Modeling two-phase ferroelectric composites by sequential laminates
International Nuclear Information System (INIS)
Idiart, Martín I
2014-01-01
Theoretical estimates are given for the overall dissipative response of two-phase ferroelectric composites with complex particulate microstructures under arbitrary loading histories. The ferroelectric behavior of the constituent phases is described via a stored energy density and a dissipation potential in accordance with the theory of generalized standard materials. An implicit time-discretization scheme is used to generate a variational representation of the overall response in terms of a single incremental potential. Estimates are then generated by constructing sequentially laminated microgeometries of particulate type whose overall incremental potential can be computed exactly. Because they are realizable, by construction, these estimates are guaranteed to conform with any material constraints, to satisfy all pertinent bounds and to exhibit the required convexity properties with no duality gap. Predictions for representative composite and porous systems are reported and discussed in the light of existing experimental data. (paper)
Energy Technology Data Exchange (ETDEWEB)
Chattopadhyay, Soma; Shibata, Tomohiro [CSRRI-IIT, MRCAT, Sector 10, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kelly, S. D. [EXAFS Analysis, Bolingbrook, Illinois 60440 (United States); Balasubramanian, M. [Sector 20 XOR, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Srinivasan, S. G.; Du, Jincheng; Banerjee, Rajarshi [Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203-5017 (United States); Ayyub, Pushan, E-mail: pushan@tifr.res.in [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005 (India)
2016-02-14
We report a detailed study of the local composition and structure of a model, bi-phasic nanoglass with nominal stoichiometry Cu{sub 55}Nb{sub 45}. Three dimensional atom probe data suggest a nanoscale-phase-separated glassy structure having well defined Cu-rich and Nb-rich regions with a characteristic length scale of ≈3 nm. However, extended x-ray absorption fine structure analysis indicates subtle differences in the local environments of Cu and Nb. While the Cu atoms displayed a strong tendency to cluster and negligible structural order beyond the first coordination shell, the Nb atoms had a larger fraction of unlike neighbors (higher chemical order) and a distinctly better-ordered structural environment (higher topological order). This provides the first experimental indication that metallic glass formation may occur due to frustration arising from the competition between chemical ordering and clustering. These observations are complemented by classical as well as ab initio molecular dynamics simulations. Our study indicates that these nanoscale phase-separated glasses are quite distinct from the single phase nanoglasses (studied by Gleiter and others) in the following three respects: (i) they contain at least two structurally and compositionally distinct, nanodispersed, glassy phases, (ii) these phases are separated by comparatively sharp inter-phase boundaries, and (iii) thermally induced crystallization occurs via a complex, multi-step mechanism. Such materials, therefore, appear to constitute a new class of disordered systems that may be called a composite nanoglass.
International Nuclear Information System (INIS)
Delaje, Dzh.
1984-01-01
General hypothesis used to simplify the equations, describing two-phase flows, are considered. Two-component and one-component models of two-phase flow, as well as Zuber and Findlay model for actual volumetric steam content, and Wallis model, describing the given phase rates, are presented. The conclusion is made, that the two-component model, in which values averaged in time are included, is applicable for the solving of three-dimensional tasks for unsteady two-phase flow. At the same time, using the two-component model, including values, averaged in space only one-dimensional tasks for unsteady two-phase flow can be solved
International Nuclear Information System (INIS)
Lu, W.R.; Gao, C.Y.; Ke, Y.L.
2014-01-01
The two-phase metallic composites, composed by the metallic particulate reinforcing phase and the metallic matrix phase, have attracted a lot of attention in recent years for their excellent material properties. However, the constitutive modeling of two-phase metallic composites is still lacking currently. Most used models for them are basically oriented for single-phase homogeneous metallic materials, and have not considered the microstructural evolution of the components in the composite. This paper develops a new constitutive model for two-phase metallic composites based on the thermally activated dislocation motion mechanism and the volume fraction evolution. By establishing the relation between microscopic volume fraction and macroscopic state variables (strain, strain rate and temperature), the evolution law of volume fraction during the plastic deformation in two-phase composites is proposed for the first time and introduced into the new model. Then the new model is applied to a typical two-phase tungsten-based composite – 93W–4.9Ni–2.1Fe tungsten heavy alloy. It has been found that our model can effectively describe the plastic deformation behaviors of the tungsten-based composite, because of the introduction of volume fraction evolution and the connecting of macroscopic state variables and micromechanical characteristics in the constitutive model. The model's validation by experimental data indicates that our new model can provide a satisfactory prediction of flow stress for two-phase metallic composites, which is better than conventional single-phase homogeneous constitutive models including the Johnson–Cook (JC), Khan–Huang–Liang (KHL), Nemat-Nasser–Li (NNL), Zerilli–Armstrong (ZA) and Voyiadjis–Abed (VA) models
International Nuclear Information System (INIS)
Wang, J.A.
1996-01-01
Ultrasonic methods used in the study of radiation damage and recovery in single crystals appear to also be useful for similar studies on polycrystalline alloys. Ultrasonic methods have demonstrated a sensitivity to radiation damage as affected by neutron fluence, irradiation temperature, large changes in composition, and possibly, as well, by neutron energy spectrum. On the microstructure defect evolution, only the residual defects created through the radiation event will contribute to the final macroscopic material property change. From a microstructure point, it is generally accepted that radiation hardening and embrittlement in metals are caused by clusters of vacancies, interstitial, and solute atoms that impede the motion of slip dislocations. Although vacancy-type defects are a major contributor to the material hardening, they also indicate the presence of other interstitial defects. Thus the total volume change of vacancy-type defects before and after irradiation can serve as a direct index to the final material property changes. The volume change of the vacancy-type defects can be determined by utilizing the two -phase composite model (matrix and void-type inclusion) to interpret wave velocities of baseline and irradiated specimens that are obtained from the ultrasonic wave experiment. This is a relatively economic and straightforward procedure. The correlation of the volume change of the vacancy-type defects with the existing destructive mechanical test results may play an important role in the future for the prediction of the radiation embrittlement and remaining plant lifetime, especially for the older plants on the verge of exhausting all the available mechanical test specimens loaded in the surveillance capsules. The above hypothesis was supported by the limited irradiated data analyzed and presented in his paper. The proposed ultrasonic methodology also has a potential application to assess creep damage in fossil power plants
Modelling aspects of two phase flow
International Nuclear Information System (INIS)
Mayinger, F.
1977-01-01
In two phase flow scaling is much more limited to very narrowly defined physical phenomena than in single phase fluids. For complex and combined phenomena it can be achieved not by using dimensionless numbers alone but in addition a detailed mathematical description of the physical problem - usually in the form of a computer program - must be available. An important role plays the scaling of the thermodynamic data of the modelling fluid. From a literature survey and from own scaling experiments the conclusion can be drawn that Freon is a quite suitable modelling fluid for scaling steam-water mixtures. However, whithout a theoretical description of the phenomena nondimensional numbers for scaling two phase flow must be handled very carefully. (orig.) [de
Modeling of two-phase slug flow
International Nuclear Information System (INIS)
Fabre, J.; Line, A.
1992-01-01
When gas and liquid flow in a pipe, over a range of flow rates, a flow pattern results in which sequences of long bubbles, almost filling the pipe cross section, are successively followed by liquid slugs that may contain small bubbles. This flow pattern, usually called slug flow, is encountered in numerous practical situations, such as in the production of hydrocarbons in wells and their transportation in pipelines; the production of steam and water in geothermal power plants; the boiling and condensation in liquid-vapor systems of thermal power plants; emergency core cooling of nuclear reactors; heat and mass transfer between gas and liquid in chemical reactors. This paper provides a review of two phase slug flow modeling
Rosatti, Giorgio; Zugliani, Daniel
2015-03-01
In a two-phase free-surface flow, the transition from a mobile-bed condition to a fixed-bed one (and vice versa) occurs at a sharp interface across which the relevant system of partial differential equations changes abruptly. This leads to the possibility of conceiving a new type of Riemann Problem (RP), which we have called Composite Riemann Problem (CRP), where not only the initial constant values of the variables but also the system of equations change from left to right of a discontinuity. In this paper, we present a strategy for solving a CRP by reducing it to a standard RP of a single, composite system of equations. This can be obtained by combining the two original systems by means of a suitable weighting function, namely the erodibility variable, and the introduction of an appropriate differential equation for this quantity. In this way, the CRP problem can be analyzed theoretically with standard methods, and the features of the solutions can be clearly identified. In particular, a stationary contact wave is able to correctly describe the sharp transition between mobile- and fixed-bed conditions. A finite volume scheme based on the Multiple Averages Generalized Roe approach (Rosatti and Begnudelli (2013) [22]) was used to numerically solve the fixed-mobile CRP. Several test cases demonstrate the effectiveness, exact well balanceness and high accuracy of the scheme when applied to problems that fall within the physical range of applicability of the relevant mathematical model.
Mathematical modelling of two-phase flows
International Nuclear Information System (INIS)
Komen, E.M.J.; Stoop, P.M.
1992-11-01
A gradual shift from methods based on experimental correlations to methods based on mathematical models to study 2-phase flows can be observed. The latter can be used to predict dynamical behaviour of 2-phase flows. This report discusses various mathematical models for the description of 2-phase flows. An important application of these models can be found in thermal-hydraulic computer codes used for analysis of the thermal-hydraulic behaviour of water cooled nuclear power plants. (author). 17 refs., 7 figs., 6 tabs
Stochastic modelling of two-phase flows including phase change
International Nuclear Information System (INIS)
Hurisse, O.; Minier, J.P.
2011-01-01
Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)
Two-phase-flow models and their limitations
International Nuclear Information System (INIS)
Ishii, M.; Kocamustafaogullari, G.
1982-01-01
An accurate prediction of transient two-phase flow is essential to safety analyses of nuclear reactors under accident conditions. The fluid flow and heat transfer encountered are often extremely complex due to the reactor geometry and occurrence of transient two-phase flow. Recently considerable progresses in understanding and predicting these phenomena have been made by a combination of rigorous model development, advanced computational techniques, and a number of small and large scale supporting experiments. In view of their essential importance, the foundation of various two-phase-flow models and their limitations are discussed in this paper
Modeling two-phase flow in PEM fuel cell channels
Energy Technology Data Exchange (ETDEWEB)
Wang, Yun; Basu, Suman; Wang, Chao-Yang [Electrochemical Engine Center (ECEC), and Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)
2008-05-01
This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M{sup 2} formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels. (author)
Two-phase flow model with nonequilibrium and critical flow
International Nuclear Information System (INIS)
Sureau, H.; Houdayer, G.
1976-01-01
The model proposed includes the three conservation equations (mass, momentum, energy) applied to the two phase flows and a fourth partial derivative equation which takes into account the nonequilibriums and describes the mass transfer process. With this model, the two phase critical flow tests performed on the Moby-Dick loop (CENG) with several geometries, are interpreted by a unique law. Extrapolations to industrial dimension problems show that geometry and size effects are different from those obtained with earlier models (Zaloudek, Moody, Fauske) [fr
A void fraction model for annular two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Tandon, T.N.; Gupta, C.P.; Varma, H.K.
1985-01-01
An analytical model has been developed for predicting void fraction in two-phase annular flow. In the analysis, the Lockhart-Martinelli method has been used to calculate two-phase frictional pressure drop and von Karman's universal velocity profile is used to represent the velocity distribution in the annular liquid film. Void fractions predicted by the proposed model are generally in good agreement with a available experimental data. This model appears to be as good as Smith's correlation and better than the Wallis and Zivi correlations for computing void fraction.
Mathematical modeling of disperse two-phase flows
Morel, Christophe
2015-01-01
This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, a...
Two-phase flow models in unbounded two-phase critical flows
International Nuclear Information System (INIS)
Celata, G.P.; Cumo, M.; Farello, G.E.
1985-01-01
With reference to a Loss-of-Coolant Accident in Light Water Reactors, an analysis of the unbounded two-phase critical flow (i.e. the issuing two-phase jet) has been accomplished. Considering jets external shape, obtained by means of photographic pictures; pressure profiles inside the jet, obtained by means of a movable ''Pitot;'' and jet phases distribution information, obtained by means of X-rays pictures; a characterization of the flow pattern in the unbounded region of a two-phase critical flow is given. Jets X-ray pictures show the existence of a central high density ''core'' gradually evaporating all around, which gives place to a characteristic ''dartflow'' the length of which depends on stagnation thermodynamic conditions
Mathematical modeling and the two-phase constitutive equations
International Nuclear Information System (INIS)
Boure, J.A.
1975-01-01
The problems raised by the mathematical modeling of two-phase flows are summarized. The models include several kinds of equations, which cannot be discussed independently, such as the balance equations and the constitutive equations. A review of the various two-phase one-dimensional models proposed to date, and of the constitutive equations they imply, is made. These models are either mixture models or two-fluid models. Due to their potentialities, the two-fluid models are discussed in more detail. To avoid contradictions, the form of the constitutive equations involved in two-fluid models must be sufficiently general. A special form of the two-fluid models, which has particular advantages, is proposed. It involves three mixture balance equations, three balance equations for slip and thermal non-equilibriums, and the necessary constitutive equations [fr
Stability of equilibria for a two-phase osmosis model
Lippoth, F.; Prokert, G.
2012-01-01
For a two-phase moving boundary problem modelling the motion of a semipermeable membrane by osmotic pressure and surface tension, we prove that the manifold of equilibria is locally exponentially attractive. Our method relies on maximal regularity results for parabolic systems with relaxation type
Two Phase Flow Split Model for Parallel Channels | Iloeje | Nigerian ...
African Journals Online (AJOL)
The model and code are capable of handling single and two phase flows, steady states and transients, up to ten parallel flow paths, simple and complicated geometries, including the boilers of fossil steam generators and nuclear power plants. A test calculation has been made with a simplified three-channel system ...
A semi-empirical two phase model for rocks
International Nuclear Information System (INIS)
Fogel, M.B.
1993-01-01
This article presents data from an experiment simulating a spherically symmetric tamped nuclear explosion. A semi-empirical two-phase model of the measured response in tuff is presented. A comparison is made of the computed peak stress and velocity versus scaled range and that measured on several recent tuff events
Modeling and numerical study of two phase flow
International Nuclear Information System (INIS)
Champmartin, A.
2011-01-01
This thesis describes the modelization and the simulation of two-phase systems composed of droplets moving in a gas. The two phases interact with each other and the type of model to consider directly depends on the type of simulations targeted. In the first part, the two phases are considered as fluid and are described using a mixture model with a drift relation (to be able to follow the relative velocity between the two phases and take into account two velocities), the two-phase flows are assumed at the equilibrium in temperature and pressure. This part of the manuscript consists of the derivation of the equations, writing a numerical scheme associated with this set of equations, a study of this scheme and simulations. A mathematical study of this model (hyperbolicity in a simplified framework, linear stability analysis of the system around a steady state) was conducted in a frame where the gas is assumed baro-tropic. The second part is devoted to the modelization of the effect of inelastic collisions on the particles when the time of the simulation is shorter and the droplets can no longer be seen as a fluid. We introduce a model of inelastic collisions for droplets in a spray, leading to a specific Boltzmann kernel. Then, we build caricatures of this kernel of BGK type, in which the behavior of the first moments of the solution of the Boltzmann equation (that is mass, momentum, directional temperatures, variance of the internal energy) are mimicked. The quality of these caricatures is tested numerically at the end. (author) [fr
Macroscopic balance equations for two-phase flow models
International Nuclear Information System (INIS)
Hughes, E.D.
1979-01-01
The macroscopic, or overall, balance equations of mass, momentum, and energy are derived for a two-fluid model of two-phase flows in complex geometries. These equations provide a base for investigating methods of incorporating improved analysis methods into computer programs, such as RETRAN, which are used for transient and steady-state thermal-hydraulic analyses of nuclear steam supply systems. The equations are derived in a very general manner so that three-dimensional, compressible flows can be analysed. The equations obtained supplement the various partial differential equation two-fluid models of two-phase flow which have recently appeared in the literature. The primary objective of the investigation is the macroscopic balance equations. (Auth.)
A study of critical two-phase flow models
International Nuclear Information System (INIS)
Siikonen, T.
1982-01-01
The existing computer codes use different boundary conditions in the calculation of critical two-phase flow. In the present study these boundary conditions are compared. It is shown that the boundary condition should be determined from the hydraulic model used in the computer code. The use of a correlation, which is not based on the hydraulic model used, leads often to bad results. Usually a good agreement with data is obtained in the calculation as far as the critical mass flux is concerned, but the agreement is not so good in the pressure profiles. The reason is suggested to be mainly in inadequate modeling of non-equilibrium effects. (orig.)
Dynamic modelling for two-phase flow systems
International Nuclear Information System (INIS)
Guerra, M.A.
1991-06-01
Several models for two-phase flow have been studied, developing a thermal-hydraulic analysis code with one of these models. The program calculates, for one-dimensional cases with variable flow area, the transient behaviour of system process variables, when the boundary conditions (heat flux, flow rate, enthalpy and pressure) are functions of time. The modular structure of the code, eases the program growth. In fact, the present work is the basis for a general purpose accident and transient analysis code in nuclear reactors. Code verification has been made against RETRAN-02 results. Satisfactory results have been achieved with the present version of the code. (Author) [es
Reduced order modeling of flashing two-phase jets
Energy Technology Data Exchange (ETDEWEB)
Gurecky, William, E-mail: william.gurecky@utexas.edu; Schneider, Erich, E-mail: eschneider@mail.utexas.edu; Ballew, Davis, E-mail: davisballew@utexas.edu
2015-12-01
Highlights: • Accident simulation requires ability to quickly predict two-phase flashing jet's damage potential. • A reduced order modeling methodology informed by experimental or computational data is described. • Zone of influence volumes are calculated for jets of various upstream thermodynamic conditions. - Abstract: In the event of a Loss of Coolant Accident (LOCA) in a pressurized water reactor, the escaping coolant produces a highly energetic flashing jet with the potential to damage surrounding structures. In LOCA analysis, the goal is often to evaluate many break scenarios in a Monte Carlo style simulation to evaluate the resilience of a reactor design. Therefore, in order to quickly predict the damage potential of flashing jets, it is of interest to develop a reduced order model that relates the damage potential of a jet to the pressure and temperature upstream of the break and the distance from the break to a given object upon which the jet is impinging. This work presents framework for producing a Reduced Order Model (ROM) that may be informed by measured data, Computational Fluid Dynamics (CFD) simulations, or a combination of both. The model is constructed by performing regression analysis on the pressure field data, allowing the impingement pressure to be quickly reconstructed for any given upstream thermodynamic condition within the range of input data. The model is applicable to both free and fully impinging two-phase flashing jets.
Lattice Boltzmann model for simulating immiscible two-phase flows
International Nuclear Information System (INIS)
Reis, T; Phillips, T N
2007-01-01
The lattice Boltzmann equation is often promoted as a numerical simulation tool that is particularly suitable for predicting the flow of complex fluids. This paper develops a two-dimensional 9-velocity (D2Q9) lattice Boltzmann model for immiscible binary fluids with variable viscosities and density ratio using a single relaxation time for each fluid. In the macroscopic limit, this model is shown to recover the Navier-Stokes equations for two-phase flows. This is achieved by constructing a two-phase component of the collision operator that induces the appropriate surface tension term in the macroscopic equations. A theoretical expression for surface tension is determined. The validity of this analysis is confirmed by comparing numerical and theoretical predictions of surface tension as a function of density. The model is also shown to predict Laplace's law for surface tension and Poiseuille flow of layered immiscible binary fluids. The spinodal decomposition of two fluids of equal density but different viscosity is then studied. At equilibrium, the system comprises one large low viscosity bubble enclosed by the more viscous fluid in agreement with theoretical arguments of Renardy and Joseph (1993 Fundamentals of Two-Fluid Dynamics (New York: Springer)). Two other simulations, namely the non-equilibrium rod rest and the coalescence of two bubbles, are performed to show that this model can be used to simulate two fluids with a large density ratio
Interfacial shear modeling in two-phase annular flow
International Nuclear Information System (INIS)
Kumar, R.; Edwards, D.P.
1996-11-01
A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment
Interfacial shear modeling in two-phase annular flow
International Nuclear Information System (INIS)
Kumar, R.; Edwards, D.P.
1996-07-01
A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment
Developing two-phase flow modelling concepts for rock fractures
Energy Technology Data Exchange (ETDEWEB)
Keto, V. (Fortum Nuclear Services Oy, Espoo (Finland))
2010-01-15
The Finnish nuclear waste disposal company, Posiva Oy, is planning an underground repository for spent nuclear fuel to be constructed on the island of Olkiluoto on the south-west coast of Finland. One element of the site investigations conducted at Olkiluoto is the excavation of the underground rock characterisation facility (ONKALO) that will be extended to the final disposal depth (approximately -400 m). The bedrock around the excavated tunnel volume is fully saturated with groundwater, which water commonly contains a mixture of dissolved gases. These gases remain dissolved due to the high hydrostatic pressure. During tunnel excavation work the natural hydrostatic pressure field is disturbed and the water pressure will decrease close to the atmospheric pressure in the immediate vicinity of the tunnel. During this pressure drop two-phase flow conditions (combined flow of both water and gas) may develop in the vicinity of the underground opening, as the dissolved gas is exsoluted under the low pressure (the term exsolution refers here to release of the dissolved gas molecules from the water phase into a separate gas phase). This report steers towards concept development for numerical two-phase flow modeling for fractured rock. The focus is on the description of gas phase formation process under disturbed hydraulic conditions by exsolution of dissolved gases from groundwater, and on understanding the effects of a possibly formed gas phase on groundwater flow conditions in rock fractures. A mathematical model of three mutually coupled nonlinear partial differential equations for two-phase flow is presented and corresponding constitutional relationships are introduced and discussed. Illustrative numerical simulations are performed in a simplified setting using COMSOL Multiphysics 3.5a - software package. Shortcomings and conceptual problems are discussed. (orig.)
Developing two-phase flow modelling concepts for rock fractures
International Nuclear Information System (INIS)
Keto, V.
2010-01-01
The Finnish nuclear waste disposal company, Posiva Oy, is planning an underground repository for spent nuclear fuel to be constructed on the island of Olkiluoto on the south-west coast of Finland. One element of the site investigations conducted at Olkiluoto is the excavation of the underground rock characterisation facility (ONKALO) that will be extended to the final disposal depth (approximately -400 m). The bedrock around the excavated tunnel volume is fully saturated with groundwater, which water commonly contains a mixture of dissolved gases. These gases remain dissolved due to the high hydrostatic pressure. During tunnel excavation work the natural hydrostatic pressure field is disturbed and the water pressure will decrease close to the atmospheric pressure in the immediate vicinity of the tunnel. During this pressure drop two-phase flow conditions (combined flow of both water and gas) may develop in the vicinity of the underground opening, as the dissolved gas is exsoluted under the low pressure (the term exsolution refers here to release of the dissolved gas molecules from the water phase into a separate gas phase). This report steers towards concept development for numerical two-phase flow modeling for fractured rock. The focus is on the description of gas phase formation process under disturbed hydraulic conditions by exsolution of dissolved gases from groundwater, and on understanding the effects of a possibly formed gas phase on groundwater flow conditions in rock fractures. A mathematical model of three mutually coupled nonlinear partial differential equations for two-phase flow is presented and corresponding constitutional relationships are introduced and discussed. Illustrative numerical simulations are performed in a simplified setting using COMSOL Multiphysics 3.5a - software package. Shortcomings and conceptual problems are discussed. (orig.)
Unsteady interfacial coupling of two-phase flow models
International Nuclear Information System (INIS)
Hurisse, O.
2006-01-01
The primary coolant circuit in a nuclear power plant contains several distinct components (vessel, core, pipes,...). For all components, specific codes based on the discretization of partial differential equations have already been developed. In order to obtain simulations for the whole circuit, the interfacial coupling of these codes is required. The approach examined within this work consists in coupling codes by providing unsteady information through the coupling interface. The numerical technique relies on the use of an interface model, which is combined with the basic strategy that was introduced by Greenberg and Leroux in order to compute approximations of steady solutions of non-homogeneous hyperbolic systems. Three different coupling cases have been examined: (i) the coupling of a one-dimensional Euler system with a two-dimensional Euler system; (ii) the coupling of two distinct homogeneous two-phase flow models; (iii) the coupling of a four-equation homogeneous model with the standard two-fluid model. (author)
Mathematical model of two-phase flow in accelerator channel
Directory of Open Access Journals (Sweden)
О.Ф. Нікулін
2010-01-01
Full Text Available The problem of two-phase flow composed of energy-carrier phase (Newtonian liquid and solid fine-dispersed phase (particles in counter jet mill accelerator channel is considered. The mathematical model bases goes on the supposition that the phases interact with each other like independent substances by means of aerodynamics’ forces in conditions of adiabatic flow. The mathematical model in the form of system of differential equations of order 11 is represented. Derivations of equations by base physical principles for cross-section-averaged quantity are produced. The mathematical model can be used for estimation of any kinematic and thermodynamic flow characteristics for purposely parameters optimization problem solving and transfer functions determination, that take place in counter jet mill accelerator channel design.
A turbulent two-phase flow model for nebula flows
International Nuclear Information System (INIS)
Champney, J.M.; Cuzzi, J.N.
1990-01-01
A new and very efficient turbulent two-phase flow numericaly model is described to analyze the environment of a protoplanetary nebula at a stage prior to the formation of planets. Focus is on settling processes of dust particles in flattened gaseous nebulae. The model employs a perturbation technique to improve the accuracy of the numerical simulations of such flows where small variations of physical quantities occur over large distance ranges. The particles are allowed to be diffused by gas turbulence in addition to settling under gravity. Their diffusion coefficients is related to the gas turbulent viscosity by the non-dimensional Schmidt number. The gas turbulent viscosity is determined by the means of the eddy viscosity hypothesis that assumes the Reynolds stress tensor proportional to the mean strain rate tensor. Zero- and two-equation turbulence models are employed. Modeling assumptions are detailed and discussed. The numerical model is shown to reproduce an existing analytical solution for the settling process of particles in an inviscid nebula. Results of nebula flows are presented taking into account turbulence effects of nebula flows. Diffusion processes are found to control the settling of particles. 24 refs
A two-phase model of aquifer heterogeneity
International Nuclear Information System (INIS)
Moltyaner, G.L.
1994-11-01
A two-phase model of a fluid-saturated geologic medium is developed with groundwater velocity (rather than the hydraulic conductivity) as the primary model parameter. The model describes the groundwater flow, contaminant transport processes, and geologic medium structure at the local-scale of a continuum representation and relates structure to processes quantitatively. In this model, the heterogeneity of a geologic medium is characterized either in terms of the spatial variability in the bulk (local-scale) fluid density and sediment density, or in terms of variability in the local-scale porosity and effective grain diameter. The local-scale continuity equations resulting from these properties are derived for both phases. The effective grain diameter is employed to quantify the geologic structure. Velocity is employed to quantify the transport process. Since structure controls process, a high correlation is observed between the effective grain diameter and velocity. The observed correlation leads to a new formulation of Darcy's law without invoking the concept of a fictitious (Darcy's) velocity. The local-scale groundwater flow equation is developed on the basis of the new formulation. (author). 16 refs., 4 figs
International Nuclear Information System (INIS)
Yonomoto, Taisuke; Tasaka, Kanji
1988-01-01
A theoretical and experimental study was conducted to understand two-phase flow discharged from a stratified two-phase region through a small break. This problem is important for an analysis of a small break loss-of-coolant accident (LOCA) in a light water reactor (LWR). The present theoretical results show that a break quality is a function of h/h b , where h is the elevation difference between a bulk water level in the upstream region and break and b the suffix for entrainment initiation. This result is consistent with existing eperimental results in literature. An air-water experiment was also conducted changing a break orientation as an experimental parameter to develop and assess the model. Comparisons between the model and the experimental results show that the present model can satisfactorily predict the flow rate and the quality at the break without using any adjusting constant when liquid entrainment occurs in a stratified two-phase region. When gas entrainment occurs, the experimental data are correlated well by using a single empirical constant. (author)
Tenney, D. R.
1974-01-01
The progress of diffusion-controlled filament-matrix interaction in a metal matrix composite where the filaments and matrix comprise a two-phase binary alloy system was studied by mathematically modeling compositional changes resulting from prolonged elevated temperature exposure. The analysis treats a finite, diffusion-controlled, two-phase moving-interface problem by means of a variable-grid finite-difference technique. The Ni-W system was selected as an example system. Modeling was carried out for the 1000 to 1200 C temperature range for unidirectional composites containing from 6 to 40 volume percent tungsten filaments in a Ni matrix. The results are displayed to show both the change in filament diameter and matrix composition as a function of exposure time. Compositional profiles produced between first and second nearest neighbor filaments were calculated by superposition of finite-difference solutions of the diffusion equations.
Development of two-phase Flow Model, 'SOBOIL', for Sodium
International Nuclear Information System (INIS)
Hahn, Do Hee; Chang, Won Pyo; Kim, In Chul; Kwon, Young Min; Lee, Yong Bum
2000-03-01
The objective of this research is to develop a sodium two-phase flow analysis model, 'SOBOIL', for the assessment of the initial stage of the KALIMER HCDA (Hypotherical Core Disruptive Accident). The 'SOBOIL' is basically similar to the multi-bubble slug ejection model used in SAS2A[1]. When a bubble is formed within the liquid slug, the bubble fills the whole cross section of the coolant channel except for a film left on the cladding or on the structure. Up to nine bubbles, separated by the liquid slugs, are allowed in the channel at any time. Each liquid slug flow rate in the model is performed in 2 steps. In the first step, the preliminary flow rate in the liquid slug is calculated neglecting the effect of changes in the vapor bubble pressures over the time step. The temperature and pressure distributions, and interface velocity at the interface between the liquid slug and vapor bubble are also calculated during this process. The new vapor temperature and pressure are then determined from the balance between the net energy transferred into the vapor and the change of the vapor energy. The liquid flow is finally calculated considering the change of the vapor pressure over a time step and the calculation is repeated until specified elapsed time is met. Continuous effort, therefore, must be made on the examination and improvement for the model to become reliable. To this end, much interest must be concentrated in the relevant international collaborations for access to a reference model or test data for the verification
Dynamic Modeling of Phase Crossings in Two-Phase Flow
DEFF Research Database (Denmark)
Madsen, Søren; Veje, Christian; Willatzen, Morten
2012-01-01
by a high resolution finite difference scheme due to Kurganov and Tadmore. The homogeneous formulation requires a set of thermodynamic relations to cover the entire range from liquid to gas state. This leads a number of numerical challenges since these relations introduce discontinuities in the derivative...... of the variables and are usually very slow to evaluate. To overcome these challenges, we use an interpolation scheme with local refinement. The simulations show that the method handles crossing of the saturation lines for both liquid to two-phase and two-phase to gas regions. Furthermore, a novel result obtained...
Efficient and robust compositional two-phase reservoir simulation in fractured media
Zidane, A.; Firoozabadi, A.
2015-12-01
Compositional and compressible two-phase flow in fractured media has wide applications including CO2 injection. Accurate simulations are currently based on the discrete fracture approach using the cross-flow equilibrium model. In this approach the fractures and a small part of the matrix blocks are combined to form a grid cell. The major drawback is low computational efficiency. In this work we use the discrete-fracture approach to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross-flow equilibrium in the fractures (FCFE). This allows using large matrix elements in the neighborhood of the fractures. We solve the fracture transport equations implicitly to overcome the Courant-Freidricks-Levy (CFL) condition in the small fracture elements. Our implicit approach is based on calculation of the derivative of the molar concentration of component i in phase (cαi ) with respect to the total molar concentration (ci ) at constant volume V and temperature T. This contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix, and a finite volume (FV) discretization in the fractures. In large scale problems the proposed approach is orders of magnitude faster than the existing models.
Superplastic flow of two-phase ceramics containing rigid inclusions-zirconia/mullite composites
International Nuclear Information System (INIS)
Yoon, C.K.; Chen, I.W.
1990-01-01
A continuum theory for non-newtonian flow of a two-phase composite containing rigid inclusions is presented. It predicts flow suppression by a factor of (1 - V) q , where V is the volume fraction of the rigid inclusion and q depends on the stress exponent and the inclusion shape. Stress concentrations in the rigid inclusion have also been evaluated. As the stress exponent increases, flow suppression is more pronounced even though stress concentration is less severe. To test this theory, superplastic flow of zirconia/mullite composites, in which zirconia is a soft, non-Newtonian super-plastic matrix and mullite is a rigid phase of various size, shape, and amount, is studied. The continuum theory is found to describe the two-phase superplastic flow reasonably well
Numerical modeling of two-phase transonic flow
Czech Academy of Sciences Publication Activity Database
Halama, Jan; Benkhaldoun, F.; Fořt, Jaroslav
2010-01-01
Roč. 80, č. 88 (2010), s. 1624-1635 ISSN 0378-4754 Grant - others:GA ČR(CZ) GA201/08/0012 Program:GA Institutional research plan: CEZ:AV0Z20760514 Keywords : two - phase flow * condensation * fractional step method Subject RIV: BK - Fluid Dynamics Impact factor: 0.812, year: 2010 http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6V0T-4VNK68X-2-R&_cdi=5655&_user=640952&_pii=S0378475409000421&_origin=search&_coverDate=04%2F30%2F2010&_sk=999199991&view=c&wchp=dGLzVlb-zSkWb&md5=5ba607428fac339a3e5f67035d3996d0&ie=/sdarticle.pdf
Dynamics Coefficient for Two-Phase Soil Model
Directory of Open Access Journals (Sweden)
Wrana Bogumił
2015-02-01
Full Text Available The paper investigates a description of energy dissipation within saturated soils-diffusion of pore-water. Soils are assumed to be two-phase poro-elastic materials, the grain skeleton of which exhibits no irreversible behavior or structural hysteretic damping. Description of motion and deformation of soil is introduced as a system of equations consisting of governing dynamic consolidation equations based on Biot theory. Selected constitutive and kinematic relations for small strains and rotation are used. This paper derives a closed form of analytical solution that characterizes the energy dissipation during steady-state vibrations of nearly and fully saturated poro-elastic columns. Moreover, the paper examines the influence of various physical factors on the fundamental period, maximum amplitude and the fraction of critical damping of the Biot column. Also the so-called dynamic coefficient which shows amplification or attenuation of dynamic response is considered.
Models for assessing the relative phase velocity in a two-phase flow. Status report
International Nuclear Information System (INIS)
Schaffrath, A.; Ringel, H.
2000-06-01
The knowledge of slip or drift flux in two phase flow is necessary for several technical processes (e.g. two phase pressure losses, heat and mass transfer in steam generators and condensers, dwell period in chemical reactors, moderation effectiveness of two phase coolant in BWR). In the following the most important models for two phase flow with different phase velocities (e.g. slip or drift models, analogy between pressure loss and steam quality, ε - ε models and models for the calculation of void distribution in reposing fluids) are classified, described and worked up for a further comparison with own experimental data. (orig.)
A simple delay model for two-phase flow dynamics
Energy Technology Data Exchange (ETDEWEB)
Clausse, A.; Delmastro, D.F.; Juanico`, L.E. [Centro Atomico Bariloche (Argentina)
1995-09-01
A model based in delay equations for density-wave oscillations is presented. High Froude numbers and moderate ones were considered. The equations were numerically analyzed and compared with more sophisticated models. The influence of the gravity term was studied. Different kinds of behavior were found, particularly sub-critical and super-critical Hopf bifurcations. Moreover the present approach can be used to better understand the complicated dynamics of boiling flows systems.
Mathematical models for two-phase stratified pipe flow
Energy Technology Data Exchange (ETDEWEB)
Biberg, Dag
2005-06-01
The simultaneous transport of oil, gas and water in a single multiphase flow pipe line has for economical and practical reasons become common practice in the gas and oil fields operated by the oil industry. The optimal design and safe operation of these pipe lines require reliable estimates of liquid inventory, pressure drop and flow regime. Computer simulations of multiphase pipe flow have thus become an important design tool for field developments. Computer simulations yielding on-line monitoring and look ahead predictions are invaluable in day-to-day field management. Inaccurate predictions may have large consequences. The accuracy and reliability of multiphase pipe flow models are thus important issues. Simulating events in large pipelines or pipeline systems is relatively computer intensive. Pipe-lines carrying e.g. gas and liquefied gas (condensate) may cover distances of several hundred km in which transient phenomena may go on for months. The evaluation times associated with contemporary 3-D CFD models are thus not compatible with field applications. Multiphase flow lines are therefore normally simulated using specially dedicated 1-D models. The closure relations of multiphase pipe flow models are mainly based on lab data. The maximum pipe inner diameter, pressure and temperature in a multiphase pipe flow lab is limited to approximately 0.3 m, 90 bar and 60{sup o}C respectively. The corresponding field values are, however, much higher i.e.: 1 m, 1000 bar and 200{sup o}C respectively. Lab data does thus not cover the actual field conditions. Field predictions are consequently frequently based on model extrapolation. Applying field data or establishing more advanced labs will not solve this problem. It is in fact not practically possible to acquire sufficient data to cover all aspects of multiphase pipe flow. The parameter range involved is simply too large. Liquid levels and pressure drop in three-phase flow are e.g. determined by 13 dimensionless parameters
Homogeneous non-equilibrium two-phase critical flow model
International Nuclear Information System (INIS)
Schroeder, J.J.; Vuxuan, N.
1987-01-01
An important aspect of nuclear and chemical reactor safety is the ability to predict the maximum or critical mass flow rate from a break or leak in a pipe system. At the beginning of such a blowdown, if the stagnation condition of the fluid is subcooled or slightly saturated thermodynamic non-equilibrium exists in the downstream, e.g. the fluid becomes superheated to a degree determined by the liquid pressure. A simplified non-equilibrium model, explained in this report, is valid for rapidly decreasing pressure along the flow path. It presumes that fluid has to be superheated by an amount governed by physical principles before it starts to flash into steam. The flow is assumed to be homogeneous, i.e. the steam and liquid velocities are equal. An adiabatic flow calculation mode (Fanno lines) is employed to evaluate the critical flow rate for long pipes. The model is found to satisfactorily describe critical flow tests. Good agreement is obtained with the large scale Marviken tests as well as with small scale experiments. (orig.)
Parallel two-phase-flow-induced vibrations in fuel pin model
International Nuclear Information System (INIS)
Hara, Fumio; Yamashita, Tadashi
1978-01-01
This paper reports the experimental results of vibrations of a fuel pin model -herein meaning the essential form of a fuel pin from the standpoint of vibration- in a parallel air-and-water two-phase flow. The essential part of the experimental apparatus consisted of a flat elastic strip made of stainless steel, both ends of which were firmly supported in a circular channel conveying the two-phase fluid. Vibrational strain of the fuel pin model, pressure fluctuation of the two-phase flow and two-phase-flow void signals were measured. Statistical measures such as power spectral density, variance and correlation function were calculated. The authors obtained (1) the relation between variance of vibrational strain and two-phase-flow velocity, (2) the relation between variance of vibrational strain and two-phase-flow pressure fluctuation, (3) frequency characteristics of variance of vibrational strain against the dominant frequency of the two-phase-flow pressure fluctuation, and (4) frequency characteristics of variance of vibrational strain against the dominant frequency of two-phase-flow void signals. The authors conclude that there exist two kinds of excitation mechanisms in vibrations of a fuel pin model inserted in a parallel air-and-water two-phase flow; namely, (1) parametric excitation, which occurs when the fundamental natural frequency of the fuel pin model is related to the dominant travelling frequency of water slugs in the two-phase flow by the ratio 1/2, 1/1, 3/2 and so on; and (2) vibrational resonance, which occurs when the fundamental frequency coincides with the dominant frequency of the two-phase-flow pressure fluctuation. (auth.)
Modeling and Performance of a Self-Excited Two-Phase Reluctance ...
African Journals Online (AJOL)
A self-excited two-phase reluctance generator (SETPRG) with balanced stator winding is presented. A unique balanced two-phase stator winding was designed with emphasis on obtaining a stator MMF waveform with minimum space harmonics. Then a mathematical model by which the dynamic behavior of the generator ...
A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces
Shao, Sihong; Qian, Tiezheng
2012-01-01
We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager
Numerical modeling of two-phase binary fluid mixing using mixed finite elements
Sun, Shuyu
2012-07-27
Diffusion coefficients of dense gases in liquids can be measured by considering two-phase binary nonequilibrium fluid mixing in a closed cell with a fixed volume. This process is based on convection and diffusion in each phase. Numerical simulation of the mixing often requires accurate algorithms. In this paper, we design two efficient numerical methods for simulating the mixing of two-phase binary fluids in one-dimensional, highly permeable media. Mathematical model for isothermal compositional two-phase flow in porous media is established based on Darcy\\'s law, material balance, local thermodynamic equilibrium for the phases, and diffusion across the phases. The time-lag and operator-splitting techniques are used to decompose each convection-diffusion equation into two steps: diffusion step and convection step. The Mixed finite element (MFE) method is used for diffusion equation because it can achieve a high-order and stable approximation of both the scalar variable and the diffusive fluxes across grid-cell interfaces. We employ the characteristic finite element method with moving mesh to track the liquid-gas interface. Based on the above schemes, we propose two methods: single-domain and two-domain methods. The main difference between two methods is that the two-domain method utilizes the assumption of sharp interface between two fluid phases, while the single-domain method allows fractional saturation level. Two-domain method treats the gas domain and the liquid domain separately. Because liquid-gas interface moves with time, the two-domain method needs work with a moving mesh. On the other hand, the single-domain method allows the use of a fixed mesh. We derive the formulas to compute the diffusive flux for MFE in both methods. The single-domain method is extended to multiple dimensions. Numerical results indicate that both methods can accurately describe the evolution of the pressure and liquid level. © 2012 Springer Science+Business Media B.V.
A New Appraoch to Modeling Immiscible Two-phase Flow in Porous Media
DEFF Research Database (Denmark)
Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan
In this work we present a systematic literature review regarding the macroscopic approaches to modeling immiscible two-phase flow in porous media, the formulation process of the incorporate PDE based on Film Model(viscous coupling), the calculation of saturation profile around the transition zone...... to modeling immiscible two-phase flow in porous media. The suggested approach to immiscible two-phase flow in porous media describes the dispersed mesoscopic fluids’ interfaces which are highly influenced by the injected interfacial energy and the local interfacial energy capacity. It reveals a new...... possibility of modeling two-phase flow through energy balance. The saturation profile generated through the suggested approach is different from those through other approaches....
Ross, Michelle; Wakefield, Jon
2015-10-01
Two-phase study designs are appealing since they allow for the oversampling of rare sub-populations which improves efficiency. In this paper we describe a Bayesian hierarchical model for the analysis of two-phase data. Such a model is particularly appealing in a spatial setting in which random effects are introduced to model between-area variability. In such a situation, one may be interested in estimating regression coefficients or, in the context of small area estimation, in reconstructing the population totals by strata. The efficiency gains of the two-phase sampling scheme are compared to standard approaches using 2011 birth data from the research triangle area of North Carolina. We show that the proposed method can overcome small sample difficulties and improve on existing techniques. We conclude that the two-phase design is an attractive approach for small area estimation.
Three-dimensional two-phase mass transport model for direct methanol fuel cells
International Nuclear Information System (INIS)
Yang, W.W.; Zhao, T.S.; Xu, C.
2007-01-01
A three-dimensional (3D) steady-state model for liquid feed direct methanol fuel cells (DMFC) is presented in this paper. This 3D mass transport model is formed by integrating five sub-models, including a modified drift-flux model for the anode flow field, a two-phase mass transport model for the porous anode, a single-phase model for the polymer electrolyte membrane, a two-phase mass transport model for the porous cathode, and a homogeneous mist-flow model for the cathode flow field. The two-phase mass transport models take account the effect of non-equilibrium evaporation/ condensation at the gas-liquid interface. A 3D computer code is then developed based on the integrated model. After being validated against the experimental data reported in the literature, the code was used to investigate numerically transport behaviors at the DMFC anode and their effects on cell performance
2018-01-01
Set IV is a new addition to the previous Sets I, II and III. It contains 23 invited chapters from international specialists on the topics of numerical modeling of pulsating heat pipes and of slug flows with evaporation; lattice Boltzmann modeling of pool boiling; fundamentals of boiling in microchannels and microfin tubes, CO2 and nanofluids; testing and modeling of micro-two-phase cooling systems for electronics; and various special topics (flow separation in microfluidics, two-phase sensors, wetting of anisotropic surfaces, ultra-compact heat exchangers, etc.). The invited authors are leading university researchers and well-known engineers from leading corporate research laboratories (ABB, IBM, Nokia Bell Labs). Numerous "must read" chapters are also included here for the two-phase community. Set IV constitutes a "must have" engineering and research reference together with previous Sets I, II and III for thermal engineering researchers and practitioners.
Silva. EDF two-phase 1D annular model of a CFB boiler furnace
Energy Technology Data Exchange (ETDEWEB)
Montat, D.; Fauquet, Ph. [Electricite de France (EDF), 78 - Chatou (France). Researckh and Development Div.; Lafanechere, L.; Bursi, J.M. [Electricite de France (EDF) (France). Construction Div.
1997-01-01
SILVA computer code is used for the modelling of the thermal-hydraulics and of the combustion of a coal-fired CFBC solid loop. In a first step, only the furnace is considered. The model is based on a 1D annular two phases description of the hydrodynamics. The model is based on particle mass balances and pressure drop calculations. A basic combustion model is incorporated into this model. The coal combustion is divided in two phases, the combustion of volatile matter and the heterogeneous combustion. The model has been developed within LEGO software and can be included into the global model of the solid loop developed by EDF. (author) 26 refs.
An algebraic stress/flux model for two-phase turbulent flow
International Nuclear Information System (INIS)
Kumar, R.
1995-12-01
An algebraic stress model (ASM) for turbulent Reynolds stress and a flux model for turbulent heat flux are proposed for two-phase bubbly and slug flows. These mathematical models are derived from the two-phase transport equations for Reynolds stress and turbulent heat flux, and provide C μ , a turbulent constant which defines the level of eddy viscosity, as a function of the interfacial terms. These models also include the effect of heat transfer. When the interfacial drag terms and the interfacial momentum transfer terms are absent, the model reduces to a single-phase model used in the literature
Identification of two-phase flow regimes by time-series modeling
International Nuclear Information System (INIS)
King, C.H.; Ouyang, M.S.; Pei, B.S.
1987-01-01
The identification of two-phase flow patterns in pipes or ducts is important to the design and operation of thermal-hydraulic systems, especially in the nuclear reactor cores of boiling water reactors or in the steam generators of pressurized water reactors. Basically, two-phase flow shows some fluctuating characteristics even at steady-state conditions. These fluctuating characteristics can be analyzed by statistical methods for obtaining flow signatures. There have been a number of experimental studies conducted that are concerned with the statistical properties of void fraction or pressure pulsation in two-phase flow. In this study, the authors propose a new technique of identifying the patterns of air-water two-phase flow in a vertical pipe. This technique is based on analyzing the statistic characteristics of the pressure signals of the test loop by time-series modeling
Moving Boudary Models for Dynamic Simulations of Two-phase Flows
DEFF Research Database (Denmark)
Jensen, Jakob Munch; Tummelscheit, H.
2002-01-01
. The Dymola Modelica translator can automatically reduce the DAE index and thus makes efficient simulation possible. Usually the flow entering a dry-expansion evaporator in a refrigeration system is two-phase, and there is thus no liquid region. The general MB model has a number of special cases where only...... model is used. The overall robustness and the simplicity of the MB model, makes it well suited for open loop as well as closed loop simulations of two-phase flows. Simulation results for an evaporator in a refrigeration system are shown. The open loop system is simulated both with the reduced MB...... but is less complex. The reduced MB-model is well suited for control purposes both for determining control parameters and for model based control strategies and examples of a controlled refrigeration system are shown. The general MB model divides the flow into three regions (liquid, two-phase and vapor...
Kou, Jisheng
2015-07-16
In this paper, we consider an interface model for multicomponent two-phase fluids with geometric mean influence parameters, which is popularly used to model and predict surface tension in practical applications. For this model, there are two major challenges in theoretical analysis and numerical simulation: the first one is that the influence parameter matrix is not positive definite; the second one is the complicated structure of the energy function, which requires us to find out a physically consistent treatment. To overcome these two challenging problems, we reduce the formulation of the energy function by employing a linear transformation and a weighted molar density, and furthermore, we propose a local minimum grand potential energy condition to establish the relation between the weighted molar density and mixture compositions. From this, we prove the existence of the solution under proper conditions and prove the maximum principle of the weighted molar density. For numerical simulation, we propose a modified Newton\\'s method for solving this nonlinear model and analyze its properties; we also analyze a finite element method with a physical-based adaptive mesh-refinement technique. Numerical examples are tested to verify the theoretical results and the efficiency of the proposed methods.
Kou, Jisheng; Sun, Shuyu
2015-01-01
In this paper, we consider an interface model for multicomponent two-phase fluids with geometric mean influence parameters, which is popularly used to model and predict surface tension in practical applications. For this model, there are two major challenges in theoretical analysis and numerical simulation: the first one is that the influence parameter matrix is not positive definite; the second one is the complicated structure of the energy function, which requires us to find out a physically consistent treatment. To overcome these two challenging problems, we reduce the formulation of the energy function by employing a linear transformation and a weighted molar density, and furthermore, we propose a local minimum grand potential energy condition to establish the relation between the weighted molar density and mixture compositions. From this, we prove the existence of the solution under proper conditions and prove the maximum principle of the weighted molar density. For numerical simulation, we propose a modified Newton's method for solving this nonlinear model and analyze its properties; we also analyze a finite element method with a physical-based adaptive mesh-refinement technique. Numerical examples are tested to verify the theoretical results and the efficiency of the proposed methods.
Preliminary Two-Phase Terry Turbine Nozzle Models for RCIC Off-Design Operation Conditions
Energy Technology Data Exchange (ETDEWEB)
Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, James [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2017-06-12
This report presents the effort to extend the single-phase analytical Terry turbine model to cover two-phase off-design conditions. The work includes: (1) adding well-established two-phase choking models – the Isentropic Homogenous Equilibrium Model (IHEM) and Moody’s model, and (2) theoretical development and implementation of a two-phase nozzle expansion model. The two choking models provide bounding cases for the two-phase choking mass flow rate. The new two-phase Terry turbine model uses the choking models to calculate the mass flow rate, the critical pressure at the nozzle throat, and steam quality. In the divergent stage, we only consider the vapor phase with a similar model for the single-phase case by assuming that the liquid phase would slip along the wall with a much slower speed and will not contribute the impulse on the rotor. We also modify the stagnation conditions according to two-phase choking conditions at the throat and the cross-section areas for steam flow at the nozzle throat and at the nozzle exit. The new two-phase Terry turbine model was benchmarked with the same steam nozzle test as for the single-phase model. Better agreement with the experimental data is observed than from the single-phase model. We also repeated the Terry turbine nozzle benchmark work against the Sandia CFD simulation results with the two-phase model for the pure steam inlet nozzle case. The RCIC start-up tests were simulated and compared with the single-phase model. Similar results are obtained. Finally, we designed a new RCIC system test case to simulate the self-regulated Terry turbine behavior observed in Fukushima accidents. In this test, a period inlet condition for the steam quality varying from 1 to 0 is applied. For the high quality inlet period, the RCIC system behaves just like the normal operation condition with a high pump injection flow rate and a nominal steam release rate through the turbine, with the net addition of water to the primary system; for
A two-phase kinetic model for fungal growth in solid-state cultivation
Hamidi-Esfahani, Z.; Hejazi, P.; Abbas Shojaosadati, S.; Hoogschagen, M.J.; Vasheghani-Farahani, E.; Rinzema, A.
2007-01-01
A new two-phase kinetic model including exponential and logistic models was applied to simulate the growth rate of fungi at various temperatures. The model parameters, expressed as a function of temperature, were determined from the oxygen consumption rate of Aspergillus niger during cultivation on
Three layer model analysis on two-phase critical flow through a converging nozzle
International Nuclear Information System (INIS)
Ochi, J.; Ayukawa, K.
1991-01-01
A three layer model is proposed for a two-phase critical flow through a converging nozzle in this paper. Most previous analyses of the two phase flow have been based on a homogeneous or a separated flow model as the conservation equations. These results were found to have large deviations from the actual measurements for two phase critical flows. The presented model is based on the assumption that a flow consists of three layers with a mixing region between gas and liquid phase layers. The effect of gas and liquid fraction occupied in the mixing layer was made clear from the numerical results. The measurements of the critical flow rate and the pressure profiles through a converging nozzle were made with air-water flow. The calculated results of these models are discussed in comparison with the experimental data for the flow rates and the pressure distributions under critical conditions
A phenomenological model of two-phase (air/fuel droplet developing and breakup
Directory of Open Access Journals (Sweden)
Pavlović Radomir R.
2013-01-01
Full Text Available Effervescent atomization namely the air-filled liquid atomization comprehends certain complex two-phase phenomenon that are difficult to be modeled. Just a few researchers have found the mathematical expressions for description of the complex atomization model of the two-phase mixture air/diesel fuel. In the following review, developing model of twophase (air/fuel droplet of Cummins spray pump-injector is shown. The assumption of the same diameters of the droplet and the opening of the atomizer is made, while the air/fuel mass ratio inside the droplet varies.
Mechanical disequilibria in two-phase flow models: approaches by relaxation and by a reduced model
International Nuclear Information System (INIS)
Labois, M.
2008-10-01
This thesis deals with hyperbolic models for the simulation of compressible two-phase flows, to find alternatives to the classical bi-fluid model. We first establish a hierarchy of two-phase flow models, obtained according to equilibrium hypothesis between the physical variables of each phase. The use of Chapman-Enskog expansions enables us to link the different existing models to each other. Moreover, models that take into account small physical unbalances are obtained by means of expansion to the order one. The second part of this thesis focuses on the simulation of flows featuring velocity unbalances and pressure balances, in two different ways. First, a two-velocity two-pressure model is used, where non-instantaneous velocity and pressure relaxations are applied so that a balancing of these variables is obtained. A new one-velocity one-pressure dissipative model is then proposed, where the arising of second-order terms enables us to take into account unbalances between the phase velocities. We develop a numerical method based on a fractional step approach for this model. (author)
Fang, Hongwei
1996-02-01
Based on the tensor analysis of water-sediment two-phase flow, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turbulent flow. Furthermore, corresponding boundary conditions are also presented in connection with the composition and movement of non-uniform bed material. The theoretical results are applied to the calculation of the float open caisson in the construction period and good results are obtained.
Numerical approach of multi-field two-phase flow models in the OVAP code
International Nuclear Information System (INIS)
Anela Kumbaro
2005-01-01
Full text of publication follows: A significant progress has been made in modeling the complexity of vapor-liquid two-phase flow. Different three-dimensional models exist in order to simulate the evolution of parameters which characterize a two-phase model. These models can be classified into various groups depending on the inter-field coupling. A hierarchy of increasing physical complexity can be defined. The simplest group corresponds to the homogeneous mixture models where no interactions are taken into account. Another group is constituted by the two-fluid models employing physically important interfacial forces between two-phases, liquid, and water. The last group is multi-field modeling where inter-field couplings can be taken into account at different degrees, such as the MUltiple Size Group modeling [2], the consideration of separate equations for the transport and generation of mass and momentum for each field under the assumption of the same energy for all the fields of the same phase, and a full multi-field two-phase model [1]. The numerical approach of the general three-dimensional two-phase flow is by complexity of the phenomena a very challenging task; the ideal numerical method should be at the same time simple in order to apply to any model, from equilibrium to multi-field model and conservative in order to respect the fundamental conservation physical laws. The approximate Riemann solvers have the good properties of conservation of mass, momentum and energy balance and have been extended successfully to two-fluid models [3]- [5]. But, the up-winding of the flux is based on the Eigen-decomposition of the two-phase flow model and the computation of the Eigen-structure of a multi-field model can be a high cost procedure. Our contribution will present a short review of the above two-phase models, and show numerical results obtained for some of them with an approximate Riemann solver and with lower-complexity alternative numerical methods that do not
An implicit numerical model for multicomponent compressible two-phase flow in porous media
Zidane, Ali; Firoozabadi, Abbas
2015-11-01
We introduce a new implicit approach to model multicomponent compressible two-phase flow in porous media with species transfer between the phases. In the implicit discretization of the species transport equation in our formulation we calculate for the first time the derivative of the molar concentration of component i in phase α (cα, i) with respect to the total molar concentration (ci) under the conditions of a constant volume V and temperature T. The species transport equation is discretized by the finite volume (FV) method. The fluxes are calculated based on powerful features of the mixed finite element (MFE) method which provides the pressure at grid-cell interfaces in addition to the pressure at the grid-cell center. The efficiency of the proposed model is demonstrated by comparing our results with three existing implicit compositional models. Our algorithm has low numerical dispersion despite the fact it is based on first-order space discretization. The proposed algorithm is very robust.
Abbas, Zaheer; Hasnain, Jafar
A numerical study is performed to examine the two-phase magnetoconvection and heat transfer phenomena of Fe3O4 -kerosene nanofluid flow in a horizontal composite porous annulus with an external magnetic field. The annulus is filled with immiscible fluids flowing between two concentric cylinders. The governing equations of the flow problem are obtained using Darcy-Brinkman model. Heat transfer is analyzed in the presence of viscous and Darcian dissipation terms. The shooting method is used as a tool to solve the obtained non-linear ordinary differential equations for the velocity and temperature profiles. The velocity and temperature distributions are analyzed and discussed under the influence of involved flow parameters with the aid of graphs. It is found that both velocity and temperature of fluid are decreased with ferroparticle volume fraction. In addition to that, it is also presented that the existence of magnetic field decreases the benefit of ferrofluids in heat transfer progression.
Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model.
Delnoij, E.; Lammers, F.A.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria
1997-01-01
In this paper a detailed hydrodynamic model for gas-liquid two-phase flow will be presented. The model is based on a mixed Eulerian-Lagrangian approach and describes the time-dependent two-dimensional motion of small, spherical gas bubbles in a bubble column operating in the homogeneous regime. The
Cahn-Hilliard modeling of particles suspended in two-phase flows
Choi, Y.J.; Anderson, P.D.
2012-01-01
In this paper, we present a model for the dynamics of particles suspended in two-phase flows by coupling the CahnHilliard theory with the extended finite element method (XFEM). In the CahnHilliard model the interface is considered to have a small but finite thickness, which circumvents explicit
A Dual-Stage Two-Phase Model of Selective Attention
Hubner, Ronald; Steinhauser, Marco; Lehle, Carola
2010-01-01
The dual-stage two-phase (DSTP) model is introduced as a formal and general model of selective attention that includes both an early and a late stage of stimulus selection. Whereas at the early stage information is selected by perceptual filters whose selectivity is relatively limited, at the late stage stimuli are selected more efficiently on a…
Two-phase coolant pump model of pressurized light water nuclear reactors
International Nuclear Information System (INIS)
Santos, G.A. dos; Freitas, R.L.
1990-01-01
The two-phase coolant pump model of pressurized light water nuclear reactors is an important point for the loss of primary coolant accident analysis. The homologous curves set up the complete performance of the pump and are input for accidents analysis thermal-hydraulic codes. This work propose a mathematical model able to predict the two-phase homologous curves where it was incorporated geometric and operational pump condition. The results were compared with the experimental tests data from literature and it has showed a good agreement. (author)
The thermochemical, two-phase dynamics of subduction zones: results from new, fully coupled models
Rees Jones, D. W.; Katz, R. F.; May, D.; Tian, M.; Rudge, J. F.
2017-12-01
Subduction zones are responsible for most of Earth's subaerial volcanism. However, previous geodynamic modelling of subduction zones has largely neglected magmatism. We previously showed that magmatism has a significant thermal impact, by advecting sensible heat into the lithosphere beneath arc volcanos [1]. Inclusion of this effect helps reconcile subduction zone models with petrological and heat flow observations. Many important questions remain, including how magma-mantle dynamics of subduction zones affects the position of arc volcanos and the character of their lavas. In this presentation, we employ a fully coupled, thermochemical, two-phase flow theory to investigate the dynamics of subduction zones. We present the first results from our new software (SubFUSc), which solves the coupled equations governing conservation of mass, momentum, energy and chemical species. The presence and migration of partial melts affect permeability and mantle viscosity (both directly and through their thermal impact); these, in turn, feed back on the magma-mantle flow. Thus our fully coupled modelling improves upon previous two-phase models that decoupled the governing equations and fixed the thermal structure [2]. To capture phase change, we use a novel, simplified model of the mantle melting in the presence of volatile species. As in the natural system, volatiles are associated with low-degree melting at temperatures beneath the anhydrous solidus; dehydration reactions in the slab supply volatiles into the wedge, triggering silicic melting. We simulate the migration of melts under buoyancy forces and dynamic pressure gradients. We thereby demonstrate the dynamical controls on the pattern of subduction-zone volcanism (particularly its location, magnitude, and chemical composition). We build on our previous study of the thermal consequences of magma genesis and segregation. We address the question of what controls the location of arc volcanoes themselves [3]. [1] Rees Jones, D. W
Entropy analysis on non-equilibrium two-phase flow models
International Nuclear Information System (INIS)
Karwat, H.; Ruan, Y.Q.
1995-01-01
A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships
Effects of two-phase flow in a model for nitramine deflagration
International Nuclear Information System (INIS)
Li, S.C.; Williams, F.A.; Margolis, S.B.
1990-01-01
Methods of asymptotic analysis are employed to extend an earlier model for the deflagration of nitramines to account for the presence of bubbles and droplets in a two-phase layer at the propellant surface during combustion. Two zones are identified in the two-phase region: one, at higher liquid volume fractions, maintains evaporative equilibrium, whereas the other, at lower liquid volume fractions, exhibits nonequilibrium vaporization. By introducing the most reasonable estimates for two-phase behavior of nitramines, the steady burning rates are found to be close to those obtained for models with a sharp liquid-gas interface. Good agreement with measured burning rates and pressure and temperature sensitivities are achieved through reasonable approximations concerning overall chemical-kinetic parameters
Numerical simulation of the two-phase flows in a hydraulic coupling by solving VOF model
International Nuclear Information System (INIS)
Luo, Y; Zuo, Z G; Liu, S H; Fan, H G; Zhuge, W L
2013-01-01
The flow in a partially filled hydraulic coupling is essentially a gas-liquid two-phase flow, in which the distribution of two phases has significant influence on its characteristics. The interfaces between the air and the liquid, and the circulating flows inside the hydraulic coupling can be simulated by solving the VOF two-phase model. In this paper, PISO algorithm and RNG k–ε turbulence model were employed to simulate the phase distribution and the flow field in a hydraulic coupling with 80% liquid fill. The results indicate that the flow forms a circulating movement on the torus section with decreasing speed ratio. In the pump impeller, the air phase mostly accumulates on the suction side of the blades, while liquid on the pressure side; in turbine runner, air locates in the middle of the flow passage. Flow separations appear near the blades and the enclosing boundaries of the hydraulic coupling
Entropy analysis on non-equilibrium two-phase flow models
Energy Technology Data Exchange (ETDEWEB)
Karwat, H.; Ruan, Y.Q. [Technische Universitaet Muenchen, Garching (Germany)
1995-09-01
A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.
The questions of liquid metal two-phase flow modelling in the FBR core channels
International Nuclear Information System (INIS)
Martsiniouk, D.Ye.; Sorokin, A.P.
2000-01-01
The two-fluid model representation for calculations of two-phase flow characteristics in the FBR fuel pin bundles with liquid metal cooling is presented and analysed. Two conservation equations systems of the mass, momentum and energy have been written for each phase. Components accounted the mass-, momentum- and heat transfer throughout the interface occur in the macro-field equations after the averaging procedure realisation. The pattern map and correlations for two-fluid model in vertical liquid metal flows are presented. The description of processes interphase mass- and heat exchange and interphase friction is determined by the two-phase flow regime. The opportunity of the liquid metal two-phase flow regime definition is analysed. (author)
Constructing a unique two-phase compressibility factor model for lean gas condensates
Energy Technology Data Exchange (ETDEWEB)
Moayyedi, Mahmood; Gharesheikhlou, Aliashghar [Research Institute of Petroleum Industry (RIPI), Tehran (Iran, Islamic Republic of); Azamifard, Arash; Mosaferi, Emadoddin [Amirkabir University of Technology (AUT), Tehran (Iran, Islamic Republic of)
2015-02-15
Generating a reliable experimental model for two-phase compressibility factor in lean gas condensate reservoirs has always been demanding, but it was neglected due to lack of required experimental data. This study presents the main results of constructing the first two-phase compressibility factor model that is completely valid for Iranian lean gas condensate reservoirs. Based on a wide range of experimental data bank for Iranian lean gas condensate reservoirs, a unique two-phase compressibility factor model was generated using design of experiments (DOE) method and neural network technique (ANN). Using DOE, a swift cubic response surface model was generated for two-phase compressibility factor as a function of some selected fluid parameters for lean gas condensate fluids. The proposed DOE and ANN models were finally validated using four new independent data series. The results showed that there is a good agreement between experimental data and the proposed models. In the end, a detailed comparison was made between the results of proposed models.
Constructing a unique two-phase compressibility factor model for lean gas condensates
International Nuclear Information System (INIS)
Moayyedi, Mahmood; Gharesheikhlou, Aliashghar; Azamifard, Arash; Mosaferi, Emadoddin
2015-01-01
Generating a reliable experimental model for two-phase compressibility factor in lean gas condensate reservoirs has always been demanding, but it was neglected due to lack of required experimental data. This study presents the main results of constructing the first two-phase compressibility factor model that is completely valid for Iranian lean gas condensate reservoirs. Based on a wide range of experimental data bank for Iranian lean gas condensate reservoirs, a unique two-phase compressibility factor model was generated using design of experiments (DOE) method and neural network technique (ANN). Using DOE, a swift cubic response surface model was generated for two-phase compressibility factor as a function of some selected fluid parameters for lean gas condensate fluids. The proposed DOE and ANN models were finally validated using four new independent data series. The results showed that there is a good agreement between experimental data and the proposed models. In the end, a detailed comparison was made between the results of proposed models
A state-of-the-art report on two-phase critical flow modelling
Energy Technology Data Exchange (ETDEWEB)
Jung, Jae Joon; Jang, Won Pyo; Kim, Dong Soo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1993-09-01
This report reviews and analyses two-phase, critical flow models. The purposes of the report are (1) to make a knowledge base for the full understanding and best-estimate of two-phase, critical flow, (2) to analyse the model development trend and to derive the direction of further studies. A wide range of critical flow models are reviewed. Each model, in general, predicts critical flow well only within specified conditions. The critical flow models of best-estimate codes are special process model included in the hydrodynamic model. The results of calculations depend on the nodalization, discharge coefficient, and other user`s options. The following topics are recommended for continuing studies: improvement of two-fluid model, development of multidimensional model, data base setup and model error evaluation, and generalization of discharge coefficients. 24 figs., 5 tabs., 80 refs. (Author).
A state-of-the-art report on two-phase critical flow modelling
International Nuclear Information System (INIS)
Jung, Jae Joon; Jang, Won Pyo; Kim, Dong Soo
1993-09-01
This report reviews and analyses two-phase, critical flow models. The purposes of the report are (1) to make a knowledge base for the full understanding and best-estimate of two-phase, critical flow, (2) to analyse the model development trend and to derive the direction of further studies. A wide range of critical flow models are reviewed. Each model, in general, predicts critical flow well only within specified conditions. The critical flow models of best-estimate codes are special process model included in the hydrodynamic model. The results of calculations depend on the nodalization, discharge coefficient, and other user's options. The following topics are recommended for continuing studies: improvement of two-fluid model, development of multidimensional model, data base setup and model error evaluation, and generalization of discharge coefficients. 24 figs., 5 tabs., 80 refs. (Author)
A method to couple HEM and HRM two-phase flow models
Energy Technology Data Exchange (ETDEWEB)
Herard, J.M.; Hurisse, O. [Elect France, Div Rech and Dev, Dept Mecan Fluides Energies and Environm, F-78401 Chatou (France); Hurisse, O. [Univ Aix Marseille 1, Ctr Math and Informat, Lab Anal Topol and Probabil, CNRS, UMR 6632, F-13453 Marseille 13 (France); Ambroso, A. [CEA Saclay, DEN, DM2S, SFME, LETR, 91 - Gif sur Yvette (France)
2009-04-15
We present a method for the unsteady coupling of two distinct two-phase flow models (namely the Homogeneous Relaxation Model, and the Homogeneous Equilibrium Model) through a thin interface. The basic approach relies on recent works devoted to the interfacial coupling of CFD models, and thus requires to introduce an interface model. Many numerical test cases enable to investigate the stability of the coupling method. (authors)
A method to couple HEM and HRM two-phase flow models
International Nuclear Information System (INIS)
Herard, J.M.; Hurisse, O.; Hurisse, O.; Ambroso, A.
2009-01-01
We present a method for the unsteady coupling of two distinct two-phase flow models (namely the Homogeneous Relaxation Model, and the Homogeneous Equilibrium Model) through a thin interface. The basic approach relies on recent works devoted to the interfacial coupling of CFD models, and thus requires to introduce an interface model. Many numerical test cases enable to investigate the stability of the coupling method. (authors)
High-velocity two-phase flow two-dimensional modeling
International Nuclear Information System (INIS)
Mathes, R.; Alemany, A.; Thilbault, J.P.
1995-01-01
The two-phase flow in the nozzle of a LMMHD (liquid metal magnetohydrodynamic) converter has been studied numerically and experimentally. A two-dimensional model for two-phase flow has been developed including the viscous terms (dragging and turbulence) and the interfacial mass, momentum and energy transfer between the phases. The numerical results were obtained by a finite volume method based on the SIMPLE algorithm. They have been verified by an experimental facility using air-water as a simulation pair and a phase Doppler particle analyzer for velocity and droplet size measurement. The numerical simulation of a lithium-cesium high-temperature pair showed that a nearly homogeneous and isothermal expansion of the two phases is possible with small pressure losses and high kinetic efficiencies. In the throat region a careful profiling is necessary to reduce the inertial effects on the liquid velocity field
Analysis of forced convective transient boiling by homogeneous model of two-phase flow
International Nuclear Information System (INIS)
Kataoka, Isao
1985-01-01
Transient forced convective boiling is of practical importance in relation to the accident analysis of nuclear reactor etc. For large length-to-diameter ratio, the transient boiling characteristics are predicted by transient two-phase flow calculations. Based on homogeneous model of two-phase flow, the transient forced convective boiling for power and flow transients are analysed. Analytical expressions of various parameters of transient two-phase flow have been obtained for several simple cases of power and flow transients. Based on these results, heat flux, velocity and time at transient CHF condition are predicted analytically for step and exponential power increases, and step, exponential and linear velocity decreases. The effects of various parameters on heat flux, velocity and time at transient CHF condition have been clarified. Numerical approach combined with analytical method is proposed for more complicated cases. Solution method for pressure transient are also described. (author)
Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows
Directory of Open Access Journals (Sweden)
Xia Wang
2012-12-01
Full Text Available In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As two-phase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present work aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.
Comparison of Experimental and Numerical Two-Phase Flows in a Porous Micro-Model
Directory of Open Access Journals (Sweden)
Dustin Crandall
2009-12-01
Full Text Available Characterizing two-phase flow in porous media is important to provide estimates of sweep efficiency in enhanced oil recovery and storage estimates in potential geological CO2 sequestration repositories. To further the current understanding of two-phase flow in porous media a micro-model of interconnected channels was designed and fabricated using stereolithography to experimentally study gas-liquid flows. This flowcell was created with a wide variability of throat dimensions to represent naturally occurring porous media. Low flow rate experiments of immiscible two-phase drainage were performed within this cell. Additionally, a computational model for analyzing two-phase flows in the same flowcell was developed and used to simulate conditions not possible with our laboratory settings. The computational model was first tested for the identical conditions used in the experimental studies, and was shown to be in good agreement with the experimentally determined fractal dimension of the invading gas structure, time until breakthrough, and fluid saturation. The numerical model was then used to study two-phase air-water flows in flowcells with the same geometry and different gas-liquid-solid contact angles. The percent saturation of air and the motion of the fluids through the cell were found to vary with changes in these parameters. Finally, to simulate flows expected during geologic carbon sequestration, the fluid properties and interface conditions were set to model the flow of CO2 into a brine-saturated porous medium at representative subsurface conditions. The CO2 flows were shown to have larger gas saturations than the previous air into water studies. Thus the accuracy of the computational model was supported by the flowcell experiments, and the computational model extended the laboratory results to conditions not possible with the apparatus used in the experiments.
Kou, Jisheng; Sun, Shuyu
2017-01-01
A general diffuse interface model with a realistic equation of state (e.g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is an attractive
RELAP5 two-phase fluid model and numerical scheme for economic LWR system simulation
International Nuclear Information System (INIS)
Ransom, V.H.; Wagner, R.J.; Trapp, J.A.
1981-01-01
The RELAP5 two-phase fluid model and the associated numerical scheme are summarized. The experience accrued in development of a fast running light water reactor system transient analysis code is reviewed and example of the code application are given
Two-phase wall function for modeling of turbulent boundary layer in subcooled boiling flow
International Nuclear Information System (INIS)
Bostjan Koncar; Borut Mavko; Yassin A Hassan
2005-01-01
Full text of publication follows: The heat transfer and phase-change mechanisms in the subcooled flow boiling are governed mainly by local multidimensional mechanisms near the heated wall, where bubbles are generated. The structure of such 'wall boiling flow' is inherently non-homogeneous and is further influenced by the two-phase flow turbulence, phase-change effects in the bulk, interfacial forces and bubble interactions (collisions, coalescence, break-up). In this work the effect of two-phase flow turbulence on the development of subcooled boiling flow is considered. Recently, the modeling of two-phase flow turbulence has been extensively investigated. A notable progress has been made towards deriving reliable models for description of turbulent behaviour of continuous (liquid) and dispersed phase (bubbles) in the bulk flow. However, there is a lack of investigation considering the modeling of two-phase flow boundary layer. In most Eulerian two-fluid models standard single-phase wall functions are used for description of turbulent boundary layer of continuous phase. That might be a good approximation at adiabatic flows, but their use for boundary layers with high concentration of dispersed phase is questionable. In this work, the turbulent boundary layer near the heated wall will be modeled with the so-called 'two-phase' wall function, which is based on the assumption of additional turbulence due to bubble-induced stirring in the boundary layer. In the two-phase turbulent boundary layer the wall function coefficients strongly depend on the void fraction. Moreover, in the turbulent boundary layer with nucleating bubbles, the bubble size variation also has a significant impact on the liquid phase. As a basis, the wall function of Troshko and Hassan (2001), developed for adiabatic bubbly flows will be used. The simulations will be performed by a general-purpose CFD code CFX-4.4 using additional models provided by authors. The results will be compared to the boiling
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
Kou, Jisheng; Sun, Shuyu
2016-08-01
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
Kou, Jisheng
2016-05-10
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic relations are used to model not only interfacial properties but also bulk properties, including density, composition, pressure, and realistic viscosity. As far as we know, this effort is the first time to use diffuse interface modeling based on equation of state for modeling of multi-component two-phase flow with partial miscibility. In numerical simulation, the key issue is to resolve the high contrast of scales from the microscopic interface composition to macroscale bulk fluid motion since the interface has a nanoscale thickness only. To efficiently solve this challenging problem, we develop a multi-scale simulation method. At the microscopic scale, we deduce a reduced interfacial equation under reasonable assumptions, and then we propose a formulation of capillary pressure, which is consistent with macroscale flow equations. Moreover, we show that Young-Laplace equation is an approximation of this capillarity formulation, and this formulation is also consistent with the concept of Tolman length, which is a correction of Young-Laplace equation. At the macroscopical scale, the interfaces are treated as discontinuous surfaces separating two phases of fluids. Our approach differs from conventional sharp-interface two-phase flow model in that we use the capillary pressure directly instead of a combination of surface tension and Young-Laplace equation because capillarity can be calculated from our proposed capillarity formulation. A compatible condition is also derived for the pressure in flow equations. Furthermore, based on the proposed capillarity formulation, we design an efficient numerical method for directly computing the capillary pressure between two fluids composed of multiple components. Finally, numerical tests
Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model
International Nuclear Information System (INIS)
Shuard, Adrian M; Mahmud, Hisham B; King, Andrew J
2016-01-01
Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ω turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model. (paper)
Comparison of Two-Phase Pipe Flow in OpenFOAM with a Mechanistic Model
Shuard, Adrian M.; Mahmud, Hisham B.; King, Andrew J.
2016-03-01
Two-phase pipe flow is a common occurrence in many industrial applications such as power generation and oil and gas transportation. Accurate prediction of liquid holdup and pressure drop is of vast importance to ensure effective design and operation of fluid transport systems. In this paper, a Computational Fluid Dynamics (CFD) study of a two-phase flow of air and water is performed using OpenFOAM. The two-phase solver, interFoam is used to identify flow patterns and generate values of liquid holdup and pressure drop, which are compared to results obtained from a two-phase mechanistic model developed by Petalas and Aziz (2002). A total of 60 simulations have been performed at three separate pipe inclinations of 0°, +10° and -10° respectively. A three dimensional, 0.052m diameter pipe of 4m length is used with the Shear Stress Transport (SST) k - ɷ turbulence model to solve the turbulent mixtures of air and water. Results show that the flow pattern behaviour and numerical values of liquid holdup and pressure drop compare reasonably well to the mechanistic model.
A gas kinetic scheme for the Baer–Nunziato two-phase flow model
International Nuclear Information System (INIS)
Pan, Liang; Zhao, Guiping; Tian, Baolin; Wang, Shuanghu
2012-01-01
Numerical methods for the Baer–Nunziato (BN) two-phase flow model have attracted much attention in recent years. In this paper, we present a new gas kinetic scheme for the BN two-phase flow model containing non-conservative terms in the framework of finite volume method. In the view of microscopic aspect, a generalized Bhatnagar–Gross–Krook (BGK) model which matches with the BN model is constructed. Based on the integral solution of the generalized BGK model, we construct the distribution functions at the cell interface. Then numerical fluxes can be obtained by taking moments of the distribution functions, and non-conservative terms are explicitly introduced into the construction of numerical fluxes. In this method, not only the complex iterative process of exact solutions is avoided, but also the non-conservative terms included in the equation can be handled well.
Well-posed Euler model of shock-induced two-phase flow in bubbly liquid
Tukhvatullina, R. R.; Frolov, S. M.
2018-03-01
A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.
Modeling of Two-Phase Flow in Rough-Walled Fracture Using Level Set Method
Directory of Open Access Journals (Sweden)
Yunfeng Dai
2017-01-01
Full Text Available To describe accurately the flow characteristic of fracture scale displacements of immiscible fluids, an incompressible two-phase (crude oil and water flow model incorporating interfacial forces and nonzero contact angles is developed. The roughness of the two-dimensional synthetic rough-walled fractures is controlled with different fractal dimension parameters. Described by the Navier–Stokes equations, the moving interface between crude oil and water is tracked using level set method. The method accounts for differences in densities and viscosities of crude oil and water and includes the effect of interfacial force. The wettability of the rough fracture wall is taken into account by defining the contact angle and slip length. The curve of the invasion pressure-water volume fraction is generated by modeling two-phase flow during a sudden drainage. The volume fraction of water restricted in the rough-walled fracture is calculated by integrating the water volume and dividing by the total cavity volume of the fracture while the two-phase flow is quasistatic. The effect of invasion pressure of crude oil, roughness of fracture wall, and wettability of the wall on two-phase flow in rough-walled fracture is evaluated.
A two-dimensional, two-phase mass transport model for liquid-feed DMFCs
International Nuclear Information System (INIS)
Yang, W.W.; Zhao, T.S.
2007-01-01
A two-dimensional, isothermal two-phase mass transport model for a liquid-feed direct methanol fuel cell (DMFC) is presented in this paper. The two-phase mass transport in the anode and cathode porous regions is formulated based on the classical multiphase flow in porous media without invoking the assumption of constant gas pressure in the unsaturated porous medium flow theory. The two-phase flow behavior in the anode flow channel is modeled by utilizing the drift-flux model, while in the cathode flow channel the homogeneous mist-flow model is used. In addition, a micro-agglomerate model is developed for the cathode catalyst layer. The model also accounts for the effects of both methanol and water crossover through the membrane. The comprehensive model formed by integrating those in the different regions is solved numerically using a home-written computer code and validated against the experimental data in the literature. The model is then used to investigate the effects of various operating and structural parameters, such as methanol concentration, anode flow rate, porosities of both anode and cathode electrodes, the rate of methanol crossover, and the agglomerate size, on cell performance
Simulation of the catalyst layer in PEMFC based on a novel two-phase lattice model
Energy Technology Data Exchange (ETDEWEB)
Zhang Jiejing; Yang Wei; Xu Li [School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China); Wang Yuxin, E-mail: yxwang@tju.edu.cn [School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China)
2011-08-01
Highlights: > We propose a novel two phase lattice model of catalyst layer in PEMFC. > The model features a catalyst phase and a mixed ionomer and pores phase. > Transport and electrochemical reaction in the lattice are simulated. > The model enables more accurate results than pore-solid two phase model. > Profiles of oxygen level and reaction rate across catalyst layer vary with cell current. - Abstract: A lattice model of catalyst layer in proton exchange membrane fuel cells (PEMFCs), consisting of randomly distributed catalyst phase (C phase) and mixed ionomer-pore phase (IP phase), was established by means of Monte Carlo method. Transport and electrochemical reactions in the model catalyst layer were calculated. The newly proposed C-IP model was compared with previously established pore-solid two phase model. The variation of oxygen level and reaction rate along the thickness of catalyst layer with cell current was discussed. The effect of ionomer distribution across catalyst layer was studied by comparing profiles of oxygen level, reaction rate and overpotential, as well as corresponding polarization curves.
Modelling of two-phase flow based on separation of the flow according to velocity
Energy Technology Data Exchange (ETDEWEB)
Narumo, T. [VTT Energy, Espoo (Finland). Nuclear Energy
1997-12-31
The thesis concentrates on the development work of a physical one-dimensional two-fluid model that is based on Separation of the Flow According to Velocity (SFAV). The conventional way to model one-dimensional two-phase flow is to derive conservation equations for mass, momentum and energy over the regions occupied by the phases. In the SFAV approach, the two-phase mixture is divided into two subflows, with as distinct average velocities as possible, and momentum conservation equations are derived over their domains. Mass and energy conservation are treated equally with the conventional model because they are distributed very accurately according to the phases, but momentum fluctuations follow better the flow velocity. Submodels for non-uniform transverse profile of velocity and density, slip between the phases within each subflow and turbulence between the subflows have been derived. The model system is hyperbolic in any sensible flow conditions over the whole range of void fraction. Thus, it can be solved with accurate numerical methods utilizing the characteristics. The characteristics agree well with the used experimental data on two-phase flow wave phenomena Furthermore, the characteristics of the SFAV model are as well in accordance with their physical counterparts as of the best virtual-mass models that are typically optimized for special flow regimes like bubbly flow. The SFAV model has proved to be applicable in describing two-phase flow physically correctly because both the dynamics and steady-state behaviour of the model has been considered and found to agree well with experimental data This makes the SFAV model especially suitable for the calculation of fast transients, taking place in versatile form e.g. in nuclear reactors. 45 refs. The thesis includes also five previous publications by author.
Modelling of two-phase flow based on separation of the flow according to velocity
International Nuclear Information System (INIS)
Narumo, T.
1997-01-01
The thesis concentrates on the development work of a physical one-dimensional two-fluid model that is based on Separation of the Flow According to Velocity (SFAV). The conventional way to model one-dimensional two-phase flow is to derive conservation equations for mass, momentum and energy over the regions occupied by the phases. In the SFAV approach, the two-phase mixture is divided into two subflows, with as distinct average velocities as possible, and momentum conservation equations are derived over their domains. Mass and energy conservation are treated equally with the conventional model because they are distributed very accurately according to the phases, but momentum fluctuations follow better the flow velocity. Submodels for non-uniform transverse profile of velocity and density, slip between the phases within each subflow and turbulence between the subflows have been derived. The model system is hyperbolic in any sensible flow conditions over the whole range of void fraction. Thus, it can be solved with accurate numerical methods utilizing the characteristics. The characteristics agree well with the used experimental data on two-phase flow wave phenomena Furthermore, the characteristics of the SFAV model are as well in accordance with their physical counterparts as of the best virtual-mass models that are typically optimized for special flow regimes like bubbly flow. The SFAV model has proved to be applicable in describing two-phase flow physically correctly because both the dynamics and steady-state behaviour of the model has been considered and found to agree well with experimental data This makes the SFAV model especially suitable for the calculation of fast transients, taking place in versatile form e.g. in nuclear reactors
Modeling and analysis of hydrodynamic instabilities in two-phase flow using two-fluid model
International Nuclear Information System (INIS)
Zhou, J.; Podowski, M.Z.
2001-01-01
Because of the practical importance of two-phase flow instabilities, especially in boiling water nuclear reactor technology, substantial efforts have been made to date to understand the physical phenomena governing such instabilities and to develop computational tools to model the dynamics of marginally-stable/unstable boiling systems. The purpose of this paper is to present an integrated methodology for the analysis of flow-induced instabilities in boiling channels and systems. The major novel aspects of the proposed approach are: (a) it is based on the combined frequency-domain and time-domain methods, the former used to quantify stability margins and to determine the onset of instability conditions, the latter to study the nonlinear system response outside the stability boundaries identified using the nearly-exact results of the frequency-domain analysis; (b) the two-fluid model of two-phase flow has been used for the first time to analytically derive the boiling channel transfer functions for the parallel-channel and channel-to-channel instability modes. In this way, the major characteristics of a boiling system, including the onset-of-instability conditions, can be readily evaluated by using the qualitative frequency-domain approach, whereas the explicit time-domain integration is performed, if necessary, only for the operating conditions that have already been identified as unstable. Both methods use the same physical two-fluid model that, in one case, is linearized and used to derive a rigorous analytical solution in the complex domain, and, in the other case, is solved numerically using an algorithm developed especially for this purpose. The results using both methods have been compared against each other and extensively tested. The testing and validation of the new model included comparisons of the predicted steady-state distributions of major parameters and of the transient channel response against experimental data
Lumped parameter modeling of a two-phase thermal-hydraulic channel with interface tracking
International Nuclear Information System (INIS)
Jo, J.H.; Kaufman, J.M.; Ruger, C.J.; Stein, S.
1978-01-01
A nonhomogenous, thermal nonequilibrium model for one-dimensional two-phase flow in a heated channel has been formulated in lumped parameter form. The channel is divided into a variable number of flow regimes separated by moving interfaces. The model can be used to predict the behavior of a LWR core and both primary and secondary sides of a steam generator under transient conditions. (author)
Modeling and simulation of nanoparticles transport in a two-phase flow in porous media
El-Amin, Mohamed; Salama, Amgad; Sun, Shuyu
2012-01-01
In the current paper, a mathematical model to describe the nanoparticles transport carried by a two-phase flow in a porous medium is presented. Both capillary forces as well as Brownian diffusion are considered in the model. A numerical example of countercurrent water-oil imbibition is considered. We monitor the changing of the fluid and solid properties due to the addition of the nanoparticles using numerical experiments. Variation of water saturation, nanoparticles concentration and porosity ratio are investigated.
Relations between the kinetic equation and the Langevin models in two-phase flow modelling
International Nuclear Information System (INIS)
Minier, J.P.; Pozorski, J.
1997-05-01
The purpose of this paper is to discuss PDF and stochastic models which are used in two-phase flow modelling. The aim of the present analysis is essentially to try to determine relations and consistency between different models. It is first recalled that different approaches actually correspond to PDF models written either in terms of the process trajectories or in terms of the PDF itself. The main difference lies in the choice of the independent variables which are retained. Two particular models are studied, the Kinetic Equation and the Langevin Equation model. The latter uses a Langevin equation to model the fluid velocities seen along particle trajectories. The Langevin model is more general since it contains an additional variable. It is shown that, in certain cases, this variable can be summed up exactly to retrieve the Kinetic Equation model as a marginal PDF. A joint fluid and solid particle PDF which includes the characteristics of both phases is proposed at the end of the paper. (author)
A turbulence model for large interfaces in high Reynolds two-phase CFD
International Nuclear Information System (INIS)
Coste, P.; Laviéville, J.
2015-01-01
Highlights: • Two-phase CFD commonly involves interfaces much larger than the computational cells. • A two-phase turbulence model is developed to better take them into account. • It solves k–epsilon transport equations in each phase. • The special treatments and transfer terms at large interfaces are described. • Validation cases are presented. - Abstract: A model for two-phase (six-equation) CFD modelling of turbulence is presented, for the regions of the flow where the liquid–gas interface takes place on length scales which are much larger than the typical computational cell size. In the other regions of the flow, the liquid or gas volume fractions range from 0 to 1. Heat and mass transfer, compressibility of the fluids, are included in the system, which is used at high Reynolds numbers in large scale industrial calculations. In this context, a model based on k and ε transport equations in each phase was chosen. The paper describes the model, with a focus on the large interfaces, which require special treatments and transfer terms between the phases, including some approaches inspired from wall functions. The validation of the model is based on high Reynolds number experiments with turbulent quantities measurements of a liquid jet impinging a free surface and an air water stratified flow. A steam–water stratified condensing flow experiment is also used for an indirect validation in the case of heat and mass transfer
A Variational Model for Two-Phase Immiscible Electroosmotic Flow at Solid Surfaces
Shao, Sihong
2012-01-01
We develop a continuum hydrodynamic model for two-phase immiscible flows that involve electroosmotic effect in an electrolyte and moving contact line at solid surfaces. The model is derived through a variational approach based on the Onsager principle of minimum energy dissipation. This approach was first presented in the derivation of a continuum hydrodynamic model for moving contact line in neutral two-phase immiscible flows (Qian, Wang, and Sheng, J. Fluid Mech. 564, 333-360 (2006)). Physically, the electroosmotic effect can be formulated by the Onsager principle as well in the linear response regime. Therefore, the same variational approach is applied here to the derivation of the continuum hydrodynamic model for charged two-phase immiscible flows where one fluid component is an electrolyte exhibiting electroosmotic effect on a charged surface. A phase field is employed to model the diffuse interface between two immiscible fluid components, one being the electrolyte and the other a nonconductive fluid, both allowed to slip at solid surfaces. Our model consists of the incompressible Navier-Stokes equation for momentum transport, the Nernst-Planck equation for ion transport, the Cahn-Hilliard phase-field equation for interface motion, and the Poisson equation for electric potential, along with all the necessary boundary conditions. In particular, all the dynamic boundary conditions at solid surfaces, including the generalized Navier boundary condition for slip, are derived together with the equations of motion in the bulk region. Numerical examples in two-dimensional space, which involve overlapped electric double layer fields, have been presented to demonstrate the validity and applicability of the model, and a few salient features of the two-phase immiscible electroosmotic flows at solid surface. The wall slip in the vicinity of moving contact line and the Smoluchowski slip in the electric double layer are both investigated. © 2012 Global-Science Press.
A model for non-equilibrium, non-homogeneous two-phase critical flow
International Nuclear Information System (INIS)
Bassel, Wageeh Sidrak; Ting, Daniel Kao Sun
1999-01-01
Critical two phase flow is a very important phenomena in nuclear reactor technology for the analysis of loss of coolant accident. Several recent papers, Lee and Shrock (1990), Dagan (1993) and Downar (1996) , among others, treat the phenomena using complex models which require heuristic parameters such as relaxation constants or interfacial transfer models. In this paper a mathematical model for one dimensional non equilibrium and non homogeneous two phase flow in constant area duct is developed. The model is constituted of three conservation equations type mass ,momentum and energy. Two important variables are defined in the model: equilibrium constant in the energy equation and the impulse function in the momentum equation. In the energy equation, the enthalpy of the liquid phase is determined by a linear interpolation function between the liquid phase enthalpy at inlet condition and the saturated liquid enthalpy at local pressure. The interpolation coefficient is the equilibrium constant. The momentum equation is expressed in terms of the impulse function. It is considered that there is slip between the liquid and vapor phases, the liquid phase is in metastable state and the vapor phase is in saturated stable state. The model is not heuristic in nature and does not require complex interface transfer models. It is proved numerically that for the critical condition the partial derivative of two phase pressure drop with respect to the local pressure or to phase velocity must be zero.This criteria is demonstrated by numerical examples. The experimental work of Fauske (1962) and Jeandey (1982) were analyzed resulting in estimated numerical values for important parameters like slip ratio, equilibrium constant and two phase frictional drop. (author)
Multiphysics modeling of two-phase film boiling within porous corrosion deposits
Energy Technology Data Exchange (ETDEWEB)
Jin, Miaomiao, E-mail: mmjin@mit.edu; Short, Michael, E-mail: hereiam@mit.edu
2016-07-01
Porous corrosion deposits on nuclear fuel cladding, known as CRUD, can cause multiple operational problems in light water reactors (LWRs). CRUD can cause accelerated corrosion of the fuel cladding, increase radiation fields and hence greater exposure risk to plant workers once activated, and induce a downward axial power shift causing an imbalance in core power distribution. In order to facilitate a better understanding of CRUD's effects, such as localized high cladding surface temperatures related to accelerated corrosion rates, we describe an improved, fully-coupled, multiphysics model to simulate heat transfer, chemical reactions and transport, and two-phase fluid flow within these deposits. Our new model features a reformed assumption of 2D, two-phase film boiling within the CRUD, correcting earlier models' assumptions of single-phase coolant flow with wick boiling under high heat fluxes. This model helps to better explain observed experimental values of the effective CRUD thermal conductivity. Finally, we propose a more complete set of boiling regimes, or a more detailed mechanism, to explain recent CRUD deposition experiments by suggesting the new concept of double dryout specifically in thick porous media with boiling chimneys. - Highlights: • A two-phase model of CRUD's effects on fuel cladding is developed and improved. • This model eliminates the formerly erroneous assumption of wick boiling. • Higher fuel cladding temperatures are predicted when accounting for two-phase flow. • Double-peaks in thermal conductivity vs. heat flux in experiments are explained. • A “double dryout” mechanism in CRUD is proposed based on the model and experiments.
Modeling and measurement of interfacial area concentration in two-phase flow
International Nuclear Information System (INIS)
Paranjape, Sidharth; Ishii, Mamoru; Hibiki, Takashi
2010-01-01
This paper presents experimental and modeling approaches in characterizing interfacial structures in gas-liquid two-phase flow. For the modeling of the interfacial structure characterization, the interfacial area transport equation proposed earlier has been studied to provide a dynamic and mechanistic prediction tool for two-phase flow analysis. A state-of-the-art four-sensor conductivity probe technique has been developed to obtain detailed local interfacial structure information in a wide range of flow regimes spanning from bubbly to churn-turbulent flows. Newly obtained interfacial area data in 8 x 8 rod-bundle test section are also presented. This paper also reviews available models of the interfacial area sink and source terms and existing databases. The interfacial area transport equation has been benchmarked using condensation bubbly flow data.
Directory of Open Access Journals (Sweden)
Mahood Hameed B.
2016-01-01
Full Text Available An analytical model for the convective heat transfer coefficient and the two-phase bubble size of a three-phase direct contact heat exchanger was developed. Until the present, there has only been a theoretical model available that deals with a single two-phase bubble and a bubble train condensation in an immiscible liquid. However, to understand the actual heat transfer process within the three-phase direct contact condenser, characteristic models are required. A quasi - steady energy equation in a spherical coordinate system with a potential flow assumption and a cell model configuration has been simplified and solved analytically. The convective heat transfer in terms of Nu number has been derived, and it was found to be a function to Pe number and a system void fraction. In addition, the two-phase bubble size relates to the system void fraction and has been developed by solving a simple energy balance equation and using the derived convective heat transfer coefficient expression. Furthermore, the model correlates well with previous experimental data and theoretical results.
Generalized network modeling of capillary-dominated two-phase flow.
Raeini, Ali Q; Bijeljic, Branko; Blunt, Martin J
2018-02-01
We present a generalized network model for simulating capillary-dominated two-phase flow through porous media at the pore scale. Three-dimensional images of the pore space are discretized using a generalized network-described in a companion paper [A. Q. Raeini, B. Bijeljic, and M. J. Blunt, Phys. Rev. E 96, 013312 (2017)2470-004510.1103/PhysRevE.96.013312]-which comprises pores that are divided into smaller elements called half-throats and subsequently into corners. Half-throats define the connectivity of the network at the coarsest level, connecting each pore to half-throats of its neighboring pores from their narrower ends, while corners define the connectivity of pore crevices. The corners are discretized at different levels for accurate calculation of entry pressures, fluid volumes, and flow conductivities that are obtained using direct simulation of flow on the underlying image. This paper discusses the two-phase flow model that is used to compute the averaged flow properties of the generalized network, including relative permeability and capillary pressure. We validate the model using direct finite-volume two-phase flow simulations on synthetic geometries, and then present a comparison of the model predictions with a conventional pore-network model and experimental measurements of relative permeability in the literature.
Generalized network modeling of capillary-dominated two-phase flow
Raeini, Ali Q.; Bijeljic, Branko; Blunt, Martin J.
2018-02-01
We present a generalized network model for simulating capillary-dominated two-phase flow through porous media at the pore scale. Three-dimensional images of the pore space are discretized using a generalized network—described in a companion paper [A. Q. Raeini, B. Bijeljic, and M. J. Blunt, Phys. Rev. E 96, 013312 (2017), 10.1103/PhysRevE.96.013312]—which comprises pores that are divided into smaller elements called half-throats and subsequently into corners. Half-throats define the connectivity of the network at the coarsest level, connecting each pore to half-throats of its neighboring pores from their narrower ends, while corners define the connectivity of pore crevices. The corners are discretized at different levels for accurate calculation of entry pressures, fluid volumes, and flow conductivities that are obtained using direct simulation of flow on the underlying image. This paper discusses the two-phase flow model that is used to compute the averaged flow properties of the generalized network, including relative permeability and capillary pressure. We validate the model using direct finite-volume two-phase flow simulations on synthetic geometries, and then present a comparison of the model predictions with a conventional pore-network model and experimental measurements of relative permeability in the literature.
Two-phase wall friction model for the trace computer code
International Nuclear Information System (INIS)
Wang Weidong
2005-01-01
The wall drag model in the TRAC/RELAP5 Advanced Computational Engine computer code (TRACE) has certain known deficiencies. For example, in an annular flow regime, the code predicts an unphysical high liquid velocity compared to the experimental data. To address those deficiencies, a new wall frictional drag package has been developed and implemented in the TRACE code to model the wall drag for two-phase flow system code. The modeled flow regimes are (1) annular/mist, (2) bubbly/slug, and (3) bubbly/slug with wall nucleation. The new models use void fraction (instead of flow quality) as the correlating variable to minimize the calculation oscillation. In addition, the models allow for transitions between the three regimes. The annular/mist regime is subdivided into three separate regimes for pure annular flow, annular flow with entrainment, and film breakdown. For adiabatic two-phase bubbly/slug flows, the vapor phase primarily exists outside of the boundary layer, and the wall shear uses single-phase liquid velocity for friction calculation. The vapor phase wall friction drag is set to zero for bubbly/slug flows. For bubbly/slug flows with wall nucleation, the bubbles are presented within the hydrodynamic boundary layer, and the two-phase wall friction drag is significantly higher with a pronounced mass flux effect. An empirical correlation has been studied and applied to account for nucleate boiling. Verification and validation tests have been performed, and the test results showed a significant code improvement. (authors)
Development of a two-phase SPH model for sediment laden flows
Shi, Huabin; Yu, Xiping; Dalrymple, Robert A.
2017-12-01
A SPH model based on a general formulation for solid-fluid two-phase flows is proposed for suspended sediment motion in free surface flows. The water and the sediment are treated as two miscible fluids, and the multi-fluid system is discretized by a single set of SPH particles, which move with the water velocity and carry properties of the two phases. Large eddy simulation (LES) is introduced to deal with the turbulence effect, and the widely used Smagorinsky model is modified to take into account the influence of sediment particles on the turbulence. The drag force is accurately formulated by including the hindered settling effect. In the model, the water is assumed to be weakly compressible while the sediment is incompressible, and a new equation of state is proposed for the pressure in the sediment-water mixture. Dynamic boundary condition is employed to treat wall boundaries, and a new strategy of Shepard filtering is adopted to damp the pressure oscillation. The developed two-phase SPH model is validated by comparing the numerical results with analytical solutions for idealized cases of still water containing both neutrally buoyant and naturally settling sand and for plane Poiseuille flows carrying neutrally buoyant particles, and is then applied to sand dumping from a line source into a water tank, where the sand cloud settles with a response of the free water surface. It is shown that the numerical results are in good agreement with the experimental data as well as the empirical formulas. The characteristics of the settling sand cloud, the pressure field, and the flow vortices are studied. The motion of the free water surface is also discussed. The proposed two-phase SPH model is proven to be effective for numerical simulation of sand dumping into waters.
Modeling of two-phase flow with thermal and mechanical non-equilibrium
International Nuclear Information System (INIS)
Houdayer, G.; Pinet, B.; Le Coq, G.; Reocreux, M.; Rousseau, J.C.
1977-01-01
To improve two-phase flow modeling by taking into account thermal and mechanical non-equilibrium a joint effort on analytical experiment and physical modeling has been undertaken. A model describing thermal non-equilibrium effects is first presented. A correlation of mass transfer has been developed using steam water critical flow tests. This model has been used to predict in a satisfactory manner blowdown tests. It has been incorporated in CLYSTERE system code. To take into account mechanical non-equilibrium, a six equations model is written. To get information on the momentum transfers special nitrogen-water tests have been undertaken. The first results of these studies are presented
Central upwind scheme for a compressible two-phase flow model.
Ahmed, Munshoor; Saleem, M Rehan; Zia, Saqib; Qamar, Shamsul
2015-01-01
In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS) and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.
International Nuclear Information System (INIS)
Blinkov, V.N.
1993-01-01
This paper presents a mathematical model and a open-quotes fastclose quotes computer program for analyzing nonstationary thermohydrodynamic processes in distributed multi-element circuits containing a two-phase coolant. The author's approach is based on representing the distributed multi-element circuits with the two-phase coolant (such as cooling circuits of the reactor of an atomic power station) in the form of equivalent thermohydrodynamic chains composed of idealized elements with the intrinsic properties of the structure elements of real systems. The author has developed the nomenclature of such conceptual elements for objects which can be modelled; the nomenclature encompasses the control volumes (with a single-phase or two-phase coolant or a moving boundary of boiling/condensation) and the branch lines (type of tube and connections in dependence on the inertia of the coolant being taken into account) for a hydrodynamic submodel and the thermal components and lines for a thermal submodel. The mathematical models which have been developed and the program using them are designated for various forms of calculating slow thermohydrodynamic processes in multi-element coolant circuits in reactors and modeling test stands. The program facilitates calculation of the range of stable operation, detailed studies of stationary and nonstationary modes of operation, and forecasts of effective engineering measures to obtain stability with the aid of microcomputers
Central upwind scheme for a compressible two-phase flow model.
Directory of Open Access Journals (Sweden)
Munshoor Ahmed
Full Text Available In this article, a compressible two-phase reduced five-equation flow model is numerically investigated. The model is non-conservative and the governing equations consist of two equations describing the conservation of mass, one for overall momentum and one for total energy. The fifth equation is the energy equation for one of the two phases and it includes source term on the right-hand side which represents the energy exchange between two fluids in the form of mechanical and thermodynamical work. For the numerical approximation of the model a high resolution central upwind scheme is implemented. This is a non-oscillatory upwind biased finite volume scheme which does not require a Riemann solver at each time step. Few numerical case studies of two-phase flows are presented. For validation and comparison, the same model is also solved by using kinetic flux-vector splitting (KFVS and staggered central schemes. It was found that central upwind scheme produces comparable results to the KFVS scheme.
A modified homogeneous relaxation model for CO2 two-phase flow in vapour ejector
International Nuclear Information System (INIS)
Haida, M.; Palacz, M.; Smolka, J.; Nowak, A. J.; Hafner, A.; Banasiak, K.
2016-01-01
In this study, the homogenous relaxation model (HRM) for CO 2 flow in a two-phase ejector was modified in order to increase the accuracy of the numerical simulations The two- phase flow model was implemented on the effective computational tool called ejectorPL for fully automated and systematic computations of various ejector shapes and operating conditions. The modification of the HRM was performed by a change of the relaxation time and the constants included in the relaxation time equation based on the experimental result under the operating conditions typical for the supermarket refrigeration system. The modified HRM was compared to the HEM results, which were performed based on the comparison of motive nozzle and suction nozzle mass flow rates. (paper)
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
Energy Technology Data Exchange (ETDEWEB)
Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Daude, F. [EDF R& D, AMA, 7 boulevard Gaspard Monge, 91120 Palaiseau (France); IMSIA, UMR EDF-CNRS-CEA-ENSTA 9219, Université Paris Saclay, 828 Boulevard des Maréchaux, 91762 Palaiseau (France); Koren, B.; Tijsseling, A.S. [Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven (Netherlands)
2017-02-15
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splitting approach. The results are in good agreement with reference results and exact solutions.
A modified homogeneous relaxation model for CO2 two-phase flow in vapour ejector
Haida, M.; Palacz, M.; Smolka, J.; Nowak, A. J.; Hafner, A.; Banasiak, K.
2016-09-01
In this study, the homogenous relaxation model (HRM) for CO2 flow in a two-phase ejector was modified in order to increase the accuracy of the numerical simulations The two- phase flow model was implemented on the effective computational tool called ejectorPL for fully automated and systematic computations of various ejector shapes and operating conditions. The modification of the HRM was performed by a change of the relaxation time and the constants included in the relaxation time equation based on the experimental result under the operating conditions typical for the supermarket refrigeration system. The modified HRM was compared to the HEM results, which were performed based on the comparison of motive nozzle and suction nozzle mass flow rates.
Experimental validation of a numerical model of two-phase displacement in porous medium
International Nuclear Information System (INIS)
Genty, A.
1996-01-01
Burial in geological layers appears to be an interesting solution to dispose of radioactive wastes. This thesis analyzes and simulates the behaviour of gas produced by waste barrels corrosion. The released contaminated gas drains the water initially present in the host rock and yields a water-gas two phase flow. A literature survey of two phase flow shows that fluid interfaces may display instabilities for definite flow characteristics. When the displacement is stable a smooth interface proceeds through the porous medium. When the interface shows fingering, the displacement is said to be 'viscous-unstable', and when the front is jagged the displacement is called 'capillary' displacement. A dimensional analysis of classical equations governing two phase flow in porous media is combined with a classification of dominant forces to define an original map of flow regimes that includes gravitational forces. The map is based on three dimensionless numbers and predicts a priori the flow type. For typical data describing a radioactive waste repository a 'viscous-unstable' displacement is predicted by the map. We simulate water-gas displacement with a numerical model previously developed; this code, based on the Muskat model, uses the mixed-hybrid finite elements technique and is therefore well adapted for tracking moving interfaces. Fluxes are well conserved, however instabilities cannot be simulated. We assume that there is always a scale to be found where instabilities can be averaged and we try to validate the model with experimental two phase flows. We performed laboratory water-gas flow experiments for a variety of flow conditions. The observed displacement types are consistent with the map of flow regimes. Good agreement with numerical simulations is obtained when precise parameters of the displacements are available, in particular relative permeability curves. We conclude that our model allows a first approach of migration of gas near a radioactive waste repository
A two-phase inspection model for a single component system with three-stage degradation
International Nuclear Information System (INIS)
Wang, Huiying; Wang, Wenbin; Peng, Rui
2017-01-01
This paper presents a two-phase inspection schedule and an age-based replacement policy for a single plant item contingent on a three-stage degradation process. The two phase inspection schedule can be observed in practice. The three stages are defined as the normal working stage, low-grade defective stage and critical defective stage. When an inspection detects that an item is in the low-grade defective stage, we may delay the preventive replacement action if the time to the age-based replacement is less than or equal to a threshold level. However, if it is above this threshold level, the item will be replaced immediately. If the item is found in the critical defective stage, it is replaced immediately. A hybrid bee colony algorithm is developed to find the optimal solution for the proposed model which has multiple decision variables. A numerical example is conducted to show the efficiency of this algorithm, and simulations are conducted to verify the correctness of the model. - Highlights: • A two-phase inspection model is studied. • The failure process has three stages. • The delayed replacement is considered.
A splitting technique for analytical modelling of two-phase multicomponent flow in porous media
DEFF Research Database (Denmark)
Pires, A.P.; Bedrikovetsky, P.G.; Shapiro, Alexander
2006-01-01
In this paper we discuss one-dimensional models for two-phase Enhanced Oil Recovery (EOR) floods (oil displacement by gases, polymers, carbonized water, hot water, etc.). The main result presented here is the splitting of the EOR mathematical model into thermodynamical and hydrodynamical parts...... formation water for chemical flooding can be calculated from the reduced auxiliary system. Reduction of the number of equations allows the generation of new analytical models for EOR. The analytical model for displacement of oil by a polymer slug with water drive is presented....
Two-phase electro-hydrodynamic flow modeling by a conservative level set model.
Lin, Yuan
2013-03-01
The principles of electro-hydrodynamic (EHD) flow have been known for more than a century and have been adopted for various industrial applications, for example, fluid mixing and demixing. Analytical solutions of such EHD flow only exist in a limited number of scenarios, for example, predicting a small deformation of a single droplet in a uniform electric field. Numerical modeling of such phenomena can provide significant insights about EHDs multiphase flows. During the last decade, many numerical results have been reported to provide novel and useful tools of studying the multiphase EHD flow. Based on a conservative level set method, the proposed model is able to simulate large deformations of a droplet by a steady electric field, which is beyond the region of theoretic prediction. The model is validated for both leaky dielectrics and perfect dielectrics, and is found to be in excellent agreement with existing analytical solutions and numerical studies in the literature. Furthermore, simulations of the deformation of a water droplet in decyl alcohol in a steady electric field match better with published experimental data than the theoretical prediction for large deformations. Therefore the proposed model can serve as a practical and accurate tool for simulating two-phase EHD flow. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Two-phase quasi-equilibrium in β-type Ti-based bulk metallic glass composites
Zhang, L.; Pauly, S.; Tang, M. Q.; Eckert, J.; Zhang, H. F.
2016-01-01
The microstructural evolution of cast Ti/Zr-based bulk metallic glass composites (BMGCs) containing β-Ti still remains ambiguous. This is why to date the strategies and alloys suitable for producing such BMGCs with precisely controllable volume fractions and crystallite sizes are still rather limited. In this work, a Ti-based BMGC containing β-Ti was developed in the Ti-Zr-Cu-Co-Be system. The glassy matrix of this BMGC possesses an exceptional glass-forming ability and as a consequence, the volume fractions as well as the composition of the β-Ti dendrites remain constant over a wide range of cooling rates. This finding can be explained in terms of a two-phase quasi-equilibrium between the supercooled liquid and β-Ti, which the system attains on cooling. The two-phase quasi-equilibrium allows predicting the crystalline and glassy volume fractions by means of the lever rule and we succeeded in reproducing these values by slight variations in the alloy composition at a fixed cooling rate. The two-phase quasi-equilibrium could be of critical importance for understanding and designing the microstructures of BMGCs containing the β-phase. Its implications on the nucleation and growth of the crystalline phase are elaborated. PMID:26754315
Interface model coupling in fluid dynamics: application to two-phase flows
International Nuclear Information System (INIS)
Galie, Th.
2009-03-01
This thesis is devoted to the study of interface model coupling problems in space between different models of compressible flows. We consider one-dimensional problems where the interface is sharp, fixed and separating two regions of space corresponding to the two coupled models. Our goal is to define a coupling condition at the interface and to solve numerically the coupling problem with this condition. After a state of art on the interface model coupling of hyperbolic systems of conservation laws, we propose a new coupling condition by adding in the equations of the coupled problem a measure source term at the interface. We first suppose a given constant weight associated to this source term. Two Riemann solvers are developed and one of them is based on a relaxation approach preserving equilibrium solutions of the coupled problem. This relaxation method is then used in an optimization problem, defined by several motivations at the interface, which permits to calculate a time dynamical weight. In a second part, we develop an approached Riemann solver for a two-phase two-pressure model in the particular case of a two-phase isentropic flow. Such a model contains non conservative terms that we write under the form of measure source terms. The previous relaxation method is thus extended to the case of the two-phase two-pressure model with an a priori estimation of the non conservative term contributions. The method allows us to solve, in the next and last chapter, the coupling problem of a two-fluid two-pressure model with a drift-flux model thanks to the father model approach. (authors)
Numerical methods for limit problems in two-phase flow models
International Nuclear Information System (INIS)
Cordier, F.
2011-01-01
Numerical difficulties are encountered during the simulation of two-phase flows. Two issues are studied in this thesis: the simulation of phase transitions on one hand, and the simulation of both compressible and incompressible flows in the other hand. Un asymptotic study has shown that the loss of hyperbolicity of the bi fluid model was responsible for the difficulties encountered by the Roe scheme during the simulation of phase transitions. Robust and accurate polynomial schemes have thus been developed. To tackle the occasional lack of positivity of the solution, a numerical treatment based on adaptive diffusion was proposed and allowed to simulate with accuracy the test-cases of a boiling channel with creation of vapor and a tee-junction with separation of the phases. In a second part, an all-speed scheme for compressible and incompressible flows have been proposed. This pressure-based semi-implicit asymptotic preserving scheme is conservative, solves an elliptic equation on the pressure, and has been designed for general equations of state. The scheme was first developed for the full Euler equations and then extended to the Navier-Stokes equations. The good behaviour of the scheme in both compressible and incompressible regimes have been investigated. An extension of the scheme to the two-phase mixture model was implemented and demonstrated the ability of the scheme to simulate two-phase flows with phase change and a water-steam equation of state. (author) [fr
An analytical model for prediction of two-phase (noncondensable) flow pump performance
International Nuclear Information System (INIS)
Furuya, O.
1985-01-01
During operational transients or a hypothetical LOCA (loss of coolant accident) condition, the recirculating coolant of PWR (pressurized water reactor) may flash into steam due to a loss of line pressure. Under such two-phase flow conditions, it is well known that the recirculation pump becomes unable to generate the same head as that of the single-phase flow case. Similar situations also exist in oil well submersible pumps where a fair amount of gas is contained in oil. Based on the one dimensional control volume method, an analytical method has been developed to determine the performance of pumps operating under two-phase flow conditions. The analytical method has incorporated pump geometry, void fraction, flow slippage and flow regime into the basic formula, but neglected the compressibility and condensation effects. During the course of model development, it has been found that the head degradation is mainly caused by higher acceleration on liquid phase and deceleration on gas phase than in the case of single-phase flows. The numerical results for head degradations and torques obtained with the model favorably compared with the air/water two-phase flow test data of Babcock and Wilcox (1/3 scale) and Creare (1/20 scale) pumps
International Nuclear Information System (INIS)
Vladimir V Chudanov; Alexei A Leonov
2005-01-01
Full text of publication follows: One of the mathematical models (hyperbolic type) for describing evolution of compressible two-phase mixtures was offered in [1] to deal with the following applications: interfaces between compressible materials; shock waves in multiphase mixtures; evolution of homogeneous two-phase flows; cavitation in liquids. The basic difficulties of this model was connected to discretization of the non-conservative equation terms. As result, the class of problems concerned with passage of shock waves through fields with a discontinuing profile of a volume fraction was not described by means of this model. A class of schemes that are able to converge to the correct solution of such problems was received in [2] due to a deeper analysis of two-phase model. The technique offered in [2] was implemented on a Eulerian grid via the Godunov scheme. In present paper the additional analysis of two-phase model in view of microstructure of an mixture topology is carried out in Lagrange mass coordinates. As result, the equations averaged over the set of all possible realizations for two-phase mixture are received. The numerical solution is carried out with use of PPM method [3] in two steps: at first - the equations averaged over mass variable are solved; on the second - the solution, found on the previous step, is re-mapped to a fixed Eulerian grid. Such approach allows to expand the proposed technique on two-dimensional (three-dimensional) case, as in the Lagrange variables the Euler equations system is split on two (three) identical subsystems, each of which describes evolution of considered medium in the given direction. The accuracy and robustness of the described procedure are demonstrated on a sequence of the numerical problems. References: (1). R. Saurel, R. Abgrall, A multiphase Godunov method for compressible multi-fluid and multiphase flows, J. Comput. Phys. 150 (1999) 425-467; (2). R. Saurel, R. Abgrall, Discrete equations for physical and
Modeling and numerical analysis of non-equilibrium two-phase flows
International Nuclear Information System (INIS)
Rascle, P.; El Amine, K.
1997-01-01
We are interested in the numerical approximation of two-fluid models of nonequilibrium two-phase flows described by six balance equations. We introduce an original splitting technique of the system of equations. This technique is derived in a way such that single phase Riemann solvers may be used: moreover, it allows a straightforward extension to various and detailed exchange source terms. The properties of the fluids are first approached by state equations of ideal gas type and then extended to real fluids. For the construction of numerical schemes , the hyperbolicity of the full system is not necessary. When based on suitable kinetic unwind schemes, the algorithm can compute flow regimes evolving from mixture to single phase flows and vice versa. The whole scheme preserves the physical features of all the variables which remain in the set of physical states. Several stiff numerical tests, such as phase separation and phase transition are displayed in order to highlight the efficiency of the proposed method. The document is a PhD thesis divided in 6 chapters and two annexes. They are entitled: 1. - Introduction (in French), 2. - Two-phase flow, modelling and hyperbolicity (in French), 3. - A numerical method using upwind schemes for the resolution of two-phase flows without exchange terms (in English), 4. - A numerical scheme for one-phase flow of real fluids (in English), 5. - An upwind numerical for non-equilibrium two-phase flows (in English), 6. - The treatment of boundary conditions (in English), A.1. The Perthame scheme (in English) and A.2. The Roe scheme (in English)
Two-phase flow modeling for low concentration spherical particle motion through a Newtonian fluid
CSIR Research Space (South Africa)
Smit GJF
2010-11-01
Full Text Available the necessity to model the discrete nature of sep- cite this article in press as: G.J.F. Smit et al., Two-phase flow modeling for low concentration spherical particle motion through a ian fluid, Appl. Math. Comput. (2010), doi:10.1016/j.amc.2010.07.055 2... and Ribberin large-scale and long term morphologica Please cite this article in press as: G.J.F. Smit Newtonian fluid, Appl. Math. Comput. (2010), � 2010 Elsevier Inc. All rights reserved. modeling of multiphase flow has increasingly become the subject...
Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows
Liang, Hong; Xu, Jiangrong; Chen, Jiangxing; Wang, Huili; Chai, Zhenhua; Shi, Baochang
2018-03-01
In this paper, we present a simple and accurate lattice Boltzmann (LB) model for immiscible two-phase flows, which is able to deal with large density contrasts. This model utilizes two LB equations, one of which is used to solve the conservative Allen-Cahn equation, and the other is adopted to solve the incompressible Navier-Stokes equations. A forcing distribution function is elaborately designed in the LB equation for the Navier-Stokes equations, which make it much simpler than the existing LB models. In addition, the proposed model can achieve superior numerical accuracy compared with previous Allen-Cahn type of LB models. Several benchmark two-phase problems, including static droplet, layered Poiseuille flow, and spinodal decomposition are simulated to validate the present LB model. It is found that the present model can achieve relatively small spurious velocity in the LB community, and the obtained numerical results also show good agreement with the analytical solutions or some available results. Lastly, we use the present model to investigate the droplet impact on a thin liquid film with a large density ratio of 1000 and the Reynolds number ranging from 20 to 500. The fascinating phenomena of droplet splashing is successfully reproduced by the present model and the numerically predicted spreading radius exhibits to obey the power law reported in the literature.
Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology
Ba, Yan; Wang, Ningning; Liu, Haihu; Li, Qiang; He, Guoqiang
2018-03-01
In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.
Validation of model predictions of pore-scale fluid distributions during two-phase flow
Bultreys, Tom; Lin, Qingyang; Gao, Ying; Raeini, Ali Q.; AlRatrout, Ahmed; Bijeljic, Branko; Blunt, Martin J.
2018-05-01
Pore-scale two-phase flow modeling is an important technology to study a rock's relative permeability behavior. To investigate if these models are predictive, the calculated pore-scale fluid distributions which determine the relative permeability need to be validated. In this work, we introduce a methodology to quantitatively compare models to experimental fluid distributions in flow experiments visualized with microcomputed tomography. First, we analyzed five repeated drainage-imbibition experiments on a single sample. In these experiments, the exact fluid distributions were not fully repeatable on a pore-by-pore basis, while the global properties of the fluid distribution were. Then two fractional flow experiments were used to validate a quasistatic pore network model. The model correctly predicted the fluid present in more than 75% of pores and throats in drainage and imbibition. To quantify what this means for the relevant global properties of the fluid distribution, we compare the main flow paths and the connectivity across the different pore sizes in the modeled and experimental fluid distributions. These essential topology characteristics matched well for drainage simulations, but not for imbibition. This suggests that the pore-filling rules in the network model we used need to be improved to make reliable predictions of imbibition. The presented analysis illustrates the potential of our methodology to systematically and robustly test two-phase flow models to aid in model development and calibration.
Inverse modeling for the determination of hydrogeological parameters of a two-phase system
International Nuclear Information System (INIS)
Finsterle, S.
1993-02-01
Investigations related to the disposal of radioactive wastes in Switzerland consider formations containing natural gas as potential rocks for a repository. Moreover, gas generation in the repository itself may lead to an unsaturated zone of significant extent and impact on the system's performance. The site characterization procedure requires the estimation of hydraulic properties being used as input parameters for a two-phase two-component numerical simulator. In this study, estimates of gas-related formation parameters are obtained by inverse modeling. Based on discrete observations of the system's state, model parameters can be estimated within the framework of a given conceptual model by means of optimization techniques. This study presents the theoretical background that related field data to the model parameters. A parameter estimation procedure is proposed and implemented in a computer code for automatic model calibration. This tool allows identification of key parameters affecting flow of water and gas in porous media. The inverse modeling approach is verified using data from a synthetic laboratory experiment. In addition, the Gas test performed at the Grimsel Test Site is analyzed in order to demonstrate the applicability of the proposed procedure when used with data from a real geologic environment. Estimation of hydrogeologic parameters by automatic model calibration improves the understanding of the two-phase flow processes and therefore increases the reliability of the subsequent simulation runs. (author) figs., tabs., refs
Inverse modeling for the determination of hydrogeological parameters of a two-phase system
International Nuclear Information System (INIS)
Finsterle, S.
1993-01-01
Investigations related to the disposal of radioactive wastes in Switzerland are dealing with formations containing natural gas as potential host rock for a repository. Moreover, gas generation in the repository itself may lead to an unsaturated zone of significant extent and impact on the system's performance. The site characterization procedure requires the estimation of hydraulic properties being used as input parameters for a two-phase two-component numerical simulator. In this study, estimates of gas related formation parameters are obtained by inverse modeling. Based on discrete observations of the system's state, model parameters can be estimated within the framework of a given conceptual model by means of optimization techniques. This study presents the theoretical background that relates field data to the model parameters. A parameter estimation procedure is proposed and implemented in a computer code for automatic model calibration. This tool allows to identify key parameters affecting flow of water and gas in porous media. The inverse modeling approach is verified using data from a synthetic laboratory experiment. In addition, the Gastest performed at the Grimsel Test Site is analyzed in order to demonstrate the applicability of the proposed procedure when used with data from a real geologic environment. Estimation of hydrogeologic parameters by automatic model calibration improves the understanding of the two-phase flow processes and therefore increases the reliability of the subsequent simulation runs. (author) figs., tabs., 100 refs
Two-phase flow modeling in the rod bundle subchannel analysis
International Nuclear Information System (INIS)
Hisashi, Ninokata
2006-01-01
In order to practice a design-by-analysis of thermohydraulics design of BWR fuel rod bundles, the subchannel analysis would play a major role. There, the immediate concern is improvement in its predictive capability of CHF due in particular to the film dryout (boiling transition phenomena: BT) on the fuel rod surface. Constitutive equations in the subchannel analysis formulation are responsible for the quality of calculated results. The constitutive equations are a result of integration of the local and instantaneous description of two-phase flows over the subchannel control volume. In general, they are expressed in terms of subchannel-control-volume- as well as area-averaged two-phase flow state variables. In principle the information on local and instantaneous physical phenomena taking place inside subchannels must be counted for in the algebraic form of the equations on the basis of a more mechanistic modeling approach. They should include also influences of the multi-dimensional subchannel geometry and fluid material properties. Thermohydraulics phenomena of interests in this deed are: 1) vapor-liquid re-distribution by inter-subchannel exchanges due to the diversion cross flow, turbulent mixing and void drift, 2) liquid film behaviors, 3) transition of two-phase flow regimes, 4) droplet entrainment and deposition and 5) spacer-droplet interactions. These are considered to be five key factors in understanding the BT in BWR fuel rod bundles. In Japan, a university-industry consortium has been formed under the sponsorship of the Ministry of Economics, Trade and Industry. This paper describes an outline of the on-going project and, first, an outline of the current efforts is presented in developing a new two-fluid three field subchannel code NASCA being aimed at predicting onset of BT, and post BT phenomena in advanced BWR fuel rod bundles including those of the tight lattice configuration for a higher conversion. Then the current methodology adopted to improve
Two-phase flow modeling in the rod bundle subchannel analysis
International Nuclear Information System (INIS)
Hisashi, Ninokata
2004-01-01
Full text of publication follows:In order to practice a design-by-analysis of thermohydraulics design of BWR fuel rod bundles, the subchannel analysis would play a major role. There, the immediate concern is improvement in its predictive capability of CHF due in particular to the film dryout (boiling transition phenomena: BT) on the fuel rod surface. Constitutive equations in the subchannel analysis formulation are responsible for the quality of calculated results. The constitutive equations are a result of integration of the local and instantaneous description of two-phase flows over the subchannel control volume. In general, they are expressed in terms of subchannel-control-volume- as well as area-averaged two-phase flow state variables. In principle the information on local and instantaneous physical phenomena taking place inside subchannels must be counted for in the algebraic form of the equations on the basis of a more mechanistic modeling approach. They should include also influences of the multi-dimensional subchannel geometry and fluid material properties. Thermohydraulics phenomena of interests in this deed are: 1) vapor-liquid re-distribution by inter-subchannel exchanges due to the diversion cross flow, turbulent mixing and void drift, 2) liquid film behaviors, 3) transition of two-phase flow regimes, 4) droplet entrainment and deposition and 5) spacer-droplet interactions. These are considered to be five key factors in understanding the BT in BWR fuel rod bundles. In Japan, a university-industry consortium has been formed under the sponsorship of the Ministry of Economics, Trade and Industry. This paper describes an outline of the on-going project and, first, an outline of the current efforts is presented in developing a new two-fluid three field subchannel code NASCA being aimed at predicting onset of BT, and post BT phenomena in advanced BWR fuel rod bundles including those of the tight lattice configuration for a higher conversion. Then the current
A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects
Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys
2015-04-01
We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the
Review of mathematical and physical basis of two-phase flow modelling
International Nuclear Information System (INIS)
Bottoni, M.; Sengpiel, W.
1992-08-01
Starting from a continuum-mechanical approach, this report gives a detailed overview of the deduction of conservation equations for the analytical description of two-phase flows by means of an adequate averaging process resulting in a two-fluid model and a homogeneous mixture model. The mathematical process of averaging leads to macroscopic formulations of stress terms and interfacial interaction terms. These terms depend on microscopic variables and thus give some helpful insight into the physical processes which have to be described by constitutive relations. (orig.) [de
Switching moving boundary models for two-phase flow evaporators and condensers
Bonilla, Javier; Dormido, Sebastián; Cellier, François E.
2015-03-01
The moving boundary method is an appealing approach for the design, testing and validation of advanced control schemes for evaporators and condensers. When it comes to advanced control strategies, not only accurate but fast dynamic models are required. Moving boundary models are fast low-order dynamic models, and they can describe the dynamic behavior with high accuracy. This paper presents a mathematical formulation based on physical principles for two-phase flow moving boundary evaporator and condenser models which support dynamic switching between all possible flow configurations. The models were implemented in a library using the equation-based object-oriented Modelica language. Several integrity tests in steady-state and transient predictions together with stability tests verified the models. Experimental data from a direct steam generation parabolic-trough solar thermal power plant is used to validate and compare the developed moving boundary models against finite volume models.
Investigation for vertical, two-phase steam-water flow of three turbine models
International Nuclear Information System (INIS)
Silverman, S.; Goodrich, L.D.
1977-01-01
One of the basic quantities of interest during a loss-of-coolant experiment (LOCE) is the primary system mass flow rate. Presently, there are no transducers commercially available which continuously measure this parameter. Therefore, a transducer was designed at EG and G Idaho, Inc. which combines a drag-disc and turbine into a single unit. The basis for the design was that the drag-disc would measure momentum flux (rhoV 2 ), the turbine would measure velocity and the mass flow rate could then be calculated from the two quantities by assuming a flow profile. For two-phase flow, the outputs are approximately proportional to the desired parameter, but rather large errors can be expected under those assumptions. Preliminary evaluation of the experimental two- and single-phase calibration data has resulted in uncertainty estimates of +-8% of range for the turbine and +-20% of range for the drag-disc. In an effort to reduce the errors, further investigations were made to determine what the drag-disc and turbine really measure. In the present paper, three turbine models for vertical, two-phase, steam/water flow are investigated; the Aya Model, the Rouhani Model, and a volumetric flow model. Theoretical predictions are compared with experimental data for vertical, two-phase steam/water flow. For the purposes of the mass flow calculation, velocity profiles were assumed to be flat for the free-field condition. It is appreciated that this may not be true for all cases investigated, but for an initial inspection, flat profiles were assumed
Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly
International Nuclear Information System (INIS)
Andrey Ioilev; Maskhud Samigulin; Vasily Ustinenko; Simon Lo; Adrian Tentner
2005-01-01
Full text of publication follows: The goal of this project is to develop an advanced Computational Fluid Dynamics (CFD) computer code (CFD-BWR) that allows the detailed analysis of the two-phase flow and heat transfer phenomena in a Boiling Water Reactor (BWR) fuel bundle under various operating conditions. This code will include more fundamental physical models than the current generation of sub-channel codes and advanced numerical algorithms for improved computational accuracy, robustness, and speed. It is highly desirable to understand the detailed two-phase flow phenomena inside a BWR fuel bundle. These phenomena include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for the analysis of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is still too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Recent progress in Computational Fluid Dynamics (CFD), coupled with the rapidly increasing computational power of massively parallel computers, shows promising potential for the fine-mesh, detailed simulation of fuel assembly two-phase flow phenomena. However, the phenomenological models available in the commercial CFD programs are not as advanced as those currently being used in the sub-channel codes used in the nuclear industry. In particular, there are no models currently available which are able to reliably predict the nature of the flow regimes, and use the appropriate sub-models for those flow regimes. The CFD-BWR code is being developed as a customized module built on the foundation of the commercial CFD Code STAR-CD which provides general two-phase flow modeling capabilities. The paper describes the model development strategy which has been adopted by the development team for the
Geometric analysis of the solutions of two-phase flows: two-fluid model
International Nuclear Information System (INIS)
Kestin, J.; Zeng, D.L.
1984-01-01
This report contains a lightly edited draft of a study of the two-fluid model in two-phase flow. The motivation for the study stems from the authors' conviction that the construction of a computer code for any model should be preceded by a geometrical analysis of the pattern of trajectories in the phase space appropriate for the model. Such a study greatly facilitates the understanding of the phenomenon of choking and anticipates the computational difficulties which arise from the existence of singularities. The report contains a derivation of the six conservation equations of the model which includes a consideration of the simplifications imposed on a one-dimensional treatment by the presence of boundary layers at the wall and between the phases. The model is restricted to one-dimensional adiabatic flows of a single substance present in two phases, but thermodynamic equilibrium between the phases is not assumed. The role of closure conditions is defined but no specific closure conditions, or explicit equations of state, are introduced
RETRAN nonequilibrium two-phase flow model for operational transient analyses
International Nuclear Information System (INIS)
Paulsen, M.P.; Hughes, E.D.
1982-01-01
The field balance equations, flow-field models, and equation of state for a nonequilibrium two-phase flow model for RETRAN are given. The differential field balance model equations are: (1) conservation of mixture mass; (2) conservation of vapor mass; (3) balance of mixture momentum; (4) a dynamic-slip model for the velocity difference; and (5) conservation of mixture energy. The equation of state is formulated such that the liquid phase may be subcooled, saturated, or superheated. The vapor phase is constrained to be at the saturation state. The dynamic-slip model includes wall-to-phase and interphase momentum exchanges. A mechanistic vapor generation model is used to describe vapor production under bulk subcooling conditions. The speed of sound for the mixture under nonequilibrium conditions is obtained from the equation of state formulation. The steady-state and transient solution methods are described
Local two-phase modeling of the water-steam flows occurring in steam generators
International Nuclear Information System (INIS)
Denefle, Romain
2013-01-01
The present study is related to the need of modeling the two-phase flows occurring in a steam generator (liquid at inlet and vapour at outlet). The choice is made to investigate a hybrid modeling of the flow, considering the gas phase as two separated fields, each one being modeled with different closure laws. In so doing, the small and spherical bubbles are modeled through a dispersed approach within the two-fluid model, and the distorted bubbles are simulated with an interface locating method. The main outcome is about the implementation, the verification and the validation of the model dedicated to the large and distorted bubbles, as well as the coupling of the two approaches for the gas, allowing the presentation of demonstration calculations using the so-called hybrid approach. (author)
Development of two phase turbulent mixing model for subchannel analysis relevant to BWR
International Nuclear Information System (INIS)
Sharma, M.P.; Nayak, A.K.; Kannan, Umasankari
2014-01-01
A two phase flow model is presented, which predicts both liquid and gas phase turbulent mixing rate between adjacent subchannels of reactor rod bundles. The model presented here is for slug churn flow regime, which is dominant as compared to the other regimes like bubbly flow and annular flow regimes, since turbulent mixing rate is the highest in slug churn flow regime. In this paper, we have defined new dimensionless parameters i.e. liquid mixing number and gas mixing number for two phase turbulent mixing. The liquid mixing number is a function of mixture Reynolds number whereas the gas phase mixing number is a function of both mixture Reynolds number and volumetric fraction of gas. The effect of pressure, geometrical influence of subchannel is also included in this model. The present model has been tested against low pressure and temperature air-water and high pressure and temperature steam-water experimental data found that it shows good agreement with available experimental data. (author)
Stationary two-phase flow evaluation by the dynamic slip model
International Nuclear Information System (INIS)
Stevanovic, D.
1986-01-01
The equations which describe a dynamic slip model for stationary conditions are given in the paper. The basic solving procedure by the code DVOF4 is briefly described. The results are verified on the experiment FRIGG 313014. besides the void fraction and the vapor and liquid phase temperatures, the following parameters are plotted and explained: vapor phase generation rate, vapor and liquid phase velocities, slip between the phases, interfacial surface, friction drag between each phase and the wall, two-phase flow friction multiplier and pressure drop along the channel. (author)
Two-phase flow dynamics in a model steam generator under vertical acceleration oscillation field
International Nuclear Information System (INIS)
Ishida, T.; Teshima, N.; Sakurai, S.
1992-01-01
The influence of periodically varying acceleration on hydrodynamic response has been studied experimentally using an experimental rig which models a marine reactor subject to vertical motion. The effect on the primary loop is small, but the effect on the secondary loop is large. The variables of the secondary loop, such as circulation flow rate and water level, oscillate with acceleration. The variation of gains in frequency response is analysed. The variations of flow in the secondary loop and in the downcome water level, increase in proportion to the acceleration. The effect of the flow resistance in the secondary loop on the two-phase flow dynamics is clarified. (7 figures) (Author)
Energy Technology Data Exchange (ETDEWEB)
Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Laviéville, Jérôme; Mimouni, Stéphane; Guingo, Mathieu; Baudry, Cyril
2016-04-01
Highlights: • NEPTUNE-CFD is used to model two-phase PTS. • k-ε model did produce some satisfactory results but also highlights some weaknesses. • A more advanced turbulence model has been developed, validated and applied for PTS. • Coupled with LIM, the first results confirmed the increased accuracy of the approach. - Abstract: Nuclear power plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential pressurized thermal shock (PTS) – characterized by a rapid cooling of the internal Reactor Pressure Vessel (RPV) surface. In this context, NEPTUNE-CFD is used to model two-phase PTS and give an assessment on the structural integrity of the RPV. The first available choice was to use standard first order turbulence model (k-ε) to model high-Reynolds number flows encountered in Pressurized Water Reactor (PWR) primary circuits. In a first attempt, the use of k-ε model did produce some satisfactory results in terms of condensation rate and temperature field distribution on integral experiments, but also highlights some weaknesses in the way to model highly anisotropic turbulence. One way to improve the turbulence prediction – and consequently the temperature field distribution – is to opt for more advanced Reynolds Stress turbulence Model. After various verification and validation steps on separated effects cases – co-current air/steam-water stratified flows in rectangular channels, water jet impingements on water pool free surfaces – this Reynolds Stress turbulence Model (R{sub ij}-ε SSG) has been applied for the first time to thermal free surface flows under industrial conditions on COSI and TOPFLOW-PTS experiments. Coupled with the Large Interface Model, the first results confirmed the adequacy and increased accuracy of the approach in an industrial context.
Negative Saturation Approach for Non-Isothermal Compositional Two-Phase Flow Simulations
Salimi, H.; Wolf, K.H.; Bruining, J.
2011-01-01
This article deals with developing a solution approach, called the non-isothermal negative saturation (NegSat) solution approach. The NegSat solution approach solves efficiently any non-isothermal compositional flow problem that involves phase disappearance, phase appearance, and phase transition.
Modeling of bubble coalescence and disintegration in confined upward two-phase flow
International Nuclear Information System (INIS)
Sun Xiaodong; Kim, Seungjin; Ishii, Mamoru; Beus, Stephen G.
2004-01-01
This paper presents the modeling of bubble interaction mechanisms in the two-group interfacial area transport equation (IATE) for confined gas-liquid two-phase flow. The transport equation is applicable to bubbly, cap-turbulent, and churn-turbulent flow regimes. In the two-group IATE, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 and cap/slug/churn-turbulent bubbles as Group 2. Thus, two sets of equations are used to describe the generation and destruction rates of bubble number density, void fraction, and interfacial area concentration for the two groups of bubbles due to bubble expansion and compression, coalescence and disintegration, and phase change. Five major bubble interaction mechanisms are identified for the gas-liquid two-phase flow of interest, and are analytically modeled as the source/sink terms for the transport equation in the confined flow. These models include both intra-group and inter-group bubble interactions
Validation of NEPTUNE-CFD two-phase flow models using experimental data
International Nuclear Information System (INIS)
Perez-Manes, Jorge; Sanchez Espinoza, Victor Hugo; Bottcher, Michael; Stieglitz, Robert; Sergio Chiva Vicent
2014-01-01
This paper deals with the validation of the two-phase flow models of the CFD code NEPTUNE-CFD using experimental data provided by the OECD BWR BFBT and PSBT Benchmark. Since the two-phase models of CFD codes are extensively being improved, the validation is a key step for the acceptability of such codes. The validation work is performed in the frame of the European NURISP Project and it was focused on the steady state and transient void fraction tests. The influence of different NEPTUNE-CFD model parameters on the void fraction prediction is investigated and discussed in detail. Due to the coupling of heat conduction solver SYRTHES with NEPTUNE-CFD, the description of the coupled fluid dynamics and heat transfer between the fuel rod and the fluid is improved significantly. The averaged void fraction predicted by NEPTUNE-CFD for selected PSBT and BFBT tests is in good agreement with the experimental data. Finally, areas for future improvements of the NEPTUNE-CFD code were identified, too. (authors)
Thermal conductivity degradation analyses of LWR MOX fuel by the quasi-two phase material model
International Nuclear Information System (INIS)
Kosaka, Yuji; Kurematsu, Shigeru; Kitagawa, Takaaki; Suzuki, Akihiro; Terai, Takayuki
2012-01-01
The temperature measurements of mixed oxide (MOX) and UO 2 fuels during irradiation suggested that the thermal conductivity degradation rate of the MOX fuel with burnup should be slower than that of the UO 2 fuel. In order to explain the difference of the degradation rates, the quasi-two phase material model is proposed to assess the thermal conductivity degradation of the MIMAS MOX fuel, which takes into account the Pu agglomerate distributions in the MOX fuel matrix as fabricated. As a result, the quasi-two phase model calculation shows the gradual increase of the difference with burnup and may expect more than 10% higher thermal conductivity values around 75 GWd/t. While these results are not fully suitable for thermal conductivity degradation models implemented by some industrial fuel manufacturers, they are consistent with the results from the irradiation tests and indicate that the inhomogeneity of Pu content in the MOX fuel can be one of the major reasons for the moderation of the thermal conductivity degradation of the MOX fuel. (author)
Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.
2015-01-01
To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.
International Nuclear Information System (INIS)
Wang Jian; Ju Sheng; Li, Z.Y.
2012-01-01
The effect of bias voltage on electron tunneling across a junction with a ferroelectric–ferromagnetic composite barrier is investigated theoretically. Because of the inversion symmetry breaking of the spontaneous ferroelectric polarization, bias voltage dependence of the electron tunneling shows significant differences between the positive bias and the negative one. The differences of spin filtering or tunnel magnetoresistance increase with the increasing absolute value of bias voltage. Such direction preferred electron tunneling is found intimately related with the unusual asymmetry of the electrical potential profile in two-phase composite barrier and provides a unique change to realize rectifying functions in spintronics. - Highlights: ► Electron tunneling across a ferroelectric–ferromagnetic composite barrier junction. ► TMR effect is different under the same value but opposite direction bias voltage. ► This directionality of the electron tunneling enhances with increasing bias voltage.
Meso-Scale Modeling of Spall in a Heterogeneous Two-Phase Material
Energy Technology Data Exchange (ETDEWEB)
Springer, Harry Keo [Univ. of California, Davis, CA (United States)
2008-07-11
The influence of the heterogeneous second-phase particle structure and applied loading conditions on the ductile spall response of a model two-phase material was investigated. Quantitative metallography, three-dimensional (3D) meso-scale simulations (MSS), and small-scale spall experiments provided the foundation for this study. Nodular ductile iron (NDI) was selected as the model two-phase material for this study because it contains a large and readily identifiable second- phase particle population. Second-phase particles serve as the primary void nucleation sites in NDI and are, therefore, central to its ductile spall response. A mathematical model was developed for the NDI second-phase volume fraction that accounted for the non-uniform particle size and spacing distributions within the framework of a length-scale dependent Gaussian probability distribution function (PDF). This model was based on novel multiscale sampling measurements. A methodology was also developed for the computer generation of representative particle structures based on their mathematical description, enabling 3D MSS. MSS were used to investigate the effects of second-phase particle volume fraction and particle size, loading conditions, and physical domain size of simulation on the ductile spall response of a model two-phase material. MSS results reinforce existing model predictions, where the spall strength metric (SSM) logarithmically decreases with increasing particle volume fraction. While SSM predictions are nearly independent of applied load conditions at lower loading rates, which is consistent with previous studies, loading dependencies are observed at higher loading rates. There is also a logarithmic decrease in SSM for increasing (initial) void size, as well. A model was developed to account for the effects of loading rate, particle size, matrix sound-speed, and, in the NDI-specific case, the probabilistic particle volume fraction model. Small-scale spall experiments were designed
An investigation of subchannel analysis models for single-phase and two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Hwang, Dae Hyun
1996-01-01
The governing equations and lateral transport modelings of subchannel analysis code, which is the most widely used tool for the analysis of thermal hydraulics fields in reactor cores, have been thoroughly investigated in this study. The procedure for the derivation of subchannel integral balance equations from the local instantaneous phase equations was investigated by stages. The characteristics of governing equations according to the treatment of phase velocity were studies, and the equations based on the drift-flux equilibrium formulation have been derived. Turbulent mixing and void drift modeling, which affect considerably to the accuracy of subchannel analysis code, have been reviewed. In addition, some representative modelings of single-phase and two-phase turbulent mixing models have been introduced. (author). 5 tabs., 4 figs., 16 refs.
The difficult challenge of a two-phase CFD modelling for all flow regimes
International Nuclear Information System (INIS)
Bestion, D.
2014-01-01
Highlights: • The theoretical difficulties for modelling all flow regimes at CFD scale are identified. • The choice of the number of fields and of the time and space averaging or filtering are discussed and clarified. • Closure issues related to an all flow regime CFD model are listed and the main difficulties are identified. - Abstract: System thermalhydraulic codes model all two-phase flow regimes but they are limited to a macroscopic description. Two-phase CFD tools predict two-phase flow with a much finer space resolution but the current modelling capabilities are limited to dispersed bubbly or droplet flow and separate-phase flow. Much less experience exists on more complex flow regimes which combine the existence of dispersed fields with the presence of large interfaces such as a free surface or a film surface. A list of possible reactor issues which might benefit from an “all flow regime CFD model” is given. The first difficulty is to identify the various types of local flow configuration. It is shown that a 4-field model has much better capabilities than a two-fluid approach to identify most complex regimes. Then the choice between time averaging, space averaging, or even ensemble averaging is discussed. It is shown that only the RANS-2-fluid and a space-filtered 4-field model may be reasonably envisaged. The latter has the capabilities to identify all types of interfaces and should be privileged if a good accuracy is expected or if time fluctuations in intermittent flow have to be predicted while the former may be used when a high accuracy is not necessary and if time fluctuations in intermittent flow are not of interest. Finally the closure issue is presented including wall transfers, interfacial transfers, mass transfers between dispersed and continuous fields, and turbulent transfers. An important effort is required to model all interactions between sub-filter phenomena and the transfers from the sub-filter domain to the simulated domain. The
Two-phase modeling of DDT: Structure of the velocity-relaxation zone
International Nuclear Information System (INIS)
Kapila, A.K.; Son, S.F.; Bdzil, J.B.; Menikoff, R.; Stewart, D.S.
1997-01-01
The structure of the velocity relaxation zone in a hyperbolic, nonconservative, two-phase model is examined in the limit of large drag, and in the context of the problem of deflagration-to-detonation transition in a granular explosive. The primary motivation for the study is the desire to relate the end states across the relaxation zone, which can then be treated as a discontinuity in a reduced, equivelocity model, that is computationally more efficient than its parent. In contrast to a conservative system, where end states across thin zones of rapid variation are determined principally by algebraic statements of conservation, the nonconservative character of the present system requires an explicit consideration of the structure. Starting with the minimum admissible wave speed, the structure is mapped out as the wave speed increases. Several critical wave speeds corresponding to changes in the structure are identified. The archetypal structure is partly dispersed, monotonic, and involves conventional hydrodynamic shocks in one or both phases. The picture is reminiscent of, but more complex than, what is observed in such (simpler) two-phase media as a dusty gas. copyright 1997 American Institute of Physics
Vibration analysis of rotating nanobeam systems using Eringen's two-phase local/nonlocal model
Khaniki, Hossein Bakhshi
2018-05-01
Due to the inability of differential form of nonlocal elastic theory in modelling cantilever beams and inaccurate results for some type of boundaries, in this study, a reliable investigation on transverse vibrational behavior of rotating cantilever size-dependent beams is presented. Governing higher order equations are written in the framework of Eringen's two-phase local/nonlocal model and solved using a modified generalized differential quadrature method. In order to indicate the influence of different material and scale parameters, a comprehensive parametric study is presented. It is shown that increasing the nonlocality term leads to lower natural frequency terms for cantilever nanobeams especially for the fundamental frequency parameter which differential nonlocal model is unable to track appropriately. Moreover, it is shown that rotating speed and hub radius have a remarkable effect in varying the mechanical behavior of rotating cantilever nanobeams. This study is a step forward in analyzing nanorotors, nanoturbines, nanoblades, etc.
CFD model of diabatic annular two-phase flow using the Eulerian–Lagrangian approach
International Nuclear Information System (INIS)
Li, Haipeng; Anglart, Henryk
2015-01-01
Highlights: • A CFD model of annular two-phase flow with evaporating liquid film has been developed. • A two-dimensional liquid film model is developed assuming that the liquid film is sufficiently thin. • The liquid film model is coupled to the gas core flow, which is represented using the Eulerian–Lagrangian approach. - Abstract: A computational fluid dynamics (CFD) model of annular two-phase flow with evaporating liquid film has been developed based on the Eulerian–Lagrangian approach, with the objective to predict the dryout occurrence. Due to the fact that the liquid film is sufficiently thin in the diabatic annular flow and at the pre-dryout conditions, it is assumed that the flow in the wall normal direction can be neglected, and the spatial gradients of the dependent variables tangential to the wall are negligible compared to those in the wall normal direction. Subsequently the transport equations of mass, momentum and energy for liquid film are integrated in the wall normal direction to obtain two-dimensional equations, with all the liquid film properties depth-averaged. The liquid film model is coupled to the gas core flow, which currently is represented using the Eulerian–Lagrangian technique. The mass, momentum and energy transfers between the liquid film, gas, and entrained droplets have been taken into account. The resultant unified model for annular flow has been applied to the steam–water flow with conditions typical for a Boiling Water Reactor (BWR). The simulation results for the liquid film flow rate show favorable agreement with the experimental data, with the potential to predict the dryout occurrence based on criteria of critical film thickness or critical film flow rate
International Nuclear Information System (INIS)
Tong Yunxian; Wang Wenran
1992-03-01
The mass flowrate and steam quality measuring of two phase flowrate is an essential issue in the tests of loss-of-coolant accident (LOCA). The spatial stochastic distribution of phase concentration would cause a differential pressure noise when two phase flow is crossing a throttling set. Under the assumption of that the variance of disperse phase concentration is proportional to its mean phase concentration and by using the separated flow model of two phase flow, it has demonstrated that the variance of noise of differential pressure square root is approximately proportional to the flowrate of disperse phase. Thus, a theoretical model for measuring mass flowrate and quality of two phase flow by noise measurement is developed. It indicates that there is a possibility to measure two phase flowrate and steam quality by using the simple theoretical model and a single throttling set
Qin, Feifei; Mazloomi Moqaddam, Ali; Kang, Qinjun; Derome, Dominique; Carmeliet, Jan
2018-03-01
An entropic multiple-relaxation-time lattice Boltzmann approach is coupled to a multirange Shan-Chen pseudopotential model to study the two-phase flow. Compared with previous multiple-relaxation-time multiphase models, this model is stable and accurate for the simulation of a two-phase flow in a much wider range of viscosity and surface tension at a high liquid-vapor density ratio. A stationary droplet surrounded by equilibrium vapor is first simulated to validate this model using the coexistence curve and Laplace's law. Then, two series of droplet impact behavior, on a liquid film and a flat surface, are simulated in comparison with theoretical or experimental results. Droplet impact on a liquid film is simulated for different Reynolds numbers at high Weber numbers. With the increase of the Sommerfeld parameter, onset of splashing is observed and multiple secondary droplets occur. The droplet spreading ratio agrees well with the square root of time law and is found to be independent of Reynolds number. Moreover, shapes of simulated droplets impacting hydrophilic and superhydrophobic flat surfaces show good agreement with experimental observations through the entire dynamic process. The maximum spreading ratio of a droplet impacting the superhydrophobic flat surface is studied for a large range of Weber numbers. Results show that the rescaled maximum spreading ratios are in good agreement with a universal scaling law. This series of simulations demonstrates that the proposed model accurately captures the complex fluid-fluid and fluid-solid interfacial physical processes for a wide range of Reynolds and Weber numbers at high density ratios.
Model for definition of heat transfer coefficient in an annular two-phase flow
International Nuclear Information System (INIS)
Khun, J.
1976-01-01
Near-wall heat exchange in a vertical tube at high vapor velocity in a two-phase vapor and liquid flow is investigated. The flow divides inside the tube into a near-wall liquid film and a vapor nucleus containing liquid droplets, with the boundaries being uniform. The liquid film thickness determines the main resistance during heat transfer between the wall and vapor nucleus. The theoretical model presented is verified in water vaporization experiments, the R12 cooling agent and certain hydrocarbons. The loss of friction pressure is determined by the Lockart-Martinelli method. The approximately universal Carman velocity profile is used to evaluate the velocity in film, and basing on this, film thickness is determined. The parameter ranges were: Resub(vap)=10 4 -3x10 6 , Resub(liq.)=0.9-10. The theoretical model ensures good correlation with the experiment
Simulation of horizontal pipe two-phase slug flows using the two-fluid model
Energy Technology Data Exchange (ETDEWEB)
Ortega Malca, Arturo J. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica. Nucleo de Simulacao Termohidraulica de Dutos (SIMDUT); Nieckele, Angela O. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica
2005-07-01
Slug flow occurs in many engineering applications, mainly in the transport of hydrocarbon fluids in pipelines. The intermittency of slug flow causes severe unsteady loading on the pipelines carrying the fluids, which gives rise to design problems. Therefore, it is important to be able to predict the onset and development of slug flow as well as slug characteristics. The present work consists in the simulation of two-phase flow in slug pattern through horizontal pipes using the two-fluid model in its transient and one-dimensional form. The advantage of this model is that the flow field is allowed to develop naturally from a given initial conditions as part of the transient calculation; the slug evolves automatically as a product of the computed flow development. Simulations are then carried out for a large number of flow conditions that lead a slug flow. (author)
On a unified presentation of the non-equilibrium two-phase flow models
International Nuclear Information System (INIS)
Boure, J.A.
1975-01-01
If the various existing one-dimensional two-phase flow models are consistent, they must appear as particular cases of more general models. It is shown that such is the case if, and only if, the mathematical form of the laws of the transfers between the phases is sufficiently general. These transfer laws control the non-equilibrium phenomena. A convenient general model is a particular form of the two-fluid model. This particular form involves three equations and three dependent variables characterizing the mixture, and three equations and three dependent variables characterizing the differences between the phases (slip, thermal non-equilibriums). The mathematical expressions of the transfert terms present in the above equations involve first-order partial derivatives of the dependent variables. The other existing models may be deduced from the general model by making assumptions on the fluid evolution. Several examples are given. The resulting unified presentation of the existing model enables a comparison of the implicit assumptions made in these models on the transfer laws. It is therefore, a useful tool for the appraisal of the existing models and for the development of new models [fr
Spectral Cascade-Transport Turbulence Model Development for Two-Phase Flows
Brown, Cameron Scott
Turbulence modeling remains a challenging problem in nuclear reactor applications, particularly for the turbulent multiphase flow conditions in nuclear reactor subchannels. Understanding the fundamental physics of turbulent multiphase flows is crucial for the improvement and further development of multiphase flow models used in reactor operation and safety calculations. Reactor calculations with Reynolds-averaged Navier-Stokes (RANS) approach continue to become viable tools for reactor analysis. The on-going increase in available computational resources allows for turbulence models that are more complex than the traditional two-equation models to become practical choices for nuclear reactor computational fluid dynamic (CFD) and multiphase computational fluid dynamic (M-CFD) simulations. Similarly, increased computational capabilities continue to allow for higher Reynolds numbers and more complex geometries to be evaluated using direct numerical simulation (DNS), thus providing more validation and verification data for turbulence model development. Spectral turbulence models are a promising approach to M-CFD simulations. These models resolve mean flow parameters as well as the turbulent kinetic energy spectrum, reproducing more physical details of the turbulence than traditional two-equation type models. Previously, work performed by other researchers on a spectral cascade-transport model has shown that the model behaves well for single and bubbly twophase decay of isotropic turbulence, single and two-phase uniform shear flow, and single-phase flow in a channel without resolving the near-wall boundary layer for relatively low Reynolds number. Spectral models are great candidates for multiphase RANS modeling since bubble source terms can be modeled as contributions to specific turbulence scales. This work focuses on the improvement and further development of the spectral cascadetransport model (SCTM) to become a three-dimensional (3D) turbulence model for use in M
Comparison of simplified models in the prediction of two phase flow in pipelines
Jerez-Carrizales, M.; Jaramillo, J. E.; Fuentes, D.
2014-06-01
Prediction of two phase flow in pipelines is a common task in engineering. It is a complex phenomenon and many models have been developed to find an approximate solution to the problem. Some old models, such as the Hagedorn & Brown (HB) model, have been highlighted by many authors to give very good performance. Furthermore, many modifications have been applied to this method to improve its predictions. In this work two simplified models which are based on empiricism (HB and Mukherjee and Brill, MB) are considered. One mechanistic model which is based on the physics of the phenomenon (AN) and it still needs some correlations called closure relations is also used. Moreover, a drift flux model defined in steady state that is flow pattern dependent (HK model) is implemented. The implementation of these methods was tested using published data in the scientific literature for vertical upward flows. Furthermore, a comparison of the predictive performance of the four models is done against a well from Campo Escuela Colorado. Difference among four models is smaller than difference with experimental data from the well in Campo Escuela Colorado.
Modeling creep deformation of a two-phase TiAI/Ti3Al alloy with a lamellar microstructure
Bartholomeusz, Michael F.; Wert, John A.
1994-10-01
A two-phase TiAl/Ti3Al alloy with a lamellar microstructure has been previously shown to exhibit a lower minimum creep rate than the minimum creep rates of the constituent TiAl and Ti3Al single-phase alloys. Fiducial-line experiments described in the present article demonstrate that the creep rates of the constituent phases within the two-phase TiAl/Ti3Al lamellar alloy tested in compression are more than an order of magnitude lower than the creep rates of single-phase TiAl and Ti3Al alloys tested in compression at the same stress and temperature. Additionally, the fiducial-line experiments show that no interfacial sliding of the phases in the TiAl/Ti3Al lamellar alloy occurs during creep. The lower creep rate of the lamellar alloy is attributed to enhanced hardening of the constituent phases within the lamellar microstructure. A composite-strength model has been formulated to predict the creep rate of the lamellar alloy, taking into account the lower creep rates of the constituent phases within the lamellar micro-structure. Application of the model yields a very good correlation between predicted and experimentally observed minimum creep rates over moderate stress and temperature ranges.
A phenomenological two-phase constitutive model for porous shape memory alloys
El Sayed, Tamer S.
2012-07-01
We present a two-phase constitutive model for pseudoelastoplastic behavior of porous shape memory alloys (SMAs). The model consists of a dense SMA phase and a porous plasticity phase. The overall response of the porous SMA is obtained by a weighted average of responses of individual phases. Based on the chosen constitutive model parameters, the model incorporates the pseudoelastic and pseudoplastic behavior simultaneously (commonly reported for porous SMAs) as well as sequentially (i.e. dense SMAs; pseudoelastic deformation followed by the pseudoplastic deformation until failure). The presented model also incorporates failure due to the deviatoric (shear band formation) and volumetric (void growth and coalescence) plastic deformation. The model is calibrated by representative volume elements (RVEs) with different sizes of spherical voids that are solved by unit cell finite element calculations. The overall response of the model is tested against experimental results from literature. Finally, application of the presented constitutive model has been presented by performing finite element simulations of the deformation and failure in unaixial dog-bone shaped specimen and compact tension (CT) test specimen. Results show a good agreement with the experimental data reported in the literature. © 2012 Elsevier B.V. All rights reserved.
Simultaneous thermal and optical imaging of two-phase flow in a micro-model.
Karadimitriou, N K; Nuske, P; Kleingeld, P J; Hassanizadeh, S M; Helmig, R
2014-07-21
In the study of non-equilibrium heat transfer in multiphase flow in porous media, parameters and constitutive relations, like heat transfer coefficients between phases, are unknown. In order to study the temperature development of a relatively hot invading immiscible non-wetting fluid and, ultimately, approximate heat transfer coefficients, a transparent micro-model is used as an artificial porous medium. In the last few decades, micro-models have become popular experimental tools for two-phase flow studies. In this work, the design of an innovative, elongated, PDMS (polydimethylsiloxane) micro-model with dimensions of 14.4 × 39 mm(2) and a constant depth of 100 microns is described. A novel setup for simultaneous thermal and optical imaging of flow through the micro-model is presented. This is the first time that a closed flow cell like a micro-model is used in simultaneous thermal and optical flow imaging. The micro-model is visualized by a novel setup that allowed us to monitor and record the distribution of fluids throughout the length of the micro-model continuously and also record the thermal signature of the fluids. Dynamic drainage and imbibition experiments were conducted in order to obtain information about the heat exchange between the phases. In this paper the setup as well as analysis and qualitative results are presented.
Implicit approximate Riemann solver for two fluid two phase flow models
International Nuclear Information System (INIS)
Raymond, P.; Toumi, I.; Kumbaro, A.
1993-01-01
This paper is devoted to the description of new numerical methods developed for the numerical treatment of two phase flow models with two velocity fields which are now widely used in nuclear engineering for design or safety calculations. These methods are finite volumes numerical methods and are based on the use of Approximate Riemann Solver's concepts in order to define convective flux versus mean cell quantities. The first part of the communication will describe the numerical method for a three dimensional drift flux model and the extensions which were performed to make the numerical scheme implicit and to have fast running calculations of steady states. Such a scheme is now implemented in the FLICA-4 computer code devoted to 3-D steady state and transient core computations. We will present results obtained for a steady state flow with rod bow effect evaluation and for a Steam Line Break calculation were the 3-D core thermal computation was coupled with a 3-D kinetic calculation and a thermal-hydraulic transient calculation for the four loops of a Pressurized Water Reactor. The second part of the paper will detail the development of an equivalent numerical method based on an approximate Riemann Solver for a two fluid model with two momentum balance equations for the liquid and the gas phases. The main difficulty for these models is due to the existence of differential modelling terms such as added mass effects or interfacial pressure terms which make hyperbolic the model. These terms does not permit to write the balance equations system in a conservative form, and the classical theory for discontinuity propagation for non-linear systems cannot be applied. Meanwhile, the use of non-conservative products theory allows the study of discontinuity propagation for a non conservative model and this will permit the construction of a numerical scheme for two fluid two phase flow model. These different points will be detailed in that section which will be illustrated by
Dividing phases in two-phase flow and modeling of interfacial drag
Energy Technology Data Exchange (ETDEWEB)
Narumo, T.; Rajamaeki, M. [VTT Energy (Finland)
1997-07-01
Different models intended to describe one-dimensional two-phase flow are considered in this paper. The following models are introduced: conventional six-equation model, conventional model equipped with terms taking into account nonuniform transverse velocity distribution of the phases, several virtual mass models and a model in which the momentum equations have been derived by using the principles of Separation of the Flow According to Velocity (SFAV). The dynamics of the models have been tested by comparing their characteristic velocities to each other and against experimental data. The results show that the SFAV-model makes a hyperbolic system and predicts the propagation velocities of disturbances with the same order of accuracy as the best tested virtual mass models. Furthermore, the momentum interaction terms for the SFAV-model are considered. These consist of the wall friction terms and the interfacial friction term. The authors model wall friction with two independent terms describing the effect of each fluid on the wall separately. In the steady state, a relationship between the slip velocity and friction coefficients can be derived. Hence, the friction coefficients for the SFAV-model can be calculated from existing correlations, viz. from a drift-flux correlation and a wall friction correlation. The friction model was tested by searching steady-state distributions in a partial BWR fuel channel and comparing the relaxed values with the drift-flux correlation, which agreed very well with each other. In addition, response of the flow to a sine-wave disturbance in the water inlet flux was calculated as function of frequency. The results of the models differed from each other already with frequency of order 5 Hz, while the time constant for the relaxation, obtained from steady-state distribution calculation, would have implied significant differences appear not until with frequency of order 50 Hz.
Dividing phases in two-phase flow and modeling of interfacial drag
International Nuclear Information System (INIS)
Narumo, T.; Rajamaeki, M.
1997-01-01
Different models intended to describe one-dimensional two-phase flow are considered in this paper. The following models are introduced: conventional six-equation model, conventional model equipped with terms taking into account nonuniform transverse velocity distribution of the phases, several virtual mass models and a model in which the momentum equations have been derived by using the principles of Separation of the Flow According to Velocity (SFAV). The dynamics of the models have been tested by comparing their characteristic velocities to each other and against experimental data. The results show that the SFAV-model makes a hyperbolic system and predicts the propagation velocities of disturbances with the same order of accuracy as the best tested virtual mass models. Furthermore, the momentum interaction terms for the SFAV-model are considered. These consist of the wall friction terms and the interfacial friction term. The authors model wall friction with two independent terms describing the effect of each fluid on the wall separately. In the steady state, a relationship between the slip velocity and friction coefficients can be derived. Hence, the friction coefficients for the SFAV-model can be calculated from existing correlations, viz. from a drift-flux correlation and a wall friction correlation. The friction model was tested by searching steady-state distributions in a partial BWR fuel channel and comparing the relaxed values with the drift-flux correlation, which agreed very well with each other. In addition, response of the flow to a sine-wave disturbance in the water inlet flux was calculated as function of frequency. The results of the models differed from each other already with frequency of order 5 Hz, while the time constant for the relaxation, obtained from steady-state distribution calculation, would have implied significant differences appear not until with frequency of order 50 Hz
2018-01-01
Set III of this encyclopedia is a new addition to the previous Sets I and II. It contains 26 invited chapters from international specialists on the topics of numerical modeling of two-phase flows and evaporation, fundamentals of evaporation and condensation in microchannels and macrochannels, development and testing of micro two-phase cooling systems for electronics, and various special topics (surface wetting effects, microfin tubes, two-phase flow vibration across tube bundles). The chapters are written both by renowned university researchers and by well-known engineers from leading corporate research laboratories. Numerous "must read" chapters cover the fundamentals of research and engineering practice on boiling, condensation and two-phase flows, two-phase heat transfer equipment, electronics cooling systems, case studies and so forth. Set III constitutes a "must have" reference together with Sets I and II for thermal engineering researchers and practitioners.
Numerical predictions of particle dispersed two-phase flows, using the LSD and SSF models
International Nuclear Information System (INIS)
Avila, R.; Cervantes de Gortari, J.; Universidad Nacional Autonoma de Mexico, Mexico City. Facultad de Ingenieria)
1988-01-01
A modified version of a numerical scheme which is suitable to predict parabolic dispersed two-phase flow, is presented. The original version of this scheme was used to predict the test cases discussed during the 3rd workshop on TPF predictions in Belgrade, 1986. In this paper, two particle dispersion models are included which use the Lagrangian approach predicting test case 1 and 3 of the 4th workshop. For the prediction of test case 1 the Lagrangian Stochastic Deterministic model (LSD) is used providing acceptable good results of mean and turbulent quantities for both solid and gas phases; however, the computed void fraction distribution is not in agreement with the measurements at locations away from the inlet, especially near the walls. Test case 3 is predicted using both the LSD and the Stochastic Separated Flow (SSF) models. It was found that the effects of turbulence modulation are large when the LSD model is used, whereas the particles have a negligible influence on the continuous phase if the SSF model is utilized for the computations. Predictions of gas phase properties based on both models agree well with measurements; however, the agreement between calculated and measured solid phase properties is less satisfactory. (orig.)
Modeling of annular two-phase flow using a unified CFD approach
Energy Technology Data Exchange (ETDEWEB)
Li, Haipeng, E-mail: haipengl@kth.se; Anglart, Henryk, E-mail: henryk@kth.se
2016-07-15
Highlights: • Annular two-phase flow has been modeled using a unified CFD approach. • Liquid film was modeled based on a two-dimensional thin film assumption. • Both Eulerian and Lagrangian methods were employed for the gas core flow modeling. - Abstract: A mechanistic model of annular flow with evaporating liquid film has been developed using computational fluid dynamics (CFD). The model is employing a separate solver with two-dimensional conservation equations to predict propagation of a thin boiling liquid film on solid walls. The liquid film model is coupled to a solver of three-dimensional conservation equations describing the gas core, which is assumed to contain a saturated mixture of vapor and liquid droplets. Both the Eulerian–Eulerian and the Eulerian–Lagrangian approach are used to describe the droplet and vapor motion in the gas core. All the major interaction phenomena between the liquid film and the gas core flow have been accounted for, including the liquid film evaporation as well as the droplet deposition and entrainment. The resultant unified framework for annular flow has been applied to the steam-water flow with conditions typical for a Boiling Water Reactor (BWR). The simulation results for the liquid film flow rate show good agreement with the experimental data, with the potential to predict the dryout occurrence based on criteria of critical film thickness or critical film flow rate.
Modeling of annular two-phase flow using a unified CFD approach
International Nuclear Information System (INIS)
Li, Haipeng; Anglart, Henryk
2016-01-01
Highlights: • Annular two-phase flow has been modeled using a unified CFD approach. • Liquid film was modeled based on a two-dimensional thin film assumption. • Both Eulerian and Lagrangian methods were employed for the gas core flow modeling. - Abstract: A mechanistic model of annular flow with evaporating liquid film has been developed using computational fluid dynamics (CFD). The model is employing a separate solver with two-dimensional conservation equations to predict propagation of a thin boiling liquid film on solid walls. The liquid film model is coupled to a solver of three-dimensional conservation equations describing the gas core, which is assumed to contain a saturated mixture of vapor and liquid droplets. Both the Eulerian–Eulerian and the Eulerian–Lagrangian approach are used to describe the droplet and vapor motion in the gas core. All the major interaction phenomena between the liquid film and the gas core flow have been accounted for, including the liquid film evaporation as well as the droplet deposition and entrainment. The resultant unified framework for annular flow has been applied to the steam-water flow with conditions typical for a Boiling Water Reactor (BWR). The simulation results for the liquid film flow rate show good agreement with the experimental data, with the potential to predict the dryout occurrence based on criteria of critical film thickness or critical film flow rate.
Differential-discrete mathematical model of two phase flow heat exchanger
International Nuclear Information System (INIS)
Debeljkovic, D.Lj.; Zitek, Pavel; Simeunovic, G.; Inard, Christian
2007-01-01
A dynamic thermal-hydraulic mathematical model of evaporator dynamics of a once - through sub critical steam generator is derived and presented. This model allows the investigation of evaporator dynamics including its transients responses. The evaporator was considered as a part of three-section (economizer, evaporator and super-heater) model with time varying phase boundaries and is described by a set of linearized discrete - difference equations which, with some other algebraic equations, constitutes a closed system of equations possible for exact computer solution. This model has been derived upon the fundamental equations of mass, energy and momentum balance. For the first time, a discrete differential approach has been applied in order to investigate such complex, two phase processes. Namely, this approach allows one to escape from the model of this process usually described by a set of partial differential equations and enables one, using this method, to simulate evaporators dynamics in an extraordinarily simple way. In current literature this approach is sometimes called physical discretization. (author)
A two-phase model of plantar tissue: a step toward prediction of diabetic foot ulceration.
Sciumè, G; Boso, D P; Gray, W G; Cobelli, C; Schrefler, B A
2014-11-01
A new computational model, based on the thermodynamically constrained averaging theory, has been recently proposed to predict tumor initiation and proliferation. A similar mathematical approach is proposed here as an aid in diabetic ulcer prevention. The common aspects at the continuum level are the macroscopic balance equations governing the flow of the fluid phase, diffusion of chemical species, tissue mechanics, and some of the constitutive equations. The soft plantar tissue is modeled as a two-phase system: a solid phase consisting of the tissue cells and their extracellular matrix, and a fluid one (interstitial fluid and dissolved chemical species). The solid phase may become necrotic depending on the stress level and on the oxygen availability in the tissue. Actually, in diabetic patients, peripheral vascular disease impacts tissue necrosis; this is considered in the model via the introduction of an effective diffusion coefficient that governs transport of nutrients within the microvasculature. The governing equations of the mathematical model are discretized in space by the finite element method and in time domain using the θ-Wilson Method. While the full mathematical model is developed in this paper, the example is limited to the simulation of several gait cycles of a healthy foot. Copyright © 2014 John Wiley & Sons, Ltd.
Challenges in modeling unstable two-phase flow experiments in porous micromodels
Meheust, Y.; Ferrari, A.; Jimenez-Martinez, J.; Le Borgne, T.; Lunati, I.
2014-12-01
The simulation of unstable invasion patterns in porous media flow is challenging since small perturbations tend to grow in time, so that slight differences in geometry or initial conditions potentially give rise to significantly different solutions. Here we present a detailed comparison of pore scale simulations and experiments of unstable primary drainage in porous micromodels. The porous medium consists of a Hele-Shaw cell containing cylindrical obstacles. Two experimental flow cells have been constructed by soft lithography, with different degrees of heterogeneity in the grain size distribution. To model two-phase flow at the pore scale, we solve Navier-Stokes equations for mass and momentum conservation in the discretized pore space and employ the Volume of Fluid (VOF) method to track the evolution of the interface. During drainage, if the defending fluid is the most viscous, viscous forces destabilize the interface, giving rise to the formation of preferential flow paths, in the form of a branched fingering structure. We test different numerical models (a 2D vertical integrated model and a full 3D model) and different initial conditions, studying their impact on the simulated spatial distributions of the fluid phases. Although due to the unstable nature of the invasion, small discrepancies between the experimental setup and the numerical model can result in different fluids patterns (see figure), simulations show a satisfactory agreement with the structures observed experimentally. To estimate the ability of the numerical approach to reproduce unstable displacement, we compare several quantities in both the statistical and deterministic sense. We demonstrate the impact of three main sources of uncertainty : i) the uncertainty on the pore space geometry, ii) the interface initialization and ii) three dimensional effects [1]. Simulations in weakly heterogeneous geometries are found to be more challenging because uncertainties on pore neck widths are on the same
Bout, B.; Lombardo, Luigi; van Westen, C.J.; Jetten, V.G.
2018-01-01
An integrated, modeling method for shallow landslides, debris flows and catchment hydrology is developed and presented in this paper. Existing two-phase debris flow equations and an adaptation on the infinite slope method are coupled with a full
Kou, Jisheng; Sun, Shuyu
2016-01-01
A general diffuse interface model with a realistic equation of state (e.g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is a latest
On some issues of the modeling and analysis of two phase flow systems
International Nuclear Information System (INIS)
Ndjinga, M.
2007-04-01
Two-fluid and multi-field models are commonly used in the modeling and numerical simulation of two phase flows. They however present several mathematical and numerical difficulties, such as their lack of hyperbolicity or their non trivial Eigen-structure. It is important to understand the well-posedness of such possibly non hyperbolic systems before solving them numerically. For this reason, we study the solutions of systems of first order partial differential equations having a possibly complex Eigen-structure. We then characterise the hyperbolicity of the six equations two-fluid model with interfacial forces having differential expressions such as the interfacial pressure term, virtual mass and lift forces. The study of the characteristic polynomial leads to a diagram representing the location and topology of the non hyperbolic regions. We eventually propose numerous closure laws that make the two-fluid and multi-field models unconditionally hyperbolic. In order to numerically solve the two-fluid and multi-field models equations in a finite volume approach using a Roe type scheme, we propose two new algorithms designed for an efficient computation of the matrix absolute value function. These algorithms are robust as they avoid the computation of the eigenvectors of the argument matrix. The first is based on an iterative approach and converges in a finite number of steps if the eigenvalues are real. The second is faster, and besides can handle the case of complex eigenvalues. Thanks to these new algorithms, it is now possible to solve efficiently the six equations two-fluid model with differential interfacial terms, or the multi-field model with an arbitrary number of fields. We finally show the results of some recent numerical simulations of the six equations two-fluid model and the multi-field model with interfacial forces having a differential expression. (author)
CFD modelling of polydispersed bubbly two-phase flow around an obstacle
International Nuclear Information System (INIS)
Krepper, Eckhard; Beyer, Matthias; Frank, Thomas; Lucas, Dirk; Prasser, Horst-Michael
2009-01-01
A population balance model (the Inhomogeneous MUSIG model) has recently been developed in close cooperation between ANSYS-CFX and Forschungszentrum Dresden-Rossendorf and implemented into the CFD-Code CFX [Krepper, E., Lucas, D., Prasser, H.-M, 2005. On the modelling of bubbly flow in vertical pipes. Nucl. Eng. Des. 235, 597-611; Frank, T., Zwart, P.J., Shi, J.-M., Krepper, E., Rohde, U., 2005. Inhomogeneous MUSIG Model-a population balance approach for polydispersed bubbly flows, International Conference 'Nuclear Energy for New Europe 2005', Bled, Slovenia, September 5-8, 2005; Krepper, E., Beyer, M., Frank, Th., Lucas, D., Prasser, H.-M., 2007. Application of a population balance approach for polydispersed bubbly flows, 6th Int. Conf. on Multiphase Flow Leipzig 2007, (paper 378)]. The current paper presents a brief description of the model principles. The capabilities of this model are discussed via the example of a bubbly flow around a half-moon shaped obstacle arranged in a 200 mm pipe. In applying the Inhomogeneous MUSIG approach, a deeper understanding of the flow structures is possible and the model allows effects of polydispersion to be investigated. For the complex flow around the obstacle, the general structure of the flow was well reproduced in the simulations. This test case demonstrates the complicated interplay between size dependent bubble migration and the effects of bubble coalescence and breakup on real flows. The closure models that characterize the bubble forces responsible for the simulation of bubble migration show agreement with the experimental observations. However, clear deviations occur for bubble coalescence and fragmentation. The models applied here, which describe bubble fragmentation and coalescence could be proved as a weakness in the validity of numerous CFD analyses of vertical upward two-phase pipe flow. Further work on this topic is under way.
Development of Sodium Two Phase Flow Model for Kalimer Core Analysis
International Nuclear Information System (INIS)
Chang, W.P.; Hahn, Dohee
2002-01-01
An algorithm for sodium boiling is developed in order to extend the applicability of SSC-K, which is a main system analysis code for the KALIMER (Korea Advanced LIquid Metal Reactor) conceptual design. As the capability of the current SSC-K version is limited to simulation of only a single-phase sodium flow, its applicable range should not be enough to assess the fuel integrity under some of HCDA (Hypothetical Core Disruptive Accident) initiating events where sodium boiling is anticipated. The two-phase flow model similar to that used for the light water system is known to be no more effective directly to liquid metal reactors, because the phenomena observed between two reactor coolant systems are definitely different. The developing algorithm is based on a multiple-bubble slug ejection model, which allows a finite number of bubbles in a channel at any time. The present work is a continuous effort following the former study to confirm a qualitative acceptance on the model. Since the model has been applied only to the active fuel region in the former study, a part of its qualification seems to have already been demonstrated. For its application to the whole KALIMER core channel, however, the model needs to be examined the applicability to the fuel regions other than the active fuel. The present study primarily focuses on that point. In a result, although the model may be improved in a sense through the present study over the previous modeling, a clear limitation is also confirmed with the validity of the model. The further development, therefore, is required for this model to achieve its goal by resolving such limitations. (authors)
Study of colloids transport during two-phase flow using a novel polydimethylsiloxane micro-model.
Zhang, Qiulan; Karadimitriou, N K; Hassanizadeh, S M; Kleingeld, P J; Imhof, A
2013-07-01
As a representation of a porous medium, a closed micro-fluidic device made of polydimethylsiloxane (PDMS), with uniform wettability and stable hydrophobic properties, was designed and fabricated. A flow network, with a mean pore size of 30 μm, was formed in a PDMS slab, covering an area of 1 mm × 10 mm. The PDMS slab was covered and bonded with a 120-μm-thick glass plate to seal the model. The glass plate was first spin-coated with a thin layer, roughly 10 μm, of PDMS. The micro-model was treated with silane in order to make it uniformly and stably hydrophobic. Fluorescent particles of 300 μm in diameter were used as colloids. It is known that more removal of colloids occurs under unsaturated conditions, compared to saturated flow in soil. At the same time, the change of saturation has been observed to cause remobilization of attached colloids. The mechanisms for these phenomena are not well understood. This is the first time that a closed micro-model, made of PDMS with uniform and stable wettability, has been used in combination with confocal microscopy to study colloid transport under transient two-phase flow conditions. With confocal microscopy, the movement of fluorescent particles and flow of two liquids within the pores can be studied. One can focus at different depths within the pores and thus determine where the particles exactly are. Thus, remobilization of attached colloids by moving fluid-fluid interfaces was visualized. In order to allow for the deposition and subsequent remobilization of colloids during two-phase flow, three micro-channels for the injection of liquids with and without colloids were constructed. An outlet channel was designed where effluent concentration breakthrough curves can be quantified by measuring the fluorescence intensity. A peak concentration also indicated in the breakthrough curve with the drainage event. The acquired images and breakthrough curve successfully confirmed the utility of the combination of such a PDMS
Debris bed coolability using a 3-D two phase model in a porous medium
Energy Technology Data Exchange (ETDEWEB)
Bechaud, C.; Duval, F.; Fichot, F. [CEA Cadarache, Inst. de Protection et de Surete Nucleaire13 - Saint-Paul-lez-Durance (France); Quintard, M. [Institut de Mecanique des Fluides de Toulouse, 31 (France); Parent, M. [CEA Grenoble, Dept. de Thermohydraulique et de Physique, 38 (France)
2001-07-01
During a severe nuclear accident, a part of the molten corium resulting from the core degradation may relocate in the lower plenum of the reactor vessel. In order to predict the safety margin of the reactor under such conditions, the coolability of this porous heat-generating medium is evaluated in this study and compared with other investigations. In this work, conservation equations derived for debris beds are implemented in the three dimensional thermal-hydraulic module of the CATHARE code. The coolant flow is a two phase flow with phase change. The momentum balance equation for each fluid phase is an extension of Darcy's law. This extension takes into account the capillary effects between the two phases, the relative permeabilities and passabilities of each phase, the interfacial drag force between liquid and gas, and the porous bed configuration (porosity, particle diameter,... ). The model developed is three-dimensional which is important to better predict the flow in configuration such as counter-current flow or to emphasize preferential ways induced by porous geometry. The energy balance equations of the three phases (liquid, gas and solid phase) are obtained by a volume averaging process of the local conservation equations. In this method, the local thermal non-equilibrium between the three phases is considered and the heat exchanges, the phase change rate as well as the thermal dispersion coefficients are calculated as a function of the local geometry of the porous medium. Such a method allows the numerical estimation of these thermal properties which are very difficult to determine experimentally. This feature is a great advantage of this approach. After a brief description of the thermal-hydraulic model, one-dimensional predictions of critical dryout fluxes are presented and compared with results from the literature. Reasonable agreement is obtained. Then a two-dimensional calculation is presented and shows the influence of the porous medium
A dual-porosity model for two-phase flow in deforming porous media
Shu, Zhengying
Only recently has one realized the importance of the coupling of fluid flow with rock matrix deformations for accurately modeling many problems in petroleum, civil, environmental, geological and mining engineering. In the oil industry, problems such as reservoir compaction, ground subsidence, borehole stability and sanding need to be simulated using a coupled approach to make more precise predictions than when each process is considered to be independent of the other. Due to complications associated with multiple physical processes and mathematical representation of a multiphase now system in deformable fractured reservoirs, very few references, if any, are available in the literature. In this dissertation, an approach, which is based on the dual-porosity concept and takes into account rock deformations, is presented to derive rigorously a set of coupled differential equations governing the behavior of fractured porous media and two-phase fluid flow. The finite difference numerical method, as an alternative method for finite element, is applied to discretize the governing equations both in time and space domains. Throughout the derived set of equations, the fluid pressures and saturations as well as the solid displacements are considered as the primary unknowns. The model is tested against the case of single-phase flow in a 1-D consolidation problem for which analytical solutions are available. An example of coupled two-phase fluid flow and rock deformations for a scenario of a one-dimensional, fractured porous medium is also discussed. The numerical model and simulator, RFIA (Rock Fluid InterAction), developed in this dissertation can be a powerful tool to solve difficult problems not only in petroleum engineering such as ground subsidence, borehole stability and sand control, but also in civil engineering such as groundwater flow through fractured bedrock and in environmental engineering such as waste deposit concerns in fractured and unconsolidated formations
International Nuclear Information System (INIS)
Ishii, Mamoru; Sun, Xiaodong
2004-01-01
This paper presents new experimental and modeling approaches in characterizing interfacial structures in gas-liquid two-phase flow. For the experiments, two objective approaches are developed to identify flow regimes and to obtain local interfacial structure data. First, a global measurement technique using a non-intrusive ring-type impedance void-meter and a self-organizing neural network is presented to identify the one-dimensional'' flow regimes. In the application of this measurement technique, two methods are discussed, namely, one based on the probability density function of the impedance probe measurement (PDF input method) and the other based on the sorted impedance signals, which is essentially the cumulative probability distribution function of the impedance signals (instantaneous direct signal input method). In the latter method, the identification can be made close to instantaneously since the required signals can be acquired over a very short time period. In addition, a double-sensor conductivity probe can also be used to obtain ''local'' flow regimes by using the instantaneous direct signal input method with the bubble chord length information. Furthermore, a newly designed conductivity probe with multiple double-sensor heads is proposed to obtain ''two-dimensional'' flow regimes across the flow channel. Secondly, a state-of-the-art four-sensor conductivity probe technique has been developed to obtain detailed local interfacial structure information. The four-sensor conductivity probe accommodates the double-sensor probe capability and can be applied in a wide range of flow regimes spanning from bubbly to churn-turbulent flows. The signal processing scheme is developed such that it categorizes the acquired parameters into two groups based on bubble cord length information. Furthermore, for the modeling of the interfacial structure characterization, the interfacial area transport equation proposed earlier has been studied to provide a dynamic and
International Nuclear Information System (INIS)
Hsu, Y.Y.
1974-01-01
The following papers related to two-phase flow are summarized: current assumptions made in two-phase flow modeling; two-phase unsteady blowdown from pipes, flow pattern in Laval nozzle and two-phase flow dynamics; dependence of radial heat and momentum diffusion; transient behavior of the liquid film around the expanding gas slug in a vertical tube; flooding phenomena in BWR fuel bundles; and transient effects in bubble two-phase flow. (U.S.)
Experimental study and theoretical modelling of two-phase flow in a converging diverging nozzle
International Nuclear Information System (INIS)
Selmer-Olsen, Stale
1991-01-01
A theoretical and experimental study of high quality two-phase flows in converging-diverging nozzles is presented. The main objectives are the prediction of critical (choked) flow rates and the evolution of characteristic parameters towards the nozzle outlet. First, a thorough analysis of available models shows the importance of a correct modelling of the mechanical and thermal interactions between the gas and liquid phases. As a second step, a purely dispersed flow model is considered. The solution algorithm which is utilized describes accurately the critical (choked) flow conditions as well as the topology of the solutions. The dispersed flow model accounts for effects on the gas flow rate of the upstream and the downstream pressures, the liquid flow rate and the nozzle geometry. The pressure profile along the nozzle and the location of the critical cross-section are also well predicted. The flow is shown to switch from critical to sub-critical when the liquid flow rate is increased, all other control parameters at the inlet and the outlet maintained. This new finding is interpreted as a result of the possible location of the critical cross-section anywhere in the diverging part of the nozzle. Moreover, the experiments show that the critical (choked) gas flow rate depends on the inlet configuration of gas/liquid. In the third step, a careful analysis of the data is used as a basis for proposing a new dispersed-annular flow model. This model accounts for the liquid flowing both as a liquid film and as entrained droplets in the core, non-developed flow is accounted for as well as flow separation in the diffuser. Finally, advanced local measuring techniques of pressure, film thickness and film velocity have been developed in the course of the work. In particular film thickness measurements allowed the development of the flow structure to be understood. (author) [fr
An Eulerian two-phase flow model for sediment transport under realistic surface waves
Hsu, T. J.; Kim, Y.; Cheng, Z.; Chauchat, J.
2017-12-01
Wave-driven sediment transport is of major importance in driving beach morphology. However, the complex mechanisms associated with unsteadiness, free-surface effects, and wave-breaking turbulence have not been fully understood. Particularly, most existing models for sediment transport adopt bottom boundary layer approximation that mimics the flow condition in oscillating water tunnel (U-tube). However, it is well-known that there are key differences in sediment transport when comparing to large wave flume datasets, although the number of wave flume experiments are relatively limited regardless of its importance. Thus, a numerical model which can resolve the entire water column from the bottom boundary layer to the free surface can be a powerful tool. This study reports an on-going effort to better understand and quantify sediment transport under shoaling and breaking surface waves through the creation of open-source numerical models in the OpenFOAM framework. An Eulerian two-phase flow model, SedFoam (Cheng et al., 2017, Coastal Eng.) is fully coupled with a volume-of-fluid solver, interFoam/waves2Foam (Jacobsen et al., 2011, Int. J. Num. Fluid). The fully coupled model, named SedWaveFoam, regards the air and water phases as two immiscible fluids with the interfaces evolution resolved, and the sediment particles as dispersed phase. We carried out model-data comparisons with the large wave flume sheet flow data for nonbreaking waves reported by Dohmen-Janssen and Hanes (2002, J. Geophysical Res.) and good agreements were obtained for sediment concentration and net transport rate. By further simulating a case without free-surface (mimic U-tube condition), the effects of free-surface, most notably the boundary layer streaming effect on total transport, can be quantified.
Microtomography and pore-scale modeling of two-phase Fluid Distribution
Energy Technology Data Exchange (ETDEWEB)
Silin, D.; Tomutsa, L.; Benson, S.; Patzek, T.
2010-10-19
Synchrotron-based X-ray microtomography (micro CT) at the Advanced Light Source (ALS) line 8.3.2 at the Lawrence Berkeley National Laboratory produces three-dimensional micron-scale-resolution digital images of the pore space of the reservoir rock along with the spacial distribution of the fluids. Pore-scale visualization of carbon dioxide flooding experiments performed at a reservoir pressure demonstrates that the injected gas fills some pores and pore clusters, and entirely bypasses the others. Using 3D digital images of the pore space as input data, the method of maximal inscribed spheres (MIS) predicts two-phase fluid distribution in capillary equilibrium. Verification against the tomography images shows a good agreement between the computed fluid distribution in the pores and the experimental data. The model-predicted capillary pressure curves and tomography-based porosimetry distributions compared favorably with the mercury injection data. Thus, micro CT in combination with modeling based on the MIS is a viable approach to study the pore-scale mechanisms of CO{sub 2} injection into an aquifer, as well as more general multi-phase flows.
A Two-Phase Model for Trade Matching and Price Setting in Double Auction Water Markets
Xu, Tingting; Zheng, Hang; Zhao, Jianshi; Liu, Yicheng; Tang, Pingzhong; Yang, Y. C. Ethan; Wang, Zhongjing
2018-04-01
Delivery in water markets is generally operated by agencies through channel systems, which imposes physical and institutional market constraints. Many water markets allow water users to post selling and buying requests on a board. However, water users may not be able to choose efficiently when the information (including the constraints) becomes complex. This study proposes an innovative two-phase model to address this problem based on practical experience in China. The first phase seeks and determines the optimal assignment that maximizes the incremental improvement of the system's social welfare according to the bids and asks in the water market. The second phase sets appropriate prices under constraints. Applying this model to China's Xiying Irrigation District shows that it can improve social welfare more than the current "pool exchange" method can. Within the second phase, we evaluate three objective functions (minimum variance, threshold-based balance, and two-sided balance), which represent different managerial goals. The threshold-based balance function should be preferred by most users, while the two-sided balance should be preferred by players who post extreme prices.
Numerical simulation of two-phase flow around flatwater competition kayak design-evolution models.
Mantha, Vishveshwar R; Silva, António J; Marinho, Daniel A; Rouboa, Abel I
2013-06-01
The aim of the current study was to analyze the hydrodynamics of three kayaks: 97-kg-class, single-rower, flatwater sports competition, full-scale design evolution models (Nelo K1 Vanquish LI, LII, and LIII) of M.A.R. Kayaks Lda., Portugal, which are among the fastest frontline kayaks. The effect of kayak design transformation on kayak hydrodynamics performance was studied by the application of computational fluid dynamics (CFD). The steady-state CFD simulations where performed by application of the k-omega turbulent model and the volume-of-fluid method to obtain two-phase flow around the kayaks. The numerical result of viscous, pressure drag, and coefficients along with wave drag at individual average race velocities was obtained. At an average velocity of 4.5 m/s, the reduction in drag was 29.4% for the design change from LI to LII and 15.4% for the change from LII to LIII, thus demonstrating and reaffirming a progressive evolution in design. In addition, the knowledge of drag hydrodynamics presented in the current study facilitates the estimation of the paddling effort required from the athlete during progression at different race velocities. This study finds an application during selection and training, where a coach can select the kayak with better hydrodynamics.
Numerical modelling of two phase flow with hysteresis in heterogeneous porous media
Energy Technology Data Exchange (ETDEWEB)
Abreu, E. [Instituto Nacional de Matematica Pura e Aplicada (IMPA), Rio de Janeiro, RJ (Brazil); Furtado, F.; Pereira, F. [University of Wyoming, Laramie, WY (United States). Dept. of Mathematicsatics; Souza, G. [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil)
2008-07-01
Numerical simulators are necessary for the understanding of multiphase flow in porous media in order to optimize hydrocarbon recovery. In this work, the immiscible flow of two incompressible phases, a problem very common in waterflooding of petroleum reservoirs, is considered and numerical simulation techniques are presented. The system of equations which describe this type of flow form a coupled, highly nonlinear system of time-dependent partial differential equations (PDEs). The equation for the saturation of the invading fluid is a convection-dominated, degenerate parabolic PDE whose solutions typically exhibit sharp fronts (i.e., internal layers with strong gradients) and is very difficult to approximate numerically. It is well known that accurate modeling of convective and diffusive processes is one of the most daunting tasks in the numerical approximation of PDEs. Particularly difficult is the case where convection dominates diffusion. Specifically, we consider the injection problem for a model of two-phase (water/oil) flow in a core sample of porous rock, taking into account hysteresis effects in the relative permeability of the oil phase. (author)
Numerical Simulations of Two-Phase Flow in a Dorr-Oliver Flotation Cell Model
Directory of Open Access Journals (Sweden)
Hassan Fayed
2013-08-01
Full Text Available Two-phase (water and air flow in the forced-air mechanically-stirred Dorr-Oliver machine has been investigated using computational fluid dynamics (CFD. A 6 m3 model is considered. The flow is modeled by the Euler-Euler approach, and transport equations are solved using software ANSYS-CFX5. Unsteady simulations are conducted in a 180-degree sector with periodic boundary conditions. Air is injected into the rotor at the rate of 2.63 m3/min, and a uniform bubble diameter is specified. The effects of bubble diameter on velocity field and air volume fraction are determined by conducting simulations for three diameters of 0.5, 1.0, and 2.0 mm. Air volume fraction contours, velocity profiles, and turbulent kinetic energy profiles in different parts of the machine are presented and discussed. Results have been compared to experimental data, and good agreement is obtained for the mean velocity and turbulent kinetic energy profiles in the rotor-stator gap and in the jet region outside stator blades.
A two-phase model for aluminized explosives on the ballistic and brisance performance
Kim, Wuhyun; Gwak, Min-cheol; Lee, Young-hun; Yoh, Jack J.
2018-02-01
The performance of aluminized high explosives is considered by varying the aluminum (Al) mass fraction in a heterogeneous mixture model. Since the time scales of the characteristic induction and combustion of high explosives and Al particles differ, the process of energy release behind the leading detonation wave front occurs over an extended period of time. For simulating the performance of aluminized explosives with varying Al mass fraction, HMX (1,3,5,7-tetrahexmine-1,3,5,7-tetrazocane) is considered as a base explosive when formulating the multiphase conservation laws of mass, momentum, and energy exchanges between the HMX product gases and Al particles. In the current study, a two-phase model is utilized in order to determine the effects of the Al mass fraction in a condensed phase explosive. First, two types of confined rate stick tests are considered to investigate the detonation velocity and the acceleration ability, which refers to the radial expansion velocity of the confinement shell. The simulation results of the confined rate stick test are compared with the experimental data for the Al mass fraction range of 0%-25%, and the optimal Al mass fraction is provided, which is consistent with the experimental observations. Additionally, a series of plate dent test simulations are conducted, the results of which show the same tendency as those of the experimental tests with varying Al mass fractions.
Two-phase interfacial area and flow regime modeling in FLOWTRAN-TF code
International Nuclear Information System (INIS)
Smith, F.G. III; Lee, S.Y.; Flach, G.P.; Hamm, L.L.
1992-01-01
FLOWTRAN-TF is a new two-component, two-phase thermal-hydraulics code to capture the detailed assembly behavior associated with loss-of-coolant accident analyses in multichannel assemblies of the SRS reactors. The local interfacial area of the two-phase mixture is computed by summing the interfacial areas contributed by each of three flow regimes. For smooth flow regime transitions, the code uses an interpolation technique in terms of component void fraction for each basic flow regime
An Eulerian two-phase model for steady sheet flow using large-eddy simulation methodology
Cheng, Zhen; Hsu, Tian-Jian; Chauchat, Julien
2018-01-01
A three-dimensional Eulerian two-phase flow model for sediment transport in sheet flow conditions is presented. To resolve turbulence and turbulence-sediment interactions, the large-eddy simulation approach is adopted. Specifically, a dynamic Smagorinsky closure is used for the subgrid fluid and sediment stresses, while the subgrid contribution to the drag force is included using a drift velocity model with a similar dynamic procedure. The contribution of sediment stresses due to intergranular interactions is modeled by the kinetic theory of granular flow at low to intermediate sediment concentration, while at high sediment concentration of enduring contact, a phenomenological closure for particle pressure and frictional viscosity is used. The model is validated with a comprehensive high-resolution dataset of unidirectional steady sheet flow (Revil-Baudard et al., 2015, Journal of Fluid Mechanics, 767, 1-30). At a particle Stokes number of about 10, simulation results indicate a reduced von Kármán coefficient of κ ≈ 0.215 obtained from the fluid velocity profile. A fluid turbulence kinetic energy budget analysis further indicates that the drag-induced turbulence dissipation rate is significant in the sheet flow layer, while in the dilute transport layer, the pressure work plays a similar role as the buoyancy dissipation, which is typically used in the single-phase stratified flow formulation. The present model also reproduces the sheet layer thickness and mobile bed roughness similar to measured data. However, the resulting mobile bed roughness is more than two times larger than that predicted by the empirical formulae. Further analysis suggests that through intermittent turbulent motions near the bed, the resolved sediment Reynolds stress plays a major role in the enhancement of mobile bed roughness. Our analysis on near-bed intermittency also suggests that the turbulent ejection motions are highly correlated with the upward sediment suspension flux, while
Kou, Jisheng
2017-12-09
A general diffuse interface model with a realistic equation of state (e.g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is an attractive alternative recently over the NPT-based framework to model the realistic fluids. The proposed model uses the Helmholtz free energy rather than Gibbs free energy in the NPT-based framework. Different from the classical routines, we combine the first law of thermodynamics and related thermodynamical relations to derive the entropy balance equation, and then we derive a transport equation of the Helmholtz free energy density. Furthermore, by using the second law of thermodynamics, we derive a set of unified equations for both interfaces and bulk phases that can describe the partial miscibility of multiple fluids. A relation between the pressure gradient and chemical potential gradients is established, and this relation leads to a new formulation of the momentum balance equation, which demonstrates that chemical potential gradients become the primary driving force of fluid motion. Moreover, we prove that the proposed model satisfies the total (free) energy dissipation with time. For numerical simulation of the proposed model, the key difficulties result from the strong nonlinearity of Helmholtz free energy density and tight coupling relations between molar densities and velocity. To resolve these problems, we propose a novel convex-concave splitting of Helmholtz free energy density and deal well with the coupling relations between molar densities and velocity through very careful physical observations with a mathematical rigor. We prove that the proposed numerical scheme can preserve the discrete (free) energy dissipation. Numerical tests are carried out to verify the effectiveness of the proposed method.
Development of two-phase Flow Model, 'SOBOIL', for Sodium
Energy Technology Data Exchange (ETDEWEB)
Hahn, Do Hee; Chang, Won Pyo; Kim, In Chul; Kwon, Young Min; Lee, Yong Bum
2000-03-01
The objective of this research is to develop a sodium two-phase flow analysis model, 'SOBOIL', for the assessment of the initial stage of the KALIMER HCDA (Hypotherical Core Disruptive Accident). The 'SOBOIL' is basically similar to the multi-bubble slug ejection model used in SAS2A[1]. When a bubble is formed within the liquid slug, the bubble fills the whole cross section of the coolant channel except for a film left on the cladding or on the structure. Up to nine bubbles, separated by the liquid slugs, are allowed in the channel at any time. Each liquid slug flow rate in the model is performed in 2 steps. In the first step, the preliminary flow rate in the liquid slug is calculated neglecting the effect of changes in the vapor bubble pressures over the time step. The temperature and pressure distributions, and interface velocity at the interface between the liquid slug and vapor bubble are also calculated during this process. The new vapor temperature and pressure are then determined from the balance between the net energy transferred into the vapor and the change of the vapor energy. The liquid flow is finally calculated considering the change of the vapor pressure over a time step and the calculation is repeated until specified elapsed time is met. Continuous effort, therefore, must be made on the examination and improvement for the model to become reliable. To this end, much interest must be concentrated in the relevant international collaborations for access to a reference model or test data for the verification.
Contribution to the verification and the validation of an unsteady two-phase flow model
International Nuclear Information System (INIS)
Liu, Yujie
2013-01-01
This thesis contributes to the verification and the validation of the Baer-Nunziato (BN) model, to model water hammer phenomena in industrial piping systems. It consists of two parts, the first is to model water hammer flows with the BN model in Eulerian representation and the second is to extend this model to the ALE (Arbitrary Lagrangian Eulerian) formalism so as to take into account fluid-structure interaction (FSI). To model water hammer flows, closure laws of the BN model concerning the interfacial/source terms and the equations of state (EOS) were first studied. Then the whole system was simulated with a fractional step method including two steps, one for the resolution of the convective part, the other for the source terms. For the convective part, the Rusanov scheme was first checked, and some stability problems have been observed. Thus a more stable fractional step scheme has been proposed and verified. Regarding the source terms, four non-instantaneous relaxation schemes which represent the return to equilibrium of pressure, the transfers of momentum, heat and mass were successively applied. These schemes have been extended to 'generalized Stiffened Gas' EOS in order to represent phase-change. After regaining some typical phenomena associated with water hammer flows, the BN model was validated with the Simpson experiment, a classical water hammer test case, and the Canon experience, a rapid decompression of fluid in a high pressure duct. Moreover, the model was compared with two homogeneous models on these two experiments. Finally, an ALE version of the BN model was implemented, and verified on a case of wave propagation in a 'single' phase flow and a two-phase flow in a flexible pipe. The variation of wave propagation speed due to the coupling between the fluid and the structure has been well retrieved. The validation was performed on an experiment which examines the response of a pipe filled with water, subjected to a violent pressure peak (140 bar
Numerical modelling of isothermal gas-liquid two-phase bubbly flow in vertical pipes
International Nuclear Information System (INIS)
Yamoah, S.
2014-07-01
In order to qualify CFD codes for accurate numerical predictions of transient evolution of flow regimes in a vertical gas-liquid two-phase flow, suitable closure models are needed. The current study focuses on detailed numerical investigation of the interfacial driving force models and assessment of two population balance model approaches viz. the MUltiple-Size-Group (MUSIG) and one-group Interfacial Area Transport Equation (lATE) using the two-fluid modelling approach. Numerical predictions of five primitive variables: gas volume fraction, interfacial area concentration, Sauter mean bubble diameter, gas velocity and liquid velocity; have been validated against experimental data of Monros et al., (2013). Three specific objectives have been completed in this study. Firstly, under the assumption of mono-disperse bubbles, a consistent set of interfacial force models have been investigated. The effect of drag, lift, wall lubrication and turbulent dispersion forces has been assessed. New parameters have been introduced in the wall lubrication force models of Antal et al., (1991) and Frank et al., (2004, 2008) as well as implementing additional drag coefficient models using CFX Expression Language (CEl). The Tomiyama, (1998) lift coefficient model has been modified in this study. In general, the predictions from the sets of interfacial force models yielded satisfactory agreement with the experimental data. A set of Grace drag coefficient model, Tomiyama lift coefficient model, Antal wall force model, and Favre averaged turbulent dispersion force were found to provide the best agreement with the experimental data. Secondly, a model validation study to assess the performance of existing coalescence and breakup models of the MUSIG model in simulating bubbly flow in vertical configuration has been conducted. The breakup model of Luo and Svendsen, (1996) and coalescence model of Prince and Blanch, (1990) have been implemented. Detailed analysis has been performed for the wall
Investigation of Two-Phase Flow in AxialCentrifugal Impeller by Hydrodynamic Modeling Methods
Directory of Open Access Journals (Sweden)
V. O. Lomakin
2014-01-01
Full Text Available The article provides a methodology to study the flow in the wet part of the pump with fundamentally new axial-centrifugal impeller by methods of hydrodynamic modeling in the software package STAR CCM +. The objective of the study was to determine the normal and cavitation characteristics of the pump with a new type of wet part, as well as optimization of the geometrical parameters of the pump. Authors solved this problem using an example of the hot coolant pump, which should meet high requirements for cavitation quality and efficiency (hydraulic efficiency up to 87%, critical value of NPSH to 2.2 m.Also, the article focuses on the methods of numerical solution of two-phase flow simulation in a pump that are needed for a more accurate simulation of cavitation in the pump and research work in liquids with high gas content.Hydrodynamic modeling was performed on a computing cluster at the department E-10 of BMSTU for pump flow simulation in unsteady statement of problem using the computational grid size to 1.5 million cells. Simultaneously, the experimental model of the pump was made by 3D printing and tested at the stand in the BMSTU. Test results, which were compared with the calculated data are also given in the article. Inaccuracy of the calculation of pump head does not exceed 5%.The simulation results may be of interest to specialists in the field of hydrodynamic modeling, and for designers of such pumps. The authors also report production of a full-length prototype of the pump in order to conduct further testing for the verification of the data in the article, primarily in terms of cavitation characteristics.
Governing equations for a seriated continuum: an unequal velocity model for two-phase flow
International Nuclear Information System (INIS)
Solbrig, C.W.; Hughes, E.D.
1975-05-01
The description of the flow of two-phase fluids is important in many engineering devices. Unexpected transient conditions which occur in these devices cannot, in general, be treated with single-component momentum equations. Instead, the use of momentum equations for each phase is necessary in order to describe the varied transient situations which can occur. These transient conditions can include phases moving in the opposite directions, such as steam moving upward and liquid moving downward, as well as phases moving in the same direction. The derivation of continuity and momentum equations for each phase and an overall energy equation for the mixture are presented. Terms describing interphase forces are described. A seriated (series of) continuum is distinguished from an interpenetrating medium by the representation of interphase friction with velocity differences in the former and velocity gradients in the latter. The seriated continuum also considers imbedded stationary solid surfaces such as occur in nuclear reactor cores. These stationary surfaces are taken into account with source terms. Sufficient constitutive equations are presented to form a complete set of equations. Methods are presented to show that all these coefficients are determinable from microscopic models and well known experimental results. Comparison of the present deviation with previous work is also given. The equations derived here may also be employed in certain multiphase, multicomponent flow applications. (U.S.)
A splitting method for the isentropic Baer-Nunziato two-phase flow model
Directory of Open Access Journals (Sweden)
Coquel Frédéric
2013-01-01
Full Text Available In the present work, we propose a fractional step method for computing approximate solutions of the isentropic Baer-Nunziato two-phase flow model. The scheme relies on an operator splitting method corresponding to a separate treatment of fast propagation phenomena due to the acoustic waves on the one hand and slow propagation phenomena due to the fluid motion on the other. The scheme is proved to preserve positive values of the statistical fractions and densities. We also provide two test-cases that assess the convergence of the method. Nous proposons ici une méthode à pas fractionnaires pour le calcul de solutions approchées pour la version isentropique du modèle diphasique de Baer-Nunziato. Le schéma s’appuie sur un splitting de l’opérateur temporel correspondant à la prise en compte différenciée des phéno-mènes de propagation rapide dus aux ondes acoustiques et des phénomènes de propagation lente dus aux ondes matérielles. On prouve que le schéma permet de préserver des valeurs positives pour les taux statistiques de présence des phases ainsi que pour les densités. Deux cas tests numériques permettent d’illustrer la convergence de la méthode.
An effective dead oil model for two-phase flow in inhomogeneous porous media
International Nuclear Information System (INIS)
Bourgeat, A.
1988-01-01
The authors are investigating displacement process of incompressible two phase flow miscible or immiscible in heterogeneous porous media, including capillary and gravity effects. The authors' aim is to derive rigorously a Global or Effective Model which then allow, in Numerical Simulations, to disconnect the numerical mesh size from the heterogeneities size inside the reservoir itself. The reservoir is assumed to be made of uniformly (or non uniformly) periodically repeated cells. Each cell being made with different types of porous media. Then, calling ε the ratio of the cell size to the Reservoir size, we get equations depending on the parameter ε because the Porosity and Permeabilities, say Phi/sup ε/ and Κ/sup ε/ are themselves rapidly oscillating. From these ε-parametrized equations the authors derive simpler ''Effective Equations'' no more dependant on ε, called ''Homongenized Equations by the mathematical technique of Homogenization. In these new equations, which are describing Global Displacement process throughout a Globally Equivallent homogenous media where now //Phi and Κ are no more depending on the space variable or ε
Two-phase modelling of thermal dissipation in a natural basin
International Nuclear Information System (INIS)
Baltrenas, P.; Vaitiekunas, P.; Katinas, V.; Markevicius, A.
2004-01-01
The state of two-phase flow 'liquid-gas' has been modeled numerically by the three-dimensional method of complex research of heat and mass transfer. This allows examining the interaction of some transfer processes in a natural cooling basin (the Druksiai lake): the wind power and direction, variable water density, the coefficient of heat conduction and heat transfer of the water-air interface. Combined effect of these natural actions determines the heat amount that the basin is able to dissipate to the surrounding atmospheric media in thermal equilibrium (without changes in the mean water temperature). This paper presents a number of the most widely used expressions for the coefficients of vertical and horizontal heat transfer. On the basis of stream velocity and mean temperature profiles measured in the cooling pond as well as on that of their time variations suggestions are made that the mixing rate at the water surface is caused by natural space - time variation of the wind, and can be described by the value of eddy viscosity coefficient - 1 m2/s (numerical modeling with 0,9-1,3 m2/s). The wind influences the surface of the lake according to the experimental data, i e 1-3 % of the mean wind velocity. The model applies to the weakly wind, approximately 1-5 m/s of the mean wind velocity. Comparison of experimental and numerical results showed a qualitative agreement. For a better quantitative approximation, it is necessary to have more boundary conditions variable with time and to solve unsteady set equations for transfer processes. (author)
Numerical Simulation Of Hydrothermal Processes In Lake Drukshiai: 5. The Two-Phase Model
International Nuclear Information System (INIS)
Vaitiekunas, P.; Saimardanova, J.; Markevicius, A. and other
2004-01-01
The state of two-phase 'liquid-gas' flow has been modeled numerically by the three-dimensional method of a complex research of heat and mass transfer. This allows examining the interaction of some transfer processes in a natural cooling basin (Lake Drukshiai): the power and direction of the wind, the variable density of the water, the heat conduction and heat transfer coefficients of the water-air interface. The combined effect of these natural actions determines the heat amount that the basin is able to dissipate to the surrounding atmospheric medium in thermal equilibrium (no change in the mean water temperature). This article presents a number of most widely used expressions for vertical and horizontal heat transfer coefficients. Basing on the stream velocity and mean temperature profiles measured in the cooling pond, as well as on then-time variations, suggestions are made that the mixing rate at the water surface is caused by the natural space-time variation of the wind and can be described by the value of the eddy viscosity coefficient - 1 m 2 /s (in numerical modeling 0.9-1.3 m 2 /s were used). The wind influence on the surface of the lake, according to the experimental data, is 1-3% of the mean wind velocity. The model is applied for a moderate wind, approximately 1-5 m/s of the mean wind velocity. A comparison of the experimental and numerical results showed a qualitative agreement. For a better quantitative approximation it is necessary to have more boundary conditions variable with time and to solve the unsteady set equations for transfer processes. (author)
DEFF Research Database (Denmark)
Jakobsen, Arne; Antonius, Jesper; Knudsen, Hans Jørgen Høgaard
1999-01-01
of the homogeneous model is approximately a factor 3 less than the charge calculated using the slip-flow model.The overall conclusion is that when one wants to investigate the dynamic behaviour due to the movement and amount of the refrigerant in the evaporator, then it is needed to use a slip-flow two-phase model...... shows that the dynamic response of the homogeneous model is too fast whereas the simulation results based on the slip-flow model agrees very well with the experimental results. Another difference in the results from the two types of models is the estimation of charge. The charge calculated by the use...
Zero-G two phase flow regime modeling in adiabatic flow
International Nuclear Information System (INIS)
Reinarts, T.R.; Best, F.R.; Wheeler, M.; Miller, K.M.
1993-01-01
Two-phase flow, thermal management systems are currently being considered as an alternative to conventional, single phase systems for future space missions because of their potential to reduce overall system mass, size, and pumping power requirements. Knowledge of flow regime transitions, heat transfer characteristics, and pressure drop correlations is necessary to design and develop two-phase systems. This work is concerned with microgravity, two-phase flow regime analysis. The data come from a recent sets of experiments. The experiments were funded by NASA Johnson Space Center (JSC) and conducted by NASA JSC with Texas A ampersand M University. The experiment was on loan to NASA JSC from Foster-Miller, Inc., who constructed it with funding from the Air Force Phillips Laboratory. The experiment used R12 as the working fluid. A Foster-Miller two phase pump was used to circulate the two phase mixture and allow separate measurements of the vapor and liquid flow streams. The experimental package was flown 19 times for 577 parabolas aboard the NASA KC-135 aircraft which simulates zero-G conditions by its parabolic flight trajectory. Test conditions included bubbly, slug and annular flow regimes in 0-G. The superficial velocities of liquid and vapor have been obtained from the measured flow rates and are presented along with the observed flow regimes and several flow regime transition predictions. None of the predictions completely describe the transitions as indicated by the data
The drift-flux asymptotic limit of baro-tropic two-phase two-pressure models
International Nuclear Information System (INIS)
Ambroso, A.; Galie, Th.; Chalons, Ch.; Coquel, F.; Godlewski, E.; Raviart, P.A.; Seguin, N.; Coquel, F.
2008-01-01
We study the asymptotic behavior of the solutions of baro-tropic two-phase two-pressure models, with pressure relaxation, drag force and external forces. Using Chapman-Enskog expansions close to the expected equilibrium, a drift-flux model with a Darcy type closure law is obtained. Also, restricting this closure law to permanent flows (defined as steady flows in some Lagrangian frame), we can obtain a drift-flux model with an algebraic closure law, in the spirit of Zuber-Findlay models. The example of a two-phase flow in a vertical pipe is described. (authors)
Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines
Feru, E.; Jager, de A.G.; Willems, F.P.T.; Steinbuch, M.
2014-01-01
This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat
Wu, Yuanqing; Kowitz, Christoph; Sun, Shuyu; Salama, Amgad
2015-01-01
Flash calculations have become a performance bottleneck in the simulation of compositional flow in subsurface reservoirs. We apply a sparse grid surrogate model to substitute the flash calculation and thus try to remove the bottleneck from
Analysis of the two-fluid model in fully-developed two-phase flow
International Nuclear Information System (INIS)
Azpitarte, Osvaldo Enrique
2003-01-01
The two fluid model is analysed and applied to solve vertical fully-developed bubbly two-phase flows, both in laminar and turbulent conditions.The laminar model is reduced to two differential equations to solve the gas fraction (ε G ) and the velocity (υ L ).For the turbulent condition, a k - ε model for low Reynolds number is implemented, resulting in a set of differential equations to solve the four variables (ε G , υ L , k and ε) along the whole radial domain (including the laminar sub layer).For laminar condition, the system is initially reduced to a single non-dimensional ordinary equation (O D E) to solve ε G in the central region of the duct, without considering the effect of the wall.The equation is solved using Mathematic a.Analysing the solutions it can be concluded that an exact compensation of the applied pressure gradient with the hydrostatic force ρ e ff g occurs (ρ e ff : effective density of the mixture).This compensation implies that the value of ε G at the center of the duct only depends on the applied pressure gradient (dependency is linear), and that the ε G and υ L profiles are necessarily fl ato The complete problem is dealt numerically through the implementation of a finite element co deo The effect of the walls is included via a model of wall force.When the code is applied to a laminar condition, the conclusions previously obtained solving the O D E are confirmed.It is also possible to analyse the regime in which the pressure gradient is greater than the weight of the pure liquid, in which case a region of strictly zero void fraction develops surrounding the axis of the duct (in upward flow).When the code is applied to a turbulent condition, it is shown that the conclusions obtained for laminar condition can also be applied, but within a range of pressure gradient limited by two transition values (θ 1 and θ 2 ).An analysis of transitions θ 1 and θ 2 allows u s to conclude that their origin is a sudden increase of lateral
Modeling and computation of two phase geometric biomembranes using surface finite elements
Elliott, Charles M.; Stinner, Björn
2010-01-01
Biomembranes consisting of multiple lipids may involve phase separation phenomena leading to coexisting domains of different lipid compositions. The modeling of such biomembranes involves an elastic or bending energy together with a line energy associated with the phase interfaces. This leads to a free boundary problem for the phase interface on the unknown equilibrium surface which minimizes an energy functional subject to volume and area constraints. In this paper we propose a new computati...
Cihan, Abdullah; Birkholzer, Jens; Trevisan, Luca; Gonzalez-Nicolas, Ana; Illangasekare, Tissa
2017-01-01
Incorporating hysteresis into models is important to accurately capture the two phase flow behavior when porous media systems undergo cycles of drainage and imbibition such as in the cases of injection and post-injection redistribution of CO2 during geological CO2 storage (GCS). In the traditional model of two-phase flow, existing constitutive models that parameterize the hysteresis associated with these processes are generally based on the empirical relationships. This manuscript presents development and testing of mathematical hysteretic capillary pressure—saturation—relative permeability models with the objective of more accurately representing the redistribution of the fluids after injection. The constitutive models are developed by relating macroscopic variables to basic physics of two-phase capillary displacements at pore-scale and void space distribution properties. The modeling approach with the developed constitutive models with and without hysteresis as input is tested against some intermediate-scale flow cell experiments to test the ability of the models to represent movement and capillary trapping of immiscible fluids under macroscopically homogeneous and heterogeneous conditions. The hysteretic two-phase flow model predicted the overall plume migration and distribution during and post injection reasonably well and represented the postinjection behavior of the plume more accurately than the nonhysteretic models. Based on the results in this study, neglecting hysteresis in the constitutive models of the traditional two-phase flow theory can seriously overpredict or underpredict the injected fluid distribution during post-injection under both homogeneous and heterogeneous conditions, depending on the selected value of the residual saturation in the nonhysteretic models.
Simple interphase drag model for numerical two-fluid modeling of two-phase flow systems
International Nuclear Information System (INIS)
Chow, H.; Ransom, V.H.
1984-01-01
The interphase drag model that has been developed for RELAP5/MOD2 is based on a simple formulation having flow regime maps for both horizontal and vertical flows. The model is based on a conventional semi-empirical formulation that includes the product of drag coefficient, interfacial area, and relative dynamic pressure. The interphase drag model is implemented in the RELAP5/MOD2 light water reactor transient analysis code and has been used to simulate a variety of separate effects experiments to assess the model accuracy. The results from three of these simulations, the General Electric Company small vessel blowdown experiment, Dukler and Smith's counter-current flow experiment, and a Westinghouse Electric Company FLECHT-SEASET forced reflood experiment, are presented and discussed
Saad, Ali S.; Saad, Bilal Mohammed; Saad, Mazen
2016-01-01
We study the convergence of a combined finite volume-nonconforming finite element scheme on general meshes for a partially miscible two-phase flow model in anisotropic porous media. This model includes capillary effects and exchange between the phases. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh. The relative permeability of each phase is decentered according to the sign of the velocity at the dual interface. The convergence of the scheme is proved thanks to an estimate on the two pressures which allows to show estimates on the discrete time and compactness results in the case of degenerate relative permeabilities. A key point in the scheme is to use particular averaging formula for the dissolution function arising in the diffusion term. We show also a simulation of hydrogen production in nuclear waste management. Numerical results are obtained by in-house numerical code. © 2015 Elsevier Ltd.
Saad, Ali S.
2016-01-02
We study the convergence of a combined finite volume-nonconforming finite element scheme on general meshes for a partially miscible two-phase flow model in anisotropic porous media. This model includes capillary effects and exchange between the phases. The diffusion term, which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh. The relative permeability of each phase is decentered according to the sign of the velocity at the dual interface. The convergence of the scheme is proved thanks to an estimate on the two pressures which allows to show estimates on the discrete time and compactness results in the case of degenerate relative permeabilities. A key point in the scheme is to use particular averaging formula for the dissolution function arising in the diffusion term. We show also a simulation of hydrogen production in nuclear waste management. Numerical results are obtained by in-house numerical code. © 2015 Elsevier Ltd.
1D + 3D two-phase flow numerical model of a proton exchange membrane fuel cell
International Nuclear Information System (INIS)
Ferreira, Rui B.; Falcão, D.S.; Oliveira, V.B.; Pinto, A.M.F.R.
2017-01-01
Highlights: •A 1D + 3D model of a PEM fuel cell is described and experimentally validated. •VOF method tracks the two-phase flow and electrochemical reactions are considered. •Water dynamics inside a serpentine channel is analyzed for different voltages. •Water content in different regions of channel is quantified. •Important issues on coupling of the VOF model with electrochemical reactions are addressed. -- Abstract: In this work, a numerical model of a proton exchange membrane (PEM) fuel cell is presented. The volume of fluid (VOF) method is employed to simulate the air-water two-phase flow in the cathode gas channel, at the same time that the cell electrochemical performance is predicted. The model is validated against an experimental polarization curve and through the visualization of water distribution inside a transparent fuel cell. The water dynamics inside a serpentine gas channel is numerically analyzed under different operating voltages. Moreover, water content in different regions of the channel is quantified. Current density and water generation rate spatial distributions are also displayed and it is shown how they affect the process of water emergence into the gas channel. Important issues on the simulation of the PEM fuel cells two-phase flow are addressed, especially concerning the coupling of the VOF technique with electrochemical reactions. Both the model and the numerical results aim to contribute to a better understanding of the two-phase flow phenomenon that occurs in these devices.
DEFF Research Database (Denmark)
Petkov, K.P.; Puton, M; Madsen, Søren Peder
2014-01-01
are accounted for through both friction and acceleration as in a conventional formulation. However, in this analysis the acceleration term is both attributed geometrical effects through the area change and fluid dynamic effects through the expansion of the two-phase flow. The comparison of numerical...... is a one dimensional formulation in space and the equations incorporates the change in tubes and orifice diameter as formulated in (S. Madsen et.al., Dynamic Modeling of Phase Crossings in Two-Phase Flow, Communications in Computational Physics 12 (4), 1129-1147). The pressure changes in the flow...
A numerical method for a model of two-phase flow in a coupled free flow and porous media system
Chen, Jie; Sun, Shuyu; Wang, Xiaoping
2014-01-01
In this article, we study two-phase fluid flow in coupled free flow and porous media regions. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the porous medium region. We propose a Robin-Robin domain decomposition method for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Numerical examples are presented to illustrate the effectiveness of this method. © 2014 Elsevier Inc.
A numerical method for a model of two-phase flow in a coupled free flow and porous media system
Chen, Jie
2014-07-01
In this article, we study two-phase fluid flow in coupled free flow and porous media regions. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the porous medium region. We propose a Robin-Robin domain decomposition method for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Numerical examples are presented to illustrate the effectiveness of this method. © 2014 Elsevier Inc.
Multi-scale diffuse interface modeling of multi-component two-phase flow with partial miscibility
Kou, Jisheng; Sun, Shuyu
2016-01-01
In this paper, we introduce a diffuse interface model to simulate multi-component two-phase flow with partial miscibility based on a realistic equation of state (e.g. Peng-Robinson equation of state). Because of partial miscibility, thermodynamic
A novel Deep Reactive Ion Etched (DRIE) glass micro-model for two-phase flow experiments
Karadimitriou, N.K.; Joekar-Niasar, V.; Hassanizadeh, S.M.; Kleingeld, P.J.; Pyrak-Nolte, L.J.
2012-01-01
In the last few decades, micro-models have become popular experimental tools for two-phase flow studies. In this work, the design and fabrication of an innovative, elongated, glass-etched micromodel with dimensions of 5 6 35 mm2 and constant depth of 43 microns is described. This is the
International Nuclear Information System (INIS)
Hurtado, F.S.V.; Maliska, C.R.
2005-01-01
This paper briefly describes a two-dimensional numerical formulation using unstructured grids, developed for simulating two-phase immiscible displacements in porous media. The Element-based Finite Volume Method (EbFVM) is used for discretizing the model differential equations. (authors)
Energy Technology Data Exchange (ETDEWEB)
Hurtado, F.S.V.; Maliska, C.R. [Santa Catarina Federal Univ., Computational Fluid Dynamics Lab., Mechanical Engineering Dept., Florianopolis, SC (Brazil)
2005-07-01
This paper briefly describes a two-dimensional numerical formulation using unstructured grids, developed for simulating two-phase immiscible displacements in porous media. The Element-based Finite Volume Method (EbFVM) is used for discretizing the model differential equations. (authors)
Two-Phase Fluid Simulation Using a Diffuse Interface Model with Peng--Robinson Equation of State
Qiao, Zhonghua; Sun, Shuyu
2014-01-01
In this paper, two-phase fluid systems are simulated using a diffusive interface model with the Peng-Robinson equation of state (EOS), a widely used realistic EOS for hydrocarbon fluid in the petroleum industry. We first utilize the gradient theory
International Nuclear Information System (INIS)
Kao, S.
1990-01-01
A number of deficiencies in the original RCS and steam generator models on the Seabrook simulator were found to give unrealistic results under some off-normal and accident conditions. These deficiencies are attributed to the simplistic assumptions used in the original models, such as the homogeneous, equilibrium equations used in the pressurizer and steam generator models, and the single-phase flow model used in the RCS thermal-hydraulic model. To improve the fidelity of the simulator, efforts have been made to upgrade the RCS and steam generator models to include two-phase, nonequilibrium features. In the new RCS model, the following major assumptions are used to derive the finite difference form of the conservation equations: a donor-cell differencing scheme is adopted to allow flow reversal; a single pressure is used to evaluate properties; a single mass flow rate is assumed in each loop; enthalpy is assumed to vary linearly within each control volume; a homogeneous flow is assumed under two-phase conditions. The pressurizer is divided into a vapor region and a liquid region, each of which is represented by a set of mass and energy conservation equations. Interfacial mass and energy exchange mechanisms (condensation and flashing), thermal interactions between the vessel and fluids, and thermal nonequilibrium between the phases are included in the pressurizer model. The steam generator is divided into the vapor dome, riser, and downcomer regions. The assumptions applied are similar to those of the RCS and pressurizer models. A momentum model is incorporated to calculate the recirculation flow and simulate the downcomer level shrink/swell phenomenon. The new RCS and steam generator models are validated by comparing the simulator calculations against sister plant data and FSAR vendor analysis. The results show the new models give realistic and reliable calculations under off-normal and accident conditions
Bevillard, Benoit; Richard, Guillaume; Raimbourg, Hugues
2017-04-01
Rocks are complex materials and particularly their rheological behavior under geological stresses remains a long-standing question in geodynamics. To test large scale lithosphere dynamics numerical modeling is the main tool but encounter substantial difficulties to account for this complexity. One major unknown is the origin and development of the localization of deformation. This localization is observed within a large range of scales and is commonly characterized by sharp grain size reduction. These considerations argues for a control of the microscopical scale over the largest ones through one predominant variable: the mean grain-size. However, the presence of second phase and broad grain-size distribution may also have a important impact on this phenomenon. To address this question, we built a model for ductile rocks deformation based on the two-phase damage theory of Bercovici & Ricard 2012. We aim to investigate the role of grain-size reduction but also phase mixing on strain localization. Instead of considering a Zener-pining effect on damage evolution, we propose to take into account the effect of the grain-boundary sliding (GBS)-induced nucleation mechanism which is better supported by experimental or natural observations (Precigout et al 2016). This continuum theory allows to represent a two mineral phases aggregate with explicit log-normal grain-size distribution as a reasonable approximation for polymineralic rocks. Quantifying microscopical variables using a statistical approach may allow for calibration at small (experimental) scale. The general set of evolutions equations remains up-scalable provided some conditions on the homogenization scale. Using the interface density as a measure of mixture quality, we assume unlike Bercovici & Ricard 2012 that it may depend for some part on grain-size . The grain-size independent part of it is being represented by a "contact fraction" variable, whose evolution may be constrained by the dominant deformation
The effect of membrane-regulated actin polymerization on a two-phase flow model for cell motility
Kimpton, L. S.
2014-07-23
Two-phase flow models have been widely used to model cell motility and we have previously demonstrated that even the simplest, stripped-down, 1D model displays many observed features of cell motility [Kimpton, L.S., Whiteley, J.P., Waters, S.L., King, J.R. & Oliver, J.M. (2013) Multiple travelling-wave solutions in a minimal model for cell motility. Math. Med. Biol. 30, 241 - 272]. In this paper, we address a limitation of the previous model.We show that the two-phase flow framework can exhibit travelling-wave solutions with biologically plausible actin network profiles in two simple models that enforce polymerization or depolymerization of the actin network at the ends of the travelling, 1D strip of cytoplasm. © 2014 The authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Comparison of differential pressure model based on flow regime for gas/liquid two-phase flow
International Nuclear Information System (INIS)
Dong, F; Zhang, F S; Li, W; Tan, C
2009-01-01
Gas/liquid two-phase flow in horizontal pipe is very common in many industry processes, because of the complexity and variability, the real-time parameter measurement of two-phase flow, such as the measurement of flow regime and flow rate, becomes a difficult issue in the field of engineering and science. The flow regime recognition plays a fundamental role in gas/liquid two-phase flow measurement, other parameters of two-phase flow can be measured more easily and correctly based on the correct flow regime recognition result. A multi-sensor system is introduced to make the flow regime recognition and the mass flow rate measurement. The fusion system is consisted of temperature sensor, pressure sensor, cross-section information system and v-cone flow meter. After the flow regime recognition by cross-section information system, comparison of four typical differential pressure (DP) models is discussed based on the DP signal of v-cone flow meter. Eventually, an optimum DP model has been chosen for each flow regime. The experiment result of mass flow rate measurement shows it is efficient to classify the DP models by flow regime.
A novel drag force coefficient model for gas–water two-phase flows under different flow patterns
Energy Technology Data Exchange (ETDEWEB)
Shang, Zhi, E-mail: shangzhi@tsinghua.org.cn
2015-07-15
Graphical abstract: - Highlights: • A novel drag force coefficient model was established. • This model realized to cover different flow patterns for CFD. • Numerical simulations were performed under wide range flow regimes. • Validations were carried out through comparisons to experiments. - Abstract: A novel drag force coefficient model has been developed to study gas–water two-phase flows. In this drag force coefficient model, the terminal velocities were calculated through the revised drift flux model. The revised drift flux is different from the traditional drift flux model because the natural curve movement of the bubble was revised through considering the centrifugal force. Owing to the revisions, the revised drift flux model was to extend to 3D. Therefore it is suitable for CFD applications. In the revised drift flux model, the different flow patterns of the gas–water two-phase flows were able to be considered. This model innovatively realizes the drag force being able to cover different flow patterns of gas–water two-phase flows on bubbly flow, slug flow, churn flow, annular flow and mist flow. Through the comparisons of the numerical simulations to the experiments in vertical upward and downward pipe flows, this model was validated.
A Diffuse Interface Model for Incompressible Two-Phase Flow with Large Density Ratios
Xie, Yu; Wodo, Olga; Ganapathysubramanian, Baskar
2016-01-01
In this chapter, we explore numerical simulations of incompressible and immiscible two-phase flows. The description of the fluid–fluid interface is introduced via a diffuse interface approach. The two-phase fluid system is represented by a coupled Cahn–Hilliard Navier–Stokes set of equations. We discuss challenges and approaches to solving this coupled set of equations using a stabilized finite element formulation, especially in the case of a large density ratio between the two fluids. Specific features that enabled efficient solution of the equations include: (i) a conservative form of the convective term in the Cahn–Hilliard equation which ensures mass conservation of both fluid components; (ii) a continuous formula to compute the interfacial surface tension which results in lower requirement on the spatial resolution of the interface; and (iii) a four-step fractional scheme to decouple pressure from velocity in the Navier–Stokes equation. These are integrated with standard streamline-upwind Petrov–Galerkin stabilization to avoid spurious oscillations. We perform numerical tests to determine the minimal resolution of spatial discretization. Finally, we illustrate the accuracy of the framework using the analytical results of Prosperetti for a damped oscillating interface between two fluids with a density contrast.
A Diffuse Interface Model for Incompressible Two-Phase Flow with Large Density Ratios
Xie, Yu
2016-10-04
In this chapter, we explore numerical simulations of incompressible and immiscible two-phase flows. The description of the fluid–fluid interface is introduced via a diffuse interface approach. The two-phase fluid system is represented by a coupled Cahn–Hilliard Navier–Stokes set of equations. We discuss challenges and approaches to solving this coupled set of equations using a stabilized finite element formulation, especially in the case of a large density ratio between the two fluids. Specific features that enabled efficient solution of the equations include: (i) a conservative form of the convective term in the Cahn–Hilliard equation which ensures mass conservation of both fluid components; (ii) a continuous formula to compute the interfacial surface tension which results in lower requirement on the spatial resolution of the interface; and (iii) a four-step fractional scheme to decouple pressure from velocity in the Navier–Stokes equation. These are integrated with standard streamline-upwind Petrov–Galerkin stabilization to avoid spurious oscillations. We perform numerical tests to determine the minimal resolution of spatial discretization. Finally, we illustrate the accuracy of the framework using the analytical results of Prosperetti for a damped oscillating interface between two fluids with a density contrast.
Brenner, Konstantin; Hennicker, Julian; Masson, Roland; Samier, Pierre
2018-03-01
In this work, we extend, to two-phase flow, the single-phase Darcy flow model proposed in [26], [12] in which the (d - 1)-dimensional flow in the fractures is coupled with the d-dimensional flow in the matrix. Three types of so called hybrid-dimensional two-phase Darcy flow models are proposed. They all account for fractures acting either as drains or as barriers, since they allow pressure jumps at the matrix-fracture interfaces. The models also permit to treat gravity dominated flow as well as discontinuous capillary pressure at the material interfaces. The three models differ by their transmission conditions at matrix fracture interfaces: while the first model accounts for the nonlinear two-phase Darcy flux conservations, the second and third ones are based on the linear single phase Darcy flux conservations combined with different approximations of the mobilities. We adapt the Vertex Approximate Gradient (VAG) scheme to this problem, in order to account for anisotropy and heterogeneity aspects as well as for applicability on general meshes. Several test cases are presented to compare our hybrid-dimensional models to the generic equi-dimensional model, in which fractures have the same dimension as the matrix, leading to deep insight about the quality of the proposed reduced models.
Validation of Friction Models in MARS-MultiD Module with Two-Phase Cross Flow Experiment
International Nuclear Information System (INIS)
Choi, Chi-Jin; Yang, Jin-Hwa; Cho, Hyoung-Kyu; Park, Goon-Cher; Euh, Dong-Jin
2015-01-01
In the downcomer of Advanced Power Reactor 1400 (APR1400) which has direct vessel injection (DVI) lines as an emergency core cooling system, multidimensional two-phase flow may occur due to the Loss-of-Coolant-Accident (LOCA). The accurate prediction about that is high relevance to evaluation of the integrity of the reactor core. For this reason, Yang performed an experiment that was to investigate the two-dimensional film flow which simulated the two-phase cross flow in the upper downcomer, and obtained the local liquid film velocity and thickness data. From these data, it could be possible to validate the multidimensional modules of system analysis codes. In this study, MARS-MultiD was used to simulate the Yang's experiment, and obtained the local variables. Then, the friction models used in MARS-MultiD were validated by comparing the two-phase flow experimental results with the calculated local variables. In this study, the two-phase cross flow experiment was modeled by the MARS-MultiD. Compared with the experimental results, the calculated results by the code properly presented mass conservation which could be known from the relation between the liquid film velocity and thickness at the same flow rate. The magnitude and direction of the liquid film, however, did not follow well with experimental results. According to the results of Case-2, wall friction should be increased, and interfacial friction should be decreased in MARS-MultiD. These results show that it is needed to modify the friction models in the MARS-MultiD to simulate the two-phase cross flow
Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection
Directory of Open Access Journals (Sweden)
Hyhlík Tomáš
2016-01-01
Full Text Available The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.
Richards, Mark J; Daniel, Susan
2017-02-07
The supported lipid bilayer has been portrayed as a useful model of the cell membrane compatible with many biophysical tools and techniques that demonstrate its appeal in learning about the basic features of the plasma membrane. However, some of its potential has yet to be realized, particularly in the area of bilayer patterning and phase/composition heterogeneity. In this work, we generate contiguous bilayer patterns as a model system that captures the general features of membrane domains and lipid rafts. Micropatterned polymer templates of two types are investigated for generating patterned bilayer formation: polymer blotting and polymer lift-off stenciling. While these approaches have been used previously to create bilayer arrays by corralling bilayers patches with various types of boundaries impenetrable to bilayer diffusion, unique to the methods presented here, there are no physical barriers to diffusion. In this work, interfaces between contiguous lipid phases define the pattern shapes, with continuity between them allowing transfer of membrane-bound biomolecules between the phases. We examine effectors of membrane domain stability including temperature and cholesterol content to investigate domain dynamics. Contiguous patterning of supported bilayers as a model of lipid rafts expands the application of the SLB to an area with current appeal and brings with it a useful toolset for characterization and analysis. These combined tools should be helpful to researchers investigating lipid raft dynamics and function and biomolecule partitioning studies. Additionally, this patterning technique may be useful for applications such as bioseparations that exploit differences in lipid phase partitioning or creation of membranes that bind species like viruses preferentially at lipid phase boundaries, to name a few.
Ziegler, C.; Gerteisen, D.
A dynamic two-phase model of a proton exchange membrane fuel cell with respect to the gas diffusion layer (GDL) is presented and compared with chronoamperometric experiments. Very good agreement between experiment and simulation is achieved for potential step voltammetry (PSV) and sine wave testing (SWT). Homogenized two-phase models can be categorized in unsaturated flow theory (UFT) and multiphase mixture (M 2) models. Both model approaches use the continuum hypothesis as fundamental assumption. Cyclic voltammetry experiments show that there is a deterministic and a stochastic liquid transport mode depending on the fraction of hydrophilic pores of the GDL. ESEM imaging is used to investigate the morphology of the liquid water accumulation in the pores of two different media (unteflonated Toray-TGP-H-090 and hydrophobic Freudenberg H2315 I3). The morphology of the liquid water accumulation are related with the cell behavior. The results show that UFT and M 2 two-phase models are a valid approach for diffusion media with large fraction of hydrophilic pores such as unteflonated Toray-TGP-H paper. However, the use of the homgenized UFT and M 2 models appears to be invalid for GDLs with large fraction of hydrophobic pores that corresponds to a high average contact angle of the GDL.
Directory of Open Access Journals (Sweden)
B. D. Castro
2005-09-01
Full Text Available Liquid-liquid extraction using aqueous two-phase systems is a highly efficient technique for separation and purification of biomolecules due to the mild properties of both liquid phases. Reliable data on the phase behavior of these systems are essential for the design and operation of new separation processes; several authors reported phase diagrams for polymer-polymer systems, but data on polymer-salt systems are still relatively scarce. In this work, experimental liquid-liquid equilibrium data on water + polyethylene glycol 8000 + magnesium sulfate and water + polyethylene glycol 8000 + sodium sulfate aqueous two-phase systems were obtained at 35°C. Both equilibrium phases were analyzed by lyophilization and ashing. Experimental results were correlated with a mass-fraction-based NRTL activity coefficient model. New interaction parameters were estimated with the Simplex method. The mean deviations between the experimental and calculated compositions in both equilibrium phases is about 2%.
Energy Technology Data Exchange (ETDEWEB)
Ninokata, H. [Tokyo Institute of Technology (Japan); Deguchi, A. [ENO Mathematical Analysis, Tokyo (Japan); Kawahara, A. [Kumamoto Univ., Kumamoto (Japan)
1995-09-01
A new void drift model for the subchannel analysis method is presented for the thermohydraulics calculation of two-phase flows in rod bundles where the flow model uses a two-fluid formulation for the conservation of mass, momentum and energy. A void drift model is constructed based on the experimental data obtained in a geometrically simple inter-connected two circular channel test sections using air-water as working fluids. The void drift force is assumed to be an origin of void drift velocity components of the two-phase cross-flow in a gap area between two adjacent rods and to overcome the momentum exchanges at the phase interface and wall-fluid interface. This void drift force is implemented in the cross flow momentum equations. Computational results have been successfully compared to experimental data available including 3x3 rod bundle data.
Scovazzo, P.; Illangasekare, T. H.; Hoehn, A.; Todd, P.
2001-01-01
In traditional applications in soil physics it is convention to scale porous media properties, such as hydraulic conductivity, soil water diffusivity, and capillary head, with the gravitational acceleration. In addition, the Richards equation for water flux in partially saturated porous media also contains a gravity term. With the plans to develop plant habitats in space, such as in the International Space Station, it becomes necessary to evaluate these properties and this equation under conditions of microgravitational acceleration. This article develops models for microgravity steady state two-phase flow, as found in irrigation systems, that addresses critical design issues. Conventional dimensionless groups in two-phase mathematical models are scaled with gravity, which must be assigned a value of zero for microgravity modeling. The use of these conventional solutions in microgravity, therefore, is not possible. This article therefore introduces new dimensionless groups for two-phase models. The microgravity models introduced here determined that in addition to porous media properties, important design factors for microgravity systems include applied water potential and the ratio of inner to outer radii for cylindrical and spherical porous media systems.
Saleem, M. Rehan; Ali, Ishtiaq; Qamar, Shamsul
2018-03-01
In this article, a reduced five-equation two-phase flow model is numerically investigated. The formulation of the model is based on the conservation and energy exchange laws. The model is non-conservative and the governing equations contain two equations for the mass conservation, one for the over all momentum and one for the total energy. The fifth equation is the energy equation for one of the two phases that includes a source term on the right hand side for incorporating energy exchange between the two fluids in the form of mechanical and thermodynamical works. A Runge-Kutta discontinuous Galerkin finite element method is applied to solve the model equations. The main attractive features of the proposed method include its formal higher order accuracy, its nonlinear stability, its ability to handle complicated geometries, and its ability to capture sharp discontinuities or strong gradients in the solutions without producing spurious oscillations. The proposed method is robust and well suited for large-scale time-dependent computational problems. Several case studies of two-phase flows are presented. For validation and comparison of the results, the same model equations are also solved by using a staggered central scheme. It was found that discontinuous Galerkin scheme produces better results as compared to the staggered central scheme.
International Nuclear Information System (INIS)
Lahey, Richard T.; Drew, Donald A.
2001-01-01
This paper reviews the state-of-the-art in the prediction of multidimensional multiphase flow and heat transfer phenomena using a four field, two-fluid model. It is shown that accurate mechanistic computational fluid dynamic (CFD) predictions are possible for a wide variety of adiabatic and diabatic flows using this computational model. In particular, the model is able to predict the bubbly air/water upflow data of Serizawa (Serizawa, A., 1974. Fluid dynamic characteristics of two-phase flow. Ph.D. thesis, (Nuclear Engineering), Kyoto University, Japan), the downflow data of Wang et al. (Wang, S.K., Lee, S.J., Lahey Jr., R.T., Jones, O.C., 1987. 3-D turbulence structure and phase distribution measurements in bubbly two-phase flows. Int. J. Multiphase Flow 13 (3), 327-343), the isosceles triangle upflow data of Lopez de Bertodano et al. (Lopez de Bertodano, M., Lahey Jr., R.T., Jones, O.C., 1994b. Phase distribution in bubbly two-phase flow in vertical ducts. Int. J. Multiphase Flow 20 (5), 805-818), the heated annular R-113 subcooled boiling data of Velidandala, et al. (Velidandla, V., Pulta, S., Roy, P., Kaira, S.P., 1995. Velocity field in turbulent subcooled boiling flow. ASME Preprint HTD-314, 107-123) and the R-113 CHF data of Hino and Ueda (Hino, R., Ueda, T., 1985. Studies on heat transfer and flow characteristics in subcooled boiling-part 2, flow characteristics. Int. J. Multiphase Flow 11, 283-297). It can also predict external two-phase flows, such as those for spreading two-phase jets (Bonetto, F., Lahey Jr., R.T., 1993. An experimental study on air carryunder due to a plunging liquid jet. Int. J. Multiphase Flow 19 (2), 281-294) and multiphase flows around the hull of naval surface ships (Carrica, P.M., Bonetto, F., Drew, D.A., Lahey, R.T., 1999. A polydispersed model for bubbly two-phase flow around a surface ship. Int. J. Multiphase Flow 25 (2), 257-305)
One-Dimensional, Two-Phase Flow Modeling Toward Interpreting Motor Slag Expulsion Phenomena
Kibbey, Timothy P.
2012-01-01
Aluminum oxide slag accumulation and expulsion was previously shown to be a player in various solid rocket motor phenomena, including the Space Shuttle's Reusable Solid Rocket Motor (RSRM) pressure perturbation, or "blip," and phantom moment. In the latter case, such un ]commanded side accelerations near the end of burn have also been identified in several other motor systems. However, efforts to estimate the mass expelled during a given event have come up short. Either bulk calculations are performed without enough physics present, or multiphase, multidimensional Computational Fluid Dynamic analyses are performed that give a snapshot in time and space but do not always aid in grasping the general principle. One ]dimensional, two ]phase compressible flow calculations yield an analytical result for nozzle flow under certain assumptions. This can be carried further to relate the bulk motor parameters of pressure, thrust, and mass flow rate under the different exhaust conditions driven by the addition of condensed phase mass flow. An unknown parameter is correlated to airflow testing with water injection where mass flow rates and pressure are known. Comparison is also made to full ]scale static test motor data where thrust and pressure changes are known and similar behavior is shown. The end goal is to be able to include the accumulation and flow of slag in internal ballistics predictions. This will allow better prediction of the tailoff when much slag is ejected and of mass retained versus time, believed to be a contributor to the widely-observed "flight knockdown" parameter.
Mathematical modeling of two phase stratified flow in a microchannel with curved interface
Dandekar, Rajat; Picardo, Jason R.; Pushpavanam, S.
2017-11-01
Stratified or layered two-phase flows are encountered in several applications of microchannels, such as solvent extraction. Assuming steady, unidirectional creeping flow, it is possible to solve the Stokes equations by the method of eigenfunctions, provided the interface is flat and meets the wall with a 90 degree contact angle. However, in reality the contact angle depends on the pair of liquids and the material of the channel, and differs significantly from 90 degrees in many practical cases. For unidirectional flow, this implies that the interface is a circular arc (of constant curvature). We solve this problem within the framework of eigenfunctions, using the procedure developed by Shankar. We consider two distinct cases: (a) the interface meets the wall with the equilibrium contact angle; (b) the interface is pinned by surface treatment of the walls, so that the flow rates determine the apparent contact angle. We show that the contact angle appreciably affects the velocity profile and the volume fractions of the liquids, while limiting the range of flow rates that can be sustained without the interface touching the top/bottom walls. Non-intuitively, we find that the pressure drop is reduced when the more viscous liquid wets the wall.
International Nuclear Information System (INIS)
Fichot, Floriana; Duval, Fabiena; Garcia, Aureliena; Belloni, Julien; Quintard, Michel
2005-01-01
Full text of publication follows: In the framework of its research programme on severe nuclear reactor accidents, IRSN investigates the water flooding of an overheated porous bed, where complex two-phase flows are likely to exist. The goal is to describe the flow with a general model, covering rods and debris beds regions in the vessel. A better understanding of the flow at the pore level appears to be necessary in order to justify and improve closure laws of macroscopic models. Although the Direct Numerical Simulation (DNS) of two-phase flows is possible with several methods, applications are now limited to small computational domains, typically of the order of a few centimeters. Therefore, numerical solutions at the reactor scale can only be obtained by using averaged models. Volume averaging is the most traditional way of deriving such models. For nuclear safety codes, a control volume must include a few rods or a few debris particles, with a characteristic dimension of a few centimeters. The difficulty usually met with averaged models is the closure of several transport or source terms which appear in the averaged conservation equations (for example the interfacial drag or the heat transfers between phases) [2]. In the past, the closure of these terms was obtained, when possible, from one-dimensional experiments that allowed measurements of heat flux or pressure drops. For more complex flows, the experimental measurement of local parameters is often impossible and the effective properties cannot be determined easily. An alternative way is to perform 'numerical experiments' with numerical simulations of the local flow. As mentioned above, the domain of application of DNS corresponds to the size of control volumes necessary to derive averaged models. Therefore DNS appears as a powerful tool to investigate the local features of a two-phase flow in complex geometries. Diffuse interface methods provide a way to model flows with interfacial phenomena through an
Glyk, Anna; Heinisch, Sandra L.; Scheper, Thomas; Beutel, Sascha
2015-01-01
In the current study, the quantification of different model proteins in the presence of typical aqueous two-phase system components was investigated by using the Bradford and bicinchoninic acid (BCA) assays. Each phase-forming component above 1 and 5 wt% had considerable effects on the protein quantification in both assays, respectively, resulting in diminished protein recoveries/absorption values by increasing poly(ethylene glycol) (PEG)/salt concentration and PEG molecular weight. Therefore...
Two-phase 1D+1D model of a DMFC: development and validation on extensive operating conditions range
Energy Technology Data Exchange (ETDEWEB)
Casalegno, A.; Marchesi, R.; Parenti, D. [Dipartimento di Energetica, Politecnico di Milano (Italy)
2008-02-15
A two-phase 1D+1D model of a direct methanol fuel cell (DMFC) is developed, considering overall mass balance, methanol transport in gas phase through anode diffusion layer, methanol and water crossover. The model is quantitatively validated on an extensive range of operating conditions, 24 polarisation curves. The model accurately reproduces DMFC performance in the validation range and, outside this, it is able to predict values under feasible operating conditions. Finally, the estimations of methanol crossover flux are qualitatively and quantitatively similar to experimental measures and the main local quantities' trends are coherent with results obtained with more complex models. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
Energy Technology Data Exchange (ETDEWEB)
Sharma, Subash L., E-mail: sharma55@purdue.edu [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907-1290 (United States); Hibiki, Takashi; Ishii, Mamoru [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907-1290 (United States); Brooks, Caleb S. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois, Urbana, IL 61801 (United States); Schlegel, Joshua P. [Nuclear Engineering Program, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Buchanan, John R. [Bechtel Marine Propulsion Corporation, Bettis Laboratory, West Mifflin, PA 15122 (United States)
2017-02-15
Highlights: • Void distribution in narrow rectangular channel with various non-uniform inlet conditions. • Modeling of void diffusion due to bubble collision force. • Validation of new modeling in adiabatic air–water two-phase flow in a narrow channel. - Abstract: The prediction capability of the two-fluid model for gas–liquid dispersed two-phase flow depends on the accuracy of the closure relations for the interfacial forces. In previous studies of two-phase flow Computational Fluid Dynamics (CFD), interfacial force models for a single isolated bubble has been extended to disperse two-phase flow assuming the effect in a swarm of bubbles is similar. Limited studies have been performed investigating the effect of the bubble concentration on the lateral phase distribution. Bubbles, while moving through the liquid phase, may undergo turbulence-driven random collision with neighboring bubbles without significant coalescence. The rate of these collisions depends upon the bubble approach velocity and bubble spacing. The bubble collision frequency is expected to be higher in locations with higher bubble concentrations, i.e., volume fraction. This turbulence-driven random collision causes the diffusion of the bubbles from high concentration to low concentration. Based on experimental observations, a phenomenological model has been developed for a “turbulence-induced bubble collision force” for use in the two-fluid model. For testing the validity of the model, two-phase flow data measured at Purdue University are utilized. The geometry is a 10 mm × 200 mm cross section channel. Experimentally, non-uniform inlet boundary conditions are applied with different sparger combinations to vary the volume fraction distribution across the wider dimension. Examining uniform and non-uniform inlet data allows for the influence of the volume fraction to be studied as a separate effect. The turbulence-induced bubble collision force has been implemented in ANSYS CFX. The
Two-Phase Acto-Cytosolic Fluid Flow in a Moving Keratocyte: A 2D Continuum Model.
Nikmaneshi, M R; Firoozabadi, B; Saidi, M S
2015-09-01
The F-actin network and cytosol in the lamellipodia of crawling cells flow in a centripetal pattern and spout-like form, respectively. We have numerically studied this two-phase flow in the realistic geometry of a moving keratocyte. Cytosol has been treated as a low viscosity Newtonian fluid flowing through the high viscosity porous medium of F-actin network. Other involved phenomena including myosin activity, adhesion friction, and interphase interaction are also discussed to provide an overall view of this problem. Adopting a two-phase coupled model by myosin concentration, we have found new accurate perspectives of acto-cytosolic flow and pressure fields, myosin distribution, as well as the distribution of effective forces across the lamellipodia of a keratocyte with stationary shape. The order of magnitude method is also used to determine the contribution of forces in the internal dynamics of lamellipodia.
Three-dimensional numerical modeling of turbulent single-phase and two-phase flow in curved pipes
International Nuclear Information System (INIS)
Xin, R.C.; Dong, Z.F.; Ebadian, M.A.
1996-01-01
In this study, three-dimensional single-phase and two-phase flows in curved pipes have been investigated numerically. Two different pipe configurations were computed. When the results of the single-phase flow simulation were compared with the experimental data, a fairly good agreement was achieved. A flow-developing process has been suggested in single-phase flow, in which the turbulence is stronger near the outer tube wall than near the inner tube wall. For two-phase flow, the Eulerian multiphase model was used to simulate the phase distribution of a three-dimensional gas-liquid bubble flow in curved pipe. The RNG/κ-ε turbulence model was used to determine the turbulence field. An inlet gas void fraction of 5 percent was simulated. The gas phase effects on the liquid phase flow velocity have been examined by comparing the results of single-phase flow and two-phase flow. The findings show that for the downward flow in the U bend, the gas concentrates at the inner portion of the cross section at φ = π/18 - π/6 in most cases. The results of the phase distribution simulation are compared to experimental observations qualitatively and topologically
Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly. Final CRADA Report
International Nuclear Information System (INIS)
Tentner, A.
2009-01-01
A direct numerical simulation capability for two-phase flows with heat transfer in complex geometries can considerably reduce the hardware development cycle, facilitate the optimization and reduce the costs of testing of various industrial facilities, such as nuclear power plants, steam generators, steam condensers, liquid cooling systems, heat exchangers, distillers, and boilers. Specifically, the phenomena occurring in a two-phase coolant flow in a BWR (Boiling Water Reactor) fuel assembly include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for this purpose of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Advanced CFD (Computational Fluid Dynamics) codes provide a potential for detailed 3D simulations of coolant flow inside a fuel assembly, including flow around a spacer element using more fundamental physical models of flow regimes and phase interactions than sub-channel codes. Such models can extend the code applicability to a wider range of situations, which is highly important for increasing the efficiency and to prevent accidents.
Multi-scale modeling of dispersed gas-liquid two-phase flows
Deen, N.G.; van den Hengel, E.I.V.; van Sint Annaland, M.; Kuipers, J.A.M.
2004-01-01
In this work the status of computational modeling of bubbly flows is reviewed. The theory of four different models is introduced and typical examples are given illustrating the capabilities of these models. The volume of fluid model and the front tracking model are used to investigate the behavior
International Nuclear Information System (INIS)
Yao, W.; Coste, P.; Bestion, D.; Boucker, M.
2003-01-01
In this paper, a local 3D two-fluid model for a turbulent stratified flow with/without condensation, which can be used to predict two-phase pressurized thermal shock, is presented. A modified turbulent K- model is proposed with turbulence production induced by interfacial friction. A model of interfacial friction based on a interfacial sublayer concept and three interfacial heat transfer models, namely, a model based on the small eddies controlled surface renewal concept (HDM, Hughes and Duffey, 1991), a model based on the asymptotic behavior of the Eddy Viscosity (EVM), and a model based on the Interfacial Sublayer concept (ISM) are implemented into a preliminary version of the NEPTUNE code based on the 3D module of the CATHARE code. As a first step to apply the above models to predict the two-phase thermal shock, the models are evaluated by comparison of calculated profiles with several experiments: a turbulent air-water stratified flow without interfacial heat transfer; a turbulent steam-water stratified flow with condensation; turbulence induced by the impact of a water jet in a water pool. The prediction results agree well with the experimental data. In addition, the comparison of three interfacial heat transfer models shows that EVM and ISM gave better prediction results while HDM highly overestimated the interfacial heat transfers compared to the experimental data of a steam water stratified flow
Chiu, Yuan-Shyi Peter; Chou, Chung-Li; Chang, Huei-Hsin; Chiu, Singa Wang
2016-01-01
A multi-customer finite production rate (FPR) model with quality assurance and discontinuous delivery policy was investigated in a recent paper (Chiu et al. in J Appl Res Technol 12(1):5-13, 2014) using differential calculus approach. This study employs mathematical modeling along with a two-phase algebraic method to resolve such a specific multi-customer FPR model. As a result, the optimal replenishment lot size and number of shipments can be derived without using the differential calculus. Such a straightforward method may assist practitioners who with insufficient knowledge of calculus in learning and managing the real multi-customer FPR systems more effectively.
International Nuclear Information System (INIS)
Bdzil, J.B.; Menikoff, R.; Son, S.F.; Kapila, A.K.; Stewart, D.S.
1999-01-01
The two-phase mixture model developed by Baer and Nunziato (BN) to study the deflagration-to-detonation transition (DDT) in granular explosives is critically reviewed. The continuum-mixture theory foundation of the model is examined, with particular attention paid to the manner in which its constitutive functions are formulated. Connections between the mechanical and energetic phenomena occurring at the scales of the grains, and their manifestations on the continuum averaged scale, are explored. The nature and extent of approximations inherent in formulating the constitutive terms, and their domain of applicability, are clarified. Deficiencies and inconsistencies in the derivation are cited, and improvements suggested. It is emphasized that the entropy inequality constrains but does not uniquely determine the phase interaction terms. The resulting flexibility is exploited to suggest improved forms for the phase interactions. These improved forms better treat the energy associated with the dynamic compaction of the bed and the single-phase limits of the model. Companion papers of this study [Kapila et al., Phys. Fluids 9, 3885 (1997); Kapila et al., in preparation; Son et al., in preparation] examine simpler, reduced models, in which the fine scales of velocity and pressure disequilibrium between the phases allow the corresponding relaxation zones to be treated as discontinuities that need not be resolved in a numerical computation. copyright 1999 American Institute of Physics
Numerical Simulations of Two-Phase Flow in a Self-Aerated Flotation Machine and Kinetics Modeling
Fayed, Hassan E.; Ragab, Saad
2015-01-01
A new boundary condition treatment has been devised for two-phase flow numerical simulations in a self-aerated minerals flotation machine and applied to a Wemco 0.8 m3 pilot cell. Airflow rate is not specified a priori but is predicted by the simulations as well as power consumption. Time-dependent simulations of two-phase flow in flotation machines are essential to understanding flow behavior and physics in self-aerated machines such as the Wemco machines. In this paper, simulations have been conducted for three different uniform bubble sizes (db = 0.5, 0.7 and 1.0 mm) to study the effects of bubble size on air holdup and hydrodynamics in Wemco pilot cells. Moreover, a computational fluid dynamics (CFD)-based flotation model has been developed to predict the pulp recovery rate of minerals from a flotation cell for different bubble sizes, different particle sizes and particle size distribution. The model uses a first-order rate equation, where models for probabilities of collision, adhesion and stabilization and collisions frequency estimated by Zaitchik-2010 model are used for the calculation of rate constant. Spatial distributions of dissipation rate and air volume fraction (also called void fraction) determined by the two-phase simulations are the input for the flotation kinetics model. The average pulp recovery rate has been calculated locally for different uniform bubble and particle diameters. The CFD-based flotation kinetics model is also used to predict pulp recovery rate in the presence of particle size distribution. Particle number density pdf and the data generated for single particle size are used to compute the recovery rate for a specific mean particle diameter. Our computational model gives a figure of merit for the recovery rate of a flotation machine, and as such can be used to assess incremental design improvements as well as design of new machines.
Numerical Simulations of Two-Phase Flow in a Self-Aerated Flotation Machine and Kinetics Modeling
Directory of Open Access Journals (Sweden)
Hassan Fayed
2015-03-01
Full Text Available A new boundary condition treatment has been devised for two-phase flow numerical simulations in a self-aerated minerals flotation machine and applied to a Wemco 0.8 m3 pilot cell. Airflow rate is not specified a priori but is predicted by the simulations as well as power consumption. Time-dependent simulations of two-phase flow in flotation machines are essential to understanding flow behavior and physics in self-aerated machines such as the Wemco machines. In this paper, simulations have been conducted for three different uniform bubble sizes (db = 0.5, 0.7 and 1.0 mm to study the effects of bubble size on air holdup and hydrodynamics in Wemco pilot cells. Moreover, a computational fluid dynamics (CFD-based flotation model has been developed to predict the pulp recovery rate of minerals from a flotation cell for different bubble sizes, different particle sizes and particle size distribution. The model uses a first-order rate equation, where models for probabilities of collision, adhesion and stabilization and collisions frequency estimated by Zaitchik-2010 model are used for the calculation of rate constant. Spatial distributions of dissipation rate and air volume fraction (also called void fraction determined by the two-phase simulations are the input for the flotation kinetics model. The average pulp recovery rate has been calculated locally for different uniform bubble and particle diameters. The CFD-based flotation kinetics model is also used to predict pulp recovery rate in the presence of particle size distribution. Particle number density pdf and the data generated for single particle size are used to compute the recovery rate for a specific mean particle diameter. Our computational model gives a figure of merit for the recovery rate of a flotation machine, and as such can be used to assess incremental design improvements as well as design of new machines.
Numerical Simulations of Two-Phase Flow in a Self-Aerated Flotation Machine and Kinetics Modeling
Fayed, Hassan E.
2015-03-30
A new boundary condition treatment has been devised for two-phase flow numerical simulations in a self-aerated minerals flotation machine and applied to a Wemco 0.8 m3 pilot cell. Airflow rate is not specified a priori but is predicted by the simulations as well as power consumption. Time-dependent simulations of two-phase flow in flotation machines are essential to understanding flow behavior and physics in self-aerated machines such as the Wemco machines. In this paper, simulations have been conducted for three different uniform bubble sizes (db = 0.5, 0.7 and 1.0 mm) to study the effects of bubble size on air holdup and hydrodynamics in Wemco pilot cells. Moreover, a computational fluid dynamics (CFD)-based flotation model has been developed to predict the pulp recovery rate of minerals from a flotation cell for different bubble sizes, different particle sizes and particle size distribution. The model uses a first-order rate equation, where models for probabilities of collision, adhesion and stabilization and collisions frequency estimated by Zaitchik-2010 model are used for the calculation of rate constant. Spatial distributions of dissipation rate and air volume fraction (also called void fraction) determined by the two-phase simulations are the input for the flotation kinetics model. The average pulp recovery rate has been calculated locally for different uniform bubble and particle diameters. The CFD-based flotation kinetics model is also used to predict pulp recovery rate in the presence of particle size distribution. Particle number density pdf and the data generated for single particle size are used to compute the recovery rate for a specific mean particle diameter. Our computational model gives a figure of merit for the recovery rate of a flotation machine, and as such can be used to assess incremental design improvements as well as design of new machines.
International Nuclear Information System (INIS)
Hua Jinsong; Lin Ping; Liu Chun; Wang Qi
2011-01-01
Highlights: → We study phase-field models for multi-phase flow computation. → We develop an energy-law preserving C0 FEM. → We show that the energy-law preserving method work better. → We overcome unphysical oscillation associated with the Cahn-Hilliard model. - Abstract: We use the idea in to develop the energy law preserving method and compute the diffusive interface (phase-field) models of Allen-Cahn and Cahn-Hilliard type, respectively, governing the motion of two-phase incompressible flows. We discretize these two models using a C 0 finite element in space and a modified midpoint scheme in time. To increase the stability in the pressure variable we treat the divergence free condition by a penalty formulation, under which the discrete energy law can still be derived for these diffusive interface models. Through an example we demonstrate that the energy law preserving method is beneficial for computing these multi-phase flow models. We also demonstrate that when applying the energy law preserving method to the model of Cahn-Hilliard type, un-physical interfacial oscillations may occur. We examine the source of such oscillations and a remedy is presented to eliminate the oscillations. A few two-phase incompressible flow examples are computed to show the good performance of our method.
DEFF Research Database (Denmark)
Addassi, Mouadh; Johannesson, Björn; Wadsö, Lars
2018-01-01
Here we present an inverse analyses approach to determining the two-phase moisture transport properties relevant to concrete durability modeling. The purposed moisture transport model was based on a continuum approach with two truly separate equations for the liquid and gas phase being connected...... test, and, (iv) capillary suction test. Mass change over time, as obtained from the drying test, the two different cup test intervals and the capillary suction test, was used to obtain the effective diffusion parameters using the proposed inverse analyses approach. The moisture properties obtained...
Directory of Open Access Journals (Sweden)
R.A.G. Sé
2002-04-01
Full Text Available The NRTL (nonrandom, two-liquid model, expressed in mass fraction instead of mole fraction, was used to correlate liquid-liquid equilibria for aqueous two-phase polymer-salt solutions. New interaction energy parameters for this model were determined using reported data on the water + poly(ethylene glycol + salt systems, with different molecular masses for PEG and the salts potassium phosphate, sodium sulfate, sodium carbonate and magnesium sulfate. The correlation of liquid-liquid equilibrium is quite satisfactory.
Wu, Yuanqing
2015-03-01
Flash calculations have become a performance bottleneck in the simulation of compositional flow in subsurface reservoirs. We apply a sparse grid surrogate model to substitute the flash calculation and thus try to remove the bottleneck from the reservoir simulation. So instead of doing a flash calculation in each time step of the simulation, we just generate a sparse grid approximation of all possible results of the flash calculation before the reservoir simulation. Then we evaluate the constructed surrogate model to approximate the values of the flash calculation results from this surrogate during the simulations. The execution of the true flash calculation has been shifted from the online phase during the simulation to the offline phase before the simulation. Sparse grids are known to require only few unknowns in order to obtain good approximation qualities. In conjunction with local adaptivity, sparse grids ensure that the accuracy of the surrogate is acceptable while keeping the memory usage small by only storing a minimal amount of values for the surrogate. The accuracy of the sparse grid surrogate during the reservoir simulation is compared to the accuracy of using a surrogate based on regular Cartesian grids and the original flash calculation. The surrogate model improves the speed of the flash calculations and the simulation of the whole reservoir. In an experiment, it is shown that the speed of the online flash calculations is increased by about 2000 times and as a result the speed of the reservoir simulations has been enhanced by 21 times in the best conditions.
SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport
Directory of Open Access Journals (Sweden)
J. Chauchat
2017-11-01
Full Text Available In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I. For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only, a k − ε, and a k − ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.
SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport
Chauchat, Julien; Cheng, Zhen; Nagel, Tim; Bonamy, Cyrille; Hsu, Tian-Jian
2017-11-01
In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k - ɛ, and a k - ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.
Comparison of Two Phase Pressure Drop Models in 1-D Top Flooded Debris Bed
International Nuclear Information System (INIS)
Lee, Moon Eon; Park, Jin Ho; Kim, Eun ho; Park, Hyun Sun
2016-01-01
The dry out of coolant inside debris bed can be considered as the limitation of cooling in the conservative point of view and the heat flux through whole bed at the situation is named as Dryout Heat Flux (DHF). The modeling of DHF for debris bed started from early 1980s by several researchers. It is known that DHF mainly occurs by hydrodynamic limitation inside porous media. Therefore, there have been following attempts to capture flow resistance in porous media, precisely. Up to date, although there are about seven pressure drop models available in literatures, it is hard to find comparison of those models with a wide range of DHF experimental data. The one attempt[9] was conducted in 2013, but due to lack of consideration of the capillary pressure in his work, the DHF values that he calculated seem to be underestimated, especially in the range of the small particle diameter cases. In this research, the importance of capillary pressure in the comparison of pressure drop model with experimental data was checked and model selection among pressure drop models for the DHF calculation was also conducted. The model comparison with 108 experimental data from various conditions has been conducted and the Schmidt model shows the best agreement to the experimental data although Reed, Rahman model also show similar results.
Comparison of Two Phase Pressure Drop Models in 1-D Top Flooded Debris Bed
Energy Technology Data Exchange (ETDEWEB)
Lee, Moon Eon; Park, Jin Ho; Kim, Eun ho; Park, Hyun Sun [POSTECH, Pohang (Korea, Republic of)
2016-05-15
The dry out of coolant inside debris bed can be considered as the limitation of cooling in the conservative point of view and the heat flux through whole bed at the situation is named as Dryout Heat Flux (DHF). The modeling of DHF for debris bed started from early 1980s by several researchers. It is known that DHF mainly occurs by hydrodynamic limitation inside porous media. Therefore, there have been following attempts to capture flow resistance in porous media, precisely. Up to date, although there are about seven pressure drop models available in literatures, it is hard to find comparison of those models with a wide range of DHF experimental data. The one attempt[9] was conducted in 2013, but due to lack of consideration of the capillary pressure in his work, the DHF values that he calculated seem to be underestimated, especially in the range of the small particle diameter cases. In this research, the importance of capillary pressure in the comparison of pressure drop model with experimental data was checked and model selection among pressure drop models for the DHF calculation was also conducted. The model comparison with 108 experimental data from various conditions has been conducted and the Schmidt model shows the best agreement to the experimental data although Reed, Rahman model also show similar results.
Constitutive modeling of two phase materials using the Mean Field method for homogenization
Perdahcioglu, Emin Semih; Geijselaers, Hubertus J.M.
2010-01-01
A Mean-Field homogenization framework for constitutive modeling of materials involving two distinct elastic-plastic phases is presented. With this approach it is possible to compute the macroscopic mechanical behavior of this type of materials based on the constitutive models of the constituent
Multi-scale modeling of dispersed gas-liquid two-phase flow
Deen, N.G.; Sint Annaland, van M.; Kuipers, J.A.M.
2004-01-01
In this work the concept of multi-scale modeling is demonstrated. The idea of this approach is to use different levels of modeling, each developed to study phenomena at a certain length scale. Information obtained at the level of small length scales can be used to provide closure information at the
Two-phase endolymphatic hydrops : A new dynamic guinea pig model
Dunnebier, EA; Segenhout, JM; Wit, HP; Albers, FWJ
The classical guinea pig model for Meniere's disease, in which endolymphatic hydrops was achieved by destruction of the endolymphatic sac and obliteration of the endolymphatic duct, is a non-physiological profound model with shortcomings in relation to Meniere's disease as seen in patients. We
Modeling and Control Perspectives of Two-Phase Fluid Systems - with Applications to Bubble Columns
Djordjevic, S.
2011-01-01
The recent progress in the chemical industry is now forcing engineers and physicists to get to deal with control-oriented modeling of material properties on microscopic scale inside reactors in order to build more efficient chemical plants. The control-oriented modeling provides a new way of
Directory of Open Access Journals (Sweden)
Zheng Miao
2014-04-01
Full Text Available The transport phenomena in a passive direct methanol fuel cell (DMFC were numerically simulated by the proposed two-dimensional two-phase nonisothermal mass transport model. The anisotropic transport characteristic and deformation of the gas diffusion layer (GDL were considered in this model. The natural convection boundary conditions were adopted for the transport of methanol, oxygen, and heat at the GDL outer surface. The effect of methanol concentration in the reservoir on cell performance was examined. The distribution of multiphysical fields in the membrane electrode assembly (MEA, especially in the catalyst layers (CLs, was obtained and analyzed. The results indicated that transport resistance for the methanol mainly existed in the MEA while that for oxygen and heat was primarily due to natural convection at the GDL outer surface. Because of the relatively high methanol concentration, the local reaction rate in CLs was mainly determined by the overpotential. Methanol concentration between 3 M and 4 M was recommended for passive liquid feed DMFC in order to achieve a balance between the cell performance and the methanol crossover.
Optimization of two-phase R600a ejector geometries using a non-equilibrium CFD model
International Nuclear Information System (INIS)
Lee, Moon Soo; Lee, Hoseong; Hwang, Yunho; Radermacher, Reinhard; Jeong, Hee-Moon
2016-01-01
Highlights: • Empirical mass transfer coefficient correlation is built based on Weber number. • Developed model is validated in terms of the e and DP. • A set of Pareto solutions is obtained from MOGA based OAAO method. • DP is improved up to 10,379 Pa with the same e of the baseline. • e is enhanced up to 0.782 with the same DP of the baseline case. - Abstract: A vapor compression cycle, which is typically utilized for the heat pump, air conditioning and refrigeration systems, has inherent thermodynamic losses associated with expansion and compression processes. To minimize these losses and improve the energy efficiency of the vapor compression cycle, an ejector can be applied. However, due to the occurrence of complex physics i.e., non-equilibrium flashing compressible flow in the nozzle with possible shock interactions, it has not been feasible to model or optimize the design of a two-phase ejector. In this study, a homogeneous, non-equilibrium, two-phase flow computational fluid dynamics (CFD) model in a commercial code is used with an in-house empirical correlation for the mass transfer coefficient and real gas properties to perform a geometric optimization of a two-phase ejector. The model is first validated with experimental data of an ejector with R600a as the working fluid. After that, the design parameters of the ejector are optimized using multi-objective genetic algorithm (MOGA) based online approximation-assisted optimization (OAAO) approaches to find the maximum performance.
A forced convective heat transfer model for two-phase hydrogen systems
International Nuclear Information System (INIS)
Pasch, J.; Anghaie, S.
2007-01-01
A consistent event in the use of hydrogen in nuclear thermal propulsion is film boiling, in which the wall heat is so large that liquid can not exist at the wall. Instead, vapor interfaces with the wall and liquid flows in the core of the duct. To better understand heat transfer under these conditions, a select set of hydrogen test data from these conditions are analyzed. This paper presents the results of an extensive literature search for film boiling heat transfer models. A representative cross-section of these models is then applied to the data. The heat transfer coefficient data were found difficult to predict and highly dependent upon the flow regime. Pre-critical heat flux correlations completely fail to predict the heat transfer of inverted film boiling conditions. Pool boiling models for inverted film boiling also are inappropriate. Current force convection models for inverted film boiling, while far better than the previous two classes of models, still generate large predictive errors. It is recommended that for the inverted annular film boiling flow regime the modified equilibrium bulk Dittus-Boelter model be used. For agitated inverted annular film boiling and dispersed film boiling regimes associated with positive equilibrium qualities, the Hendricks model should be used. (A.C.)
Zhang, Yan-Hong; Ye, Shu-Jun; Wu, Ji-Chun
2014-06-01
Based on light transmission method in quantification of liquid saturation and its application in two-phase flow system, two groups of sandbox experiments were set up to study the migration of gas or Dense Non-Aqueous Phase Liquids (DNAPLs) in water saturated porous media. The migration of gas or DNAPL was monitored in the study. Two modified Light Intensity-Saturation (LIS) models for water/gas two-phase system were applied and verified by the experiment data. Moreover two new LIS models for NAPL/water system were developed and applied to simulate the DNAPL infiltration experiment data. The gas injection experiment showed that gas moved upward to the top of the sandbox in the form of 'fingering' and finally formed continuous distribution. The results of DNAPL infiltration experiment showed that TCE mainly moved downward as the result of its gravity, eventually formed irregular plume and accumulated at the bottom of the sandbox. The outcomes of two LIS models for water/gas system (WG-A and WG-B) were consistent to the measured data. The results of two LIS models for NAPL/water system (NW-A and NW-B) fit well with the observations, and Model NW-A based on assumption of individual drainage gave better results. It could be a useful reference for quantification of NAPL/water saturation in porous media system.
Marrone, Salvatore; Colagrossi, Andrea; Di Mascio, Andrea; Le Touzé, David
2016-05-01
The study of energetic free-surface flows is challenging because of the large range of interface scales involved due to multiple fragmentations and reconnections of the air-water interface with the formation of drops and bubbles. Because of their complexity the investigation of such phenomena through numerical simulation largely increased during recent years. Actually, in the last decades different numerical models have been developed to study these flows, especially in the context of particle methods. In the latter a single-phase approximation is usually adopted to reduce the computational costs and the model complexity. While it is well known that the role of air largely affects the local flow evolution, it is still not clear whether this single-phase approximation is able to predict global flow features like the evolution of the global mechanical energy dissipation. The present work is dedicated to this topic through the study of a selected problem simulated with both single-phase and two-phase models. It is shown that, interestingly, even though flow evolutions are different, energy evolutions can be similar when including or not the presence of air. This is remarkable since, in the problem considered, with the two-phase model about half of the energy is lost in the air phase while in the one-phase model the energy is mainly dissipated by cavity collapses.
A phenomenological two-phase constitutive model for porous shape memory alloys
El Sayed, Tamer S.; Gurses, Ercan; Siddiq, Amir Mohammed
2012-01-01
, application of the presented constitutive model has been presented by performing finite element simulations of the deformation and failure in unaixial dog-bone shaped specimen and compact tension (CT) test specimen. Results show a good agreement
Modeling Two-Phase Flow and Vapor Cycles Using the Generalized Fluid System Simulation Program
Smith, Amanda D.; Majumdar, Alok K.
2017-01-01
This work presents three new applications for the general purpose fluid network solver code GFSSP developed at NASA's Marshall Space Flight Center: (1) cooling tower, (2) vapor-compression refrigeration system, and (3) vapor-expansion power generation system. These systems are widely used across engineering disciplines in a variety of energy systems, and these models expand the capabilities and the use of GFSSP to include fluids and features that are not part of its present set of provided examples. GFSSP provides pressure, temperature, and species concentrations at designated locations, or nodes, within a fluid network based on a finite volume formulation of thermodynamics and conservation laws. This paper describes the theoretical basis for the construction of the models, their implementation in the current GFSSP modeling system, and a brief evaluation of the usefulness of the model results, as well as their applicability toward a broader spectrum of analytical problems in both university teaching and engineering research.
A model of single and two-phase flow (critical or not) through cracks
International Nuclear Information System (INIS)
Seynhaeve, J.M.; Giot, M.; Granger, S.; Pages, D.
1995-07-01
The leaks through steam-generator cracks are the subject of research carried out in cooperation between EDF and UCL. A model to predict the mass flow rate with inlet subcooling has been developed, validated and published. The model takes into account the persistence of some metastable liquid in the crack. The present paper improves and extends the model, by making it applicable to all kinds of conditions prevailing in the S.G. tubes: not only subcooled water, but also saturated water, steam-water mixtures, saturated dry steam or superheated steam. Therefore, the flow at the crack inlet is analyzed and appropriate methods to initialize the numerical integration of the flow equations along the crack are proposed. The extensions of the model are still in the process of validation. However, a sensitivity analysis of its results has been made and is presented. (author)
Quasi-3D Modelling of Two-Phase Slug Flow in Pipes
Directory of Open Access Journals (Sweden)
S. Mo
2014-03-01
Full Text Available In this paper, we present progress obtained by the Quasi 3-Dimensional (Q3D model for pipe flows. This model is based on a multi-fluid multi-field formulation with construction and tracking of the large-scale interfaces (LSIs. The computational time is significantly reduced compared to full 3D by using a specially adopted slice-averaging technique. However, the slice-averaging generates new terms in the model equations. These terms are related to important mechanisms such as wall shear stress and turbulence production at side walls. We present some basic performance tests of the Q3D model, including single phase wall friction and the velocities of single Taylor bubbles at inclinations ranging from horizontal to vertical. Finally we report the performance of the model for slug flow in horizontal and 10° inclined pipes. The model reproduces the experimental data satisfactorily for both cases in a very short simulation time compared to full 3D.
Kou, Jisheng
2016-11-25
A general diffuse interface model with a realistic equation of state (e.g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is a latest alternative over the NPT-based framework to model the realistic fluids. The proposed model uses the Helmholtz free energy rather than Gibbs free energy in the NPT-based framework. Different from the classical routines, we combine the first law of thermodynamics and related thermodynamical relations to derive the entropy balance equation, and then we derive a transport equation of the Helmholtz free energy density. Furthermore, by using the second law of thermodynamics, we derive a set of unified equations for both interfaces and bulk phases that can describe the partial miscibility of two fluids. A relation between the pressure gradient and chemical potential gradients is established, and this relation leads to a new formulation of the momentum balance equation, which demonstrates that chemical potential gradients become the primary driving force of fluid motion. Moreover, we prove that the proposed model satisfies the total (free) energy dissipation with time. For numerical simulation of the proposed model, the key difficulties result from the strong nonlinearity of Helmholtz free energy density and tight coupling relations between molar densities and velocity. To resolve these problems, we propose a novel convex-concave splitting of Helmholtz free energy density and deal well with the coupling relations between molar densities and velocity through very careful physical observations with a mathematical rigor. We prove that the proposed numerical scheme can preserve the discrete (free) energy dissipation. Numerical tests are carried out to verify the effectiveness of the proposed method.
International Nuclear Information System (INIS)
Chan, A.M.C.; Huynh, H.M.
2004-01-01
The development of an ANC-type empirical two-phase pump model for CANDU (Canadian Deuterium) reactor primary heat transport pumps is described in the present paper. The model was developed based on Ontario Hydro Technologies' full scale Darlington pump first quadrant test data. The functional form of the ANC model which is widely used was chosen to facilitate the implementation of the model into existing computer codes. The work is part of a bigger test program with the aims: (1) to produce high quality pump performance data under off-normal operating conditions using both full-size and model scale pumps; (2) to advance our basic understanding of the dominant mechanisms affecting pump performance based on more detailed local measurements; and (3) to develop a 'best-estimate' or improved pump model for use in reactor licensing and safety analyses. (author)
A finite-element model for moving contact line problems in immiscible two-phase flow
Kucala, Alec
2017-11-01
Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). The macroscale movement of the contact line is dependent on the molecular interactions occurring at the three-phase interface, however most MCL problems require resolution at the meso- and macro-scale. A phenomenological model must be developed to account for the microscale interactions, as resolving both the macro- and micro-scale would render most problems computationally intractable. Here, a model for the moving contact line is presented as a weak forcing term in the Navier-Stokes equation and applied directly at the location of the three-phase interface point. The moving interface is tracked with the level set method and discretized using the conformal decomposition finite element method (CDFEM), allowing for the surface tension and the wetting model to be computed at the exact interface location. A variety of verification test cases for simple two- and three-dimensional geometries are presented to validate the current MCL model, which can exhibit grid independence when a proper scaling for the slip length is chosen. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.
A polytropic model of a critical two-phase flow in a bed of spherical particles
Directory of Open Access Journals (Sweden)
Tairov Emir
2017-01-01
Full Text Available The paper is concerned with a model of isenthalpic flow of vapor-water mixture in a fixed bed of solid particles. The mixture expansion process is considered to be polytropic. Similarly to the known problem of gas dynamics of a granular bed we obtained the relationships for calculation of a critical mass velocity. The results of the calculation based on a theoretical model are compared with the experimental data obtained in the packed beds of steel balls, 2 mm and 4 mm in diameter.
DEFF Research Database (Denmark)
Kemppainen, Erno; Halme, Janne; Hansen, Ole
2016-01-01
is the evolution and transport of gaseous H2, since HER leads to the continuous formation of H2 bubbles near the electrode. We present a numerical model that includes the transport of both gaseous and dissolved H2, as well as mass exchange between them, and combine it with a kinetic model of HER at platinum (Pt......) nanoparticle electrodes. We study the effect of the diffusion layer thickness and H2 dissolution rate constant on the importance of gaseous transport, and the effect of equilibrium hydrogen coverage and Pt loading on the kinetic and mass transport overpotentials. Gaseous transport becomes significant when...
A Well-Posed Two Phase Flow Model and its Numerical Solutions for Reactor Thermal-Fluids Analysis
Energy Technology Data Exchange (ETDEWEB)
Kadioglu, Samet Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Berry, Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Martineau, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-08-01
A 7-equation two-phase flow model and its numerical implementation is presented for reactor thermal-fluids applications. The equation system is well-posed and treats both phases as compressible flows. The numerical discretization of the equation system is based on the finite element formalism. The numerical algorithm is implemented in the next generation RELAP-7 code (Idaho National Laboratory (INL)’s thermal-fluids code) built on top of an other INL’s product, the massively parallel multi-implicit multi-physics object oriented code environment (MOOSE). Some preliminary thermal-fluids computations are presented.
A Well-Posed Two Phase Flow Model and its Numerical Solutions for Reactor Thermal-Fluids Analysis
International Nuclear Information System (INIS)
Kadioglu, Samet Y.; Berry, Ray; Martineau, Richard
2016-01-01
A 7-equation two-phase flow model and its numerical implementation is presented for reactor thermal-fluids applications. The equation system is well-posed and treats both phases as compressible flows. The numerical discretization of the equation system is based on the finite element formalism. The numerical algorithm is implemented in the next generation RELAP-7 code (Idaho National Laboratory (INL)'s thermal-fluids code) built on top of an other INL's product, the massively parallel multi-implicit multi-physics object oriented code environment (MOOSE). Some preliminary thermal-fluids computations are presented.
International Nuclear Information System (INIS)
Bottoni, M.; Sengpiel, W.
1992-01-01
Starting from the rigorous formulation of the conservation equations for mass, momentum and enthalpy, derived for a two-phase flow by volume averaging microscopic balance equations over Eulerian control cells, the article discusses the formulation of the terms describing exchanges between the phases. Two flow regimes are taken into consideration, bubbly flow, applicable for small or medium void fractions, and annular flow, for large void fractions. When lack of knowledge of volume-averaged physical quantities make the rigorously formulated terms useless for computational purposes, modelling of these terms is discussed. 3 figs., 15 refs
DAM-BREAK SHOCK WAVES WITH FLOATING DEBRIS: EXPERIMENTALANALYSIS AND TWO-PHASE MODELLING
Directory of Open Access Journals (Sweden)
Stefano Mambretti
2008-06-01
Full Text Available To predict floods and debris flow dynamics a numerical model, based on 1D De Saint Venant (SV equations, was developed. The McCormack – Jameson shock capturing scheme was employed for the solution of the equations, written in a conservative law form. This technique was applied to determine both the propagation and the profile of a two – phase debris flow resulting from the instantaneous and complete collapse of a storage dam. To validate the model, comparisons have been made between its predictions and laboratory measurements concerning flows of water and homogeneous granular mixtures in a uniform geometry flume reproducing dam – break waves. Agreements between computational and experimental results are considered very satisfactory for mature (non – stratified debris flows, which embrace most real cases. To better predict immature (stratified flows, the model should be improved in order to feature, in a more realistic way, the distribution of the particles of different size within the mixture. On the whole, the model proposed can easily be extended to channels with arbitrary cross sections for debris flow routing, as well as for solving different problems of unsteady flow in open channels by incorporating the appropriate initial and boundary conditions.
Flow past a permeable stretching/shrinking sheet in a nanofluid using two-phase model.
Directory of Open Access Journals (Sweden)
Khairy Zaimi
Full Text Available The steady two-dimensional flow and heat transfer over a stretching/shrinking sheet in a nanofluid is investigated using Buongiorno's nanofluid model. Different from the previously published papers, in the present study we consider the case when the nanofluid particle fraction on the boundary is passively rather than actively controlled, which make the model more physically realistic. The governing partial differential equations are transformed into nonlinear ordinary differential equations by a similarity transformation, before being solved numerically by a shooting method. The effects of some governing parameters on the fluid flow and heat transfer characteristics are graphically presented and discussed. Dual solutions are found to exist in a certain range of the suction and stretching/shrinking parameters. Results also indicate that both the skin friction coefficient and the local Nusselt number increase with increasing values of the suction parameter.
A Dynamic Two-Phase Pore-Scale Model of Imbibition
DEFF Research Database (Denmark)
Mogensen, Kristian; Stenby, Erling Halfdan
1998-01-01
We present a dynamic pore-scale network model of imbibition, capable of calculating residual oil saturation for any given capillary number, viscosity ratio, contact angle, and aspect ratio. Our goal is not to predict the outcome of core floods, but rather to perform a sensitivity analysis...... of the above-mentioned parameters, except from the viscosity ratio. We find that contact angle, aspect ratio, and capillary number all have a significant influence on the competition between piston-lice advance, leading to high recovery, and snap-off, causing oil entrapment. Due to significant CPU......-off has been entirely inhibited, in agreement with results obtained by Blunt (1997) who used a quasi-static model. For higher aspect ratios, the effect of rate and contact angle is more pronounced....
A Schur complement method for compressible two-phase flow models
International Nuclear Information System (INIS)
Dao, Thu-Huyen; Ndjinga, Michael; Magoules, Frederic
2014-01-01
In this paper, we will report our recent efforts to apply a Schur complement method for nonlinear hyperbolic problems. We use the finite volume method and an implicit version of the Roe approximate Riemann solver. With the interface variable introduced in [4] in the context of single phase flows, we are able to simulate two-fluid models ([12]) with various schemes such as upwind, centered or Rusanov. Moreover, we introduce a scaling strategy to improve the condition number of both the interface system and the local systems. Numerical results for the isentropic two-fluid model and the compressible Navier-Stokes equations in various 2D and 3D configurations and various schemes show that our method is robust and efficient. The scaling strategy considerably reduces the number of GMRES iterations in both interface system and local system resolutions. Comparisons of performances with classical distributed computing with up to 218 processors are also reported. (authors)
Application of the annular dispersed flow model to two-phase critical flow calculation
International Nuclear Information System (INIS)
Ivandaev, A.I.; Nigmatulin, B.I.
1977-01-01
The application of the annular dispersed flow model with an effective monodisperse core to the calculation of vapour-liquid mixture maximum rates through long pipes is discussed. An effect of the main dominant parameters such as evaporation intensity, diameter of drops picked out from the film surface and initial drop diameter at the pipe inlet on the outlet critical condition formation process has been investigated. The corresponding model constants have been determined. The calculated and experimental values of critical rates and pressure profiles along the channel have been found to be in a satisfactory agreement in the studied range of parameters. The observed non-conformity of the calculated and experimental values of critical pressures and vapour contents can be due to inadequate accuracy of the experimental techniques
Theoretical model of two-phase drift flow on natural circulation
International Nuclear Information System (INIS)
Yang Xingtuan; Jiang Shengyao; Zhang Youjie
2002-01-01
Some expressions, such as sub-cooled boiling in the heating section, condensation near the riser inlet, flashing in the riser, and pressure balance in the steam-space, have been theoretically deduced from the physical model of 5 MW heating reactor test loop. The thermodynamics un-equilibrium etc have been considered too. A entire drift model with four equations has been formed, which can be applied to natural circulation system with low pressure and low steam quality. By means of introducing the concept of condensation layer, condensing of bubbles in the sub-cooled liquid has been formulated for the first time. The restrictive equations of the steam space pressure and liquid level have been offered. The equations can be solved by means of integral method, then by using Rung-Kutta-Verner method the final results is obtained
Czech Academy of Sciences Publication Activity Database
Buršík, Jiří
2011-01-01
Roč. 105, - (2011), s. 660-663 ISSN 0009-2770. [Lokálne mechanické vlastnosti 2010. Smolenice, 10.11.2010-12.11.2010] R&D Projects: GA ČR(CZ) GA106/09/0700 Institutional research plan: CEZ:AV0Z20410507 Keywords : grid indentation * hardness * modelling Subject RIV: JG - Metallurgy Impact factor: 0.529, year: 2011
Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations.
Liu, Haihu; Valocchi, Albert J; Kang, Qinjun
2012-04-01
We present an improved three-dimensional 19-velocity lattice Boltzmann model for immisicible binary fluids with variable viscosity and density ratios. This model uses a perturbation step to generate the interfacial tension and a recoloring step to promote phase segregation and maintain surfaces. A generalized perturbation operator is derived using the concept of a continuum surface force together with the constraints of mass and momentum conservation. A theoretical expression for the interfacial tension is determined directly without any additional analysis and assumptions. The recoloring algorithm proposed by Latva-Kokko and Rothman is applied for phase segregation, which minimizes the spurious velocities and removes lattice pinning. This model is first validated against the Laplace law for a stationary bubble. It is found that the interfacial tension is predicted well for density ratios up to 1000. The model is then used to simulate droplet deformation and breakup in simple shear flow. We compute droplet deformation at small capillary numbers in the Stokes regime and find excellent agreement with the theoretical Taylor relation for the segregation parameter β=0.7. In the limit of creeping flow, droplet breakup occurs at a critical capillary number 0.35
Integral model of linear momentum for one-dimensional two-phase flows
International Nuclear Information System (INIS)
Kuznetsov, Yu.A.; Sabaev, E.F.
1976-01-01
''An integrated momentum model'' obtained by Meyer-Rose and widely applicable in calculations of dynamics of the thermal power systems is generalized for a case of flow of a vapour-liquid mixture with phase creep and pressure variation in the heated channel. Pressure distribution along the channel length is shown for a number of cases to be negligible. The obtained equations are found as well applicable in case pressure greatly though slowly varies in the system
CFD Modeling of Wall Steam Condensation: Two-Phase Flow Approach versus Homogeneous Flow Approach
International Nuclear Information System (INIS)
Mimouni, S.; Mechitoua, N.; Foissac, A.; Hassanaly, M.; Ouraou, M.
2011-01-01
The present work is focused on the condensation heat transfer that plays a dominant role in many accident scenarios postulated to occur in the containment of nuclear reactors. The study compares a general multiphase approach implemented in NEPTUNE C FD with a homogeneous model, of widespread use for engineering studies, implemented in Code S aturne. The model implemented in NEPTUNE C FD assumes that liquid droplets form along the wall within nucleation sites. Vapor condensation on droplets makes them grow. Once the droplet diameter reaches a critical value, gravitational forces compensate surface tension force and then droplets slide over the wall and form a liquid film. This approach allows taking into account simultaneously the mechanical drift between the droplet and the gas, the heat and mass transfer on droplets in the core of the flow and the condensation/evaporation phenomena on the walls. As concern the homogeneous approach, the motion of the liquid film due to the gravitational forces is neglected, as well as the volume occupied by the liquid. Both condensation models and compressible procedures are validated and compared to experimental data provided by the TOSQAN ISP47 experiment (IRSN Saclay). Computational results compare favorably with experimental data, particularly for the Helium and steam volume fractions.
International Nuclear Information System (INIS)
Cheng, Cheng; Zhang, Xiaobing
2016-01-01
Highlights: • A novel two-dimensional two-phase flow model is established for the high-low pressure chambers system. • A strong packing of particles is observed at the projectile base and will cause the pressure to rise faster. • Different length–diameter ratios can affect the flow behavior through the vent-holes obviously. • The muzzle velocity decreases with the length–diameter ratio of the high-pressure chamber. - Abstract: A high-low pressure chambers system is proposed to meet the demands of low launch acceleration for informative equipment in many special fields such as Aeronautics, Astronautics and Weaponry. A two-dimensional two-phase flow numerical model is established to describe the complex physical process based on a modified two-fluid theory, which takes into account gas production, interphase drag, intergranular stress, and heat transfer between two phases. In order to reduce the computational cost, the parameters in the high-pressure chamber at the instant the vent-holes open are calculated by the zero-dimensional model as the initial conditions for the two-phase flow simulation in the high-low pressure chambers system. The simulation results reveal good agreement with the experiments and the launch acceleration of a projectile can be improved by this system. The propellant particles can be tracked clearly in both chambers and a strong packing of particles at the base of projectile will cause the pressure to rise faster than at other areas both in the axis and radial directions. The length–diameter ratio of the high-pressure chamber (a typical multi-dimensional parameter) is investigated. Different length–diameter ratios can affect the maximum pressure drop and the loss of total pressure impulse through the vent-hole, then the muzzle velocity and the launch acceleration of projectiles can be influenced directly. This article puts forward a new prediction tool for the understanding and design of transient processes in high-low pressure
International Nuclear Information System (INIS)
Tawara, Y.; Mori, K.; Tada, K.; Shimura, T.; Sato, S.; Yamamoto, S.; Asano, H.; Namiki, K.
2012-01-01
Document available in extended abstract form only. After the completion of field-scaled Gas Migration Test (GMT) at the Grimsel Test Site (GTS Phase V Project, 1996-2004), an advanced gas migration modelling study has been implemented to increase the accuracy and reliability as a part of the R and D programs by the Radioactive Waste Management funding and research Center (RWMC) in Japan. The multiple gas migration modes which consist of diffusive transport of dissolved gas, conventional two phase flow, pore failure induced microscopic fissuring and macroscopic fracturing flow, were identified in GMT bentonite. However the required parameters and constitutive models governing those modes are still uncertain. To tackle this issue, an extended validation and scoping study aiming to generalize such gas migration behavior has been performed in the advanced gas migration modelling study. One of the main objectives of the validation study is to identify gas migration modes using laboratory test data and to qualify the alternative models and parameters. In the scoping study, we have extracted the specific THMC (Thermal, Hydrological, Mechanical and Chemical) coupled processes which have impacts on the performance measures such as the pressure built-up in EBS (Engineered Barrier System) and expelled water to the geosphere by gas generation and transport. The measured data of hydration tests and gas injection tests using bentonite specimens with different water contents were reproduced. Two phase flow parameters were estimated using the observed data of both types of tests, independently. The simulated results of the conventional two phase flow model were well-matched with the hydration test data. In the gas injection test, the extended two phase flow model which simulates the pressure-induced pore failure (pathway dilation), was able to reproduce observed data reasonably. However, we found that the identified parameters obtained from the hydration test data were
Bieliński, Henryk
2016-09-01
The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.
Two phase modeling of nanofluid flow in existence of melting heat transfer by means of HAM
Sheikholeslami, M.; Jafaryar, M.; Bateni, K.; Ganji, D. D.
2018-02-01
In this article, Buongiorno Model is applied for investigation of nanofluid flow over a stretching plate in existence of magnetic field. Radiation and Melting heat transfer are taken into account. Homotopy analysis method (HAM) is selected to solve ODEs which are obtained from similarity transformation. Roles of Brownian motion, thermophoretic parameter, Hartmann number, porosity parameter, Melting parameter and Eckert number are presented graphically. Results indicate that nanofluid velocity and concentration enhance with rise of melting parameter. Nusselt number reduces with increase of porosity and melting parameters.
Modeling of zero gravity venting: Studies of two-phase heat transfer under reduced gravity
Merte, H., Jr.
1986-01-01
The objective is to predict the pressure response of a saturated liquid-vapor system when undergoing a venting or depressurization process in zero gravity at low vent rates. An experimental investigation of the venting of cylindrical containers partially filled with initially saturated liquids was previously conducted under zero-gravity conditions and compared with an analytical model which incorporated the effect of interfacial mass transfer on the ullage pressure response during venting. A new model is presented to improve the estimation of the interfacial mass transfer. Duhammel's superposition integral is incorporated to approximate the transient temperature response of the interface, treating the liquid as a semi-infinite solid with conduction heat transfer. Account is also taken of the condensation taking place within the bulk of a saturated vapor as isentropic expansion takes place. Computational results are presented for the venting of R-11 from a given vessel and initial state for five different venting rates over a period of three seconds, and compared to prior NASA experiments. An improvement in the prediction of the final pressure takes place, but is still considerably below the measurements.
Two-phase countercurrent flow in a model of a pressurized water reactor hot leg
International Nuclear Information System (INIS)
Wongwises, S.
1996-01-01
The onset of flooding or countercurrent flow limitation (CCFL) determines the maximum rate at which one phase can flow countercurrently to another phase. In the present study, the experimental data of the CCFL for gas and liquid in a horizontal pipe with a bend are investigated. The different mechanisms that lead to flooding and that are dependent on the liquid flow rate are observed. For low and intermediate liquid flow rates, the onset of flooding appears simultaneously with the slugging of unstable waves that are formed at the crest of the hydraulic jump. At low liquid flow rates, slugging appears close to the bend; at higher liquid flow rates, it appears far away from the bend, in the horizontal section. For high liquid flow rates, no hydraulic jump is observed, and flooding occurs as a result of slug formation at the end of the horizontal pipe. The effects of the inclination angle of the bends, the liquid inlet conditions and the length of the horizontal pipes are of significance for the onset of flooding. A mathematical model of Ardron and Banerjee is modified to predict the onset of flooding. Flooding curves calculated by this model are compared with present experimental data and those of other researchers. The predictions of the onset of flooding as a function of the length-to-diameter ratio are in reasonable agreement with the experimental data. (orig.)
DEFF Research Database (Denmark)
Johannesson, Björn; Janz, Mårten
2009-01-01
Building constructions most commonly consists of layered porous materials such as masonry on bricks. The moisture distribution and its variations due to change in surrounding environment is of special interest in such layered construction since materials adsorb different amounts of water and exhi......Building constructions most commonly consists of layered porous materials such as masonry on bricks. The moisture distribution and its variations due to change in surrounding environment is of special interest in such layered construction since materials adsorb different amounts of water....... The model is developed by carefully examining the mass balance postulates for the two considered constituents together with appropriate and suitable constitutive assumptions. A test example is solved by using an implemented implicit finite element code which uses a modified Newton-Raphson scheme to tackle...
A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell
International Nuclear Information System (INIS)
Xing, Lei; Liu, Xiaoteng; Alaje, Taiwo; Kumar, Ravi; Mamlouk, Mohamed; Scott, Keith
2014-01-01
A two dimensional, across the channel, steady-state model for a proton exchange membrane fuel cell (PEMFC) is presented in which the non-isothermal model for temperature distribution, the two-phase flow model for liquid water transport and the agglomerate model for oxygen reduction reaction are fully coupled. This model is used to investigate thermal transport within the membrane electrode assembly (MEA) associated with the combinational water phase-transfer and transport mechanisms. Effective temperature distribution strategies are established aim to enhance the cell performance. Agglomerate assumption is adopted in which the ionomer and liquid water in turn cover the agglomerate to form the ionomer and liquid water films. Ionomer swelling is associated with the non-uniform distribution of the water content. The modelling results show that heat accumulates within the cathode catalyst layer under the channel. Higher operating temperature improves the cell performance by increasing the kinetics, reducing the liquid water saturation on the cathode and increasing the water carrying capacity of the anode gas. Applying higher temperature on the anode and enlarging the width ratio of the channel/rib could improve the cell performance. Higher cathode temperature decreases the oxygen mole fraction, resulting in an insufficient oxygen supply and a limitation of the cell performance. - Highlights: • The two-phase flow and non-isothermal model couple with the agglomerate model. • Oxygen diffusivity and solubility in Nafion ® relate to water content and temperature. • Higher anode operating temperature improves the fuel cell performance. • Insufficient oxygen supply limits cell performance at higher current densities
Energy Technology Data Exchange (ETDEWEB)
Yang, X.; Schlegel, J.P.; Liu, Y.; Paranjape, S.; Hibiki, T. [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States); Ishii, M., E-mail: ishii@purdue.edu [School of Nuclear Engineering, Purdue University, 400 Central Dr., West Lafayette, IN 47907-2017 (United States)
2012-04-15
Highlights: Black-Right-Pointing-Pointer Grid spacers have a significant but not well understood effect on flow behavior and development. Black-Right-Pointing-Pointer Two different length scales are present in rod bundles, which must be accounted for in modeling. Black-Right-Pointing-Pointer An easy-to-implement empirical model has been developed for the two-phase friction multiplier. - Abstract: The behavior of reactor systems is predicted using advanced computational codes in order to determine the safety characteristics of the system during various accidents and to determine the performance characteristics of the reactor. These codes generally utilize the two-fluid model for predictions of two-phase flows, as this model is the most accurate and detailed model which is currently practical for predicting large-scale systems. One of the weaknesses of this approach however is the need to develop constitutive models for various quantities. Of specific interest are the models used in the prediction of void fraction and pressure drop across the rod bundle due to their importance in new Natural Circulation Boiling Water Reactor (NCBWR) designs, where these quantities determine the coolant flow rate through the core. To verify the performance of these models and expand the existing experimental database, data has been collected in an 8 Multiplication-Sign 8 rod bundle which is carefully scaled from actual BWR geometry and includes grid spacers to maintain rod spacing. While these spacer grids are 'generic', their inclusion does provide valuable data for analysis of the effect of grid spacers on the flow. In addition to pressure drop measurements the area-averaged void fraction has been measured by impedance void meters and local conductivity probes have been used to measure the local void fraction and interfacial area concentration in the bundle subchannels. Experimental conditions covered a wide range of flow rates and void fractions up to 80%.
A coupled CFD and two-phase substrate kinetic model for enzymatic hydrolysis of lignocellulose
Danes, Nicholas; Sitaraman, Hariswaran; Stickel, Jonathan; Sprague, Michael
2017-11-01
Cost-effective production of fuels from lignocellulosic biomass is an important subject of research in order to meet the world's current and future energy demands. Enzymatic hydrolysis is one of the several steps in the biochemical conversion of biomass into fuels. This process involves the interplay of non-Newtonian fluid dynamics that happen over tens of seconds coupled with chemical reactions that happen over several hours. In this work, we present a coupled CFD-reaction model for conversion of cellulose to sugars in a benchtop mixer reactor. A subcycling approach is used to circumvent the large time scale disparity between fluid dynamics and reactions. We will present a validation study of our simulations with experiments for well-mixed and stratified reactor scenarios along with predictions for conversion rates and product concentrations at varying impeller speeds and in scaled-up reactors. This work is funded by the Bioenergy Technology Office of DOE and the NSF's Enriched Doctoral Training program (DMS-1551229).
International Nuclear Information System (INIS)
Toumi, I.
1990-04-01
This thesis is devoted to the study of the Riemann problem and the construction of Godunov type numerical schemes for one or two dimensional two-phase flow models. In the first part, we study the Riemann problem for the well-known Drift-Flux, model which has been widely used for the analysis of thermal hydraulics transients. Then we use this study to construct approximate Riemann solvers and we describe the corresponding Godunov type schemes for simplified equation of state. For computation of complex two-phase flows, a weak formulation of Roe's approximate Riemann solver, which gives a method to construct a Roe-averaged jacobian matrix with a general equation of state, is proposed. For two-dimensional flows, the developed methods are based upon an approximate solver for a two-dimensional Riemann problem, according to Harten-Lax-Van Leer principles. The numerical results for standard test problems show the good behaviour of these numerical schemes for a wide range of flow conditions [fr
A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method
Shams, Mosayeb; Raeini, Ali Q.; Blunt, Martin J.; Bijeljic, Branko
2018-03-01
This study presents a simple and robust numerical scheme to model two-phase flow in porous media where capillary forces dominate over viscous effects. The volume-of-fluid method is employed to capture the fluid-fluid interface whose dynamics is explicitly described based on a finite volume discretization of the Navier-Stokes equations. Interfacial forces are calculated directly on reconstructed interface elements such that the total curvature is preserved. The computed interfacial forces are explicitly added to the Navier-Stokes equations using a sharp formulation which effectively eliminates spurious currents. The stability and accuracy of the implemented scheme is validated on several two- and three-dimensional test cases, which indicate the capability of the method to model two-phase flow processes at the micro-scale. In particular we show how the co-current flow of two viscous fluids leads to greatly enhanced flow conductance for the wetting phase in corners of the pore space, compared to a case where the non-wetting phase is an inviscid gas.
Bou-Fakhreddine, Bassam; Mougharbel, Imad; Faye, Alain; Abou Chakra, Sara; Pollet, Yann
2018-03-01
Accurate daily river flow forecast is essential in many applications of water resources such as hydropower operation, agricultural planning and flood control. This paper presents a forecasting approach to deal with a newly addressed situation where hydrological data exist for a period longer than that of meteorological data (measurements asymmetry). In fact, one of the potential solutions to resolve measurements asymmetry issue is data re-sampling. It is a matter of either considering only the hydrological data or the balanced part of the hydro-meteorological data set during the forecasting process. However, the main disadvantage is that we may lose potentially relevant information from the left-out data. In this research, the key output is a Two-Phase Constructive Fuzzy inference hybrid model that is implemented over the non re-sampled data. The introduced modeling approach must be capable of exploiting the available data efficiently with higher prediction efficiency relative to Constructive Fuzzy model trained over re-sampled data set. The study was applied to Litani River in the Bekaa Valley - Lebanon by using 4 years of rainfall and 24 years of river flow daily measurements. A Constructive Fuzzy System Model (C-FSM) and a Two-Phase Constructive Fuzzy System Model (TPC-FSM) are trained. Upon validating, the second model has shown a primarily competitive performance and accuracy with the ability to preserve a higher day-to-day variability for 1, 3 and 6 days ahead. In fact, for the longest lead period, the C-FSM and TPC-FSM were able of explaining respectively 84.6% and 86.5% of the actual river flow variation. Overall, the results indicate that TPC-FSM model has provided a better tool to capture extreme flows in the process of streamflow prediction.
Bout, B.
2018-04-09
An integrated, modeling method for shallow landslides, debris flows and catchment hydrology is developed and presented in this paper. Existing two-phase debris flow equations and an adaptation on the infinite slope method are coupled with a full hydrological catchment model. We test the approach on the 4 km2 Scaletta catchment, North-Eastern Sicily, where the 1-10-2009 convective storm caused debris flooding after 395 shallow landslides. Validation is done based on the landslide inventory and photographic evidence from the days after the event. Results show that the model can recreate the impact of both shallow landslides, debris flow runout, and debris floods with acceptable accuracy (91 percent inventory overlap with a 0.22 Cohens Kappa). General patterns in slope failure and runout are well-predicted, leading to a fully physically based prediction of rainfall induced debris flood behavior in the downstream areas, such as the creation of a debris fan at the coastal outlet.
International Nuclear Information System (INIS)
Olive, J.
1990-01-01
The design, operation and safety of nuclear components requires increasingly accurate knowledge of two-phase flows. This knowledge is also necessary for some studies related to electricity applications. The author presents some concrete examples showing the range of problems and the complexity of the phenomena involved in these types of flows. Then, the basic principles of their numerical modelling are explained, as well as the new tendency to use increasingly local and refined models. The newest computer codes developed at EDF are briefly presented. Experimental studies dealing with twophase flow are also referred to, and their connections to numerical modelling are explained. Emphasis is placed on the major efforts devoted to the development of new test rigs and instrumentation [fr
Nikmaneshi, M R; Firoozabadi, B; Saidi, M S
2018-01-23
Interaction between intracellular dynamics and extracellular matrix (ECM) generally occurred into very thin fragment of moving cell, namely lamellipodia, enables all movable cells to crawl on ECM. In fast-moving cells such as fish Keratocytes, Lamellipodia including most cell area finds a fan-like shape during migration, with a variety of aspect ratio function of fish type. In this work, our purpose is to present a novel and more complete two-dimensional continuum mathematical model of actomyosin-cytosolic two-phase flow of a self-deforming Keratocyte with circular spreaded to steady fan-like shape. In the new approach, in addition to the two-phase flow of the F-actin and cytosol, the G-actin transport was spatiotemporally modeled. We also for the first time modeled the effect of variable volume fraction of the moving F-actin porous network on solute transport in the cytosolic fluid. Our novel fully-coupled mathematical model provides a better understanding of intracellular dynamics of fast-migrating Keratocytes; such as the F-actin centripetal and cytosolic fountain-like flows, free-active myosin distribution, distribution sequence of the G-actin, F-actin, and myosin, and myosin-induced pressure flied of cytoplasm as well as the map of intracellular forces like myosin contraction and adhesion traction. All these results are qualitatively and quantitatively in good agreement with experimental observations. According to a range of value of parameters used in this model, our steady state of moving Keratocyte finds fan-like shape with the same aspect ratio as wide category of fish Keratocytes. This new model can predict shape of Keratocytes in other range of parameter values. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Okazaki, Motoaki
1997-11-01
In the previous report, the usefulness of a new numerical method to achieve a rigorous numerical calculation using a simple explicit method with the volume-junction model was presented with the verification calculation for the depressurization of a saturated two-phase mixture. In this report, on the basis of solution method above, a numerical method for general condition of two-phase flow in non-equilibrium states is presented. In general condition of two-phase flow, the combinations of saturated and non-saturated conditions of each phase are considered in the each flow of volume and junction. Numerical evaluation programs are separately prepared for each combination of flow condition. Several numerical calculations of various kinds of non-equilibrium two-phase flow are made to examine the validity of the numerical method. Calculated results showed that the thermodynamic states obtained in different solution schemes were consistent with each other. In the first scheme, the states are determined by using the steam table as a function of pressure and specific enthalpy which are obtained as the solutions of simultaneous equations. In the second scheme, density and specific enthalpy of each phase are directly calculated by using conservation equations of mass and enthalpy of each phase, respectively. Further, no accumulation of error in mass and energy was found. As for the specific enthalpy, two cases of using energy equations for the volume are examined. The first case uses total energy conservation equation and the second case uses the type of the first law of thermodynamics. The results of both cases agreed well. (author)
International Nuclear Information System (INIS)
Dong, Ruiting; Niu, Fenglei; Zhou, Yuan; Yu, Yu; Guo, Zhangpeng
2016-01-01
Highlights: • Two-phase flow instabilities in straight and helical tubes were studied. • The effects of system pressure, mass flux, inlet subcooling on DWO were studied. • The simulation results are consistent with the experimental results. • The RELAP5 results are consistent with frequency domain method results. - Abstract: The effects of system pressure, mass flux and inlet subcooling on two-phase flow instability for the test section consisted of two heated straight channels or two helical channels are studied by means of RELAP5/MOD3.3 and multi-variable frequency domain control theory. The experimental data in two straight channels are used to verify the RELAP5 and multi-variable frequency domain control theory results. The thermal hydraulic behaviors and parametric effects are simulated and compared with the experimental data. The RELAP5 results show that the flow stability increases with the system pressure, mass velocity, and inlet subcooling at high subcoolings. The frequency domain theory presents the same results as those given by the time domain theory (RELAP5). The effects of system pressure, mass velocity and inlet subcooling are simulated to find the difference between the straight and the helical tube flows. The RELAP5 and the multi-variable frequency domain control theory are used in modeling and simulating density wave oscillation to study their advantages and disadvantages in straight and helical tubes.
Energy Technology Data Exchange (ETDEWEB)
Dong, Ruiting [Beijing Key Laboratory of Passive Nuclear Power Safety and Technology, North China Electric Power University, Beijing 102206 (China); Niu, Fenglei, E-mail: niufenglei@ncepu.edu.cn [Beijing Key Laboratory of Passive Nuclear Power Safety and Technology, North China Electric Power University, Beijing 102206 (China); Zhou, Yuan [School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Yu, Yu; Guo, Zhangpeng [Beijing Key Laboratory of Passive Nuclear Power Safety and Technology, North China Electric Power University, Beijing 102206 (China)
2016-10-15
Highlights: • Two-phase flow instabilities in straight and helical tubes were studied. • The effects of system pressure, mass flux, inlet subcooling on DWO were studied. • The simulation results are consistent with the experimental results. • The RELAP5 results are consistent with frequency domain method results. - Abstract: The effects of system pressure, mass flux and inlet subcooling on two-phase flow instability for the test section consisted of two heated straight channels or two helical channels are studied by means of RELAP5/MOD3.3 and multi-variable frequency domain control theory. The experimental data in two straight channels are used to verify the RELAP5 and multi-variable frequency domain control theory results. The thermal hydraulic behaviors and parametric effects are simulated and compared with the experimental data. The RELAP5 results show that the flow stability increases with the system pressure, mass velocity, and inlet subcooling at high subcoolings. The frequency domain theory presents the same results as those given by the time domain theory (RELAP5). The effects of system pressure, mass velocity and inlet subcooling are simulated to find the difference between the straight and the helical tube flows. The RELAP5 and the multi-variable frequency domain control theory are used in modeling and simulating density wave oscillation to study their advantages and disadvantages in straight and helical tubes.
Modeling two-phase flow in a micro-model with local thermal non-equilibrium on the Darcy scale
Nuske, Philipp; Ronneberger, Olaf; Karadimitriou, Nikolaos K.; Helmig, Rainer; Hassanizadeh, S. Majid
2015-01-01
Loosening local equilibrium assumptions in two-phase flow in porous media gives rise to new, unknown variables. More specifically, when loosening the local thermal equilibrium assumption, one has to describe the heat transfer between multiple phases, present at the same mathematical point. In this
Akimenko, Vitalii; Anguelov, Roumen
2017-12-01
In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.
Barragán, Rosa María; Núñez, José; Arellano, Víctor Manuel; Nieva, David
2016-03-01
Exploration and exploitation of geothermal resources require the estimation of important physical characteristics of reservoirs including temperatures, pressures and in situ two-phase conditions, in order to evaluate possible uses and/or investigate changes due to exploitation. As at relatively high temperatures (>150 °C) reservoir fluids usually attain chemical equilibrium in contact with hot rocks, different models based on the chemistry of fluids have been developed that allow deep conditions to be estimated. Currently either in water-dominated or steam-dominated reservoirs the chemistry of steam has been useful for working out reservoir conditions. In this context, three methods based on the Fischer-Tropsch (FT) and combined H2S-H2 (HSH) mineral-gas reactions have been developed for estimating temperatures and the quality of the in situ two-phase mixture prevailing in the reservoir. For these methods the mineral buffers considered to be controlling H2S-H2 composition of fluids are as follows. The pyrite-magnetite buffer (FT-HSH1); the pyrite-hematite buffer (FT-HSH2) and the pyrite-pyrrhotite buffer (FT-HSH3). Currently from such models the estimations of both, temperature and steam fraction in the two-phase fluid are obtained graphically by using a blank diagram with a background theoretical solution as reference. Thus large errors are involved since the isotherms are highly nonlinear functions while reservoir steam fractions are taken from a logarithmic scale. In order to facilitate the use of the three FT-HSH methods and minimize visual interpolation errors, the EQUILGAS program that numerically solves the equations of the FT-HSH methods was developed. In this work the FT-HSH methods and the EQUILGAS program are described. Illustrative examples for Mexican fields are also given in order to help the users in deciding which method could be more suitable for every specific data set.
International Nuclear Information System (INIS)
Wang, Lijuan; Yan, Yong; Wang, Xue; Wang, Tao
2017-01-01
Input variable selection is an essential step in the development of data-driven models for environmental, biological and industrial applications. Through input variable selection to eliminate the irrelevant or redundant variables, a suitable subset of variables is identified as the input of a model. Meanwhile, through input variable selection the complexity of the model structure is simplified and the computational efficiency is improved. This paper describes the procedures of the input variable selection for the data-driven models for the measurement of liquid mass flowrate and gas volume fraction under two-phase flow conditions using Coriolis flowmeters. Three advanced input variable selection methods, including partial mutual information (PMI), genetic algorithm-artificial neural network (GA-ANN) and tree-based iterative input selection (IIS) are applied in this study. Typical data-driven models incorporating support vector machine (SVM) are established individually based on the input candidates resulting from the selection methods. The validity of the selection outcomes is assessed through an output performance comparison of the SVM based data-driven models and sensitivity analysis. The validation and analysis results suggest that the input variables selected from the PMI algorithm provide more effective information for the models to measure liquid mass flowrate while the IIS algorithm provides a fewer but more effective variables for the models to predict gas volume fraction. (paper)
A novel deep reactive ion etched (DRIE) glass micro-model for two-phase flow experiments.
Karadimitriou, N K; Joekar-Niasar, V; Hassanizadeh, S M; Kleingeld, P J; Pyrak-Nolte, L J
2012-09-21
In the last few decades, micro-models have become popular experimental tools for two-phase flow studies. In this work, the design and fabrication of an innovative, elongated, glass-etched micro-model with dimensions of 5 × 35 mm(2) and constant depth of 43 microns is described. This is the first time that a micro-model with such depth and dimensions has been etched in glass by using a dry etching technique. The micro-model was visualized by a novel setup that allowed us to monitor and record the distribution of fluids throughout the length of the micro-model continuously. Quasi-static drainage experiments were conducted in order to obtain equilibrium data points that relate capillary pressure to phase saturation. By measuring the flow rate of water through the flow network for known pressure gradients, the intrinsic permeability of the micro-model's flow network was also calculated. The experimental results were used to calibrate a pore-network model and test its validity. Finally, we show that glass-etched micro-models can be valuable tools in single and/or multi-phase flow studies and their applications.
Joshi, Vaibhav; Jaiman, Rajeev K.
2018-05-01
We present a positivity preserving variational scheme for the phase-field modeling of incompressible two-phase flows with high density ratio. The variational finite element technique relies on the Allen-Cahn phase-field equation for capturing the phase interface on a fixed Eulerian mesh with mass conservative and energy-stable discretization. The mass conservation is achieved by enforcing a Lagrange multiplier which has both temporal and spatial dependence on the underlying solution of the phase-field equation. To make the scheme energy-stable in a variational sense, we discretize the spatial part of the Lagrange multiplier in the phase-field equation by the mid-point approximation. The proposed variational technique is designed to reduce the spurious and unphysical oscillations in the solution while maintaining the second-order accuracy of both spatial and temporal discretizations. We integrate the Allen-Cahn phase-field equation with the incompressible Navier-Stokes equations for modeling a broad range of two-phase flow and fluid-fluid interface problems. The coupling of the implicit discretizations corresponding to the phase-field and the incompressible flow equations is achieved via nonlinear partitioned iterative procedure. Comparison of results between the standard linear stabilized finite element method and the present variational formulation shows a remarkable reduction of oscillations in the solution while retaining the boundedness of the phase-indicator field. We perform a standalone test to verify the accuracy and stability of the Allen-Cahn two-phase solver. We examine the convergence and accuracy properties of the coupled phase-field solver through the standard benchmarks of the Laplace-Young law and a sloshing tank problem. Two- and three-dimensional dam break problems are simulated to assess the capability of the phase-field solver for complex air-water interfaces involving topological changes on unstructured meshes. Finally, we demonstrate the phase
Energy Technology Data Exchange (ETDEWEB)
Jin, Shi, E-mail: sjin@wisc.edu [Department of Mathematics, University of Wisconsin–Madison, Madison, WI 53706 (United States); Institute of Natural Sciences, School of Mathematical Science, MOELSEC and SHL-MAC, Shanghai Jiao Tong University, Shanghai 200240 (China); Shu, Ruiwen, E-mail: rshu2@math.wisc.edu [Department of Mathematics, University of Wisconsin–Madison, Madison, WI 53706 (United States)
2017-04-15
In this paper we consider a kinetic-fluid model for disperse two-phase flows with uncertainty. We propose a stochastic asymptotic-preserving (s-AP) scheme in the generalized polynomial chaos stochastic Galerkin (gPC-sG) framework, which allows the efficient computation of the problem in both kinetic and hydrodynamic regimes. The s-AP property is proved by deriving the equilibrium of the gPC version of the Fokker–Planck operator. The coefficient matrices that arise in a Helmholtz equation and a Poisson equation, essential ingredients of the algorithms, are proved to be positive definite under reasonable and mild assumptions. The computation of the gPC version of a translation operator that arises in the inversion of the Fokker–Planck operator is accelerated by a spectrally accurate splitting method. Numerical examples illustrate the s-AP property and the efficiency of the gPC-sG method in various asymptotic regimes.
International Nuclear Information System (INIS)
Kokh, S.
2001-01-01
This research thesis reports the development of a numerical direct simulation of compressible two-phase flows by using interface capturing methods. These techniques are based on the use of an Eulerian fixed grid to describe flow variables as well as the interface between fluids. The author first recalls conventional interface capturing methods and makes the distinction between those based on discontinuous colour functions and those based on level set functions. The approach is then extended to a five equation model to allow the largest as possible choice of state equations for the fluids. Three variants are developed. A solver inspired by the Roe scheme is developed for one of them. These interface capturing methods are then refined, more particularly for problems of numerical diffusion at the interface. A last part addresses the study of dynamic phase change. Non-conventional thermodynamics tools are used to study the structures of an interface which performs phase transition [fr
Courbin, L.; Benayad, A.; Panizza, P.
2006-01-01
By means of several rheophysics techniques, we report on an extensive study of the couplings between flow and microstructures in a two-phase fluid made of lamellar (Lα) and sponge (L3) phases. Depending on the nature of the imposed dynamical parameter (stress or shear rate) and on the experimental conditions (brine salinity or temperature), we observe several different structural steady states consisting of either multilamellar droplets (with or without a long range order) or elongated (L3) phase domains. Two different astonishing phenomena, shear-induced phase inversion and relaxation oscillations, are observed. We show that (i) phase inversion is related to a shear-induced topological change between monodisperse multilamellar droplets and elongated structures and (ii) droplet size relaxation oscillations result from a shear-induced change of the surface tension between both coexisting (Lα) and (L3) phases. To explain these relaxation oscillations, we present a phenomenological model and compare its numerical predictions to our experimental results.
International Nuclear Information System (INIS)
Neves Conti, T. das.
1983-01-01
A numerical method is developed to simulate adiabatic, transient, two-dimensional two-phase flow. The two-fluid model is used to obtain the mass and momentum conservation equations. These are solved by an iterative algorithm emphoying a time-marching scheme. Based on the corrective procedure of Hirt and Harlow a poisson equation is derived for the pressure field. This equation is finite-differenced and solved by a suitable matrix inversion technique. In the absence of experiment results several numerical tests were made in order to chec accuracy, convergence and stability of the proposed method. Several tests were also performed to check whether the behavior of void fraction and phasic velocities conforms with previous observations. (Author) [pt
Two-Phase Fluid Simulation Using a Diffuse Interface Model with Peng--Robinson Equation of State
Qiao, Zhonghua
2014-01-01
In this paper, two-phase fluid systems are simulated using a diffusive interface model with the Peng-Robinson equation of state (EOS), a widely used realistic EOS for hydrocarbon fluid in the petroleum industry. We first utilize the gradient theory of thermodynamics and variational calculus to derive a generalized chemical equilibrium equation, which is mathematically a second-order elliptic partial differential equation (PDE) in molar density with a strongly nonlinear source term. To solve this PDE, we convert it to a time-dependent parabolic PDE with the main interest in its final steady state solution. A Lagrange multiplier is used to enforce mass conservation. The parabolic PDE is then solved by mixed finite element methods with a semi-implicit time marching scheme. Convex splitting of the energy functional is proposed to construct this time marching scheme, where the volume exclusion effect of an EOS is treated implicitly while the pairwise attraction effect of EOS is calculated explicitly. This scheme is proved to be unconditionally energy stable. Our proposed algorithm is able to solve successfully the spatially heterogeneous two-phase systems with the Peng-Robinson EOS in multiple spatial dimensions, the first time in the literature. Numerical examples are provided with realistic hydrocarbon components to illustrate the theory. Furthermore, our computational results are compared with laboratory experimental data and verified with the Young-Laplace equation with good agreement. This work sets the stage for a broad extension of efficient convex-splitting semi-implicit schemes for numerical simulation of phase field models with a realistic EOS in complex geometries of multiple spatial dimensions.
Xu, Xuemiao; Zhang, Huaidong; Han, Guoqiang; Kwan, Kin Chung; Pang, Wai-Man; Fang, Jiaming; Zhao, Gansen
2016-04-11
Exterior orientation parameters' (EOP) estimation using space resection plays an important role in topographic reconstruction for push broom scanners. However, existing models of space resection are highly sensitive to errors in data. Unfortunately, for lunar imagery, the altitude data at the ground control points (GCPs) for space resection are error-prone. Thus, existing models fail to produce reliable EOPs. Motivated by a finding that for push broom scanners, angular rotations of EOPs can be estimated independent of the altitude data and only involving the geographic data at the GCPs, which are already provided, hence, we divide the modeling of space resection into two phases. Firstly, we estimate the angular rotations based on the reliable geographic data using our proposed mathematical model. Then, with the accurate angular rotations, the collinear equations for space resection are simplified into a linear problem, and the global optimal solution for the spatial position of EOPs can always be achieved. Moreover, a certainty term is integrated to penalize the unreliable altitude data for increasing the error tolerance. Experimental results evidence that our model can obtain more accurate EOPs and topographic maps not only for the simulated data, but also for the real data from Chang'E-1, compared to the existing space resection model.
Directory of Open Access Journals (Sweden)
Xuemiao Xu
2016-04-01
Full Text Available Exterior orientation parameters’ (EOP estimation using space resection plays an important role in topographic reconstruction for push broom scanners. However, existing models of space resection are highly sensitive to errors in data. Unfortunately, for lunar imagery, the altitude data at the ground control points (GCPs for space resection are error-prone. Thus, existing models fail to produce reliable EOPs. Motivated by a finding that for push broom scanners, angular rotations of EOPs can be estimated independent of the altitude data and only involving the geographic data at the GCPs, which are already provided, hence, we divide the modeling of space resection into two phases. Firstly, we estimate the angular rotations based on the reliable geographic data using our proposed mathematical model. Then, with the accurate angular rotations, the collinear equations for space resection are simplified into a linear problem, and the global optimal solution for the spatial position of EOPs can always be achieved. Moreover, a certainty term is integrated to penalize the unreliable altitude data for increasing the error tolerance. Experimental results evidence that our model can obtain more accurate EOPs and topographic maps not only for the simulated data, but also for the real data from Chang’E-1, compared to the existing space resection model.
International Nuclear Information System (INIS)
Perez, Brenda; Malpiedi, Luciana Pellegrini; Tubío, Gisela; Nerli, Bibiana; Alcântara Pessôa Filho, Pedro de
2013-01-01
Highlights: ► Binodal data of systems (water + polyethyleneglycol + sodium) succinate are reported. ► Pitzer model describes the phase equilibrium of systems formed by polyethyleneglycol and biodegradable salts satisfactorily. ► This simple thermodynamic framework was able to predict the partitioning behaviour of model proteins acceptably well. - Abstract: Phase diagrams of sustainable aqueous two-phase systems (ATPSs) formed by polyethyleneglycols (PEGs) of different average molar masses (4000, 6000, and 8000) and sodium succinate are reported in this work. Partition coefficients (Kps) of seven model proteins: bovine serum albumin, catalase, beta-lactoglobulin, alpha-amylase, lysozyme, pepsin, urease and trypsin were experimentally determined in these systems and in ATPSs formed by the former PEGs and other biodegradable sodium salts: citrate and tartrate. An extension of Pitzer model comprising long and short-range term contributions to the excess Gibbs free energy was used to describe the (liquid + liquid) equilibrium. Comparison between experimental and calculated tie line data showed mean deviations always lower than 3%, thus indicating a good correlation. The partition coefficients were modeled by using the same thermodynamic approach. Predicted and experimental partition coefficients correlated quite successfully. Mean deviations were found to be lower than the experimental uncertainty for most of the assayed proteins.
International Nuclear Information System (INIS)
Hubert, Olivier; Lazreg, Said
2017-01-01
A growing interest of automotive industry in the use of high performance steels is observed. These materials are obtained thanks to complex manufacturing processes whose parameters fluctuations lead to strong variations of microstructure and mechanical properties. The on-line magnetic non-destructive monitoring is a relevant response to this problem but it requires fast models sensitive to different parameters of the forming process. The plastic deformation is one of these important parameters. Indeed, ferromagnetic materials are known to be sensitive to stress application and especially to plastic strains. In this paper, a macroscopic approach using the kinematic hardening is proposed to model this behavior, considering a plastic strained material as a two phase system. Relationship between kinematic hardening and residual stress is defined in this framework. Since stress fields are multiaxial, an uniaxial equivalent stress is calculated and introduced inside the so-called magneto-mechanical multidomain modeling to represent the effect of plastic strain. The modeling approach is complemented by many experiments involving magnetic and magnetostrictive measurements. They are carried out with or without applied stress, using a dual-phase steel deformed at different levels. The main interest of this material is that the mechanically hard phase, soft phase and the kinematic hardening can be clearly identified thanks to simple experiments. It is shown how this model can be extended to single phase materials.
Energy Technology Data Exchange (ETDEWEB)
Hubert, Olivier, E-mail: olivier.hubert@lmt.ens-cachan.fr; Lazreg, Said
2017-02-15
A growing interest of automotive industry in the use of high performance steels is observed. These materials are obtained thanks to complex manufacturing processes whose parameters fluctuations lead to strong variations of microstructure and mechanical properties. The on-line magnetic non-destructive monitoring is a relevant response to this problem but it requires fast models sensitive to different parameters of the forming process. The plastic deformation is one of these important parameters. Indeed, ferromagnetic materials are known to be sensitive to stress application and especially to plastic strains. In this paper, a macroscopic approach using the kinematic hardening is proposed to model this behavior, considering a plastic strained material as a two phase system. Relationship between kinematic hardening and residual stress is defined in this framework. Since stress fields are multiaxial, an uniaxial equivalent stress is calculated and introduced inside the so-called magneto-mechanical multidomain modeling to represent the effect of plastic strain. The modeling approach is complemented by many experiments involving magnetic and magnetostrictive measurements. They are carried out with or without applied stress, using a dual-phase steel deformed at different levels. The main interest of this material is that the mechanically hard phase, soft phase and the kinematic hardening can be clearly identified thanks to simple experiments. It is shown how this model can be extended to single phase materials.
A two-phase model to describe the dissolution of ZrO2 by molten Zr
International Nuclear Information System (INIS)
Belloni, J.; Fichot, F.; Goyeau, B.; Gobin, D.; Quintard, M.
2007-01-01
In case of a hypothetical severe accident in a nuclear Pressurized Water Reactor (PWR), the fuel elements in the core may reach very high temperatures (more than 2000 K). UO 2 (Uranium dioxide) pellets are enclosed by a cladding mainly composed of Zircaloy (Zr). If the temperature became higher than 2100 K (melting temperature of Zr), the UO 2 pellets would be in contact with molten Zr, resulting in the dissolution and liquefaction of UO 2 at a lower temperature than its melting points (3100 K). Several experimental and numerical investigations have led to a better understanding of this phenomenon but a comprehensive and consistent modeling is still missing. The goal of this paper is to propose a two-phase macroscopic model describing the dissolution of a solid alloy by a liquid. The model is limited to binary alloys and it is applied to the particular case of the dissolution of ZrO 2 by liquid Zr, for which experimental data are available (Hofmann et al., 1999). The model was established by using a volume averaging method. Numerical simulations are compared to experimental results and show a good agreement. (authors)
García-Salaberri, Pablo A.; Vera, Marcos; Iglesias, Immaculada
2014-01-01
An isothermal two-phase 2D/1D across-the-channel model for the anode of a liquid-feed Direct Methanol Fuel Cell (DMFC) is presented. The model takes into account the effects of the inhomogeneous assembly compression of the Gas Diffusion Layer (GDL), including the spatial variations of porosity, diffusivity, permeability, capillary pressure, and electrical conductivity. The effective anisotropic properties of the GDL are evaluated from empirical data reported in the literature corresponding to Toray carbon paper TGP-H series. Multiphase transport is modeled according to the classical theory of porous media (two-fluid model), considering the effect of non-equilibrium evaporation and condensation of methanol and water. The numerical results evidence that the hydrophobic Leverett J-function approach is physically inconsistent to describe capillary transport in the anode of a DMFC when assembly compression effects are considered. In contrast, more realistic results are obtained when GDL-specific capillary pressure curves reflecting the mixed-wettability characteristics of GDLs are taken into account. The gas coverage factor at the GDL/channel interface also exhibits a strong influence on the gas-void fraction distribution in the GDL, which in turn depends on the relative importance between the capillary resistance induced by the inhomogeneous compression, Rc(∝ ∂pc / ∂ ε) , and the capillary diffusivity, Dbarc(∝ ∂pc / ∂ s) .
Aumiller, William M; Davis, Bradley W; Hashemian, Negar; Maranas, Costas; Armaou, Antonios; Keating, Christine D
2014-03-06
The intracellular environment in which biological reactions occur is crowded with macromolecules and subdivided into microenvironments that differ in both physical properties and chemical composition. The work described here combines experimental and computational model systems to help understand the consequences of this heterogeneous reaction media on the outcome of coupled enzyme reactions. Our experimental model system for solution heterogeneity is a biphasic polyethylene glycol (PEG)/sodium citrate aqueous mixture that provides coexisting PEG-rich and citrate-rich phases. Reaction kinetics for the coupled enzyme reaction between glucose oxidase (GOX) and horseradish peroxidase (HRP) were measured in the PEG/citrate aqueous two-phase system (ATPS). Enzyme kinetics differed between the two phases, particularly for the HRP. Both enzymes, as well as the substrates glucose and H2O2, partitioned to the citrate-rich phase; however, the Amplex Red substrate necessary to complete the sequential reaction partitioned strongly to the PEG-rich phase. Reactions in ATPS were quantitatively described by a mathematical model that incorporated measured partitioning and kinetic parameters. The model was then extended to new reaction conditions, i.e., higher enzyme concentration. Both experimental and computational results suggest mass transfer across the interface is vital to maintain the observed rate of product formation, which may be a means of metabolic regulation in vivo. Although outcomes for a specific system will depend on the particulars of the enzyme reactions and the microenvironments, this work demonstrates how coupled enzymatic reactions in complex, heterogeneous media can be understood in terms of a mathematical model.
International Nuclear Information System (INIS)
Zhou, J X; Shen, X; Yin, Y J; Guo, Z; Wang, H
2015-01-01
In this paper, Gas-liquid two phase flow mathematic models of incompressible fluid were proposed to explore the feature of fluid under certain centrifugal force in vertical centrifugal casting (VCC). Modified projection-level-set method was introduced to solve the mathematic models. To validate the simulation results, two methods were used in this study. In the first method, the simulation result of basic VCC flow process was compared with its analytic solution. The relationship between the numerical solution and deterministic analytic solution was presented to verify the correctness of numerical algorithms. In the second method, systematic water simulation experiments were developed. In this initial experiment, special experimental vertical centrifugal device and casting shapes were designed to describe typical mold-filling processes in VCC. High speed camera system and data collection devices were used to capture flow shape during the mold-filling process. Moreover, fluid characteristic at different rotation speed (from 40rpm, 60rpmand 80rpm) was discussed to provide comparative resource for simulation results. As compared with the simulation results, the proposed mathematical models could be proven and the experimental design could help us advance the accuracy of simulation and further studies for VCC. (paper)
Energy Technology Data Exchange (ETDEWEB)
Seidel, Tobias; Vallee, Christophe; Lucas, Dirk; Beyer, Matthias; Deendarlianto
2011-09-15
In order to investigate the two-phase flow behaviour in a complex reactor-typical geometry and to supply suitable data for CFD code validation, a model of the hot leg of a pressurised water reactor was built at FZD. The hot leg model is operated in the pressure chamber of the TOPFLOW test facility, which is used to perform high-pressure experiments under pressure equilibrium with the inside atmosphere of the chamber. This technique makes it possible to visualise the two-phase flow through large windows, also at reactor-typical pressure levels. In order to optimise the optical observation possibilities, the test section was designed with a rectangular cross-section. Experiments were performed with air and water at 1.5 and 3.0 bar at room temperature as well as with steam and water at 15, 30 and 50 bar and the corresponding saturation temperature (i.e. up to 264 C). The total of 194 runs are divided into 4 types of experiments covering stationary co-current flow, counter-current flow, flow without water circulation and transient counter-current flow limitation (CCFL) experiments. This report provides a detailed documentation of the experiments including information on the experimental setup, experimental procedure, test matrix and on the calibration of the measuring devices. The available data is described and data sheets were arranged for each experiment in order to give an overview of the most important parameters. For the cocurrent flow experiments, water level histograms were arranged and used to characterise the flow in the hot leg. In fact, the form of the probability distribution was found to be sensitive to the boundary conditions and, therefore, is useful for the CFD comparison. Furthermore, the flooding characteristics of the hot leg model plotted in terms of the classical Wallis parameter or Kutateladze number were found to fail to properly correlate the data of the air/water and steam/water series. Therefore, a modified Wallis parameter is proposed, which
International Nuclear Information System (INIS)
Seidel, Tobias; Vallee, Christophe; Lucas, Dirk; Beyer, Matthias; Deendarlianto
2011-09-01
In order to investigate the two-phase flow behaviour in a complex reactor-typical geometry and to supply suitable data for CFD code validation, a model of the hot leg of a pressurised water reactor was built at FZD. The hot leg model is operated in the pressure chamber of the TOPFLOW test facility, which is used to perform high-pressure experiments under pressure equilibrium with the inside atmosphere of the chamber. This technique makes it possible to visualise the two-phase flow through large windows, also at reactor-typical pressure levels. In order to optimise the optical observation possibilities, the test section was designed with a rectangular cross-section. Experiments were performed with air and water at 1.5 and 3.0 bar at room temperature as well as with steam and water at 15, 30 and 50 bar and the corresponding saturation temperature (i.e. up to 264 C). The total of 194 runs are divided into 4 types of experiments covering stationary co-current flow, counter-current flow, flow without water circulation and transient counter-current flow limitation (CCFL) experiments. This report provides a detailed documentation of the experiments including information on the experimental setup, experimental procedure, test matrix and on the calibration of the measuring devices. The available data is described and data sheets were arranged for each experiment in order to give an overview of the most important parameters. For the cocurrent flow experiments, water level histograms were arranged and used to characterise the flow in the hot leg. In fact, the form of the probability distribution was found to be sensitive to the boundary conditions and, therefore, is useful for the CFD comparison. Furthermore, the flooding characteristics of the hot leg model plotted in terms of the classical Wallis parameter or Kutateladze number were found to fail to properly correlate the data of the air/water and steam/water series. Therefore, a modified Wallis parameter is proposed, which
Building fast well-balanced two-stage numerical schemes for a model of two-phase flows
Thanh, Mai Duc
2014-06-01
We present a set of well-balanced two-stage schemes for an isentropic model of two-phase flows arisen from the modeling of deflagration-to-detonation transition in granular materials. The first stage is to absorb the source term in nonconservative form into equilibria. Then in the second stage, these equilibria will be composed into a numerical flux formed by using a convex combination of the numerical flux of a stable Lax-Friedrichs-type scheme and the one of a higher-order Richtmyer-type scheme. Numerical schemes constructed in such a way are expected to get the interesting property: they are fast and stable. Tests show that the method works out until the parameter takes on the value CFL, and so any value of the parameter between zero and this value is expected to work as well. All the schemes in this family are shown to capture stationary waves and preserves the positivity of the volume fractions. The special values of the parameter 0,1/2,1/(1+CFL), and CFL in this family define the Lax-Friedrichs-type, FAST1, FAST2, and FAST3 schemes, respectively. These schemes are shown to give a desirable accuracy. The errors and the CPU time of these schemes and the Roe-type scheme are calculated and compared. The constructed schemes are shown to be well-balanced and faster than the Roe-type scheme.
Kim, Jinyong; Luo, Gang; Wang, Chao-Yang
2017-10-01
3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.
Energy Technology Data Exchange (ETDEWEB)
Rosa, M.P. [Instituto de Estudos Avancados - CTA, Sao Paolo (Brazil); Podowski, M.Z. [Rensselaer Polytechnic Institute, Troy, NY (United States)
1995-09-01
This paper is concerned with the analysis of dynamics and stability of boiling channels and systems. The specific objectives are two-fold. One of them is to present the results of a study aimed at analyzing the effects of various modeling concepts and numerical approaches on the transient response and stability of parallel boiling channels. The other objective is to investigate the effect of closed-loop feedback on stability of a boiling water reactor (BWR). Various modeling and computational issues for parallel boiling channels are discussed, such as: the impact of the numerical discretization scheme for the node containing the moving boiling boundary on the convergence and accuracy of computations, and the effects of subcooled boiling and other two-phase flow phenomena on the predictions of marginal stability conditions. Furthermore, the effects are analyzed of local loss coefficients around the recirculation loop of a boiling water reactor on stability of the reactor system. An apparent paradox is explained concerning the impact of changing single-phase losses on loop stability. The calculations have been performed using the DYNOBOSS computer code. The results of DYNOBOSS validation against other computer codes and experimental data are shown.
Zhu, Guangpu
2018-04-17
In this paper, we consider the numerical approximation of a binary fluid-surfactant phase field model of two-phase incompressible flow. The nonlinearly coupled model consists of two Cahn-Hilliard type equations and incompressible Navier-Stokes equations. Using the Invariant Energy Quadratization (IEQ) approach, the governing system is transformed into an equivalent form, which allows the nonlinear potentials to be treated efficiently and semi-explicitly. we construct a first and a second-order time marching schemes, which are extremely efficient and easy-to-implement, for the transformed governing system. At each time step, the schemes involve solving a sequence of linear elliptic equations, and computations of phase variables, velocity and pressure are totally decoupled. We further establish a rigorous proof of unconditional energy stability for the semi-implicit schemes. Numerical results in both two and three dimensions are obtained, which demonstrate that the proposed schemes are accurate, efficient and unconditionally energy stable. Using our schemes, we investigate the effect of surfactants on droplet deformation and collision under a shear flow. The increase of surfactant concentration can enhance droplet deformation and inhibit droplet coalescence.
Energy Technology Data Exchange (ETDEWEB)
Hoeiland, Linda Kaada
2006-04-15
Reservoir wettability is a measure of a rocks preference for the oil and/or the brine phase. Wettability has a dominant impact on fluid movements in porous media, hence oil displacement in reservoir rocks. Understanding the local wettability and the effect of wettability on the fluid movements are therefore of interest in relation to oil recovery processes. Contrary to the earlier believed homogenous wetted cases where the porous media was strongly oil-wet for carbonate reservoirs or strongly water-wet for clastic reservoirs, it is now believed that most reservoir rocks experience some kind of intermediate wet state. Since wettability affects oil recovery, different classes of intermediate wettability are expected to have different impacts on the fluid flow processes. The major subject treated in this thesis is how different intermediate wet states affect fluid flow parameters which are important for the oil recovery. This is done by use of a capillary dominated network model of two-phase flow, where the network is based on a model of reconstructed sandstone. The existence of different intermediate wet classes is argued in Paper I, while Paper II, III and IV analyse the effect different intermediate wet classes have on wettability indices, residual oil saturation, capillary pressure and relative permeability (author)
Zhu, Guangpu; Kou, Jisheng; Sun, Shuyu; Yao, Jun; Li, Aifen
2018-01-01
In this paper, we consider the numerical approximation of a binary fluid-surfactant phase field model of two-phase incompressible flow. The nonlinearly coupled model consists of two Cahn-Hilliard type equations and incompressible Navier-Stokes equations. Using the Invariant Energy Quadratization (IEQ) approach, the governing system is transformed into an equivalent form, which allows the nonlinear potentials to be treated efficiently and semi-explicitly. we construct a first and a second-order time marching schemes, which are extremely efficient and easy-to-implement, for the transformed governing system. At each time step, the schemes involve solving a sequence of linear elliptic equations, and computations of phase variables, velocity and pressure are totally decoupled. We further establish a rigorous proof of unconditional energy stability for the semi-implicit schemes. Numerical results in both two and three dimensions are obtained, which demonstrate that the proposed schemes are accurate, efficient and unconditionally energy stable. Using our schemes, we investigate the effect of surfactants on droplet deformation and collision under a shear flow. The increase of surfactant concentration can enhance droplet deformation and inhibit droplet coalescence.
Ahmad, Zahoor; Hanif, Muhammad
2013-01-01
The development of estimators of population parameters based on two-phase sampling schemes has seen a dramatic increase in the past decade. Various authors have developed estimators of population using either one or two auxiliary variables. The present volume is a comprehensive collection of estimators available in single and two phase sampling. The book covers estimators which utilize information on single, two and multiple auxiliary variables of both quantitative and qualitative nature. Th...
Drift flux model as approximation of two fluid model for two phase dispersed and slug flow in tube
Energy Technology Data Exchange (ETDEWEB)
Nigmatulin, R.I.
1995-09-01
The analysis of one-dimensional schematizing for non-steady two-phase dispersed and slug flow in tube is presented. Quasi-static approximation, when inertia forces because of the accelerations of the phases may be neglected, is considered. Gas-liquid bubbly and slug vertical upward flows are analyzed. Non-trivial theoretical equations for slip velocity for these flows are derived. Juxtaposition of the derived equations for slip velocity with the famous Zuber-Findlay correlation as cross correlation coefficients is criticized. The generalization of non-steady drift flux Wallis theory taking into account influence of wall friction on the bubbly or slug flows for kinematical waves is considered.
Drift flux model as approximation of two fluid model for two phase dispersed and slug flow in tube
International Nuclear Information System (INIS)
Nigmatulin, R.I.
1995-01-01
The analysis of one-dimensional schematizing for non-steady two-phase dispersed and slug flow in tube is presented. Quasi-static approximation, when inertia forces because of the accelerations of the phases may be neglected, is considered. Gas-liquid bubbly and slug vertical upward flows are analyzed. Non-trivial theoretical equations for slip velocity for these flows are derived. Juxtaposition of the derived equations for slip velocity with the famous Zuber-Findlay correlation as cross correlation coefficients is criticized. The generalization of non-steady drift flux Wallis theory taking into account influence of wall friction on the bubbly or slug flows for kinematical waves is considered
Directory of Open Access Journals (Sweden)
Safikhani Hamed
2016-01-01
Full Text Available In this article, the laminar mixed convection of Al2O3-Water nanofluid flow in a horizontal flat tube has been numerically simulated. The two-phase mixture model has been employed to solve the nanofluid flow, and constant heat flux has been considered as the wall boundary condition. The effects of different and important parameters such as the Reynolds number (Re, Grashof number (Gr, nanoparticles volume fraction (Φ and nanoparticle diameter (dp on the thermal and hydrodynamic performances of nanofluid flow have been analyzed. The results of numerical simulation were compared with similar existing data and good agreement is observed between them. It will be demonstrated that the Nusselt number (Nu and the friction factor (Cf are different for each of the upper, lower, left and right walls of the flat tube. The increase of Re, Gr and f and the reduction of dp lead to the increase of Nu. Similarly, the increase of Re and f results in the increase of Cf. Therefore, the best way to increase the amount of heat transfer in flat tubes using nanofluids is to increase the Gr and reduce the dp.
Miller, V. M.; Semiatin, S. L.; Szczepanski, C.; Pilchak, A. L.
2018-06-01
The ability to predict the evolution of crystallographic texture during hot work of titanium alloys in the α + β temperature regime is greatly significant to numerous engineering disciplines; however, research efforts are complicated by the rapid changes in phase volume fractions and flow stresses with temperature in addition to topological considerations. The viscoplastic self-consistent (VPSC) polycrystal plasticity model is employed to simulate deformation in the two phase field. Newly developed parameter selection schemes utilizing automated optimization based on two different error metrics are considered. In the first optimization scheme, which is commonly used in the literature, the VPSC parameters are selected based on the quality of fit between experiment and simulated flow curves at six hot-working temperatures. Under the second newly developed scheme, parameters are selected to minimize the difference between the simulated and experimentally measured α textures after accounting for the β → α transformation upon cooling. It is demonstrated that both methods result in good qualitative matches for the experimental α phase texture, but texture-based optimization results in a substantially better quantitative orientation distribution function match.
International Nuclear Information System (INIS)
Li, Xueyan; Xiao, Meng; Choe, Song-Yul; Joe, Won Tae
2015-01-01
Highlights: • Reduced order model for LiFePO 4 particles considering two-phase transition • Model validation with experimental results of current and voltage • Analysis of two-phase transition and path dependence - Abstract: Batteries with lithium iron phosphate (LFP) cathode and carbon anode have shown various advantages over those with other chemistries, but the plateau and path dependence caused by the two-phase transition taking place during charging and discharging make it difficult to estimate the states of battery. Thus, based on electrochemical principles we propose a new reduced order model that has been validated against experimental data obtained during galvanostatic charging/discharging. The mechanism of the two-phase transition during lithiation and delithiation in LFP particles is approximated using a shrinking corewith a moving interface between the two phases and is described by modified diffusion equations that take into account multiple layers formed within LFP particles. The shrinking core model is integrated into a cell model developed previously, which is used to analyze the path dependence at different load profiles. The results show that the model is capable of representing the characteristics of the plateau and path dependence. Particularly, the available charge at a certain State of Charge (SOC) varies dependent upon paths to reach the SOC. When an initial SOC is reached by discharging, the cell can accept more charges during charging, while when an initial SOC is reached by charging, more charge will be available during discharging
X-ray diffraction study of elastic strains for modelling γ/γ' two-phase behavior
International Nuclear Information System (INIS)
Durand, L.; Massaoudi, M.; Lavelle, B.
2005-01-01
To describe the two-phase monocrystals behavior, we used has X-rays diffraction method. Our study is based on the mechanics of the continuous media framework in elasticity. We extend to the quadratic structure the study by X-rays developed at the laboratory on cubic materials with coarse grains. We show that the two phases γ and γ' undergo a tetragonal distortion and that the strains are not constant in each phase. Our results are in agreement with a study by the finite element method developed in addition
A three-region model for tracking a two-phase mixture water level in the micro-simulator
International Nuclear Information System (INIS)
Seok, Ho
1994-02-01
A simplified one-dimensional three-region model is developed to predict two-phase mixture and subcooled levels in vertical and horizontal channels during the loss of coolant accidents and to satisfy the requirement of the capability of real-time computation in the micro-simulator. The present model treats a physical component as one node which is divided into three sub-regions by thermal-hydraulic conditions: subcooled region, mixture region, and steam dome region. The bubble rise model and the drift-flux model concept are used to account for the mass and energy transfer between the mixture region and the steam dome region. The conservation equations of mass, energy, and momentum are derived based on the two-fluid model. Especially, the volumes of the subcooled region and the mixture region are adopted as principal unknowns and incorporated in the governing equations. The area change at the junction is modeled in the momentum equation. The non-linear difference equations of mass, energy, and momentum for the three regions are numerically solved by the Implicit Coulant Eulerian (ICE) method similar to that used in advanced safety codes such as TRAC and RELAP5. The proposed model is tested through the comparison of its simulation results with the experimental data of Edwards and O' Brien pipe blodwdown test, GE small vessel blowdown tests, Marviken tests, and 336-rod bundle test in order to confirm its capability of fast calculation but reasonable accuracy. The computation time by RELAP5/MOD3 is up to around 50 times longer than that by the proposed model when the Marviken tests are simulated. The predictions with Bertodanoi's correlation for the drift velocity in the blowdown tests and with the correlation of Ishii et. al. in the 336-rod bundle test are in best agreement with the test data, respectively. A WS-based real-time simulator for two-loop pressurized water reactor plants, also, is developed for classroom training in support of full-support simulator, on
International Nuclear Information System (INIS)
D'Auria, F.; Vigni, P.
1980-05-01
The purpose of this work was to obtain a comprehensive survey on the two-phase flow dynamics during accidental situations in nuclear reactors. About sixty theories regarding the two-phase flow calculation have been reviewed in this report with particular reference to their physical basis and assumptions; the aim is to control their applicability to nuclear safety problems. The main conclusions may be drawn as follows: the examined theories (perfect fluid, theories assuming thermodynamical equilibrium between liquid and vapor phases, non equilibrium models, etc.) are very different both for formulation and results; general validity of most theories is troublesome to check for the use of empirical coefficients. Moreover, according to the author's opinion, it is necessary to set up an organic program to obtain reliable experimental results in this field and to develop a model considering the whole blowdown transient
Liu, Haihu; Ju, Yaping; Wang, Ningning; Xi, Guang; Zhang, Yonghao
2015-09-01
Contact angle hysteresis is an important physical phenomenon omnipresent in nature and various industrial processes, but its effects are not considered in many existing multiphase flow simulations due to modeling complexity. In this work, a multiphase lattice Boltzmann method (LBM) is developed to simulate the contact-line dynamics with consideration of the contact angle hysteresis for a broad range of kinematic viscosity ratios. In this method, the immiscible two-phase flow is described by a color-fluid model, in which the multiple-relaxation-time collision operator is adopted to increase numerical stability and suppress unphysical spurious currents at the contact line. The contact angle hysteresis is introduced using the strategy proposed by Ding and Spelt [Ding and Spelt, J. Fluid Mech. 599, 341 (2008)JFLSA70022-112010.1017/S0022112008000190], and the geometrical wetting boundary condition is enforced to obtain the desired contact angle. This method is first validated by simulations of static contact angle and dynamic capillary intrusion process on ideal (smooth) surfaces. It is then used to simulate the dynamic behavior of a droplet on a nonideal (inhomogeneous) surface subject to a simple shear flow. When the droplet remains pinned on the surface due to hysteresis, the steady interface shapes of the droplet quantitatively agree well with the previous numerical results. Four typical motion modes of contact points, as observed in a recent study, are qualitatively reproduced with varying advancing and receding contact angles. The viscosity ratio is found to have a notable impact on the droplet deformation, breakup, and hysteresis behavior. Finally, this method is extended to simulate the droplet breakup in a microfluidic T junction, with one half of the wall surface ideal and the other half nonideal. Due to the contact angle hysteresis, the droplet asymmetrically breaks up into two daughter droplets with the smaller one in the nonideal branch channel, and the
Analytic approximations for the elastic moduli of two-phase materials
DEFF Research Database (Denmark)
Zhang, Z. J.; Zhu, Y. K.; Zhang, P.
2017-01-01
Based on the models of series and parallel connections of the two phases in a composite, analytic approximations are derived for the elastic constants (Young's modulus, shear modulus, and Poisson's ratio) of elastically isotropic two-phase composites containing second phases of various volume...
International Nuclear Information System (INIS)
Cardon, Clement
2016-01-01
This Ph.D. topic is focused on the modelling of stratification kinetics for an oxide-metal corium pool (U-O-Zr-steel system) in terms of multicomponent and multiphase diffusion. This work is part of a larger research effort for the development of a detailed corium pool modelling based on a CFD approach for thermal hydraulics. The overall goal is to improve the understanding of the involved phenomena and obtain closure laws for integral macroscopic models. The phase-field method coupled with an energy functional using the CALPHAD method appears to be relevant for this purpose. In a first part, we have developed a diffuse interface model in order to describe the diffusion process in the U-O system. This model has been coupled with a CALPHAD thermodynamic database and its parameterization has been developed with, in particular, an up-scaling procedure related to the interface thickness. Then, within the framework of a modelling for the U-O-Zr ternary system, we have proposed a generalization of the diffuse interface model through an assumption of local equilibrium for redox mechanisms. A particular attention was paid to the model analysis by 1D numerical simulations with a special focus on the steady state composition profiles. Finally we have applied this model to the U-O-Zr-Fe system. For that purpose, we have considered a configuration close to small-scale experimental tests of oxide-metal corium pool stratification. (author) [fr
International Nuclear Information System (INIS)
Okawa, Tomio; Yoneda, Kimitoshi
1998-01-01
It is experimentally clarified that behavior of gas-liquid two-phase flow in large diameter pipe is different from one occurred in small diameter pipe. However, no special model for large diameter pipe is used in existing nuclear reactor safety analysis codes. In the present study, detailed investigation about the two-phase flow model used in the safety analysis was carried out to specify the physical phenomena which should be modeled more precisely. Based on the investigation, steam-water two-phase flow experiments using large diameter pipe was conducted to obtain new models. As a result, new evaluation methods for bubble size, heterogeneous distribution of void fraction, and wake formed behind bubble were developed. These new models were applied to the prediction of steam-water two-phase flow experiments using large diameter pipes to clarify their validity. It was consequently demonstrated that the accuracy of the numerical solution is remarkably improved not only for the experiment used for model development but also for the experiment where the pipe diameter, pressure, velocities, void fraction are different. (author)
Energy Technology Data Exchange (ETDEWEB)
Hoehne, Thomas, E-mail: t.hoehne@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany); Deendarlianto,; Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany)
2011-10-15
In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler-Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a k-{omega} turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all Code users, with the possibility of the implementation of their own correlations.
Energy Technology Data Exchange (ETDEWEB)
Hohne, T.; Deendarlianto; Vallee, C.; Lucas, D.; Beyer, M., E-mail: t.hoehne@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Inst. of Safety Research, Dresden (Germany)
2011-07-01
In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz-Zentrum Dresden- Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler-Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a SST turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all ANSYS CFX users, with the possibility of the implementation of their own correlations. (author)
DEFF Research Database (Denmark)
Shapiro, Alexander A.
2018-01-01
A new three-dimensional hydrodynamic model for unsteady two-phase flows in a porous medium, accounting for the motion of the interface between the flowing liquids, is developed. In a minimum number of interpretable geometrical assumptions, a complete system of macroscale flow equations is derived......, their expansion or contraction is also described, while rotation has been proven negligible. A detailed comparison with the previous studies for the two-phase flows accounting for propagation of the interface on micro- and macroscale has been carried out. A numerical algorithm has been developed allowing...
Colossal magnetoresistance of bulk Ag-doped Nd{sub 0.7}Sr{sub 0.3}MnO{sub 3} two-phase composites
Energy Technology Data Exchange (ETDEWEB)
Cui Xugao [National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093 (China); Hu Xiukun [National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093 (China); Xia Hongxu [National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093 (China); Yu Jiangying [National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093 (China); Zhang Shiyuan [National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093 (China)]. E-mail: zsy@netra.nju.edu.cn
2005-05-17
We have prepared a series of bulk polycrystalline manganites with the nominal compositions, Nd{sub 0.7}Sr{sub 0.3}MnO{sub 3}-Ag {sub x} (x is the molar fraction) with x = 0.1, 0.2, 0.3, 0.4, 0.5 by conventional solid-state reaction. The X-ray diffraction patterns show that the sample Nd{sub 0.7}Sr{sub 0.3}MnO{sub 3} (x = 0) is a single-phase compound with the pseudocubic perovskite structure, while the Ag-doped samples are two-phase composites consisting of a ferromagnetic perovskite phase and a nonmagnetic Ag metal phase. For all the samples, the Curie temperature, T {sub C}, remains nearly the same (228 {+-} 2 K), but the maximum magnetoresistance in a magnetic field of 1 T at 222 K is enhanced strongly due to the addition of Ag, namely, from 45% for the Nd{sub 0.7}Sr{sub 0.3}MnO{sub 3} sample to 188, 277, 142, 158 and 151% for the Nd{sub 0.7}Sr{sub 0.3}MnO{sub 3}-Ag {sub x} samples with x = 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. This magnetoresistance-enhancement phenomenon can be attributed to the spin-dependent scattering of the spin-polarized electrons at the interfaces between the perovskite grains and the Ag granules.
International Nuclear Information System (INIS)
Dupont, J.F.
1979-03-01
The principal simplifications of a mathematical model for the simulation of behaviour dynamics of a two-phase flow with heat exchange are examined, as it appears in a steam generator. The theoretical considerations and numerical solutions permit the evaluation of the validity limits and the influence of these simplifications on the results. (G.T.H.)
Directory of Open Access Journals (Sweden)
Furmański Piotr
2014-09-01
Full Text Available Heat flow in heterogeneous media with complex microstructure follows tortuous path and therefore determination of temperature distribution in them is a challenging task. Two-scales, micro-macro model of heat conduction with phase change in such media was considered in the paper. A relation between temperature distribution on the microscopic level, i.e., on the level of details of microstructure, and the temperature distribution on the macroscopic level, i.e., on the level where the properties were homogenized and treated as effective, was derived. The expansion applied to this relation allowed to obtain its more simplified, approximate form corresponding to separation of micro- and macro-scales. Then the validity of this model was checked by performing calculations for 2D microstructure of a composite made of two constituents. The range of application of the proposed micro-macro model was considered in transient states of heat conduction both for the case when the phase change in the material is present and when it is absent. Variation of the effective thermal conductivity with time was considered and a criterion was found for which application of the considered model is justified.
Energy Technology Data Exchange (ETDEWEB)
Touma, Rony [Department of Computer Science & Mathematics, Lebanese American University, Beirut (Lebanon); Zeidan, Dia [School of Basic Sciences and Humanities, German Jordanian University, Amman (Jordan)
2016-06-08
In this paper we extend a central finite volume method on nonuniform grids to the case of drift-flux two-phase flow problems. The numerical base scheme is an unstaggered, non oscillatory, second-order accurate finite volume scheme that evolves a piecewise linear numerical solution on a single grid and uses dual cells intermediately while updating the numerical solution to avoid the resolution of the Riemann problems arising at the cell interfaces. We then apply the numerical scheme and solve a classical drift-flux problem. The obtained results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potential of the proposed scheme.
Xu, Xianmin; Wang, Xiaoping
2010-01-01
In this paper, the equilibrium behavior of an immiscible two phase fluid on a rough surface is studied from a phase field equation derived from minimizing the total free energy of the system. When the size of the roughness becomes small, we derive the effective boundary condition for the equation by the multiple scale expansion homogenization technique. The Wenzel and Cassie equations for the apparent contact angles on the rough surfaces are then derived from the effective boundary condition. The homogenization results are proved rigorously by the F-convergence theory. © 2010 Society for Industrial and Applied Mathematics.
Heat transfer and velocity characteristics of single- and two-phase flows in a subsonic model gun
International Nuclear Information System (INIS)
Bicen, A.F.; Khezzar, L.; Schmidt, M.; Whitelaw, J.H.
1989-01-01
Heat transfer and velocity measurements are reported for single- and two-phase flows in the wake of an in-bore projectile propelled by an inert gas at an initial gauge pressure of 8 bars to an exit velocity over 40 m/s in ∼ 33 ms. The results show that with the single phase the turbulent velocity boundary layers occupy over 20% of the barrel radius and that the wall heat transfer increases with distance from the breech and decreases with time during the shot. In the initial chamber, and later in the shot, the heat transfer results are close to those obtained from a convection correlation for a steady turbulent boundary layer, contrary to those at locations swept by the projectile, which are higher by up to 50% throughout the shot. The two-phase flow results show that 55-μm particles with loadings of 1.3% and 4% by volume initially lag the fluid and this lag increases with distance from the breech. Later in the shot the particles catch up and lead the decelerating fluid by an amount that is greater, with the higher particle loading and with a tendency for the particle velocity to increase around the edge of the boundary layer
International Nuclear Information System (INIS)
Lee, Cheng-Hsien; Low, Ying Min; Chiew, Yee-Meng
2016-01-01
Sediment transport is fundamentally a two-phase phenomenon involving fluid and sediments; however, many existing numerical models are one-phase approaches, which are unable to capture the complex fluid-particle and inter-particle interactions. In the last decade, two-phase models have gained traction; however, there are still many limitations in these models. For example, several existing two-phase models are confined to one-dimensional problems; in addition, the existing two-dimensional models simulate only the region outside the sand bed. This paper develops a new three-dimensional two-phase model for simulating sediment transport in the sheet flow condition, incorporating recently published rheological characteristics of sediments. The enduring-contact, inertial, and fluid viscosity effects are considered in determining sediment pressure and stresses, enabling the model to be applicable to a wide range of particle Reynolds number. A k − ε turbulence model is adopted to compute the Reynolds stresses. In addition, a novel numerical scheme is proposed, thus avoiding numerical instability caused by high sediment concentration and allowing the sediment dynamics to be computed both within and outside the sand bed. The present model is applied to two classical problems, namely, sheet flow and scour under a pipeline with favorable results. For sheet flow, the computed velocity is consistent with measured data reported in the literature. For pipeline scour, the computed scour rate beneath the pipeline agrees with previous experimental observations. However, the present model is unable to capture vortex shedding; consequently, the sediment deposition behind the pipeline is overestimated. Sensitivity analyses reveal that model parameters associated with turbulence have strong influence on the computed results.
International Nuclear Information System (INIS)
Tanaka, Nobuatsu; Maseguchi, Ryo; Ogawara, Takuya
2008-01-01
This study is concerned with improvement of numerical code called CRIMSON (Civa RefIned Multiphase SimulatiON), which has been developed to evaluate multi-phase flow behaviors based on the recent CFD (computational fluid dynamics) technologies. The CRIMSON employs a finite-volume method combined with the high order interpolation scheme, CIVA (cubic-interpolation with area/volume coordinates). The CRIMSON solves gas-liquid two phases by a unified scheme of CUP (combined unified procedure). The conventional CIVA method has two problems of interface blurring in long-term calculation and non-conservativeness. In this study, the problems were solved by introducing the ideas of the level set method and the phase field method. We verified out method by applying it to some popular benchmark problems of single bubble rising and collapse of water column problems. (author)
Directory of Open Access Journals (Sweden)
Rauch Ł.
2015-09-01
Full Text Available The coupled finite element multiscale simulations (FE2 require costly numerical procedures in both macro and micro scales. Attempts to improve numerical efficiency are focused mainly on two areas of development, i.e. parallelization/distribution of numerical procedures and simplification of virtual material representation. One of the representatives of both mentioned areas is the idea of Statistically Similar Representative Volume Element (SSRVE. It aims at the reduction of the number of finite elements in micro scale as well as at parallelization of the calculations in micro scale which can be performed without barriers. The simplification of computational domain is realized by transformation of sophisticated images of material microstructure into artificially created simple objects being characterized by similar features as their original equivalents. In existing solutions for two-phase steels SSRVE is created on the basis of the analysis of shape coefficients of hard phase in real microstructure and searching for a representative simple structure with similar shape coefficients. Optimization techniques were used to solve this task. In the present paper local strains and stresses are added to the cost function in optimization. Various forms of the objective function composed of different elements were investigated and used in the optimization procedure for the creation of the final SSRVE. The results are compared as far as the efficiency of the procedure and uniqueness of the solution are considered. The best objective function composed of shape coefficients, as well as of strains and stresses, was proposed. Examples of SSRVEs determined for the investigated two-phase steel using that objective function are demonstrated in the paper. Each step of SSRVE creation is investigated from computational efficiency point of view. The proposition of implementation of the whole computational procedure on modern High Performance Computing (HPC
Energy Technology Data Exchange (ETDEWEB)
Zhou, Lixing; Zhang, Jian [Qinghua Univ., Beijing (China)
1990-11-01
Two-dimensional turbulent evaporating gas-droplet two-phase flows in an afterburner diffusor of turbofan jet engines are simulated here by a k-epsilon turbulence model and a particle trajectory model. Comparison of predicted gas velocity and temperature distributions with experimental results for the cases without liquid spray shows good agreement. Gas-droplet two-phase flow predictions give plausible droplet trajectories, fuel-vapor concentration distribution, gas-phase velocity and temperature field in the presence of liquid droplets. One run of computation with this method is made for a particular afterburner. The results indicate that the location of the atomizers is not favorable to flame stabilization and combustion efficiency. The proposed numerical modeling can also be adopted for optimization design and performance evaluation of afterburner combustors of turbofan jet engines. 7 refs.
International Nuclear Information System (INIS)
Ho-Kee-King, Simone
1996-01-01
As the study of two-phase flows is required to assess or optimize the performance of many industrial systems in chemical, thermal or nuclear engineering, this research thesis in fluid mechanics aims at describing the evolution of a two-phase flow in a dispersed annular configuration when passing a convergent nozzle. The study focused on the elaboration of simple, one-dimensional and permanent flows, and is based on experiments performed in the case of a liquid annular injection. The author discusses the mapping of two-phase flows, proposes an overview of their modelling, and proposes a model with its instantaneous local equations and time- and space-averaged equations. He addresses the issues of closure laws for two-field models (friction laws on the walls and at the interfaces, discussion of published experimental results), and of mass transfer laws for three-field models. He reports the development of a droplet carryover rate law and the analysis of published experiments by using the three-field model [fr
International Nuclear Information System (INIS)
Kang, Sanggyu
2015-01-01
Water management is one of the challenging issues for low-temperature PEMFCs (proton exchange membrane fuel cells). When liquid water is formed at the GDL (gas diffusion layer), the pathway of reactant gas can be blocked, which inhibits the electrochemical reaction of PEMFC. Thus, liquid water transport through GDL is a critical factor determining the performance of a PEMFC. In present study, quasi-three dimensional dynamic modeling of PEMFC with consideration of two-phase water transport through GDL is developed. To investigate the distributions of PEMFC characteristics, including current density, species mole fraction, and membrane hydration, the PEMFC was discretized into twenty control volumes along the anode channel. To resolve the mass and energy conservation, the PEMFC is discretized into eleven and fifteen control volumes in the perpendicular direction, respectively. The dynamic variation of PEMFC characteristics of cell voltage, overvoltage of activation and ohmic, liquid water saturation through a GDL, and oxygen concentration were captured during transient behavior. - Highlights: • A quasi-three dimensional two-phase dynamic model of PEMFC is developed. • Presented model is validated by comparison with experimental data. • Two-phase model is compared with one-phase model at steady-states and transients.
International Nuclear Information System (INIS)
Hwang, D.H.; Yoo, Y.J.; Kim, K.K.
1998-08-01
A linear model, named ALFS, is developed for the analysis of two-phase flow instabilities caused by density wave oscillation and flow excursion in a vertical boiling channel with constant pressure drop conditions. The ALFS code can take into account the effect of the phase velocity difference and the thermally non-equilibrium phenomena, and the neutral boundary of the two-phase flow instability was analyzed by D-partition method. Three representative two-phase flow models ( i.e. HEM, DEM, and DNEM) were examined to investigate the effects on the stability analysis. As the results, it reveals that HEM shows the most conservative prediction of heat flux at the onset of flow instability. three linear models, Ishiis DEM, Sahas DNEM, and ALFS model, were applied to Sahas experimental data of density wave oscillation, and as the result, the mean and standard deviation of the predicted-to-measured heat flux at the onset of instability were calculated as 0.93/0.162, 0.79/0.112, and 0.95/0.143, respectively. For the long test section, however, ALFS model tends to predict the heat fluxes about 30 % lower than the measured values. (author). 14 refs
Energy Technology Data Exchange (ETDEWEB)
Lorentzen, Rolf Johan
2002-04-01
The main objective of this thesis is to develop methods which can be used to improve predictions of two-phase flow (liquid and gas) in pipelines and wells. More reliable predictions are accomplished by improvements of numerical methods, and by using measured data to tune the mathematical model which describes the two-phase flow. We present a way to extend simple numerical methods to second order spatial accuracy. These methods are implemented, tested and compared with a second order Godunov-type scheme. In addition, a new (and faster) version of the Godunov-type scheme utilizing primitive (observable) variables is presented. We introduce a least squares method which is used to tune parameters embedded in the two-phase flow model. This method is tested using synthetic generated measurements. We also present an ensemble Kalman filter which is used to tune physical state variables and model parameters. This technique is tested on synthetic generated measurements, but also on several sets of full-scale experimental measurements. The thesis is divided into an introductory part, and a part consisting of four papers. The introduction serves both as a summary of the material treated in the papers, and as supplementary background material. It contains five sections, where the first gives an overview of the main topics which are addressed in the thesis. Section 2 contains a description and discussion of mathematical models for two-phase flow in pipelines. Section 3 deals with the numerical methods which are used to solve the equations arising from the two-phase flow model. The numerical scheme described in Section 3.5 is not included in the papers. This section includes results in addition to an outline of the numerical approach. Section 4 gives an introduction to estimation theory, and leads towards application of the two-phase flow model. The material in Sections 4.6 and 4.7 is not discussed in the papers, but is included in the thesis as it gives an important validation
Gu, Rui
Vapor compression cycles are widely used in heating, refrigerating and air-conditioning. A slight performance improvement in the components of a vapor compression cycle, such as the compressor, can play a significant role in saving energy use. However, the complexity and cost of these improvements can block their application in the market. Modifying the conventional cycle configuration can offer a less complex and less costly alternative approach. Economizing is a common modification for improving the performance of the refrigeration cycle, resulting in decreasing the work required to compress the gas per unit mass. Traditionally, economizing requires multi-stage compressors, the cost of which has restrained the scope for practical implementation. Compressors with injection ports, which can be used to inject economized refrigerant during the compression process, introduce new possibilities for economization with less cost. This work focuses on computationally investigating a refrigeration system performance with two-phase fluid injection, developing a better understanding of the impact of injected refrigerant quality on refrigeration system performance as well as evaluating the potential COP improvement that injection provides based on refrigeration system performance provided by Copeland.
Siripatana, Chairat; Thongpan, Hathaikarn; Promraksa, Arwut
2017-03-01
This article explores a volumetric approach in formulating differential equations for a class of engineering flow problems involving component transfer within or between two phases. In contrast to conventional formulation which is based on linear velocities, this work proposed a slightly different approach based on volumetric flow-rate which is essentially constant in many industrial processes. In effect, many multi-dimensional flow problems found industrially can be simplified into multi-component or multi-phase but one-dimensional flow problems. The formulation is largely generic, covering counter-current, concurrent or batch, fixed and fluidized bed arrangement. It was also intended to use for start-up, shut-down, control and steady state simulation. Since many realistic and industrial operation are dynamic with variable velocity and porosity in relation to position, analytical solutions are rare and limited to only very simple cases. Thus we also provide a numerical solution using Crank-Nicolson finite difference scheme. This solution is inherently stable as tested against a few cases published in the literature. However, it is anticipated that, for unconfined flow or non-constant flow-rate, traditional formulation should be applied.
International Nuclear Information System (INIS)
Staebler, T.; Meyer, L.; Schulenberg, T.; Laurien, E.
2006-01-01
When a leakage, a 'loss-of-coolant accident', occurs in a light water reactor, the emergency cooling system is able to supply large amounts of coolant to ensure residual heat removal. This supply can be routed through a special emergency cooling pipe, the 'scoop', into the horizontal section of the main coolant pipe, the 'hot leg'. At the same time, hot steam from the superheated, partly voided core flows against the coolant. This gives rise to a two-phase flow in the opposite direction. A factor of primary interest in this situation is whether the coolant supplied by the emergency cooling system will reach the reactor core. The research project is being conducted in order to compute the rate of water supply by numerical methods. The WENKA test facility has been designed and built at the Karlsruhe Research Center to verify numerical calculations. It can be used to study the fluid dynamics phenomena expected to arise in emergency coolant feeding into the hot leg; the necessary local data can be determined experimentally. An extensive database for validating the numerical calculations is then available to complete the experimental work. (orig.)
Two-fluid model of two-phase flow in a pin bundle of a nuclear reactor
International Nuclear Information System (INIS)
Chawla, T.C.; Ishii, M.
1980-01-01
By considering two-phase flow as a field which is subdivided into two turbulent single-phase regions with moving boundaries separating the two constituent phases, such that the differential balances for three-dimensional turbulent flow hold for each subregion and for the interface, we perform the Eulerian area averaging over the cross-sectional area of each phase in a given channel and segment averaging of transverse momentum equation along the phase intercepts at the interchannel boundaries. To simplify the governing equations obtained as a result of these operations, we invoke the assumption that the motion of the fluid in each phase is dominantly in axial direction, that is the transverse components of velocity are small compared to axial components. We further assume that the variation of axial component of velocity within a channel is much stronger than the variation along the axial direction. We also assume that similar arguments can also be applied to the variation of enthalpy in a channel. As a result of these considerations, we obtain two sets of continuity, momentum, and energy equations describing motion of each phase in the axial direction. The phasic interaction terms which appear in these equations are governed by interfacial transfer conditions obtained from interface balances. The segment-averaged transverse-momentum equation for each phase provides the governing equation for cross flow. (author)
Directory of Open Access Journals (Sweden)
Chao Si
2015-01-01
Full Text Available Water transport and the corresponding water management strategy in proton exchange membrane (PEM fuel cells are quite critical for the improvement of the cell performance. Accuracy modeling of water transport in porous electrodes strongly depends on the appropriate constitutive relationship for capillary pressure which is referred to as pc-s correlation, where pc is the capillary pressure and s is the fraction of saturation in the pores. In the present PEM fuel cell two-phase models, the Leverett-Udell pc-s correlation is widely utilized which is proposed based on fitting the experimental data for packed sands. However, the size and structure of pores for the commercial porous electrodes used in PEM fuel cells differ from those for the packed sands significantly. As a result, the Leverett-Udell correlation should be improper to characterize the two-phase transport in the porous electrodes. In the recent decade, many efforts were devoted to measuring the capillary pressure data and developing new pc-s correlations. The objective of this review is to review the most significant developments in recent years concerning the capillary pressure measurements and the developed pc-s correlations. It is expected that this review will be beneficial to develop the improved PEM fuel cell two-phase model.
International Nuclear Information System (INIS)
Analytis, G.Th.; Luebbesmeyer, D.
1982-11-01
An extensive and detailed investigation of two-phase flow velocity measurements by cross-correlating noise signals of information carriers (neutrons, gammas, visible light) modulated by the two-phase flow and registered by two axially placed detectors outside the flow is pursued. To this end, a detailed analysis of velocity measurements in experimental loops and a large number of velocity measurements in a commercial BWR is undertaken, and the applicability and limitations of the drift flux model for their interpretation is investigated. On the basis of this extensive analysis, the authors propose a physically plausible explanation for the deviations in the upper part of the core, expound on why the drift flux model is, to a great extent, not suitable for interpreting two-phase flow velocity measurements by cross-correlation techniques reported in the present work, and conclude that due to the large number of uncertainties and the lack of detailed knowledge about the kind of microstructures of the flow which the detectors prefer to ''sample'', one can safely assume that at least in the lower half of the core the velocity measured can be well approximated by the velocity of the centre of volume, from which the mass fluxes can readily be computed. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Rascle, P.; El Amine, K. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)
1997-12-31
We are interested in the numerical approximation of two-fluid models of nonequilibrium two-phase flows described by six balance equations. We introduce an original splitting technique of the system of equations. This technique is derived in a way such that single phase Riemann solvers may be used: moreover, it allows a straightforward extension to various and detailed exchange source terms. The properties of the fluids are first approached by state equations of ideal gas type and then extended to real fluids. For the construction of numerical schemes , the hyperbolicity of the full system is not necessary. When based on suitable kinetic unwind schemes, the algorithm can compute flow regimes evolving from mixture to single phase flows and vice versa. The whole scheme preserves the physical features of all the variables which remain in the set of physical states. Several stiff numerical tests, such as phase separation and phase transition are displayed in order to highlight the efficiency of the proposed method. The document is a PhD thesis divided in 6 chapters and two annexes. They are entitled: 1. - Introduction (in French), 2. - Two-phase flow, modelling and hyperbolicity (in French), 3. - A numerical method using upwind schemes for the resolution of two-phase flows without exchange terms (in English), 4. - A numerical scheme for one-phase flow of real fluids (in English), 5. - An upwind numerical for non-equilibrium two-phase flows (in English), 6. - The treatment of boundary conditions (in English), A.1. The Perthame scheme (in English) and A.2. The Roe scheme (in English). 136 refs. This document represents a PhD thesis in the speciality Applied Mathematics presented par Khalid El Amine to the Universite Paris 6.
International Nuclear Information System (INIS)
Fraser, D.W.H.; Abdelmessih, A.H.
1995-01-01
A general unified model is developed to predict one-component critical two-phase pipe flow. Modelling of the two-phase flow is accomplished by describing the evolution of the flow between the location of flashing inception and the exit (critical) plane. The model approximates the nonequilibrium phase change process via thermodynamic equilibrium paths. Included are the relative effects of varying the location of flashing inception, pipe geometry, fluid properties and length to diameter ratio. The model predicts that a range of critical mass fluxes exist and is bound by a maximum and minimum value for a given thermodynamic state. This range is more pronounced at lower subcooled stagnation states and can be attributed to the variation in the location of flashing inception. The model is based on the results of an experimental study of the critical two-phase flow of saturated and subcooled water through long tubes. In that study, the location of flashing inception was accurately controlled and adjusted through the use of a new device. The data obtained revealed that for fixed stagnation conditions, the maximum critical mass flux occurred with flashing inception located near the pipe exit; while minimum critical mass fluxes occurred with the flashing front located further upstream. Available data since 1970 for both short and long tubes over a wide range of conditions are compared with the model predictions. This includes test section L/D ratios from 25 to 300 and covers a temperature and pressure range of 110 to 280 degrees C and 0.16 to 6.9 MPa. respectively. The predicted maximum and minimum critical mass fluxes show an excellent agreement with the range observed in the experimental data
Energy Technology Data Exchange (ETDEWEB)
Fraser, D.W.H. [Univ. of British Columbia (Canada); Abdelmessih, A.H. [Univ. of Toronto, Ontario (Canada)
1995-09-01
A general unified model is developed to predict one-component critical two-phase pipe flow. Modelling of the two-phase flow is accomplished by describing the evolution of the flow between the location of flashing inception and the exit (critical) plane. The model approximates the nonequilibrium phase change process via thermodynamic equilibrium paths. Included are the relative effects of varying the location of flashing inception, pipe geometry, fluid properties and length to diameter ratio. The model predicts that a range of critical mass fluxes exist and is bound by a maximum and minimum value for a given thermodynamic state. This range is more pronounced at lower subcooled stagnation states and can be attributed to the variation in the location of flashing inception. The model is based on the results of an experimental study of the critical two-phase flow of saturated and subcooled water through long tubes. In that study, the location of flashing inception was accurately controlled and adjusted through the use of a new device. The data obtained revealed that for fixed stagnation conditions, the maximum critical mass flux occurred with flashing inception located near the pipe exit; while minimum critical mass fluxes occurred with the flashing front located further upstream. Available data since 1970 for both short and long tubes over a wide range of conditions are compared with the model predictions. This includes test section L/D ratios from 25 to 300 and covers a temperature and pressure range of 110 to 280{degrees}C and 0.16 to 6.9 MPa. respectively. The predicted maximum and minimum critical mass fluxes show an excellent agreement with the range observed in the experimental data.
International Nuclear Information System (INIS)
Lemonnier, H.; Hervieu, E.
1991-01-01
Phase separation in a tee-junction is modelled in the particular case of bubbly-flow. The model is based on a two-dimensional approach and hence, uses local equations. The first step consists in modelling the single-phase flow in the tee-junction. The free streamline theory is used to predict the flow of the continuous phase. The two recirculation zones which are presented in this case are predicted by the model. The second step consists in predicting the gas bubble paths as a result of the actions of the single-phase flow. Finally, the trajectories of gas bubbles are used to predict the separation characteristics of the tee-junction. Each step of the modelling procedure has been carefully tested by an in-depth experimental investigation. Excellent quantitative agreement is obtained between experimental results and model predictions. Moreover, the phase separation phenomenon is found to be clearly described by the model. (orig.)
Modelling of bubbly and annular two-phase flow in subchannel geometries with BACCHUS-3D/TP
International Nuclear Information System (INIS)
Bottoni, M.; Lyczkowski, R.W.
1992-01-01
The theoretical and computational bases of the BACCHUS-3D/TP computer program are reviewed. The computer program is used for thermal-hydraulic analyses of nuclear fuel bundles under normal and accident conditions. The present program combines two models and solution procedures previously used separately, namely, the Improved Slip Model (ISM) and the Separated-Phases Model (SPM). The former model uses mixture equations with accounting for slip between the phases, whereas the latter uses separate continuity and momentum equations. At the present stage of development, both assume thermodynamic equilibrium. Techniques used to affect smooth transition between the two models are described. including treatment of frictional pressure drop and solution of the Poisson and momentum equations. A detailed derivation of the computation of mass transfer between the phases is given because it is a central and novel feature of the model
International Nuclear Information System (INIS)
Morel, Ch.
1997-01-01
The aim of this thesis is the 3-D modeling and numerical simulation of liquid/gas (water/vapor or water/air) two-phase flows in cooling circuits of nuclear power plants during normal and accidental situations. The development of a multidimensional dual-fluid model encounters two problems: the statistical effects of turbulence and the interface mass, momentum and energy transfers. The models developed in this study were introduced in the 3-D module of the CATHARE code developed by the CEA and the results were compared to experimental results available in the literature. The first chapter describes the equations of the local dual-fluid model for the 3-D description of two-phase flows. Closing relations adapted to dispersed flows with isothermal bubbles and without phase transformation are proposed and focus on the momentum transfer at the interfaces. The theoretical study of turbulence in the liquid phase of a bubble flow is modelled in chapter 2. Chapter 3 deals with the voluminal interface area used in the interface mass, momentum and energy transfers, and chapters 4 and 5 concern the application of the developed models to concrete situations. Chapter 4 describes in details the 3-D module of the CATHARE code while chapter 5 gives a comparison of numerical results obtained using the CATHARE code with other experimental results obtained at EdF. (J.S.)
Analysis of the two-fluid model and the drift-flux model for numerical calculation of two-phase flow
Energy Technology Data Exchange (ETDEWEB)
Munkejord, Svend Tollak
2006-05-11
This thesis analyses models for two-phase flows and methods for the numerical resolution of these models. It is therefore one contribution to the development of reliable design tools for multiphase applications. Such tools are needed and expected by engineers in a range of fields, including in the oil and gas industry. The approximate Riemann solver of Roe has been studied. Roe schemes for three different two-phase flow models have been implemented in the framework of a standard numerical algorithm for the solution of hyperbolic conservation laws. The schemes have been analysed by calculation of benchmark tests from the literature, and by comparison with each other. A Roe scheme for the four-equation one-pressure two-fluid model has been implemented, and a second-order extension based on wave decomposition and flux-difference splitting was shown to work well and to give improved results compared to the first-order scheme. The convergence properties of the scheme were tested on smooth and discontinuous solutions. A Roe scheme has been proposed for a five-equation two-pressure two-fluid model with pressure relaxation. The use of analogous numerical methods for the five-equation and four-equation models allowed for a direct comparison of a method with and without pressure relaxation. Numerical experiments demonstrated that the two approaches converged to the same results, but that the five-equation pressure-relaxation method was significantly more dissipative, particularly for contact discontinuities. Furthermore, even though the five-equation model with instantaneous pressure relaxation has real eigenvalues, the calculations showed that it produced oscillations for cases where the four-equation model had complex eigenvalues. A Roe scheme has been constructed for the drift-flux model with general closure laws. For the case of the Zuber-Findlay slip law describing bubbly flows, the Roe matrix is completely analytical. Hence the present Roe scheme is more efficient than
Energy Technology Data Exchange (ETDEWEB)
McGrath, Thomas P., E-mail: thomas.p.mcgrath@navy.mil [Naval Surface Warfare Center Indian Head Explosive Ordnance Disposal Technology Division, 4013 Fowler Rd., Indian Head, Maryland 20640 (United States); St Clair, Jeffrey G. [Naval Surface Warfare Center Indian Head Explosive Ordnance Disposal Technology Division, 4013 Fowler Rd., Indian Head, Maryland 20640 (United States); Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, P.O. Box 116250, Gainesville, Florida 32611 (United States); Balachandar, S. [Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, P.O. Box 116250, Gainesville, Florida 32611 (United States)
2016-05-07
Multiphase flows are present in many important fields ranging from multiphase explosions to chemical processing. An important subset of multiphase flow applications involves dispersed materials, such as particles, droplets, and bubbles. This work presents an Eulerian–Eulerian model for multiphase flows containing dispersed particles surrounded by a continuous media such as air or water. Following a large body of multiphase literature, the driving force for particle acceleration is modeled as a direct function of both the continuous-phase pressure gradient and the gradient of intergranular stress existing within the particle phase. While the application of these two components of driving force is well accepted in much of the literature, other models exist in which the particle-phase pressure gradient itself drives particle motion. The multiphase model treats all phases as compressible and is derived to ensure adherence to the 2nd Law of Thermodynamics. The governing equations are presented and discussed, and a characteristic analysis shows the model to be hyperbolic, with a degeneracy in the case that the intergranular stress, which is modeled as a configuration pressure, is zero. Finally, results from a two sample problems involving shock-induced particle dispersion are presented. The results agree well with experimental measurements, providing initial confidence in the proposed model.
Wang, Deyun; Wei, Shuai; Luo, Hongyuan; Yue, Chenqiang; Grunder, Olivier
2017-02-15
The randomness, non-stationarity and irregularity of air quality index (AQI) series bring the difficulty of AQI forecasting. To enhance forecast accuracy, a novel hybrid forecasting model combining two-phase decomposition technique and extreme learning machine (ELM) optimized by differential evolution (DE) algorithm is developed for AQI forecasting in this paper. In phase I, the complementary ensemble empirical mode decomposition (CEEMD) is utilized to decompose the AQI series into a set of intrinsic mode functions (IMFs) with different frequencies; in phase II, in order to further handle the high frequency IMFs which will increase the forecast difficulty, variational mode decomposition (VMD) is employed to decompose the high frequency IMFs into a number of variational modes (VMs). Then, the ELM model optimized by DE algorithm is applied to forecast all the IMFs and VMs. Finally, the forecast value of each high frequency IMF is obtained through adding up the forecast results of all corresponding VMs, and the forecast series of AQI is obtained by aggregating the forecast results of all IMFs. To verify and validate the proposed model, two daily AQI series from July 1, 2014 to June 30, 2016 collected from Beijing and Shanghai located in China are taken as the test cases to conduct the empirical study. The experimental results show that the proposed hybrid model based on two-phase decomposition technique is remarkably superior to all other considered models for its higher forecast accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.
The effect of membrane-regulated actin polymerization on a two-phase flow model for cell motility
Kimpton, L. S.; Whiteley, J. P.; Waters, S. L.; Oliver, J. M.
2014-01-01
travelling-wave solutions with biologically plausible actin network profiles in two simple models that enforce polymerization or depolymerization of the actin network at the ends of the travelling, 1D strip of cytoplasm. © 2014 The authors 2014. Published
Salazar-Campoy, María M.; Morales, R. D.; Nájera-Bastida, A.; Calderón-Ramos, Ismael; Cedillo-Hernández, Valentín; Delgado-Pureco, J. C.
2018-04-01
The effects of nozzle design on dispersed, two-phase flows of the steel-argon system in a slab mold are studied using a water-air model with particle image velocimetry and ultrasound probe velocimetry techniques. Three nozzle designs were tested with the same bore size and different port geometries, including square (S), special bottom design with square ports (U), and circular (C). The meniscus velocities of the liquid increase two- or threefold in two-phase flows regarding one-phase flows using low flow rates of the gas phase. This effect is due to the dragging effects on bubbles by the liquid jets forming two-way coupled flows. Liquid velocities (primary phase) along the narrow face of the mold also are higher for two-phase flows. Flows using nozzle U are less dependent on the effects of the secondary phase (air). The smallest bubble sizes are obtained using nozzle U, which confirms that bubble breakup is dependent on the strain rates of the fluid and dissipation of kinetic energy in the nozzle bottom and port edges. Through dimensionless analysis, it was found that the bubble sizes are inversely proportional to the dissipation rate of the turbulent kinetic energy, ɛ 0.4. A simple expression involving ɛ, surface tension, and density of metal is derived to scale up bubble sizes in water to bubble sizes in steel with different degrees of deoxidation. The validity of water-air models to study steel-argon flows is discussed. Prior works related with experiments to model argon bubbling in steel slab molds under nonwetting conditions are critically reviewed.
Qian, Tiezheng
2009-10-29
This paper starts with an introduction to the Onsager principle of minimum energy dissipation which governs the optimal paths of deviation and restoration to equilibrium. Then there is a review of the variational approach to moving contact line hydrodynamics. To demonstrate the validity of our continuum hydrodynamic model, numerical results from model calculations and molecular dynamics simulations are presented for immiscible Couette and Poiseuille flows past homogeneous solid surfaces, with remarkable overall agreement. Our continuum model is also used to study the contact line motion on surfaces patterned with stripes of different contact angles (i.e. surfaces of varying wettability). Continuum calculations predict the stick-slip motion for contact lines moving along these patterned surfaces, in quantitative agreement with molecular dynamics simulation results. This periodic motion is tunable through pattern period (geometry) and contrast in wetting property (chemistry). The consequence of stick-slip contact line motion on energy dissipation is discussed. © 2009 IOP Publishing Ltd.
Course A---Numerical modeling of two-phase flows for presentation at Ecole d'Ete d'Analyse Numerique
International Nuclear Information System (INIS)
Ransom, V.H.
1989-05-01
This course is designed to provide an introduction to the application of two-fluid modeling techniques to two-phase or, more generally, multiphase flows, and to the numerical methods that have been developed for solution of such problems. The methods that are presented have evolved to a large extent as a result of international efforts to improve the understanding of light-water-reactor transient response to postulated loss of coolant accidents. Transient simulation codes that are based on these methods are now in routine use throughout the international light-water-reactor safety research and regulatory organizations. 159 refs., 54 figs., 8 tabs
Pyatkov, A. A.; Kosyakov, V. P.; Rodionov, S. P.; Botalov, A. Y.
2018-03-01
In this work was the study of the processes of isothermal and non-isothermal flow of high viscosity oil in a fractured-porous reservoir. The numerical experiment was done using our own reservoir simulator with the possibility of modeling of fluid motion in conditions of non-isothermal processes and long fractures in the formation.
International Nuclear Information System (INIS)
Magdeleine, S.
2009-11-01
This work is a part of a long term project that aims at using two-phase Direct Numerical Simulation (DNS) in order to give information to averaged models. For now, it is limited to isothermal bubbly flows with no phase change. It could be subdivided in two parts: Firstly, theoretical developments are made in order to build an equivalent of Large Eddy Simulation (LES) for two phase flows called Interfaces and Sub-grid Scales (ISS). After the implementation of the ISS model in our code called Trio U , a set of various cases is used to validate this model. Then, special test are made in order to optimize the model for our particular bubbly flows. Thus we showed the capacity of the ISS model to produce a cheap pertinent solution. Secondly, we use the ISS model to perform simulations of bubbly flows in column. Results of these simulations are averaged to obtain quantities that appear in mass, momentum and interfacial area density balances. Thus, we processed to an a priori test of a complete one dimensional averaged model.We showed that this model predicts well the simplest flows (laminar and monodisperse). Moreover, the hypothesis of one pressure, which is often made in averaged model like CATHARE, NEPTUNE and RELAP5, is satisfied in such flows. At the opposite, without a polydisperse model, the drag is over-predicted and the uncorrelated A i flux needs a closure law. Finally, we showed that in turbulent flows, fluctuations of velocity and pressure in the liquid phase are not represented by the tested averaged model. (author)
Minier, Jean-Pierre; Chibbaro, Sergio; Pope, Stephen B.
2014-11-01
In this paper, we establish a set of criteria which are applied to discuss various formulations under which Lagrangian stochastic models can be found. These models are used for the simulation of fluid particles in single-phase turbulence as well as for the fluid seen by discrete particles in dispersed turbulent two-phase flows. The purpose of the present work is to provide guidelines, useful for experts and non-experts alike, which are shown to be helpful to clarify issues related to the form of Lagrangian stochastic models. A central issue is to put forward reliable requirements which must be met by Lagrangian stochastic models and a new element brought by the present analysis is to address the single- and two-phase flow situations from a unified point of view. For that purpose, we consider first the single-phase flow case and check whether models are fully consistent with the structure of the Reynolds-stress models. In the two-phase flow situation, coming up with clear-cut criteria is more difficult and the present choice is to require that the single-phase situation be well-retrieved in the fluid-limit case, elementary predictive abilities be respected and that some simple statistical features of homogeneous fluid turbulence be correctly reproduced. This analysis does not address the question of the relative predictive capacities of different models but concentrates on their formulation since advantages and disadvantages of different formulations are not always clear. Indeed, hidden in the changes from one structure to another are some possible pitfalls which can lead to flaws in the construction of practical models and to physically unsound numerical calculations. A first interest of the present approach is illustrated by considering some models proposed in the literature and by showing that these criteria help to assess whether these Lagrangian stochastic models can be regarded as acceptable descriptions. A second interest is to indicate how future
International Nuclear Information System (INIS)
Minier, Jean-Pierre; Chibbaro, Sergio; Pope, Stephen B.
2014-01-01
In this paper, we establish a set of criteria which are applied to discuss various formulations under which Lagrangian stochastic models can be found. These models are used for the simulation of fluid particles in single-phase turbulence as well as for the fluid seen by discrete particles in dispersed turbulent two-phase flows. The purpose of the present work is to provide guidelines, useful for experts and non-experts alike, which are shown to be helpful to clarify issues related to the form of Lagrangian stochastic models. A central issue is to put forward reliable requirements which must be met by Lagrangian stochastic models and a new element brought by the present analysis is to address the single- and two-phase flow situations from a unified point of view. For that purpose, we consider first the single-phase flow case and check whether models are fully consistent with the structure of the Reynolds-stress models. In the two-phase flow situation, coming up with clear-cut criteria is more difficult and the present choice is to require that the single-phase situation be well-retrieved in the fluid-limit case, elementary predictive abilities be respected and that some simple statistical features of homogeneous fluid turbulence be correctly reproduced. This analysis does not address the question of the relative predictive capacities of different models but concentrates on their formulation since advantages and disadvantages of different formulations are not always clear. Indeed, hidden in the changes from one structure to another are some possible pitfalls which can lead to flaws in the construction of practical models and to physically unsound numerical calculations. A first interest of the present approach is illustrated by considering some models proposed in the literature and by showing that these criteria help to assess whether these Lagrangian stochastic models can be regarded as acceptable descriptions. A second interest is to indicate how future
A two-fluid two-phase model for thermal-hydraulic analysis of a U-tube steam generator
International Nuclear Information System (INIS)
Hung, Huanjen; Chieng, Chingchang; Pei, Baushei; Wang, Songfeng
1993-01-01
The Advanced Thermal-Hydraulic Analysis Code for Nuclear Steam Generators (ATHANS) was developed on the basis of the THERMIT-UTSG computer code for U-tube steam generators. The main features of the ATHANS model are as follows: (a) the equations are solved in cylindrical coordinates, (b) the number and the arrangement of the control volumes inside the steam generator can be chosen by the user, (c) the virtual mass effect is incorporated, and (d) the conjugate gradient squared method is employed to accelerate and improve the numerical convergence. The performance of the model is successfully validated by comparison with the test data from a Westinghouse model F steam generator at the Maanshan nuclear power plant. Better agreement with the test data can be obtained by a finer grid system using a cylindrical coordinate system and the virtual mass effect. With these advanced features, ATHANS provides the basic framework for further studies on the problems of steam generators, such as analyses of secondary-side corrosion and tube ruptures
El-Amin, Mohamed; Saad, Adel; Salama, Amgad; Sun, Shuyu
2017-01-01
In this paper, the magnetic nanoparticles are injected into a water-oil, two-phase system under the influence of an external permanent magnetic field. We lay down the mathematical model and provide a set of numerical exercises of hypothetical cases to show how an external magnetic field can influence the transport of nanoparticles in the proposed two-phase system in porous media. We treat the water-nanoparticles suspension as a miscible mixture, whereas it is immiscible with the oil phase. The magnetization properties, the density, and the viscosity of the ferrofluids are obtained based on mixture theory relationships. In the mathematical model, the phase pressure contains additional term to account for the extra pressures due to fluid magnetization effect and the magnetostrictive effect. As a proof of concept, the proposed model is applied on a countercurrent imbibition flow system in which both the displacing and the displaced fluids move in opposite directions. Physical variables, including waternanoparticles suspension saturation, nanoparticles concentration, and pore wall/throat concentrations of deposited nanoparticles, are investigated under the influence of the magnetic field. Two different locations of the magnet are studied numerically, and variations in permeability and porosity are considered.
El-Amin, Mohamed
2017-08-28
In this paper, the magnetic nanoparticles are injected into a water-oil, two-phase system under the influence of an external permanent magnetic field. We lay down the mathematical model and provide a set of numerical exercises of hypothetical cases to show how an external magnetic field can influence the transport of nanoparticles in the proposed two-phase system in porous media. We treat the water-nanoparticles suspension as a miscible mixture, whereas it is immiscible with the oil phase. The magnetization properties, the density, and the viscosity of the ferrofluids are obtained based on mixture theory relationships. In the mathematical model, the phase pressure contains additional term to account for the extra pressures due to fluid magnetization effect and the magnetostrictive effect. As a proof of concept, the proposed model is applied on a countercurrent imbibition flow system in which both the displacing and the displaced fluids move in opposite directions. Physical variables, including waternanoparticles suspension saturation, nanoparticles concentration, and pore wall/throat concentrations of deposited nanoparticles, are investigated under the influence of the magnetic field. Two different locations of the magnet are studied numerically, and variations in permeability and porosity are considered.
Energy Technology Data Exchange (ETDEWEB)
Leung, K.H. [McMaster Univ., Hamilton, Ontario (Canada)], E-mail: leungk4@mcmaster.ca
2009-07-01
The evaluation of the subchannel code ASSERT against the OECD/NEA BFBT benchmark data demonstrated that at low pressures, the void fraction in the corner and side subchannels of a vertical bundle was over-predicted. Preliminary results suggest that this was due to the use of Carlucci's empirical correlation for void drift beyond its applicable range of pressure. Further examination indicates that the choice of the mixing and void drift models has a negligible effect on the error of the subchannel void fraction predictions. A single, isolated subchannel was simulated and results suggest that the root cause behind the over-prediction is inadequate mixing at the sides and corners of the bundle. Increasing the magnitude of the void drift coefficients in Carlucci's model at low pressure was found to improve the overall accuracy of the predictions. A simple correlation relating {omega} to the outlet pressure was found to increase the number of points falling within experimental error by 1.0%. (author)
International Nuclear Information System (INIS)
Leung, K.H.
2009-01-01
The evaluation of the subchannel code ASSERT against the OECD/NEA BFBT benchmark data demonstrated that at low pressures, the void fraction in the corner and side subchannels of a vertical bundle was over-predicted. Preliminary results suggest that this was due to the use of Carlucci's empirical correlation for void drift beyond its applicable range of pressure. Further examination indicates that the choice of the mixing and void drift models has a negligible effect on the error of the subchannel void fraction predictions. A single, isolated subchannel was simulated and results suggest that the root cause behind the over-prediction is inadequate mixing at the sides and corners of the bundle. Increasing the magnitude of the void drift coefficients in Carlucci's model at low pressure was found to improve the overall accuracy of the predictions. A simple correlation relating Ω to the outlet pressure was found to increase the number of points falling within experimental error by 1.0%. (author)
Energy Technology Data Exchange (ETDEWEB)
Ortega, N. [Posgrado en Ingenieria (Energia), Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Temixco, Morelos 62580 (Mexico); Garcia-Valladares, O.; Best, R.; Gomez, V.H. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Temixco, Morelos 62580 (Mexico)
2008-09-15
A detailed one-dimensional numerical model describing the heat and fluid-dynamic behavior inside a compound parabolic concentrator (CPC) used as an ammonia vapor generator has been developed. The governing equations (continuity, momentum, and energy) inside the CPC absorber tube, together with the energy equation in the tube wall and the thermal analysis in the solar concentrator were solved. The computational method developed is useful for the solar vapor generator design applied to absorption cooling systems. The effect on the outlet temperature and vapor quality of a range of CPC design parameters was analyzed. These parameters were the acceptance half-angle and CPC length, the diameter and coating of the absorber tube, and the manufacture materials of the cover, the reflector, and the absorber tube. It was found that the most important design parameters in order to obtain a higher ammonia-water vapor production are, in order of priority: the reflector material, the absorber tube diameter, the selective surface, and the acceptance half-angle. The direct ammonia-water vapor generation resulting from a 35 m long CPC was coupled to an absorption refrigeration system model in order to determine the solar fraction, cooling capacity, coefficient of performance, and overall efficiency during a typical day of operation. The results show that approximately 3.8 kW of cooling at -10{sup o}C could be produced with solar and overall efficiencies up to 46.3% and 21.2%, respectively. (author)
Directory of Open Access Journals (Sweden)
Haider Ali
2018-04-01
Full Text Available Achieving optimal nutrient concentrations is essential to increasing the biomass productivity of algal raceway ponds. Nutrient mixing or distribution in raceway ponds is significantly affected by hydrodynamic and geometric properties. The nutrient mixing in algal raceway ponds under the influence of hydrodynamic and geometric properties of ponds is yet to be explored. Such a study is required to ensure optimal nutrient concentrations in algal raceway ponds. A novel computational fluid dynamics (CFD model based on the Euler–Euler numerical scheme was developed to investigate nutrient mixing in raceway ponds under the effects of hydrodynamic and geometric properties. Nutrient mixing was investigated by estimating the dissolution of nutrients in raceway pond water. Experimental and CFD results were compared and verified using solid–liquid mass transfer coefficient and nutrient concentrations. Solid–liquid mass transfer coefficient, solid holdup, and nutrient concentrations in algal pond were estimated with the effects of pond aspect ratios, water depths, paddle wheel speeds, and particle sizes of nutrients. From the results, it was found that the proposed CFD model effectively simulated nutrient mixing in raceway ponds. Nutrient mixing increased in narrow and shallow raceway ponds due to effective solid–liquid mass transfer. High paddle wheel speeds increased the dissolution rate of nutrients in raceway ponds.
International Nuclear Information System (INIS)
Kataoka, Isao; Tomiyama, Akio
2004-01-01
The simplified and physically reasonable basic equations for the gas-liquid dispersed flow were developed based on some appropriate assumptions and the treatment of dispersed phase as isothermal rigid particles. Based on the local instant formulation of mass, momentum and energy conservation of the dispersed flow, time-averaged equations were obtained assuming that physical quantities in the dispersed phase are uniform. These assumptions are approximately valid when phase change rate and/or chemical reaction rate are not so large at gas-liquid interface and there is no heat generation in within the dispersed phase. Detailed discussions were made on the characteristics of obtained basic equations and physical meanings of terms consisting the basic equations. It is shown that, in the derived averaged momentum equation, the terms of pressure gradient and viscous momentum diffusion do not appear and, in the energy equation, the term of molecular thermal diffusion heat flux does not appear. These characteristics of the derived equations were shown to be very consistent concerning the physical interpretation of the gas-liquid dispersed flow. Furthermore, the obtained basic equations are consistent with experiments for the dispersed flow where most of averaged physical quantities are obtained assuming that the distributions of those are uniform within the dispersed phase. Investigation was made on the problem whether the obtained basic equations are well-posed or ill-posed for the initial value problem. The eigenvalues of the simplified mass and momentum equations are calculated for basic equations obtained here and previous two-fluid basic equations with one pressure model. Well-posedness and ill-posedness are judged whether the eigenvalues are real or imaginary. The result indicated the newly developed basic equations always constitute the well-posed initial value problem while the previous two-fluid basic equations based on one pressure model constitutes ill
International Nuclear Information System (INIS)
Sheikholeslami, Mohsen; Domiri Ganji, Davood; Younus Javed, M.; Ellahi, R.
2015-01-01
In this study, effect of thermal radiation on magnetohydrodynamics nanofluid flow between two horizontal rotating plates is studied. The significant effects of Brownian motion and thermophoresis have been included in the model of nanofluid. By using the appropriate transformation for the velocity, temperature and concentration, the basic equations governing the flow, heat and mass transfer are reduced to a set of ordinary differential equations. These equations, subjected to the associated boundary conditions are solved numerically using the fourth-order Runge–Kutta method. The effects of Reynolds number, magnetic parameter, rotation parameter, Schmidt number, thermophoretic parameter, Brownian parameter and radiation parameter on heat and mass characteristics are examined. Results show that Nusselt number has direct relationship with radiation parameter and Reynolds number while it has reverse relationship with other active parameters. It can also be found that concentration boundary layer thickness decreases with the increase of radiation parameter. - Highlights: • This paper analyses thermal radiation on magnetohydrodynamic nanofluid. • Fourth-order Runge–Kutta method is used. • The effects of Reynolds number, magnetic parameter, rotation parameter, Schmidt number thermophoretic parameter, Brownian parameter and radiation parameter on heat and mass characteristics are examined. • Comparison is also made with the existing literature
Flow of magnetic particles in blood with isothermal heating: A fractional model for two-phase flow
Ali, Farhad; Imtiaz, Anees; Khan, Ilyas; Sheikh, Nadeem Ahmad
2018-06-01
In the sixteenth century, medical specialists were of the conclusion that magnet can be utilized for the treatment or wipe out the illnesses from the body. On this basis, the research on magnet advances day by day for the treatment of different types of diseases in mankind. This study aims to investigate the effect of magnetic field and their applications in human body specifically in blood. Blood is a non-Newtonian fluid because its viscosity depends strongly on the fraction of volume occupied by red cells also called the hematocrit. Therefore, in this paper blood is considered as an example of non-Newtonian Casson fluid. The blood flow is considered in a vertical cylinder together with heat transfer due to mixed conviction caused by buoyancy force and the external pressure gradient. Effect of magnetic field on the velocities of blood and magnetic particles is also considered. The problem is modelled using the Caputo-Fabrizio derivative approach. The governing fractional partial differential equations are solved using Laplace and Hankel transformation techniques and exact solutions are obtained. Effects of different parameters such as Grashof number, Prandtl number, Casson fluid parameter and fractional parameters, and magnetic field are shown graphically. Both velocity profiles increase with the increase of Grashoff number and Casson fluid parameter and reduce with the increase of magnetic field.
International Nuclear Information System (INIS)
Doughty, C.; Pruess, K.
1991-03-01
A semianalytical solution for transient two-phase water, air, and heat flow in a uniform porous medium surrounding a constant-strength linear heat source has been developed, using a similarity variable η=r/√t (r is radial distance, t is time). Although the similarity transformation requires a simplified radial geometry, all the physical mechanisms involved in two-phase fluid and heat flow may be taken into account in a rigorous way. The solution includes nonlinear thermophysical fluid and material properties, such as relative permeability and capillary pressure variations with saturation, and density and viscosity variations with temperature and pressure. The resulting governing equations form a set of coupled nonlinear ODEs, necessitating numerical integration. The solution has been applied to a partially saturated porous medium initially at a temperature well below the saturation temperature, which is the setting for the potential nuclear waste repository site at Yucca Mountain, Nevada. The resulting heat and fluid flows provide a stringent test of many of the capabilities of numerical simulation models, making the similarity solution a useful tool for model verification. Comparisons to date have shown excellent agreement between the TOUGH2 simulator and the similarity solution for a variety of conditions. 13 refs., 6 figs., 1 tab
International Nuclear Information System (INIS)
Boure, J.A.
1974-12-01
Two-phase flow instabilities are classified according to three criteria: the static or dynamic nature of the phenomenon, the necessity or not of a triggering phenomenon, and the pure or compound character of the phenomenon. Tables give the elementary instability phenomena, and the practical types of instability. Flow oscillations (or dynamic instabilities) share a number of characteristics which are dealt with, they are caused by the dynamic interactions between the flow parameters (flow rate, density, pressure, enthalpy and their distributions). Oscillation types are discussed: pure oscillations are density wave oscillations, acoustic oscillations may also occur, various compound oscillations involve either the density wave or the acoustic wave mechanism, interacting with some of the boundary conditions in the device. The analysis of slow oscillations has been made either by means of a simplified model (prediction of the thresholds) or of computer codes. Numerous computer codes are available [fr
Verma, Rahul
2018-01-06
Understanding of pore-scale physics for multiphase flow in porous media is essential for accurate description of various flow phenomena. In particular, capillarity and wettability strongly influence capillary pressure-saturation and relative permeability relationships. Wettability is quantified by the contact angle of the fluid-fluid interface at the pore walls. In this work we focus on the non-trivial interface equilibria in presence of non-neutral wetting and complex geometries. We quantify the accuracy of a volume-of-fluid (VOF) formulation, implemented in a popular open-source computational fluid dynamics code, compared with a new formulation of a level set (LS) method, specifically developed for quasi-static capillarity-dominated displacement. The methods are tested in rhomboidal packings of spheres for a range of contact angles and for different rhomboidal configurations and the accuracy is evaluated against the semi-analytical solutions obtained by Mason and Morrow (1994). While the VOF method is implemented in a general purpose code that solves the full Navier-Stokes (NS) dynamics in a finite volume formulation, with additional terms to model surface tension, the LS method is optimised for the quasi-static case and, therefore, less computationally expensive. To overcome the shortcomings of the finite volume NS-VOF system for low capillary number flows, and its computational cost, we introduce an overdamped dynamics and a local time stepping to speed up the convergence to the steady state, for every given imposed pressure gradient (and therefore saturation condition). Despite these modifications, the methods fundamentally differ in the way they capture the interface, as well as in the number of equations solved and in the way the mean curvature (or equivalently capillary pressure) is computed. This study is intended to provide a rigorous validation study and gives important indications on the errors committed by these methods in solving more complex geometry
Kassemi, Mohammad; Kartuzova, Olga; Hylton, Sonya
2018-01-01
This paper examines our computational ability to capture the transport and phase change phenomena that govern cryogenic storage tank pressurization and underscores our strengths and weaknesses in this area in terms of three computational-experimental validation case studies. In the first study, 1g pressurization of a simulant low-boiling point fluid in a small scale transparent tank is considered in the context of the Zero-Boil-Off Tank (ZBOT) Experiment to showcase the relatively strong capability that we have developed in modelling the coupling between the convective transport and stratification in the bulk phases with the interfacial evaporative and condensing heat and mass transfer that ultimately control self-pressurization in the storage tank. Here, we show that computational predictions exhibit excellent temporal and spatial fidelity under the moderate Ra number - high Bo number convective-phase distribution regimes. In the second example, we focus on 1g pressurization and pressure control of the large-scale K-site liquid hydrogen tank experiment where we show that by crossing fluid types and physical scales, we enter into high Bo number - high Ra number flow regimes that challenge our ability to predict turbulent heat and mass transfer and their impact on the tank pressurization correctly, especially, in the vapor domain. In the final example, we examine pressurization results from the small scale simulant fluid Tank Pressure Control Experiment (TCPE) performed in microgravity to underscore the fact that in crossing into a low Ra number - low Bo number regime in microgravity, the temporal evolution of the phase front as affected by the time-dependent residual gravity and impulse accelerations becomes an important consideration. In this case detailed acceleration data are needed to predict the correct rate of tank self-pressurization.
Verma, Rahul; Icardi, Matteo; Prodanović, Maša
2018-01-01
Understanding of pore-scale physics for multiphase flow in porous media is essential for accurate description of various flow phenomena. In particular, capillarity and wettability strongly influence capillary pressure-saturation and relative permeability relationships. Wettability is quantified by the contact angle of the fluid-fluid interface at the pore walls. In this work we focus on the non-trivial interface equilibria in presence of non-neutral wetting and complex geometries. We quantify the accuracy of a volume-of-fluid (VOF) formulation, implemented in a popular open-source computational fluid dynamics code, compared with a new formulation of a level set (LS) method, specifically developed for quasi-static capillarity-dominated displacement. The methods are tested in rhomboidal packings of spheres for a range of contact angles and for different rhomboidal configurations and the accuracy is evaluated against the semi-analytical solutions obtained by Mason and Morrow (1994). While the VOF method is implemented in a general purpose code that solves the full Navier-Stokes (NS) dynamics in a finite volume formulation, with additional terms to model surface tension, the LS method is optimised for the quasi-static case and, therefore, less computationally expensive. To overcome the shortcomings of the finite volume NS-VOF system for low capillary number flows, and its computational cost, we introduce an overdamped dynamics and a local time stepping to speed up the convergence to the steady state, for every given imposed pressure gradient (and therefore saturation condition). Despite these modifications, the methods fundamentally differ in the way they capture the interface, as well as in the number of equations solved and in the way the mean curvature (or equivalently capillary pressure) is computed. This study is intended to provide a rigorous validation study and gives important indications on the errors committed by these methods in solving more complex geometry
International Nuclear Information System (INIS)
Gofuku, Akio; Shimizu, Kenji; Sugano, Keiji; Morimoto, Takashi; Yoshikawa, Hidekazu; Wakabayashi, Jiro
1992-01-01
This paper deals with computerized supporting techniques of a numerical simulation of complex and large-scale engineering systems like nuclear power plants. As an example of the intelligent support systems of dynamic simulation, a prototype expert system is developed on an expert system development tool to support the selection of mathematical model which is a first step of numerical simulation and is required both wide expert knowledge and high-level decision making. The expert system supports the selection of liquid-vapor two phase flow models (fluid model and constitutive equations) consistent with simulation purpose and condition in the case of thermal-hydraulic simulation of nuclear power plants. The possibility of the expert system is examined for various selection support cases by both investigation of the appropriateness of the selection support logic and comparison between support results and decision results of several experts. (author)
Directory of Open Access Journals (Sweden)
E.M. Matos
2002-07-01
Full Text Available This work presents a model to predict the behavior of velocity, gas holdup and local concentration fields in a pseudo-two-phase gas-liquid column reactor applied for thermal hydrocracking of petroleum heavy fractions. The model is based on the momentum and mass balances for the system, using an Eulerian-Eulerian approach. Using the k-epsilon model,fluid dynamics accounts for both laminar and turbulent flows, with discrete small bubbles (hydrogen flowing in a continuous pseudohomogeneous liquid phase (oil and catalyst particles. The petroleum is assumed to be a mixture of pseudocomponents, grouped by similar chemical structural properties, and the thermal hydrocracking is taken into account using a kinetic network based on these pseudocomponents.
Arbogast, Todd
2012-01-01
Motivated by possible generalizations to more complex multiphase multicomponent systems in higher dimensions, we develop an Eulerian-Lagrangian numerical approximation for a system of two conservation laws in one space dimension modeling a simplified two-phase flow problem in a porous medium. The method is based on following tracelines, so it is stable independent of any CFL constraint. The main difficulty is that it is not possible to follow individual tracelines independently. We approximate tracing along the tracelines by using local mass conservation principles and self-consistency. The two-phase flow problem is governed by a system of equations representing mass conservation of each phase, so there are two local mass conservation principles. Our numerical method respects both of these conservation principles over the computational mesh (i.e., locally), and so is a fully conservative traceline method. We present numerical results that demonstrate the ability of the method to handle problems with shocks and rarefactions, and to do so with very coarse spatial grids and time steps larger than the CFL limit. © 2012 Society for Industrial and Applied Mathematics.
International Nuclear Information System (INIS)
Kornienko, Y.; Kornienko, E.; Ninokata, H.
2001-01-01
One-dimensional mathematical models are extensively used in thermohydraulics assessment of Nuclear Power Plant (NPP) transients and accidents, because specifically 1-D system of the conservation laws allows to reduce computing time and required memory, especially in ''best estimate'' code calculations. This work is generalization of the well-known Zuber-Findley and Hancox-Nicoll methods for two-phase flow distribution parameters Cs taking into account the non-monotonous void fraction distribution in the transverse direction in terms of two superimposed monotonous profiles. The method is very useful in evaluating the saddle-shape void fraction profile effects. In this work two-phase flow distribution parameters Cs were developed for simple circular and rectangular pipes, and subchannel geometry in a rod bundle. Basic assumptions were power-mode approximations for describing the profiles of local volume flux density, phase velocity and temperature. The general analytical (quadrature) relationships for Cs were obtained and their 3-D illustrations are proposed. Also, we propose generalized formulation and simple approach to construct friction factor, heat and mass transfer coefficients within the gradient hypothesis and boundary layer assumptions. The contribution of momentum, heat and mass transfer as well as their sources and sinks in the channel cross-section are taken into account. In the same way, the friction factor, heat and mass transfer coefficients with the transversal and azimuthal variations being taken into account are proposed for subchannel geometry as well. (author)
International Nuclear Information System (INIS)
Lucas, D.; Beyer, M.; Banowski, M.; Seidel, T.; Krepper, E.; Liao, Y.; Apanasevich, P.; Gauss, F.; Ma, T.
2016-12-01
This report summarizes the main results obtained in frame of the project. The aim of the project was the qualification of CFD-methods for two-phase flows with phase transfer relevant for nuclear safety research. To reach this aim CFD-grade experimental data are required. Such data can be obtained at the TOPFLOW facility because of the combination of experiments in scales and at parameters which are relevant for nuclear safety research with innovative measuring techniques. The experimental part of this project comprises investigations on flows in vertical pipes using the ultrafast X-ray tomography, on flows with and without phase transfer in a special test basin and on counter-current flow limitation in a model of a PWR hot leg. These experiments are only briefly presented in this report since detailed documentations are given in separated reports for all of these 3 experimental series. One important results of the activities devoted on CFD qualification is the establishment of the baseline model concept and the definition of the baseline model for poly-disperse bubbly flows. This is an important contribution to improve the predictive capabilities of CFD-models basing on the two- or multi-fluid approach. On the other hand, the innovative Generalized Two-Phase Flow concept (GENTOP) aims on an extension of the range of applicability of CFD-methods. In many relevant flow situations different morphologies of the phases or different flow pattern occur simultaneously in one flow domain. In addition transitions between these morphologies may occur. The GENTOP-concept for the first time a framework was established which allows the simulation of such flow situations in a consistent manner. Other activities of the project aim on special model developments to improve the simulation capabilities for flows with phase transfer.
International Nuclear Information System (INIS)
Glass, R.J.; Yarrington, L.; Nicholl, M.J.
1997-09-01
The major results from SNL's Conceptual Model Development and Validation Task (WBS 1.2.5.4.6) as developed through exploration of small scale processes were synthesized in Glass et al. to give guidance to Performance Assessment on improving conceptual models for isothermal flow in unsaturated, fractured rock. There, pressure saturation and relative permeability curves for single fractures were proposed to be a function of both fracture orientation within the gravity field and initial conditions. We refer the reader to Glass et al. for a discussion of the implications of this behavior for Performance Assessment. The scientific research we report here substantiates this proposed behavior. We address the modeling of phase structure within fractures under natural gradient conditions relevant to unsaturated flow through fractures. This phase structure underlies the calculation of effective properties for individual fractures and hence fracture networks as required for Performance Assessment. Standard Percolation (SP) and Invasion Percolation (IP) approaches have been recently proposed to model the underlying phase saturation structures within the individual fractures during conditions of two-phase flow. Subsequent analysis of these structures yields effective two-phase pressure-saturation and relative permeability relations for the fracture. However, both of these approaches yield structures that are at odds with physical reality as we see in experiments and thus effective properties calculated from these structures are in error. Here we develop and evaluate a Modified Invasion Percolation (MIP) approach to better model quasi-static immiscible displacement in fractures. The effects of gravity, contact angle, local aperature field geometry, and local in-plane interfacial curvature between phases are included in the calculation of invasion pressure for individual sites in a discretized aperture field
Directory of Open Access Journals (Sweden)
S. Mimouni
2009-01-01
Full Text Available In our work in 2008, we evaluated the aptitude of the code Neptune_CFD to reproduce the incidence of a structure topped by vanes on a boiling layer, within the framework of the Neptune project. The objective was to reproduce the main effects of the spacer grids. The turbulence of the liquid phase was modeled by a first-order K-ε model. We show in this paper that this model is unable to describe the turbulence of rotating flows, in accordance with the theory. The objective of this paper is to improve the turbulence modeling of the liquid phase by a second turbulence model based on a Rij-ε approach. Results obtained on typical single-phase cases highlight the improvement of the prediction for all computed values. We tested the turbulence model Rij-ε implemented in the code versus typical adiabatic two-phase flow experiments. We check that the simulations with the Reynolds stress transport model (RSTM give satisfactory results in a simple geometry as compared to a K-ε model: this point is crucial before calculating rod bundle geometries where the K-ε model may fail.
International Nuclear Information System (INIS)
Aya, I.
1975-11-01
The proposed model was developed at ORNL to calculate mass flow rate and other quantities of two-phase flow in a pipe when the flow is dispersed with slip between the phases. The calculational model is based on assumptions concerning the characteristics of a turbine meter and a drag disk. The model should be validated with experimental data before being used in blowdown analysis. In order to compare dispersed flow and homogeneous flow, the ratio of readings from each flow regime for each device discussed is calculated for a given mass flow rate and steam quality. The sensitivity analysis shows that the calculated flow rate of a steam-water mixture (based on the measurements of a drag disk and a gamma densitometer in which the flow is assumed to be homogeneous even if there is some slip between phases) is very close to the real flow rate in the case of dispersed flow at a low quality. As the steam quality increases at a constant slip ratio, all models are prone to overestimate. At 20 percent quality the overestimates reach 8 percent in the proposed model, 15 percent in Rouhani's model, 38 percent in homogeneous model, and 75 percent in Popper's model
Directory of Open Access Journals (Sweden)
Pessôa Filho P. A.
2004-01-01
Full Text Available Mixtures containing compounds that undergo hydrogen bonding show large deviations from ideal behavior. These deviations can be accounted for through chemical theory, according to which the formation of a hydrogen bond can be treated as a chemical reaction. This chemical equilibrium needs to be taken into account when applying stability criteria and carrying out phase equilibrium calculations. In this work, we illustrate the application of the stability criteria to establish the conditions under which a liquid-phase split may occur and the subsequent calculation of liquid-liquid equilibrium using a chemical-theory-modified Flory-Huggins equation to describe the non ideality of aqueous two-phase systems composed of poly(ethylene glycol and dextran. The model was found to be able to correlate ternary liquid-liquid diagrams reasonably well by simple adjustment of the polymer-polymer binary interaction parameter.
Energy Technology Data Exchange (ETDEWEB)
Wang, Y. B. [Department of Mathematics, ShaoXing University, No.900, ChengNan Avenue 312000, ShaoXing, Zhejiang (China); Zhu, X. W., E-mail: xiaowuzhu1026@znufe.edu.cn [School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430073 (China); Dai, H. H. [Department of Mathematics, City University of HongKong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong (China)
2016-08-15
Though widely used in modelling nano- and micro- structures, Eringen’s differential model shows some inconsistencies and recent study has demonstrated its differences between the integral model, which then implies the necessity of using the latter model. In this paper, an analytical study is taken to analyze static bending of nonlocal Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. Firstly, a reduction method is proved rigorously, with which the integral equation in consideration can be reduced to a differential equation with mixed boundary value conditions. Then, the static bending problem is formulated and four types of boundary conditions with various loadings are considered. By solving the corresponding differential equations, exact solutions are obtained explicitly in all of the cases, especially for the paradoxical cantilever beam problem. Finally, asymptotic analysis of the exact solutions reveals clearly that, unlike the differential model, the integral model adopted herein has a consistent softening effect. Comparisons are also made with existing analytical and numerical results, which further shows the advantages of the analytical results obtained. Additionally, it seems that the once controversial nonlocal bar problem in the literature is well resolved by the reduction method.
Yang, W. W.; Zhao, T. S.
A two-phase, mass-transport model for liquid-feed direct methanol fuel cells (DMFCs) is developed by taking into account the effect of non-equilibrium evaporation and condensation of methanol and water. The comparison between the present model and other models indicates that the present model yields more reasonable predictions of cell performance. Particularly, it is shown that the models that invoke a thermodynamic-equilibrium assumption between phases will overestimate mass-transport rates of methanol and water, thereby resulting in an inaccurate prediction of cell performance. The parametric study using the present model reveals that the gas coverage at the flow channel-diffusion-layer interface is directly related to the gas-void fraction inside the anode porous region; increasing the gas-void fraction will increase the mass-transfer resistance of methanol and thus lower cell performance. The effects of the geometric dimensions of the cell structure, such as channel width and rib width, on cell performance are also investigated with the model developed in this work.
International Nuclear Information System (INIS)
Wang, Y. B.; Zhu, X. W.; Dai, H. H.
2016-01-01
Though widely used in modelling nano- and micro- structures, Eringen’s differential model shows some inconsistencies and recent study has demonstrated its differences between the integral model, which then implies the necessity of using the latter model. In this paper, an analytical study is taken to analyze static bending of nonlocal Euler-Bernoulli beams using Eringen’s two-phase local/nonlocal model. Firstly, a reduction method is proved rigorously, with which the integral equation in consideration can be reduced to a differential equation with mixed boundary value conditions. Then, the static bending problem is formulated and four types of boundary conditions with various loadings are considered. By solving the corresponding differential equations, exact solutions are obtained explicitly in all of the cases, especially for the paradoxical cantilever beam problem. Finally, asymptotic analysis of the exact solutions reveals clearly that, unlike the differential model, the integral model adopted herein has a consistent softening effect. Comparisons are also made with existing analytical and numerical results, which further shows the advantages of the analytical results obtained. Additionally, it seems that the once controversial nonlocal bar problem in the literature is well resolved by the reduction method.
Sweijen, Thomas; Hartog, Niels; Marsman, Annemieke; Keijzer, Thomas J S
2014-06-01
Mercury is a contaminant of global concern. The use of elemental mercury in various (former) industrial processes, such as chlorine production at chlor-alkali plants, is known to have resulted in soil and groundwater contaminations worldwide. However, the subsurface transport behaviour of elemental mercury as an immiscible dense non-aqueous phase liquid (DNAPL) in porous media has received minimal attention to date. Even though, such insight would aid in the remediation effort of mercury contaminated sites. Therefore, in this study a detailed field characterization of elemental mercury DNAPL distribution with depth was performed together with two-phase flow modelling, using STOMP. This is to evaluate the dynamics of mercury DNAPL migration and the controls on its distribution in saturated porous media. Using a CPT-probe mounted with a digital camera, in-situ mercury DNAPL depth distribution was obtained at a former chlor-alkali-plant, down to 9 m below ground surface. Images revealing the presence of silvery mercury DNAPL droplets were used to quantify its distribution, characteristics and saturation, using an image analysis method. These field-observations with depth were compared with results from a one-dimensional two-phase flow model simulation for the same transect. Considering the limitations of this approach, simulations reasonably reflected the variability and range of the mercury DNAPL distribution. To further explore the impact of mercury's physical properties in comparison with more common DNAPLs, the migration of mercury and PCE DNAPL in several typical hydrological scenarios was simulated. Comparison of the simulations suggest that mercury's higher density is the overall controlling factor in controlling its penetration in saturated porous media, despite its higher resistance to flow due to its higher viscosity. Based on these results the hazard of spilled mercury DNAPL to cause deep contamination of groundwater systems seems larger than for any other
Energy Technology Data Exchange (ETDEWEB)
Manera, A. [Forschungszentrum Rossendorf e.V. (FZR), Institute of Safety Research, P.O.B. 510119, D-01324 Dresden (Germany) and Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)]. E-mail: a.manera@fz-rossendorf.de; Rohde, U. [Forschungszentrum Rossendorf e.V. (FZR), Institute of Safety Research, P.O.B. 510119, D-01324 Dresden (Germany); Prasser, H.-M. [Forschungszentrum Rossendorf e.V. (FZR), Institute of Safety Research, P.O.B. 510119, D-01324 Dresden (Germany); Hagen, T.H.J.J. van der [Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)
2005-06-01
This paper reports on the modeling and simulation of flashing-induced instabilities in natural-circulation systems, with special emphasis on natural-circulation boiling water reactors (BWRs). For the modeling the 4-equation two-phase model FLOCAL [Rohde, U., 1986. Ein teoretisches Modell fur Zweiphasen-stromungen in wassergekulthen Kernreaktoren und seine Anwendung zur Analyse des Naturumlaufs im Heizreaktor AST-500. Ph.D. dissertation, Akademie der Wissenschaften der DDR, Dresden], developed at the Forschungszentrum Rossendorf (FZR, Germany), has been used. The model allows for the liquid and vapor to be in thermal non-equilibrium and, via drift-flux models, to have different velocities. The phenomenology of the instability has been studied and the dominating physical effects have been determined. The results of the simulations have been compared qualitatively and quantitatively with experiments [Manera, A., van der Hagen, T.H.J.J., 2003. Stability of natural-circulation-cooled boiling water reactor during start up: experimental results. Nuc. Technol., 143] that have been carried out within the framework of a European project (NACUSP) on the CIRCUS facility. The facility, built at the Delft University of Technology in The Netherlands, is a water/steam 1:1 height-scaled loop of a typical natural-circulation-cooled BWR.
Energy Technology Data Exchange (ETDEWEB)
Jaeger, Wadim; Manes, Jorge Perez; Imke, Uwe; Escalante, Javier Jimenez; Espinoza, Victor Sanchez, E-mail: victor.sanchez@kit.edu
2013-10-15
Highlights: • Simulation of BFBT turbine and pump transients at multiple scales. • CFD, sub-channel and system codes are used for the comparative study. • Heat transfer models are compared to identify difference between the code predictions. • All three scales predict results in good agreement to experiment. • Sub cooled boiling models are identified as field for future research. -- Abstract: The Institute for Neutron Physics and Reactor Technology (INR) at the Karlsruhe Institute of Technology (KIT) is involved in the validation and qualification of modern thermo hydraulic simulations tools at various scales. In the present paper, the prediction capabilities of four codes from three different scales – NEPTUNE{sub C}FD as fine mesh computational fluid dynamics code, SUBCHANFLOW and COBRA-TF as sub channels codes and TRACE as system code – are assessed with respect to their two-phase flow modeling capabilities. The subject of the investigations is the well-known and widely used data base provided within the NUPEC BFBT benchmark related to BWRs. Void fraction measurements simulating a turbine and a re-circulation pump trip are provided at several axial levels of the bundle. The prediction capabilities of the codes for transient conditions with various combinations of boundary conditions are validated by comparing the code predictions with the experimental data. In addition, the physical models of the different codes are described and compared to each other in order to explain the different results and to identify areas for further improvements.
Energy Technology Data Exchange (ETDEWEB)
Sharma, S.L., E-mail: sharma55@purdue.edu [School of Nuclear Engineering, Purdue University, West Lafayette, IN (United States); Hibiki, T.; Ishii, M. [School of Nuclear Engineering, Purdue University, West Lafayette, IN (United States); Schlegel, J.P. [Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, MO (United States); Buchanan, J.R.; Hogan, K.J. [Bettis Laboratory, Naval Nuclear Laboratory, West Mifflin, PA (United States); Guilbert, P.W. [ANSYS UK Ltd, Oxfordshire (United Kingdom)
2017-02-15
Highlights: • Closure form of the interfacial shear term in three-dimensional form is investigated. • Assessment against adiabatic upward bubbly air–water flow data using CFD. • Effect of addition of the interfacial shear term on the phase distribution. - Abstract: In commercially available Computational Fluid Dynamics (CFD) codes such as ANSYS CFX and Fluent, the interfacial shear term is missing in the field momentum equations. The derivation of the two-fluid model (Ishii and Hibiki, 2011) indicates the presence of this term as a momentum source in the right hand side of the field momentum equation. The inclusion of this term is considered important for proper modeling of the interfacial momentum coupling between phases. For separated flows, such as annular flow, the importance of the shear term is understood in the one-dimensional (1-D) form as the major mechanism by which the wall shear is transferred to the gas phase (Ishii and Mishima, 1984). For gas dispersed two-phase flow CFD simulations, it is important to assess the significance of this term in the prediction of phase distributions. In the first part of this work, the closure of this term in three-dimensional (3-D) form in a CFD code is investigated. For dispersed gas–liquid flow, such as bubbly or churn-turbulent flow, bubbles are dispersed in the shear layer of the continuous phase. The continuous phase shear stress is mainly due to the presence of the wall and the modeling of turbulence through the Boussinesq hypothesis. In a 3-D simulation, the continuous phase shear stress can be calculated from the continuous fluid velocity gradient, so that the interfacial shear term can be closed using the local values of the volume fraction and the total stress of liquid phase. This form also assures that the term acts as an action-reaction force for multiple phases. In the second part of this work, the effect of this term on the volume fraction distribution is investigated. For testing the model two-phase
Rahimi-Gorji, Mohammad; Gorji, Tahereh B; Gorji-Bandpy, Mofid
2016-07-01
In the present investigation, detailed two-phase flow modeling of airflow, transport and deposition of micro-particles (1-10µm) in a realistic tracheobronchial airway geometry based on CT scan images under various breathing conditions (i.e. 10-60l/min) was considered. Lagrangian particle tracking has been used to investigate the particle deposition patterns in a model comprising mouth up to generation G6 of tracheobronchial airways. The results demonstrated that during all breathing patterns, the maximum velocity change occurred in the narrow throat region (Larynx). Due to implementing a realistic geometry for simulations, many irregularities and bending deflections exist in the airways model. Thereby, at higher inhalation rates, these areas are prone to vortical effects which tend to entrap the inhaled particles. According to the results, deposition fraction has a direct relationship with particle aerodynamic diameter (for dp=1-10µm). Enhancing inhalation flow rate and particle size will largely increase the inertial force and consequently, more particle deposition is evident suggesting that inertial impaction is the dominant deposition mechanism in tracheobronchial airways. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kou, Jisheng
2015-03-01
In this paper, we consider multi-component dynamic two-phase interface models, which are formulated by the Cahn-Hilliard system with Peng-Robinson equation of state and various boundary conditions. These models can be derived from the minimum problems of Helmholtz free energy or grand potential in the realistic thermodynamic systems. The resulted Cahn-Hilliard systems with various boundary conditions are fully coupled and strongly nonlinear. A linear transformation is introduced to decouple the relations between different components, and as a result, the models are simplified. From this, we further propose a semi-implicit unconditionally stable time discretization scheme, which allows us to solve the Cahn-Hilliard system by a decoupled way, and thus, our method can significantly reduce the computational cost and memory requirements. The mixed finite element methods are employed for the spatial discretization, and the approximate errors are also analyzed for both space and time. Numerical examples are tested to demonstrate the efficiency of our proposed methods. © 2015 Elsevier B.V.
International Nuclear Information System (INIS)
Chenu, A.
2011-10-01
Nuclear power is nowadays in the front rank as regards helping to meet the growing worldwide energy demand while avoiding an excessive increase in greenhouse gas emissions. However, the operating nuclear power plants are mainly thermal-neutron reactors and, as such, can not be maintained on the basis of the currently identified uranium resources beyond one century at the present consumption rate. Sustainability of nuclear power thus involves closure of the fuel cycle through breeding. With a uranium-based fuel, breeding can only be achieved using a fast-neutron reactor. Sodium-cooled fast reactor (SFR) technology benefits from 400 reactor-years of accumulated experience and is thus a prime candidate for the implementation of so-called Generation-IV nuclear energy systems. In this context, the safety demonstration of SFRs remains a major Research and Development related issue. The current research aims at the development of a computational tool for the in-depth understanding of SFR core behaviour during accidental transients, particularly those including boiling of the coolant. An accurate modelling of the core physics during such transients requires the coupling between 3D neutron kinetics and thermal-hydraulics in the core, to account for the strong interactions between the two-phase coolant flow and power variations caused by the sodium void effect. The present study is specifically focused upon models for the representation of sodium two-phase flow. The extension of the thermal-hydraulics TRACE code, previously limited to the simulation of single-phase sodium flow, has been carried out through the implementation of equations-of-state and closure relations specific to sodium. The different correlations have then been implemented as options. From the validation study carried out, it has been possible to recommend a set of models which provide satisfactory results, while considering annular flow as the dominant regime up to dryout and a smooth breakdown of the
International Nuclear Information System (INIS)
Ngo, Tri-Dat
2016-01-01
This work deals with the mathematical modeling and the numerical simulation of the migration under gravity and capillarity effects of the supercritical CO 2 injected into a geological heterogeneous sequestration site. The simulations are performed with the code DuMux. Particularly, we consider the up-scaling, from the cell scale to the reservoir scale, of a two-phase (CO 2 -brine) flow model within a periodic stratified medium made up of horizontal low permeability barriers, continuous or discontinuous. The up-scaling is done by the two-scale asymptotic method. First, we consider perfectly layered media. An homogenized model is developed and validated by numerical simulation for different values of capillary number and the incident flux of CO 2 . The homogenization method is then applied to the case of a two-dimensional medium made up of discontinuous layers. Due to the gravity effect, the CO 2 accumulates under the low permeability layers, which leads to a non-standard local mathematical problem. This stratification is modeled using the gravity current approach. This approach is then extended to the case of semi-permeable strata taking into account the capillarity. The up-scaled model is compared with numerical simulations for different types of layers, with or without capillary pressure, and its limit of validity is discussed in each of these cases. The final part of this thesis is devoted to the study of the parallel computing performances of the code DuMux to simulate the injection and migration of CO 2 in three-dimensional heterogeneous media (layered periodic media, fluvial media and reservoir model SPE 10). (author) [fr
Kou, Jisheng; Sun, Shuyu
2018-01-01
In this paper, we consider mathematical modeling and numerical simulation of non-isothermal compressible multi-component diffuse-interface two-phase flows with realistic equations of state. A general model with general reference velocity is derived rigorously through thermodynamical laws and Onsager's reciprocal principle, and it is capable of characterizing compressibility and partial miscibility between multiple fluids. We prove a novel relation among the pressure, temperature and chemical potentials, which results in a new formulation of the momentum conservation equation indicating that the gradients of chemical potentials and temperature become the primary driving force of the fluid motion except for the external forces. A key challenge in numerical simulation is to develop entropy stable numerical schemes preserving the laws of thermodynamics. Based on the convex-concave splitting of Helmholtz free energy density with respect to molar densities and temperature, we propose an entropy stable numerical method, which solves the total energy balance equation directly, and thus, naturally satisfies the first law of thermodynamics. Unconditional entropy stability (the second law of thermodynamics) of the proposed method is proved by estimating the variations of Helmholtz free energy and kinetic energy with time steps. Numerical results validate the proposed method.
Kou, Jisheng
2018-02-25
In this paper, we consider mathematical modeling and numerical simulation of non-isothermal compressible multi-component diffuse-interface two-phase flows with realistic equations of state. A general model with general reference velocity is derived rigorously through thermodynamical laws and Onsager\\'s reciprocal principle, and it is capable of characterizing compressibility and partial miscibility between multiple fluids. We prove a novel relation among the pressure, temperature and chemical potentials, which results in a new formulation of the momentum conservation equation indicating that the gradients of chemical potentials and temperature become the primary driving force of the fluid motion except for the external forces. A key challenge in numerical simulation is to develop entropy stable numerical schemes preserving the laws of thermodynamics. Based on the convex-concave splitting of Helmholtz free energy density with respect to molar densities and temperature, we propose an entropy stable numerical method, which solves the total energy balance equation directly, and thus, naturally satisfies the first law of thermodynamics. Unconditional entropy stability (the second law of thermodynamics) of the proposed method is proved by estimating the variations of Helmholtz free energy and kinetic energy with time steps. Numerical results validate the proposed method.
International Nuclear Information System (INIS)
Yamamoto, Takaya; Kitamura, Masashi; Ohi, Tadashi; Akagi, Katsumi
1999-01-01
As advanced monitoring and controlling systems, such as the advanced main control console and the operator support system have been developed, real-time simulators' simulation accuracy must be improved and simulation limits must be extended. Therefore the authors have developed a distributed simulation system to achieve high processing performance using low cost hardware. Moreover, the authors have developed a thermal-hydraulic computer code, using drift-flux non-equilibrium model, which can realize a high precision two-phase flow analysis, which is considered to have the same prediction capability as two-fluid models, while achieving high speed and stability for real-time simulators. The distributed plant simulator for PWR plants was realized as a result. The distributed simulator consists of multi-processors connected to each other by an optical fiber network. Controlling software for synchronized scheduling and memory transfer was also developed. The simulation results of the four loop PWR simulator are compared with experimental data and real plant data; the agreement is satisfactory for a plant simulator. The simulation speed is also satisfactory being twice as fast as real-time. (author)
Thermo-fluid dynamics of two-phase flow
Ishii, Mamoru; Ishii, Mamoru; Ishii, M
2006-01-01
Provides a very systematic treatment of two phase flow problems from a theoretical perspectiveProvides an easy to follow treatment of modeling and code devlopemnt of two phase flow related phenomenaCovers new results of two phase flow research such as coverage of fuel cells technology.
International Nuclear Information System (INIS)
Ishimoto, Jun; Kamiyama, Shinichi; Okubo, Masaaki.
1995-01-01
Effects of magnetic field on the characteristics of boiling two-phase pipe flow of temperature-sensitive magnetic fluid are clarified in detail both theoretically and experimentally. Firstly, governing equations of two-phase magnetic fluid flow based on the thermal nonequilibrium two-fluid model are presented and numerically solved considering evaporation and condensation between gas- and liquid-phases. Next, behaviour of vapor bubbles is visualized with ultrasonic echo in the region of nonuniform magnetic field. This is recorded and processed with an image processor. As a result, the distributions of void fraction in the two-phase flow are obtained. Furthermore, detailed characteristics of the two-phase magnetic fluid flow are investigated using a small test loop of the new energy conversion system. From the numerical and experimental results, it is known that the precise control of the boiling two-phase flow and bubble generation is possible by using the nonuniform magnetic field effectively. These fundamental studies on the characteristics of two-phase magnetic fluid flow will contribute to the development of the new energy conversion system using a gas-liquid boiling two-phase flow of magnetic fluid. (author)
Qiao, Y.; Andersen, P. Ø.; Evje, S.; Standnes, D. C.
2018-02-01
It is well known that relative permeabilities can depend on the flow configuration and they are commonly lower during counter-current flow as compared to co-current flow. Conventional models must deal with this by manually changing the relative permeability curves depending on the observed flow regime. In this paper we use a novel two-phase momentum-equation-approach based on general mixture theory to generate effective relative permeabilities where this dependence (and others) is automatically captured. In particular, this formulation includes two viscous coupling effects: (i) Viscous drag between the flowing phases and the stagnant porous rock; (ii) viscous drag caused by momentum transfer between the flowing phases. The resulting generalized model will predict that during co-current flow the faster moving fluid accelerates the slow fluid, but is itself decelerated, while for counter-current flow they are both decelerated. The implications of these mechanisms are demonstrated by investigating recovery of oil from a matrix block surrounded by water due to a combination of gravity drainage and spontaneous imbibition, a situation highly relevant for naturally fractured reservoirs. We implement relative permeability data obtained experimentally through co-current flooding experiments and then explore the model behavior for different flow cases ranging from counter-current dominated to co-current dominated. In particular, it is demonstrated how the proposed model seems to offer some possible interesting improvements over conventional modeling by providing generalized mobility functions that automatically are able to capture more correctly different flow regimes for one and the same parameter set.
CFD Analyses for Water-Air Flow With the Euler-Euler Two-Phase Model in the Fluent4 CFD Code
International Nuclear Information System (INIS)
Miettinen, Jaakko; Schmidt, Holger
2002-01-01
Framatome ANP develops a new boiling water reactor called SWR 1000. For the case of a hypothetical core melt accident it is designed in such a way that the core melt is retained in the Reactor Pressure Vessel (RPV) at low pressure owing to cooling of the RPV exterior and high reliable depressurization devices. Framatome ANP performs - in co-operation with VTT - tests to quantify the safety margins of the exterior cooling concept for the SWR 1000, for determining the limits to avoid the critical heat fluxes (CHFs). The three step procedure has been set up to investigate the phenomenon: 1. Water-air study for a 1:10 scaled global model, with the aim to investigate the global flow conditions 2. Water-air study for a 1:10 scaled, 10 % sector model, with the aim to find a flow sector with almost similar flow conditions as in the global model. 3. Final CHF experiments for a 1:1-scaled, 10 % sector., the boarders of this model have been selected based on the first two steps. The instrumentation for the water/air experiments included velocity profiles, the vertically averaged average void fraction and void fraction profiles in selected positions. The experimental results from the air-water experiments have been analyzed at VTT using the Fluent-4.5.2 code with its Eulerian multiphase flow modeling capability. The aim of the calculations was to learn how to model complex two-phase flow conditions. The structural mesh required by Fluent-4 is a strong limitation in the complex geometry, but modeling of the 1/4 sector from the facility was possible, when the GAMBIT pre-processor was used for the mesh generation. The experiments were analyzed with the 150 x 150 x 18 grid for the geometry. In the analysis the fluid viscosity was the main dials for adjusting the vertical liquid velocity profiles and the bubble diameter for adjusting the phase separation. The viscosity ranged between 1 to 10000 times the molecular viscosity, and bubble diameter between 3 to 100 mm, when the
International Nuclear Information System (INIS)
Tanaka, Yukihisa
2011-01-01
In the current concept of repository for radioactive waste disposal, compacted bentonite will be used as an engineered barrier mainly for inhibiting migration of radioactive nuclides. Hydrogen gas can be generated inside of the engineered barrier by anaerobic corrosion of metals used for containers, etc. It is expected to be not easy for gas to entering into the bentonite as a discrete gaseous phase because the pore of compacted bentonite is so minute. Therefore it is necessary to investigate the effect of gas pressure generation and gas migration on the engineered barrier, peripheral facilities and ground. In this study, a method for simulating gas migration through the compacted bentonite is proposed. The proposed method can analyze coupled hydrological-mechanical processes using the model of two-phase flow through deformable porous media. Validity of the proposed analytical method is examined by comparing gas migration test results with the calculated results, which revealed that the proposed method can simulate gas migration behavior through compacted bentonite with accuracy. (author)
International Nuclear Information System (INIS)
Aminfar, H.; Mohammadpourfard, M.; Mohseni, F.
2012-01-01
This paper presents a numerical investigation of the hydro-thermal behavior of a ferrofluid (sea water and 4 vol% Fe 3 O 4 ) in a rectangular vertical duct in the presence of different magnetic fields, using two-phase mixture model and control volume technique. Considering the electrical conductivity of the ferrofluid, in addition to the ferrohydrodynamics principles, the magnetohydrodynamics principles have also been taken into account. Three cases for magnetic field have been considered to study mixed convection of the ferrofluid: non-uniform axial field (negative and positive gradient), uniform transverse field and another case when both fields are applied simultaneously. The results indicate that negative gradient axial field and uniform transverse field act similarly and enhance both the Nusselt number and the friction factor, while positive gradient axial field decreases them. It is also concluded that, under the influence of both fields by increasing the intensity of uniform transverse field the effect of non-uniform axial fields decrease. - Highlights: ► In addition to the FHD principles the MHD principles have also been taken into account. ► The mixed convective hydrodynamic and heat transfer have been investigated. ► Negative gradient axial and uniform transverse field enhance Nusselt number and friction factor. ► Positive gradient axial field decreases Nusselt number and friction factor. ► Increase in intensity of transverse fields decreases the effects of non-uniform axial fields.
Energy Technology Data Exchange (ETDEWEB)
Dalmonico, G.M.L.; Pinheiro, D.M.; Camargo, N.H.A.; Orzechowki, L.G.; Goncalves, A.F.; Melnik, V.; Jesus, J.; Gemelli, E. [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Centro de Ciencias Tecnologicas], e-mail: gidalmonico@gmail.com
2010-07-01
This paper synthesized nano structured hydroxyapatite and three calcium {beta} phosphate, for elaboration of two phase compositions of HA/TCP in the concentration in volume of 80% HA/20% TCP-{beta}, 60% HA/40% TCP-{beta} and 50% HA/50% TCP-{beta}. For phase mixing realization, the method of mechanical fragmentation by attritor mill were used. The material recovered from the process of mechanical fragmentation was dried in rotate evaporator, supplying the two phase compositions. The preliminary studies shown the obtention of nano metric powders and a good phase dispersions inside the two phase compositions. (author)
International Nuclear Information System (INIS)
Pierre Peturaud; Eric Hervieu
2005-01-01
Full text of publication follows: A long-term joint development program for the next generation of nuclear reactors simulation tools has been launched in 2001 by EDF (Electricite de France) and CEA (Commissariat a l'Energie Atomique). The NEPTUNE Project constitutes the Thermal-Hydraulics part of this comprehensive program. Along with the underway development of this new two-phase flow software platform, the physical validation of the involved modelling is a crucial issue, whatever the modelling scale is, and the present paper deals with this issue. After a brief recall about the NEPTUNE platform, the general validation strategy to be adopted is first of all clarified by means of three major features: (i) physical validation in close connection with the concerned industrial applications, (ii) involving (as far as possible) a two-step process successively focusing on dominant separate models and assessing the whole modelling capability, (iii) thanks to the use of relevant data with respect to the validation aims. Based on this general validation process, a four-step generic work approach has been defined; it includes: (i) a thorough analysis of the concerned industrial applications to identify the key physical phenomena involved and associated dominant basic models, (ii) an assessment of these models against the available validation pieces of information, to specify the additional validation needs and define dedicated validation plans, (iii) an inventory and assessment of existing validation data (with respect to the requirements specified in the previous task) to identify the actual needs for new validation data, (iv) the specification of the new experimental programs to be set up to provide the needed new data. This work approach has been applied to the NEPTUNE software, focusing on 8 high priority industrial applications, and it has resulted in the definition of (i) the validation plan and experimental programs to be set up for the open medium 3D modelling
Energy Technology Data Exchange (ETDEWEB)
Labois, M
2008-10-15
This thesis deals with hyperbolic models for the simulation of compressible two-phase flows, to find alternatives to the classical bi-fluid model. We first establish a hierarchy of two-phase flow models, obtained according to equilibrium hypothesis between the physical variables of each phase. The use of Chapman-Enskog expansions enables us to link the different existing models to each other. Moreover, models that take into account small physical unbalances are obtained by means of expansion to the order one. The second part of this thesis focuses on the simulation of flows featuring velocity unbalances and pressure balances, in two different ways. First, a two-velocity two-pressure model is used, where non-instantaneous velocity and pressure relaxations are applied so that a balancing of these variables is obtained. A new one-velocity one-pressure dissipative model is then proposed, where the arising of second-order terms enables us to take into account unbalances between the phase velocities. We develop a numerical method based on a fractional step approach for this model. (author)
Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media
Chen, J.
2014-06-03
This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow. 2014 Jie Chen et al.
Coupling Two-Phase Fluid Flow with Two-Phase Darcy Flow in Anisotropic Porous Media
Directory of Open Access Journals (Sweden)
Jie Chen
2014-06-01
Full Text Available This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow.
International Nuclear Information System (INIS)
Khakbaz Baboli, M.; Kermani, M.J.
2008-01-01
A two-dimensional, transient, compressible, isothermal and two-phase flow of reactant-product mixture in the air-side electrode of proton exchange membrane fuel cells (PEMFC) are numerically studied in the present paper. The mixture is composed of four species: oxygen, nitrogen, liquid water and water vapor. The governing PDE's are conservation of the water vapor and oxygen species, momentum equation of the mixture (gas+liquid), mass conservation of the liquid phase, and mass conservation of the mixture. In this study, a separate PDE for the mass conservation of the liquid water is solved to calculate the saturation levels. The capillary pressure was used to determine the slip velocity between the phases. A full compressible form of the momentum equation was used, with the ∇.V preserved in the equation. The Maxwell-Stefan equation was used to model the diffusive fluxes of the multi-component gas mixture. The strongly coupled equations are solved based on a recently developed finite volume SIMPLER scheme of S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., McGraw-Hill Book Company, 1984. The computational domain consists of two regions; an open area (gas delivery channel) linked to a porous gas diffusion layer (GDL). A single (unified) set of the PDE's are used for the whole domain with the corresponding properties of each sub-domain. A polarization curve for the whole spectrum of the dry and wet regions were obtained. The results were compared with the experiments of E.A. Ticianelli, C.R. Derouin, A. Redondo, S. Srinivasan, J. Electrochem. Soc. 135 (1988) 2209, and good agreements were achieved
Nonlinear dynamics of two-phase flow
International Nuclear Information System (INIS)
Rizwan-uddin
1986-01-01
Unstable flow conditions can occur in a wide variety of laboratory and industry equipment that involve two-phase flow. Instabilities in industrial equipment, which include boiling water reactor (BWR) cores, steam generators, heated channels, cryogenic fluid heaters, heat exchangers, etc., are related to their nonlinear dynamics. These instabilities can be of static (Ledinegg instability) or dynamic (density wave oscillations) type. Determination of regions in parameters space where these instabilities can occur and knowledge of system dynamics in or near these regions is essential for the safe operation of such equipment. Many two-phase flow engineering components can be modeled as heated channels. The set of partial differential equations that describes the dynamics of single- and two-phase flow, for the special case of uniform heat flux along the length of the channel, can be reduced to a set of two coupled ordinary differential equations [in inlet velocity v/sub i/(t) and two-phase residence time tau(t)] involving history integrals: a nonlinear ordinary functional differential equation and an integral equation. Hence, to solve these equations, the dependent variables must be specified for -(nu + tau) ≤ t ≤ 0, where nu is the single-phase residence time. This system of nonlinear equations has been solved analytically using asymptotic expansion series for finite but small perturbations and numerically using finite difference techniques
An introduction to two-phase flows
International Nuclear Information System (INIS)
Lemonnier, Herve
2006-01-01
This course aims at proposing the necessary background for a rational approach to two-phase flows which are notably present in numerous industrial devices and equipment designed to perform energy transfer or mass transfer. The first part proposes a phenomenological approach to main two-phase flow structures and presents their governing variables. The second part presents some proven measurement techniques. The third part focuses on modelling. It recalls the equation elaboration techniques which are based on basic principles of mechanics and thermodynamics and on the application of different averaging operators to these principles. Some useful models are then presented such as models of pressure loss in a duct. The last chapter addresses some fundamental elements of heat transfers in ebullition and condensation
Partially composite Higgs models
DEFF Research Database (Denmark)
Alanne, Tommi; Buarque Franzosi, Diogo; Frandsen, Mads T.
2018-01-01
We study the phenomenology of partially composite-Higgs models where electroweak symmetry breaking is dynamically induced, and the Higgs is a mixture of a composite and an elementary state. The models considered have explicit realizations in terms of gauge-Yukawa theories with new strongly...... interacting fermions coupled to elementary scalars and allow for a very SM-like Higgs state. We study constraints on their parameter spaces from vacuum stability and perturbativity as well as from LHC results and find that requiring vacuum stability up to the compositeness scale already imposes relevant...... constraints. A small part of parameter space around the classically conformal limit is stable up to the Planck scale. This is however already strongly disfavored by LHC results. in different limits, the models realize both (partially) composite-Higgs and (bosonic) technicolor models and a dynamical extension...
George, D. L.; Iverson, R. M.
2012-12-01
Numerically simulating debris-flow motion presents many challenges due to the complicated physics of flowing granular-fluid mixtures, the diversity of spatial scales (ranging from a characteristic particle size to the extent of the debris flow deposit), and the unpredictability of the flow domain prior to a simulation. Accurately predicting debris-flows requires models that are complex enough to represent the dominant effects of granular-fluid interaction, while remaining mathematically and computationally tractable. We have developed a two-phase depth-averaged mathematical model for debris-flow initiation and subsequent motion. Additionally, we have developed software that numerically solves the model equations efficiently on large domains. A unique feature of the mathematical model is that it includes the feedback between pore-fluid pressure and the evolution of the solid grain volume fraction, a process that regulates flow resistance. This feature endows the model with the ability to represent the transition from a stationary mass to a dynamic flow. With traditional approaches, slope stability analysis and flow simulation are treated separately, and the latter models are often initialized with force balances that are unrealistically far from equilibrium. Additionally, our new model relies on relatively few dimensionless parameters that are functions of well-known material properties constrained by physical data (eg. hydraulic permeability, pore-fluid viscosity, debris compressibility, Coulomb friction coefficient, etc.). We have developed numerical methods and software for accurately solving the model equations. By employing adaptive mesh refinement (AMR), the software can efficiently resolve an evolving debris flow as it advances through irregular topography, without needing terrain-fit computational meshes. The AMR algorithms utilize multiple levels of grid resolutions, so that computationally inexpensive coarse grids can be used where the flow is absent, and
Geometrical automata for two phase flow simulation
International Nuclear Information System (INIS)
Herrero, V.; Guido-Lavalle, G.; Clausse, A.
1996-01-01
An automaton is an entity defined by a mathematical state which changes following iterative rules representing the interaction with the neighborhood. A model of automata for two-phase flow simulation consisting in a field of disks which are allowed to change their radii and move in a plane is presented. The model is more general than the classical cellular automata in two respects: (1) the grid of cellular automata is dismissed in favor of a trajectory generator; and (2) the rules of interaction involve parameters intended to represent some of the most relevant variables governing the actual physical interactions between phases. Computational experiments show that the algorithm captures the essential physics underlying two-phase flow problems such as bubbly-slug pattern transition and void fraction development along tubes. A comparison with experimental data of void fraction profiles is presented, showing excellent agreement. (orig.)
Two phase titanium aluminide alloy
Deevi, Seetharama C.; Liu, C. T.
2001-01-01
A two-phase titanic aluminide alloy having a lamellar microstructure with little intercolony structures. The alloy can include fine particles such as boride particles at colony boundaries and/or grain boundary equiaxed structures. The alloy can include alloying additions such as .ltoreq.10 at % W, Nb and/or Mo. The alloy can be free of Cr, V, Mn, Cu and/or Ni and can include, in atomic %, 45 to 55% Ti, 40 to 50% Al, 1 to 5% Nb, 0.3 to 2% W, up to 1% Mo and 0.1 to 0.3% B. In weight %, the alloy can include 57 to 60% Ti, 30 to 32% Al, 4 to 9% Nb, up to 2% Mo, 2 to 8% W and 0.02 to 0.08% B.
International Nuclear Information System (INIS)
Ogava, S.; Savada, S.; Nakagava, M.
1983-01-01
Composite models of hadrons are considered. The main attention is paid to the Sakata, S model. In the framework of the model it is presupposed that proton, neutron and Λ particle are the fundamental particles. Theoretical studies of unknown fundamental constituents of a substance have led to the creation of the quark model. In the framework of the quark model using the theory of SU(6)-symmetry the classification of mesons and baryons is considered. Using the quark model relations between hadron masses, their spins and electromagnetic properties are explained. The problem of three-colour model with many flavours is briefly presented
Review of two-phase water hammer
International Nuclear Information System (INIS)
Beuthe, T.G.
1997-01-01
In a thermalhydraulic system like a nuclear power plant, where steam and water mix and are used to transport large amounts of energy, there is a potential to create two-phase water hammer. Large water hammer pressure transients are a threat to piping integrity and represent an important safety concern. Such events may cause unscheduled plant down time. The objective of this review is to provide a summary of the information on two-phase water hammer available in the open literature with particular emphasis on water hammer occurrences in nuclear power plants. Past reviews concentrated on studies concerned with preventing water hammer. The present review focuses on the fundamental experimental, analytical, and modelling studies. The papers discussed here were chosen from searches covering up to July 1993. (author)
System identification on two-phase flow stability
International Nuclear Information System (INIS)
Wu Shaorong; Zhang Youjie; Wang Dazhong; Bo Jinghai; Wang Fei
1996-01-01
The theoretical principle, experimental method and results of interrelation analysis identification for the instability of two-phase flow are described. A completely new concept of test technology and method on two-phase flow stability was developed by using he theory of information science on system stability and system identification for two-phase flow stability in thermo-physics field. Application of this method would make it possible to identify instability boundary of two-phase flow under stable operation conditions of two-phase flow system. The experiment was carried out on the thermohydraulic test system HRTL-5. Using reverse repeated pseudo-random sequences of heating power as input signal sources and flow rate as response function in the test, the two-phase flow stability and stability margin of the natural circulation system are investigated. The effectiveness and feasibility of identifying two-phase flow stability by using this system identification method were experimentally demonstrated. Basic data required for mathematics modeling of two-phase flow and analysis of two-phase flow stability were obtained, which are useful for analyzing, monitoring of the system operation condition, and forecasting of two-phase flow stability in engineering system
Study of nonequilibrium dispersed two phase flow
International Nuclear Information System (INIS)
Reyes, J.N. Jr.
1986-01-01
Understanding the behavior of liquid droplets in a superheated steam environment is essential to the accurate prediction of nuclear fuel rod surface temperatures during the blowdown and reflood phase of a loss-of-coolant-accident (LOCA). In response to this need, this treatise presents several original and significant contributions to the field of thermofluid physics. The research contained herein presents a statistical derivation of the two-phase mass, momentum, and energy-conservation equations using a droplet continuity equation analogous to that used in the Kinetic Theory of Gases. Unlike the Eulerian volume and time-averaged conservation equations generally used to describe dispersed two-phase flow behavior, this statistical averaging approach results in an additional mass momentum or energy term in each of the respective conservation equations. Further, this study demonstrates that current definitions of the volumetric vapor generation rate used in the mass conservation equation are inappropriate results under certain circumstances. The mass conservation equation derived herein is used to obtain a new definition for the volumetric vapor-generation rate. Last, a simple two phase phenomenological model, based on the statistically averaged conservation equations, is presented and solved analytically. It is shown that the actual quality and vapor temperature, under these circumstances, depend on a single dimensionless group
Numerical method for two-phase flow discontinuity propagation calculation
International Nuclear Information System (INIS)
Toumi, I.; Raymond, P.
1989-01-01
In this paper, we present a class of numerical shock-capturing schemes for hyperbolic systems of conservation laws modelling two-phase flow. First, we solve the Riemann problem for a two-phase flow with unequal velocities. Then, we construct two approximate Riemann solvers: an one intermediate-state Riemann solver and a generalized Roe's approximate Riemann solver. We give some numerical results for one-dimensional shock-tube problems and for a standard two-phase flow heat addition problem involving two-phase flow instabilities
Composite quantum collision models
Lorenzo, Salvatore; Ciccarello, Francesco; Palma, G. Massimo
2017-09-01
A collision model (CM) is a framework to describe open quantum dynamics. In its memoryless version, it models the reservoir R as consisting of a large collection of elementary ancillas: the dynamics of the open system S results from successive collisions of S with the ancillas of R . Here, we present a general formulation of memoryless composite CMs, where S is partitioned into the very open system under study S coupled to one or more auxiliary systems {Si} . Their composite dynamics occurs through internal S -{Si} collisions interspersed with external ones involving {Si} and the reservoir R . We show that important known instances of quantum non-Markovian dynamics of S —such as the emission of an atom into a reservoir featuring a Lorentzian, or multi-Lorentzian, spectral density or a qubit subject to random telegraph noise—can be mapped on to such memoryless composite CMs.
Qiu, Shanwen
2012-07-01
In this article, we propose a new grid-free and exact solution method for computing solutions associated with an hybrid traffic flow model based on the Lighthill- Whitham-Richards (LWR) partial differential equation. In this hybrid flow model, the vehicles satisfy the LWR equation whenever possible, and have a fixed acceleration otherwise. We first present a grid-free solution method for the LWR equation based on the minimization of component functions. We then show that this solution method can be extended to compute the solutions to the hybrid model by proper modification of the component functions, for any concave fundamental diagram. We derive these functions analytically for the specific case of a triangular fundamental diagram. We also show that the proposed computational method can handle fixed or moving bottlenecks.
Two-phase flow dynamics in ECC
International Nuclear Information System (INIS)
Albraaten, P.J.
1981-07-01
The present report summarizes the achievements within the project ''Two-phase Systems and ECC''. The results during 1978 - 1980 are accounted for in brief as they have been documented in earlier reports. The results during the first half of 1981 are accounted for in greater detail. They contain a new model for the Basset force and test runs with this model using the test code RISQUE. Furthermore, test runs have been performed with TRAC-PD2 MOD 1. This code was implemented on Edwards Pipe Blowdown experiment (a standard test case) and UC-Berkeley Reflooding experiment (a non-standard test case.) (Auth.)
Two-phase-flow cooling concept for fusion reactor blankets
International Nuclear Information System (INIS)
Bender, D.J.; Hoffman, M.A.
1977-01-01
The new two-phase heat transfer medium proposed is a mixture of potassium droplets and helium which permits blanket operation at hih temperature and low pressure, while maintaining acceptable pumping power requirements, coolant ducting size, and blanket structure fractions. A two-phase flow model is described. The helium pumping power and the primary heat transfer loop are discussed
Two Phase Flow Simulation Using Cellular Automata
International Nuclear Information System (INIS)
Marcel, C.P.
2002-01-01
The classical mathematical treatment of two-phase flows is based on the average of the conservation equations for each phase.In this work, a complementary approach to the modeling of these systems based on statistical population balances of aut omata sets is presented.Automata are entities defined by mathematical states that change following iterative rules representing interactions with the neighborhood.A model of automata for two-phase flow simulation is presented.This model consists of fie lds of virtual spheres that change their volumes and move around a certain environment.The model is more general than the classical cellular automata in two respects: the grid of cellular automata is dismissed in favor of a trajectory generator, and the rules of interaction involve parameters representing the actual physical interactions between phases.Automata simulation was used to study unsolved two-phase flow problems involving high heat flux rates. One system described in this work consists of a vertical channel with saturated water at normal pressure heated from the lower surface.The heater causes water to boil and starts the bubble production.We used cellular automata to describe two-phase flows and the interaction with the heater.General rule s for such cellular automata representing bubbles moving in stagnant liquid were used, with special attention to correct modeling of different mechanisms of heat transfer.The results of the model were compared to previous experiments and correlations finding good agreement.One of the most important findings is the confirmation of Kutateladze's idea about a close relation between the start of critical heat flux and a change in the flow's topology.This was analyzed using a control volume located in the upper surface of the heater.A strong decrease in the interfacial surface just before the CHF start was encountered.The automata describe quite well some characteristic parameters such as the shape of the local void fraction in the
Directory of Open Access Journals (Sweden)
Simona Ramanauskaitė
2012-04-01
Full Text Available Preparation for potential threats is one of the most important phases ensuring system security. It allows evaluating possible losses, changes in the attack process, the effectiveness of used countermeasures, optimal system settings, etc. In cyber-attack cases, executing real experiments can be difficult for many reasons. However, mathematical or programming models can be used instead of conducting experiments in a real environment. This work proposes a composite denial of service attack model that combines bandwidth exhaustion, filtering and memory depletion models for a more real representation of similar cyber-attacks. On the basis of the introduced model, different experiments were done. They showed the main dependencies of the influence of attacker and victim’s properties on the success probability of denial of service attack. In the future, this model can be used for the denial of service attack or countermeasure optimization.
Microgravity Two-Phase Flow Transition
Parang, M.; Chao, D.
1999-01-01
Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.
Basak, Souvik; Ghosh, Sumanta Kumar; Punetha, Vinay Deep; Aphale, Ashish N; Patra, Prabir K; Sahoo, Nanda Gopal
2017-02-01
A carbonyl reductase (cr) gene from Candida glabrata CBS138 has been heterologously expressed in cofactor regenerating E. coli host to convert Ethyl-4-chloro-3-oxobutanoate (COBE) into Ethyl-4-chloro-3-hydroxybutanoate (CHBE). The CR enzyme exhibited marked velocity at substrate concentration as high as 363mM with highest turnover number (112.77±3.95s -1 ). Solitary recombineering of such catalytic cell reproduced CHBE 161.04g/L per g of dry cell weight (DCW). Introduction of combinatorially engineered crp (crp*, F136I) into this heterologous E. coli host yielded CHBE 477.54g/L/gDCW. Furthermore, using nerolidol as exogenous cell transporter, the CHBE productivity has been towered to 710.88g/L/gDCW. The CHBE production has thus been upscaled to 8-12 times than those reported so far. qRT-PCR studies revealed that both membrane efflux channels such as acrAB as well as ROS scavenger genes such as ahpCF have been activated by engineering crp. Moreover, membrane protecting genes such as manXYZ together with solvent extrusion associated genes such as glpC have been upregulated inside mutant host. Although numerous proteins have been investigated to convert COBE to CHBE; this is the first approach to use engineering triad involving crp engineering, recombinant DNA engineering and transporter engineering together for improving cell performance during two-phase biocatalysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Constitutive equations for two-phase flows
International Nuclear Information System (INIS)
Boure, J.A.
1974-12-01
The mathematical model of a system of fluids consists of several kinds of equations complemented by boundary and initial conditions. The first kind equations result from the application to the system, of the fundamental conservation laws (mass, momentum, energy). The second kind equations characterize the fluid itself, i.e. its intrinsic properties and in particular its mechanical and thermodynamical behavior. They are the mathematical model of the particular fluid under consideration, the laws they expressed are so called the constitutive equations of the fluid. In practice the constitutive equations cannot be fully stated without reference to the conservation laws. Two classes of model have been distinguished: mixture model and two-fluid models. In mixture models, the mixture is considered as a single fluid. Besides the usual friction factor and heat transfer correlations, a single constitutive law is necessary. In diffusion models, the mixture equation of state is replaced by the phasic equations of state and by three consitutive laws, for phase change mass transfer, drift velocity and thermal non-equilibrium respectively. In the two-fluid models, the two phases are considered separately; two phasic equations of state, two friction factor correlations, two heat transfer correlations and four constitutive laws are included [fr
Thermo-Fluid Dynamics of Two-Phase Flow
Ishii, Mamrou
2011-01-01
"Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part
Research on one-dimensional two-phase flow
International Nuclear Information System (INIS)
Adachi, Hiromichi
1988-10-01
In Part I the fundamental form of the hydrodynamic basic equations for a one-dimensional two-phase flow (two-fluid model) is described. Discussions are concentrated on the treatment of phase change inertial force terms in the equations of motion and the author's equations of motion which have a remarkable uniqueness on the following three points. (1) To express force balance of unit mass two-phase fluid instead of that of unit volume two-phase fluid. (2) To pick up the unit existing mass and the unit flowing mass as the unit mass of two-phase fluid. (3) To apply the kinetic energy principle instead of the momentum low in the evaluation of steady inertial force term. In these three, the item (1) is for excluding a part of momentum change or kinetic energy change due to mass change of the examined part of fluid, which is independent of force. The item (2) is not to introduce a phenomenological physical model into the evaluation of phase change inertial force term. And the item (3) is for correctly applying the momentum law taking into account the difference of representative velocities between the main flow fluid (vapor phase or liquid phase) and the phase change part of fluid. In Part II, characteristics of various kinds of high speed two-phase flow are clarified theoretically by the basic equations derived. It is demonstrated that the steam-water two-phase critical flow with violent flashing and the airwater two-phase critical flow without phase change can be described with fundamentally the same basic equations. Furthermore, by comparing the experimental data from the two-phase critical discharge test and the theoretical prediction, the two-phase discharge coefficient, C D , for large sharp-edged orifice is determined as the value which is not affected by the experimental facility characteristics, etc. (author)
Transient two-phase performance of LOFT reactor coolant pumps
International Nuclear Information System (INIS)
Chen, T.H.; Modro, S.M.
1983-01-01
Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reacto