.; Binning, Philip John
1992-01-01
A numerical algorithm for simulation of two-phase flow in porous media is presented. The algorithm is based on a modified Picard linearization of the governing equations of flow, coupled with a lumped finite element approximation in space and dynamic time step control. Numerical results indicate...... that describe two-phase flow in porous media....... that the algorithm produces solutions that are essentially mass conservative and oscillation free, even in the presence of steep infiltrating fronts. When the algorithm is applied to the case of air and water flow in unsaturated soils, numerical results confirm the conditions under which Richards's equation is valid...
An experimental study on two-phase flow pattern in low pressure natural circulation system
International Nuclear Information System (INIS)
Wu Shaorong; Han Bing; Zhou Lei; Zhang Youjie; Jiang Shengyao; Wu Xinxin
1991-10-01
An experimental study on two-phase flow pattern in the riser of low pressure natural circulation system was performed. The local differential pressure signal was analysed for flow pattern. It is considered that Sr f·d/v can be used to distinguish different flow patterns and it has clear and definite physical meaning. Flow patterns at different inlet temperature with different system pressures (1.5 MPa, 0.24 MPa and 0.1 MPa) are described. It is considered that the flow pattern is only bubble flow without flow pattern change during the period of low quality density-wave instability at 1.5 MPa. There is no density-wave oscillation in the system, when flow pattern is in bubble-intermittent transition area. The effect of flash vaporization on stability at low pressure is discussed
Simulation of horizontal pipe two-phase slug flows using the two-fluid model
Energy Technology Data Exchange (ETDEWEB)
Ortega Malca, Arturo J. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica. Nucleo de Simulacao Termohidraulica de Dutos (SIMDUT); Nieckele, Angela O. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica
2005-07-01
Slug flow occurs in many engineering applications, mainly in the transport of hydrocarbon fluids in pipelines. The intermittency of slug flow causes severe unsteady loading on the pipelines carrying the fluids, which gives rise to design problems. Therefore, it is important to be able to predict the onset and development of slug flow as well as slug characteristics. The present work consists in the simulation of two-phase flow in slug pattern through horizontal pipes using the two-fluid model in its transient and one-dimensional form. The advantage of this model is that the flow field is allowed to develop naturally from a given initial conditions as part of the transient calculation; the slug evolves automatically as a product of the computed flow development. Simulations are then carried out for a large number of flow conditions that lead a slug flow. (author)
Grid Generation Issues in the CFD Modelling of Two-Phase Flow in a Pipe
Directory of Open Access Journals (Sweden)
V. Hernandez-Perez
2011-03-01
Full Text Available The grid generation issues found in the 3D simulation of two-phase flow in a pipe using Computational Fluid Dynamics (CFD are discussed in this paper. Special attention is given to the effect of the element type and structure of the mesh. The simulations were carried out using the commercial software package STAR-CCM+, which is designed for numerical simulation of continuum mechanics problems. The model consisted of a cylindrical vertical pipe. Different mesh structures were employed in the computational domain. The condition of two-phase flow was simulated with the Volume of Fluid (VOF model, taking into consideration turbulence effects using the k-e model. The results showed that there is a strong dependency of the flow behaviour on the mesh employed. The best result was obtained with the grid known as butterfly grid, while the cylindrical mesh produced misleading results. The simulation was validated against experimental results.
Interfacial structures of confined air-water two-phase bubbly flow
International Nuclear Information System (INIS)
Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.
2000-01-01
The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C 0 = 1.35
Interfacial structures of confined air-water two-phase bubbly flow
Energy Technology Data Exchange (ETDEWEB)
Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.
2000-08-01
The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.
Two-phase flow in porous media: power-law scaling of effective permeability
Energy Technology Data Exchange (ETDEWEB)
Groeva, Morten; Hansen, Alex, E-mail: Morten.Grova@ntnu.no, E-mail: Alex.Hansen@ntnu.no [Department of Physics, NTNU, NO-7491 Trondheim (Norway)
2011-09-15
A recent experiment has reported power-law scaling of effective permeability of two-phase flow with respect to capillary number for a two-dimensional model porous medium. In this paper, we consider the simultaneous flow of two phases through a porous medium under steady-state conditions, fixed total flow-rate and saturation, using a two-dimensional network simulator. We obtain power-law exponents for the scaling of effective permeability with respect to capillary number. The simulations are performed both for viscosity matched fluids and for a high viscosity ratio resembling that of air and water. Good power-law behaviour is found for both cases. Different exponents are found, depending on saturation.
Monte Carlo simulation of a two-phase flow in an unsaturated porous media
Directory of Open Access Journals (Sweden)
Xu Peng
2012-01-01
Full Text Available Relative permeability is a significant transport property which describes the simultaneous flow of immiscible fluids in porous media. A pore-scale physical model is developed for the two-phase immiscible flow in an unsaturated porous media according to the statistically fractal scaling laws of natural porous media, and a predictive calculation of two-phase relative permeability is presented by Monte Carlo simulation. The tortuosity is introduced to characterize the highly irregular and convoluted property of capillary pathways for fluid flow through a porous medium. The computed relative permeabilities are compared with empirical formulas and experimental measurements to validate the current model. The effect of fractal dimensions and saturation on the relative permeabilities is also discussed
Experimental study of micron size droplets in a two phase flow in a converging - diverging nozzle
International Nuclear Information System (INIS)
Jurski, Kristine
1997-01-01
The fluid present in a pressurized vessel in normal operation is generally a mono-phase one. In accidental regime (a breach for example), a two-phase (ring and/or dispersed) flow appears and the flow is submitted to large accelerations when passing through the breach, and is then dispersed in the atmosphere. This research thesis reports an experimental simulation of an accident by generating, through a discharge of an upstream vessel into a downstream vessel, a strongly accelerated gaseous-liquid two-phase flow, with an essentially dispersed configuration in a convergent-divergent nozzle. In order to characterize the speed and diameter evolution of the dispersed liquid phase, the author reports a comparative study of two different liquid aerosols: micron-size droplets of di-octyl phthalate (DOP) of known concentration and diameter, and water droplets obtained by heterogeneous spontaneous condensation [fr
Numerical simulation of compressible two-phase flow using a diffuse interface method
International Nuclear Information System (INIS)
Ansari, M.R.; Daramizadeh, A.
2013-01-01
Highlights: ► Compressible two-phase gas–gas and gas–liquid flows simulation are conducted. ► Interface conditions contain shock wave and cavitations. ► A high-resolution diffuse interface method is investigated. ► The numerical results exhibit very good agreement with experimental results. -- Abstract: In this article, a high-resolution diffuse interface method is investigated for simulation of compressible two-phase gas–gas and gas–liquid flows, both in the presence of shock wave and in flows with strong rarefaction waves similar to cavitations. A Godunov method and HLLC Riemann solver is used for discretization of the Kapila five-equation model and a modified Schmidt equation of state (EOS) is used to simulate the cavitation regions. This method is applied successfully to some one- and two-dimensional compressible two-phase flows with interface conditions that contain shock wave and cavitations. The numerical results obtained in this attempt exhibit very good agreement with experimental results, as well as previous numerical results presented by other researchers based on other numerical methods. In particular, the algorithm can capture the complex flow features of transient shocks, such as the material discontinuities and interfacial instabilities, without any oscillation and additional diffusion. Numerical examples show that the results of the method presented here compare well with other sophisticated modeling methods like adaptive mesh refinement (AMR) and local mesh refinement (LMR) for one- and two-dimensional problems
Design and construction of an experiment for two-phase flow in fractured porous media
Energy Technology Data Exchange (ETDEWEB)
Ayala, R.E.G.; Aziz, K.
1993-08-01
In numerical reservoir simulation naturally fractured reservoirs are commonly divided into matrix and fracture systems. The high permeability fractures are usually entirely responsible for flow between blocks and flow to the wells. The flow in these fractures is modeled using Darcy`s law and its extension to multiphase flow by means of relative permeabilities. The influence and measurement of fracture relative permeability for two-phase flow in fractured porous media have not been studied extensively, and the few works presented in the literature are contradictory. Experimental and numerical work on two-phase flow in fractured porous media has been initiated. An apparatus for monitoring this type of flow was designed and constructed. It consists of an artificially fractured core inside an epoxy core holder, detailed pressure and effluent monitoring, saturation measurements by means of a CT-scanner and a computerized data acquisition system. The complete apparatus was assembled and tested at conditions similar to the conditions expected for the two-phase flow experiments. Fine grid simulations of the experimental setup-were performed in order to establish experimental conditions and to study the effects of several key variables. These variables include fracture relative permeability and fracture capillary pressure. The numerical computations show that the flow is dominated by capillary imbibition, and that fracture relative permeabilities have only a minor influence. High oil recoveries without water production are achieved due to effective water imbibition from the fracture to the matrix. When imbibition is absent, fracture relative permeabilities affect the flow behavior at early production times.
Hybrid flux splitting schemes for numerical resolution of two-phase flows
Energy Technology Data Exchange (ETDEWEB)
Flaatten, Tore
2003-07-01
This thesis deals with the construction of numerical schemes for approximating. solutions to a hyperbolic two-phase flow model. Numerical schemes for hyperbolic models are commonly divided in two main classes: Flux Vector Splitting (FVS) schemes which are based on scalar computations and Flux Difference Splitting (FDS) schemes which are based on matrix computations. FVS schemes are more efficient than FDS schemes, but FDS schemes are more accurate. The canonical FDS schemes are the approximate Riemann solvers which are based on a local decomposition of the system into its full wave structure. In this thesis the mathematical structure of the model is exploited to construct a class of hybrid FVS/FDS schemes, denoted as Mixture Flux (MF) schemes. This approach is based on a splitting of the system in two components associated with the pressure and volume fraction variables respectively, and builds upon hybrid FVS/FDS schemes previously developed for one-phase flow models. Through analysis and numerical experiments it is demonstrated that the MF approach provides several desirable features, including (1) Improved efficiency compared to standard approximate Riemann solvers, (2) Robustness under stiff conditions, (3) Accuracy on linear and nonlinear phenomena. In particular it is demonstrated that the framework allows for an efficient weakly implicit implementation, focusing on an accurate resolution of slow transients relevant for the petroleum industry. (author)
Investigation on two-phase flow stability in a natural circulation system
International Nuclear Information System (INIS)
Wu Shaorung; Jia Haijun; Jiang Shengyiao; Zhang Youjie
2000-01-01
A research program on thermal-hydrodynamic stability of the two-phase flow, simulating the behavior in the primary loop of a nuclear heating reactor developed by the Tsinghua University institute of nuclear energy technology (INET) in China has been executed for several years. In the integrated primary loop of the NHR heating reactor, the natural circulation of the coolant water was adopted with low system pressure, low steam quality at the exit of the core and a relatively long riser above the core. It is important to keep the reactor operating under stable conditions with enough safety margins. The program was aimed at: (1) accumulating experimental data for verification of the models and codes used in the design and safety analysis of this type of reactor; (2) understanding the unstable behavior, its physical mechanisms and parameter effects. The results of the study show that under certain geometric conditions and operating parameters a self-sustaining, low frequency, even amplitude mass flow oscillation may be excited at very low steam qualities. Stability maps under different conditions are provided. An unstable region, which exists between the single-phase stable region and the low steam quality bulk boiling stable region, was experimentally demonstrated. (orig.) [de
Oil–water two-phase flow measurement with combined ultrasonic transducer and electrical sensors
International Nuclear Information System (INIS)
Tan, Chao; Yuan, Ye; Dong, Xiaoxiao; Dong, Feng
2016-01-01
A combination of ultrasonic transducers operated in continuous mode and a conductance/capacitance sensor (UTCC) is proposed to estimate the individual flow velocities in oil–water two-phase flows. Based on the Doppler effect, the transducers measure the flow velocity and the conductance/capacitance sensor estimates the phase fraction. A set of theoretical correlations based on the boundary layer models of the oil–water two-phase flow was proposed to describe the velocity profile. The models were separately established for the dispersion flow and the separate flow. The superficial flow velocity of each phase is calculated with the velocity measured in the sampling volume of the ultrasonic transducer with the phase fraction through the velocity profile models. The measuring system of the UTCC was designed and experimentally verified on a multiphase flow loop. The results indicate that the proposed system and correlations estimate the overall flow velocity at an uncertainty of U J = 0.038 m s −1 , and the water superficial velocity at U Jw = 0.026 m s −1 , and oil superficial velocity at U Jo = 0.034 m s −1 . The influencing factors of uncertainty were analyzed. (paper)
Modeling of Two-Phase Flow through a Rotating Tube with Twin Exit Branches
Directory of Open Access Journals (Sweden)
Sun-Wen Cheng
2000-01-01
Full Text Available A numerical model is proposed to determine the dynamic behavior of single-phase and twophase, two-component flows through a horizontal rotating tube with identical twin exit branches. The working fluid, oil, enters the tube through a radial duct attached at one end and exits into open air through the twin radial branches, one located at midway and the other at the end of the tube. The branch-to-tube diameter ratio, rotational speed, and total oil flow rate are varied. It is experimentally revealed in previous study that the air cavitation occurs at lower speeds, leading to a two-phase flow with the air-oil ratio (void fraction varying with the rotating speed. A unique characteristic in two-phase flow, i.e., hysteresis, is found to exist in both oil flow rates and inlet pressure. In theoretical modeling, the governing flow equations are incorporated by empirical equations for hydraulic head losses. The predicted and measured exit oil flow rates are compared with good agreement in both the single-phase and annular flow regimes. Only qualitative agreement is achieved in the bubbly and bubbly-slug flow regimes. The model can be applied to improve the design and thus enhance the performance of automatic transmission lines, and the cooling efficiency of rotating machines and petroleum drilling process.
Neutron imaging of diabatic two-phase flows relevant to air conditioning
Energy Technology Data Exchange (ETDEWEB)
Geoghegan, Patrick J [ORNL; Sharma, Vishaldeep [ORNL
2017-01-01
The design of the evaporator of an air conditioning system relies heavily on heat transfer coefficients and pressure drop correlations that predominantly involve an estimate of the changing void fraction and the underlying two-phase flow regime. These correlations dictate whether the resulting heat exchanger is oversized or not and the amount of refrigerant charge necessary to operate. The latter is particularly important when dealing with flammable or high GWP refrigerants. Traditional techniques to measure the void fraction and visualize the flow are either invasive to the flow or occur downstream of the evaporator, where some of the flow distribution will have changed. Neutron imaging has the potential to visualize two-phase flow in-situ where an aluminium heat exchanger structure becomes essentially transparent to the penetrating neutrons. The subatomic particles are attenuated by the passing refrigerant flow. The resulting image may be directly related to the void fraction and the overall picture provides a clear insight into the flow regime present. This work presents neutron images of the refrigerant Isopentane as it passes through the flow channels of an aluminium evaporator at flowrates relevant to air conditioning. The flow in a 4mm square macro channel is compared to that in a 250 m by 750 m rectangular microchannel in terms of void fraction and regime. All neutron imaging experiments were conducted at the High Flux Isotope Reactor, an Oak Ridge National Laboratory facility
International Nuclear Information System (INIS)
Kolev, N.I.
1982-01-01
In the case of small leaks the description of a two-phase flow can be based on a change of the equilibrium state. Because of separation effects to be expected, however, it is necessary to take the inhomogeneity of the flow into account. A model of a transient inhomogeneous equilibrium two-phase flow is presented, which allows to modify already existing computer codes, describing the homogeneous two-phase flow in complex networks with distributed parameters, in such a way that they can be used for describing the inhomogeneity of the two-phase flow without changing the structure of the codes. (author)
Structure of the gas-liquid annular two-phase flow in a nozzle section
International Nuclear Information System (INIS)
Yoshida, Kenji; Kataoka, Isao; Ohmori, Syuichi; Mori, Michitsugu
2006-01-01
Experimental studies on the flow behavior of gas-liquid annular two-phase flow passing through a nozzle section were carried out. This study is concerned with the central steam jet injector for a next generation nuclear reactor. In the central steam jet injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design and to establish the high-performance steam injector system, it is very important to accumulate the fundamental data of the thermo-hydro dynamic characteristics of annular flow passing through a nozzle section. On the other hand, the transient behavior of multiphase flow, in which the interactions between two-phases occur, is one of the most interesting scientific issues and has attracted research attention. In this study, the transient gas-phase turbulence modification in annular flow due to the gas-liquid phase interaction is experimentally investigated. The annular flow passing through a throat section is under the transient state due to the changing cross sectional area of the channel and resultantly the superficial velocities of both phases are changed compared with a fully developed flow in a straight pipe. The measurements for the gas-phase turbulence were precisely performed by using a constant temperature hot-wire anemometer, and made clear the turbulence structure such as velocity profiles, fluctuation velocity profiles. The behavior of the interfacial waves in the liquid film flow such as the ripple or disturbance waves was also observed. The measurements for the liquid film thickness by the electrode needle method were also performed to measure the base film thickness, mean film thickness, maximum film thickness and wave height of the ripple or the disturbance waves. (author)
Effects of Particles Collision on Separating Gas–Particle Two-Phase Turbulent Flows
Sihao, L. V.
2013-10-10
A second-order moment two-phase turbulence model incorporating a particle temperature model based on the kinetic theory of granular flow is applied to investigate the effects of particles collision on separating gas–particle two-phase turbulent flows. In this model, the anisotropy of gas and solid phase two-phase Reynolds stresses and their correlation of velocity fluctuation are fully considered using a presented Reynolds stress model and the transport equation of two-phase stress correlation. Experimental measurements (Xu and Zhou in ASME-FED Summer Meeting, San Francisco, Paper FEDSM99-7909, 1999) are used to validate this model, source codes and prediction results. It showed that the particles collision leads to decrease in the intensity of gas and particle vortices and takes a larger effect on particle turbulent fluctuations. The time-averaged velocity, the fluctuation velocity of gas and particle phase considering particles colli-sion are in good agreement with experimental measurements. Particle kinetic energy is always smaller than gas phase due to energy dissipation from particle collision. Moreover, axial– axial and radial–radial fluctuation velocity correlations have stronger anisotropic behaviors. © King Fahd University of Petroleum and Minerals 2013
International Nuclear Information System (INIS)
Taggart, K.A.; Liles, D.R.
1977-08-01
The development of the TRAC computer code for analysis of LOCAs in light-water reactors involves the use of a three-dimensional (r-theta-z), two-fluid hydrodynamics model to describe the two-phase flow of steam and water through the reactor vessel. One of the major problems involved in interpreting results from this code is the presentation of three-dimensional flow patterns. The purpose of the report is to present a partial solution to this data display problem. A first version of a code which produces three-dimensional movies of flow in the reactor vessel has been written and debugged. This code (POST) is used as a postprocessor in conjunction with a stand alone three-dimensional two-phase hydrodynamics code (CYLTF) which is a test bed for the three-dimensional algorithms to be used in TRAC
Fluctuation of void fraction and pressure drop during vertical two-phase flow with contraction
International Nuclear Information System (INIS)
Morimoto, Yuichiro; Madarame, Haruki; Okamoto, Koji
2003-01-01
Flow pattern and fluctuation of void fraction of two-phase flow through a vertical channel with contraction were examined experimentally. The two-phase fluid consisted of water and nitrogen gas. The pipe diameters were 0.1 [m] and 0.05 [m], which were before and after the contraction, respectively. Superficial gas and liquid velocity were changed form 0.42 to 2.55 [m/s] and from 2.26 to 4.53 [m/s]. Time series data of void fraction were measured using a single-needle void probe and flow pattern at downstream from the contraction was visualized using a high-speed video camera. Intermittent flow was observed at downstream of the contraction. The pulsation can be seen to be caused by wave of bubbles thick and thin. Frequency of fluctuation of the void fraction was almost constant when flow pattern before the contraction was bubble flow. In the case where flow pattern before the contraction was churn flow, the frequency increased with superficial liquid velocity. The frequency was also confirmed with the result of image processing using the movies captured by the high speed video camera. (author)
Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
Yang, Zhaochu; Dong, Tao; Halvorsen, Einar
2014-01-01
This work describes a capacitive sensor for identification of microfluidic two-phase flow in lab-on-chip devices. With interdigital electrodes and thin insulation layer utilized, this sensor is capable of being integrated with the microsystems easily. Transducing principle and design considerations are presented with respect to the microfluidic gas/liquid flow patterns. Numerical simulation results verify the operational principle. And the factors affecting the performance of the sensor are discussed. Besides, a feasible process flow for the fabrication is also proposed.
Ensemble distribution for immiscible two-phase flow in porous media.
Savani, Isha; Bedeaux, Dick; Kjelstrup, Signe; Vassvik, Morten; Sinha, Santanu; Hansen, Alex
2017-02-01
We construct an ensemble distribution to describe steady immiscible two-phase flow of two incompressible fluids in a porous medium. The system is found to be ergodic. The distribution is used to compute macroscopic flow parameters. In particular, we find an expression for the overall mobility of the system from the ensemble distribution. The entropy production at the scale of the porous medium is shown to give the expected product of the average flow and its driving force, obtained from a black-box description. We test numerically some of the central theoretical results.
Parents of two-phase flow and theory of “gas-lift”
Directory of Open Access Journals (Sweden)
Zitek Pavel
2014-03-01
Full Text Available This paper gives a brief overview of types of two-phase flow. Subsequently, it deals with their mutual division and problems with accuracy boundaries among particular types. It also shows the case of water flow through a pipe with external heating and the gradual origination of all kinds of flow. We have met it in solution of safety condition of various stages in pressurized and boiling water reactors. In the MSR there is a problem in the solution of gas-lift using helium as a gas and its secondary usage for clearing of the fuel mixture from gaseous fission products. Theory of gas-lift is described.
Equations of motion for two-phase flow in a pin bundle of a nuclear reactor
International Nuclear Information System (INIS)
Chawla, T.C.; Ishii, M.
1978-01-01
By performing Eulerian area averaging over a channel area of the local continuity, momentum, and energy equations for single phase turbulent flow and assuming each phase in two-phase flows to be continuum but coupled by the appropriate 'jump' conditions at the interface, the corresponding axial macroscopic balances for two-fluid model in a pin bundle are obtained. To determine the crossflow, a momentum equation in transverse (to the gap between the pins) direction is obtained for each phase by carrying out Eulerian segment averaging of the local momentum equation, where the segment is taken parallel to the gap. By considering the mixture as a whole, a diffusion model based on drift-flux velocity is formulated. In the axial direction it is expressed in terms of three mixture conservation equations of mass, momentum, and energy with one additional continuity equation for the vapor phase. For the determination of crossflow, transverse momentum equation for a mixture is obtained. It is considered that the previous formulation of the two-phase flow based on the 'slip' flow model and the integral subchannel balances using finite control volumes is inadequate in that the model is heuristic and, a priori, assumes the order of magnitude of the terms, also the model is incomplete and incorrect when applied to two-phase mixtures in thermal non-equilibrium such as during accidental depressurization of a water cooled reactor. The governing equations presented are shown to be a very formal and sound physical basis and are indispensable for physically correct methods of analyzing two-phase flows in a pin bundle. (author)
Visualization of boiling two-phase flow in a small diameter tube using neutron radiography
International Nuclear Information System (INIS)
Hibiki, Takashi; Mishima, Kaichiro; Yoneda, Kenji; Fujine, Shigenori; Kanda, Keiji; Nishihara, Hideaki
1991-01-01
The characteristics of boiling two-phase flow in a small diameter tube are very important for cooling the blanket in a nuclear fusion reactor or a high performance electronic device. For all these subjects, it is necessary to visualize the flow in a tube as a starting point of the study. However, when an optical method cannot be used for the visualization, it is expected that neutron radiography is useful. In this study, the feasibility of visualization of boiling two-phase flow in a small diameter tube was investigated by using various facilities of neutron radiography as the first step. The basic concept of neutron radiography and the block diagram of a neutron television system are shown. The neutron beam attenuated by water in the test section makes a scintillator emit visible light, and produces an image of two-phase flow, which is taken with a TV camera. Thus the image can be observed at real time. Three kinds of the experiments were performed with the facilities of KUR, NSRR and JRR-3. The experimental methods and the results are reported. The images obtained were sufficiently clear. (K.I.)
Simulation experiments for hot-leg U-bend two-phase flow phenomena
International Nuclear Information System (INIS)
Ishii, M.; Hsu, J.T.; Tucholke, D.; Lambert, G.; Kataoka, I.
1986-01-01
In order to study the two-phase natural circulation and flow termination during a small break loss of coolant accident in LWR, simulation experiments have been performed. Based on the two-phase flow scaling criteria developed under this program, an adiabatic hot leg U-bend simulation loop using nitrogen gas and water and a Freon 113 boiling and condensation loop were built. The nitrogen-water system has been used to isolate key hydrodynamic phenomena from heat transfer problems, whereas the Freon loop has been used to study the effect of phase changes and fluid properties. Various tests were carried out to establish the basic mechanism of the flow termination and reestablishment as well as to obtain essential information on scale effects of parameters such as the loop frictional resistance, thermal center, U-bend curvature and inlet geometry. In addition to the above experimental study, a preliminary modeling study has been carried out for two-phase flow in a large vertical pipe at relatively low gas fluxes typical of natural circulation conditions
Energy Technology Data Exchange (ETDEWEB)
Burkholder, Michael B.; Litster, Shawn, E-mail: litster@andrew.cmu.edu [Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)
2016-05-15
In this study, we analyze the stability of two-phase flow regimes and their transitions using chaotic and fractal statistics, and we report new measurements of dynamic two-phase pressure drop hysteresis that is related to flow regime stability and channel water content. Two-phase flow dynamics are relevant to a variety of real-world systems, and quantifying transient two-phase flow phenomena is important for efficient design. We recorded two-phase (air and water) pressure drops and flow images in a microchannel under both steady and transient conditions. Using Lyapunov exponents and Hurst exponents to characterize the steady-state pressure fluctuations, we develop a new, measurable regime identification criteria based on the dynamic stability of the two-phase pressure signal. We also applied a new experimental technique by continuously cycling the air flow rate to study dynamic hysteresis in two-phase pressure drops, which is separate from steady-state hysteresis and can be used to understand two-phase flow development time scales. Using recorded images of the two-phase flow, we show that the capacitive dynamic hysteresis is related to channel water content and flow regime stability. The mixed-wettability microchannel and in-channel water introduction used in this study simulate a polymer electrolyte fuel cell cathode air flow channel.
A numerical method for a model of two-phase flow in a coupled free flow and porous media system
Chen, Jie
2014-07-01
In this article, we study two-phase fluid flow in coupled free flow and porous media regions. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the porous medium region. We propose a Robin-Robin domain decomposition method for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Numerical examples are presented to illustrate the effectiveness of this method. © 2014 Elsevier Inc.
Thermal hydraulics-II. 2. Benchmarking of the TRIO Two-Phase-Flow Module
International Nuclear Information System (INIS)
Helton, Donald; Kumbaro, Anela; Hassan, Yassin
2001-01-01
The Commissariat a l'Energie Atomique (CEA) is currently developing a two-phase-flow module for the Trio-U CFD computer program. Work in the area of advanced numerical technique application to two-phase flow is being carried out by the SYSCO division at the CEA Saclay center. Recently, this division implemented several advanced numerical solvers, including approximate Riemann solvers and flux vector splitting schemes. As a test of these new advances, several benchmark tests were executed. This paper describes the pertinent results of this study. The first benchmark problem was the Ransom faucet problem. This problem consists of a vertical column of water acting under the gravity force. The appeal of this problem is that it tests the program's handling of the body force term and it has an analytical solution. The Trio results [based on a two-fluid, two-dimensional (2-D) simulation] for this problem were very encouraging. The two-phase-flow module was able to reproduce the analytical velocity and void fraction profiles. A reasonable amount of numerical diffusion was observed, and the numerical solution converged to the analytical solution as the grid size was refined, as shown in Fig. 1. A second series of benchmark problems is concerned with the employment of a drag force term. In a first approach, we test the capability of the code to take account of this source term, using a flux scheme solution technique. For this test, a rectangular duct was utilized. As shown in Fig. 2, mesh refinement results in an approach to the analytical solution. Next, a convergent/divergent nozzle problem is proposed. The nozzle is characterized by a brief contraction section and a long expansion section. A two-phase, 2-D, non-condensing model is used in conjunction with the Rieman solver. Figure 3 shows a comparison of the pressure profile for the experimental case and for the values calculated by the TRIO U two-phase-flow module. Trio was able to handle the drag force term and
Logtenberg, Hella; Lopez-Martinez, Maria J.; Feringa, Ben L.; Browne, Wesley R.; Verpoorte, Elisabeth
2011-01-01
An approach to control two-phase flow systems in a poly(dimethylsiloxane) (PDMS) microfluidic device using spatially selective surface modification is demonstrated. Side-by-side flows of ethanol : water solutions containing different polymers are used to selectively modify both sides of a channel by
Air-water two-phase flow through a pipe junction
International Nuclear Information System (INIS)
Suu, Tetsuo
1991-01-01
The distribution of the local void fraction across the section of the conduit was studied experimentally in air-water two-phase flow flowing through a pipe junction with the branching angle of 90deg and the area ratio of unity. As in the previous report, the main conduit of the junction was set up vertically and upward air-water bubbly and slug flows were arranged in the main upstream section. If the flow regime, the quality and the ratio of lateral mass flow discharge of water to total mass flow discharge of water are the same, the larger the Reynolds number is, the more violent the variety of the local void fraction distribution adjacent to the branching part in the lateral conduit is. However, the variety in the main downstream section is scarcely influenced by the Reynolds number. (author)
The role of heater thermal response in reactor thermal limits during oscillartory two-phase flows
Energy Technology Data Exchange (ETDEWEB)
Ruggles, A.E.; Brown, N.W. [Univ. of Tennessee, Knoxville, TN (United States); Vasil`ev, A.D. [Nuclear Safety Institute, Moscow, (Russian Federation); Wendel, M.W. [Oak Ridge National Lab., TN (United States)
1995-09-01
Analytical and numerical investigations of critical heat flux (CHF) and reactor thermal limits are conducted for oscillatory two-phase flows often associated with natural circulation conditions. It is shown that the CHF and associated thermal limits depend on the amplitude of the flow oscillations, the period of the flow oscillations, and the thermal properties and dimensions of the heater. The value of the thermal limit can be much lower in unsteady flow situations than would be expected using time average flow conditions. It is also shown that the properties of the heater strongly influence the thermal limit value in unsteady flow situations, which is very important to the design of experiments to evaluate thermal limits for reactor fuel systems.
Simplified Eigen-structure decomposition solver for the simulation of two-phase flow systems
International Nuclear Information System (INIS)
Kumbaro, Anela
2012-01-01
This paper discusses the development of a new solver for a system of first-order non-linear differential equations that model the dynamics of compressible two-phase flow. The solver presents a lower-complexity alternative to Roe-type solvers because it only makes use of a partial Eigen-structure information while maintaining its accuracy: the outcome is hence a good complexity-tractability trade-off to consider as relevant in a large number of situations in the scope of two-phase flow numerical simulation. A number of numerical and physical benchmarks are presented to assess the solver. Comparison between the computational results from the simplified Eigen-structure decomposition solver and the conventional Roe-type solver gives insight upon the issues of accuracy, robustness and efficiency. (authors)
Finite difference solution for a generalized Reynolds equation with homogeneous two-phase flow
Braun, M. J.; Wheeler, R. L., III; Hendricks, R. C.; Mullen, R. L.
An attempt is made to relate elements of two-phase flow and kinetic theory to the modified generalized Reynolds equation and to the energy equation, in order to arrive at a unified model simulating the pressure and flows in journal bearings, hydrostatic journal bearings, or squeeze film dampers when a two-phase situation occurs due to sudden fluid depressurization and heat generation. The numerical examples presented furnish a test of the algorithm for constant properties, and give insight into the effect of the shaft fluid heat transfer coefficient on the temperature profiles. The different level of pressures achievable for a given angular velocity depends on whether the bearing is thermal or nonisothermal; upwind differencing is noted to be essential for the derivation of a realistic profile.
Adaptive moving grid methods for two-phase flow in porous media
Dong, Hao
2014-08-01
In this paper, we present an application of the moving mesh method for approximating numerical solutions of the two-phase flow model in porous media. The numerical schemes combine a mixed finite element method and a finite volume method, which can handle the nonlinearities of the governing equations in an efficient way. The adaptive moving grid method is then used to distribute more grid points near the sharp interfaces, which enables us to obtain accurate numerical solutions with fewer computational resources. The numerical experiments indicate that the proposed moving mesh strategy could be an effective way to approximate two-phase flows in porous media. © 2013 Elsevier B.V. All rights reserved.
Simon, Moritz
2013-01-01
Motivated by applications in subsurface CO2 sequestration, we investigate constrained optimal control problems with partially miscible two-phase flow in porous media. The objective is, e.g., to maximize the amount of trapped CO2 in an underground reservoir after a fixed period of CO2 injection, where the time-dependent injection rates in multiple wells are used as control parameters. We describe the governing two-phase two-component Darcy flow PDE system and formulate the optimal control problem. For the discretization we use a variant of the BOX method, a locally conservative control-volume FE method. The timestep-wise Lagrangian of the control problem is implemented as a functional in the PDE toolbox Sundance, which is part of the HPC software Trilinos. The resulting MPI parallelized Sundance state and adjoint solvers are linked to the interior point optimization package IPOPT. Finally, we present some numerical results in a heterogeneous model reservoir.
Two-phase dusty fluid flow along a cone with variable properties
Siddiqa, Sadia; Begum, Naheed; Hossain, Md. Anwar; Mustafa, Naeem; Gorla, Rama Subba Reddy
2017-05-01
In this paper numerical solutions of a two-phase natural convection dusty fluid flow are presented. The two-phase particulate suspension is investigated along a vertical cone by keeping variable viscosity and thermal conductivity of the carrier phase. Comprehensive flow formations of the gas and particle phases are given with the aim to predict the behavior of heat transport across the heated cone. The influence of (1) air with particles, (2) water with particles and (3) oil with particles are shown on shear stress coefficient and heat transfer coefficient. It is recorded that sufficient increment in heat transport rate can be achieved by loading the dust particles in the air. Further, distribution of velocity and temperature of both the carrier phase and the particle phase are shown graphically for the pure fluid (air, water) as well as for the fluid with particles (air-metal and water-metal particle mixture).
New developments in two-phase flow heat transfer with emphasis on nuclear safety research
International Nuclear Information System (INIS)
Mayinger, F.
1987-01-01
The literature on two-phase flow - with and without heat transfer - shows an explosive-like growth of published papers within the last ten years. Many of these papers were published as a result of nuclear safety research. It is impossible to deal with all new developments reported in this extensive literature. So one has to ask: Are there trends of special interest, where this report could be concentrated on? Looking over the situation, there seem to be three very promising fields of research having high actuality, especially for nuclear safety, namely: fluiddynamic and thermodynamic nonequilibrium in steady state, transient conditions, and scaling. The discussion on new developments in two-phase flow heat transfer, therefore, is limited on these subjects
Magnetic resonance velocity imaging of liquid and gas two-phase flow in packed beds.
Sankey, M H; Holland, D J; Sederman, A J; Gladden, L F
2009-02-01
Single-phase liquid flow in porous media such as bead packs and model fixed bed reactors has been well studied by MRI. To some extent this early work represents the necessary preliminary research to address the more challenging problem of two-phase flow of gas and liquid within these systems. In this paper, we present images of both the gas and liquid velocities during stable liquid-gas flow of water and SF(6) within a packing of 5mm spheres contained within columns of diameter 40 and 27 mm; images being acquired using (1)H and (19)F observation for the water and SF(6), respectively. Liquid and gas flow rates calculated from the velocity images are in agreement with macroscopic flow rate measurements to within 7% and 5%, respectively. In addition to the information obtained directly from these images, the ability to measure liquid and gas flow fields within the same sample environment will enable us to explore the validity of assumptions used in numerical modelling of two-phase flows.
A tool for visualization of two-phase flow simulations related to nuclear safety
International Nuclear Information System (INIS)
Hyvaerinen, J.
1991-01-01
This paper describes a new tool, BOXER, that has been developed to produce animated visualization of data from computer simulations of two-phase (multi-component) flow phenomena in nuclear reactor systems. In the first part of the paper, background information regarding the type and the scope of the simulations is presented. The second part describes the tool, giving an example of its usage. BOXER has been developed at the Finnish Centre for Radiation and Nuclear Safety. (author)
Modeling and simulation of nanoparticles transport in a two-phase flow in porous media
El-Amin, Mohamed
2012-01-01
In the current paper, a mathematical model to describe the nanoparticles transport carried by a two-phase flow in a porous medium is presented. Both capillary forces as well as Brownian diffusion are considered in the model. A numerical example of countercurrent water-oil imbibition is considered. We monitor the changing of the fluid and solid properties due to the addition of the nanoparticles using numerical experiments. Variation of water saturation, nanoparticles concentration and porosity ratio are investigated.
A method to couple HEM and HRM two-phase flow models
International Nuclear Information System (INIS)
Herard, J.M.; Hurisse, O.; Hurisse, O.; Ambroso, A.
2009-01-01
We present a method for the unsteady coupling of two distinct two-phase flow models (namely the Homogeneous Relaxation Model, and the Homogeneous Equilibrium Model) through a thin interface. The basic approach relies on recent works devoted to the interfacial coupling of CFD models, and thus requires to introduce an interface model. Many numerical test cases enable to investigate the stability of the coupling method. (authors)
Experimental study of two-phase flow using shadowgraphy and IPI technique
Czech Academy of Sciences Publication Activity Database
Jašíková, D.; Kotek, M.; Kysela, Bohuš; Šulc, R.; Kopecký, V.
2017-01-01
Roč. 2, č. 2017 (2017), s. 107-114 ISSN 2367-8992 R&D Projects: GA ČR GA16-20175S Grant - others:GA MŠk(CZ) LO1201 Institutional support: RVO:67985874 Keywords : mixing process * two - phase flow * shadowgraphy * interferometric particle imaging * visualization Subject RIV: JP - Industrial Processing OBOR OECD: Fluids and plasma physics (including surface physics) http://www.iaras.org/iaras/filedownloads/ijtam/2017/009-0020(2017).pdf
Numerical simulation of two-phase flow in a tornado funnel
International Nuclear Information System (INIS)
Sinkevich, O.A.; Chikunov, S.E.
2002-01-01
Paper presents a model of flow in a tornado funnel. The model is associated with regard to the volume condensation of water steams. One proposes a form to present the basic equations convenient for numerical simulation of heat and mass transfer processes with regard to moisture condensation inside a tornado funnel. Paper contains the results of numerical simulation of two phase turbulent heat and mass transfer inside a tornado funnel [ru
A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces
Shao, Sihong
2012-01-01
We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager principle of minimum energy dissipation. This approach was first presented in the derivation of a continuum hydrodynamic model for moving contact line in neutral two-phase immiscible flows (Qian, Wang, and Sheng, J. Fluid Mech. 564, 333-360 (2006)). Physically, the electroosmotic effect can be formulated by the Onsager principle as well in the linear response regime. Therefore, the same variational approach is applied here to the derivation of the continuum hydrodynamic model for charged two-phase immiscible flows where one fluid component is an electrolyte exhibiting electroosmotic effect on a charged surface. A phase field is employed to model the diffuse interface between two immiscible fluid components, one being the electrolyte and the other a nonconductive fluid, both allowed to slip at solid surfaces. Our model consists of the incompressible Navier-Stokes equation for momentum transport, the Nernst-Planck equation for ion transport, the Cahn-Hilliard phase-field equation for interface motion, and the Poisson equation for electric potential, along with all the necessary boundary conditions. In particular, all the dynamic boundary conditions at solid surfaces, including the generalized Navier boundary condition for slip, are derived together with the equations of motion in the bulk region. Numerical examples in two-dimensional space, which involve overlapped electric double layer fields, have been presented to demonstrate the validity and applicability of the model, and a few salient features of the two-phase immiscible electroosmotic flows at solid surface. The wall slip in the vicinity of moving contact line and the Smoluchowski slip in the electric double layer are both investigated. © 2012 Global-Science Press.
Experimental study of two-phase flow using shadowgraphy and IPI technique
Czech Academy of Sciences Publication Activity Database
Jašíková, D.; Kotek, M.; Kysela, Bohuš; Šulc, R.; Kopecký, V.
2017-01-01
Roč. 2, č. 2017 (2017), s. 107-114 ISSN 2367-8992 R&D Projects: GA ČR GA16-20175S Grant - others:GA MŠk(CZ) LO1201 Institutional support: RVO:67985874 Keywords : mixing process * two-phase flow * shadowgraphy * interferometric particle imaging * visualization Subject RIV: JP - Industrial Processing OBOR OECD: Fluids and plasma physics (including surface physics) http://www.iaras.org/iaras/filedownloads/ijtam/2017/009-0020(2017).pdf
Thermoplastic Micromodel Investigation of Two-Phase Flows in a Fractured Porous Medium
Directory of Open Access Journals (Sweden)
Shao-Yiu Hsu
2017-01-01
Full Text Available In the past few years, micromodels have become a useful tool for visualizing flow phenomena in porous media with pore structures, e.g., the multifluid dynamics in soils or rocks with fractures in natural geomaterials. Micromodels fabricated using glass or silicon substrates incur high material cost; in particular, the microfabrication-facility cost for making a glass or silicon-based micromold is usually high. This may be an obstacle for researchers investigating the two-phase-flow behavior of porous media. A rigid thermoplastic material is a preferable polymer material for microfluidic models because of its high resistance to infiltration and deformation. In this study, cyclic olefin copolymer (COC was selected as the substrate for the micromodel because of its excellent chemical, optical, and mechanical properties. A delicate micromodel with a complex pore geometry that represents a two-dimensional (2D cross-section profile of a fractured rock in a natural oil or groundwater reservoir was developed for two-phase-flow experiments. Using an optical visualization system, we visualized the flow behavior in the micromodel during the processes of imbibition and drainage. The results show that the flow resistance in the main channel (fracture with a large radius was higher than that in the surrounding area with small pore channels when the injection or extraction rates were low. When we increased the flow rates, the extraction efficiency of the water and oil in the mainstream channel (fracture did not increase monotonically because of the complex two-phase-flow dynamics. These findings provide a new mechanism of residual trapping in porous media.
Modelling of stratified gas-liquid two-phase flow in horizontal circular pipes
International Nuclear Information System (INIS)
Sampaio, P.A.B. de; Faccini, J.L.H.; Su, J.
2006-01-01
This paper reports numerical and experimental investigation of stratified gas-liquid two-phase flow in horizontal circular pipes. The Reynolds average Navier-Stokes equations (RANS) with κ ω model development stratified gas-liquid two-phase flow are solved by using the finite element methods. A smooth interface surface is assumed without considered the effects of the interfacial waves. The continuity of the shear stress across the interface is enforced with the continuity of the velocity being automatically satisfied by the variational formulation. For it is given position and interface and longitudinal pressure gradient, an inner iteration loop runs to solve nonlinear equations the Newton-Raphson scheme is used to solve the transcendental equations by an outer iteration to determinate the interface position in a 5.2 mm ID circular pipe was measured experimentally by the ultrasonic ultra pulse-echo technique. The numeral were also compared with results in 21 mm ID circular pipe report by Masala (2004). The good agreement between the numerical and experimental results indicates that κ ω model can be applied for the numerical simulation of stratified gas-liquid two phase flow. (author)
Simulation of two-phase flows in vertical tubes with the CTFD code FLUBOX
International Nuclear Information System (INIS)
Graf, Udo; Papadimitriou, Pavlos
2007-01-01
The computational two-fluid dynamics (CTFD) code FLUBOX is developed at GRS for the multidimensional simulation of two-phase flows. The single-pressure two-fluid model is used as basis of the simulation. A basic mathematical property of the two-fluid model of FLUBOX is the hyperbolic character of the advection. The numerical solution methods of FLUBOX make explicit use of the hyperbolic structure of the coefficient matrices. The simulation of two-phase flow phenomena needs, apart from the conservation equations for each phase, an additional transport equation for the interfacial area concentration. The concentration of the interfacial area is one of the key parameters for the modeling of interfacial friction forces and interfacial transfer terms. A new transport equation for the interfacial area concentration is in development. It describes the dynamic change of the interfacial area concentration due to mass exchange and a force balance at the phase boundary. Results from FLUBOX calculations for different experiments of two-phase flows in vertical tubes are presented as part of the validation
Approximate Riemann solvers and flux vector splitting schemes for two-phase flow
International Nuclear Information System (INIS)
Toumi, I.; Kumbaro, A.; Paillere, H.
1999-01-01
These course notes, presented at the 30. Von Karman Institute Lecture Series in Computational Fluid Dynamics, give a detailed and through review of upwind differencing methods for two-phase flow models. After recalling some fundamental aspects of two-phase flow modelling, from mixture model to two-fluid models, the mathematical properties of the general 6-equation model are analysed by examining the Eigen-structure of the system, and deriving conditions under which the model can be made hyperbolic. The following chapters are devoted to extensions of state-of-the-art upwind differencing schemes such as Roe's Approximate Riemann Solver or the Characteristic Flux Splitting method to two-phase flow. Non-trivial steps in the construction of such solvers include the linearization, the treatment of non-conservative terms and the construction of a Roe-type matrix on which the numerical dissipation of the schemes is based. Extension of the 1-D models to multi-dimensions in an unstructured finite volume formulation is also described; Finally, numerical results for a variety of test-cases are shown to illustrate the accuracy and robustness of the methods. (authors)
Two-phase Flow Ejector as Water Refrigerant by Using Waste Heat
International Nuclear Information System (INIS)
Yamanaka, H; Nakagawa, M
2013-01-01
Energy saving and the use of clean energy sources have recently become significant issues. It is expected that clean energy sources such as solar panels and fuel cells will be installed in many private dwellings. However, when electrical power is generated, exhaust heat is simultaneously produced. Especially for the summer season, the development of refrigeration systems that can use this waste heat is highly desirable. One approach is an ejector that can reduce the mechanical compression work required in a normal refrigeration cycle. We focus on the use of water as a refrigerant, since this can be safely implemented in private dwellings. Although the energy conversion efficiency is low, it is promising because it can use heat that would otherwise be discarded. However, a steam ejector refrigeration cycle requires a large amount of energy to change saturated water into vapour. Thus, we propose a more efficient two-phase flow ejector cycle. Experiments were carried out in which the quality of the two-phase flow from a tank was varied, and the efficiency of the ejector and nozzle was determined. The results show that a vacuum state can be achieved and suction exerted with a two-phase flow state at the ejector nozzle inlet.
Mathematical well-posedness of a two-fluid equations for bubbly two-phase flows
International Nuclear Information System (INIS)
Okawa, Tomio; Kataoka, Isao
2000-01-01
It is widely known that two-fluid equations used in most engineering applications do not satisfy the necessary condition for being mathematical well-posed as initial-value problems. In the case of stratified two-phase flows, several researchers have revealed that differential models satisfying the necessary condition are to be derived if the pressure difference between the phases is related to the spatial gradient of the void fraction through the effects of gravity or surface tension. While, in the case of dispersed two-phase flows, no physically reasonable method to derive mathematically well-posed two-fluid model has been proposed. In the present study, particularly focusing on the effect of interfacial pressure terms, we derived the mathematically closed form of the volume-averaged two-fluid model for bubbly two-phase flows. As a result of characteristic analyses, it was shown that the proposed two-fluid equations satisfy the necessary condition of mathematical well-posedness if the void fraction is sufficiently small. (author)
Two-phase flow in geothermal energy sources. Final technical report
Energy Technology Data Exchange (ETDEWEB)
1981-07-01
A geothermal well consisting of single and two-phase flow sections was modeled in order to explore the variables important to the process. For this purpose a computer program was developed in a versatile form in order to be able to incorporate a variety of two phase flow void fraction and friction correlations. A parametric study indicated that the most significant variables controlling the production rate are: hydrostatic pressure drop or void fraction in the two-phase mixture; and, heat transfer from the wellbore to the surrounding earth. Downhole instrumentation was developed and applied in two flowing wells to provide experimental data for the computer program. The wells (East Mesa 8-1, and a private well) behaved differently. Well 8-1 did not flash and numerous shakedown problems in the probe were encountered. The private well did flash and the instrumentation detected the onset of flashing. A Users Manual was developed and presented in a workshop held in conjunction with the Geothermal Resources Council.
Study of nitrogen two-phase flow pressure drop in horizontal and vertical orientation
Koettig, T.; Kirsch, H.; Santandrea, D.; Bremer, J.
2017-12-01
The large-scale liquid argon Short Baseline Neutrino Far-detector located at Fermilab is designed to detect neutrinos allowing research in the field of neutrino oscillations. It will be filled with liquid argon and operate at almost ambient pressure. Consequently, its operation temperature is determined at about 87 K. The detector will be surrounded by a thermal shield, which is actively cooled with boiling nitrogen at a pressure of about 2.8 bar absolute, the respective saturation pressure of nitrogen. Due to strict temperature gradient constraints, it is important to study the two-phase flow pressure drop of nitrogen along the cooling circuit of the thermal shield in different orientations of the flow with respect to gravity. An experimental setup has been built in order to determine the two-phase flow pressure drop in nitrogen in horizontal, vertical upward and vertical downward direction. The measurements have been conducted under quasi-adiabatic conditions and at a saturation pressure of 2.8 bar absolute. The mass velocity has been varied in the range of 20 kg·m‑2·s‑1 to 70 kg·m‑2·s‑1 and the pressure drop data has been recorded scanning the two-phase region from vapor qualities close to zero up to 0.7. The experimental data will be compared with several established predictions of pressure drop e.g. Mueller-Steinhagen and Heck by using the void fraction correlation of Rouhani.
GEOTHER: a two-phase fluid-flow and heat-transport code
International Nuclear Information System (INIS)
1983-04-01
GEOTHER is a three-dimensional geothermal reservoir simulation code. The model describes heat transport and flow of a single component, two-phase fluid in porous media. It is based on the continuity equations for steam and water, which are reduced to two nonlinear partial differential equations in which the dependent variables are fluid pressure and enthalpy. These equations, describing three-dimensional effects, are approximated using finite-difference techniques and are solved using an iterative technique. The nonlinear coefficients are calculated using Newton-Raphson iteration, and an option is provided for using either upstream or midpoint weighting on the mobility terms. GEOTHER can be used to simulate the fluid-thermal interaction in rock that can be approximated by a porous media representation. It can simulate heat transport and the flow of compressed water, two-phase mixtures, and super-heated steam in porous media over a temperature range of 10 to 300 0 C. In addition, it can treat the conversion from single- to two-phase flow, and vice versa. It can be used for evaluation of a near repository spatial scale and a time scale of a few years to thousands of years. The model can be used to investigate temperature and fluid pressure changes in response to thermal loading by waste materials. In Section 1.5 of this document the code custodianship and control is described along with the status of verification, validation and peer review of this report
Simulation of two-phase flow in horizontal fracture networks with numerical manifold method
Ma, G. W.; Wang, H. D.; Fan, L. F.; Wang, B.
2017-10-01
The paper presents simulation of two-phase flow in discrete fracture networks with numerical manifold method (NMM). Each phase of fluids is considered to be confined within the assumed discrete interfaces in the present method. The homogeneous model is modified to approach the mixed fluids. A new mathematical cover formation for fracture intersection is proposed to satisfy the mass conservation. NMM simulations of two-phase flow in a single fracture, intersection, and fracture network are illustrated graphically and validated by the analytical method or the finite element method. Results show that the motion status of discrete interface significantly depends on the ratio of mobility of two fluids rather than the value of the mobility. The variation of fluid velocity in each fracture segment and the driven fluid content are also influenced by the ratio of mobility. The advantages of NMM in the simulation of two-phase flow in a fracture network are demonstrated in the present study, which can be further developed for practical engineering applications.
International Nuclear Information System (INIS)
Chu, W.; Dhir, V.K.; Marshall, J.
1983-01-01
An experimental investigation of two phase flow through porous layers formed of non-heated glass particles (nominal diameter 1 to 6 mm) has been made. Particulate bed depths of 30 cm and 70 cm were used. The effect of particle size, particle size distribution and bed porosity on void fraction and pressure drop through a particulate bed formed in a cylindrical test section has been investigated. The superficial velocity of liquid (water) is varied from 1.83 to 18.3 mm/s while the superficial velocity of gas (air) is varied from 0 to 68.4 mm/s. These superficial velocities were chosen so that pressure drop and void fraction measurement could be made for the porous layer in fixed and fluidized states. A model based on drift flux approach has been developed for the void fraction. Using the two phase friction pressure drop data, the relative permeabilities of the two phases have been concluded with void fraction. The void fraction and two phase friction pressure gradient in beds composed of mixtures of spherical particles as well as sharps of different nominal sizes have also been examined. It is found that the models for single size particles are also applicable to mixtures of particles if a mean particle diameter for the mixture is defined
A multi-scale network method for two-phase flow in porous media
International Nuclear Information System (INIS)
Khayrat, Karim; Jenny, Patrick
2017-01-01
Pore-network models of porous media are useful in the study of pore-scale flow in porous media. In order to extract macroscopic properties from flow simulations in pore-networks, it is crucial the networks are large enough to be considered representative elementary volumes. However, existing two-phase network flow solvers are limited to relatively small domains. For this purpose, a multi-scale pore-network (MSPN) method, which takes into account flow-rate effects and can simulate larger domains compared to existing methods, was developed. In our solution algorithm, a large pore network is partitioned into several smaller sub-networks. The algorithm to advance the fluid interfaces within each subnetwork consists of three steps. First, a global pressure problem on the network is solved approximately using the multiscale finite volume (MSFV) method. Next, the fluxes across the subnetworks are computed. Lastly, using fluxes as boundary conditions, a dynamic two-phase flow solver is used to advance the solution in time. Simulation results of drainage scenarios at different capillary numbers and unfavourable viscosity ratios are presented and used to validate the MSPN method against solutions obtained by an existing dynamic network flow solver.
A multi-scale network method for two-phase flow in porous media
Energy Technology Data Exchange (ETDEWEB)
Khayrat, Karim, E-mail: khayratk@ifd.mavt.ethz.ch; Jenny, Patrick
2017-08-01
Pore-network models of porous media are useful in the study of pore-scale flow in porous media. In order to extract macroscopic properties from flow simulations in pore-networks, it is crucial the networks are large enough to be considered representative elementary volumes. However, existing two-phase network flow solvers are limited to relatively small domains. For this purpose, a multi-scale pore-network (MSPN) method, which takes into account flow-rate effects and can simulate larger domains compared to existing methods, was developed. In our solution algorithm, a large pore network is partitioned into several smaller sub-networks. The algorithm to advance the fluid interfaces within each subnetwork consists of three steps. First, a global pressure problem on the network is solved approximately using the multiscale finite volume (MSFV) method. Next, the fluxes across the subnetworks are computed. Lastly, using fluxes as boundary conditions, a dynamic two-phase flow solver is used to advance the solution in time. Simulation results of drainage scenarios at different capillary numbers and unfavourable viscosity ratios are presented and used to validate the MSPN method against solutions obtained by an existing dynamic network flow solver.
Self-organizing maps applied to two-phase flow on natural circulation loop studies
International Nuclear Information System (INIS)
Castro, Leonardo F.; Cunha, Kelly de P.; Andrade, Delvonei A.; Sabundjian, Gaiane; Torres, Walmir M.; Macedo, Luiz A.; Rocha, Marcelo da S.; Masotti, Paulo H.F.; Mesquita, Roberto N. de
2015-01-01
Two-phase flow of liquid and gas is found in many closed circuits using natural circulation for cooling purposes. Natural circulation phenomenon is important on recent nuclear power plant projects for heat removal on 'loss of pump power' or 'plant shutdown' accidents. The accuracy of heat transfer estimation has been improved based on models that require precise prediction of pattern transitions of flow. Self-Organizing Maps are trained to digital images acquired on natural circulation flow instabilities. This technique will allow the selection of the more important characteristics associated with each flow pattern, enabling a better comprehension of each observed instability. This periodic flow oscillation behavior can be observed thoroughly in this facility due its glass-made tubes transparency. The Natural Circulation Facility (Circuito de Circulacao Natural - CCN) installed at Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, is an experimental circuit designed to provide thermal hydraulic data related to one and two phase flow under natural circulation conditions. (author)
Studies of simulations of two-phase water-air flows using ANSYS CFX
Energy Technology Data Exchange (ETDEWEB)
Garrido Filho, Anizio M.; Moreira, Maria de Lourdes; Faccini, José L.H., E-mail: anizio@ien.gov.br, E-mail: malu@ien.gov.br, E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)
2017-07-01
Normally in all simulations of flows in computational fluid dynamics, CFD, it is common to use characteristic planes to visualize the profiles of the parameters of interest, mainly in 3D simulations. The present work proposes a standard form of visualization that shows, mainly in two-phase flows, in a more realistic way, the dynamics of the development of the phase flow. This visualization is present within the CFX program in the post-processing module, in the option of representing volumes using sub option, isovolumes. Through this representation, the program highlights the volumes of the finite element mesh corresponding to the selected values of the parameter to be analyzed such as pressure, velocity, volumetric fraction, etc. By means of the volume-isovolume representation, a well representative effect of the current flow pattern is obtained, especially when the volumetric fraction of the air or the gas phase of the flow is emphasized. This form of visualization is being applied to the study of inclined two-phase flows, which will be tested in a new experiment currently under construction at the Laboratory of Experimental Thermal-Hydraulics - LTE of the Institute of Nuclear Engineering - IEN in Rio de Janeiro. (author)
International Nuclear Information System (INIS)
Briola, Stefano; Di Marco, Paolo; Gabbrielli, Roberto
2017-01-01
A novel Combined Cooling, Heating and Power (CCHP) cycle, operating with two-phase devices for the compression and expansion processes and a single-component wet working fluid, is proposed. A detailed sensitivity analysis of the novel CCHP cycle has been investigated in order to evaluate, in terms of energy performance indicators, its potentiality to serve typical trigenerative tertiary and industrial end-users with different fixed operating temperatures. In general, the novel CCHP cycle is characterized by higher energy performance indicators than a separated energy production system. The comparison between the novel CCHP cycle and several commercialized CCHP systems has been performed in the case studies related to tertiary and industrial end-users. The novel CCHP cycle shows a trigenerative capability in wide ranges of the end-users demands without surplus or deficit of the electric or thermal powers. Furthermore, the maximum allowable capital cost of the whole novel CCHP plant (BEPCC), that will assure the profitability of the investment, is calculated in the tertiary and industrial end-users case studies. For the tertiary end-user, the capital costs of the commercialized CCHP are between the minimum and maximum BEPCC values. On the contrary, for the industrial end-user, they are lower than the minimum and maximum BEPCC values. - Highlights: • Novel CCHP cycle with two-phase expanders and compressors has been conceived. • Novel CCHP cycle has higher performances than a separated energy production system. • Novel CCHP cycle satisfies the user demands in wide ranges without surplus/deficit. • Tertiary user: novel CCHP cycle is competitive against marketed CCHP systems. • Industrial user: novel CCHP cycle is not competitive against marketed CCHP systems.
The use of wavelet transforms in the solution of two-phase flow problems
International Nuclear Information System (INIS)
Moridis, G.J.; Nikolaou, M.; You, Yong
1994-10-01
In this paper we present the use of wavelets to solve the nonlinear Partial Differential.Equation (PDE) of two-phase flow in one dimension. The wavelet transforms allow a drastically different approach in the discretization of space. In contrast to the traditional trigonometric basis functions, wavelets approximate a function not by cancellation but by placement of wavelets at appropriate locations. When an abrupt chance, such as a shock wave or a spike, occurs in a function, only local coefficients in a wavelet approximation will be affected. The unique feature of wavelets is their Multi-Resolution Analysis (MRA) property, which allows seamless investigational any spatial resolution. The use of wavelets is tested in the solution of the one-dimensional Buckley-Leverett problem against analytical solutions and solutions obtained from standard numerical models. Two classes of wavelet bases (Daubechies and Chui-Wang) and two methods (Galerkin and collocation) are investigated. We determine that the Chui-Wang, wavelets and a collocation method provide the optimum wavelet solution for this type of problem. Increasing the resolution level improves the accuracy of the solution, but the order of the basis function seems to be far less important. Our results indicate that wavelet transforms are an effective and accurate method which does not suffer from oscillations or numerical smearing in the presence of steep fronts
Vibration of heat exchange components in liquid and two-phase cross-flow
International Nuclear Information System (INIS)
Pettigrew, M.J.
1978-05-01
Heat exchange components must be analysed at the design stage to avoid flow-induced vibration problems. This paper presents information required to formulate flow-induced vibration excitation mechanisms in liquid and two-phase cross-flow. Three basic excitation mechanisms are considered, namely: 1) fluidelastic instability, 2) periodic wake shedding, and 3) response to random flow turbulence. The vibration excitation information is deduced from vibration response data for various types of tube bundles. Sources of information are: 1) fundamental studies on tube bundles, 2) model testing, 3) field measurements, and 4) operating experiences. Fluidelastic instability is formulated in terms of dimensionless flow velocity and dimensionless damping; periodic wake shedding in terms of Strouhal number and lift coefficient; and random turbulence excitation in terms of statistical parameters of random forces. Guidelines are recommended for design purposes. (author)
Two phase pressure drop across abrupt area changes in oscillatory flow
International Nuclear Information System (INIS)
Weisman, J.; Ake, T.; Knott, R.
1975-05-01
The ability of one-dimensional momentum balances to predict behavior during two-phase oscillatory flow has been examined. Flow oscillations in a Freon-Freon vapor system were induced by cycling a three-way valve so as to divert a varying portion of the total flow from the test section. The data taken included the phase shift between pressure and flow curves and the head fluctuation to flow fluctuation ratio. These data were compared to theoretical predictions. For void fractions below about 0.55, reasonable agreement between predictions and observations was obtained. At the highest void fractions examined, agreement between prediction and measurement was poor. However, at these high void fractions measurement errors may have been very substantial. Further, the simplifying assumptions required by the numerical calculation procedure chosen could no longer be considered valid. No real conclusion could therefore be drawn from the data at high voids
Fluidelastic forces in a triangular tube bundle subjected to two-phase cross flow
International Nuclear Information System (INIS)
Mureithi, N.; Shahriary, S.; Sommier, E.; Pettigrew, M.
2006-01-01
Despite the discovery of fluidelastic instability in two-phase flows nearly three decades ago, little is known about the underlying mechanisms when two fluid phases are involved. Current knowledge (the state of the art) is based on the assumption that the nature of fluidelastic instability, and in particular the underlying fluid forces and excitation mechanisms are very similar if not identical to their single phase flow counterparts. There is, however, clear evidence to the contrary. Recent measurements by Mureithi et al.(2002) have shown that the fluid force field can be drastically different for two-phase flows. In particular, the force field is not a simple function of the reduced flow velocity U/fD. In the work reported here, the quasi-static fluid force field is measured in a rotated triangular tube bundle for a series of void fractions and flow velocities. It is found that the reduced velocity U/fD, where U is the homogeneous mixture velocity, does not collapse the data for different void fractions (or correspondingly, fluid densities). The forces are strongly dependent on void fraction, flow rates and relative tube positions. The steady drag increases with void fraction up to approximately 60% void fraction and then gradually decreases at higher void fractions. Besides the force magnitudes, the derivatives of the forces with respect to tube positions also vary significantly with void fraction. These derivatives are particularly important since they represent inter-tube interaction and hence directly affect the stability behavior. The present work uncovers some of the complexity of the fluid force field in two-phase flows. The data are valuable since they are the necessary inputs to the class of quasi-static and quasi-steady fluidelastic instability theoretical models. The application of these models is the longer-term goal of the present work. To the authors' knowledge, this is the first time that the quasi-static force field for two-phase flows is reported
Numerical simulation of inertial two-phase flow in heterogenous media
International Nuclear Information System (INIS)
Ali Akbar ABBASIAN ARANI; Didier LASSEUX; Azita AHMADI
2005-01-01
In this work, we present the development of a 3 D numerical tool for simulation of non-Darcy two-phase flow in heterogeneous porous media. The physical model selected is the generalized Darcy-Forchheimer model. A validation is performed first by comparing numerical results with a semi-analytical solution of the Buckley-Leverett type. Secondly, numerical results obtained on 1 D and 2 D heterogeneous configurations are presented and we highlight the importance of the inertial terms according to a Reynolds number of the flow. (authors)
Numerical simulation for a two-phase porous medium flow problem with rate independent hysteresis
Brokate, M.
2012-05-01
The paper is devoted to the numerical simulation of a multiphase flow in porous medium with a hysteretic relation between the capillary pressures and the saturations of the phases. The flow model we use is based on Darcys law. The hysteretic relation between the capillary pressures and the saturations is described by a play-type hysteresis operator. We propose a numerical algorithm for treating the arising system of equations, discuss finite element schemes and present simulation results for the case of two phases. © 2011 Elsevier B.V. All rights reserved.
Single phase and two-phase flow pressure losses through restrictions, expansions and inserts
International Nuclear Information System (INIS)
Glenat, P.; Solignac, P.
1984-11-01
We give a selection of methods to predict pressure losses through retrictions, expansions and inserts. In single phase flow, we give the classical method based on the one-dimensional momentum and mass balances. In two-phase flow, we propose the method given by Harshe et al. and an empirical approach suggested by Chisholm. We notice the distinction between long and short inserts depends upon wether or not the vena contracta lies within insert. Finally, we propose three correlations to calculate void fraction through the singularities which have been considered [fr
International Nuclear Information System (INIS)
Kiswanta; Edy Sumarno; Joko Prasetio W; Ainur Rosidi; G B Heru K
2013-01-01
Innovation design of BETA test loop has been done. BETA test loop is a research facility used as a support for experiments of reactor accident simulation. The innovation was performed to prepare experimental facilities in order to study flow of heat transfer in single-phase and two-phase flows. The design was executed by modifying new piping of UUB's primary system, addition of heat flux measurements and imaging thermal for easiness of experimental result analysis. UUB development and experiments were carried out to understand heat transfer process in the narrow gap of two-phase flow considering this phenomenon is one of the conditions postulated in PWR typed nuclear power plant accident scenario. The innovation design of BETA test loop is still in the planning stages so that the design has not been constructed. Piping systems made of SS-304 with the ability to use a maximum pressure of 10 bar with a diameter of % inch pipe to, from the calculation of minimal design that is 7.27 mm. If the tube SS-304 - ASTM B88 is the wall thickness of 0.083 inches. From this design it is indicated that the design is able to be fabricated and used for experimental study of heat transfer in single-phase and two-phase flows. (author)
Experimental Determination of Heat Transfer Coefficient in Two-phase Annular Flow
Dressler, Kristofer; Fehring, Brian; Morse, Roman; Livingston-Jha, Simon; Doherty, James; Chan, Jason; Brueggeman, Colby; Berson, Arganthael
2017-11-01
The goal of the presented work is to validate published mechanistic heat transfer models in two-phase annular flow under transient conditions. Annular flow occurs in many steam generation and refrigeration systems. Knowledge of the heat transfer coefficient (HTC) between the wall and the thin liquid film is critical to the design and safe operation of these systems. In heat exchangers with multiple parallel channels, thermal hydraulic instabilities often lead to unsteady flow conditions. The current study is performed in a facility capable of producing pulsed two-phase, single-species annular flow in a heated test section while simultaneously measuring local film thickness and wall temperature using non-intrusive optical techniques. Available correlations between the HTC and wall shear at steady state are compared to our measurements. The HTC can be derived from the known heating power and measured wall temperature, while wall shear is deduced from film thickness measurements. The validity of steady-state correlations under oscillating flow conditions is assessed by performing tests at a variety of pulse frequencies and amplitudes.
Experimental and Analytical Study of Lead-Bismuth-Water Direct Contact Boiling Two-Phase Flow
Novitrian; Dostal, Vaclav; Takahashi, Minoru
The characteristics of lead-bismuth(Pb-Bi)-water boiling two-phase flow were investigated experimentally and analytically using a Pb-Bi-water direct contact boiling two-phase flow loop. Pb-Bi flow rates and void fraction were measured in a vertical circular tube at conditions of system pressure 7MPa, liquid metal temperature 460°C and injected water temperature 220°C. The drift-flux model with the assumption that bubble sizes were dependent on the fluid surface tension and the density ratio of Pb-Bi to steam-water mixture was chosen and modified by the best fit to the measured void fraction. Pb-Bi flow rates were analytically estimated using balance condition between buoyancy force and pressure losses, where the buoyancy force was calculated from void fraction estimated using the modified drift-flux model. The deviation of the analytical results of the flow rates from the experimental ones was less than 10%.
Wiederhold, A.; Boeck, T.; Resagk, C.
2017-08-01
We report a method to detect and to measure the size and velocity of elongated bubbles or drops in a dispersed two-phase flow. The difference of the magnetic susceptibilities between two phases causes a force on the interface between both phases when it is exposed to an external magnetic field. The force is measured with a state-of-the-art electromagnetic compensation balance. While the front and the back of the bubble pass the magnetic field, two peaks in the force signal appear, which can be used to calculate the velocity and geometry parameters of the bubble. We achieve a substantial advantage over other bubble detection techniques because this technique is contactless, non-invasive, independent of the electrical conductivity and can be applied to opaque or aggressive fluids. The measurements are performed in an inclined channel with air bubbles and paraffin oil drops in water. The bubble length is in the range of 0.1-0.25 m and the bubble velocity lies between 0.02-0.22 m s-1. Furthermore we show that it is possible to apply this measurement principle for nondestructive testing (NDT) of diamagnetic and paramagnetic materials like metal, plastics or glass, provided that defects are in the range of 10‒2 m. This technique opens up new possibilities in industrial applications to measure two-phase flow parameters and in material testing.
Central upwind scheme for a compressible two-phase flow model.
Ahmed, Munshoor; Saleem, M Rehan; Zia, Saqib; Qamar, Shamsul
2015-01-01
In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.
Central upwind scheme for a compressible two-phase flow model.
Directory of Open Access Journals (Sweden)
Munshoor Ahmed
Full Text Available In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.
Well-posed Euler model of shock-induced two-phase flow in bubbly liquid
Tukhvatullina, R. R.; Frolov, S. M.
2018-03-01
A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
Energy Technology Data Exchange (ETDEWEB)
Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Daude, F. [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); IMSIA, UMR EDF-CNRS-CEA-ENSTA 9219, Université Paris Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau (France); Koren, B.; Tijsseling, A.S. [Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands)
2017-02-15
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splitting approach. The results are in good agreement with reference results and exact solutions.
Flow regimes of adiabatic gas-liquid two-phase under rolling conditions
Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui
2013-07-01
Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.
Condensation shocks in high momentum two-phase flows in condensing injectors
International Nuclear Information System (INIS)
Anand, G.; Christensen, R.N.
1993-01-01
This study presents a phenomenological and mathematical model of condensation shocks in high momentum two-phase flows in condensing injectors. The characteristics of the shock were related to the mode of vapor bubble collapse. Using cavitation terminology, the bubble collapse can be classified as inertially controlled or thermally controlled. Inertial bubble collapse occurs rapidly whereas, a thermally controlled collapse results in a significantly longer collapse time. The interdependence between the bubble collapse mode and the momentum and pressure of the flow, was analyzed in this study. For low-temperature-high-velocity flows a steep pressure rise with complete condensation was obtained. For a high-temperature-low velocity flow with noncondensables, low pressure recovery with incomplete condensation was observed. These trends are in agreement with previous experimental observations
Average void fraction measurement in a two-phase vertical flow
International Nuclear Information System (INIS)
Mello, R.E.F. de; Behar, M.R.; Martines, E.W.
1975-01-01
The utilization of the radioactive tracer technique to measure the void fraction in a two phase flow air-water is presented. The radioactive tracer used was a salt of Br-82. The water flow rate varied between 0,4 and 2,0 m 3 /h, and the air flow rate between 0,2 and 1,0 m 3 /h. The resulting measured void fraction were between 0,05 and 0,32. These void fraction values were compared with those ones calculated with the measured flow rates and by use of empirical formulas, using different methods. After a convenient choice of the radioactive isotope, the measurements didn't present any special problem. The results have shown a good accordance with the values calculated by the formulas of R. Roumy, but was not possible yet to conclude, about the convenience of application and the grade of confidence of this method
Numerical simulation of two-phase multicomponent flow with reactive transport in porous media
International Nuclear Information System (INIS)
Vostrikov, Viatcheslav
2014-01-01
The subject of this thesis is the numerical simulation of water-gas flow in the subsurface together with chemical reactions. The subject has applications to various situations in environmental modeling, though we are mainly concerned with CO 2 storage in deep saline aquifers. In Carbon Capture and Storage studies, CO 2 is first captured from its sources of origin, transport in liquefied form and injected as gas under high pressure in deep saline aquifers. Numerical simulation is an essential tool to make sure that gaseous CO 2 will remain trapped for several hundreds or thousands of years. Several trapping mechanisms can be brought to bear to achieve this goal. Of particular interest in this thesis are solubility trapping (whereby gaseous CO 2 dissolves in the brine as it moves upward) and, on a longer term, mineral trapping (which causes CO 2 to react with the surrounding rock to form minerals such as calcite). Thus, understanding how CO 2 reacts chemically becomes an important issue for its long term fate. The thesis is composed of four chapters. The first chapter is an introduction to multicomponent two-phase flow in porous media, with or without chemical reactions. It presents a review of the existing literature, and gives an outline of the whole thesis. Chapter 2 presents a quantitative discussion of the physical and chemical phenomena involved, and of their mathematical modeling. The model we use is that of two-phase two-component flow in porous media, coupled to reactive transport. This model leads to a large set of partial differential equations, coupled to algebraic equations, describing the evolution of the concentration of each species at each grid point. A direct solution of this problem (a fully coupled solution) is possible, but presents many difficulties form the numerical point of view. Moreover, it makes it difficult to reuse codes already written, and validated, to simulate the simpler phenomena of (uncoupled) two-phase flow and reactive transport
International Nuclear Information System (INIS)
Yu, Seon Oh
2000-02-01
two-phase pressure drop in a horizontal or a nearly horizontal two-phase flow has been made from the previous and the present experimental works, which cover the wide ranges of experimental parameters. Then, the data have been correlated with the important hydraulic parameters which are selected on the basis of parametric studies and a sensitivity analysis to predict the two-phase pressure drop. The results of the present correlation show a better agreement with experimental data than those of existing correlation. The assessments of the theoretical criterion for onset of CCFL and the interfacial characteristics of two-phase flow obtained from the present study have been performed by introducing them into the analytical model of condensation induced water hammer (CIWH) and obtaining the critical inlet water flow rates of CIWH in a long horizontal pipe. the results of this assessment show that the analytical model of CIWH with the present theoretical criterion and the interfacial characteristics of two-phase flow gives good prediction over the data of both SONG-1 and lzenson et al.'s sample case study with conservatism
Advanced numerical methods for three dimensional two-phase flow calculations
Energy Technology Data Exchange (ETDEWEB)
Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)
1997-07-01
This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.
Capture of circulating tumor cells using photoacoustic flowmetry and two phase flow.
O'Brien, Christine M; Rood, Kyle D; Bhattacharyya, Kiran; DeSouza, Thiago; Sengupta, Shramik; Gupta, Sagar K; Mosley, Jeffrey D; Goldschmidt, Benjamin S; Sharma, Nikhilesh; Viator, John A
2012-06-01
Melanoma is the deadliest form of skin cancer, yet current diagnostic methods are unable to detect early onset of metastatic disease. Patients must wait until macroscopic secondary tumors form before malignancy can be diagnosed and treatment prescribed. Detection of cells that have broken off the original tumor and travel through the blood or lymph system can provide data for diagnosing and monitoring metastatic disease. By irradiating enriched blood samples spiked with cultured melanoma cells with nanosecond duration laser light, we induced photoacoustic responses in the pigmented cells. Thus, we can detect and enumerate melanoma cells in blood samples to demonstrate a paradigm for a photoacoustic flow cytometer. Furthermore, we capture the melanoma cells using microfluidic two phase flow, a technique that separates a continuous flow into alternating microslugs of air and blood cell suspension. Each slug of blood cells is tested for the presence of melanoma. Slugs that are positive for melanoma, indicated by photoacoustic waves, are separated from the cytometer for further purification and isolation of the melanoma cell. In this paper, we evaluate the two phase photoacoustic flow cytometer for its ability to detect and capture metastatic melanoma cells in blood.
Isolation of circulating tumor cells using photoacoustic flowmetry and two phase flow
O'Brien, Christine M.; Rood, Kyle D.; Gupta, Sagar K.; Mosley, Jeffrey D.; Goldschmidt, Benjamin S.; Sharma, Nikhilesh; Sengupta, Shramik; Viator, John A.
2011-03-01
Melanoma is the deadliest form of skin cancer, yet current diagnostic methods are inadequately sensitive. Patients must wait until secondary tumors form before malignancy can be diagnosed and treatment prescribed. Detection of cells that have broken off the original tumor and flow through the blood or lymph system can provide data for diagnosing and monitoring cancer. Our group utilizes the photoacoustic effect to detect metastatic melanoma cells, which contain the pigmented granule melanin. As a rapid laser pulse irradiates melanoma, the melanin undergoes thermo-elastic expansion and ultimately creates a photoacoustic wave. Thus, melanoma patient's blood samples can be enriched, leaving the melanoma in a white blood cell (WBC) suspension. Irradiated melanoma cells produce photoacoustic waves, which are detected with a piezoelectric transducer, while the optically transparent WBCs create no signals. Here we report an isolation scheme utilizing two-phase flow to separate detected melanoma from the suspension. By introducing two immiscible fluids through a t-junction into one flow path, the analytes are compartmentalized. Therefore, the slug in which the melanoma cell is located can be identified and extracted from the system. Two-phase immiscible flow is a label free technique, and could be used for other types of pathological analytes.
Experimental contribution to the improvement of horizontal two-phase flow transition modeling
International Nuclear Information System (INIS)
Ozturk, O.C.
2013-01-01
Several horizontal water-air two-phase adiabatic flows (dispersed bubbly flows and intermittent flows) and their axial evolutions have been studied in the METERO experiment which is consisted of a horizontal circular test section with an internal diameter of 100 mm. Different measurement techniques have been improved and utilized to measure the flow characteristics in order to bring a local description and axial evolution of the flows. The responsible physical mechanisms of the flow regimes and their transitions, particularly the competition between turbulent force and buoyancy force have been explained. The differences between dispersed bubbly flows and intermittent flows have been highlighted and the physical process at the origin of these differences has been explained. Two new dimensionless flow regime maps have been proposed: the first one brings an improvement to the representation of Taitel and Dukler (1976) and proposes new transition criteria. The second novel map takes into account the effects of turbulent and buoyancy forces and the void fraction. (author) [fr
Fundamental experiment on the problem of large, structured rooms with internal two-phase flow
International Nuclear Information System (INIS)
Geweke, M.
1992-01-01
A loss of coolant accident in a pressurized water reactor results in two phase flow in the upper plenum region. Steam will be generated from the fuel elements and will flow upwards into the upper plenum. Water drops will be entrained and transported by the steam and will be deentrained in the upper plenum. The deentrained water and the upflowing steam can lead to a condition defined as countercurrent flow limitation which tends to restrict the water downflow. The aim of this research project is to investigate the co- and countercurrent flow in the upper plenum region. The influence of the internals, which are installed in scale 1:1 and the outlet flow conditions into the hot leg is investigated. The establishing flow regime depends on the volumetric flow rates of gas and liquid and the area in the upper plenum, which is simulated by the arangement of the internals. An increasing gas flow rate causes flooding in the tie plate. A turbulent froth layer is established above the tie plate. A further increase in the gas flow rate causes flooding in the upper plenum. The experimental results are compared with well-known empirical correlations and with the experimental investigations from the UPTF. A suitable measurement technique is developed to measure the local and time-dependent liquid hold-up, the diameter and the velocity of the drops. (orig.) [de
International Nuclear Information System (INIS)
Rybdylova, O.; Osiptsov, A.N.; Sazhin, S.S.; Begg, S.; Heikal, M.
2016-01-01
Highlights: • A meshless method for modelling two-phase flows with phase transition is developed. • Carrier phase parameters are calculated using the vortex and thermal blob methods. • Droplet parameters are calculated using the Lagrangian approach. • The method is verified against the analytical solution for the Lamb vortex. • The method is used to model an impulse two-phase cold jet injected into hot gas. - Abstract: A meshless method for modelling of 2D transient, non-isothermal, gas-droplet flows with phase transitions, based on a combination of the viscous-vortex and thermal-blob methods for the carrier phase with the Lagrangian approach for the dispersed phase, is developed. The one-way coupled, two-fluid approach is used in the analysis. The method makes it possible to avoid the ‘remeshing’ procedure (recalculation of flow parameters from Eulerian to Lagrangian grids) and reduces the problem to the solution of three systems of ordinary differential equations, describing the motion of viscous-vortex blobs, thermal blobs, and evaporating droplets. The gas velocity field is restored using the Biot–Savart integral. The numerical algorithm is verified against the analytical solution for a non-isothermal Lamb vortex and some asymptotic results known in the literature. The method is applied to modelling of an impulse two-phase cold jet injected into a quiescent hot gas, taking into account droplet evaporation. Various flow patterns are obtained in the calculations, depending on the initial droplet size: (i) low-inertia droplets, evaporating at a higher rate, form ring-like structures and are accumulated only behind the vortex pair; (ii) large droplets move closer to the jet axis, with their sizes remaining almost unchanged; and (iii) intermediate-size droplets are accumulated in a curved band whose ends trail in the periphery behind the head of the cloud, with larger droplets being collected at the front of the two-phase region.
Sharma, Abhinav; Tiwari, Vijeet; Kumar, Vineet; Mandal, Tapas Kumar; Bandyopadhyay, Dipankar
2014-10-01
Strategic application of external electrostatic field on a pressure-driven two-phase flow inside a microchannel can transform the stratified or slug flow patterns into droplets. The localized electrohydrodynamic stress at the interface of the immiscible liquids can engender a liquid-dielectrophoretic deformation, which disrupts the balance of the viscous, capillary, and inertial forces of a pressure-driven flow to engender such flow morphologies. Interestingly, the size, shape, and frequency of the droplets can be tuned by varying the field intensity, location of the electric field, surface properties of the channel or fluids, viscosity ratio of the fluids, and the flow ratio of the phases. Higher field intensity with lower interfacial tension is found to facilitate the oil droplet formation with a higher throughput inside the hydrophilic microchannels. The method is successful in breaking down the regular pressure-driven flow patterns even when the fluid inlets are exchanged in the microchannel. The simulations identify the conditions to develop interesting flow morphologies, such as (i) an array of miniaturized spherical or hemispherical or elongated oil drops in continuous water phase, (ii) "oil-in-water" microemulsion with varying size and shape of oil droplets. The results reported can be of significance in improving the efficiency of multiphase microreactors where the flow patterns composed of droplets are preferred because of the availability of higher interfacial area for reactions or heat and mass exchange. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.