WorldWideScience

Sample records for two-phase aqueous systems

  1. Two-phase aqueous micellar systems: an alternative method for protein purification

    Directory of Open Access Journals (Sweden)

    Rangel-Yagui C. O.

    2004-01-01

    Full Text Available Two-phase aqueous micellar systems can be exploited in separation science for the extraction/purification of desired biomolecules. This article reviews recent experimental and theoretical work by Blankschtein and co-workers on the use of two-phase aqueous micellar systems for the separation of hydrophilic proteins. The experimental partitioning behavior of the enzyme glucose-6-phosphate dehydrogenase (G6PD in two-phase aqueous micellar systems is also reviewed and new results are presented. Specifically, we discuss very recent work on the purification of G6PD using: i a two-phase aqueous micellar system composed of the nonionic surfactant n-decyl tetra(ethylene oxide (C10E4, and (ii a two-phase aqueous mixed micellar system composed of C10E4 and the cationic surfactant decyltrimethylammonium bromide (C10TAB. Our results indicate that the two-phase aqueous mixed (C10E4/C10TAB micellar system can improve significantly the partitioning behavior of G6PD relative to that observed in the two-phase aqueous C10E4 micellar system.

  2. Bioconversion of apigenin-7-O-β-glucoside in aqueous two-phase system

    Directory of Open Access Journals (Sweden)

    Ilić Sanja M.

    2005-01-01

    Full Text Available The study is concerned with the conversion of apigenin-7-O-β-glucoside into apigenin in polyethylene glycol 6000 / dextran 20000 aqueous two-phase system by β-glucosidase. Apigenin was separated from apigenin-7-O-β-glucoside and β-glucosidase by their partition into opposite phases. In 14% PEG / 22.5% DEX aqueous two-phase system obtained yield of apigenin in top phase was 108%.

  3. Extraction Equilibrium of Acrylic Acid by Aqueous Two-Phase Systems Using Hydrophilic Ionic Liquids

    International Nuclear Information System (INIS)

    Lee, Yong Hwa; Lee, Woo Youn; Kim, Ki-Sub; Hong, Yeon Ki

    2014-01-01

    As an effective method for extraction of acrylic acid, aqueous two-phase systems based on morpholinium ionic liquids were used in this study. Effects of the alkyl chain length of cation in morpholinium ionic liquids on phase diagram and extraction efficiencies were investigated. Experimental results show that aqueous two phase systems can be formed by adding appropriate amount of morpholinium ionic liquids to aqueous K 2 HPO 4 solutions. It can be found that the ability of morpholinium ionic liquids for phase separation followed the order [HMMor][Br]>[OMMor][Br]>[BMMor][Br]>[EMMor][Br]. There was little difference between binodal curves of imidazolium ionic liquids and those of morpholinium ionic liquids. 50-90% of the extraction efficiency was observed for acrylic acid by aqueous two phase extraction of acrylic acid with morpholinium ionic liquids. It can be concluded that morpholinium ionic liquids/K 2 HPO 4 were effective for aqueous two phases extraction of acrylic acid comparing to imidazolium ionic liquids/K 2 HPO 4 systems because of their lower cost

  4. Peptide-tagged proteins in aqueous two-phase systems

    OpenAIRE

    Nilsson, Anna

    2002-01-01

    This thesis deals with proteins containing peptide tags for improved partitioning in aqueous two-phase systems. Qualitatively the peptide-tagged protein partitioning could be predicted from peptide data, i.e. partitioning trends found for peptides were also found for the peptide-tagged proteins. However, full effect of the tag as expected from peptide partitioning was not found in the tagged protein. When alkyl-ethylene oxide surfactant was included in a two-polymer system, almost full effect...

  5. Analysis of continuous fermentation processes in aqueous two-phase systems

    Energy Technology Data Exchange (ETDEWEB)

    Jarzebski, A B; Malinowski, J J [Polish Academy of Sciences, Gliwice (Poland). Inst. of Chemical Engineering; Goma, G; Soucaille, P [INSA, 31 - Toulouse (France). Dept. de Genie Biochimique et Alimentaire

    1992-05-01

    Simulations of continuous ethanol or acetonobutylic fermentations in aqueous two-phase systems show that at high substrate feed concentrations it is possible to obtain solvent productivities about 25-40% higher than in conventional systems with cell recycle if the biomass bleed rate is kept about one tenth of the value of D. (orig.).

  6. Extraction of Oxytetracycline Hydrochloride in Aqueous Two-phase System of Acetone and Ammonium Sulfate

    International Nuclear Information System (INIS)

    Han, J.

    2013-01-01

    Summary: Aqueous two-phase system (ATPS) is an efficient implement for separation of various substrates, and extracted by an aqueous two-phase system has been successful ly applied in the downstream processing of various biological compounds. In this research, the extraction of oxytetracycline hydrochloride (OTC-HCl) was carried out in an aqueous two-phase system containing acetone and ammonium sulfate solution, which partitioned the antibiotic to the upper phase. The effects of some parameters on the extraction efficiency of OTC-HCl were studied in detail, including temperature, the volume of acetone, the pH value of ammonium sulfate solution, the concentrations of (NH/sub 4/)/sub 2/ SO/sub 4/ and OTC-HCl. The results showed that the volume of acetone, the pH value of ammonium sulfate solution and the concentration of OTC-HCl in feed had significant effects on the extraction efficiency of OTC-HCl, but the effects of temperature on the extraction of OTC-HCl was not obvious. (author)

  7. Extraction of Oxytetracycline Hydrochloride in Aqueous Two-phase System of Acetone and Ammonium Sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Han, J. [Jiangsu Univ., Zhenjiang (China). Dept. of Food and Biological Engineering

    2013-02-15

    Summary: Aqueous two-phase system (ATPS) is an efficient implement for separation of various substrates, and extracted by an aqueous two-phase system has been successful ly applied in the downstream processing of various biological compounds. In this research, the extraction of oxytetracycline hydrochloride (OTC-HCl) was carried out in an aqueous two-phase system containing acetone and ammonium sulfate solution, which partitioned the antibiotic to the upper phase. The effects of some parameters on the extraction efficiency of OTC-HCl were studied in detail, including temperature, the volume of acetone, the pH value of ammonium sulfate solution, the concentrations of (NH/sub 4/)/sub 2/ SO/sub 4/ and OTC-HCl. The results showed that the volume of acetone, the pH value of ammonium sulfate solution and the concentration of OTC-HCl in feed had significant effects on the extraction efficiency of OTC-HCl, but the effects of temperature on the extraction of OTC-HCl was not obvious. (author)

  8. Extraction of peptide tagged cutinase in detergent-based aqueous two-phase systems

    NARCIS (Netherlands)

    Rodenbrock, A.; Selber, K.; Egmond, M.R.; Kula, M.-R.

    2010-01-01

    Detergent-based aqueous two-phase systems have the advantage to require only one auxiliary chemical to induce phase separation above the cloud point. In a systematic study the efficiency of tryptophan-rich peptide tags was investigated to enhance the partitioning of an enzyme to the detergent-rich

  9. Simultaneous Extraction, Enrichment and Removal of Dyes from Aqueous Solutions Using a Magnetic Aqueous Micellar Two-Phase System

    Directory of Open Access Journals (Sweden)

    Shuanggen Wu

    2017-12-01

    Full Text Available The magnetic aqueous micellar two-phase system (MAMTPS has the advantages combined of magnetic solid phase extraction (MSPE and aqueous micellar two-phase system (AMTPS. Thus, MAMTPS based on Fe3O4 magnetic nanoparticles (MNPs and a nonionic surfactant Triton X-114 (TX-114 was developed for the extraction, enrichment and removal of three dyes (Congo red, methyl blue, and methyl violet from aqueous solutions in this study. The MNPs Fe3O4@NH2 was screened as the optimal MNPs benefiting the extraction. Then, the influencing factors of MNPs amount, TX-114 concentration, vibration time, and extraction temperature were investigated in detail. The results showed that the extraction efficiencies of three dyes almost reached 100% using MAMTPS under the optimal conditions; MAMTPS had higher extraction ability than the individual MSPE or AMTPS. Thus, MAMTPS had the advantages of simple operation, high extraction ability, easy recycling of MNPs, and short phase-separation time, which showspotential for use in the extraction and analysis of contaminants from water samples.

  10. Tube Radial Distribution Flow Separation in a Microchannel Using an Ionic Liquid Aqueous Two-Phase System Based on Phase Separation Multi-Phase Flow.

    Science.gov (United States)

    Nagatani, Kosuke; Shihata, Yoshinori; Matsushita, Takahiro; Tsukagoshi, Kazuhiko

    2016-01-01

    Ionic liquid aqueous two-phase systems were delivered into a capillary tube to achieve tube radial distribution flow (TRDF) or annular flow in a microspace. The phase diagram, viscosity of the phases, and TRDF image of the 1-butyl-3-methylimidazolium chloride and NaOH system were examined. The TRDF was formed with inner ionic liquid-rich and outer ionic liquid-poor phases in the capillary tube. The phase configuration was explained using the viscous dissipation principle. We also examined the distribution of rhodamine B in a three-branched microchannel on a microchip with ionic liquid aqueous two-phase systems for the first time.

  11. Differentiation of surface properties of chlorococcalean algae by means of aqueous two phase systems

    Directory of Open Access Journals (Sweden)

    Jan Burczyk

    2014-01-01

    Full Text Available Algal cells belonging to various strains of Chlorococcales (Chlorophyta have been partitioned in aqueous two-phase systems containing ionogenic polymers, DEAE-dextran or SDS-dextran, at various pH values. Strain-specific differences of partition type which have been found in the phase systems used can be useful for distinguishing of algal cells.

  12. Aqueous two-phase systems for extractive enzymatic hydrolysis of biomass

    DEFF Research Database (Denmark)

    Bussamra, Bianca Consorti; Azzoni, Sindelia Freitas; Mussatto, Solange I.

    and enzymes, phase diagrams and volumetric ratios. The results of this project will make possible to design a process that enables high sugar concentration during the hydrolysis reaction, overcoming one of the biggest drawbacks regarding the production of second-generation ethanol: the enzymatic inhibition...... optimal aqueous two-phase systems for the separation of sugars and enzymes, which allow the development of an improved second-generation ethanol process.......Sugars derived from lignocellulosic materials are the main carbon sources in bio-based processes aiming to produce renewable fuels and chemicals. One of the major drawbacks during enzymatic hydrolysis of lignocellulosic materials to obtainsugars is the inhibition of enzymes by reaction products...

  13. Thermodynamic modelling of phase equilibrium for water + poly(Ethylene glycol + salt aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    R.A.G. Sé

    2002-04-01

    Full Text Available The NRTL (nonrandom, two-liquid model, expressed in mass fraction instead of mole fraction, was used to correlate liquid-liquid equilibria for aqueous two-phase polymer-salt solutions. New interaction energy parameters for this model were determined using reported data on the water + poly(ethylene glycol + salt systems, with different molecular masses for PEG and the salts potassium phosphate, sodium sulfate, sodium carbonate and magnesium sulfate. The correlation of liquid-liquid equilibrium is quite satisfactory.

  14. Reversible, on-demand generation of aqueous two-phase microdroplets

    Science.gov (United States)

    Collier, Charles Patrick; Retterer, Scott Thomas; Boreyko, Jonathan Barton; Mruetusatorn, Prachya

    2017-08-15

    The present invention provides methods of on-demand, reversible generation of aqueous two-phase microdroplets core-shell microbeads, microparticle preparations comprising the core-shell microbeads, and drug delivery formulation comprising the microparticle preparations. Because these aqueous microdroplets have volumes comparable to those of cells, they provide an approach to mimicking the dynamic microcompartmentation of biomaterial that naturally occurs within the cytoplasm of cells. Hence, the present methods generate femtoliter aqueous two-phase droplets within a microfluidic oil channel using gated pressure pulses to generate individual, stationary two-phase microdroplets with a well-defined time zero for carrying out controlled and sequential phase transformations over time. Reversible phase transitions between single-phase, two-phase, and core-shell microbead states are obtained via evaporation-induced dehydration and water rehydration.

  15. Cosolutes effects on aqueous two-phase systems equilibrium formation studied by physical approaches.

    Science.gov (United States)

    Bertoluzzo, M Guadalupe; Rigatuso, Rubén; Farruggia, Beatriz; Nerli, Bibiana; Picó, Guillermo

    2007-10-01

    The effect of urea and sodium salts of monovalent halides on the aqueous polyethyleneglycol solution and binodal diagrams of polyethyleneglycol-potassium phosphate (polyethyleneglycol of molecular mass 1500, 4000, 6000 and 8000) were studied using different physical approaches. The effect of these solutes on the binodal diagram for polyethyleneglycol-potassium phosphate was also investigated. The cosolutes affected in a significant manner the water structured around the ethylene chain of polyethyleneglycol inducing a lost of this. The equilibrium curves for the aqueous two-phase systems were fitting very well by a sigmoidal function with two parameters, which are closely related with the cosolute structure making or breaking capacity on the water ordered.

  16. Aqueous Two-Phase Extraction of Polyphenols Using a Microchannel System – Process Optimization and Intensification

    Directory of Open Access Journals (Sweden)

    Ivana Rukavina

    2011-01-01

    Full Text Available Polyphenols are one of the most numerous and widespread groups of compounds in the plant world. Nowadays, organic solvents such as methanol, ethanol, acetone, dimethylformamide, ethyl acetate and diethylether are mainly used for the extraction of polyphenols. These solvents require special process conditions and special care in the disposal of the used solvents. In this paper, the extraction of polyphenols from the model solution was performed using the aqueous two-phase system which contains 80.90 % water and represents low burden on the environment. The aqueous solution of gallic acid (GA was used as a model solution of polyphenols. The extraction was performed in the aqueous two-phase system containing PEG6000/H2O/(NH42SO4 in a macroextractor (V=10 mL and microextractor (V=14 ƒμL. The influence of the process parameters, the concentration of gallic acid, pH and composition of the aqueous two-phase system was investigated in order to maximize the partition coefficient. The method of multifactor experimental planning was used to optimize the extraction process and the results were statistically analysed using the evolutionary operation method (EVOP. Optimal operating conditions of the extraction process were pH=6.50, γGA=4.50 g/L, the mass fraction of polyethylene glycol (PEG wPEG=0.1037 g/g and the mass fraction of ammonium sulphate (AMS wAMS=0.0925 g/g. Under these conditions the maximal partition coefficient of K=5.54 and the extraction efficiency of E=89.11 % were achieved and successfully applied for total phenol extraction from white wine in the macro- and microextractor. Approximately the same partition coefficients and extraction efficiency were achieved in the microextractor within a 60-fold shorter residence time.

  17. Phase Diagrams of the Aqueous Two-Phase Systems of Poly(ethylene glycol/Sodium Polyacrylate/Salts

    Directory of Open Access Journals (Sweden)

    Adalberto Pessoa Junior

    2011-03-01

    Full Text Available Aqueous two-phase systems consisting of polyethylene glycol (PEG, sodium polyacrylate (NaPAA, and a salt have been studied. The effects of the polymer size, salt type (NaCl, Na2SO4, sodium adipate and sodium azelate and salt concentrations on the position of the binodal curve were investigated. The investigated PEG molecules had a molar mass of 2,000 to 8,000 g/mol, while that of NaPAA was 8,000 g/mol. Experimental phase diagrams, and tie lines and calculated phase diagrams, based on Flory-Huggins theory of polymer solutions are presented. Due to strong enthalpic and entropic balancing forces, the hydrophobicity of the added salt has a strong influence on the position of the binodal, which could be reproduced by model calculations.

  18. A Novel Aqueous Two Phase System Composed of Surfactant and Xylitol for the Purification of Lipase from Pumpkin (Cucurbita moschata) Seeds and Recycling of Phase Components.

    Science.gov (United States)

    Amid, Mehrnoush; Manap, Mohd Yazid; Hussin, Muhaini; Mustafa, Shuhaimi

    2015-06-17

    Lipase is one of the more important enzymes used in various industries such as the food, detergent, pharmaceutical, textile, and pulp and paper sectors. A novel aqueous two-phase system composed of surfactant and xylitol was employed for the first time to purify lipase from Cucurbita moschata. The influence of different parameters such as type and concentration of surfactants, and the composition of the surfactant/xylitol mixtures on the partitioning behavior and recovery of lipase was investigated. Moreover, the effect of system pH and crude load on the degree of purification and yield of the purified lipase were studied. The results indicated that the lipase was partitioned into the top surfactant rich phase while the impurities partitioned into the bottom xylitol-rich phase using an aqueous two phase system composed of 24% (w/w) Triton X-100 and 20% (w/w) xylitol, at 56.2% of tie line length (TLL), (TTL is one of the important parameters in this study and it is determined from a bimodal curve in which the tie-line connects two nodes on the bimodal, that represent concentration of phase components in the top and bottom phases) and a crude load of 25% (w/w) at pH 8.0. Recovery and recycling of components was also measured in each successive step process. The enzyme was successfully recovered by the proposed method with a high purification factor of 16.4 and yield of 97.4% while over 97% of the phase components were also recovered and recycled. This study demonstrated that the proposed novel aqueous two phase system method is more efficient and economical than the traditional aqueous two phase system method for the purification and recovery of the valuable enzyme lipase.

  19. A Novel Aqueous Two Phase System Composed of Surfactant and Xylitol for the Purification of Lipase from Pumpkin (Cucurbita moschata Seeds and Recycling of Phase Components

    Directory of Open Access Journals (Sweden)

    Mehrnoush Amid

    2015-06-01

    Full Text Available Lipase is one of the more important enzymes used in various industries such as the food, detergent, pharmaceutical, textile, and pulp and paper sectors. A novel aqueous two-phase system composed of surfactant and xylitol was employed for the first time to purify lipase from Cucurbita moschata. The influence of different parameters such as type and concentration of surfactants, and the composition of the surfactant/xylitol mixtures on the partitioning behavior and recovery of lipase was investigated. Moreover, the effect of system pH and crude load on the degree of purification and yield of the purified lipase were studied. The results indicated that the lipase was partitioned into the top surfactant rich phase while the impurities partitioned into the bottom xylitol-rich phase using an aqueous two phase system composed of 24% (w/w Triton X-100 and 20% (w/w xylitol, at 56.2% of tie line length (TLL, (TTL is one of the important parameters in this study and it is determined from a bimodal curve in which the tie-line connects two nodes on the bimodal, that represent concentration of phase components in the top and bottom phases and a crude load of 25% (w/w at pH 8.0. Recovery and recycling of components was also measured in each successive step process. The enzyme was successfully recovered by the proposed method with a high purification factor of 16.4 and yield of 97.4% while over 97% of the phase components were also recovered and recycled. This study demonstrated that the proposed novel aqueous two phase system method is more efficient and economical than the traditional aqueous two phase system method for the purification and recovery of the valuable enzyme lipase.

  20. Enhancing the lateral-flow immunoassay for detection of proteins using an aqueous two-phase micellar system.

    Science.gov (United States)

    Mashayekhi, Foad; Le, Alexander M; Nafisi, Parsa M; Wu, Benjamin M; Kamei, Daniel T

    2012-10-01

    The lateral-flow (immuno)assay (LFA) has been widely investigated for the detection of molecular, macromolecular, and particle targets at the point-of-need due to its ease of use, rapid processing, and minimal power and laboratory equipment requirements. However, for some analytes, such as certain proteins, the detection limit of LFA is inferior to lab-based assays, such as the enzyme-linked immunosorbent assay, and needs to be improved. One solution for improving the detection limit of LFA is to concentrate the target protein in a solution prior to the detection step. In this study, a novel approach was used in the context of an aqueous two-phase micellar system comprised of the nonionic surfactant Triton X-114 to concentrate a model protein, namely transferrin, prior to LFA. Proteins have been shown to partition, or distribute, fairly evenly between the two phases of an aqueous two-phase system, which in turn results in their limited concentration in one of the two phases. Therefore, larger colloidal gold particles decorated with antibodies for transferrin were used in the concentration step to bind to transferrin and aid its partitioning into the top, micelle-poor phase. By manipulating the volume ratio of the two coexisting micellar phases and combining the concentration step with LFA, the transferrin detection limit of LFA was improved by tenfold from 0.5 to 0.05 μg/mL in a predictive manner. In addition to enhancing the sensitivity of LFA, this universal concentration method could also be used to improve other detection assays.

  1. [Phase transfer catalyzed bioconversion of penicillin G to 6-APA by immobilized penicillin acylase in recyclable aqueous two-phase systems with light/pH sensitive copolymers].

    Science.gov (United States)

    Jin, Ke-ming; Cao, Xue-jun; Su, Jin; Ma, Li; Zhuang, Ying-ping; Chu, Ju; Zhang, Si-liang

    2008-03-01

    Immobilized penicillin acylase was used for bioconversion of penicillin PG into 6-APA in aqueous two-phase systems consisting of a light-sensitive polymer PNBC and a pH-sensitive polymer PADB. Partition coefficients of 6-APA was found to be about 5.78 in the presence of 1% NaCl. Enzyme kinetics showed that the reaction reached equilibrium at roughly 7 h. The 6-APA mole yields were 85.3% (pH 7.8, 20 degrees C), with about 20% increment as compared with the reaction of single aqueous phase buffer. The partition coefficient of PG (Na) varied scarcely, while that of the product, 6-APA and phenylacetic acid (PA) significantly varied due to Donnan effect of the phase systems and hydrophobicity of the products. The variation of the partition coefficients of the products also affected the bioconversion yield of the products. In the aqueous two-phase systems, the substrate, PG, the products of 6-APA and PA were biased in the top phase, while immobilized penicillin acylase at completely partitioned at the bottom. The substrate and PG entered the bottom phase, where it was catalyzed into 6-APA and PA and entered the top phase. Inhibition of the substrate and products was removed to result in improvement of the product yield, and the immobilized enzyme showed higher efficiency than the immobilized cells and occupied smaller volume. Compared with the free enzyme, immobilized enzyme had greater stability, longer life-time, and was completely partitioned in the bottom phase and recycle. Bioconversion in two-phase systems using immobilized penicillin acylase showed outstanding advantage. The light-sensitive copolymer forming aqueous two-phase systems could be recovered by laser radiation at 488 nm or filtered 450 nm light, while pH-sensitive polymer PADB could be recovered at the isoelectric point (pH 4.1). The recovery of the two copolymers was between 95% and 99%.

  2. Comparison of colorimetric m ethods for the quantification of model proteins in aqueous two-phase systems

    OpenAIRE

    Glyk, Anna; Heinisch, Sandra L.; Scheper, Thomas; Beutel, Sascha

    2015-01-01

    In the current study, the quantification of different model proteins in the presence of typical aqueous two-phase system components was investigated by using the Bradford and bicinchoninic acid (BCA) assays. Each phase-forming component above 1 and 5 wt% had considerable effects on the protein quantification in both assays, respectively, resulting in diminished protein recoveries/absorption values by increasing poly(ethylene glycol) (PEG)/salt concentration and PEG molecular weight. Therefore...

  3. Affinity partitioning of human antibodies in aqueous two-phase systems.

    Science.gov (United States)

    Rosa, P A J; Azevedo, A M; Ferreira, I F; de Vries, J; Korporaal, R; Verhoef, H J; Visser, T J; Aires-Barros, M R

    2007-08-24

    The partitioning of human immunoglobulin (IgG) in a polymer-polymer and polymer-salt aqueous two-phase system (ATPS) in the presence of several functionalised polyethylene glycols (PEGs) was studied. As a first approach, the partition studies were performed with pure IgG using systems in which the target protein remained in the bottom phase when the non-functionalised systems were tested. The effect of increasing functionalised PEG concentration and the type of ligand were studied. Afterwards, selectivity studies were performed with the most successful ligands first by using systems containing pure proteins and an artificial mixture of proteins and, subsequently, with systems containing a Chinese hamster ovary (CHO) cells supernatant. The PEG/phosphate ATPS was not suitable for the affinity partitioning of IgG. In the PEG/dextran ATPS, the diglutaric acid functionalised PEGs (PEG-COOH) displayed great affinity to IgG, and all IgG could be recovered in the top phase when 20% (w/w) of PEG 150-COOH and 40% (w/w) PEG 3350-COOH were used. The selectivity of these functionalised PEGs was evaluated using an artificial mixture of proteins, and PEG 3350-COOH did not show affinity to IgG in the presence of typical serum proteins such as human serum albumin and myoglobin, while in systems with PEG 150-COOH, IgG could be recovered with a yield of 91%. The best purification of IgG from the CHO cells supernatant was then achieved in a PEG/dextran ATPS in the presence of PEG 150-COOH with a recovery yield of 93%, a purification factor of 1.9 and a selectivity to IgG of 11. When this functionalised PEG was added to the ATPS, a 60-fold increase in selectivity was observed when compared to the non-functionalised systems.

  4. Aqueous two-phase (polyethylene glycol + sodium sulfate) system for caffeine extraction: Equilibrium diagrams and partitioning study

    International Nuclear Information System (INIS)

    Araujo Sampaio, Daniela de; Mafra, Luciana Igarashi; Yamamoto, Carlos Itsuo; Forville de Andrade, Eriel; Oberson de Souza, Michèle; Mafra, Marcos Rogério; Castilhos, Fernanda de

    2016-01-01

    Highlights: • Binodal curves of PEG (400, 4000 and 6000) + Na_2SO_4 ATPS were determined. • Tie-lines were experimentally determined for aqueous (PEG 400 + Na_2SO_4) system. • Influence of caffeine on LLE of aqueous (PEG 400 + Na_2SO_4) system was investigated. • Partitioning of caffeine in aqueous (PEG 400 + Na_2SO_4) system was investigated. • Caffeine partition showed to be dependent on temperature and TLL. - Abstract: Environmental friendly methods for liquid–liquid extraction have been taken into account due to critical conditions and ecotoxicological effects potentially produced by organic solvents applied in traditional methods. Liquid–liquid extraction using aqueous two phase systems (ATPSs) presents advantages when compared to traditional liquid–liquid extraction. (Polyethylene glycol (PEG) + sodium sulfate + water) ATPS was applied to study partition of caffeine. Binodal curves for ATPSs composed of PEG of different molecular weights (400 g · mol"−"1, 4000 g · mol"−"1 and 6000 g · mol"−"1) sodium sulfate + water were determined by cloud point method at three different temperatures (293.15, 313.15 and 333.15) K. Liquid–liquid equilibrium (LLE) data (tie-lines, slope of the tie-line and tie-lines length) were obtained applying a gravimetric method proposed by Merchuck and co-workers at the same temperatures for aqueous (PEG 400 + sodium sulfate) and aqueous (PEG 400 + sodium sulfate + caffeine) systems. Reliability of the experimental tie-line (TL) data was evaluated using the equations reported by Othmer–Tobias and satisfactory linearity was obtained. Concerning to aqueous (PEG + sodium sulfate) system, the results pointed out that the higher PEG molecular weight the largest is the heterogeneous region. Moreover, temperature showed not to be relevant on binodal curves behavior, but it influenced on tie-line slopes. Partitioning of caffeine in aqueous (PEG 400 + sodium sulfate) system was investigated at different temperatures

  5. A green deep eutectic solvent-based aqueous two-phase system for protein extracting

    International Nuclear Information System (INIS)

    Xu, Kaijia; Wang, Yuzhi; Huang, Yanhua; Li, Na; Wen, Qian

    2015-01-01

    Highlights: • A strategy for the protein purification with a deep eutectic solvent(DES)-based aqueous two-phase system. • Choline chloride-glycerin DES was selected as the extraction solvent. • Bovine serum albumin and trypsin were used as the analytes. • Aggregation phenomenon was detected in the mechanism research. - Abstract: As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n = 3), 1.6057% (n = 3) and 1.6132% (n = 3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV–vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES–protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins

  6. Design of functional guanidinium ionic liquid aqueous two-phase systems for the efficient purification of protein

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xueqin; Wang, Yuzhi, E-mail: wyzss@hnu.edu.cn; Zeng, Qun; Chen, Jing; Huang, Yanhua; Xu, Kaijia

    2014-03-01

    Graphical abstract: - Highlights: • A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been synthesized. • Functional guanidinium ionic liquid aqueous two-phase systems have been first designed for the purification of protein. • Mechanisms and performances of the process were researched. • Simple, green, safety and presents better purified ability than ordinary process. • A potential efficient platform for protein purification and related studies. - Abstract: A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been devised and synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids (ILs) were confirmed by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) and 13C nuclear magnetic resonance (13C NMR) and the production yields were all above 90%. Functional guanidinium ionic liquid aqueous two-phase systems (FGIL-ATPSs) have been first designed with these functional guanidinium ILs and phosphate solution for the purification of protein. After phase separation, proteins had transferred into the IL-rich phase and the concentrations of proteins were determined by measuring the absorbance at 278 nm using an ultra violet visible (UV–vis) spectrophotometer. The advantages of FGIL-ATPSs were compared with ordinary ionic liquid aqueous two-phase systems (IL-ATPSs). The proposed FGIL-ATPS has been applied to purify lysozyme, trypsin, ovalbumin and bovine serum albumin. Single factor experiments were used to research the effects of the process, such as the amount of ionic liquid (IL), the concentration of salt solution, temperature and the amount of protein. The purification efficiency reaches to 97.05%. The secondary structure of protein during the experimental process was observed upon investigation using UV–vis spectrophotometer, Fourier-transform infrared

  7. Separation and Enrichment of Lectin from Zihua Snap-Bean (Phaseolus vulgaris Seeds by PEG 600–Ammonium Sulfate Aqueous Two-Phase System

    Directory of Open Access Journals (Sweden)

    Bin Jiang

    2017-09-01

    Full Text Available A fast and efficient method based on a polyethylene glycol (PEG 600/(NH42SO4 aqueous two-phase system for extracting lectin from Zihua snap-bean (Phaseolus vulgaris seeds was established. According to a Box–Behnken design (BBD, involving four factors at three levels each subjected to analysis of variance (ANOVA and response surface analysis, the protein recovery and the purification factor of lectin in the top phase were used as the response values of the variance analysis to acquire the multivariate quadratic regression model. SDS–PAGE electrophoresis and the hemagglutination test were used to detect the distribution of lectin in the aqueous two-phase system (ATPS. The obtained data indicated that lectin was preferentially partitioned into the PEG-rich phase, and the ATPS, composed of 15% (NH42SO4 (w/w, 18% PEG 600 (w/w, 0.4 g/5 g NaCl and 1 mL crude extract, showed good selectivity for lectin when the pH value was 7.5. Under the optimal conditions, most of the lectin was assigned to the top phase in the ATPS, and the hemagglutination activity of the purified lectin in the top phase was 3.08 times that of the crude extract. Consequently, the PEG 600/(NH42SO4 aqueous two-phase system was an effective method for separating and enriching lectin directly from the crude extract of Zihua snap-bean seeds.

  8. Extraction of actinide and lanthanide complexonates in two-phase aqueous system potassium carbonate-polyethylene glycol-water

    International Nuclear Information System (INIS)

    Molochnikova, N.P.; Shkinev, V.M.; Spivakov, B.Ya.; Zolotov, Yu.A.; Myasoedov, B.F.

    1988-01-01

    Extraction system on the basis of polyethylene glycol for the concentration, isolation and separation of actinides is suggested. Extraction of actinides and lanthanides in two-phase aqueous system: potassium carbonate - polyethylene glycol - water in the presence of different complexones is investigated. Trivalent actinides are extracted quantitatively by polyethylene glycol from potassium carbonate solutions in the system with xylenol orange and alizarin-complexone. Under the conditions uranium (6) and plutonium (4) are extracted into the phase, enriched by polyethylene glycol, quite insignificantly, which permits to separate them from trivalent actinides with the separation factor of 10 2 - 10 3 . For actinide and lanthanide separation two complexones were introduced into the system, one of them being extractant, the other one - camouflaging reactant. The best results are obtained for the mixture of xylenol orange and hydroxyethylenediphosphonic acid. Separation coefficients for americium and europium constitute 4.5 - 5.6

  9. Liquid-liquid equilibrium of water + PEG 8000 + magnesium sulfate or sodium sulfate aqueous two-phase systems at 35°C: experimental determination and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    B. D. Castro

    2005-09-01

    Full Text Available Liquid-liquid extraction using aqueous two-phase systems is a highly efficient technique for separation and purification of biomolecules due to the mild properties of both liquid phases. Reliable data on the phase behavior of these systems are essential for the design and operation of new separation processes; several authors reported phase diagrams for polymer-polymer systems, but data on polymer-salt systems are still relatively scarce. In this work, experimental liquid-liquid equilibrium data on water + polyethylene glycol 8000 + magnesium sulfate and water + polyethylene glycol 8000 + sodium sulfate aqueous two-phase systems were obtained at 35°C. Both equilibrium phases were analyzed by lyophilization and ashing. Experimental results were correlated with a mass-fraction-based NRTL activity coefficient model. New interaction parameters were estimated with the Simplex method. The mean deviations between the experimental and calculated compositions in both equilibrium phases is about 2%.

  10. Aqueous two-phase system purification for superoxide dismutase induced by menadione from Phanerochaete chrysosporium.

    Science.gov (United States)

    Kavakcıoğlu, Berna; Tongul, Burcu; Tarhan, Leman

    2017-03-01

    In the present work, the partitioning behavior of menadione-induced superoxide dismutase (SOD; EC 1.15.1.1), an antioxidant enzyme that has various applications in the medical and cosmetic industries, from the white rot fungus Phanerochaete chrysosporium has been characterized on different types of aqueous two-phase systems (ATPSs) (poly(ethylene glycol)/polypropylene glycol (PEG/PPG)-dextran, PEG-salt and PPG-salt). PEG-salt combinations were found most optimal systems for the purification of SOD. The best partition conditions were found using the PEG-3350 24% and K 2 HPO 4 5% (w/w) with pH 7.0 at 25 °C. The partition coefficient of total SOD activity and total protein concentration observed in this system were 0.17 and 6.65, respectively, with the recovery percentage as 78.90% in the bottom phase and 13.17% in the top phase. The highest purification fold for SOD from P. chrysosporium was found as 6.04 in the bottom phase of PEG 3350%24 - K 2 HPO 4 %5 (w/w) system with pH 7.0. SOD purified from P. chrysosporium was determined to be a homodimer in its native state with a molecular weight of 60  ± 4 kDa. Consequently, simple and only one step PEG-salt ATPS system was developed for SOD purification from P. chrysosporium.

  11. Purification of Active Myrosinase from Plants by Aqueous Two-Phase Counter-Current Chromatography

    Science.gov (United States)

    Wade, Kristina L.; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W. David; Fahey, Jed W.

    2014-01-01

    Introduction Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (frombroccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. Objective To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. Methods A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Results Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Conclusion Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. PMID:25130502

  12. Purification of active myrosinase from plants by aqueous two-phase counter-current chromatography.

    Science.gov (United States)

    Wade, Kristina L; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W David; Fahey, Jed W

    2015-01-01

    Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (from broccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Lithium isotope separation factors of some two-phase equilibrium systems

    International Nuclear Information System (INIS)

    Palko, A.A.; Drury, J.S.; Begun, G.M.

    1976-01-01

    Isotope separation factors of seventeen two-phase equilibrium systems for lithium isotope enrichment have been determined. In all cases, lithium amalgam was used as one of the lithium-containing phases and was equilibrated with an aqueous or organic phase containing a lithium compound. In all systems examined, isotopic exchange was found to be extremely rapid, and 6 Li was concentrated in the amalgam phase. The isotopic separation factor for the LiOH(aqueous) vs Li(amalgam) system has been studied as a function of temperature from -2 to 80 degreeC. The values obtained have been compared with the ''electrolysis'' and exchange separation factors given in the literature. The two-phase systems, LiCl(ethylenediamine) vs Li(amalgam) and LiCl(propylenediamine) vs Li(amalgam), have been studied, and the isotopic separation factors have been determined as functions of the temperature. The factors for the two systems have been found to be substantially the same (within limits of the errors involved) over the temperature range studied (0 to 100 degreeC) as those for the aqueous system. The isotopic separation factors for the seventeen systems have been tabulated, and correlations have been drawn that show the salt and solvent effects upon the values obtained

  14. Extraction of ascorbate oxidase from Cucurbita maxima by continuous process in perforated rotating disc contactor using aqueous two-phase systems.

    Science.gov (United States)

    Porto, T S; Marques, P P; Porto, C S; Moreira, K A; Lima-Filho, J L; Converti, A; Pessoa, A; Porto, A L F

    2010-02-01

    The ascorbate oxidase is the enzyme used to determine the content of ascorbic acid in the pharmaceutical and food industries and clinics analyses. The techniques currently used for the purification of this enzyme raise its production cost. Thus, the development of alternative processes and with the potential to reduce costs is interesting. The application of aqueous two-phase system is proposed as an alternative to purification because it enables good separation of biomolecules. The objective of this study was to determine the conditions to continuously pre-purify the enzyme ascorbate oxidase by an aqueous two-phase system (PEG/citrate) using rotating column provided with perforated discs. Under the best conditions (20,000 g/mol PEG molar mass, 10% PEG concentration, and 25% citrate concentration), the system showed satisfactory results (partition coefficient, 3.35; separation efficiency, 54.98%; and purification factor, 1.46) and proved suitable for the pre-purification of ascorbate oxidase in continuous process.

  15. Design of functional guanidinium ionic liquid aqueous two-phase systems for the efficient purification of protein.

    Science.gov (United States)

    Ding, Xueqin; Wang, Yuzhi; Zeng, Qun; Chen, Jing; Huang, Yanhua; Xu, Kaijia

    2014-03-07

    A series of novel cationic functional hexaalkylguanidinium ionic liquids and anionic functional tetraalkylguanidinium ionic liquids have been devised and synthesized based on 1,1,3,3-tetramethylguanidine. The structures of the ionic liquids (ILs) were confirmed by (1)H nuclear magnetic resonance ((1)H NMR) and 13C nuclear magnetic resonance (13C NMR) and the production yields were all above 90%. Functional guanidinium ionic liquid aqueous two-phase systems (FGIL-ATPSs) have been first designed with these functional guanidinium ILs and phosphate solution for the purification of protein. After phase separation, proteins had transferred into the IL-rich phase and the concentrations of proteins were determined by measuring the absorbance at 278 nm using an ultra violet visible (UV-vis) spectrophotometer. The advantages of FGIL-ATPSs were compared with ordinary ionic liquid aqueous two-phase systems (IL-ATPSs). The proposed FGIL-ATPS has been applied to purify lysozyme, trypsin, ovalbumin and bovine serum albumin. Single factor experiments were used to research the effects of the process, such as the amount of ionic liquid (IL), the concentration of salt solution, temperature and the amount of protein. The purification efficiency reaches to 97.05%. The secondary structure of protein during the experimental process was observed upon investigation using UV-vis spectrophotometer, Fourier-transform infrared spectroscopy (FT-IR) and circular dichroism spectrum (CD spectrum). The precision, stability and repeatability of the process were investigated. The mechanisms of purification were researched by dynamic light scattering (DLS), determination of the conductivity and transmission electron microscopy (TEM). It was suggested that aggregation and embrace phenomenon play a significant role in the purification of proteins. All the results show that FGIL-ATPSs have huge potential to offer new possibility in the purification of proteins. Copyright © 2014 Elsevier B.V. All rights

  16. Experimental determination and thermodynamic modeling of phase equilibrium and protein partitioning in aqueous two-phase systems containing biodegradable salts

    International Nuclear Information System (INIS)

    Perez, Brenda; Malpiedi, Luciana Pellegrini; Tubío, Gisela; Nerli, Bibiana; Alcântara Pessôa Filho, Pedro de

    2013-01-01

    Highlights: ► Binodal data of systems (water + polyethyleneglycol + sodium) succinate are reported. ► Pitzer model describes the phase equilibrium of systems formed by polyethyleneglycol and biodegradable salts satisfactorily. ► This simple thermodynamic framework was able to predict the partitioning behaviour of model proteins acceptably well. - Abstract: Phase diagrams of sustainable aqueous two-phase systems (ATPSs) formed by polyethyleneglycols (PEGs) of different average molar masses (4000, 6000, and 8000) and sodium succinate are reported in this work. Partition coefficients (Kps) of seven model proteins: bovine serum albumin, catalase, beta-lactoglobulin, alpha-amylase, lysozyme, pepsin, urease and trypsin were experimentally determined in these systems and in ATPSs formed by the former PEGs and other biodegradable sodium salts: citrate and tartrate. An extension of Pitzer model comprising long and short-range term contributions to the excess Gibbs free energy was used to describe the (liquid + liquid) equilibrium. Comparison between experimental and calculated tie line data showed mean deviations always lower than 3%, thus indicating a good correlation. The partition coefficients were modeled by using the same thermodynamic approach. Predicted and experimental partition coefficients correlated quite successfully. Mean deviations were found to be lower than the experimental uncertainty for most of the assayed proteins.

  17. Aqueous two-phase system patterning of detection antibody solutions for cross-reaction-free multiplex ELISA

    Science.gov (United States)

    Frampton, John P.; White, Joshua B.; Simon, Arlyne B.; Tsuei, Michael; Paczesny, Sophie; Takayama, Shuichi

    2014-05-01

    Accurate disease diagnosis, patient stratification and biomarker validation require the analysis of multiple biomarkers. This paper describes cross-reactivity-free multiplexing of enzyme-linked immunosorbent assays (ELISAs) using aqueous two-phase systems (ATPSs) to confine detection antibodies at specific locations in fully aqueous environments. Antibody cross-reactions are eliminated because the detection antibody solutions are co-localized only to corresponding surface-immobilized capture antibody spots. This multiplexing technique is validated using plasma samples from allogeneic bone marrow recipients. Patients with acute graft versus host disease (GVHD), a common and serious condition associated with allogeneic bone marrow transplantation, display higher mean concentrations for four multiplexed biomarkers (HGF, elafin, ST2 and TNFR1) relative to healthy donors and transplant patients without GVHD. The antibody co-localization capability of this technology is particularly useful when using inherently cross-reactive reagents such as polyclonal antibodies, although monoclonal antibody cross-reactivity can also be reduced. Because ATPS-ELISA adapts readily available antibody reagents, plate materials and detection instruments, it should be easily transferable into other research and clinical settings.

  18. Lactose hydrolysis in aqueous two-phase system by whole-cell {beta}-galactosidase of Kluyveromyces marxianus. Semicontinuous and continuous processes

    Energy Technology Data Exchange (ETDEWEB)

    Tomaska, M [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology; Stredansky, M [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology; Tomaskova, A [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology; Sturdik, E [Slovak Technical Univ., Bratislava (Slovakia). Dept. of Biochemical Technology

    1995-01-01

    Semicontinuous and continuous hydrolysis of lactose in aqueous two-phase systems (polyethylene glycol 20000/ dextran 40) with whole-cell {beta}-galactosidase of K. marxianus were studied. Both phase polymers had no effect on {beta}-galactosidase activity confined in cells. Good operational stability of the biocatalyst during 55 cycles of semicontinuous process was observed without appreciable decrease in product concentration. Continuous hydrolysis of lactose was performed in the stirred bioreactor, connected with the phase separator. The satisfactory degree of hydrolysis (between 82-88%) and volumetric productivity (21.6 g/l/h) were reached during 72 hours of continuous hydrolysis of 5% (w/w) lactose. (orig.)

  19. Isolation of plasma membranes from the nervous system by countercurrent distribution in aqueous polymer two-phase systems.

    Science.gov (United States)

    Schindler, Jens; Nothwang, Hans Gerd

    2009-01-01

    The plasma membrane separates the cell-interior from the cell's environment. To maintain homeostatic conditions and to enable transfer of information, the plasma membrane is equipped with a variety of different proteins such as transporters, channels, and receptors. The kind and number of plasma membrane proteins are a characteristic of each cell type. Owing to their location, plasma membrane proteins also represent a plethora of drug targets. Their importance has entailed many studies aiming at their proteomic identification and characterization. Therefore, protocols are required that enable their purification in high purity and quantity. Here, we report a protocol, based on aqueous polymer two-phase systems, which fulfils these demands. Furthermore, the protocol is time-saving and protects protein structure and function.

  20. Integration of carboxyl modified magnetic particles and aqueous two-phase extraction for selective separation of proteins.

    Science.gov (United States)

    Gai, Qingqing; Qu, Feng; Zhang, Tao; Zhang, Yukui

    2011-07-15

    Both of the magnetic particle adsorption and aqueous two-phase extraction (ATPE) were simple, fast and low-cost method for protein separation. Selective proteins adsorption by carboxyl modified magnetic particles was investigated according to protein isoelectric point, solution pH and ionic strength. Aqueous two-phase system of PEG/sulphate exhibited selective separation and extraction for proteins before and after magnetic adsorption. The two combination ways, magnetic adsorption followed by ATPE and ATPE followed by magnetic adsorption, for the separation of proteins mixture of lysozyme, bovine serum albumin, trypsin, cytochrome C and myloglobin were discussed and compared. The way of magnetic adsorption followed by ATPE was also applied to human serum separation. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. The potential of cloud point system as a novel two-phase partitioning system for biotransformation.

    Science.gov (United States)

    Wang, Zhilong

    2007-05-01

    Although the extractive biotransformation in two-phase partitioning systems have been studied extensively, such as the water-organic solvent two-phase system, the aqueous two-phase system, the reverse micelle system, and the room temperature ionic liquid, etc., this has not yet resulted in a widespread industrial application. Based on the discussion of the main obstacles, an exploitation of a cloud point system, which has already been applied in a separation field known as a cloud point extraction, as a novel two-phase partitioning system for biotransformation, is reviewed by analysis of some topical examples. At the end of the review, the process control and downstream processing in the application of the novel two-phase partitioning system for biotransformation are also briefly discussed.

  2. A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification.

    Science.gov (United States)

    Choi, Dongwhi; Lee, Donghyeon; Kim, Dong Sung

    2015-10-14

    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a self-triggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.

  3. Chelate-Modified Fenton Reaction for the Degradation of Trichloroethylene in Aqueous and Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Scott [Univ of KY, dept of chemical and materials engineering; lynch, Andrew [Univ of KY, dept of chemical and materials engineering; Bachas, Leonidas [Univ of KY, Dept of Chemistry; hampson, Steve [Univ of KY Center for Applied Energy Research - KY Research Consortium of Energy and Environment; Ormsbee, Lindelle [Univ of KY Center for Applied Energy Research - KY Research Consortium of Energy and Environment; Bhattacharyya, Dibakar [Univ of KY, dept of chemical and materials engineering

    2008-06-01

    The Standard Fenton reaction has been used for In-Situ Chemical Oxidation (ISCO) of toxic organics in groundwater. However, it requires low pH operating conditions, and thus has limitations for in situ applications. In addition, hydroxyl radicals are rapidly consumed by hydroxyl scavengers found in the subsurface. These problems are alleviated through the chelate-modified Fenton (hydroxyl radical) reaction, which includes the addition of nontoxic chelate (L) such as citrate or gluconic acid. This chelate allows the reaction to take place at bear neutral pH and control hydrogen peroxide consumption by binding to Fe(II), forming an FeL complex. The chelate also binds to Fe(III), preventing its precipitation as ferric hydroxide and thus prevents problems associated with injection well plugging. The rate of TCE dechlorination in chelate-modified Fenton systems is a function of pH, H2O2 concentration, and FE:L ratio. The primary objective of this research is to model and apply this process to the destruction of trichloroethylene (TCE) present in both the aqueous and organic (in the form of droplets) phases. Experimentation proved the chelate-modified Fenton reaction effectively dechlorinates TCE in both the aqueous and organic phases at near-neutral pH. Other focuses of this work include determining the effect of [L]:[Fe] ratios on H2O2 and TCE degradation as well as reusability of the FE citrate solution under repeated H2O2 injections. Generalized models were developed to predict the concentration of TCE in the aqueous phase and TCE droplet radius as a function of time using established hydroxyl radial kinetics and mass transfer relationships.

  4. Molar mass fractionation in aqueous two-phase polymer solutions of dextran and poly(ethylene glycol).

    Science.gov (United States)

    Zhao, Ziliang; Li, Qi; Ji, Xiangling; Dimova, Rumiana; Lipowsky, Reinhard; Liu, Yonggang

    2016-06-24

    Dextran and poly(ethylene glycol) (PEG) in phase separated aqueous two-phase systems (ATPSs) of these two polymers, with a broad molar mass distribution for dextran and a narrow molar mass distribution for PEG, were separated and quantified by gel permeation chromatography (GPC). Tie lines constructed by GPC method are in excellent agreement with those established by the previously reported approach based on density measurements of the phases. The fractionation of dextran during phase separation of ATPS leads to the redistribution of dextran of different chain lengths between the two phases. The degree of fractionation for dextran decays exponentially as a function of chain length. The average separation parameters, for both dextran and PEG, show a crossover from mean field behavior to Ising model behavior, as the critical point is approached. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. [Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of {alpha}-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for {beta}-amylase. (author)

  6. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. (Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering)

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of [alpha]-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for [beta]-amylase. (author)

  7. Partition of proteins in aqueous two-phase systems based on Cashew-nut tree gum and poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    Leonie Asfora Sarubbo

    2004-09-01

    Full Text Available The partitioning of two proteins, bovine serum albumin (BSA and trypsin was studied in an aqueous poly(ethylene glycol(PEG- Cashew-nut tree gum system. The phase diagram was provided for Cashew-nut tree gum and PEG molecular weight of 1500 at two different temperatures. The influence of several parameters including concentrations of polymers, pH, salt addition and temperature on the partitioning of these proteins were investigated.. The results of this research demonstrated the importance of the protein characteristics for partitioning in aqueous biphasic system.A partição de duas proteínas, albumina de soro bovino (BSA e tripsina foi estudada no sistema bifásico aquoso Polietileno glicol(PEG - Goma do cajueiro. O diagrama de fases foi estabelecido para a Goma do Cajueiro e para PEG de peso molecular 1500 em duas diferentes temperaturas. A influência de vários parâmetros na partição destas proteínas, incluindo concentração dos polímeros, pH, adição de sal e temperatura foi investigada. Os resultados desta pesquisa demonstraram a importância das características da proteína na partição em sistemas bifásicos aquosos.

  8. Separation of active laccases from Pleurotus sapidus culture supernatant using aqueous two-phase systems in centrifugal partition chromatography.

    Science.gov (United States)

    Schwienheer, C; Prinz, A; Zeiner, T; Merz, J

    2015-10-01

    For the production of bio active compounds, e.g., active enzymes or antibodies, a conserved purification process with a minimum loss of active compounds is necessary. In centrifugal partition chromatography (CPC), the separation effect is based on the different distribution of the components to be separated between two immiscible liquid phases. Thereby, one liquid phase is kept stationary in chambers by a centrifugal field and the mobile phase is pumped through via connecting ducts. Aqueous two phase systems (ATPS) are known to provide benign conditions for biochemical products and seem to be promising when used in CPC for purification tasks. However, it is not known if active biochemical compounds can "survive" the conditions in a CPC where strong shear forces can occur due to the two-phasic flow under centrifugal forces. Therefore, this aspect has been faced within this study by the separation of active laccases from a fermentation broth of Pleurotus sapidus. After selecting a suitable ATPS and operating conditions, the activity yield was calculated and the preservation of the active enzymes could be observed. Therefore, CPC could be shown as potentially suitable for the purification of bio-active compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Aqueous Two-Phase Systems: A New Approach for the Determination of Brilliant Blue FCF in Water and Food Samples

    Directory of Open Access Journals (Sweden)

    Sabah Shiri

    2013-01-01

    Full Text Available A novel, simple, and more sensitive spectrophotometric procedure has been developed for the determination of brilliant blue FCF in water and food samples by an aqueous two-phase system (ATPS. In this method, adequate amount of polyethylene glycol/ sodium carbonate (PEG-4000/Na2CO3 was added to aqueous solution for formation of a homogeneous solution. To the mixture solution, suitable amount of Na2CO3 was added, the mixture solution was shaken until the salt was dissolved, and then it was separated into two clear phases easily and rapidly. The target analyte in the water sample was extracted into the polyethylene glycol phase. After extraction, measuring the absorbance at 634 nm was done. The effects of different parameters such as polyethylene glycol (type and concentration, pH, salt (type and amount, centrifuge time, and temperature on the ATPS of dye was investigated and optimum conditions were established. Linear calibration curves were obtained in the range of 0.25–750 ng/mL for brilliant blue FCF under optimum conditions. Detection limit based on three times the standard deviation of the blank (3Sb was 0.12 ng/mL. The relative standard deviation (RSD for 400 ng/mL was 3.14%. The method was successfully applied to the determination of brilliant blue FCF in spiked samples with satisfactory results. The relative recovery was between 96.0 and 102.2%.

  10. Radioimmunoassay of serum triiodothyronine using a two-phase aqueous system

    International Nuclear Information System (INIS)

    Nedvidkova, J.; Felt, V.

    1984-01-01

    The results were compared of radioimmunoassay of triiodothyronine and that of triiodothyronine after separation of the antigen-antibody complex in a two-phase system with magnesium sulfate and polyethylene glycol which replaces centrifuging. A correlation coefficient of 0.95 was obtained. (author)

  11. Calculation of liquid-liquid equilibrium of aqueous two-phase systems using a chemical-theory-based excess Gibbs energy model

    Directory of Open Access Journals (Sweden)

    Pessôa Filho P. A.

    2004-01-01

    Full Text Available Mixtures containing compounds that undergo hydrogen bonding show large deviations from ideal behavior. These deviations can be accounted for through chemical theory, according to which the formation of a hydrogen bond can be treated as a chemical reaction. This chemical equilibrium needs to be taken into account when applying stability criteria and carrying out phase equilibrium calculations. In this work, we illustrate the application of the stability criteria to establish the conditions under which a liquid-phase split may occur and the subsequent calculation of liquid-liquid equilibrium using a chemical-theory-modified Flory-Huggins equation to describe the non ideality of aqueous two-phase systems composed of poly(ethylene glycol and dextran. The model was found to be able to correlate ternary liquid-liquid diagrams reasonably well by simple adjustment of the polymer-polymer binary interaction parameter.

  12. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.

    Science.gov (United States)

    An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-06-02

    The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Characterization of aqueous two phase systems by combining lab-on-a-chip technology with robotic liquid handling stations.

    Science.gov (United States)

    Amrhein, Sven; Schwab, Marie-Luise; Hoffmann, Marc; Hubbuch, Jürgen

    2014-11-07

    Over the last decade, the use of design of experiment approaches in combination with fully automated high throughput (HTP) compatible screenings supported by robotic liquid handling stations (LHS), adequate fast analytics and data processing has been developed in the biopharmaceutical industry into a strategy of high throughput process development (HTPD) resulting in lower experimental effort, sample reduction and an overall higher degree of process optimization. Apart from HTP technologies, lab-on-a-chip technology has experienced an enormous growth in the last years and allows further reduction of sample consumption. A combination of LHS and lab-on-a-chip technology is highly desirable and realized in the present work to characterize aqueous two phase systems with respect to tie lines. In particular, a new high throughput compatible approach for the characterization of aqueous two phase systems regarding tie lines by exploiting differences in phase densities is presented. Densities were measured by a standalone micro fluidic liquid density sensor, which was integrated into a liquid handling station by means of a developed generic Tip2World interface. This combination of liquid handling stations and lab-on-a-chip technology enables fast, fully automated, and highly accurate density measurements. The presented approach was used to determine the phase diagram of ATPSs composed of potassium phosphate (pH 7) and polyethylene glycol (PEG) with a molecular weight of 300, 400, 600 and 1000 Da respectively in the presence and in the absence of 3% (w/w) sodium chloride. Considering the whole ATPS characterization process, two complete ATPSs could be characterized within 24h, including four runs per ATPS for binodal curve determination (less than 45 min/run), and tie line determination (less than 45 min/run for ATPS preparation and 8h for density determination), which can be performed fully automated over night without requiring man power. The presented methodology provides

  14. Extraction and purification of capsaicin from capsicum oleoresin using an aqueous two-phase system combined with chromatography.

    Science.gov (United States)

    Fan, Yong; Lu, Yan-Min; Yu, Bin; Tan, Cong-Ping; Cui, Bo

    2017-09-15

    Capsaicin was extracted from capsicum oleoresin using an aqueous two-phase system (ATPS) composed of an ethylene oxide-propylene oxide (EOPO) copolymer, salt and ethanol. Capsaicin was concentrated in the top polymer-rich phase. To determine the optimal conditions, the partitioning of capsaicin in the ATPS was investigated, considering a single-factor experiment including the salt concentration, polymer concentration, buffer pH, ethanol concentration, sample loading and extraction duration. Response surface methodology was applied to investigate the effects of the polymer concentration, buffer pH and sample loading on capsaicin partitioning. A capsaicin yield of 95.5% was obtained using the optimal extraction system, which consisted of 16.3% UCON 50-HB-5100/10% K 2 HPO 4 /1% ethanol, a buffer pH of 4.35 and 0.24g of capsicum oleoresin. Capsaicin was purified from the capsaicinoid extract using a two-step macroporous adsorption resin (MAR) method. After purification using non-polar MAR ADS-17, the recovery and purity of capsaicin were 83.7% and 50.3%, respectively. After purification using weakly polar MAR AB-8, the recovery and purity of capsaicin were 88.0% and 85.1%, respectively. Copyright © 2017. Published by Elsevier B.V.

  15. Partition efficiencies of newly fabricated universal high-speed counter-current chromatograph for separation of two different types of sugar derivatives with organic-aqueous two-phase solvent systems

    Science.gov (United States)

    Shinomiya, Kazufusa; Sato, Kazuki; Yoshida, Kazunori; Tokura, Koji; Maruyama, Hiroshi; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2013-01-01

    Universal high-speed counter-current chromatograph (HSCCC) was newly designed and fabricated in our laboratory. It holds a set of four column holders symmetrically around the rotary frame at a distance of 11.2 cm from the central axis. By engaging the stationary gear on the central axis of the centrifuge to the planetary gears on the column holder shaft through a set of idle gears, two pairs of diagonally located column holders simultaneously rotate about their own axes in the opposite directions: one forward (type-J planetary motion) and the other backward (type-I planetary motion) each synchronously with the revolution. Using the eccentric coil assembly, partition efficiencies produced by these two planetary motions were compared on the separation of two different types of sugar derivatives (4-methylumbelliferyl and 5-bromo-4-chloro-3-indoxyl sugar derivatives) using organic-aqueous two-phase solvent systems composed of n-hexane/ethyl acetate/1-butanol/methanol/water and aqueous 0.1 M sodium tetraborate, respectively. With lower phase mobile, better peak resolution was obtained by the type-J forward rotation for both samples probably due to higher retention of the stationary phase. With upper phase mobile, however, similar peak resolutions were obtained between these two planetary motions for both sugar derivatives. The overall results indicate that the present universal HSCCC is useful for counter-current chromatographic separation since each planetary motion has its specific applications: e.g., vortex CCC by the type-I planetary motion and HSCCC by the type-J planetary motion both for separation of various natural and synthetic products. PMID:24267319

  16. Separation of Cd and Ni from Ni-Cd batteries by an environmentally safe methodology employing aqueous two-phase systems

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Vania Goncalves; Mageste, Aparecida Barbosa; Santos, Igor Jose Boggione; da Silva, Luis Henrique Mendes; da Silva, Maria do Carmo Hespanhol [Grupo de Quimica Verde Coloidal e Macromolecular, Departamento de Quimica, Centro de Ciencias e Tecnologicas, Universidade Federal de Vicosa, Av. P.H. Rolfs s/n, Campus da UFV, Vicosa, 36570-000 (Brazil)

    2009-09-05

    The separation of Cd and Ni from Ni-Cd batteries using an aqueous two-phase system (ATPS) composed of copolymer L35, Li{sub 2}SO{sub 4} and water is investigated. The extraction behavior of these metals from the bottom phase (BP) to the upper phase (UP) of the ATPS is affected by the amount of added extractant (potassium iodide), tie-line length (TLL), mass ratio between the phases of the ATPS, leaching and dilution factor of the battery samples. Maximum extraction of Cd (99.2 {+-} 3.1)% and Ni (10.6 {+-} 0.4)% is obtained when the batteries are leached with HCl, under the following conditions: 62.53% (w/w) TLL, concentration of KI equal to 50.00 mmol kg{sup -1}, mass ratio of the phases equal to 0.5 and a dilution factor of battery samples of 35. This novel methodology is efficient to separate the metals in question, with the advantage of being environmentally safe, since water is the main constituent of the ATPS, which is prepared with recyclable and biodegradable compounds. (author)

  17. Coupled enzyme reactions performed in heterogeneous reaction media: experiments and modeling for glucose oxidase and horseradish peroxidase in a PEG/citrate aqueous two-phase system.

    Science.gov (United States)

    Aumiller, William M; Davis, Bradley W; Hashemian, Negar; Maranas, Costas; Armaou, Antonios; Keating, Christine D

    2014-03-06

    The intracellular environment in which biological reactions occur is crowded with macromolecules and subdivided into microenvironments that differ in both physical properties and chemical composition. The work described here combines experimental and computational model systems to help understand the consequences of this heterogeneous reaction media on the outcome of coupled enzyme reactions. Our experimental model system for solution heterogeneity is a biphasic polyethylene glycol (PEG)/sodium citrate aqueous mixture that provides coexisting PEG-rich and citrate-rich phases. Reaction kinetics for the coupled enzyme reaction between glucose oxidase (GOX) and horseradish peroxidase (HRP) were measured in the PEG/citrate aqueous two-phase system (ATPS). Enzyme kinetics differed between the two phases, particularly for the HRP. Both enzymes, as well as the substrates glucose and H2O2, partitioned to the citrate-rich phase; however, the Amplex Red substrate necessary to complete the sequential reaction partitioned strongly to the PEG-rich phase. Reactions in ATPS were quantitatively described by a mathematical model that incorporated measured partitioning and kinetic parameters. The model was then extended to new reaction conditions, i.e., higher enzyme concentration. Both experimental and computational results suggest mass transfer across the interface is vital to maintain the observed rate of product formation, which may be a means of metabolic regulation in vivo. Although outcomes for a specific system will depend on the particulars of the enzyme reactions and the microenvironments, this work demonstrates how coupled enzymatic reactions in complex, heterogeneous media can be understood in terms of a mathematical model.

  18. Partitioning in aqueous two-phase systems: Analysis of strengths, weaknesses, opportunities and threats.

    Science.gov (United States)

    Soares, Ruben R G; Azevedo, Ana M; Van Alstine, James M; Aires-Barros, M Raquel

    2015-08-01

    For half a century aqueous two-phase systems (ATPSs) have been applied for the extraction and purification of biomolecules. In spite of their simplicity, selectivity, and relatively low cost they have not been significantly employed for industrial scale bioprocessing. Recently their ability to be readily scaled and interface easily in single-use, flexible biomanufacturing has led to industrial re-evaluation of ATPSs. The purpose of this review is to perform a SWOT analysis that includes a discussion of: (i) strengths of ATPS partitioning as an effective and simple platform for biomolecule purification; (ii) weaknesses of ATPS partitioning in regard to intrinsic problems and possible solutions; (iii) opportunities related to biotechnological challenges that ATPS partitioning may solve; and (iv) threats related to alternative techniques that may compete with ATPS in performance, economic benefits, scale up and reliability. This approach provides insight into the current status of ATPS as a bioprocessing technique and it can be concluded that most of the perceived weakness towards industrial implementation have now been largely overcome, thus paving the way for opportunities in fermentation feed clarification, integration in multi-stage operations and in single-step purification processes. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Characterization of bovine serum albumin partitioning behaviors in polymer-salt aqueous two-phase systems.

    Science.gov (United States)

    Chow, Yin Hui; Yap, Yee Jiun; Tan, Chin Ping; Anuar, Mohd Shamsul; Tejo, Bimo Ario; Show, Pau Loke; Ariff, Arbakariya Bin; Ng, Eng-Poh; Ling, Tau Chuan

    2015-07-01

    In this paper, a linear relationship is proposed relating the natural logarithm of partition coefficient, ln K for protein partitioning in poly (ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS) to the square of tie-line length (TLL(2)). This relationship provides good fits (r(2) > 0.98) to the partition of bovine serum albumin (BSA) in PEG (1450 g/mol, 2000 g/mol, 3350 g/mol, and 4000 g/mol)-phosphate ATPS with TLL of 25.0-50.0% (w/w) at pH 7.0. Results also showed that the plot of ln K against pH for BSA partitioning in the ATPS containing 33.0% (w/w) PEG1450 and 8.0% (w/w) phosphate with varied working pH between 6.0 and 9.0 exhibited a linear relationship which is in good agreement (r(2) = 0.94) with the proposed relationship, ln K = α' pH + β'. These results suggested that both the relationships proposed could be applied to correlate and elucidate the partition behavior of biomolecules in the polymer-salt ATPS. The influence of other system parameters on the partition behavior of BSA was also investigated. An optimum BSA yield of 90.80% in the top phase and K of 2.40 was achieved in an ATPS constituted with 33.0% (w/w) PEG 1450 and 8.0% (w/w) phosphate in the presence of 8.5% (w/w) sodium chloride (NaCl) at pH 9.0 for 0.3% (w/w) BSA load. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Synergistic extraction of transition metal cations from aqueous media by two separated organic phases

    International Nuclear Information System (INIS)

    Goldberg, I.

    1991-12-01

    We have therefore initiated novel approaches to the study of the mechanism of the synergistic extraction of metal ions by means of two separated organic phases, which are brought in contact with the same aqueous phase. The present work is concerned with the extraction of transition metals and actinides ions from nitric acid by chelating agents e.g., HTTA thenoyltrifluoroacetone in a diluent - the first organic phase, and by natural donor, e.g., TBP, tri-butyl phosphate in a diluent the second organic phase. The adduct formation was studied by means of spectrochemical and radiochemical methods. In the first approach the aqueous phase was attacked with both organic phases simultanously (the static or parallel extraction). In this method organic phase are separated one from the other. It was shown that even in the absence of mixing, synergism is observed under this experimental conditions. The results indicate, that adduct formation occurs in both organic phases. Nevertheless the enhanchment of extraction in the TBP phase is by far greater than that in the HTTA containing phase. This approach has one disadvatage, viz., the experiments are very time consuming, a typical experiment requiring over 10 days. In order to overcome this difficulty, the following experiments were carried out: the aqueous phase were first shaken with diluent containing an anionic ligand and the phases were allowed to separate. Then the aqueous solution were shaken with diluent containing a netural donor and the phase again were allowed to separate. The concentration of the metal ions in all the phases were determined. The experiments were repeated with an other diluent replacing the first diluent in one or both organic phases. In this way eight sequences of experiments were carried out for each concentration set chosen. The results thus point out that this experimental approach open new possibilities to investigate the mechanism and the kinetics of synergistic extraction processes. (author) the

  1. Extraction mechanism of sulfamethoxazole in water samples using aqueous two-phase systems of poly(propylene glycol) and salt

    Energy Technology Data Exchange (ETDEWEB)

    Xie Xueqiao; Wang Yun; Han Juan [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yan Yongsheng, E-mail: yys@ujs.edu.cn [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2011-02-14

    Based on the poly(propylene glycol){sub 400} (PPG{sub 400})-salt aqueous two-phase system (ATPS), a green, economical and effective sample pretreatment technique coupled with high performance liquid chromatography was proposed for the separation and determination of sulfamethoxazole (SMX). The extraction yield of SMX in PPG{sub 400}-salt ATPS is influenced by various factors, including the salt species, the amount of salt, pH, and the temperature. Under the optimum conditions, most of SMX was partitioning into the polymer-rich phase with the average extraction efficiency of 99.2%, which may be attributed to the hydrophobic interaction and salting-out effect. This extraction technique has been successfully applied to the analysis of SMX in real water samples with the recoveries of 96.0-100.6%, the detection limits of 0.1 {mu}g L{sup -1}, and the linear ranges of 2.5-250.0 {mu}g L{sup -1}.

  2. Quantification of amino acids and peptides in an ionic liquid based aqueous two-phase system by LC-MS analysis.

    Science.gov (United States)

    Oppermann, Sebastian; Oppermann, Christina; Böhm, Miriam; Kühl, Toni; Imhof, Diana; Kragl, Udo

    2018-04-25

    Aqueous two-phase systems (ATPS) occur by the mixture of two polymers or a polymer and an inorganic salt in water. It was shown that not only polymers but also ionic liquids in combination with inorganic cosmotrophic salts are able to build ATPS. Suitable for the formation of ionic liquid-based ATPS systems are hydrophilic water miscible ionic liquids. To understand the driving force for amino acid and peptide distribution in IL-ATPS at different pH values, the ionic liquid Ammoeng 110™ and K 2 HPO 4 have been chosen as a test system. To quantify the concentration of amino acids and peptides in the different phases, liquid chromatography and mass spectrometry (LC-MS) technologies were used. Therefore the peptides and amino acids have been processed with EZ:faast™-Kit from Phenomenex for an easy and reliable quantification method even in complex sample matrices. Partitioning is a surface-dependent phenomenon, investigations were focused on surface-related amino acid respectively peptide properties such as charge and hydrophobicity. Only a very low dependence between the amino acids or peptides hydrophobicity and the partition coefficient was found. Nevertheless, the presented results show that electrostatic respectively ionic interactions between the ionic liquid and the amino acids or peptides have a strong impact on their partitioning behavior.

  3. A green deep eutectic solvent-based aqueous two-phase system for protein extracting.

    Science.gov (United States)

    Xu, Kaijia; Wang, Yuzhi; Huang, Yanhua; Li, Na; Wen, Qian

    2015-03-15

    As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n=3), 1.6057% (n=3) and 1.6132% (n=3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV-vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES-protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Application of non-aqueous solvents to batteries. I Physicochemical properties of propionitrile/water two-phase solvent relevant to zinc-bromine batteries

    Science.gov (United States)

    Singh, P.; White, K.; Parker, A. J.

    1983-11-01

    The properties of bromine/propionitrile solution are investigated with a view to its use as an electrolyte in zinc-bromine batteries which use circulating electrolyte. The solution, which forms a two-phase system with water, has higher conductivity than the oils formed by complexation of bromine with organic salts such as N,N-methoxymethyl methylpiperidinium bromide and N,N-ethyl methylmorpholinium bromide. The activity of bromine in the aqueous phase of the bromine-propionitrile/water, two-phase system is very low; thus, coulombic efficiencies greater than 85 percent are achieved. Zinc-bromine batteries containing this solvent system show good charge/discharge characteristics.

  5. Direct purification of pectinase from mango (Mangifera Indica Cv. Chokanan) peel using a PEG/salt-based Aqueous Two Phase System.

    Science.gov (United States)

    Mehrnoush, Amid; Sarker, Md Zaidul Islam; Mustafa, Shuhaimi; Yazid, Abdul Manap Mohd

    2011-10-10

    An Aqueous Two-Phase System (ATPS) was employed for the first time for the separation and purification of pectinase from mango (Mangifera Indica Cv. Chokanan) peel. The effects of different parameters such as molecular weight of the polymer (polyethylene glycol, 2,000-10,000), potassium phosphate composition (12-20%, w/w), system pH (6-9), and addition of different concentrations of neutral salts (0-8%, w/w) on partition behavior of pectinase were investigated. The partition coefficient of the enzyme was decreased by increasing the PEG molecular weight. Additionally, the phase composition showed a significant effect on purification factor and yield of the enzyme. Optimum conditions for purification of pectinase from mango peel were achieved in a 14% PEG 4000-14% potassium phosphate system using 3% (w/w) NaCl addition at pH 7.0. Based on this system, the purification factor of pectinase was increased to 13.2 with a high yield of (97.6%). Thus, this study proves that ATPS can be an inexpensive and effective method for partitioning of pectinase from mango peel.

  6. A Novel Aqueous Micellar Two-Phase System Composed of Surfactant and Sorbitol for Purification of Pectinase Enzyme from Psidium guajava and Recycling Phase Components

    Science.gov (United States)

    Murshid, Fara Syazana; Manap, Mohd Yazid; Hussin, Muhaini

    2015-01-01

    A novel aqueous two-phase system composed of a surfactant and sorbitol was employed for the first time to purify pectinase from Psidium guajava. The influences of different parameters, including the type and concentration of the surfactant and the concentration and composition of the surfactant/sorbitol ratio, on the partitioning behavior and recovery of pectinase were investigated. Moreover, the effects of system pH and the crude load on purification fold and the yield of purified pectinase were studied. The experimental results indicated that the pectinase was partitioned into surfactant-rich top phase, and the impurities were partitioned into the sorbitol-rich bottom phase with the novel method involving an ATPS composed of 26% (w/w) Triton X-100 and 23% (w/w) sorbitol at 54.2% of the TLL crude load of 20% (w/w) at pH 6.0. The enzyme was successfully recovered by this method with a high purification factor of 15.2 and a yield of 98.3%, whereas the phase components were also recovered and recycled at rates above 96%. This study demonstrated that this novel ATPS method can be used as an efficient and economical alternative to the traditional ATPS for the purification and recovery of the valuable enzyme. PMID:25756051

  7. A novel aqueous micellar two-phase system composed of surfactant and sorbitol for purification of pectinase enzyme from Psidium guajava and recycling phase components.

    Science.gov (United States)

    Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Hussin, Muhaini

    2015-01-01

    A novel aqueous two-phase system composed of a surfactant and sorbitol was employed for the first time to purify pectinase from Psidium guajava. The influences of different parameters, including the type and concentration of the surfactant and the concentration and composition of the surfactant/sorbitol ratio, on the partitioning behavior and recovery of pectinase were investigated. Moreover, the effects of system pH and the crude load on purification fold and the yield of purified pectinase were studied. The experimental results indicated that the pectinase was partitioned into surfactant-rich top phase, and the impurities were partitioned into the sorbitol-rich bottom phase with the novel method involving an ATPS composed of 26% (w/w) Triton X-100 and 23% (w/w) sorbitol at 54.2% of the TLL crude load of 20% (w/w) at pH 6.0. The enzyme was successfully recovered by this method with a high purification factor of 15.2 and a yield of 98.3%, whereas the phase components were also recovered and recycled at rates above 96%. This study demonstrated that this novel ATPS method can be used as an efficient and economical alternative to the traditional ATPS for the purification and recovery of the valuable enzyme.

  8. Liquid–liquid equilibria in the quinary aqueous two-phase system of poly(ethylene glycol) 6000 + sodium sulfate + water in the presence of glucose and ethanol: Experimental investigation and thermodynamic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hekayati, Javad; Roosta, Aliakbar, E-mail: aa.roosta@sutech.ac.ir; Javanmardi, Jafar

    2016-02-10

    Highlights: • Quinary LLE phase equilibria involving PEG 6000 + Na{sub 2}SO{sub 4} + H{sub 2}O + glucose + ethanol. • Favorable partition coefficients of ethanol and glucose. • Satisfactory correlation of the LLE experimental data with the original NRTL model. • Root mean squared deviations (RMSDs) of less than 0.6%. - Abstract: Extractive fermentation processes involving aqueous two-phase systems (ATPSs) are considered as viable means of overcoming the problems associated with product inhibition. Practical development of these processes requires accurate knowledge of the liquid–liquid equilibrium (LLE) of the ATPS forming components alongside the substrate and product of the fermentation process. In this work, the quinary aqueous two-phase LLE of poly(ethylene glycol) 6000 + sodium sulfate + water in the presence of glucose and ethanol have been experimentally determined at 298.15 K using spectrophotometric methods. The resulting LLE data were then satisfactorily correlated by the non-random two-liquid (NRTL) activity coefficient model based on mass fractions. In doing so, the binary energy interaction parameters of the NRTL activity coefficient model were obtained and reported. Calculated RMS deviations below 0.6% demonstrate that the original NRTL activity coefficient model can accurately correlate the LLE data of the quinary aqueous biphasic system of interest.

  9. Liquid–liquid equilibria in the quinary aqueous two-phase system of poly(ethylene glycol) 6000 + sodium sulfate + water in the presence of glucose and ethanol: Experimental investigation and thermodynamic modeling

    International Nuclear Information System (INIS)

    Hekayati, Javad; Roosta, Aliakbar; Javanmardi, Jafar

    2016-01-01

    Highlights: • Quinary LLE phase equilibria involving PEG 6000 + Na_2SO_4 + H_2O + glucose + ethanol. • Favorable partition coefficients of ethanol and glucose. • Satisfactory correlation of the LLE experimental data with the original NRTL model. • Root mean squared deviations (RMSDs) of less than 0.6%. - Abstract: Extractive fermentation processes involving aqueous two-phase systems (ATPSs) are considered as viable means of overcoming the problems associated with product inhibition. Practical development of these processes requires accurate knowledge of the liquid–liquid equilibrium (LLE) of the ATPS forming components alongside the substrate and product of the fermentation process. In this work, the quinary aqueous two-phase LLE of poly(ethylene glycol) 6000 + sodium sulfate + water in the presence of glucose and ethanol have been experimentally determined at 298.15 K using spectrophotometric methods. The resulting LLE data were then satisfactorily correlated by the non-random two-liquid (NRTL) activity coefficient model based on mass fractions. In doing so, the binary energy interaction parameters of the NRTL activity coefficient model were obtained and reported. Calculated RMS deviations below 0.6% demonstrate that the original NRTL activity coefficient model can accurately correlate the LLE data of the quinary aqueous biphasic system of interest.

  10. Partitioning of L-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts

    International Nuclear Information System (INIS)

    Salabat, Alireza; Sadeghi, Rahmat; Moghadam, Somayeh Tiani; Jamehbozorg, Bahman

    2011-01-01

    Highlights: → Thermodynamics parameters for partitioning of L-methionine in ATPS. → Investigation of different effects on partition coefficient of the amino acid. → Propose the best condition for L-methionine partitioning. - Abstract: The partitioning behavior of L-methionine has been studied in aqueous two-phase systems of (poly(propylene glycol) + sodium phosphate salts + H 2 O) at different temperatures. The salts used were sodium di-hydrogen phosphate (NaH 2 PO 4 ), di-sodium hydrogen phosphate (Na 2 HPO 4 ) and tri-sodium phosphate (Na 3 PO 4 ). The effects of tie line length, salt type, and temperature on the partition coefficient of this amino acid have been studied. In addition, thermodynamic parameters (ΔH o , ΔS o and ΔG o ) as a function of temperature were calculated. The results showed that increasing tie line length led to decreasing of the partition coefficient. We also showed that the partition coefficients of the amino acid in the systems containing Na 3 PO 4 are greater than the other two salts. Moreover, it is verified that increasing temperature led to decreasing the partition coefficient. The experimental partition coefficient data are correlated using a modified virial-type model.

  11. Influence of salts on the coexistence curve and protein partitioning in nonionic aqueous two-phase micellar systems

    Directory of Open Access Journals (Sweden)

    A. M. Lopes

    2014-12-01

    Full Text Available Aqueous two-phase micellar systems (ATPMS can be exploited in separation science for the extraction/purification of desired biomolecules. Prior to phase separation the surfactant solution reaches a cloud point temperature, which is influenced by the presence of electrolytes. In this work, we provide an investigation on the cloud point behavior of the nonionic surfactant C10E4 in the presence of NaCl, Li2SO4 and KI. We also investigated the salts' influence on a model protein partitioning. NaCl and Li2SO4 promoted a depression of the cloud point. The order of salts and the concentration that decreased the cloud point was: Li2SO4 0.5 M > NaCl 0.5 M ≈ Li2SO4 0.2 M. On the other hand, 0.5 M KI dislocated the curve to higher cloud point values. For our model protein, glucose-6-phosphate dehydrogenase (G6PD, partitioning experiments with 0.5 M NaCl or 0.2 M Li2SO4 at 13.85 ºC showed similar results, with K G6PD ~ 0.46. The lowest partition coefficient was obtained in the presence of 0.5 M KI (K G6PD = 0.12, with major recovery of the enzyme in the micelle-dilute phase (%Recovery = 90%. Our results show that choosing the correct salt to add to ATPMS may be useful to attain the desired partitioning conditions at more extreme temperatures. Furthermore, this system can be effective to separate a target biomolecule from fermented broth contaminants.

  12. High temperature aqueous potassium and sodium phosphate solutions: two-liquid-phase boundaries and critical phenomena, 275-4000C; potential applications for steam generators

    International Nuclear Information System (INIS)

    Marshall, W.L.

    1981-12-01

    Two-liquid-phase boundaries at temperatures between 275 and 400 0 C were determined for potassium phosphate and sodium phosphate aqueous solutions for compositions from 0 to 60 wt % dissolved salt. The stoichiometric mole ratios, K/PO 4 or Na/PO 4 , were varied from 1.00 to 2.12 and from 1.00 to 2.16 for the potassium and sodium systems, respectively. Liquid-vapor critical temperatures were also determined for most of the dilute liquid phases that formed. The minimum temperatures (below which a single solution existed) of two-liquid-phase formation were 360 0 C for the potassium system and 279 0 C for the sodium system at mole ratios of 2.00 and 2.16, respectively. For the sodium system at mole ratios greater than 2.16, solids crystallized at lower temperatures as expected from earlier studies. In contrast, potassium solutions that were explored at mole ratios from 2.12 to 3.16 and at temperatures below 360 0 C did not produce solid phases nor liquid-liquid immiscibilities. Aside from the generally unusual observations of two immiscible liquids in an aqueous inorganic salt system, the results could possibly be applied to the use of phosphate additives in steam power generators. 16 refs

  13. Optimization of ultrasound-assisted aqueous two-phase system extraction of polyphenolic compounds from Aronia melanocarpa pomace by response surface methodology.

    Science.gov (United States)

    Xu, Yan-Yang; Qiu, Yang; Ren, Hui; Ju, Dong-Hu; Jia, Hong-Lei

    2017-03-16

    Aronia melanocarpa berries are abundant in polyphenolic compounds. After juice production, the pomace of pressed berries still contains a substantial amount of polyphenolic compounds. For efficient utilization of A. melanocarpa berries and the enhancement of polyphenolic compound yields in Aronia melanocarpa pomace (AMP), total phenolics (TP) and total flavonoids (TF) from AMP were extracted, using ultrasound-assisted aqueous two-phase system (UAE-ATPS) extraction method. First, the influences of ammonium sulfate concentration, ethanol-water ratio, ultrasonic time, and ultrasonic power on TP and TF yields were investigated. On this basis, process variables such as ammonium sulfate concentration (0.30-0.35 g mL -1 ), ethanol-water ratio (0.6-0.8), ultrasonic time (40-60 min), and ultrasonic power (175-225 W) were further optimized by implementing Box-Benhnken design with response surface methodology. The experimental results showed that optimal extraction conditions of TP from AMP were as follows: ammonium sulfate concentration of 0.324 g mL -1 , ethanol-water ratio of 0.69, ultrasonic time of 52 min, and ultrasonic power of 200 W. Meanwhile, ammonium sulfate concentration of 0.320 g mL -1 , ethanol-water ratio of 0.71, ultrasonic time of 50 min, and ultrasonic power of 200 W were determined as optimum extraction conditions of TF in AMP. Experimental validation was performed, where TP and TF yields reached 68.15 ± 1.04 and 11.67 ± 0.63 mg g -1 , respectively. Close agreement was found between experimental and predicted values. Overall, the present results demonstrated that ultrasound-assisted aqueous two-phase system extraction method was successfully used to extract total phenolics and flavonoids in A. melanocarpa pomace.

  14. Partitioning of L-methionine in aqueous two-phase systems containing poly(propylene glycol) and sodium phosphate salts

    Energy Technology Data Exchange (ETDEWEB)

    Salabat, Alireza, E-mail: a-salabat@araku.ac.ir [Chemistry Department, Arak University, P.O. Box 38156-879, Arak (Iran, Islamic Republic of); Sadeghi, Rahmat [Department of Chemistry, University of Kurdistan, Sanandaj, Kurdistan 66135 (Iran, Islamic Republic of); Moghadam, Somayeh Tiani [Chemistry Department, Arak University, P.O. Box 38156-879, Arak (Iran, Islamic Republic of); Jamehbozorg, Bahman [Department of Chemistry, University of Kurdistan, Sanandaj, Kurdistan 66135 (Iran, Islamic Republic of)

    2011-10-15

    Highlights: > Thermodynamics parameters for partitioning of L-methionine in ATPS. > Investigation of different effects on partition coefficient of the amino acid. > Propose the best condition for L-methionine partitioning. - Abstract: The partitioning behavior of L-methionine has been studied in aqueous two-phase systems of (poly(propylene glycol) + sodium phosphate salts + H{sub 2}O) at different temperatures. The salts used were sodium di-hydrogen phosphate (NaH{sub 2}PO{sub 4}), di-sodium hydrogen phosphate (Na{sub 2}HPO{sub 4}) and tri-sodium phosphate (Na{sub 3}PO{sub 4}). The effects of tie line length, salt type, and temperature on the partition coefficient of this amino acid have been studied. In addition, thermodynamic parameters ({Delta}H{sup o}, {Delta}S{sup o} and {Delta}G{sup o}) as a function of temperature were calculated. The results showed that increasing tie line length led to decreasing of the partition coefficient. We also showed that the partition coefficients of the amino acid in the systems containing Na{sub 3}PO{sub 4} are greater than the other two salts. Moreover, it is verified that increasing temperature led to decreasing the partition coefficient. The experimental partition coefficient data are correlated using a modified virial-type model.

  15. Individual extraction constants of some univalent cations in the two-phase water-phenyltrifluoromethyl sulfone system

    International Nuclear Information System (INIS)

    Makrlik, E.

    2011-01-01

    From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M + (aq) + Cs + (org) ↔ M + (org) + Cs + (aq) taking place in the two-phase water-phenyltrifluoromethyl sulfone (abbrev. FS 13) system (M + Li + , H 3 O + , Na + , NH 4 + , Ag + , Tl + , K + , Rb + ; aq = aqueous phase, org FS 13 phase) were evaluated. Furthermore, the individual extraction constants of the M + cations in the mentioned two-phase system were calculated; they were found to increase in the series of Li + 3 O + + 4 + + + + + + . (author)

  16. Impact of Surface Active Ionic Liquids on the Cloud Points of Nonionic Surfactants and the Formation of Aqueous Micellar Two-Phase Systems.

    Science.gov (United States)

    Vicente, Filipa A; Cardoso, Inês S; Sintra, Tânia E; Lemus, Jesus; Marques, Eduardo F; Ventura, Sónia P M; Coutinho, João A P

    2017-09-21

    Aqueous micellar two-phase systems (AMTPS) hold a large potential for cloud point extraction of biomolecules but are yet poorly studied and characterized, with few phase diagrams reported for these systems, hence limiting their use in extraction processes. This work reports a systematic investigation of the effect of different surface-active ionic liquids (SAILs)-covering a wide range of molecular properties-upon the clouding behavior of three nonionic Tergitol surfactants. Two different effects of the SAILs on the cloud points and mixed micelle size have been observed: ILs with a more hydrophilic character and lower critical packing parameter (CPP formation of smaller micelles and concomitantly increase the cloud points; in contrast, ILs with a more hydrophobic character and higher CPP (CPP ≥ 1) induce significant micellar growth and a decrease in the cloud points. The latter effect is particularly interesting and unusual for it was accepted that cloud point reduction is only induced by inorganic salts. The effects of nonionic surfactant concentration, SAIL concentration, pH, and micelle ζ potential are also studied and rationalized.

  17. Determination of partition coefficients of biomolecules in a microfluidic aqueous two phase system platform using fluorescence microscopy.

    Science.gov (United States)

    Silva, D F C; Azevedo, A M; Fernandes, P; Chu, V; Conde, J P; Aires-Barros, M R

    2017-03-03

    Aqueous two phase systems (ATPS) offer great potential for selective separation of a wide range of biomolecules by exploring differences in molecular solubility in each of the two immiscible phases. However, ATPS use has been limited due to the difficulty in predicting the behavior of a given biomolecule in the partition environment together with the empirical and time-consuming techniques that are used for the determination of partition and extraction parameters. In this work, a fast and novel technique based on a microfluidic platform and using fluorescence microscopy was developed to determine the partition coefficients of biomolecules in different ATPS. This method consists of using a microfluidic device with a single microchannel and three inlets. In two of the inlets, solutions containing the ATPS forming components were loaded while the third inlet was fed with the FITC tagged biomolecule of interest prepared in milli-Q water. Using fluorescence microscopy, it was possible to follow the location of the FITC-tagged biomolecule and, by simply varying the pumping rates of the solutions, to quickly test a wide variety of ATPS compositions. The ATPS system is allowed 4min for stabilization and fluorescence micrographs are used to determine the partition coefficient.The partition coefficients obtained were shown to be consistent with results from macroscale ATPS partition. This process allows for faster screening of partition coefficients using only a few microliters of material for each ATPS composition and is amenable to automation. The partitioning behavior of several biomolecules with molecular weights (MW) ranging from 5.8 to 150kDa, and isoelectric points (pI) ranging from 4.7 to 6.4 was investigated, as well as the effect of the molecular weight of the polymer ATPS component. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. An alternative method to isolate protease and phospholipase A2 toxins from snake venoms based on partitioning of aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    GN Gómez

    2012-01-01

    Full Text Available Snake venoms are rich sources of active proteins that have been employed in the diagnosis and treatment of health disorders and antivenom therapy. Developing countries demand fast economical downstream processes for the purification of this biomolecule type without requiring sophisticated equipment. We developed an alternative, simple and easy to scale-up method, able to purify simultaneously protease and phospholipase A2 toxins from Bothrops alternatus venom. It comprises a multiple-step partition procedure with polyethylene-glycol/phosphate aqueous two-phase systems followed by a gel filtration chromatographic step. Two single bands in SDS-polyacrylamide gel electrophoresis and increased proteolytic and phospholipase A2 specific activities evidence the homogeneity of the isolated proteins.

  19. Recovery of laccase from processed Hericium erinaceus (Bull.:Fr) Pers. fruiting bodies in aqueous two-phase system.

    Science.gov (United States)

    Rajagopalu, Devamalini; Show, Pau Loke; Tan, Yee Shin; Muniandy, Sekaran; Sabaratnam, Vikineswary; Ling, Tau Chuan

    2016-09-01

    The feasible use of aqueous two-phase systems (ATPSs) to establish a viable protocol for the recovery of laccase from processed Hericium erinaceus (Bull.:Fr.) Pers. fruiting bodies was evaluated. Cold-stored (4.00±1.00°C) H. erinaceus recorded the highest laccase activities of 2.02±0.04 U/mL among all the processed techniques. The evaluation was carried out in twenty-five ATPSs, which composed of polyethylene glycol (PEG) with various molecular weights and potassium phosphate salt solution to purify the protein from H. erinaceus. Optimum recovery condition was observed in the ATPS which contained 17% (w/w) PEG with a molecular weight of 8000 and 12.2% (w/w) potassium phosphate solution, at a volume ratio (VR) of 1.0. The use of ATPS resulted in one-single primary recovery stage process that produced an overall yield of 99% with a purification factor of 8.03±0.46. The molecular mass of laccases purified from the bottom phase was in the range of 55-66 kDa. The purity of the partitioned laccase was confirmed with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Analysis of coupled mass transfer and sol-gel reaction in a two-phase system

    NARCIS (Netherlands)

    Castelijns, H.J.; Huinink, H.P.; Pel, L.; Zitha, P.L.J.

    2006-01-01

    The coupled mass transfer and chemical reactions of a gel-forming compound in a two-phase system were studied in detail. Tetra-methyl-ortho-silicate (TMOS) is often used as a precursor in sol-gel chemistry to produce silica gels in aqueous systems. TMOS can also be mixed with many hydrocarbons

  1. Use of two-phase aqueous systems based on water-soluble polymers in thin-layer and extraction chromatography for recovery and separtion of actinides

    International Nuclear Information System (INIS)

    Molochnikova, N.P.; Shkinev, V.M.; Myasoedov, B.F.

    1995-01-01

    The feasibility has been demonstrated of using two-phase aqueous systems based on water-soluble polymers, polyethylene glycol and dextran sulfate, in thin-layer and extraction chromatography for recovery and separation of actinides. A convenient method has been proposed for continuous recovery of 239 Np from 243 Am, originating from differences in sorption of tri- and pentavalent actinides from sulfate solutions containing potassium phosphotungstate by silica gel impregnated with polyethylene glycol. New plates for thin-layer chromatography using water-soluble polymers have been developed. These plates were used to study behavior of americium in various oxidation states in thin sorbent layers

  2. Separation of four flavonol glycosides from Solanum rostratum Dunal using aqueous two-phase flotation followed by preparative high-performance liquid chromatography.

    Science.gov (United States)

    Chang, Lin; Shao, Qian; Xi, Xingjun; Chu, Qiao; Wei, Yun

    2017-02-01

    Aqueous two-phase flotation followed by preparative high-performance liquid chromatography was used to separate four flavonol glycosides from Solanum rostratum Dunal. In the aqueous two-phase flotation section, the effects of sublation solvent, solution pH, (NH 4 ) 2 SO 4 concentration in aqueous solution, cosolvent, N 2 flow rate, flotation time, and volumes of the polyethylene glycol phase on the recovery were investigated in detail, and the optimal conditions were selected: 50 wt% polyethylene glycol 1000 ethanol solvent as the flotation solvent, pH 4, 350 g/L of (NH 4 ) 2 SO 4 concentration in aqueous phase, 40 mL/min of N 2 flow rate, 30 min of flotation time, 10.0 mL of flotation solvent volume, and two times. After aqueous two-phase flotation concentration, the flotation products were purified by preparative high-performance liquid chromatography. The purities of the final products A and B were 98.1 and 99.0%. Product B was the mixture of three compounds based on the analysis of high-performance liquid chromatography at the temperature of 10°C, while product A was hyperoside after the identification by nuclear magnetic resonance. Astragalin, 3'-O-methylquercetin 3-O-β-d-galactopyranoside, and 3'-O-methylquercetin 3-O-β-d-glucopyranoside were obtained with the purity of 93.8, 97.1, and 99.2%, respectively, after the further separation of product B using preparative high-performance liquid chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Purification of a fibrinolytic protease from Mucor subtilissimus UCP 1262 by aqueous two-phase systems (PEG/sulfate).

    Science.gov (United States)

    Nascimento, Thiago Pajeú; Sales, Amanda Emmanuelle; Porto, Camila Souza; Brandão, Romero Marcos Pedrosa; de Campos-Takaki, Galba Maria; Teixeira, José Antônio Couto; Porto, Tatiana Souza; Porto, Ana Lúcia Figueiredo; Converti, Attilio

    2016-07-01

    A fibrinolytic protease from M. subtilissimus UCP 1262 was recovered and partially purified by polyethylene glycol (PEG)/sodium sulfate aqueous two-phase systems (ATPS). The simultaneous influence of PEG molar mass, PEG concentration and sulfate concentration on the enzyme recovery was first investigated using a 2(3) full factorial design, and the Response Surface Methodology used to identify the optimum conditions for enzyme extraction by ATPS. Once the best PEG molar mass for the process had been selected (6000g/mol), a two-factor central composite rotary design was applied to better evaluate the effects of the other two independent variables. The fibrinolytic enzyme was shown to preferentially partition to the bottom phase with a partition coefficient (K) ranging from 0.2 to 0.7. The best results in terms of enzyme purification were obtained with the system formed by 30.0% (w/w) PEG 6000g/mol and 13.2% (w/w) sodium sulfate, which ensured a purification factor of 10.0, K of 0.2 and activity yield of 102.0%. SDS-PAGE and fibrin zymography showed that the purified protease has a molecular mass of 97kDa and an apparent isoelectric point of 5.4. When submitted to assays with different substrates and inhibitors, it showed selectivity for succinyl-l-ala-ala-pro-l-phenylalanine-p-nitroanilide and was almost completely inhibited by phenylmethylsulfonyl fluoride, behaving as a chymotrypsin-like protease. At the optimum temperature of 37°C, the enzyme residual activity was 94 and 68% of the initial one after 120 and 150min of incubation, respectively. This study demonstrated that M. subtilissimus protease has potent fibrinolytic activity compared with similar enzymes produced by solid-state fermentation, therefore it may be used as an agent for the prevention and therapy of thrombosis. Furthermore, it appears to have the advantages of low cost production and simple purification. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Purification and characterization of a collagenase from Penicillium sp. UCP 1286 by polyethylene glycol-phosphate aqueous two-phase system.

    Science.gov (United States)

    de Albuquerque Wanderley, Maria Carolina; Wanderley Duarte Neto, José Manoel; Campos Albuquerque, Wendell Wagner; de Araújo Viana Marques, Daniela; de Albuquerque Lima, Carolina; da Cruz Silvério, Sara Isabel; de Lima Filho, José Luiz; Couto Teixeira, José António; Porto, Ana Lúcia Figueiredo

    2017-05-01

    Collagenases are proteolytic enzymes capable of degrading both native and denatured collagen, reported to be applied in industrial, medical and biotechnological sectors. Liquid-liquid extraction using aqueous two-phase system (ATPS) is one of the most promising bioseparation techniques, which can substitute difficult solid-liquid separation processes, offering many advantages over conventional methods including low-processing time, low-cost material and low-energy consumption. The collagenase produced by Penicillium sp. UCP 1286 showed a stronger affinity for the bottom salt-rich phase, where the highest levels of collagenolytic activity were observed at the center point runs, using 15.0% (w/w) PEG 3350 g/mol and 12.5% (w/w) phosphate salt at pH 7.0 and concentration. The enzyme was characterized by thermal stability, pH tolerance and effect of inhibitors, showing optimal collagenolytic activity at 37 °C and pH 9.0 and proved to be a serine protease. ATPS showed high efficiency in the collagenase purification, confirmed by a single band in SDS/PAGE, and can in fact be applied as a quick and inexpensive alternative method. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Separation of porcine parvovirus from bovine serum albumin using PEG-salt aqueous two-phase system.

    Science.gov (United States)

    Vijayaragavan, K Saagar; Zahid, Amna; Young, Jonathan W; Heldt, Caryn L

    2014-09-15

    Vaccine production faces a challenge in adopting conventional downstream processing steps that can efficiently purify large viral particles. Some major issues that plague vaccine purification are purity, potency, and quality. The industry currently considers 30% as an acceptable virus recovery for a vaccine purification process, including all downstream processes, whereas antibody recovery from CHO cell culture is generally around 80-85%. A platform technology with an improved virus recovery would revolutionize vaccine production. In a quest to fulfill this goal, we have been exploring aqueous two-phase systems (ATPSs) as an optional mechanism to purify virus. ATPS has been unable to gain wide implementation mainly due to loss of virus infectivity, co-purification of proteins, and difficulty of polymer recycling. Non-enveloped viruses are chemically resistant enough to withstand the high polymer and salt concentrations that are required for effective ATPS separations. We used infectious porcine parvovirus (PPV), a non-enveloped, DNA virus as a model virus to test and develop an ATPS separation method. We successfully tackled two of the three main disadvantages of ATPS previously stated; we achieved a high infectious yield of 64% in a PEG-citrate ATPS process while separating out the main contaminate protein, bovine serum albumin (BSA). The most dominant forces in the separation were biomolecule charge, virus surface hydrophobicity, and the ATPS surface tension. Highly hydrophobic viruses are likely to benefit from the discovered ATPS for high-purity vaccine production and ease of implementation. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A chromatographic determination of water in non-aqueous phases of solvent extraction systems

    International Nuclear Information System (INIS)

    Lyle, S.J.; Smith, D.B.

    1975-01-01

    The disadvantages of the Karl Fischer method for the determination of water in the non-aqueous phases of solvent extraction systems are pointed out, and a gas chromatographic method is described which is claimed to be potentially capable of overcoming these disadvantages. The method, as described, was developed to satisfy conditions relevant to measurement of the transfer rate of water from an aqueous phase into tri-n-butylphosphate in toluene, but it can be used for water determination in other solvent extraction systems. The apparatus used is described in detail. The concentration of water in water-saturated TBP was found to be 3.56 mol/litre, compared with a value of 3.55 obtained by Karl Fischer titration and previous literature values of 3.59 and 3.57. Measurements of water content in benzene solutions of long chain alkylamines were also sucessfully carried out. (U.K.)

  7. Mars Aqueous Processing System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Mars Aqueous Processing System (MAPS) is a novel technology for recovering oxygen, iron, and other constituents from lunar and Mars soils. The closed-loop...

  8. Response surface methodology optimization of partitioning of xylanase form Aspergillus Niger by metal affinity polymer-salt aqueous two-phase systems.

    Science.gov (United States)

    Fakhari, Mohamad Ali; Rahimpour, Farshad; Taran, Mojtaba

    2017-09-15

    Aqueous two phase affinity partitioning system using metal ligands was applied for partitioning and purification of xylanase produced by Aspergillus Niger. To minimization the number of experiments for the design parameters and develop predictive models for optimization of the purification process, response surface methodology (RSM) with a face-centered central composite design (CCF) has been used. Polyethylene glycol (PEG) 6000 was activated using epichlorohydrin, covalently linked to iminodiacetic acid (IDA), and the specific metal ligand Cu was attached to the polyethylene glycol-iminodiacetic acid (PEG-IDA). The influence of some experimental variables such as PEG (10-18%w/w), sodium sulfate (8-12%), PEG-IDA-Cu 2+ concentration (0-50% w/w of total PEG), pH of system (4-8) and crude enzyme loading (6-18%w/w) on xylanase and total protein partitioning coefficient, enzyme yield and enzyme specific activity were systematically evaluated. Two optimal point with high enzyme partitioning factor 10.97 and yield 79.95 (including 10% PEG, 12% Na 2 SO 4 , 50% ligand, pH 8 and 6% crude enzyme loading) and high specific activity in top phase 42.21 (including 14.73% PEG, 8.02% Na 2 SO 4 , 28.43% ligand, pH 7.7 and 6.08% crude enzyme loading) were attained. The adequacy of the RSM models was verified by a good agreement between experimental and predicted results. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A multiplexed microfluidic toolbox for the rapid optimization of affinity-driven partition in aqueous two phase systems.

    Science.gov (United States)

    Bras, Eduardo J S; Soares, Ruben R G; Azevedo, Ana M; Fernandes, Pedro; Arévalo-Rodríguez, Miguel; Chu, Virginia; Conde, João P; Aires-Barros, M Raquel

    2017-09-15

    Antibodies and other protein products such as interferons and cytokines are biopharmaceuticals of critical importance which, in order to be safely administered, have to be thoroughly purified in a cost effective and efficient manner. The use of aqueous two-phase extraction (ATPE) is a viable option for this purification, but these systems are difficult to model and optimization procedures require lengthy and expensive screening processes. Here, a methodology for the rapid screening of antibody extraction conditions using a microfluidic channel-based toolbox is presented. A first microfluidic structure allows a simple negative-pressure driven rapid screening of up to 8 extraction conditions simultaneously, using less than 20μL of each phase-forming solution per experiment, while a second microfluidic structure allows the integration of multi-step extraction protocols based on the results obtained with the first device. In this paper, this microfluidic toolbox was used to demonstrate the potential of LYTAG fusion proteins used as affinity tags to optimize the partitioning of antibodies in ATPE processes, where a maximum partition coefficient (K) of 9.2 in a PEG 3350/phosphate system was obtained for the antibody extraction in the presence of the LYTAG-Z dual ligand. This represents an increase of approx. 3.7 fold when compared with the same conditions without the affinity molecule (K=2.5). Overall, this miniaturized and versatile approach allowed the rapid optimization of molecule partition followed by a proof-of-concept demonstration of an integrated back extraction procedure, both of which are critical procedures towards obtaining high purity biopharmaceuticals using ATPE. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Metal separations using aqueous biphasic partitioning systems

    International Nuclear Information System (INIS)

    Chaiko, D.J.; Zaslavsky, B.; Rollins, A.N.; Vojta, Y.; Gartelmann, J.; Mego, W.

    1996-01-01

    Aqueous biphasic extraction (ABE) processes offer the potential for low-cost, highly selective separations. This countercurrent extraction technique involves selective partitioning of either dissolved solutes or ultrafine particulates between two immiscible aqueous phases. The extraction systems that the authors have studied are generated by combining an aqueous salt solution with an aqueous polymer solution. They have examined a wide range of applications for ABE, including the treatment of solid and liquid nuclear wastes, decontamination of soils, and processing of mineral ores. They have also conducted fundamental studies of solution microstructure using small angle neutron scattering (SANS). In this report they review the physicochemical fundamentals of aqueous biphase formation and discuss the development and scaleup of ABE processes for environmental remediation

  11. Two-liquid-phase boundaries and critical phenomena at 275 to 4000C for high-temperature aqueous potassium phosphate and sodium phosphate solutions. Potential applications for steam generators

    International Nuclear Information System (INIS)

    Marshall, W.L.

    1982-01-01

    Two-liquid-phase boundaries at temperatures between 275 and 400 0 C were determined for potassium phosphate and sodium phosphate aqueous solutions for compositions from 0 to 60 wt % dissolved salt. The stoichiometric mole ratios, K/PO 4 or Na/PO 4 , were varied from 1.00 to 2.12 and from 1.00 to 2.16 for the potassium and sodium systems, respectively. Liquid-vapor critical temperatures were also determined for most of the dilute liquid phases that formed. The minimum temperatures (below which a single solution existed) of two-liquid-phase formation were 360 0 C for the potassium system and 279 0 C for the sodium system at mole ratios of 2.00 and 2.16, respectively. For the sodium system at mole ratios greater than 2.16, solids crystallized at lower temperatures as expected from earlier studies. In contrast, potassium solutions that were explored at mole ratios from 2.12 to 3.16 and at temperatures below 360 0 C did not produce solid phases or liquid-liquid immisibilities. Aside from the generally unusual observations of two immiscible liquids in an aqueous inorganic salt system, the results could possibly be applied to the use of phosphate additives in steam power generators

  12. Optimization of serine protease purification from mango (Mangifera indica cv. Chokanan) peel in polyethylene glycol/dextran aqueous two phase system.

    Science.gov (United States)

    Mehrnoush, Amid; Mustafa, Shuhaimi; Sarker, Md Zaidul Islam; Yazid, Abdul Manap Mohd

    2012-01-01

    Mango peel is a good source of protease but remains an industrial waste. This study focuses on the optimization of polyethylene glycol (PEG)/dextran-based aqueous two-phase system (ATPS) to purify serine protease from mango peel. The activity of serine protease in different phase systems was studied and then the possible relationship between the purification variables, namely polyethylene glycol molecular weight (PEG, 4000-12,000 g·mol(-1)), tie line length (-3.42-35.27%), NaCl (-2.5-11.5%) and pH (4.5-10.5) on the enzymatic properties of purified enzyme was investigated. The most significant effect of PEG was on the efficiency of serine protease purification. Also, there was a significant increase in the partition coefficient with the addition of 4.5% of NaCl to the system. This could be due to the high hydrophobicity of serine protease compared to protein contaminates. The optimum conditions to achieve high partition coefficient (84.2) purification factor (14.37) and yield (97.3%) of serine protease were obtained in the presence of 8000 g·mol(-1) of PEG, 17.2% of tie line length and 4.5% of NaCl at pH 7.5. The enzymatic properties of purified serine protease using PEG/dextran ATPS showed that the enzyme could be purified at a high purification factor and yield with easy scale-up and fast processing.

  13. System identification on two-phase flow stability

    International Nuclear Information System (INIS)

    Wu Shaorong; Zhang Youjie; Wang Dazhong; Bo Jinghai; Wang Fei

    1996-01-01

    The theoretical principle, experimental method and results of interrelation analysis identification for the instability of two-phase flow are described. A completely new concept of test technology and method on two-phase flow stability was developed by using he theory of information science on system stability and system identification for two-phase flow stability in thermo-physics field. Application of this method would make it possible to identify instability boundary of two-phase flow under stable operation conditions of two-phase flow system. The experiment was carried out on the thermohydraulic test system HRTL-5. Using reverse repeated pseudo-random sequences of heating power as input signal sources and flow rate as response function in the test, the two-phase flow stability and stability margin of the natural circulation system are investigated. The effectiveness and feasibility of identifying two-phase flow stability by using this system identification method were experimentally demonstrated. Basic data required for mathematics modeling of two-phase flow and analysis of two-phase flow stability were obtained, which are useful for analyzing, monitoring of the system operation condition, and forecasting of two-phase flow stability in engineering system

  14. Two-phase ozonation of chlorinated organics

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Freshour, A.; West, D.

    1995-01-01

    In the last few years the amount of research being conducted in the field of single-phase ozonation has grown extensively. However, traditional aqueous-phase ozonation systems are limited by a lack of selective oxidation potential, low ozone solubility in water, and slow intermediate decomposition rates. Furthermore, ozone may decompose before it can be utilized for pollutant destruction since ozone can be highly unstable in aqueous solutions. Naturally occurring compounds such as NaHCO 3 also affect ozone reactions by inhibiting the formation of OH-free radicals. To compensate for these factors, excess ozone is typically supplied to a reactor. Since ozone generation requires considerable electric power consumption (16 - 24 kWh/kg of O 3 ), attempts to enhance the ozone utilization rate and stability should lead to more efficient application of this process to hazardous waste treatment. To improve the process, ozonation may be more efficiently carried out in a two-phase system consisting of an inert solvent (saturated with O 3 ) contacted with an aqueous phase containing pollutants. The non-aqueous phase must meet the following criteria: (1) non-toxic, (2) very low vapor pressure, (3) high density (for ease of separation), (4) complete insolubility in water, (5) reusability, (6) selective pollutant extractability, (7) high oxidant solubility, and (8) extended O 3 stability. Previously published studies (1) have indicated that a number of fluorinated hydrocarbon compounds fit these criteria. For this project, FC40 (a product of 3M Co.) was chosen due to its low vapor pressure (3 mm Hg) and high specific gravity (1.9). The primary advantages of the FC40 solvent are that it is non-toxic, reusable, has an ozone solubility 10 times that of water, and that 85 % of the ozone remains in the solvent even after 2 hours. This novel two-phase process has been utilized to study the rapid destruction of organic chlorine compounds and organic mixtures

  15. Liquid / liquid biphasic electrochemistry in ultra-turrax dispersed acetonitrile / aqueous electrolyte systems

    International Nuclear Information System (INIS)

    Watkins, John D.; Amemiya, Fumihiro; Atobe, Mahito; Bulman-Page, Philip C.; Marken, Frank

    2010-01-01

    Unstable acetonitrile | aqueous emulsions generated in situ with ultra-turrax agitation are investigated for applications in dual-phase electrochemistry. Three modes of operation for liquid / liquid aqueous-organic electrochemical processes are demonstrated with no intentionally added electrolyte in the organic phase based on (i) the formation of a water-soluble product in the aqueous phase in the presence of the organic phase, (ii) the formation of a product and ion transfer at the liquid / liquid-electrode triple phase boundary, and (iii) the formation of a water-insoluble product in the aqueous phase which then transfers into the organic phase. A three-electrode electrolysis cell with ultra-turrax agitator is employed and characterised for acetonitrile / aqueous 2 M NaCl two phase electrolyte. Three redox systems are employed in order to quantify the electrolysis cell performance. The one-electron reduction of Ru(NH 3 ) 6 3+ in the aqueous phase is employed to determine the rate of mass transport towards the electrode surface and the effect of the presence of the acetonitrile phase. The one-electron oxidation of n-butylferrocene in acetonitrile is employed to study triple phase boundary processes. Finally, the one-electron reduction of cobalticenium cations in the aqueous phase is employed to demonstrate the product transfer from the electrode surface into the organic phase. Potential applications in biphasic electrosynthesis are discussed.

  16. [Isolation and purification of alpha-glycerophosphate oxidase in a polyethylene glycol/(NH4 )2SO4 aqueous two-phase system].

    Science.gov (United States)

    Meng, Yao; Jin, Jiagui; Liu, Shuangfeng; Yang, Min; Zhang, Qinglian; Wan, Li; Tang, Kun

    2014-02-01

    Alpha-glycerophosphate oxidase (alpha-GPO) from Enterococcus casseli flavus was successfully isolated and purified by using polyethylene glycol (PEG)/(NH4)2SO4 aqueous two-phase system (ATPS). The results showed that the chosen PEG/(NH4)2SO4 ATPS could be affected by PEG molecular weight, pH, concentration of PEG and (NH4)2SO4, and inorganic salt as well as additional amount of crude enzyme. After evaluating these influencing factors, the final optimum purification strategy was formed by 16.5% (m/m) PEG2000, 13.2% (m/m) (NH4)2SO4, pH 7.5 and 30% (m/m) additive crude enzyme, respectively. The NaCl was a negative influencing factor which would lead to lower purification fold and activity recovery. These conditions eventually resulted in the activity recovery of 89% (m/m), distribution coefficient of 1.2 and purification fold of 7.0.

  17. Using an aqueous two-phase polymer-salt system to rapidly concentrate viruses for improving the detection limit of the lateral-flow immunoassay.

    Science.gov (United States)

    Jue, Erik; Yamanishi, Cameron D; Chiu, Ricky Y T; Wu, Benjamin M; Kamei, Daniel T

    2014-12-01

    The development of point-of-need (PON) diagnostics for viruses has the potential to prevent pandemics and protects against biological warfare threats. Here we discuss the approach of using aqueous two-phase systems (ATPSs) to concentrate biomolecules prior to the lateral-flow immunoassay (LFA) for improved viral detection. In this paper, we developed a rapid PON detection assay as an extension to our previous proof-of-concept studies which used a micellar ATPS. We present our investigation of a more rapid polymer-salt ATPS that can drastically improve the assay time, and show that the phase containing the concentrated biomolecule can be extracted prior to macroscopic phase separation equilibrium without affecting the measured biomolecule concentration in that phase. We could therefore significantly decrease the time of the diagnostic assay with an early extraction time of just 30 min. Using this rapid ATPS, the model virus bacteriophage M13 was concentrated between approximately 2 and 10-fold by altering the volume ratio between the two phases. As the extracted virus-rich phase contained a high salt concentration which destabilized the colloidal gold indicator used in LFA, we decorated the gold nanoprobes with polyethylene glycol (PEG) to provide steric stabilization, and used these nanoprobes to demonstrate a 10-fold improvement in the LFA detection limit. Lastly, a MATLAB script was used to quantify the LFA results with and without the pre-concentration step. This approach of combining a rapid ATPS with LFA has great potential for PON applications, especially as greater concentration-fold improvements can be achieved by further varying the volume ratio. Biotechnol. Bioeng. 2014;111: 2499-2507. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  18. Two-phase flow in refrigeration systems

    CERN Document Server

    Gu, Junjie; Gan, Zhongxue

    2013-01-01

    Two-Phase Flow in Refrigeration Systems presents recent developments from the authors' extensive research programs on two-phase flow in refrigeration systems. This book covers advanced mass and heat transfer and vapor compression refrigeration systems and shows how the performance of an automotive air-conditioning system is affected through results obtained experimentally and theoretically, specifically with consideration of two-phase flow and oil concentration. The book is ideal for university postgraduate students as a textbook, researchers and professors as an academic reference book, and b

  19. PARTITION EFFICIENCY OF NEWLY DESIGNED LOCULAR MULTILAYER COIL FOR COUNTERCURRENT CHROMATOGRAPHIC SEPARATION OF PROTEINS USING SMALL-SCALE CROSS-AXIS COIL PLANET CENTRIFUGE WITH AQUEOUS-AQUEOUS POLYMER PHASE SYSTEMS.

    Science.gov (United States)

    Shinomiya, Kazufusa; Ito, Yoichiro

    2009-01-01

    Countercurrent chromatographic performance of the locular multilayer coil separation column newly designed in our laboratory was evaluated in terms of theoretical plate number, peak resolution and retention of the stationary phase in protein separation with an aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The locular column was made from 1.0 mm I.D., 2.0 mm O.D. or 1.5 mm I.D., 2.5 mm O.D. PTFE tubing compressed with a pair of hemostat at 2 or 4 cm intervals. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin and lysozyme with the 12.5% (w/w) polyethylene glycol 1000 and 12.5% (w/w) dibasic potassium phosphate system under 1000 rpm of column revolution. The 1.5 mm I.D., 2.5 mm O.D. locular tubing compressed at 2 cm intervals yielded better partition efficiencies than the non-clamped tubing using both lower and upper mobile phases with satisfactory retention of the stationary phase. The overall results suggest that the newly designed locular multilayer coil is useful to the preparative separation of proteins with aqueous-aqueous polymer phase system using our small-scale X-axis CPC.

  20. Predictive Modelling of Phase-Transfer Catalyst Systems for Improved and Innovative Design

    DEFF Research Database (Denmark)

    Anantpinijwatna, Amata; Hyung Kim, Sun; Sales-Cruz, Mauricio

    2016-01-01

    Phase-transfer catalyst (PTC) systems contain two immiscible liquid phases with a heterogeneous PTC transferring active ion from one phase to the other for converting the reactant to the desired product, and in the process generating the inactive ion. This type of reacting systems is receiving...... increasing attention as a novel organic synthesis option due to its flexible and easier operation, higher production yield, and ability to eliminate expensive solvents, although, not eliminating the use of solvents. New mathematical models of the PTC system, which includes physical and chemical equilibrium......, reaction mechanism and unit operation has been developed. In the developed model, the PTC system is divided into four sub-systems of aqueous-organic solvent partition, inorganic salt in aqueous phase, PTC in aqueous phase, and PTC in aqueous phase. Each subsystem requires an appropriate thermodynamic model...

  1. Development of green betaine-based deep eutectic solvent aqueous two-phase system for the extraction of protein.

    Science.gov (United States)

    Li, Na; Wang, Yuzhi; Xu, Kaijia; Huang, Yanhua; Wen, Qian; Ding, Xueqin

    2016-05-15

    Six kinds of new type of green betaine-based deep eutectic solvents (DESs) have been synthesized. Deep eutectic solvent aqueous two-phase systems (DES-ATPS) were established and successfully applied in the extraction of protein. Betaine-urea (Be-U) was selected as the suitable extractant. Single factor experiments were carried out to determine the optimum conditions of the extraction process, such as the salt concentration, the mass of DES, the separation time, the amount of protein, the temperature and the pH value. The extraction efficiency could achieve to 99.82% under the optimum conditions. Mixed sample and practical sample analysis were discussed. The back extraction experiment was implemented and the back extraction efficiency could reach to 32.66%. The precision experiment, repeatability experiment and stability experiment were investigated. UV-vis, FT-IR and circular dichroism (CD) spectra confirmed that the conformation of protein was not changed during the process of extraction. The mechanisms of extraction were researched by dynamic light scattering (DLS), the measurement of the conductivity and transmission electron microscopy (TEM). DES-protein aggregates and embraces phenomenon play considerable roles in the separation process. All of these results indicated that betaine-based DES-ATPS may provide a potential substitute new method for the separation of proteins. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Determination of the quaternary phase diagram of the water-ethylene glycol-sucrose-NaCl system and a comparison between two theoretical methods for synthetic phase diagrams.

    Science.gov (United States)

    Han, Xu; Liu, Yang; Critser, John K

    2010-08-01

    Characterization of the thermodynamic properties of multi-solute aqueous solutions is of critical importance for biological and biochemical research. For example, the phase diagrams of aqueous systems, containing salts, saccharides, and plasma membrane permeating solutes, are indispensible in the field of cryobiology and pharmacology. However, only a few ternary phase diagrams are currently available for these systems. In this study, an auto-sampler differential scanning calorimeter (DSC) was used to determine the quaternary phase diagram of the water-ethylene glycol-sucrose-NaCl system. To improve the accuracy of melting point measurement, a "mass-redemption" method was also applied for the DSC technique. Base on the analyses of these experimental data, a comparison was made between the two practical approaches to generate phase diagrams of multi-solute solutions from those of single-solute solutions: the summation of cubic polynomial melting point equations versus the use of osmotic virial equations with cross coefficients. The calculated values of the model standard deviations suggested that both methods are satisfactory for characterizing this quaternary system. (c) 2010 Elsevier Inc. All rights reserved.

  3. Enantioseparation of Racemic Flurbiprofen by Aqueous Two-Phase Extraction With Binary Chiral Selectors of L-dioctyl Tartrate and L-tryptophan.

    Science.gov (United States)

    Chen, Zhi; Zhang, Wei; Wang, Liping; Fan, Huajun; Wan, Qiang; Wu, Xuehao; Tang, Xunyou; Tang, James Z

    2015-09-01

    A novel method for chiral separation of flurbiprofen enantiomers was developed using aqueous two-phase extraction (ATPE) coupled with biphasic recognition chiral extraction (BRCE). An aqueous two-phase system (ATPS) was used as an extracting solvent which was composed of ethanol (35.0% w/w) and ammonium sulfate (18.0% w/w). The chiral selectors in ATPS for BRCE consideration were L-dioctyl tartrate and L-tryptophan, which were screened from amino acids, β-cyclodextrin derivatives, and L-tartrate esters. Factors such as the amounts of L-dioctyl tartrate and L-tryptophan, pH, flurbiprofen concentration, and the operation temperature were investigated in terms of chiral separation of flurbiprofen enantiomers. The optimum conditions were as follows: L-dioctyl tartrate, 80 mg; L-tryptophan, 40 mg; pH, 4.0; flurbiprofen concentration, 0.10 mmol/L; and temperature, 25 °C. The maximum separation factor α for flurbiprofen enantiomers could reach 2.34. The mechanism of chiral separation of flurbiprofen enantiomers is discussed and studied. The results showed that synergistic extraction has been established by L-dioctyl tartrate and L-tryptophan, which enantioselectively recognized R- and S-enantiomers in top and bottom phases, respectively. Compared to conventional liquid-liquid extraction, ATPE coupled with BRCE possessed higher separation efficiency and enantioselectivity without the use of any other organic solvents. The proposed method is a potential and powerful alternative to conventional extraction for separation of various enantiomers. © 2015 Wiley Periodicals, Inc.

  4. Extraction of UO22+ by two highly sterically hindered (X1) (X2) PO(OH) extractants from an aqueous chloride phase

    International Nuclear Information System (INIS)

    Mason, G.W.; Lewey, S.M.; Gilles, D.M.; Peppard, D.F.

    1978-01-01

    The comparative extraction behaviour of tracer-level UO 2 2+ into benzene solutions of two highly sterically hindered extractants, di(2,6-di-iso-propylphenyl) phosphoric acid, HD(2,6-i-PPHI)P and di-tertiary-butyl phosphinic acid, H[Dt-BP], vs an aqueous 1.0 F (NaCl + HCl) phase was studied. The extraction of UO 2 2+ in both systems is directly second-power dependent upon extractant concentration and inversely second-power dependent upon hydrogen ion concentration, the stoichiometry of extraction being UOsub(2A) 2+ + 2(HY)sub(2O) = UO 2 (HY 2 )sub(2O) + 2Hsub(A) + . The expression for the distribution ratio, K is K = Ksub(s)F 2 /[H + ] 2 the general expression for the extraction of any metallic species being K - Ksub(s)Fsup(a)/[H + ]sup(b) where Ksub(s) is a constant characteristic of the system, F the concentration in formality units of extractant in the organic phase, [H + ] the concentration of hydrogen ion in the aqueous phase, and a and b the respective extractant and hydrogen-ion dependencies. Both extractants have a high degree of steric hindrance. The HD(2,6-i-PPHI)P is the more highly acidic, the pKsub(A) value, in 75% ethanol, being 3.2. The pKsub(A), previously reported, for H[Dt-BP] is 6.26. The Ksub(s) for UO 2 2+ in the system HY in benzene diluent vs an aqueous 1.0 F (NaCl + HCl) phase is 2 x 10 4 for H[Dt-BP] and 3 x 10 -1 for HD(2,6-i-PPHI)P; the ratio of the Ksub(s) values nearly 7 x 10 3 , favours the less acidic extractant. For comparative purposes, the Ksub(s) values for UO 2 2+ and for Am 3+ and Eu 3+ in other (X 1 )(X 2 )PO(OH), in benzene diluent, vs 1.0 F (NaCl + HCl) systems are presented. The variations are discussed in terms of the pKsub(A) of the extractant and the steric hindrance within the extractant. (author)

  5. Determination of sunset yellow and tartrazine in food samples by combining ionic liquid-based aqueous two-phase system with high performance liquid chromatography.

    Science.gov (United States)

    Sha, Ou; Zhu, Xiashi; Feng, Yanli; Ma, Weixing

    2014-01-01

    We proposed a simple and effective method, by coupling ionic liquid-based aqueous two-phase systems (IL-ATPSs) with high performance liquid chromatography (HPLC), for the analysis of determining tartrazine and sunset yellow in food samples. Under the optimized conditions, IL-ATPSs generated an extraction efficiency of 99% for both analytes, which could then be directly analyzed by HPLC without further treatment. Calibration plots were linear in the range of 0.01-50.0 μg/mL for both Ta and SY. The limits of detection were 5.2 ng/mL for Ta and 6.9 ng/mL for SY. This method proves successful for the separation/analysis of tartrazine and sunset yellow in soft drink sample, candy sample, and instant powder drink and leads to consistent results as obtained from the Chinese national standard method.

  6. Correlations for the partition behavior of proteins in aqueous two-phase systems

    DEFF Research Database (Denmark)

    Schmidt, A.S.; Andrews, B.A.; Asenjo, J.A.

    1996-01-01

    to its high hydrophilicity. In the case of subtilisin and trypsin inhibitor, their high concentrations in the top phase were due to their hydrophobic nature (hydrophobic interaction with PEG) and small size (negligible steric exclusion). The maximum concentration in the bottom phase for trypsin inhibitor...... of the overall protein concentration, by the ratio between the ''saturation'' equations of the two individual phases. Better correlations were obtained when an empirical sigmoidal Boltzmann equation was fitted to the data, since in virtually all cases the partition coefficient is constant at low protein...

  7. Quantitative analysis of aqueous phase composition of model dentin adhesives experiencing phase separation

    Science.gov (United States)

    Ye, Qiang; Park, Jonggu; Parthasarathy, Ranganathan; Pamatmat, Francis; Misra, Anil; Laurence, Jennifer S.; Marangos, Orestes; Spencer, Paulette

    2013-01-01

    There have been reports of the sensitivity of our current dentin adhesives to excess moisture, for example, water-blisters in adhesives placed on over-wet surfaces, and phase separation with concomitant limited infiltration of the critical dimethacrylate component into the demineralized dentin matrix. To determine quantitatively the hydrophobic/hydrophilic components in the aqueous phase when exposed to over-wet environments, model adhesives were mixed with 16, 33, and 50 wt % water to yield well-separated phases. Based upon high-performance liquid chromatography coupled with photodiode array detection, it was found that the amounts of hydrophobic BisGMA and hydrophobic initiators are less than 0.1 wt % in the aqueous phase. The amount of these compounds decreased with an increase in the initial water content. The major components of the aqueous phase were hydroxyethyl methacrylate (HEMA) and water, and the HEMA content ranged from 18.3 to 14.7 wt %. Different BisGMA homologues and the relative content of these homologues in the aqueous phase have been identified; however, the amount of crosslinkable BisGMA was minimal and, thus, could not help in the formation of a crosslinked polymer network in the aqueous phase. Without the protection afforded by a strong crosslinked network, the poorly photoreactive compounds of this aqueous phase could be leached easily. These results suggest that adhesive formulations should be designed to include hydrophilic multimethacrylate monomers and water compatible initiators. PMID:22331596

  8. Aqueous two-phase extraction as a platform in the biomanufacturing industry: economical and environmental sustainability.

    Science.gov (United States)

    Rosa, P A J; Azevedo, A M; Sommerfeld, S; Bäcker, W; Aires-Barros, M R

    2011-01-01

    The biotech industry is, nowadays, facing unparalleled challenges due to the enhanced demand for biotechnology-based human therapeutic products, such as monoclonal antibodies (mAbs). This has led companies to improve substantially their upstream processes, with the yield of monoclonals increasing to titers never seen before. The downstream processes have, however, been overlooked, leading to a production bottleneck. Although chromatography remains the workhorse of most purification processes, several limitations, such as low capacity, scale-related packing problems, low chemical and proteolytic stability and resins' high cost, have arisen. Aqueous two-phase extraction (ATPE) has been successfully revisited as a valuable alternative for the capture of antibodies. One of the important remaining questions for this technology to be adopted by the biotech industries is, now, how it compares to the currently established platforms in terms of costs and environmental impact. In this report, the economical and environmental sustainability of the aqueous two-phase extraction process is evaluated and compared to the currently established protein A affinity chromatography. Accordingly, the ATPE process was shown to be considerably advantageous in terms of process economics, especially when processing high titer cell culture supernatants. This alternative process is able to purify continuously the same amount of mAbs reducing the annual operating costs from 14.4 to 8.5 million (US$/kg) when cell culture supernatants with mAb titers higher than 2.5 g/L are processed. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qiuxia [Institute for Integrated Catalysis, Pacific Northwest; College; Lopez-Ruiz, Juan A. [Institute for Integrated Catalysis, Pacific Northwest; Cooper, Alan R. [Institute for Integrated Catalysis, Pacific Northwest; Wang, Jian-guo [College; Albrecht, Karl O. [Institute for Integrated Catalysis, Pacific Northwest; Mei, Donghai [Institute for Integrated Catalysis, Pacific Northwest

    2017-12-13

    The effect of aqueous phase on the acetic acid ketonization over monoclinic zirconia has been investigated using first-principles based density functional theory (DFT) calculations. To capture the aqueous phase chemistry over the solid zirconia catalyst surface, the aqueous phase is represented by 111 explicit water molecules with a liquid water density of 0.93 g/cm3 and the monoclinic zirconia is modeled by the most stable surface structure . The dynamic nature of aqueous phase/ interface was studied using ab initio molecular dynamics simulation, indicating that nearly half of the surface Zr sites are occupied by either adsorbed water molecules or hydroxyl groups at 550 K. DFT calculations show that the adsorption process of acetic acid from the liquid water phase to the surface is nearly thermodynamically neutral with a Gibbs free energy of -2.3 kJ/mol although the adsorption strength of acetic acid on the surface in aqueous phase is much stronger than in vapor phase. Therefore it is expected that the adsorption of acetic acid will dramatically affects aqueous phase ketonization reactivity over the monoclinic zirconia catalyst. Using the same ketonization mechanism via the β-keto acid intermediate, we have compared acetic acid ketonization to acetone in both vapor and aqueous phases. Our DFT calculation results show although the rate-determining step of the β-keto acid formation via the C-C coupling is not pronouncedly affected, the presence of liquid water molecules will dramatically affect dehydrogenation and hydrogenation steps via proton transfer mechanism. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time and advanced catalyst characterization use was granted by a user proposal at the William R. Wiley

  10. An Aqueous Two-Phase System for the Concentration and Extraction of Proteins from the Interface for Detection Using the Lateral-Flow Immunoassay.

    Directory of Open Access Journals (Sweden)

    Ricky Y T Chiu

    Full Text Available The paper-based immunoassay for point-of-care diagnostics is widely used due to its low cost and portability over traditional lab-based assays. Lateral-flow immunoassay (LFA is the most well-established paper-based assay since it is rapid and easy to use. However, the disadvantage of LFA is its lack of sensitivity in some cases where a large sample volume is required, limiting its use as a diagnostic tool. To improve the sensitivity of LFA, we previously reported on the concentration of analytes into one of the two bulk phases of an aqueous two-phase system (ATPS prior to detection. In this study, we preserved the advantages of LFA while significantly improving upon our previous proof-of-concept studies by employing a novel approach of concentrating gold nanoparticles, a common LFA colorimetric indicator. By conjugating specific antibodies and polymers to the surfaces of the particles, these gold nanoprobes (GNPs were able to capture target proteins in the sample and subsequently be concentrated within 10 min at the interface of an ATPS solution comprised of polyethylene glycol, potassium phosphate, and phosphate-buffered saline. These GNPs were then extracted and applied directly to LFA. By combining this prior ATPS interface extraction with LFA, the detection limit of LFA for a model protein was improved by 100-fold from 1 ng/μL to 0.01 ng/μL. Additionally, we examined the behavior of the ATPS system in fetal bovine serum and synthetic urine to more closely approach real-world applications. Despite using more complex matrices, ATPS interface extraction still improved the detection limit by 100-fold within 15 to 25 min, demonstrating the system's potential to be applied to patient samples.

  11. An Aqueous Two-Phase System for the Concentration and Extraction of Proteins from the Interface for Detection Using the Lateral-Flow Immunoassay.

    Science.gov (United States)

    Chiu, Ricky Y T; Thach, Alison V; Wu, Chloe M; Wu, Benjamin M; Kamei, Daniel T

    2015-01-01

    The paper-based immunoassay for point-of-care diagnostics is widely used due to its low cost and portability over traditional lab-based assays. Lateral-flow immunoassay (LFA) is the most well-established paper-based assay since it is rapid and easy to use. However, the disadvantage of LFA is its lack of sensitivity in some cases where a large sample volume is required, limiting its use as a diagnostic tool. To improve the sensitivity of LFA, we previously reported on the concentration of analytes into one of the two bulk phases of an aqueous two-phase system (ATPS) prior to detection. In this study, we preserved the advantages of LFA while significantly improving upon our previous proof-of-concept studies by employing a novel approach of concentrating gold nanoparticles, a common LFA colorimetric indicator. By conjugating specific antibodies and polymers to the surfaces of the particles, these gold nanoprobes (GNPs) were able to capture target proteins in the sample and subsequently be concentrated within 10 min at the interface of an ATPS solution comprised of polyethylene glycol, potassium phosphate, and phosphate-buffered saline. These GNPs were then extracted and applied directly to LFA. By combining this prior ATPS interface extraction with LFA, the detection limit of LFA for a model protein was improved by 100-fold from 1 ng/μL to 0.01 ng/μL. Additionally, we examined the behavior of the ATPS system in fetal bovine serum and synthetic urine to more closely approach real-world applications. Despite using more complex matrices, ATPS interface extraction still improved the detection limit by 100-fold within 15 to 25 min, demonstrating the system's potential to be applied to patient samples.

  12. Determination of Sunset Yellow and Tartrazine in Food Samples by Combining Ionic Liquid-Based Aqueous Two-Phase System with High Performance Liquid Chromatography

    Science.gov (United States)

    Sha, Ou; Zhu, Xiashi; Feng, Yanli; Ma, Weixing

    2014-01-01

    We proposed a simple and effective method, by coupling ionic liquid-based aqueous two-phase systems (IL-ATPSs) with high performance liquid chromatography (HPLC), for the analysis of determining tartrazine and sunset yellow in food samples. Under the optimized conditions, IL-ATPSs generated an extraction efficiency of 99% for both analytes, which could then be directly analyzed by HPLC without further treatment. Calibration plots were linear in the range of 0.01–50.0 μg/mL for both Ta and SY. The limits of detection were 5.2 ng/mL for Ta and 6.9 ng/mL for SY. This method proves successful for the separation/analysis of tartrazine and sunset yellow in soft drink sample, candy sample, and instant powder drink and leads to consistent results as obtained from the Chinese national standard method. PMID:25538857

  13. Determination of Sunset Yellow and Tartrazine in Food Samples by Combining Ionic Liquid-Based Aqueous Two-Phase System with High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Ou Sha

    2014-01-01

    Full Text Available We proposed a simple and effective method, by coupling ionic liquid-based aqueous two-phase systems (IL-ATPSs with high performance liquid chromatography (HPLC, for the analysis of determining tartrazine and sunset yellow in food samples. Under the optimized conditions, IL-ATPSs generated an extraction efficiency of 99% for both analytes, which could then be directly analyzed by HPLC without further treatment. Calibration plots were linear in the range of 0.01–50.0 μg/mL for both Ta and SY. The limits of detection were 5.2 ng/mL for Ta and 6.9 ng/mL for SY. This method proves successful for the separation/analysis of tartrazine and sunset yellow in soft drink sample, candy sample, and instant powder drink and leads to consistent results as obtained from the Chinese national standard method.

  14. Photocathalytic degradation of organic micropollutants in aqueous phase

    International Nuclear Information System (INIS)

    Driussi, D.

    2009-01-01

    The aim of this study was to design, construct and test a small system for the photo catalytic degradation of organic micropollutants in aqueous phase using solar radiation. The system is a parabolic linear trough type with automatic one-axis (N-S) tracking of the apparent movement of the sun. The tracking algorithm foresees two dispositions of the collector named horizontal and polar, the last is necessary for installations in locations that are higher than 50 o in latitude. The idea that brought to mind this project was to offer the possibility of treat herbicides polluted waters by means of a simple system without using particular oxidizing chemicals (for example hydrogen peroxide) or components (for example mercury vapour UV lamps) and therefore in an eco-sustainable way. [it

  15. Interactions in the aqueous phase and adsorption at the air-water interface of caseinoglycomacropeptide (GMP) and beta-lactoglobulin mixed systems.

    Science.gov (United States)

    Martinez, María J; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Pilosof, Ana M R

    2009-01-01

    The aim of this work was to study the interactions and adsorption of caseinoglycomacropeptide (GMP) and GMP:beta-lactoglobulin (beta-lg) mixed system in the aqueous phase and at the air-water interface. The existence of associative interactions between GMP and beta-lg in the aqueous phase was investigated by dynamic light scattering, differential scanning calorimetry (DSC), fluorometry and native PAGE-electrophoresis. The surface pressure isotherm and the static and dynamic surface pressure were determined by tensiometry and surface dilatational properties. The results showed that GMP presented higher surface activity than beta-lg at a concentration of 4%wt but beta-lg showed higher film forming ability. In the mixed systems beta-lg dominated the static and dynamic surface pressure and the rheological properties of interfacial films suggesting that beta-lg hinders GMP adsorption because, in simple competition, GMP should dominate because of its higher surface activity. The surface predominance of beta-lg can be attributed to binding of GMP to beta-lg in the aqueous phase that prevents GMP adsorption on its own.

  16. Slow growth of the Rayleigh-Plateau instability in aqueous two phase systems

    NARCIS (Netherlands)

    Geschiere, S.D.; Ziemecka, I.; Van Steijn, V.; Koper, G.J.M.; Van Esch, J.H.; Kreutzer, M.T.

    2012-01-01

    This paper studies the Rayleigh-Plateau instability for co-flowing immiscible aqueous polymer solutions in a microfluidic channel. Careful vibration-free experiments with controlled actuation of the flow allowed direct measurement of the growth rate of this instability. Experiments for the

  17. Releasing intracellular product to prepare whole cell biocatalyst for biosynthesis of Monascus pigments in water-edible oil two-phase system.

    Science.gov (United States)

    Hu, Minglue; Zhang, Xuehong; Wang, Zhilong

    2016-11-01

    Selective releasing intracellular product in Triton X-100 micelle aqueous solution to prepare whole cell biocatalyst is a novel strategy for biosynthesis of Monascus pigments, in which cell suspension culture exhibits some advantages comparing with the corresponding growing cell submerged culture. In the present work, the nonionic surfactant Triton X-100 was successfully replaced by edible plant oils for releasing intracellular Monascus pigments. High concentration of Monascus pigments (with absorbance nearly 710 AU at 470 nm in the oil phase, normalized to the aqueous phase volume approximately 142 AU) was achieved by cell suspension culture in peanut oil-water two-phase system. Furthermore, the utilization of edible oil as extractant also fulfills the demand for application of Monascus pigments as natural food colorant.

  18. Integrated method of thermosensitive triblock copolymer-salt aqueous two phase extraction and dialysis membrane separation for purification of lycium barbarum polysaccharide.

    Science.gov (United States)

    Wang, Yun; Hu, Xiaowei; Han, Juan; Ni, Liang; Tang, Xu; Hu, Yutao; Chen, Tong

    2016-03-01

    A polymer-salt aqueous two-phase system (ATPS) consisting of thermosensitive copolymer ethylene-oxide-b-propylene-oxide-b-ethylene-oxide (EOPOEO) and NaH2PO4 was employed in deproteinization for lycium barbarum polysaccharide (LBP). The effects of salt type and concentration, EOPOEO concentration, amount of crude LBP solution and temperature were studied. In the primary extraction process, LBP was preferentially partitioned to the bottom (salt-rich) phase with high recovery ratio of 96.3%, while 94.4% of impurity protein was removed to the top (EOPOEO-rich) phase. Moreover, the majority of pigments could be discarded to top phase. After phase-separation, the LBP in the bottom phase was further purified by dialysis membrane to remove salt and other small molecular impurities. The purity of LBP was enhanced to 64%. Additionally, the FT-IR spectrum was used to identify LBP. EOPOEO was recovered by a temperature-induced separation, and reused in a new ATPS. An ideal extraction and recycle result were achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Separation of tritium from gaseous and aqueous effluent systems

    International Nuclear Information System (INIS)

    Kobisk, E.H.

    1977-01-01

    Three processes are discussed for separating tritium from gaseous and aqueous effluent systems: separation in the gas phase using Pd-25 wt percent Ag alloy diffusion membranes; electrolytic separation in the aqueous phase using ''bipolar'' electrodes; and the countercurrent exchange of tritium-containing hydrogen gas with water on catalytic surfaces combined with separation by direct electrolysis

  20. Primitive Liquid Water of the Solar System in an Aqueous Altered Carbonaceous Chondrite

    Science.gov (United States)

    Tsuchiyama, A.; Miyake, A.; Kitayama, A.; Matsuno, J.; Takeuchi, A.; Uesugi, K.; Suzuki, Y.; Nakano, T.; Zolensky, M. E.

    2016-01-01

    Non-destructive 3D observations of the aqueous altered CM chondrite Sutter's Mill using scanning imaging x-ray microscopy (SIXM) showed that some of calcite and enstatite grains contain two-phase inclusion, which is most probably composed of liquid water and bubbles. This water should be primitive water responsible for aqueous alteration in an asteroid in the early solar system.

  1. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno [University of Zagreb, Zagreb (Croatia)

    2015-06-15

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R{sup 2}=0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k{sub L}a=4,652-1,9807 h{sup -1}.

  2. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    International Nuclear Information System (INIS)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno

    2015-01-01

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R 2 =0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k L a=4,652-1,9807 h -1

  3. Carbohydrates-tailored phase tunable systems composed of ionic liquids and water

    International Nuclear Information System (INIS)

    Chen Yuhaun; Wang Yige; Cheng Qingyan; Liu Xiaoli; Zhang Suojiang

    2009-01-01

    Carbohydrates were found to have substantial effects on tailoring phase tunable of ionic liquids (ILs) and water. Phase behaviors of 1-alkyl-3-methylimidazolium derivatives [C n mim]X (n = 2 to 10, X = Cl - , Br - , BF 4 - )-carbohydrate-H 2 O were systemically investigated. For hydrophilic ILs, 1-alkyl-3-methylimidazolium tetrafluoroborate [C n mim]BF 4 (n = 3, 4), the homogeneous aqueous solution can be induced to separate two aqueous phases by addition of carbohydrate. For hydrophobic ILs, [C n mim]BF 4 (n = 5 to 10), the mutual solubility with water can be lowered by addition of carbohydrate. While 1-alkyl-3-methyl imidazolium chloride ([C n mim]Cl, n = 2 to 10) and 1-alkyl-3-methyl imidazolium bromide ([C n mim]Br, n = 2 to 10) aqueous solutions never form aqueous two-phase systems (ATPSs) with carbohydrate in the investigated temperatures ranging from (242.15 to 373.15) K. The high partitioning behavior of phenol in [C n mim]BF 4 (n = 3 to 10) (1) + carbohydrate (2) + H 2 O (3) shows that carbohydrate-tailored {IL + H 2 O} systems are feasible to be used as extraction systems, especially in biological and environmental engineering.

  4. Mechanistic analysis of solute transport in an in vitro physiological two-phase dissolution apparatus.

    Science.gov (United States)

    Mudie, Deanna M; Shi, Yi; Ping, Haili; Gao, Ping; Amidon, Gordon L; Amidon, Gregory E

    2012-10-01

    In vitro dissolution methodologies that adequately capture the oral bioperformance of solid dosage forms are critical tools needed to aid formulation development. Such methodologies must encompass important physiological parameters and be designed with drug properties in mind. Two-phase dissolution apparatuses, which contain an aqueous phase in which the drug dissolves (representing the dissolution/solubility component) and an organic phase into which the drug partitions (representing the absorption component), have the potential to provide meaningful predictions of in vivo oral bioperformance for some BCS II, and possibly some BCS IV drug products. Before such an apparatus can be evaluated properly, it is important to understand the kinetics of drug substance partitioning from the aqueous to the organic medium. A mass transport analysis was performed of the kinetics of partitioning of drug substance solutions from the aqueous to the organic phase of a two-phase dissolution apparatus. Major assumptions include pseudo-steady-state conditions, a dilute aqueous solution and diffusion-controlled transport. Input parameters can be measured or estimated a priori. This paper presents the theory and derivation of our analysis, compares it with a recent kinetic approach, and demonstrates its effectiveness in predicting in vitro partitioning profiles of three BCS II weak acids in four different in vitro two-phase dissolution apparatuses. Very importantly, the paper discusses how a two-phase apparatus can be scaled to reflect in vivo absorption kinetics and for which drug substances the two-phase dissolution systems may be appropriate tools for measuring oral bioperformance. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Ionic liquid and aqueous two-phase extraction based on salting-out coupled with high-performance liquid chromatography for the determination of seven rare ginsenosides in Xue-Sai-Tong injection.

    Science.gov (United States)

    Li, Lan-Jie; Jin, Yong-Ri; Wang, Xiao-Zhong; Liu, Ying; Wu, Qian; Shi, Xiao-Lei; Li, Xu-Wen

    2015-09-01

    A method of ionic liquid salt aqueous two-phase extraction coupled with high-performance liquid chromatography has been developed for the analysis of seven rare ginsenosides including Rg6 , F4 , 20(S)-Rg3 , 20(R)-Rg3 , Rk3 , Rk1 , and Rg5 in Xue-Sai-Tong injection. The injection was mixed with ionic liquid 1-butyl-3-methylimidazolium bromide aqueous solution, and a mixture was obtained. With the addition of sodium dodecyl sulfate and dipotassium phosphate into the mixture, the aqueous two-phase mixture was formed after ultrasonic treatment and centrifuged. Rare ginsenosides were extracted into the upper phase. To obtain a high extraction factors, various influences were considered systematically, such as the volume of ionic liquid, the category and amount of salts, the amount of sodium dodecyl sulfate, the pH value of system, and the time of ultrasonic treatment. Under the optimal condition, rare ginsenosides in Xue-Sai-Tong injection were enriched and detected, the recoveries of seven rare ginsenosides ranged from 90.05 to 112.55%, while relative standard deviations were lower than 2.50%. The developed method was reliable, rapid and sensitive for the determination of seven rare ginsenosides in the injections. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Phase equilibrium of (CO2 + 1-aminopropyl-3-methylimidazolium bromide + water) electrolyte system and effects of aqueous medium on CO2 solubility: Experiment and modeling

    International Nuclear Information System (INIS)

    Chen, Ying; Guo, Kaihua; Bi, Yin; Zhou, Lan

    2017-01-01

    Highlights: • Phase and chemical equilibrium data for (CO 2 + [APMIm]Br + H 2 O) electrolyte system. • A modified eNRTL model for CO 2 solubility in the amino-based IL aqueous solution. • Effects of aqueous medium on both chemical and physical dissolution of CO 2 . • The correlative coefficient, R s ∗ , for the Henry’s constant of the solution. • New parameters for the segments interaction and the chemical equilibrium constants. - Abstract: New experimental data for solubility of carbon dioxide (CO 2 ) in the aqueous solution of 1-aminopropyl-3-methylimidazolium bromide ([APMIm]Br) with four different water mass fractions (0.559, 0.645, 0.765 and 0.858) at T = (278.15–348.15) K with an interval of T = 10 K and p = (0.1237–6.9143) MPa were presented. The electrolyte nonrandom two-liquid (eNRTL) model was modified to be applicable for an ionic liquid (IL) aqueous solution system, by introducing an idle factor β to illustrate the association effect of IL molecules. A solution Henry’s constant for CO 2 solubility in the IL aqueous solution was defined by introducing a correlative coefficient R s ∗ . The vapor-liquid phase equilibrium of the [APMIm]Br-H 2 O-CO 2 ternary system was successfully calculated with the modified eNRTL model. The chemical and physical mechanisms for the ionized CO 2 formation and the molecular CO 2 dissolved in the solution were identified. The effects of aqueous medium on both chemical and physical dissolution of CO 2 in the [APMIm]Br aqueous solution were studied, and a considerable enhancement of the solubility of CO 2 with increase of the water content in the solution was observed.

  7. Influence of aqueous phase on electrochemical biocorrosion tests in diesel/water systems

    Energy Technology Data Exchange (ETDEWEB)

    Bento, F.M. [Dept. of Soils, Faculty of Agronomy, UFRGS, 7712 Bento Goncalves Avenue, CEP: 91540-001, POA, RS (Brazil); Englert, G.E.; Muller, I.L. [Dept. of Metallurgy, Biocorrosion and Biofilms Lab, UFRGS, 99 Osvaldo Aranha Avenue s.615D, CEP: 90035-190, POA, RS (Brazil); Gaylarde, C.C. [Dept. of Biophisics, UFRGS POA, RS (Brazil)

    2004-08-01

    Storage tanks containing microbially contaminated diesel oil are susceptible to corrosion. This process may be evaluated electrochemically in the laboratory using simulated storage systems containing diesel oil and an aqueous phase. The simulated aqueous phase must supply mineral nutrients for microbial growth, together with adequate electrical conductivity, without, however, being too corrosive, so as to allow the aggressive nature of the microbial metabolites to be detected. In this investigation, microbial growth was measured in six electrically conductive media overlaid with metropolitan diesel oil containing an additive package. The microorganisms were the filamentous fungi, Hormoconis resinae, Paecilomyces variotii and Aspergillus fumigatus, the bacterium Bacillus subtilis and the yeast Candida silvicola, all previously isolated from contaminated diesel oil. After 60 days incubation with pure or mixed inocula of these microorganisms, pH, conductivity and viable microorganisms were measured. The electrochemical behaviour of carbon steel ASTM 283-93-C was determined in each of the six media (uninoculated) and in selected inoculated medium via measurements of open circuit potential and potentiostatic polarization curves. The uptake of phosphate (corrosion inhibitor), microbial growth, pH, conductivity and anodic and cathodic polarization curves were assessed in the water phase after 30 and 60 days of incubation with each single species Aspergillus fumigatus and Hormoconis resinae and with the consortium. The medium which proved most appropriate was Bushnell-Haas medium modified by the omission of chlorides, which allowed satisfactory microbial growth and had low aggressivity towards the steel. The performance of electrochemical tests in aerated, rather than deaerated, electrolyte solutions is suggested to be important to allow the detection of microbial influence on passive film formation and stability. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  8. Influence of the composition of the aqueous phase on the behavior of the system FeCl3-HCl-DPE

    International Nuclear Information System (INIS)

    Ramirez, F. de M.; Jimenez-Reyes, M.

    1981-07-01

    We studied the influence of the aqueous phase composition upon an extraction system in which, at room temperature (20 0 C +- 3 0 C) using the dissolvents FeCl 3 -HCl-di-isopropyl ether the third phase phenomena is present after one minute of agitation. Our results showed that principally the hydrochloric acid dissolvent produced each of the three phases at given concentration levels as well as determined the nature of the chemical composition in each phase. (author)

  9. Tritium distribution ratios between the 30 % tributyl phosphate(TBP)-normal dodecane(nDD) organic phase and uranyl nitrate-nitric acid aqueous phase

    International Nuclear Information System (INIS)

    Fujine, Sachio; Uchiyama, Gunzou; Sugikawa, Susumu; Maeda, Mitsuru; Tsujino, Takeshi.

    1989-10-01

    Tritium distribution ratios between the organic and aqueous phases were measured for the system of 30 % tributyl phosphate(TBP)-normal dodecane(nDD)/uranyl nitrate-nitric acid water. It was confirmed that tritium is extracted by TBP into the organic phase in both chemical forms of tritiated water (HTO) and tritiated nitric acid (TNO 3 ). The value of tritium distribution ratio ranged from 0.002 to 0.005 for the conditions of 0-6 mol/L nitric acid, 0.5-800 mCi/L tritium in aqueous phase, and 0-125 g-U/L uranium in organic phase. Isotopic distribution coefficient of tritium between the organic and aqueous phases was observed to be about 0.95. (author)

  10. Extraction of Biomolecules Using Phosphonium-Based Ionic Liquids + K3PO4 Aqueous Biphasic Systems

    Science.gov (United States)

    Louros, Cláudia L. S.; Cláudio, Ana Filipa M.; Neves, Catarina M. S. S.; Freire, Mara G.; Marrucho, Isabel M.; Pauly, Jérôme; Coutinho, João A. P.

    2010-01-01

    Aqueous biphasic systems (ABS) provide an alternative and efficient approach for the extraction, recovery and purification of biomolecules through their partitioning between two liquid aqueous phases. In this work, the ability of hydrophilic phosphonium-based ionic liquids (ILs) to form ABS with aqueous K3PO4 solutions was evaluated for the first time. Ternary phase diagrams, and respective tie-lines and tie-lines length, formed by distinct phosphonium-based ILs, water, and K3PO4 at 298 K, were measured and are reported. The studied phosphonium-based ILs have shown to be more effective in promoting ABS compared to the imidazolium-based counterparts with similar anions. Moreover, the extractive capability of such systems was assessed for distinct biomolecules (including amino acids, food colourants and alkaloids). Densities and viscosities of both aqueous phases, at the mass fraction compositions used for the biomolecules extraction, were also determined. The evaluated IL-based ABS have been shown to be prospective extraction media, particularly for hydrophobic biomolecules, with several advantages over conventional polymer-inorganic salt ABS. PMID:20480041

  11. An integrated practical implementation of continuous aqueous two-phase systems for the recovery of human IgG: From the microdevice to a multistage bench-scale mixer-settler device.

    Science.gov (United States)

    Espitia-Saloma, Edith; Vâzquez-Villegas, Patricia; Rito-Palomares, Marco; Aguilar, Oscar

    2016-05-01

    Aqueous two-phase systems (ATPS) are a liquid-liquid extraction technology with clear process benefits; however, its lack of industrial embracement is still a challenge to overcome. Antibodies are a potential product to be recovered by ATPS in a commercial context. The objective of this work is to present a more integral approach of the different isolated strategies that have arisen in order to enable a practical, generic implementation of ATPS, using human immunoglobulin G (IgG) as experimental model. A microfluidic device is used for ATPS parameters preselection for product recovery. ATPS were continuously operated in a mixer-settler device in one stage, multistage and multistage with recirculation configuration. Single-stage pure IgG extraction with a polyethylene glycol (PEG) 3350-phophates ATPS within continuous operation allowed a 65% recovery. Further implementation of a multistage platform promoted a higher particle partitioning reaching a 90% recovery. The processing of IgG from a cell supernatant culture harvest in a multistage system with top phase recirculation resulted in 78% IgG recovery in bottom phase. This work conjugates three not widely spread methodologies for ATPS: microfluidics, continuous and multistage operation. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of Aqueous Phase Recycling in Continuous Hydrothermal Liquefaction

    DEFF Research Database (Denmark)

    Klemmer, Maika; Madsen, René Bjerregaard; Houlberg, Kasper

    2016-01-01

    was observed with a maximum increase in the first recycle experiment. However, the recycling of the aqueous phase also resulted in lower heating values and higher water contents in the oil fraction. Based on these findings, recycling the aqueous phase is a trade-off between improved yields and reduced burn...... qualities of the biocrude. That said, recycling also lowers carbon discharge to the aqueous fraction, which may contribute significantly to reducing the environmental footprint of an industrial HTL plant....

  13. The geometric phase in two-level atomic systems

    International Nuclear Information System (INIS)

    Tian Mingzhen; Barber, Zeb W.; Fischer, Joe A.; Randall Babbitt, Wm.

    2004-01-01

    We report the observation of the geometric phase in a closed two-level atomic system using stimulated photon echoes. The two-level system studied consists of the two-electronic energy levels ( 3 H 4 and 3 H 6 ) of Tm 3+ doped in YAG crystal. When a two-level atom at an arbitrary superposition state is excited by a pair of specially designed laser pulses, the excited state component gains a relative phase with respect to the ground state component. We identified the phase shift to be of pure geometric nature. The dynamic phase associated to the driving Hamiltonian is unchanged. The experiment results of the phase change agree with the theory to the extent of the measurement limit

  14. Process Integration for the Disruption of Candida guilliermondii Cultivated in Rice Straw Hydrolysate and Recovery of Glucose-6-Phosphate Dehydrogenase by Aqueous Two-Phase Systems.

    Science.gov (United States)

    Gurpilhares, Daniela B; Pessoa, Adalberto; Roberto, Inês C

    2015-07-01

    Remaining cells of Candida guilliermondii cultivated in hemicellulose-based fermentation medium were used as intracellular protein source. Recovery of glucose-6-phosphate dehydrogenase (G6PD) was attained in conventional aqueous two-phase systems (ATPS) was compared with integrated process involving mechanical disruption of cells followed by ATPS. Influences of polyethylene glycol molar mass (M PEG) and tie line lengths (TLL) on purification factor (PF), yields in top (Y T ) and bottom (Y B ) phases and partition coefficient (K) were evaluated. First scheme resulted in 65.9 % enzyme yield and PF of 2.16 in salt-enriched phase with clarified homogenate (M PEG 1500 g mol(-1), TLL 40 %); Y B of 75.2 % and PF B of 2.9 with unclarified homogenate (M PEG 1000 g mol(-1), TLL 35 %). The highest PF value of integrated process was 2.26 in bottom phase (M PEG 1500 g mol(-1), TLL 40 %). In order to optimize this response, a quadratic model was predicted for the response PFB for process integration. Maximum response achieved was PFB = 3.3 (M PEG 1500 g mol(-1), TLL 40 %). Enzyme characterization showed G6P Michaelis-Menten constant (K M ) equal 0.07-0.05, NADP(+) K M 0.02-1.98 and optimum temperature 70 °C, before and after recovery. Overall, our data confirmed feasibility of disruption/extraction integration for single-step purification of intracellular proteins from remaining yeast cells.

  15. [Models for quantification of fluid saturation in two-phase flow system by light transmission method and its application].

    Science.gov (United States)

    Zhang, Yan-Hong; Ye, Shu-Jun; Wu, Ji-Chun

    2014-06-01

    Based on light transmission method in quantification of liquid saturation and its application in two-phase flow system, two groups of sandbox experiments were set up to study the migration of gas or Dense Non-Aqueous Phase Liquids (DNAPLs) in water saturated porous media. The migration of gas or DNAPL was monitored in the study. Two modified Light Intensity-Saturation (LIS) models for water/gas two-phase system were applied and verified by the experiment data. Moreover two new LIS models for NAPL/water system were developed and applied to simulate the DNAPL infiltration experiment data. The gas injection experiment showed that gas moved upward to the top of the sandbox in the form of 'fingering' and finally formed continuous distribution. The results of DNAPL infiltration experiment showed that TCE mainly moved downward as the result of its gravity, eventually formed irregular plume and accumulated at the bottom of the sandbox. The outcomes of two LIS models for water/gas system (WG-A and WG-B) were consistent to the measured data. The results of two LIS models for NAPL/water system (NW-A and NW-B) fit well with the observations, and Model NW-A based on assumption of individual drainage gave better results. It could be a useful reference for quantification of NAPL/water saturation in porous media system.

  16. Ionic Liquid-Based Ultrasonic-Assisted Extraction of Secoisolariciresinol Diglucoside from Flaxseed (Linum usitatissimum L. with Further Purification by an Aqueous Two-Phase System

    Directory of Open Access Journals (Sweden)

    Zhi-Jian Tan

    2015-09-01

    Full Text Available In this work, a two-step extraction methodology of ionic liquid-based ultrasonic-assisted extraction (IL-UAE and ionic liquid-based aqueous two-phase system (IL-ATPS was developed for the extraction and purification of secoisolariciresinol diglucoside (SDG from flaxseed. In the IL-UAE step, several kinds of ILs were investigated as the extractants, to identify the IL that affords the optimum extraction yield. The extraction conditions such as IL concentration, ultrasonic irradiation time, and liquid–solid ratio were optimized using response surface methodology (RSM. In the IL-ATPS step, ATPS formed by adding kosmotropic salts to the IL extract was used for further separation and purification of SDG. The most influential parameters (type and concentration of salt, temperature, and pH were investigated to obtain the optimum extraction efficiency. The maximum extraction efficiency was 93.35% under the optimal conditions of 45.86% (w/w IL and 8.27% (w/w Na2SO4 at 22 °C and pH 11.0. Thus, the combination of IL-UAE and IL-ATPS makes up a simple and effective methodology for the extraction and purification of SDG. This process is also expected to be highly useful for the extraction and purification of bioactive compounds from other important medicinal plants.

  17. Partition Efficiency of High-Pitch Locular Multilayer Coil for Countercurrent Chromatographic Separation of Proteins Using Small-Scale Cross-Axis Coil Planet Centrifuge and Application to Purification of Various Collagenases with Aqueous-Aqueous Polymer Phase Systems.

    Science.gov (United States)

    Shinomiya, Kazufusa; Kobayashi, Hiroko; Inokuchi, Norio; Nakagomi, Kazuya; Ito, Yoichiro

    2011-01-01

    Partition efficiency of the high-pitch locular multilayer coil was evaluated in countercurrent chromatographic (CCC) separation of proteins with an aqueous-aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The separation column was specially made by high-pitch (ca 5 cm) winding of 1.0 mm I.D., 2.0 mm O.D. locular tubing compressed at 2 cm intervals with a total capacity of 29.5 mL. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin, and lysozyme with the 12.5% (w/w) polyethylene glycol (PEG) 1000 and 12.5% (w/w) dibasic potassium phosphate system (pH 9.2) under 1000 rpm of column revolution. This high-pitch locular tubing yielded substantially increased stationary phase retention than the normal locular tubing for both lower and upper mobile phases. In order to demonstrate the capability of the high-pitch locular tubing, the purification of collagenase from the crude commercial sample was carried out using an aqueous-aqueous polymer phase system. Using the 16.0% (w/w) PEG 1000 - 6.3% (w/w) dibasic potassium phosphate - 6.3% (w/w) monobasic potassium phosphate system (pH 6.6), collagenase I, II, V and X derived from Clostridium hystolyticum were separated from other proteins and colored small molecular weight compounds present in the crude commercial sample, while collagenase N-2 and S-1 from Streptomyces parvulus subsp. citrinus were eluted with impurities at the solvent front with the upper phase. The collagenase from C. hystolyticum retained its enzymatic activity in the purified fractions. The overall results demonstrated that the high-pitch locular multilayer coil is effectively used for the CCC purification of bioactive compounds without loss of their enzymatic activities.

  18. Partition Efficiency of High-Pitch Locular Multilayer Coil for Countercurrent Chromatographic Separation of Proteins Using Small-Scale Cross-Axis Coil Planet Centrifuge and Application to Purification of Various Collagenases with Aqueous-Aqueous Polymer Phase Systems

    Science.gov (United States)

    Shinomiya, Kazufusa; Kobayashi, Hiroko; Inokuchi, Norio; Nakagomi, Kazuya; Ito, Yoichiro

    2010-01-01

    Partition efficiency of the high-pitch locular multilayer coil was evaluated in countercurrent chromatographic (CCC) separation of proteins with an aqueous-aqueous polymer phase system using the small-scale cross-axis coil planet centrifuge (X-axis CPC) fabricated in our laboratory. The separation column was specially made by high-pitch (ca 5 cm) winding of 1.0 mm I.D., 2.0 mm O.D. locular tubing compressed at 2 cm intervals with a total capacity of 29.5 mL. The protein separation was performed using a set of stable proteins including cytochrome C, myoglobin, and lysozyme with the 12.5% (w/w) polyethylene glycol (PEG) 1000 and 12.5% (w/w) dibasic potassium phosphate system (pH 9.2) under 1000 rpm of column revolution. This high-pitch locular tubing yielded substantially increased stationary phase retention than the normal locular tubing for both lower and upper mobile phases. In order to demonstrate the capability of the high-pitch locular tubing, the purification of collagenase from the crude commercial sample was carried out using an aqueous-aqueous polymer phase system. Using the 16.0% (w/w) PEG 1000 – 6.3% (w/w) dibasic potassium phosphate – 6.3% (w/w) monobasic potassium phosphate system (pH 6.6), collagenase I, II, V and X derived from Clostridium hystolyticum were separated from other proteins and colored small molecular weight compounds present in the crude commercial sample, while collagenase N-2 and S-1 from Streptomyces parvulus subsp. citrinus were eluted with impurities at the solvent front with the upper phase. The collagenase from C. hystolyticum retained its enzymatic activity in the purified fractions. The overall results demonstrated that the high-pitch locular multilayer coil is effectively used for the CCC purification of bioactive compounds without loss of their enzymatic activities. PMID:21869859

  19. Two-phase systems. Fundamentals and industrial applications

    International Nuclear Information System (INIS)

    Woillez, Jacques

    2014-01-01

    Two-phase flows are omnipresent in industrial processes in different sectors with the behaviour and control of non-mixing mixtures of gas and liquids, of several liquids, of solids and fluids which are present in the production of raw materials, in the environment, in energy production, in chemistry, in pharmaceutical or food industry. The author presents the fundamentals elements which are needed to perform hardware predictive calculations and to understand typical phenomena associated with these flows. The chapters address fluids mechanics (movement equations, Bernoulli equation, load losses, turbulence, heat exchange coefficients, thermodynamics, compressible flows), two-phase systems (characteristic values, modes of appearance of two-phase flows, conduct flows, suspension mechanics, mass transfers, similarity, numerical simulation), the applications (energy production, agitation and mixing, phase separation, sprays), and peculiar phenomena (Marangoni effect, the tea cup effect, entry jets, water hammer effect, sound speed, two-phase pumping, fluidization)

  20. Two-phase flow heat transfer in nuclear reactor systems

    International Nuclear Information System (INIS)

    Koncar, Bostjan; Krepper, Eckhard; Bestion, Dominique; Song, Chul-Hwa; Hassan, Yassin A.

    2013-01-01

    occurring in at least two different spatial scales. Uncertainty in modelling of bubble departure diameter at boiling was studied by M. Matkovic and B. Koncar. In this article the propagation of input uncertainties for the simplified model of bubble departure size is evaluated. A methodology for estimating the prediction capability of a given correlation is provided taking into account its range of applicability. Aqueous nanofluids have a great potential for cooling applications, hence they have been studied in the article of P.N. Alekseev et al. as a possible coolant in pressurized water reactor (PWR). The theoretical study presents how a stable formation of nanoparticles in water solution can be established. Formation of fractal nanoparticles with a higher thermal conductivity than water can enhance the heat transfer of water used as a coolant in PWR. Apart from solid particles, also alternative formation of gaseous nanoparticles in density fluctuations of water is discussed. The article of R. Rzehak and E. Krepper provides a comprehensive overview of the state-of-the-art in the field of CFD modelling of subcooled flow boiling. The efficient predictive capability of current models requires calibration of model parameters over a wide range of measured data and operating conditions.The results presented in the article confirmed the great potential of the existing modelling approach for the 3D simulation of subcooled flow boiling in industrial applications but also highlight the need for specific model improvements to achieve highly accurate predictions. Two articles deal with one-dimensional analyses of two phase flows. In the article of O.Costa et al., a rapid depressurization in vertical heated pipe is simulated with the in-house 1D computer code WAHA, which was developed specifically for simulations of two-phase water hammer phenomena. The WAHA results were confronted with the simulations of the well-known system code RELAP5 on the same experimental data. The thermal

  1. A Novel Aqueous Two Phase System Composed of a Thermo-Separating Polymer and an Organic Solvent for Purification of Thermo-Acidic Amylase Enzyme from Red Pitaya (Hylocereus polyrhizus Peel

    Directory of Open Access Journals (Sweden)

    Mehrnoush Amid

    2014-05-01

    Full Text Available The purification of thermo-acidic amylase enzyme from red pitaya (Hylocereus polyrhizus peel for the first time was investigated using a novel aqueous two-phase system (ATPS consisting of a thermo-separating copolymer and an organic solvent. The effectiveness of different parameters such as molecular weight of the thermo-separating ethylene oxide-propylene oxide (EOPO copolymer and type and concentration of organic solvent on the partitioning behavior of amylase was investigated. In addition, the effects of phase components, volume ratio (VR, pH and crude load of purification factor and yield of amylase were evaluated to achieve the optimum partition conditions of the enzyme. In the novel ATPS method, the enzyme was satisfactorily partitioned into the polymer-rich top phase in the system composed of 30% (w/w EOPO 2500 and 15% (w/w 2-propanol, at a volume ratio of 1.94 and with a crude load scale of 25% (w/w at pH 5.0. Recovery and recycling of components was also measured in each successive step of the ATPS process. The enzyme was successfully recovered by the method with a high purification factor of 14.3 and yield of 96.6% and copolymer was also recovered and recycled at a rate above 97%, making the method was more economical than the traditional ATPS method.

  2. A method for the preparation of curcumin by ultrasonic-assisted ammonium sulfate/ethanol aqueous two phase extraction.

    Science.gov (United States)

    Xu, Guangkuan; Hao, Changchun; Tian, Suyang; Gao, Feng; Sun, Wenyuan; Sun, Runguang

    2017-01-15

    This study investigated a new and easy-to-industrialized extracting method for curcumin from Curcuma longa rhizomes using ultrasonic extraction technology combined with ammonium sulfate/ethanol aqueous two-phase system (ATPS), and the preparation of curcumin using the semi-preparative HPLC. The single-factor experiments and response surface methodology (RSM) were utilized to determine the optimal material-solvent ratio, ultrasonic intensity (UI) and ultrasonic time. The optimum extraction conditions were finally determined to be material-solvent rate of 3.29:100, ultrasonic intensity of 33.63W/cm 2 and ultrasonic time of 17min. At these optimum conditions, the extraction yield could reach 46.91mg/g. And the extraction yields of curcumin remained stable in the case of amplification, which indicated that scale-up extraction was feasible and efficient. Afterwards, the semi-preparative HPLC experiment was carried out, in which optimal preparation conditions were elected according to the single factor experiment. The prepared curcumin was obtained and the purity could up to 85.58% by the semi-preparative HPLC. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Two cloud-point phenomena in tetrabutylammonium perfluorooctanoate aqueous solutions: anomalous temperature-induced phase and structure transitions.

    Science.gov (United States)

    Yan, Peng; Huang, Jin; Lu, Run-Chao; Jin, Chen; Xiao, Jin-Xin; Chen, Yong-Ming

    2005-03-24

    This paper reported the phase behavior and aggregate structure of tetrabutylammonium perfluorooctanoate (TBPFO), determined by differential scanning calorimeter, electrical conductivity, static/dynamic light scattering, and rheology methods. We found that above a certain concentration the TBPFO solution showed anomalous temperature-dependent phase behavior and structure transitions. Such an ionic surfactant solution exhibits two cloud points. When the temperature was increased, the solution turned from a homogeneous-phase to a liquid-liquid two-phase system, then to another homogeneous-phase, and finally to another liquid-liquid two-phase system. In the first homogeneous-phase region, the aggregates of TBPFO were rodlike micelles and the solution was Newtonian fluid. While in the second homogeneous-phase region, the aggregates of TBPFO were large wormlike micelles, and the solution behaved as pseudoplastic fluid that also exhibited viscoelastic behavior. We thought that the first cloud point might be caused by the "bridge" effect of the tetrabutylammonium counterion between the micelles and the second one by the formation of the micellar network.

  4. Two-phase flow induced parametric vibrations in structural systems

    International Nuclear Information System (INIS)

    Hara, Fumio

    1980-01-01

    This paper is divided into two parts concerning piping systems and a nuclear fuel pin system. The significant experimental results concerning the random vibration induced in an L-shaped pipe by air-water two-phase flow and the theoretical analysis of the vibration are described in the first part. It was clarified for the first time that the parametric excitation due to the periodic changes of system mass, centrifugal force and Coriolis force was the mechanism of exciting the vibration. Moreover, the experimental and theoretical analyses of the mechanism of exciting vibration by air-water two-phase flow in a straight, horizontal pipe were carried out, and the first natural frequency of the piping system was strongly related to the dominant frequency of void signals. The experimental results on the vibration of a nuclear fuel pin model in parallel air-water two-phase flow are reported in the latter part. The relations between vibrational strain variance and two-phase flow velocity or pressure fluctuation, and the frequency characteristics of vibrational strain variance were obtained. The theoretical analysis of the dynamic interaction between air-water two-phase flow and a fuel pin structure, and the vibrational instability of fuel pins in alternate air and water slugs or in large bubble flow are also reported. (Kako, I.)

  5. Hydrogen Generation from Sugars via Aqueous-Phase Reforming

    International Nuclear Information System (INIS)

    Randy D Cortright

    2006-01-01

    Virent Energy Systems, Inc. is commercializing the Aqueous Phase Reforming (APR) process that allows the generation of hydrogen-rich gas streams from biomass-derived compounds such as glycerol, sugars, and sugar alcohols. The APR process is a unique method that generates hydrogen from aqueous solutions of these oxygenated compounds in a single step reactor process compared to the three or more reaction steps required for hydrogen generation via conventional processes that utilize non-renewable fossil fuels. The key breakthrough of the APR process is that the reforming of these aqueous solutions is done in the liquid phase. The patented APR process occurs at temperatures (150 C to 270 C) where the water-gas shift reaction is favorable, making it possible to generate hydrogen with low amounts of CO in a single chemical reactor. Furthermore, the APR process occurs at pressures (typically 15 to 50 bar) where the hydrogen-rich effluent can be effectively purified using either membrane technology or pressure swing adsorption technology. The utilization of biomass-based compounds allows the APR process to be a carbon neutral method to generate hydrogen. In the near term, the feed-stock of interest is waste glycerol that is being generated in large quantities as a byproduct in the production of bio-diesel. Virent has developed the APR system for on-demand generation of hydrogen-rich fuel gas from either glycerol or sorbitol (the sugar alcohol formed by hydrogenation of glucose) to fuel a stationary internal combustion engine driven generator (10 kW). Under a USDOE funded project, Virent is currently developing the APR process to generate high yields of hydrogen from corn-derived glucose. This project objective is to achieve the DOE 2010 cost target for distributed production from renewable liquid fuels of 3.60 dollars/gge (gasoline gallon equivalent) delivered. (authors)

  6. Segregative phase separation in aqueous mixtures of polydisperse biopolymers

    NARCIS (Netherlands)

    Edelman, M.W.

    2003-01-01

    Keywords: biopolymer, gelatine, dextran, PEO, phase separation, polydispersity, molar mass distribution, SEC-MALLS, CSLM The temperature-composition phase diagram of aqueous solutions of gelatine and dextran, which show liquid/liquid phase segregation, were explored at temperatures above the

  7. Continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process: An efficient diesel treatment by injection of the aqueous phase.

    Science.gov (United States)

    Rahimi, Masoud; Shahhosseini, Shahrokh; Movahedirad, Salman

    2017-11-01

    A new continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process was developed in order to decrease energy and aqueous phase consumption. In this process the aqueous phase is injected below the horn tip leading to enhanced mixing of the phases. Diesel fuel as the oil phase with sulfur content of 1550ppmw and an appropriate mixture of hydrogen peroxide and formic acid as the aqueous phase were used. At the first step, the optimized condition for the sulfur removal has been obtained in the batch mode operation. Hence, the effect of more important oxidation parameters; oxidant-to-sulfur molar ratio, acid-to-sulfur molar ratio and sonication time were investigated. Then the optimized conditions were obtained using Response Surface Methodology (RSM) technique. Afterwards, some experiments corresponding to the best batch condition and also with objective of minimizing the residence time and aqueous phase to fuel volume ratio have been conducted in a newly designed double-compartment reactor with injection of the aqueous phase to evaluate the process in a continuous flow operation. In addition, the effect of nozzle diameter has been examined. Significant improvement on the sulfur removal was observed specially in lower sonication time in the case of dispersion method in comparison with the conventional contact between two phases. Ultimately, the flow pattern induced by ultrasonic device, and also injection of the aqueous phase were analyzed quantitatively and qualitatively by capturing the sequential images. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Experimental data and thermodynamic modeling of ternary aqueous biphasic systems of EO/PO polymers–Na2SO4–H2O

    NARCIS (Netherlands)

    Milosevic, M.; Staal, K.J.J.; Schuur, Boelo; de Haan, A.B.

    2014-01-01

    Liquid–liquid extraction using thermoresponsive polymers as solvents in aqueous two phase systems followed by induced phase separation to recover the polymers is a potential technology for water–salt separations. Here we report for seven polymers on their ternary systems containing water, sodium

  9. Mixing phases of unstable two-level systems

    International Nuclear Information System (INIS)

    Sokolov, V.V.; Brentano, P. von.

    1993-01-01

    An unstable two-level system decaying into an arbitrary number of channels is considered. It is shown that the mixing phases of the two overlapping resonances can be expressed in the terms of their partial widths and one additional universal mixing parameter. Some applications to a doublet of 2 + resonances in 8 Be and to the ρ-ω systems are considered. 18 refs

  10. Organic high ionic strength aqueous two-phase solvent system series for separation of ultra-polar compounds by spiral high-speed counter-current chromatography

    Science.gov (United States)

    Zeng, Yun; Liu, Gang; Ma, Ying; Chen, Xiaoyuan; Ito, Yoichiro

    2011-01-01

    Existing two-phase solvent systems for high-speed countercurrent chromatography cover the separation of hydrophobic to moderately polar compounds, but often fail to provide suitable partition coefficient values for highly polar compounds such as sulfonic acids, catecholamines and zwitter ions. The present paper introduces a new solvent series which can be applied for the separation of these polar compounds. It is composed of 1-butanol, ethanol, saturated ammonium sulfate and water at various volume ratios and consists of a series of 10 steps which are arranged according to the polarity of the solvent system so that the two-phase solvent system with suitable K values for the target compound(s) can be found in a few steps. Each solvent system gives proper volume ratio and high density difference between the two phases to provide a satisfactory level of retention of the stationary phase in the spiral column assembly. The method is validated by partition coefficient measurement of four typical polar compounds including methyl green (basic dye), tartrazine (sulfonic acid), tyrosine (zwitter ion) and epinephrine (a catecholamine), all of which show low partition coefficient values in the polar 1-butanol-water system. The capability of the method is demonstrated by separation of three catecholamines. PMID:22033108

  11. Violent flows in aqueous foams III: physical multi-phase model comparison with aqueous foam shock tube experiments

    Science.gov (United States)

    Redford, J. A.; Ghidaglia, J.-M.; Faure, S.

    2018-06-01

    Mitigation of blast waves in aqueous foams is a problem that has a strong dependence on multi-phase effects. Here, a simplified model is developed from the previous articles treating violent flows (D'Alesio et al. in Eur J Mech B Fluids 54:105-124, 2015; Faure and Ghidaglia in Eur J Mech B Fluids 30:341-359, 2011) to capture the essential phenomena. The key is to have two fluids with separate velocities to represent the liquid and gas phases. This allows for the interaction between the two phases, which may include terms for drag, heat transfer, mass transfer due to phase change, added mass effects, to be included explicitly in the model. A good test for the proposed model is provided by two experimental data sets that use a specially designed shock tube. The first experiment has a test section filled with spray droplets, and the second has a range of aqueous foams in the test section. A substantial attenuation of the shock wave is seen in both cases, but a large difference is observed in the sound speeds. The droplets cause no observable change from the air sound speed, while the foams have a reduced sound speed of approximately 50-75 m/s . In the model given here, an added mass term is introduced in the governing equations to capture the low sound speed. The match between simulation and experiment is found to be satisfactory for both droplets and the foam. This is especially good when considering the complexity of the physics and the effects that are unaccounted for, such as three-dimensionality and droplet atomisation. The resulting statistics illuminate the processes occurring in such flows.

  12. Explicit modeling of volatile organic compounds partitioning in the atmospheric aqueous phase

    Directory of Open Access Journals (Sweden)

    C. Mouchel-Vallon

    2013-01-01

    Full Text Available The gas phase oxidation of organic species is a multigenerational process involving a large number of secondary compounds. Most secondary organic species are water-soluble multifunctional oxygenated molecules. The fully explicit chemical mechanism GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere is used to describe the oxidation of organics in the gas phase and their mass transfer to the aqueous phase. The oxidation of three hydrocarbons of atmospheric interest (isoprene, octane and α-pinene is investigated for various NOx conditions. The simulated oxidative trajectories are examined in a new two dimensional space defined by the mean oxidation state and the solubility. The amount of dissolved organic matter was found to be very low (yield less than 2% on carbon atom basis under a water content typical of deliquescent aerosols. For cloud water content, 50% (isoprene oxidation to 70% (octane oxidation of the carbon atoms are found in the aqueous phase after the removal of the parent hydrocarbons for low NOx conditions. For high NOx conditions, this ratio is only 5% in the isoprene oxidation case, but remains large for α-pinene and octane oxidation cases (40% and 60%, respectively. Although the model does not yet include chemical reactions in the aqueous phase, much of this dissolved organic matter should be processed in cloud drops and modify both oxidation rates and the speciation of organic species.

  13. Extraction and Purification of Quercitrin, Hyperoside, Rutin, and Afzelin from Zanthoxylum Bungeanum Maxim Leaves Using an Aqueous Two-Phase System.

    Science.gov (United States)

    He, Fengyuan; Li, Dengwu; Wang, Dongmei; Deng, Ming

    2016-07-01

    In this study, an aqueous two-phase system (ATPS) based on ethanol/NaH2 PO4 was developed for the extraction and purification of quercitrin, hyperoside, rutin, and afzelin from Zanthoxylum bungeanum Maxim leaves. These 4 flavonoids were 1st extracted from dried Z. bungeanum leaves using a 60% ethanol solution and subsequently added to the ATPS for further purification. The partition behavior of the 4 flavonoids in ATPS was investigated. The optimal ATPS conditions were: 29% (w/w) NaH2 PO4 , 25% (w/w) ethanol concentration, 1% (w/w) added amount of leaf extracts, no pH adjustment, and repeated 1 h extractions at 25 °C. Under the optimal conditions for the 10 g ATPS, the absolute recovery of quercitrin, hyperoside, rutin, and afzelin reached 90.3%, 83.5%, 92.3%, and 89.1%, respectively. Compared to the 60% ethanol extracts, the content of quercitrin (44.8 mg/g), hyperoside (65.6 mg/g), rutin (56.4 mg/g), and afzelin (6.84 mg/g) in the extracts increased by 49.9%, 38.8%, 45.6%, and 36.8% respectively. The extracts after ATPS also exhibited stronger antioxidant activities, the 2,2-diphenyl-1-picrylhydrazyl IC50 value (10.5 μg/mL) decreased by 41.8%, and the 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt value (966 μmol Trolox/g) and ferric reducing power value (619 μmol Trolox/g) increased by 29.8% and 53.7%, respectively. Furthermore, scale-up experiments indicated that a larger scale experiment was feasible for the purification of the 4 flavonoids. © 2016 Institute of Food Technologists®

  14. Spontaneous vesicle phase formation by pseudogemini surfactants in aqueous solutions.

    Science.gov (United States)

    Sun, Nan; Shi, Lijuan; Lu, Fei; Xie, Shuting; Zheng, Liqiang

    2014-08-14

    The phase behavior of a kind of pseudogemini surfactant in aqueous solutions, formed by the mixture of sodium dodecyl benzene sulfonate (SDBS) and butane-1,4-bis (methylimidazolium bromide) ([mim-C4-mim]Br2) or butane-1,4-bis(methylpyrrolidinium bromide) ([mpy-C4-mpy]Br2) in a molar ratio of 2 : 1, is reported in the present work. When [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 is mixed with SDBS in aqueous solutions, one cationic [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 molecule "bridges" two SDBS molecules by noncovalent interactions (e.g. electrostatic, π-π stacking, and σ-π interactions), behaving like a pseudogemini surfactant. Vesicles can be formed by this kind of pseudogemini surfactant, determined by freeze-fracture transmission electron microscopy (FF-TEM) or cryogenic-transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS). The mixed system of sodium dodecyl sulfate (SDS) with [mim-C4-mim]Br2 or [mpy-C4-mpy]Br2 was also constructed, and only micelles were observed. We infer that a pseudogemini surfactant is formed under the synergic effect of electrostatic, π-π stacking, and σ-π interactions in the SDBS/[mim-C4-mim]Br2/H2O system, while electrostatic attraction and hydrophobic interactions may provide the directional force for vesicle formation in the SDBS/[mpy-C4-mpy]Br2/H2O system.

  15. ESR imaging investigations of two-phase systems.

    Science.gov (United States)

    Herrmann, Werner; Stösser, Reinhard; Borchert, Hans-Hubert

    2007-06-01

    The possibilities of electron spin resonance (ESR) and electron spin resonance imaging (ESRI) for investigating the properties of the spin probes TEMPO and TEMPOL in two-phase systems have been examined in the systems water/n-octanol, Miglyol/Miglyol, and Precirol/Miglyol. Phases and regions of the phase boundary could be mapped successfully by means of the isotropic hyperfine coupling constants, and, moreover, the quantification of rotational and lateral diffusion of the spin probes was possible. For the quantitative treatment of the micropolarity, a simplified empirical model was established on the basis of the Nernst distribution and the experimentally determined isotropic hyperfine coupling constants. The model does not only describe the summarized micropolarities of coexisting phases, but also the region of the phase boundary, where solvent molecules of different polarities and tendencies to form hydrogen bonds compete to interact with the NO group of the spin probe. Copyright 2007 John Wiley & Sons, Ltd.

  16. A simple method for point-of-need extraction, concentration and rapid multi-mycotoxin immunodetection in feeds using aqueous two-phase systems.

    Science.gov (United States)

    Soares, Ruben R G; Azevedo, Ana M; Fernandes, Pedro; Chu, Virginia; Conde, João P; Aires-Barros, M Raquel

    2017-08-18

    The rapid detection of mycotoxins in feed samples is becoming an increasingly relevant challenge for the food production sector, in order to effectively enforce current regulations and assure food and feed safety. To achieve rapid mycotoxin detection, several biosensing strategies have been published, many reaching assay times of the order of a few minutes. However, the vast majority of these rely on sample preparation based on volatile organic solvents, often comprising complex multi-step procedures and devoid of clean-up and/or concentration effects. Here, a novel sample preparation methodology based on a green, non-toxic and inexpensive polyethylene glycol-sodium citrate aqueous two-phase system is reported, providing single-step extraction and concentration of three target mycotoxins within 20min: aflatoxin B1 (AFB1), ochratoxin A (OTA) and deoxynivalenol (DON). With point-of-need applications in mind, the extraction procedure was optimized and validated using a rapid multi-toxin microfluidic competitive immunoassay. The assay was successfully tested with spiked complex solid matrices including corn, soy, chickpea and sunflower-based feeds and limits of detection of 4.6ngg -1 ±15.8%, 24.1ngg -1 ±8.1% and 129.7ngg -1 ±53.1% (±CV) were obtained in corn for AFB1, OTA and DON, respectively. These sensitivities are fit-for-purpose at the required regulatory and recommended limits for animal feed, providing an effective and safe semi-quantitative mycotoxin analysis that can be performed in the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Magnetic liquid metal two-phase flow research. Phase 1. Final report

    International Nuclear Information System (INIS)

    Graves, R.D.

    1983-04-01

    The Phase I research demonstrates the feasibility of the magnetic liquid metal (MLM) two-phase flow concept. A dispersion analysis is presented based on a complete set of two-phase-flow equations augmented to include stresses due to magnetic polarization of the fluid. The analysis shows that the stability of the MLM two-phase flow is determined by the magnetic Mach number, the slip ratio, geometry of the flow relative to the applied magnetic field, and by the voidage dependence of the interfacial forces. Results of a set of experiments concerned with magnetic effects on the dynamics of single bubble motion in an aqueous-based, viscous, conducting magnetic fluid are presented. Predictions in the theoretical literature are qualitatively verified using a bench-top experimental apparatus. In particular, applied magnetic fields are seen to lead to reduced bubble size at fixed generating orifice pressure

  18. Comparison of a wellpoint vacuum pump system to dual pump recovery system effectiveness for the extraction of light non-aqueous phase liquids

    International Nuclear Information System (INIS)

    Koll, C.S.; Palmerton, D.L. Jr.; Kunzel, R.G.

    1994-01-01

    The effectiveness of two light non-aqueous phase liquid (LNAPL) extraction systems is compared at a site in the Mid-New Jersey Atlantic Coastal Plains Region: an existing dual pump recovery system and a wellpoint vacuum pump system. Home heating oil was released to a shallow sand and gravel aquifer by a leaky underground distribution system in the early 1970s. Eight-inch-diameter dual pump recovery wells were used for the last nine years, to lower the water table and extract LNAPL at several spill sites located throughout a residential community of 1,500 homes. Several small LNAPL plumes still exist today with surface areas ranging from 400 ft 2 to over 28,000 ft 2 . LNAPL recovery peaked in 1985 using dual pump recovery systems, averaging 33 gallons per day (gpd). In 1987, four 24-inch wells were replaced by 11 8-inch-diameter recovery wells at six sites, and LNAPL recovery rates averaged 5 gpd. In recent years, the recovery of LNAPL has declined and when graphed, is asymptotic. In 1993, dual pump recovery of LNAPL averaged 0.3 gpd for all six sites

  19. Controlling two-phase flow in microfluidic systems using electrowetting

    NARCIS (Netherlands)

    Gu, H.

    2011-01-01

    Electrowetting (EW)-based digital microfluidic systems (DMF) and droplet-based two-phase flow microfluidic systems (TPF) with closed channels are the most widely used microfluidic platforms. In general, these two approaches have been considered independently. However, integrating the two

  20. Quaternary (liquid + liquid) equilibria of aqueous two-phase polyethylene glycol, poly-N-vinylcaprolactam, and KH{sub 2}PO{sub 4}: Experimental and the generalized Flory-Huggins theory

    Energy Technology Data Exchange (ETDEWEB)

    Foroutan, Masumeh [Department of Physical Chemistry, Faculty of Chemistry, College of Science, University of Tehran, Enghelab Ave., Tehran 14155-6455 (Iran, Islamic Republic of)], E-mail: foroutan@khayam.ut.ac.ir; Zarrabi, Mona [Department of Physical Chemistry, Faculty of Chemistry, College of Science, University of Tehran, Enghelab Ave., Tehran 14155-6455 (Iran, Islamic Republic of)

    2008-06-15

    A quaternary (liquid + liquid) equilibrium study was performed to focus attention on the interaction parameters between poly-N-vinylcaprolactam (PVCL) and poly-ethylene glycol (PEG) as well as between other species. At first, the new experimental data of (liquid + liquid) equilibria for aqueous two-phase systems containing PEG, KH{sub 2}PO{sub 4}, and PVCL at T = 303.15 K have been determined. Then the Flory-Huggins theory with two electrostatic terms (the Debye-Huckel and the Pitzer-Debye-Huckel equations) has been generalized to correlate the phase behavior of the quaternary system. Good agreement has been found between experimental and calculated data from both models especially from the Pitzer-Debye-Huckel equation. Also an effort was done to compare the effect of temperature as well as addition of PVCL on the binodal curves of PEG, KH{sub 2}PO{sub 4}, and water. The effect of the type of salt on the binodals has been also studied, and the salting out power of the salts has been determined.

  1. The distribution of Th(NO3)4, UO2(NO3)2 and HNO3 between an aqueous phase and an organic tributyl phosphate phase

    International Nuclear Information System (INIS)

    Nakashima, T.; Zimmer, E.

    1984-05-01

    The distribution of Th(NO 3 ) 4 , UO 2 (NO 3 ) 2 and HNO 3 between an aqueous phase and an organic phase, consisting of 30 Vol.% tributyl phosphate in dodecane, has been experimentally investigated. About 120 distribution data have been determined in the concentration ranges that can be seen in the THOREX process for reprocessing spent thorium bearing fuel. Based on the experimental data, two computer programs have been developed which make possible interpolations and, to some extent, extrapolations. With model 1, concentrations in the organic phase can be calculated if that in the aqueous phase are known. With model 2, concentrations in the aqueous phase can be calculated vice versa. Besides the description of the calculation models, a large body of calculated data can be found in this report. In a addition, a calculation mode is presented that makes possible the calculation of distribution data for very low thorium concentrations. (orig.) [de

  2. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.

    Science.gov (United States)

    Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D

    2016-03-10

    Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (± 0.5) × 10(9) and 3.1 (± 0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation.

  3. Propene Hydroformylation by Supported Aqueous-phase Rh-NORBOS Catalysts

    DEFF Research Database (Denmark)

    Riisager, Anders; Eriksen, Kim Michael; Hjortkjær, Jes

    2003-01-01

    The gas-phase hydroformylation reaction of propene using supported aqueous-phase (SAP) Rh-NORBOS modified catalysts in a continuous flow reactor has been examined. SAP catalysts supported on six different support materials were made by wet impregnation using solutions of the precursor complex Rh(...

  4. The phase transport and reactions of γ-irradiated aqueous-ionic liquids

    International Nuclear Information System (INIS)

    Howett, S.; Joseph, J.; Noel, J.J.; Wren, J.C.

    2010-01-01

    A novel technology based on the transfer of chemical species across water/ionic liquid interfaces via specific complexation reactions is currently being considered for the separation and sequestration of metal ion contaminants from radioactive waste effluents in the nuclear fuel cycle. An ideal solvent for these applications should have a high intrinsic selectivity for a targeted metal or group of metals (e.g., trans-Pu actinides, lanthanides, or other fission products), an efficient switching mechanism (between complexation and decomplexation), and a high immiscibility with aqueous solutions. These characteristics must be maintained in the chemical, radiation, and mass transport environments present during the separation process. Ionic liquids (ILs) have an almost negligible vapour pressure and high thermal stability. Their ability to dissolve a wide range of substrate molecules and potential to be highly resilient in radiation fields make ILs particularly promising media. The separation efficiency of the biphasic system will depend on many parameters, including the aqueous oxidation state of the targeted metal ion, and the thermodynamics and kinetics of interfacial transport and metal-ligand complex formation at the water/IL interface or in the IL phase. The most uncertain and unstudied area for these applications is the effect of ionizing radiation on the stability and separation efficiency of the biphasic system. The present study investigates the effect of γ-radiation on gas/IL and water/IL interfacial stability and mass transfer with trihexyltetradecylphosphonium bis(trifluoromethyl-sulfonyl)imide, a phosphonium-based IL. The IL, in contact with either gas or water, was irradiated at a dose rate of 6.4 kGy·h -1 . Gas-phase samples were analyzed by gas chromatography-mass spectrometry (GC-MS) and the changes in the IL and aqueous phases were monitored by conductivity measurements and Raman spectroscopy. In this paper we discuss these observations and their

  5. Pinning of phase separation of aqueous solution of hydroxypropylmethylcellulose by gelation

    Science.gov (United States)

    Kita, Rio; Kaku, Takeshi; Kubota, Kenji; Dobashi, Toshiaki

    1999-08-01

    Opalescence of the aqueous solution of hydroxypropylmethylcellulose (HPMC) induced by heating has been studied in terms of the phase diagram and the phase separation dynamics. The cloud point curve and the sol-to-gel transition curve intersected with each other at about 55 °C. Just above the cloud-point curve at which the spinodal curve has its minimum, a ring-like scattering pattern appeared corresponding to the spinodal decomposition. Temporal growth of the scattering function in the course of phase separation was studied by a time-resolved light scattering technique. The gelation pinned the phase separation (spinodal decomposition) of the aqueous HPMC solution.

  6. Thermodynamic analysis of the two-phase ejector air-conditioning system for buses

    International Nuclear Information System (INIS)

    Ünal, Şaban; Yilmaz, Tuncay

    2015-01-01

    Air-conditioning compressors of the buses are usually operated with the power taken from the engine of the buses. Therefore, an improvement in the air-conditioning system will reduce the fuel consumption of the buses. The improvement in the coefficient of performance (COP) of the air-conditioning system can be provided by using the two-phase ejector as an expansion valve in the air-conditioning system. In this study, the thermodynamic analysis of bus air-conditioning system enhanced with a two-phase ejector and two evaporators is performed. Thermodynamic analysis is made assuming that the mixing process in ejector occurs at constant cross-sectional area and constant pressure. The increase rate in the COP with respect to conventional system is analyzed in terms of the subcooling, condenser and evaporator temperatures. The analysis shows that COP improvement of the system by using the two phase ejector as an expansion device is 15% depending on design parameters of the existing bus air-conditioning system. - Highlights: • Thermodynamic analysis of the two-phase ejector refrigeration system. • Analysis of the COP increase rate of bus air-conditioning system. • Analysis of the entrainment ratio of the two-phase ejector refrigeration system

  7. In-cloud multiphase behaviour of acetone in the troposphere: gas uptake, Henry's law equilibrium and aqueous phase photooxidation.

    Science.gov (United States)

    Poulain, Laurent; Katrib, Yasmine; Isikli, Estelle; Liu, Yao; Wortham, Henri; Mirabel, Philippe; Le Calvé, Stéphane; Monod, Anne

    2010-09-01

    Acetone is ubiquitous in the troposphere. Several papers have focused in the past on its gas phase reactivity and its impact on tropospheric chemistry. However, acetone is also present in atmospheric water droplets where its behaviour is still relatively unknown. In this work, we present its gas/aqueous phase transfer and its aqueous phase photooxidation. The uptake coefficient of acetone on water droplets was measured between 268 and 281K (γ=0.7 x 10(-2)-1.4 x 10(-2)), using the droplet train technique coupled to a mass spectrometer. The mass accommodation coefficient α (derived from γ) was found in the range (1.0-3.0±0.25) x 10(-2). Henry's law constant of acetone was directly measured between 283 and 298K using a dynamic equilibrium system (H((298K))=(29±5)Matm(-1)), with the Van't Hoff expression lnH(T)=(5100±1100)/T-(13.4±3.9). A recommended value of H was suggested according to comparison with literature. The OH-oxidation of acetone in the aqueous phase was carried out at 298K, under two different pH conditions: at pH=2, and under unbuffered conditions. In both cases, the formation of methylglyoxal, formaldehyde, hydroxyacetone, acetic acid/acetate and formic acid/formate was observed. The formation of small amounts of four hydroperoxides was also detected, and one of them was identified as peroxyacetic acid. A drastic effect of pH was observed on the yields of formaldehyde, one hydroperoxide, and, (to a lesser extent) acetic acid/acetate. Based on the experimental observations, a chemical mechanism of OH-oxidation of acetone in the aqueous phase was proposed and discussed. Atmospheric implications of these findings were finally discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Hydrothermal upgrading of algae paste: Inorganics and recycling potential in the aqueous phase

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Bhavish; Guo, Miao; Chong, Chinglih; Sarudin, Syazwani Hj Mat; Hellgardt, Klaus, E-mail: k.hellgardt@imperial.ac.uk

    2016-10-15

    Hydrothermal Liquefaction (HTL) for algal biomass conversion is a promising technology capable of producing high yields of biocrude as well as partitioning even higher quantity of nutrients in the aqueous phase. To assess the feasibility of utilizing the aqueous phase, HTL of Nannochloropsis sp. was carried out in the temperature range of 275 to 350 °C and Residence Times (RT) ranging between 5 and 60 min The effect of reaction conditions on the NO{sub 3}{sup −} , PO{sub 4}{sup 3} {sup −}, SO{sub 4}{sup 2} {sup −}, Cl{sup −}, Na{sup +}, and K{sup +} ions as well as Chemical Oxygen Demand (COD) and pH was investigated with view of recycling the aqueous phase for either cultivation or energy generation via Anaerobic Digestion (AD), quantified via Lifecycle Assessment (LCA). It addition to substantial nutrient partitioning at short RT, an increase in alkalinity to almost pH 10 and decrease in COD at longer RT was observed. The LCA investigation found reaction conditions of 275 °C/30 min and 350 °C/10 min to be most suitable for nutrient and energy recovery but both processing routes offer environmental benefit at all reaction conditions, however recycling for cultivation has marginally better environmental credentials compared to AD. - Highlights: • HTL of algal biomass and nutrient reclamation • Microalgae HTL aqueous phase inorganics analysis • Recycle/re-use of aqueous phase for energy or cultivation • Substantial environmental benefit from HTL of aqueous phase • Reuse for cultivation more beneficial than Anaerobic Digestion.

  9. Study of complex formation of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel

    International Nuclear Information System (INIS)

    Ismailova, M.M.; Egorova, L.A.; Khamidov, B.O.

    1993-01-01

    Present article is devoted to study of complex formation of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel. The condition of cobalt in various rate of oxidation in acrylamide aqueous solutions was studied. The concentration conditions of stability of system Co(II)-Co(III) were defined. The composition of coordination compounds of cobalt (II) and cobalt (III) in acrylamide aqueous solutions and in the phase of acrylamide hydrogel was determined.

  10. Application of an aqueous two-phase micellar system to extract bromelain from pineapple (Ananas comosus) peel waste and analysis of bromelain stability in cosmetic formulations.

    Science.gov (United States)

    Spir, Lívia Genovez; Ataide, Janaína Artem; De Lencastre Novaes, Letícia Celia; Moriel, Patrícia; Mazzola, Priscila Gava; De Borba Gurpilhares, Daniela; Silveira, Edgar; Pessoa, Adalberto; Tambourgi, Elias Basile

    2015-01-01

    Bromelain is a set of proteolytic enzymes found in pineapple (Ananas comosus) tissues such as stem, fruit and leaves. Because of its proteolytic activity, bromelain has potential applications in the cosmetic, pharmaceutical, and food industries. The present study focused on the recovery of bromelain from pineapple peel by liquid-liquid extraction in aqueous two-phase micellar systems (ATPMS), using Triton X-114 (TX-114) and McIlvaine buffer, in the absence and presence of electrolytes CaCl2 and KI; the cloud points of the generated extraction systems were studied by plotting binodal curves. Based on the cloud points, three temperatures were selected for extraction: 30, 33, and 36°C for systems in the absence of salts; 40, 43, and 46°C in the presence of KI; 24, 27, and 30°C in the presence of CaCl2 . Total protein and enzymatic activities were analyzed to monitor bromelain. Employing the ATPMS chosen for extraction (0.5 M KI with 3% TX-114, at pH 6.0, at 40°C), the bromelain extract stability was assessed after incorporation into three cosmetic bases: an anhydrous gel, a cream, and a cream-gel formulation. The cream-gel formulation presented as the most appropriate base to convey bromelain, and its optimal storage conditions were found to be 4.0 ± 0.5°C. The selected ATPMS enabled the extraction of a biomolecule with high added value from waste lined-up in a cosmetic formulation, allowing for exploration of further cosmetic potential. © 2015 American Institute of Chemical Engineers.

  11. Supercooling of aqueous dimethylsulfoxide solution at normal and high pressures: Evidence for the coexistence of phase-separated aqueous dimethylsulfoxide solutions of different water structures

    Science.gov (United States)

    Kanno, H.; Kajiwara, K.; Miyata, K.

    2010-05-01

    Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for TH (homogeneous ice nucleation temperature) and Tm (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the TH curve for a DMSO solution of R =20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at Pc2=˜200 MPa and at Tc2pressure of SCP, Tc2: temperature of SCP). The presence of two TH peaks for DMSO solutions (R =15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R ≤15) at high pressures and low temperatures (pressure dependence of the two TH curves for DMSO solutions of R =10 and 12 indicates that the two phase-separated components in the DMSO solution of R =10 have different liquid water structures [LDL-like and HDL-like structures (LDL: low-density liquid water, HDL: high-density liquid water)] in the pressure range of 120-230 MPa.

  12. Bioligand-mediated partitioning of radionuclides to the aqueous phase

    International Nuclear Information System (INIS)

    Johnsson, A.; Pedersen, K.; Oedegaard-Jensen, A.; Jakobsson, A.M.; Ekberg, C.

    2008-01-01

    The aqueous-phase partitioning of 59 Fe, 147 Pm, 234 Th and 241 Am by complexing compounds from subsurface bacteria has previously been studied in the presence of quartz sand. In this study the aqueous-phase partitioning of pico- to submicromolar amounts of 59 Fe, 147 Pm, 234 Th and 241 Am was analyzed in the presence of TiO 2 and exudates from three species of subsurface bacteria: Pseudomonas fluorescens, Pseudomonas stutzeri, and Shewanella putrefaciens. All were grown under aerobic conditions and P. stutzeri and S. putrefaciens were grown under anaerobic conditions as well. The supernatants of the aerobic and anaerobic cultures were collected and radionuclide was added. TiO 2 , with BET surface area of 49.9 m 2 x g -1 , was added to the supernatant radionuclide mix, and the pH was adjusted to approximately 8. After incubation, the amount of radionuclide in the liquid phase of the samples and controls was analyzed using scintillation method. Two types of values were calculated: solution% = the activity maintained in solution relative to the total activity, and Q-values = the quotient between the activity in samples and the activity in controls. Aerobic supernatants had solution% values between 89% and 100% for 59 Fe and between 18 and 43% for 234 Th. The solution% values for 241 Am and 147 Pm were less than 2% overall, but the Q-values were between 34 and 115 times more 241 Am in bacterial supernatants than in controls. The corresponding values for 147 Pm ranged from 6 to 20 times more than in the control. The solution% values for all elements in the presence of anaerobic supernatants were below 2%, but the Q-values clustered around 7 for 59 Fe and ranging from 2 to 29 for 234 Th, indicated that anaerobic supernatants partitioned these elements to the aqueous phase. Both aerobic and anaerobic supernatants tested positive for complexing compounds when analyzed, using the Chrome Azurol S assay. Complexation with excreted organic ligands is most likely the reason

  13. Soluble, Exfoliated Two-Dimensional Nanosheets as Excellent Aqueous Lubricants.

    Science.gov (United States)

    Zhang, Wenling; Cao, Yanlin; Tian, Pengyi; Guo, Fei; Tian, Yu; Zheng, Wen; Ji, Xuqiang; Liu, Jingquan

    2016-11-30

    Dispersion in water of two-dimensional (2D) nanosheets is conducive to their practical applications in fundamental science communities due to their abundance, low cost, and ecofriendliness. However, it is difficult to achieve stable aqueous 2D material suspensions because of the intrinsic hydrophobic properties of the layered materials. Here, we report an effective and economic way of producing various 2D nanosheets (h-BN, MoS 2 , MoSe 2 , WS 2 , and graphene) as aqueous dispersions using carbon quantum dots (CQDs) as exfoliation agents and stabilizers. The dispersion was prepared through a liquid phase exfoliation. The as-synthesized stable 2D nanosheets based dispersions were characterized by UV-vis, HRTEM, AFM, Raman, XPS, and XRD. The solutions based on CQD decorated 2D nanosheets were utilized as aqueous lubricants, which realized a friction coefficient as low as 0.02 and even achieved a superlubricity under certain working conditions. The excellent lubricating properties were attributed to the synergetic effects of the 2D nanosheets and CQDs, such as good dispersion stability and easy-sliding interlayer structure. This work thus proposes a novel strategy for the design and preparation of high-performance water based green lubricants.

  14. Towards a continuous two-phase partitioning bioreactor for xenobiotic removal

    Energy Technology Data Exchange (ETDEWEB)

    Tomei, M.Concetta, E-mail: tomei@irsa.cnr.it [Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione, Rome (Italy); Mosca Angelucci, Domenica [Water Research Institute, C.N.R., Via Salaria km 29.300, CP 10, 00015 Monterotondo Stazione, Rome (Italy); Daugulis, Andrew J. [Department of Chemical Engineering, Queen’s University, Kingston, Ontario K7 L 3N6 (Canada)

    2016-11-05

    Highlights: • A prototype of a continuous two-phase partitioning bioreactor was investigated. • The bioreactor contained coiled tubing of a selected extruded polymer, Hytrel 8206. • Mass transfer and removal of a xenobiotic, 4-cholorophenol, were investigated. • Removal efficiencies in the tubing wastewater stream were always ≥ 96%. • Presence of polymer tubing buffered increasing in organic load to the hybrid system. - Abstract: The removal of a xenobiotic (4-chlorophenol) from contaminated water was investigated in a simulated continuous two-phase partitioning bioreactor (C-TPPB), fitted with coiled tubing comprised of a specifically-selected extruded polymer, Hytrel 8206. Wastewater flowed inside the tubing, the pollutant diffused through the tubing wall, and was removed in the aqueous bioreactor phase at typical biological removal rates in the C-TTPB simulated by varying aqueous phase throughput to the reactor. Operating over a range of influent substrate concentrations (500–1500 mg L{sup −1}) and hydraulic retention times in the tubing (4–8 h), overall mass transfer coefficients were 1.7–3.5 × 10{sup −7} m s{sup −1}, with the highest value corresponding to the highest tubing flow rate. Corresponding mass transfer rates are of the same order as biological removal rates, and thus do not limit the removal process. The C-TPPB showed good performance over all organic and hydraulic loading ranges, with removal efficiencies of 4CP in the tubing wastewater stream always ≥96%. Additionally, the presence of the Hytrel tubing was able to buffer increases in organic loading to the hybrid system, enhancing overall process stability. Biological testing of the C-TPPB confirmed the abiotic test results demonstrating even higher 4-chlorophenol removal efficiency (∼99%) in the tubing stream.

  15. Cloud-point extraction of green-polymers from Cupriavidus necator lysate using thermoseparating-based aqueous two-phase extraction.

    Science.gov (United States)

    Leong, Yoong Kit; Lan, John Chi-Wei; Loh, Hwei-San; Ling, Tau Chuan; Ooi, Chien Wei; Show, Pau Loke

    2017-03-01

    Polyhydroxyalkanoates (PHAs), a class of renewable and biodegradable green polymers, have gained attraction as a potential substitute for the conventional plastics due to the increasing concern towards environmental pollution as well as the rapidly depleting petroleum reserve. Nevertheless, the high cost of downstream processing of PHA has been a bottleneck for the wide adoption of PHAs. Among the options of PHAs recovery techniques, aqueous two-phase extraction (ATPE) outshines the others by having the advantages of providing a mild environment for bioseparation, being green and non-toxic, the capability to handle a large operating volume and easily scaled-up. Utilizing unique properties of thermo-responsive polymer which has decreasing solubility in its aqueous solution as the temperature rises, cloud point extraction (CPE) is an ATPE technique that allows its phase-forming component to be recycled and reused. A thorough literature review has shown that this is the first time isolation and recovery of PHAs from Cupriavidus necator H16 via CPE was reported. The optimum condition for PHAs extraction (recovery yield of 94.8% and purification factor of 1.42 fold) was achieved under the conditions of 20 wt/wt % ethylene oxide-propylene oxide (EOPO) with molecular weight of 3900 g/mol and 10 mM of sodium chloride addition at thermoseparating temperature of 60°C with crude feedstock limit of 37.5 wt/wt %. Recycling and reutilization of EOPO 3900 can be done at least twice with satisfying yield and PF. CPE has been demonstrated as an effective technique for the extraction of PHAs from microbial crude culture. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Hydrate phase equilibria of CO2+N2+aqueous solution of THF, TBAB or TBAF system

    DEFF Research Database (Denmark)

    Sfaxi, Imen Ben Attouche; Durand, Isabelle; Lugo, Rafael

    2014-01-01

    We report hydrate dissociation conditions of CO2 (15 and 30mol%)+N2 (85 and 70mol%) in the presence of aqueous solutions of THF, TBAB or TBAF. The concentrations of TBAB and TBAF in the aqueous solutions are 5wt% and 9wt% while THF concentration in aqueous solution is 3mol%. Two different experim...

  17. Theoretical Investigation of the Structural Stabilities of Ceria Surfaces and Supported Metal Nanocluster in Vapor and Aqueous Phases

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhibo [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Liu, Ning [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Chen, Biaohua [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Li, Jianwei [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Mei, Donghai [Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States

    2018-01-25

    Understanding the structural stability and dynamics at the interface between the solid metal oxide and aqueous phase is significant in a variety of industrial applications including heterogeneous catalysis and environmental remediation. In the present work, the stabilities of three low-index ceria (CeO2) surfaces, i.e., (111), (110) and (100) in vapor and aqueous phases were studied using ab initio molecular dynamics simulations and density functional theory (DFT) calculations. Gibbs surface free energies as a function of temperature, water partial pressure, and water coverages were calculated using DFT based atomistic thermodynamic approach. On the basis of surface free energies, the morphology and exposed surface structures of the CeO2 nanoparticle were predicted using Wulff construction principle. It is found that the partially hydroxylated (111) and (100) are two major surface structures of CeO2 nanoparticles in vapor phase at ambient temperature (300 K). As the temperature increases, the fully dehydrated (111) surface gradually becomes the most dominant surface structure. While in aqueous phase, the exposed surface of the CeO2 nanoparticle is dominated by the hydroxylated (110) structure at 393 K. Finally, the morphology and stability of a cuboctahedron Pt13 nanocluster supported on CeO2 surfaces in both gas and aqueous phases were investigated. In gas phase, the supported Pt13 nanocluster has the tendency to wetting the CeO2 surface due to the strong metal-support interaction. The calculated interaction energies suggest the CeO2(110) surface provides the best stability for the Pt13 nanocluster. The CeO2 supported Pt13 nanoclusters are oxidized. Compared to the gas phase, the morphology of the CeO2 supported Pt13 nanocluster is less distorted due to the solvation effect provided by surrounding water molecules in aqueous phase. More electrons are transferred from the Pt13 nanocluster to the CeO2 support, implying the supported Pt13 nanocluster is further

  18. (Solid + liquid) isothermal evaporation phase equilibria in the aqueous ternary system (Li{sub 2}SO{sub 4} + MgSO{sub 4} + H{sub 2}O) at T = 308.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shiqiang [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Deng Tianlong [Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008 (China); College of Materials, Chemistry and Chemical Engineering, Chengdu University Technology, Chengdu 610059 (China)], E-mail: dtl@cdut.edu.cn

    2008-06-15

    The solubility and the density in the aqueous ternary system (Li{sub 2}SO{sub 4} + MgSO{sub 4} + H{sub 2}O) at T = 308.15 K were determined by the isothermal evaporation. Our experimental results permitted the construction of the phase diagram and the plot of density against composition. It was found that there is one eutectic point for (Li{sub 2}SO{sub 4} . H{sub 2}O + MgSO{sub 4} . 7H{sub 2}O), two univariant curves, and two crystallization regions corresponding to lithium sulphate monohydrate (Li{sub 2}SO{sub 4} . H{sub 2}O) and epsomite (MgSO{sub 4} . 7H{sub 2}O). The system belongs to a simple co-saturated type, and neither double salts nor solid solution was found. Based on the Pitzer ion-interaction model and its extended HW models of aqueous electrolyte solution, the solubility of the ternary system at T = 308.15 K has been calculated. The predicted solubility agrees well with the experimental values.

  19. Treatment of aqueous phase of bio-oil by granular activated carbon and evaluation of biogas production.

    Science.gov (United States)

    Shanmugam, Saravanan R; Adhikari, Sushil; Wang, Zhouhang; Shakya, Rajdeep

    2017-01-01

    Hydrothermal liquefaction of wet biomass such as algae is a promising thermochemical process for the production of bio-oil. Bio-oil aqueous phase generated during liquefaction process is rich in complex organics and can be utilized for biogas production following its pre-treatment with granular activated carbon. In our study, use of 30% activated carbon resulted in higher chemical oxygen demand (COD) reduction (53±0.3%) from aqueous phase. Higher CH 4 production (84±12mL/gCOD) was also observed in 30% carbon-treated aqueous phase fed cultures, whereas only 32±6mLCH 4 /gCOD was observed in control (non-carbon treated) cultures. The results from this study indicate that almost 67±0.3% initial COD of aqueous phase can be reduced using a combination of both carbon treatment and biogas production. This study shows that aqueous phase can be utilized for CH 4 production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Equilibrium and non-equilibrium extraction separation of rare earth metals in presence of diethylenetriaminepentaacetic acid in aqueous phase

    International Nuclear Information System (INIS)

    Azis, Abdul; Teramoto, Masaaki; Matsuyama, Hideto.

    1995-01-01

    Equilibrium and non-equilibrium extraction separations of rare earth metals were carried out in the presence of chelating agent in the aqueous phase. The separation systems of the rare earth metal mixtures used were Y/Dy, Y/Ho, Y/Er and Y/Tm, and the chelating agent and the extractant were diethylenetriaminepentaacetic acid (DTPA) and bis (2,4,4-trimethylpentyl) phosphinic acid (CYANEXR 272), respectively. For Y/Dy and Y/Ho systems, higher selectivities were obtained in equilibrium separation compared with those in non-equilibrium separation. On the other hand, the selectivities in non-equilibrium separation were higher for Y/Er and Y/Tm systems. In the separation condition suitable to each system, the addition of DTPA to the aqueous phase was found to be very effective for obtaining higher selectivities. The distribution ratios of the rare earth metals and the selectivities in the equilibrium separations obtained experimentally were thoroughly analyzed by considering various equilibria such as the extraction equilibrium and the complex formation equilibrium between rare earth metals and DTPA in the aqueous phase. Moreover, the extraction rates and the selectivities in the non-equilibrium separations were also analyzed by the extraction model considering the dissociation reactions of the rare earth metal-DTPA complexes in the aqueous stagnant layer. Based on these analyses, we presented an index which is useful for selecting the optimum operation mode. Using this index, we can predict that the selectivities under equilibrium conditions are higher than those under non-equilibrium conditions for Y/Dy and Y/Ho systems, while for Y/Er and Y/Tm systems, higher selectivities are obtained under non-equilibrium conditions. The experimental results were in agreement with predictions by this index. Further, the selectivities in various systems including other chelating agents and extractants were discussed based on this index. (J.P.N.)

  1. Aqueous biphasic systems involving alkylsulfate-based ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Deive, Francisco J. [Instituto de Tecnologia Quimica e Biologica, UNL, Av. Republica, Apartado 127, 2780-901 Oeiras (Portugal); Department of Chemical Engineering, University of Vigo, P.O. Box 36310, Vigo (Spain); Rodriguez, Ana [Department of Chemical Engineering, University of Vigo, P.O. Box 36310, Vigo (Spain); Marrucho, Isabel M., E-mail: imarrucho@itqb.unl.pt [Instituto de Tecnologia Quimica e Biologica, UNL, Av. Republica, Apartado 127, 2780-901 Oeiras (Portugal); Rebelo, Luis P.N. [Instituto de Tecnologia Quimica e Biologica, UNL, Av. Republica, Apartado 127, 2780-901 Oeiras (Portugal)

    2011-11-15

    Highlights: > K{sub 3}PO{sub 4}, K{sub 2}CO{sub 3}, Na{sub 2}CO{sub 3}, and (NH{sub 4}){sub 2}SO{sub 4} act as phase promoter in aqueous solutions of ILs. > Remarkable influence of alkyl-chain length on solubility curves of alkylsulfate-based ILs. > Merchuck correlation was used for describing these systems. > {Delta}S{sub hyd} and Hofmeister series were used to discuss the different salting out effects. - Abstract: The specific effects of K{sub 3}PO{sub 4}, K{sub 2}CO{sub 3}, Na{sub 2}CO{sub 3}, and (NH{sub 4}){sub 2}SO{sub 4}, as high charge-density inorganic salts and thus inducers of the formation of aqueous biphasic systems (ABS) containing several ethyl-methylimidazolium alkylsulfate ionic liquids, C{sub 2}MIM C{sub n}SO{sub 4} (n = 2, 4, 6, or 8), have been assessed at T = 298.15 K. The results are analyzed in the light of the Hofmeister series. The influence of different alkyl chain lengths in the anion, together with the ability of the selected inorganic salts to induce the formation of ABS, is discussed. Phase diagrams have been determined through turbidimetry, including tie lines assignments from mass phase ratios according to the lever - arm rule. The Merchuck equation was satisfactorily used to correlate the solubility curve.

  2. Symmetrical components and power analysis for a two-phase microgrid system

    DEFF Research Database (Denmark)

    Alibeik, M.; Santos Jr., E. C. dos; Blaabjerg, Frede

    2014-01-01

    This paper presents a mathematical model for the symmetrical components and power analysis of a new microgrid system consisting of three wires and two voltages in quadrature, which is designated as a two-phase microgrid. The two-phase microgrid presents the following advantages: 1) constant power...

  3. Operation of a forced two phase cooling system on a large superconducting magnet

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Eberhard, P.H.; Gibson, G.H.; Pripstein, M.; Ross, R.R.; Smits, R.G.; Taylor, J.D.; Van Slyke, H.

    1980-05-01

    This paper describes the operation of a forced two phase cooling system on a two meter diameter superconducting solenoid. The magnet is a thin high current density superconducting solenoid which is cooled by forced two phase helium in tubes around the coil. The magnet, which is 2.18 meters in diameter and 3.4 meters long, has a cold mass of 1700 kg. The two phase cooling system contains less than 300 liters of liquid helium, most of which is contained in a control dewar. This paper describes the operating characteristics of the LBL two phase forced cooling system during cooldown and warm up. The paper presents experimental data on operations of the magnet using either a helium pump or the refrigerator compressor to circulate two phase helium through the superconducting coil cooling tubes

  4. Behavior of americium in aqueous carbonate systems

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.J.

    1983-11-01

    The solubilities of crystalline Am(OH)/sub 3/ and AmOHCO/sub 3/ were measured at 25/sup 0/C in aqueous solutions of 0.1 M NaClO/sub 4/ by determination of the solution concentrations of Am. Prior to use in the measurements, the solid materials were characterized by their x-ray powder diffraction patterns. The solubility product quotients were calculated from the experimental data. The hydrolysis quotients of Am/sup 3 +/ were also estimated from the hydroxide solubility data. Using the thermodynamic data derived from these experiments and the recently reported formation constants for the Am/sup 3 +/ carbonate complexes, the solid phases and concentrations of solution species of americium in several aqueous carbonate systems were calculated using the computer code MINEQL. 20 references, 1 figure, 1 table.

  5. Nutrient removal and energy production from aqueous phase of bio-oil generated via hydrothermal liquefaction of algae.

    Science.gov (United States)

    Shanmugam, Saravanan R; Adhikari, Sushil; Shakya, Rajdeep

    2017-04-01

    Removal of nutrients (phosphorus and nitrogen) as struvite from bio-oil aqueous phase generated via hydrothermal liquefaction of algae was evaluated in this study. Effect of process parameters such as pH, temperature and reaction time on struvite formation was studied. More than 99% of phosphorus and 40-100% ammonium nitrogen were removed under all experimental conditions. X-ray diffraction analysis confirmed the formation of struvite, and the struvite recovered from bio-oil aqueous phase can be used as a slow-release fertilizer. Biogas production from struvite recovered bio-oil aqueous phase showed 3.5 times higher CH 4 yield (182±39mL/g COD) as compared to non-struvite recovered aqueous phase. The results from this study indicate that both struvite and methane can be produced from bio-oil aqueous phase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Purification of pectinase from mango (Mangifera indica L. cv. Chokanan) waste using an aqueous organic phase system: a potential low cost source of the enzyme.

    Science.gov (United States)

    Amid, Mehrnoush; Abdul Manap, Mohd Yazid; Mustafa, Shuhaimi

    2013-07-15

    As a novel method of purification, an aqueous organic phase system (AOPS) was employed to purify pectinase from mango waste. The effect of different parameters, such as the alcohol concentration (ethanol, 1-propanol, and 2-propanol), the salt type and concentration (ammonium sulfate, potassium phosphate and sodium citrate), the feed stock crude load, the aqueous phase pH and NaCl concentration, were investigated in the recovery of pectinase from mango peel. The partition coefficient (K), selectivity (S), purification factor (PF) and yield (Y, %) were investigated in this study as important parameters for the evaluation of enzyme recovery. The desirable partition efficiency for pectinase purification was achieved in an AOPS of 19% (w/w) ethanol and 22% (w/w) potassium phosphate in the presence of 5% (w/w) NaCl at pH 7.0. Based on the system, the purification factor of pectinase was enhanced 11.7, with a high yield of 97.1%. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Design of a novel coil satellite centrifuge and its performance on counter-current chromatographic separation of 4-methylumbelliferyl sugar derivatives with organic-aqueous two-phase solvent systems

    Science.gov (United States)

    Shinomiya, Kazufusa; Tokura, Koji; Kimura, Emiru; Takai, Midori; Harikai, Naoki; Yoshida, Kazunori; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2015-01-01

    A new high-speed counter-current chromatograph, named coil satellite centrifuge (CSC), was designed and fabricated in our laboratory. The CSC apparatus produces the satellite motion such that the coiled column simultaneously rotates around the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3). In order to achieve this triplicate rotary motion without twisting of the flow tube, the rotation of each axis was determined by the following formula: ω1 = ω2 + ω3. This relation enabled to lay out the flow tube by two different ways, the SS type and the JS type. In the SS type, the flow tube was introduced from the upper side of the apparatus into the sun axis of the first rotary frame and connected to the planet axis of the second rotary frame like a double letter SS. In the JS type, the flow tube was introduced from the bottom of the apparatus into the sun axis reaching the upper side of the planet axis an inversed letter J, followed by distribution as in the SS type. The performance of the apparatus was examined on separation of 4-methylumbelliferyl (MU) sugar derivatives as test samples with organic-aqueous two-phase solvent systems composed of ethyl acetate/1-butanol/water (3 : 2 : 5, v/v) for lower phase mobile and (1 : 4 : 5, v/v) for upper phase mobile. With lower phase mobile, five 4-MU sugar derivatives including β-D-cellobioside (Cel), β-D-glucopyranoside, α-D-mannopyranoside, β-D-fucopyranoside and α-L-fucopyranoside (α-L-Fuc) were separated with the combined rotation around each axis at counterclockwise (CCW) (ω1) – CCW (ω2) – CCW (ω3) by the JS type flow tube distribution. With upper phase mobile, three 4-MU sugar derivatives including α-L-Fuc, β-D-galactopyranoside and Cel were separated with the combined rotation around each axis at clockwise (CW) (ω1) – CW (ω2) – CW (ω3) by the JS type flow tube distribution. A series of experiments on peak resolution and

  8. New lipid family that forms inverted cubic phases in equilibrium with excess water: molecular structure-aqueous phase structure relationship for lipids with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains.

    Science.gov (United States)

    Yamashita, Jun; Shiono, Manzo; Hato, Masakatsu

    2008-10-02

    With a view to discovering a new family of lipids that form inverted cubic phases, the aqueous phase behavior of a series of lipids with isoprenoid-type hydrophobic chains has been examined over a temperature range from -40 to 65 degrees C by using optical microscopy, DSC (differential scanning calorimetry), and SAXS (small-angle X-ray scattering) techniques. The lipids examined are those with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains linked to a series of headgroups, that is, erythritol, pentaerythritol, xylose, and glucose. All of the lipid/water systems displayed a "water + liquid crystalline phase" two-phase coexistence state when sufficiently diluted. The aqueous phase structures of the most diluted liquid crystalline phases in equilibrium with excess water depend both on the lipid molecular structure and on the temperature. Given an isoprenoid chain, the preferred phase consistently follows a phase sequence of an H II (an inverted hexagonal phase) to a Q II (an inverted bicontinuous cubic phase) to an L alpha (a lamellar phase) as A* (cross-section area of the headgroup) increases. For a given lipid/water system, the phase sequence observed as the temperature increases is L alpha to Q II to H II. The present study allowed us to find four cubic phase-forming lipid species, PEOC 18+4 [mono- O-(5,9,13,17-tetramethyloctadecyl)pentaerythritol], beta-XylOC 18+4 [1- O-(5,9,13,17-tetramethyloctadecyl)-beta- d-xylopyranoside], EROCOC 17+4 [1- O-(5,9,13,17-tetramethyloctadecanoyl)erythritol], and PEOCOC 17+4 [mono- O-(5,9,13,17-tetramethyloctadecanoyl)pentaerythritol]. The values of T K (hydrated solid-liquid crystalline phase transition temperature) of the cubic phase-forming lipids are all below 0 degrees C. Quantitative analyses of the lipid molecular structure-aqueous phase structure relationship in terms of the experimentally evaluated "surfactant parameter" allow us to rationally select an optimum combination of hydrophilic

  9. Two components of Na emission in sonoluminescence spectrum from surfactant aqueous solutions.

    Science.gov (United States)

    Hayashi, Yuichi; Choi, Pak-Kon

    2015-03-01

    Sonoluminescence from sodium dodecyl sulfate (SDS) aqueous solutions exhibits Na emission. The spectrum of Na emission was measured as a function of sonication time for a total of 30 min at an ultrasonic frequency of 148 kHz. The spectral line profiles changed with the sonication time, suggesting that the Na emission consists of two components: broadened lines, which are shifted from the original D lines, and unshifted narrow lines. The intensity of the unshifted narrow lines decreased at a greater rate than that of the broadened lines with increasing sonication time. This effect was enhanced at a higher acoustic power. The shifted broadened lines remained after sonication for 30 min. We propose that these quenching effects are caused by the accumulation of gases decomposed from SDS molecules inside bubbles. The CO₂ gas dependence of Na emission in NaCl aqueous solutions showed a similar change in the line profiles to that in SDS aqueous solutions, which supported this proposition. The unshifted narrow lines are easily affected by foreign gases. The results suggest that the two components originate from different environments around the emitting species, although both of them originate from the gas phase inside bubbles. The generation mechanisms of the two components are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Formation of the second organic phase during uranyl nitrate extraction from aqueous solution by 30% tributylphosphate solution in paraffin

    International Nuclear Information System (INIS)

    Yhrkin, V.G.

    1996-01-01

    For extraction systems aqueous solution of uranyl nitrate-30% solution of tributylphosphate in individual paraffins from C 13 to C 17 the influence of the second organic phase of uranyl nitrate concentration in aqueous and organic phases, the length of hydrocarbon chain of paraffin hydrocarbon and temperature from 25 to 50 deg C on formation conditions has been defected. A special method of achieving the conditions of organic phase stratification from three-phase region, involving definition of equilibrium phases composition by density and refractive index, has been elaborated for more precise definition of organic phase homogeneity region. It has been revealed that without addition of nitric acid to uranyl nitrate solution the organic phase homogeneity limits can be achieved solely on paraffins C 15 , C 16 and C 17 and only under conditions similar to equeous phase saturation in terms of uranyl nitrate. 16 refs., 2 figs

  11. Effects of solid/liquid phase fractionation on pH and aqueous species molality in subduction zone fluids

    Science.gov (United States)

    Zhong, X.; Galvez, M. E.

    2017-12-01

    Metamorphic fluids are a crucial ingredient of geodynamic evolution, i.e. heat transfer, rock mechanics and metamorphic/metasomatic reactions. During crustal evolution at elevated P and T, rock forming components can be effectively fractionated from the reactive rock system by at least two processes: 1. extraction from porous rocks by liquid phases such as solute-bearing (e.g. Na+, Mg2+) aqueous fluids or partial melts. 2. isolation from effective bulk rock composition due to slow intragranular diffusion in high-P refractory phases such as garnet. The effect of phase fractionation (garnet, partial melt and aqueous species) on fluid - rock composition and properties remain unclear, mainly due to a high demand in quantitative computations of the thermodynamic interactions between rocks and fluids over a wide P-T range. To investigate this problem, we build our work on an approach initially introduced by Galvez et al., (2015) with new functionalities added in a MATLAB code (Rubisco). The fluxes of fractionated components in fluid, melt and garnet are monitored along a typical prograde P-T path for a model crustal pelite. Some preliminary results suggest a marginal effect of fractionated aqueous species on fluid and rock properties (e.g. pH, composition), but the corresponding fluxes are significant in the context of mantle wedge metasomatism. Our work provides insight into the role of high-P phase fractionation on mass redistribution between the surface and deep Earth in subduction zones. Existing limitations relevant to our liquid/mineral speciation/fractionation model will be discussed as well. ReferencesGalvez, M.E., Manning, C.E., Connolly, J.A.D., Rumble, D., 2015. The solubility of rocks in metamorphic fluids: A model for rock-dominated conditions to upper mantle pressure and temperature. Earth Planet. Sci. Lett. 430, 486-498.

  12. Separation of tritium from gaseous and aqueous effluent systems

    International Nuclear Information System (INIS)

    Kobisk, E.H.

    1977-01-01

    Removal or reduction of tritium content in a wide variety of effluent streams has been extensively studied in the United States. This paper specifically reviews three processes involving tritium separation in the gaseous phase and the aqueous phase. Diffusion through a selective Pd-25Ag alloy membrane at temperatures up to 600 0 C and at pressures up to 700 kg/cm 2 has resulted in successful separation of hydrogen-deuterium mixtures with an associated separation factor of 1.65 (and gives a calculated separation factor for hydrogen-tritium mixtures of 2.0). Use of a single palladium bipolar membrane in an electrolysis system has been found to yield a hydrogen-deuterium separation factor of 4 and a hydrogen-tritium factor of 6 to 11 without the production of gaseous hydrogen. Finally, countercurrent catalytic exchange between tritium-containing hydrogen gas and water has yielded a separation factor of 6.3. The specific advantages of each of these systems will be discussed in terms of their potential applications. In all cases, further investigations are necessary to scale the systems to handle large quantities of feed material in a continuous mode and to minimize energy requirements. Such separative systems must necessarily be cascaded to yield gaseous or aqueous product streams suitable for recycling to the tritium producing systems, for storage or for discharge to the environment. (orig./HP) [de

  13. Investigation of two-phase liquid-metal magnetohydrodynamic power systems

    International Nuclear Information System (INIS)

    Amend, W.E.; Fabris, G.; Cutting, J.

    1975-01-01

    A two-phase Liquid-Metal MHD (LMMHD) system is under development at the Argonne National Laboratory, and results are presented for detailed cycle analysis and systems studies, the experimental facility, and the thermal and magneto fluid mechanics problems encountered. The studies indicate that the LMMHD cycle will operate efficiently in the temperature range of 1000-1600 0 F (50 percent efficiency with a maximum cycle temperature of 1600 0 F) and is therefore potentially compatible with many advanced heat sources under development such as the LMFBR, fluidized-bed coal combustor, HTGCR and the fusion reactor. Of special interest is the coupling to the LMFBR thereby eliminating the costly, potentially hazardous liquid-metal/water interface. The results of detailed parametric studies of the heat transfer interfaces between an LMMHD power cycle and an LMFBR and a steam bottoming plant are described. Experimental evaluation of the two-phase LMMHD generator was performed in an ambient temperature NaK--N 2 facility at ANL. Results of these experiments, performed to determine the operating characteristics of the device as a function of the various independent parameters and to investigate two-phase flow, are given. (U.S.)

  14. Aqueous phase oxidation techniques as an alternative to incineration

    International Nuclear Information System (INIS)

    Gray, L.W.; Adamson, M.G.; Hickman, R.G.; Farmer, J.C.; Chiba, Z.; Gregg, D.W.; Wang, F.T.

    1992-03-01

    The Lawrence Livermore National Laboratory (LLNL) has three aqueous phase techniques under development for oxidation of high value or high risk waste steams. One is direct electrochemical oxidation and one is mediated electrochemical oxidation utilizing regenerable, strongly oxidizing cations such as Ag(II), Co (III), Ce(IV), etc. These cations can either attack oxidizable materials directly and/or indirectly via first reacting with water to generate OH radicals which then attack the oxidizable materials. The third system utilizes H 2 O 2 and UV light to generate OH radicals directly which in turn attack the oxidizable materials. All systems have the advantage of a chemical off-switch in that when the power is turned off, the reaction quickly subsides. All systems operate with low concentrations (typically <5 wt %) of oxidizable materials, therefore, the stored energy for possible run-away reactions is very low. 15 figures, 22 references

  15. Ammonium fluoride as a mobile phase additive in aqueous normal phase chromatography.

    Science.gov (United States)

    Pesek, Joseph J; Matyska, Maria T

    2015-07-03

    The use of ammonium fluoride as a mobile phase additive in aqueous normal phase chromatography with silica hydride-based stationary phases and mass spectrometry detection is evaluated. Retention times, peak shape, efficiency and peak intensity are compared to the more standard additives formic acid and ammonium formate. The test solutes were NAD, 3-hydroxyglutaric acid, α-ketoglutaric acid, p-aminohippuric acid, AMP, ATP, aconitic acid, threonine, N-acetyl carnitine, and 3-methyladipic acid. The column parameters are assessed in both the positive and negative ion detection modes. Ammonium fluoride is potentially an aggressive mobile phase additive that could have detrimental effects on column lifetime. Column reproducibility is measured and the effects of switching between different additives are also tested. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Graphite-supported platinum catalysts: Effects of gas and aqueous phase treatments

    Energy Technology Data Exchange (ETDEWEB)

    Vleeming, J.H.; Kuster, B.F.M.; Marin, G.B. [Eindhoven Univ. of Technology (Netherlands)] [and others

    1997-03-01

    The effects on the platinum particle diameter and the available platinum surface area of a graphite-supported platinum catalyst resulting from pretreatments and from performing a selective oxidation reaction are investigated. In the gas phase considerable catalyst sintering occurs only in the presence of oxygen at 773 K due to extensive carbon burn-off, whereas in an aqueous phase platinum particle growth is limited upon oxidative treatment. A hydrogen treatment in aqueous phase at 363 K causes platinum particle growth, aggregate formation, and covering of metal sites. These phenomena become more important with increasing pH. Platinum particle growth and aggregate formation are attributed to platinum particle rather than platinum adatom mobility and is caused by the destruction of the oxygen-containing surface groups on the graphite support, which serve as anchorage sites for the platinum particles. Site covering is caused by products originating from the graphite support, which are formed as a result of the reductive treatments. When performing the aqueous phase oxidation of methyl {alpha}-D-glucopyranoside at 323 K and a pH of 9, catalyst modifications are small under oxidative conditions. Exposure of the catalyst for several hours to methyl {alpha}-D-glucopyranoside under the same conditions but in the absence of oxygen causes site covering. 50 refs., 9 figs., 1 tab.

  17. Some recent trends in computer simulations of aqueous double layers

    International Nuclear Information System (INIS)

    Spohr, E.

    2003-01-01

    Recent molecular simulations of the electric double layer between an aqueous and a metallic phase are reviewed. Several trends in the field can be identified: (i) the increasing use of ab initio simulation methods, most notably the Car-Parrinello method, allows to combine a statistical mechanical description of the double layer with a description of elementary chemical processes on the electronic structure level; (ii) the application of free-energy methods in one and (recently) two dimensions to describe chemical reactivity within and beyond the framework of the Marcus theory of electron transfer; and (iii) at high concentrations, direct simulations of two-phase systems with an aqueous solution and a charged or uncharged solid phase or surface can model the entire double layer region

  18. Investigation of Power Losses of Two-Stage Two-Phase Converter with Two-Phase Motor

    Directory of Open Access Journals (Sweden)

    Michal Prazenica

    2011-01-01

    Full Text Available The paper deals with determination of losses of two-stage power electronic system with two-phase variable orthogonal output. The simulation is focused on the investigation of losses in the converter during one period in steady-state operation. Modeling and simulation of two matrix converters with R-L load is shown in the paper. The simulation results confirm a very good time-waveform of the phase current and the system seems to be suitable for low-cost application in automotive/aerospace industries and in application with high frequency voltage sources.

  19. Design of a coil satellite centrifuge and its performance on counter-current chromatographic separation of 4-methylumbelliferyl sugar derivatives with polar organic-aqueous two-phase solvent systems.

    Science.gov (United States)

    Shinomiya, Kazufusa; Tokura, Koji; Kimura, Emiru; Takai, Midori; Harikai, Naoki; Yoshida, Kazunori; Yanagidaira, Kazuhiro; Ito, Yoichiro

    2015-05-01

    A new high-speed counter-current chromatograph, named coil satellite centrifuge (CSC), was designed and fabricated in our laboratory. The CSC apparatus produces the satellite motion such that the coiled column simultaneously rotates around the sun axis (the angular velocity, ω1), the planet axis (ω2) and the satellite axis (the central axis of the column) (ω3). In order to achieve this triplicate rotary motion without twisting of the flow tube, the rotation of each axis was determined by the following formula: ω1=ω2+ω3. This relation enabled to lay out the flow tube without twisting by the simultaneous rotation of three axes. The flow tube was introduced from the bottom side of the apparatus into the sun axis of the first rotary frame reaching the upper side of the planet axis and connected to the column in the satellite axis. The performance of the apparatus was examined on separation of 4-methylumbelliferyl (MU) sugar derivatives as test samples with organic-aqueous two-phase solvent systems composed of ethyl acetate/1-butanol/water (3:2:5, v/v) for lower phase mobile and (1:4:5, v/v) for upper phase mobile. With lower phase mobile, five 4-MU sugar derivatives including β-D-cellobioside (Cel), β-D-glucopyranoside, α-D-mannopyranoside, β-D-fucopyranoside and α-L-fucopyranoside (α-L-Fuc) were separated with the combined rotation around each axis at counterclockwise (CCW) (ω1) - CCW (ω2) - CCW (ω3) by the flow tube distribution. With upper phase mobile, three 4-MU sugar derivatives including α-L-Fuc, β-D-galactopyranoside and Cel were separated with the combined rotation around each axis at clockwise (CW) (ω1) - CW (ω2) - CW (ω3) by the flow tube distribution. A series of experiments on peak resolution and stationary phase retention revealed that better partition efficiencies were obtained at the flow rate of 0.5 mL/min (column 1) and 0.8 mL/min (column 2) for lower phase mobile and 0.2 mL/min (column 1) and 0.4 mL/min (column 2) for upper phase

  20. SINGLE-PHASE AND TWO-PHASE SECONDARY COOLANTS: SIMULATION AND EVALUATION OF THEIR THERMOPHYSICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Pedro Samuel Gomes Medeiros

    2011-09-01

    Full Text Available This paper makes a comparative analysis of the thermophysical properties of ice slurry with conventional single-phase secondary fluids used in thermal storage cooling systems. The ice slurry is a two-phase fluid consisting of water, antifreeze and ice crystals. It is a new technology that has shown great energy potential. In addition to transporting energy as a heat transfer fluid, it has thermal storage properties due to the presence of ice, storing coolness by latent heat of fusion. The single-phase fluids analyzed are water-NaCl and water-propylene glycol solutions, which also operate as carrier fluids in ice slurry. The presence of ice changes the thermophysical properties of aqueous solutions and a number of these properties were determined: density, thermal conductivity and dynamic viscosity. Data were obtained by software simulation. The results show that the presence of 10% by weight of ice provides a significant increase in thermal conductivity and dynamic viscosity, without causing changes in density. The rheological behavior of ice slurries, associated with its high viscosity, requires higher pumping power; however, this was not significant because higher thermal conductivity allows a lower mass flow rate without the use of larger pumps. Thus, the ice slurry ensures its high potential as a secondary fluid in thermal storage cooling systems, proving to be more efficient than single-phase secondary fluids.

  1. Conceptual design study on advanced aqueous reprocessing system for fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Takata, Takeshi; Koma, Yoshikazu; Sato, Koji; Kamiya, Masayoshi; Shibata, Atsuhiro; Nomura, Kazunori; Ogino, Hideki; Koyama, Tomozo; Aose, Shin-ichi

    2003-01-01

    As a feasibility study on commercialized fast reactor cycle system, a conceptual design study is being progressed for the aqueous and pyrochemical processes from the viewpoint of economical competitiveness, efficient utilization of resources, decreasing environmental impact and proliferation resistance in Japan Nuclear Cycle Development Institute (JNC). In order to meet above-mentioned requirements, the survey on a range of reprocessing technologies and the evaluation of conceptual plant designs against targets for the future fast reactor cycle system have been implemented as the fist phase of the feasibility study. For an aqueous reprocessing process, modification of the conventional PUREX process (a solvent extraction process with purification of U/Pu, with nor recovery of minor actinides (MA)) and investigation of alternatives for the PUREX process has been carried out and design study of advanced aqueous reprocessing system and its alternatives has been conducted. The conceptual design of the advanced aqueous reprocessing system has been updated and evaluated by the latest R and D results of the key technologies such as crystallization, single-cycle extraction, centrifugal contactors, recovery of Am/Cm and waste processing. In this paper, the outline of the design study and the current status of development for advanced aqueous reprocessing system, NEXT process, are mentioned. (author)

  2. Correlation and Prediction of Thermal Properties and Phase Behaviour for a Class of Aqueous Electrolyte Systems

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Rasmussen, Peter; Gani, Rafiqul

    1996-01-01

    An extended UNIQUAC model is used to describe phase behaviour (VLE, SLE) and thermal properties (heat of mixing, heat capacity) for aqueous solutions containing ions like (Na+, K+, H+) (Cl-, NO3-, SO42-, OH-, CO3-). A linear temperature dependence of the binary interaction parameters allows good...... agreement with experimental data in the temperature range 0-110 degrees C. Copyright (C) 1996 Elsevier Science Ltd...

  3. POLYELECTROLYTE MULTILAYER STAMPING IN AQUEOUS PHASE AND NON-CONTACT MODE

    Science.gov (United States)

    Mehrotra, Sumit; Lee, Ilsoon; Liu, Chun; Chan, Christina

    2011-01-01

    Polyelectrolyte multilayer (PEM) transfer printing has been previously achieved by stamping under dry conditions. Here, we show for the first time, that PEM can be transferred from a stamp to the base substrate under aqueous conditions whereby the two surfaces are in a non-contact mode. Degradable multilayers of (PAA/PEG)10.5 followed by non-degradable multilayers of (PDAC/SPS)80.5 were fabricated under acidic pH conditions on either PDMS or glass (stamp), and subsequently transferred over top of another multilayer prepared on a different substrate (base substrate), with a spacing of ~ 200 μm between the stamping surface and the base substrate. This multilayer transfer was performed under physiological pH conditions. This process is referred to herein as non-contact, aqueous-phase multilayer (NAM) transfer. NAM transfer can be useful for applications such as fabricating three-dimensional (3-D) cellular scaffolds. We attempted to create a 3-D cellular scaffold using NAM transfer, and characterized the scaffolds with conventional and fluorescence microscopy. PMID:21860540

  4. Subcritical hydrothermal liquefaction of barley straw in fresh water and recycled aqueous phase

    DEFF Research Database (Denmark)

    Zhu, Zhe; Toor, Saqib; Rosendahl, Lasse

    2014-01-01

    This project focuses on the investigation of addition of aqueous phase in the production of biofuel from biomass through hydrothermal liquefaction (HTL) technology. Hydrothermal liquefaction is a wet thermal conversion process, which can convert all kinds of biomass to fuels. In this study, barley...... straw was first liquefied in fresh distilled water with the presence of K2CO3 catalyst at 300 C as the reference run. Afterwards, the aqueous phase which is obtained from liquefaction process in the previous run was recycled and used as the reaction medium from the second to the fourth run....... With the addition of recycling aqueous phase in HTL process, it is expected that the amount of the waste water and energy consumption can be reduced. The effect of water recirculation on product yield and properties was investigated in this study. The results showed that bio-oil yield was 34.85 wt% when the barley...

  5. An approach for upgrading biomass and pyrolysis product quality using a combination of aqueous phase bio-oil washing and torrefaction pretreatment.

    Science.gov (United States)

    Chen, Dengyu; Cen, Kehui; Jing, Xichun; Gao, Jinghui; Li, Chen; Ma, Zhongqing

    2017-06-01

    Bio-oil undergoes phase separation because of poor stability. Practical application of aqueous phase bio-oil is challenging. In this study, a novel approach that combines aqueous phase bio-oil washing and torrefaction pretreatment was used to upgrade the biomass and pyrolysis product quality. The effects of individual and combined pretreatments on cotton stalk pyrolysis were studied using TG-FTIR and a fixed bed reactor. The results showed that the aqueous phase bio-oil washing pretreatment removed metals and resolved the two pyrolysis peaks in the DTG curve. Importantly, it increased the bio-oil yield and improved the pyrolysis product quality. For example, the water and acid content of bio-oil decreased significantly along with an increase in phenol formation, and the heating value of non-condensable gases improved, and these were more pronounced when combined with torrefaction pretreatment. Therefore, the combined pretreatment is a promising method, which would contribute to the development of polygeneration pyrolysis technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Aqueous electrolytes for redox flow battery systems

    Science.gov (United States)

    Liu, Tianbiao; Li, Bin; Wei, Xiaoliang; Nie, Zimin; Wang, Wei; Liu, Jun; Sprenkle, Vincent L.

    2017-10-17

    An aqueous redox flow battery system includes an aqueous catholyte and an aqueous anolyte. The aqueous catholyte may comprise (i) an optionally substituted thiourea or a nitroxyl radical compound and (ii) a catholyte aqueous supporting solution. The aqueous anolyte may comprise (i) metal cations or a viologen compound and (ii) an anolyte aqueous supporting solution. The catholyte aqueous supporting solution and the anolyte aqueous supporting solution independently may comprise (i) a proton source, (ii) a halide source, or (iii) a proton source and a halide source.

  7. Deterministic sensitivity analysis of two-phase flow systems: forward and adjoint methods. Final report

    International Nuclear Information System (INIS)

    Cacuci, D.G.

    1984-07-01

    This report presents a self-contained mathematical formalism for deterministic sensitivity analysis of two-phase flow systems, a detailed application to sensitivity analysis of the homogeneous equilibrium model of two-phase flow, and a representative application to sensitivity analysis of a model (simulating pump-trip-type accidents in BWRs) where a transition between single phase and two phase occurs. The rigor and generality of this sensitivity analysis formalism stem from the use of Gateaux (G-) differentials. This report highlights the major aspects of deterministic (forward and adjoint) sensitivity analysis, including derivation of the forward sensitivity equations, derivation of sensitivity expressions in terms of adjoint functions, explicit construction of the adjoint system satisfied by these adjoint functions, determination of the characteristics of this adjoint system, and demonstration that these characteristics are the same as those of the original quasilinear two-phase flow equations. This proves that whenever the original two-phase flow problem is solvable, the adjoint system is also solvable and, in principle, the same numerical methods can be used to solve both the original and adjoint equations

  8. The salting-out effect and phase separation in aqueous solutions of tri-sodium citrate and 1-butyl-3-methylimidazolium bromide

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Golabiazar, Roonak; Shekaari, Hemayat

    2010-01-01

    The aim of this work is to obtain further evidence about the salting-out effect produced by the addition of tri-sodium citrate to aqueous solutions of water miscible ionic liquid 1-butyl-3-methylimidazolium bromide ([C 4 mim][Br]) by evaluating the effect of tri-sodium citrate on the thermodynamic properties of aqueous solutions of this ionic liquid. Experimental measurements of density and sound velocity at different temperatures ranging from (288.15 to 308.15) K, the refractive index at 308.15 K and the liquid-liquid phase diagram at different temperatures ranging from (288.15 to 338.15) K for aqueous solutions containing 1-butyl-3-methylimidazolium bromide ([C 4 mim][Br]) and tri-sodium citrate (Na 3 Cit) are taken. The apparent molar volume of transfer of [C 4 mim][Br] from water to aqueous solutions of Na 3 Cit have positive values and it increases by increasing salt molality. Although at high IL molality, the apparent molar isentropic compressibility shows similar behaviour with that of the apparent molar volume. However at low concentrations of IL, the apparent molar isentropic compressibility of transfer of [C 4 mim][Br] from water to aqueous solutions of Na 3 Cit have negative values. The effects of temperature and the addition of Na 3 Cit and [C 4 mim][Br] on the liquid-liquid phase diagram of the investigated system have been studied. It was found that an increase in temperature caused the expansion of the one-phase region. The presence of Na 3 Cit triggers a salting-out effect, leading to significant upward shifts of the liquid-liquid de-mixing temperatures of the system. The effect of temperature on the phase-forming ability in the system investigated has been studied based on a salting-out coefficient obtained from fitting the binodal values to a Setschenow-type equation for each temperature. Based on cloud point values, the energetics of the clouding process have been estimated and it was found that both of entropy and enthalpy are the driving forces

  9. Scaling of two-phase flow transients using reduced pressure system and simulant fluid

    International Nuclear Information System (INIS)

    Kocamustafaogullari, G.; Ishii, M.

    1987-01-01

    Scaling criteria for a natural circulation loop under single-phase flow conditions are derived. Based on these criteria, practical applications for designing a scaled-down model are considered. Particular emphasis is placed on scaling a test model at reduced pressure levels compared to a prototype and on fluid-to-fluid scaling. The large number of similarty groups which are to be matched between modell and prototype makes the design of a scale model a challenging tasks. The present study demonstrates a new approach to this clasical problen using two-phase flow scaling parameters. It indicates that a real time scaling is not a practical solution and a scaled-down model should have an accelerated (shortened) time scale. An important result is the proposed new scaling methodology for simulating pressure transients. It is obtained by considerung the changes of the fluid property groups which appear within the two-phase similarity parameters and the single-phase to two-phase flow transition prameters. Sample calculations are performed for modeling two-phase flow transients of a high pressure water system by a low-pressure water system or a Freon system. It is shown that modeling is possible for both cases for simulation pressure transients. However, simulation of phase change transitions is not possible by a reduced pressure water system without distortion in either power or time. (orig.)

  10. Development of linear free energy relationships for aqueous phase radical-involved chemical reactions.

    Science.gov (United States)

    Minakata, Daisuke; Mezyk, Stephen P; Jones, Jace W; Daws, Brittany R; Crittenden, John C

    2014-12-02

    Aqueous phase advanced oxidation processes (AOPs) produce hydroxyl radicals (HO•) which can completely oxidize electron rich organic compounds. The proper design and operation of AOPs require that we predict the formation and fate of the byproducts and their associated toxicity. Accordingly, there is a need to develop a first-principles kinetic model that can predict the dominant reaction pathways that potentially produce toxic byproducts. We have published some of our efforts on predicting the elementary reaction pathways and the HO• rate constants. Here we develop linear free energy relationships (LFERs) that predict the rate constants for aqueous phase radical reactions. The LFERs relate experimentally obtained kinetic rate constants to quantum mechanically calculated aqueous phase free energies of activation. The LFERs have been applied to 101 reactions, including (1) HO• addition to 15 aromatic compounds; (2) addition of molecular oxygen to 65 carbon-centered aliphatic and cyclohexadienyl radicals; (3) disproportionation of 10 peroxyl radicals, and (4) unimolecular decay of nine peroxyl radicals. The LFERs correlations predict the rate constants within a factor of 2 from the experimental values for HO• reactions and molecular oxygen addition, and a factor of 5 for peroxyl radical reactions. The LFERs and the elementary reaction pathways will enable us to predict the formation and initial fate of the byproducts in AOPs. Furthermore, our methodology can be applied to other environmental processes in which aqueous phase radical-involved reactions occur.

  11. Direct phase coexistence molecular dynamics study of the phase equilibria of the ternary methane-carbon dioxide-water hydrate system.

    Science.gov (United States)

    Michalis, Vasileios K; Tsimpanogiannis, Ioannis N; Stubos, Athanassios K; Economou, Ioannis G

    2016-09-14

    Molecular dynamics simulation is used to predict the phase equilibrium conditions of a ternary hydrate system. In particular, the direct phase coexistence methodology is implemented for the determination of the three-phase coexistence temperature of the methane-carbon dioxide-water hydrate system at elevated pressures. The TIP4P/ice, TraPPE-UA and OPLS-UA forcefields for water, carbon dioxide and methane respectively are used, in line with our previous studies of the phase equilibria of the corresponding binary hydrate systems. The solubility in the aqueous phase of the guest molecules of the respective binary and ternary systems is examined under hydrate-forming conditions, providing insight into the predictive capability of the methodology as well as the combination of these forcefields to accurately describe the phase behavior of the ternary system. The three-phase coexistence temperature is calculated at 400, 1000 and 2000 bar for two compositions of the methane-carbon dioxide mixture. The predicted values are compared with available calculations with satisfactory agreement. An estimation is also provided for the fraction of the guest molecules in the mixed hydrate phase under the conditions examined.

  12. Mixing in three-phase systems: Implications for enhanced oil recovery and unconventional gas extraction

    Science.gov (United States)

    Jimenez-Martinez, J.; Porter, M. L.; Hyman, J.; Carey, J. W.; Viswanathan, H. S.

    2015-12-01

    Although the mixing of fluids within a porous media is a common process in natural and industrial systems, how the degree of mixing depends on the miscibility of multiple phases is poorly characterized. Often, the direct consequence of miscible mixing is the modification of the resident fluid (brine and hydrocarbons) rheological properties. We investigate supercritical (sc)CO2 displacement and mixing processes in a three-phase system (scCO2, oil, and H2O) using a microfluidics experimental system that accommodates the high pressures and temperatures encountered in fossil fuel extraction operations. The miscibility of scCO2 with the resident fluids, low with aqueous solutions and high with hydrocarbons, impacts the mixing processes that control sweep efficiency in enhanced oil recovery (EOR) and the unlocking of the system in unconventional oil and gas extraction. Using standard volume-averaging techniques we upscale the aqueous phase saturation to the field-scale (i.e., Darcy scale) and interpret the results as a simpler two-phase system. This process allows us to perform a statistical analysis to quantify i) the degree of heterogeneity in the system resulting from the immiscible H2O and ii) how that heterogeneity impacts mixing between scCO2 and oil and their displacement. Our results show that when scCO2 is used for miscible displacement, the presence of an aqueous solution, which is common in secondary and tertiary EOR and unconventional oil and gas extraction, strongly impacts the mixing of scCO2 with the hydrocarbons due to low scCO2-H2O miscibility. H2O, which must be displaced advectively by the injected scCO2, introduces spatio-temporal variability into the system that acts as a barrier between the two miscibile fluids. This coupled with the effect of viscosity contrast, i.e., viscous fingering, has an impact on the mixing of the more miscible pair.

  13. Basicity determination for neutral phosphorus organic extragents by NMR 31P-method in two-phase systems, and quantitative interrelations of acido-basic extractive properties

    International Nuclear Information System (INIS)

    Laskorin, B.N.; Yakshin, V.V.; Meshcheryakov, N.M.; Yagodin, V.G.

    1988-01-01

    Consideration is given to the method for determination of basicity of neutral organophosphorus compounds of XGZP=0 type (X, G, Z=C 4 H 9 , C 8 H 17 , C 6 H 5 ). The method is based on change of chemical shift of phosphorus-31 nuclei in two-phase extraction system depending on acidity function H O , H A , H PO . It is shown that the method can be used for evaluation and forecasting of phosphine oxide ability in the processes of UO 2 SO 4 solvent extraction from aqueous solutions of sulfuric acid

  14. A compact x-ray system for two-phase flow measurement

    Science.gov (United States)

    Song, Kyle; Liu, Yang

    2018-02-01

    In this paper, a compact x-ray densitometry system consisting of a 50 kV, 1 mA x-ray tube and several linear detector arrays is developed for two-phase flow measurement. The system is capable of measuring void fraction and velocity distributions with a spatial resolution of 0.4 mm per pixel and a frequency of 1000 Hz. A novel measurement model has been established for the system which takes account of the energy spectrum of x-ray photons and the beam hardening effect. An improved measurement accuracy has been achieved with this model compared with the conventional log model that has been widely used in the literature. Using this system, void fraction and velocity distributions are measured for a bubbly and a slug flow in a 25.4 mm I.D. air-water two-phase flow test loop. The measured superficial gas velocities show an error within  ±4% when compared with the gas flowmeter for both conditions.

  15. Phase equilibria in a system of aqueous arginine with an octane solution of sulfonic acid

    Science.gov (United States)

    Kuvaeva, Z. I.; Koval'chuk, I. V.; Vodop'yanova, L. A.; Soldatov, V. S.

    2013-05-01

    The extraction of arginine (Arg) from aqueous salt (0.1 M NaCl) solutions with a sulfo extractant in a wide range of pH values and amino acid concentrations was studied. The 0.1 M solution of dinonylnaphthalenesulfonic acid (HD) in octane was used as an extractant. The degree of extraction was found to be high at pH 0.8-9.0. This can be explained by the effect of additional intermolecular interactions in the extractant phase involving the guanidine group of Arg.

  16. Separation of Nanoparticles in Aqueous Multiphase Systems through Centrifugation

    KAUST Repository

    Akbulut, Ozge; Mace, Charles R.; Martinez, Ramses V.; Kumar, Ashok A.; Nie, Zhihong; Patton, Matthew R.; Whitesides, George M.

    2012-01-01

    This paper demonstrates the use of aqueous multiphase systems (MuPSs) as media for rate-zonal centrifugation to separate nanoparticles of different shapes and sizes. The properties of MuPSs do not change with time or during centrifugation; this stability facilitates sample collection after separation. A three-phase system demonstrates the separation of the reaction products (nanorods, nanospheres, and large particles) of a synthesis of gold nanorods, and enriches the nanorods from 48 to 99% in less than ten minutes using a benchtop centrifuge. © 2012 American Chemical Society.

  17. Separation of Nanoparticles in Aqueous Multiphase Systems through Centrifugation

    KAUST Repository

    Akbulut, Ozge

    2012-08-08

    This paper demonstrates the use of aqueous multiphase systems (MuPSs) as media for rate-zonal centrifugation to separate nanoparticles of different shapes and sizes. The properties of MuPSs do not change with time or during centrifugation; this stability facilitates sample collection after separation. A three-phase system demonstrates the separation of the reaction products (nanorods, nanospheres, and large particles) of a synthesis of gold nanorods, and enriches the nanorods from 48 to 99% in less than ten minutes using a benchtop centrifuge. © 2012 American Chemical Society.

  18. Contributions of nonextracting Pu reductants (ferrous sulphamate and hydroxylamine nitrate) and holding reductant (hydrazine nitrate) to the aqueous density in U-Pu partitioning system

    International Nuclear Information System (INIS)

    Shekhar Kumar; Rajnish Kumar; Koganti, S.B.

    2005-08-01

    As nonextracting Pu reductants and holding reductants contribute to the density of aqueous phase sub-system considerably, to account their contributions in aqueous phase in solvent extraction simulation code is essential. In this regard, in-house generated precise density data on aqueous ferrous sulphamate solutions as well as aqueous density data, reported in the literature, for HAN, hydrazine nitrate and HAN-HNO 3 systems were analyzed and density equation earlier proposed by authors was extended to it. It was observed that the equation earlier proposed by the authors were simple and were easy to extend for multicomponent system. The contributions of ferrous sulphamate, HAN and hydrazine nitrate to the aqueous density were quantified. It was also observed that the classical value of contribution for nonextractible solute to the aqueous density was quite different from the results reported in this work. (author)

  19. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Ken [Washington State Univ., Pullman, WA (United States); Martin, Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lumetta, Gregg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale

  20. Toward stable nickel catalysts for aqueous phase reforming of biomass-derived feedstock under reducing and alkaline conditions

    NARCIS (Netherlands)

    Haasterecht, van T.; Ludding, C.C.I.; Jong, de K.P.; Bitter, J.H.

    2014-01-01

    Nickel nanoparticles supported on carbon nanofibers (CNF) can be stabilized in aqueous phase processes at elevated temperatures and pressures by tuning the reaction conditions to control Ni oxidation and leaching. As a showcase, Ni/CNF was used for the production of hydrogen via aqueous phase

  1. Two-phase flow stability structure in a natural circulation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhiwei [Nuclear Engineering Laboratory Zurich (Switzerland)

    1995-09-01

    The present study reports a numerical analysis of two-phase flow stability structures in a natural circulation system with two parallel, heated channels. The numerical model is derived, based on the Galerkin moving nodal method. This analysis is related to some design options applicable to integral heating reactors with a slightly-boiling operation mode, and is also of general interest to similar facilities. The options include: (1) Symmetric heating and throttling; (2) Asymmetric heating and symmetric throttling; (3) Asymmetric heating and throttling. The oscillation modes for these variants are discussed. Comparisons with the data from the INET two-phase flow stability experiment have qualitatively validated the present analysis.

  2. Compact and highly stable quantum dots through optimized aqueous phase transfer

    Science.gov (United States)

    Tamang, Sudarsan; Beaune, Grégory; Poillot, Cathy; De Waard, Michel; Texier-Nogues, Isabelle; Reiss, Peter

    2011-03-01

    A large number of different approaches for the aqueous phase transfer of quantum dots have been proposed. Surface ligand exchange with small hydrophilic thiols, such as L-cysteine, yields the lowest particle hydrodynamic diameter. However, cysteine is prone to dimer formation, which limits colloidal stability. We demonstrate that precise pH control during aqueous phase transfer dramatically increases the colloidal stability of InP/ZnS quantum dots. Various bifunctional thiols have been applied. The formation of disulfides, strongly diminishing the fluorescence QY has been prevented through addition of appropriate reducing agents. Bright InP/ZnS quantum dots with a hydrodynamic diameter <10 nm and long-term stability have been obtained. Finally we present in vitro studies of the quantum dots functionalized with the cell-penetrating peptide maurocalcine.

  3. Materials Applications for Non-Lethal: Aqueous Foams

    Energy Technology Data Exchange (ETDEWEB)

    GOOLSBY,TOMMY D.; SCOTT,STEVEN H.

    1999-09-15

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might

  4. Materials Applications for Non-Lethal: Aqueous Foams

    International Nuclear Information System (INIS)

    GOOLSBY, TOMMY D.; SCOTT, STEVEN H.

    1999-01-01

    High expansion aqueous foam is an aggregation of bubbles that has the appearance of soap suds and is used to isolate individuals both visually and acoustically. It was developed in the 1920's in England to fight coal mine fires and has been widely used since for fire fighting and dust suppression. It was developed at Sandia National Laboratories (SNL) in the 1970's for nuclear safeguards and security applications. In the mid-1990s, the National Institute of Justice (NIJ), the research arm of the Department of Justice, began a project with SNL to determine the applicability of high expansion aqueous foam for correctional applications. NIJ funded the project as part of its search for new and better less-than-lethal weapons for responding to violent and dangerous individuals, where other means of force could lead to serious injuries. The phase one objectives of the project were to select a low-to-no toxicity foam concentrate (foaming agent) with physical characteristics suited for use in a single cell or large prison disturbances, and to determine if the selected foam concentrate could serve as a carrier for Oleoresin Capsicum (OC) irritant. The phase two objectives were to conduct an extensive toxicology review of the selected foam concentrate and OC irritant, and to conduct respiration simulation experiments in the selected high expansion aqueous foam. The phase three objectives were to build a prototype individual cell aqueous foam system and to study the feasibility of aqueous foams for large prison facility disturbances. The phase four and five objectives were to use the prototype system to do large scale foam physical characteristics testing of the selected foam concentrate, and to have the prototype single cell system further evaluated by correctional representatives. Prison rather than street scenarios were evaluated as the first and most likely place for using the aqueous foam since prisons have recurrent incidents where officers and inmates might be

  5. Corn silk aqueous extracts and intraocular pressure of systemic and non-systemic hypertensive subjects.

    Science.gov (United States)

    George, Gladys O; Idu, Faustina K

    2015-03-01

    Hypotensive properties have been attributed to the stigma/style of Zea mays L (corn silk). Although the effect of corn silk extract on blood pressure has been documented in animal studies, we are not aware of any study on its effect on human blood pressure and intraocular pressure. A randomised study was carried out on the effect of water only, masked doses of corn silk aqueous extract (60, 130, 192.5 and 260 mg/kg body weight) on intraocular pressure and blood pressure of 20 systemic and 20 non-systemic hypertensive subjects. Intraocular pressure and blood pressure were measured at baseline and every hour for eight hours after administering water or a masked dose of corn silk aqueous extract. Each dose was administered at two-week intervals to each subject in the two study groups. The results showed that the last three doses of corn silk aqueous extract gave a statistically significant reduction (p Corn silk aqueous extract has a lowering effect on intraocular pressure in systemic and non-systemic hypertensive subjects. This may have resulted from the fall in blood pressure that is due to potassium-induced natriuresis and diuresis caused by the high potassium content in the high doses of the corn silk extract. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.

  6. Geometric phases and quantum correlations of superconducting two-qubit system with dissipative effect

    International Nuclear Information System (INIS)

    Xue, Liyuan; Yu, Yanxia; Cai, Xiaoya; Pan, Hui; Wang, Zisheng

    2016-01-01

    Highlights: • We find that the Pancharatnam phases include the information of quantum correlations. • We show that the sudden died and alive phenomena of quantum entanglement is original in the transition of Pancharatnam phase. • We find that the faster the Pancharatnam phases change, the slower the quantum correlations decay. • We find that a subspace of quantum entanglement can exist in the Y-state. • Our results provide a useful approach experimentally to implement the time-dependent geometric quantum computation. - Abstract: We investigate time-dependent Pancharatnam phases and the relations between such geometric phases and quantum correlations, i.e., quantum discord and concurrence, of superconducting two-qubit coupling system in dissipative environment with the mixture effects of four different eigenstates of density matrix. We find that the time-dependent Pancharatnam phases not only keep the motion memory of such a two-qubit system, but also include the information of quantum correlations. We show that the sudden died and alive phenomena of quantum entanglement are intrinsic in the transition of Pancharatnam phase in the X-state and the complex oscillations of Pancharatnam phase in the Y-state. The faster the Pancharatnam phases change, the slower the quantum correlations decay. In particular, we find that a subspace of quantum entanglement can exist in the Y-state by choosing suitable coupling parameters between two-qubit system and its environment, or initial conditions.

  7. Technical study report on reprocessing systems. The report of the feasibility study on commercialized FR cycle systems (phase I)

    International Nuclear Information System (INIS)

    Tanaka, Hiroshi; Kawamura, Fumio; Kakehi, Isao

    2001-04-01

    As a part of the feasibility study (FS) on commercialized fast reactor (FR) cycle systems started on July 1999, the design studies and the technical assessments for various advanced reprocessing systems have been carried out. In this study, plant design for the advanced aqueous system and the three non-aqueous systems (oxide electrowinning method, metal electrorefining method, and fluoride volatility method) has been carried out, and each system has been evaluated mainly from the viewpoint of economics. The future R and D issues on the processes and systems have been also clarified. This report describes the results of the study for two years as final report of FS phase I. (1) The advanced aqueous system, based on the simplified PUREX process, has been shown to be much more economical than the conventional PUREX. The 200 tHM/y plant achieves the target of economics, but the 50 tHM/y plant can not achieve the target. (2) The promising alternative systems replaced for advanced aqueous are the supercritical fluid direct extraction method and amine extraction method from the economical viewpoint. The ion exchange method is promising as the process for minor actinide recovery. (3) For reprocessing MOX fuel, all non-aqueous plants with a capacity of 200 tHM/y achieve the economical target. For such a small capacity as 50 tHM/y, further rationalization of the process is required for the oxide electrowinning method and metal electrorefining method to attain the target, though they are more economical than the advanced aqueous system. (4) For metallic and nitride fuel reprocessing, a metal electrorefining system has been shown to be advantageous. (author)

  8. A plant wide aqueous phase chemistry model describing pH variations and ion speciation/pairing in wastewater treatment process models

    DEFF Research Database (Denmark)

    Flores-Alsina, X.; Mbamba, C. Kazadi; Solon, K.

    cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated by implementing the aqueous phase chemistry module in some of the most frequently used WWTP process simulation models. Finally, it is shown how traditional wastewater modelling studies can......, require a major, but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems (Ikumi et al., 2014). In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation...... of Ordinary Differential Equations (ODEs) in order to reduce the overall stiffness of the system, thereby enhancing simulation speed. Additionally, a multi-dimensional version of the Newton-Raphson algorithm is applied to handle the existing multiple algebraic inter-dependencies (Solon et al., 2015...

  9. A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models

    DEFF Research Database (Denmark)

    Flores Alsina, Xavier; Kazadi Mbamba, Christian; Solon, Kimberly

    2015-01-01

    at different cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated, by implementing the aqueous phase chemistry module in some of the most frequently used WWTP process simulation models. Finally, it is shown how traditional wastewater modelling......, but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems. In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation/pairing is presented and interfaced with industry......) in order to reduce the overall stiffness of the system, thereby enhancing simulation speed. Additionally, a multi-dimensional version of the Newton-Raphson algorithm is applied to handle the existing multiple algebraic inter-dependencies. The latter is reinforced with the Simulated Annealing method...

  10. Potential Impacts of two SO2 oxidation pathways on regional sulfate concentrations: acqueous-hase oxidation by NO2 and gas-phase oxidation by Stabilized Criegee Intermediates

    Science.gov (United States)

    We examine the potential impacts of two additional sulfate production pathways using the Community Multiscale Air Quality modeling system. First we evaluate the impact of the aqueous-phase oxidation of S(IV) by nitrogen dioxide using two published rate constants, differing by 1-2...

  11. Phase Coexistence in Two-Dimensional Passive and Active Dumbbell Systems

    Science.gov (United States)

    Cugliandolo, Leticia F.; Digregorio, Pasquale; Gonnella, Giuseppe; Suma, Antonio

    2017-12-01

    We demonstrate that there is a macroscopic coexistence between regions with hexatic order and regions in the liquid or gas phase over a finite interval of packing fractions in active dumbbell systems with repulsive power-law interactions in two dimensions. In the passive limit, this interval remains finite, similar to what has been found in two-dimensional systems of hard and soft disks. We did not find discontinuous behavior upon increasing activity from the passive limit.

  12. Ca2+ pump and Ca2+/H+ antiporter in plasma membrane vesicles isolated by aqueous two-phase partitioning from corn leaves

    International Nuclear Information System (INIS)

    Kasai, M.; Muto, S.

    1990-01-01

    Plasma membrane vesicles, which are mostly right side-out, were isolated from corn leaves by aqueous two-phase partitioning method. Characteristics of Ca2+ transport were investigated after preparing inside-out vesicles by Triton X-100 treatment. 45Ca2+ transport was assayed by membrane filtration technique. Results showed that Ca2+ transport into the plasma membrane vesicles was Mg-ATP dependent. The active Ca2+ transport system had a high affinity for Ca2+(Km(Ca2+) = 0.4 microM) and ATP(Km(ATP) = 3.9 microM), and showed pH optimum at 7.5. ATP-dependent Ca2+ uptake in the plasma membrane vesicles was stimulated in the presence of Cl- or NO3-. Quenching of quinacrine fluorescence showed that these anions also induced H+ transport into the vesicles. The Ca2+ uptake stimulated by Cl- was dependent on the activity of H+ transport into the vesicles. However, carbonylcyanide m-chlorophenylhydrazone (CCCP) and VO4(3-) which is known to inhibit the H+ pump associated with the plasma membrane, canceled almost all of the Cl(-)-stimulated Ca2+ uptake. Furthermore, artificially imposed pH gradient (acid inside) caused Ca2+ uptake into the vesicles. These results suggest that the Cl(-)-stimulated Ca2+ uptake is caused by the efflux of H+ from the vesicles by the operation of Ca2+/H+ antiport system in the plasma membrane. In Cl(-)-free medium, H+ transport into the vesicles scarcely occurred and the addition of CCCP caused only a slight inhibition of the active Ca2+ uptake into the vesicles. These results suggest that two Ca2+ transport systems are operating in the plasma membrane from corn leaves, i.e., one is an ATP-dependent active Ca2+ transport system (Ca2+ pump) and the other is a Ca2+/H+ antiport system. Little difference in characteristics of Ca2+ transport was observed between the plasma membranes isolated from etiolated and green corn leaves

  13. Different Diversity and Distribution of Archaeal Community in the Aqueous and Oil Phases of Production Fluid From High-Temperature Petroleum Reservoirs

    Directory of Open Access Journals (Sweden)

    Bo Liang

    2018-04-01

    Full Text Available To get a better knowledge on how archaeal communities differ between the oil and aqueous phases and whether environmental factors promote substantial differences on microbial distributions among production wells, we analyzed archaeal communities in oil and aqueous phases from four high-temperature petroleum reservoirs (55–65°C by using 16S rRNA gene based 454 pyrosequencing. Obvious dissimilarity of the archaeal composition between aqueous and oil phases in each independent production wells was observed, especially in production wells with higher water cut, and diversity in the oil phase was much higher than that in the corresponding aqueous phase. Statistical analysis further showed that archaeal communities in oil phases from different petroleum reservoirs tended to be more similar, but those in aqueous phases were the opposite. In the high-temperature ecosystems, temperature as an environmental factor could have significantly affected archaeal distribution, and archaeal diversity raised with the increase of temperature (p < 0.05. Our results suggest that to get a comprehensive understanding of petroleum reservoirs microbial information both in aqueous and oil phases should be taken into consideration. The microscopic habitats of oil phase, technically the dispersed minuscule water droplets in the oil could be a better habitat that containing the indigenous microorganisms.

  14. Adsorption of Monobutyl Phthalate from Aqueous Phase onto Two Macroporous Anion-Exchange Resins

    Directory of Open Access Journals (Sweden)

    Zhengwen Xu

    2014-01-01

    Full Text Available As new emerging pollutants, phthalic acid monoesters (PAMs pose potential ecological and human health risks. In the present study, adsorption performance of monobutyl phthalate (MBP onto two macroporous base anion-exchange resins (D-201 and D-301 was discussed. It was found that the adsorption isotherms were best fitted by the Langmuir equation while the adsorption kinetics were well described by pseudo-first-order model. Analyses of sorption isotherms and thermodynamics proved that the adsorption mechanisms for DBP onto D-201 were ion exchange. However, the obtained enthalpy values indicate that the sorption process of MBP onto D-301 is physical adsorption. The equilibrium adsorption capacities and adsorption rates of DBP on two different resins increased with the increasing temperature of the solution. D-301 exhibited a higher adsorption capacity of MBP than D-201. These results proved that D-301, as an effective sorbent, can be used to remove phthalic acid monoesters from aqueous solution.

  15. Solubility and phase separation of 4-morpholinepropanesulfonic acid (MOPS), and 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO) in aqueous 1,4-dioxane and ethanol solutions

    International Nuclear Information System (INIS)

    Taha, Mohamed; Lee, Ming-Jer

    2011-01-01

    Highlights: → Solubilities of MOPS and MOPSO buffers in aqueous 1,4-dioxane and ethanol solutions. → We found that MOPS-induced phase separation of aqueous solution of 1,4-dioxane. → The phase diagram of (MOPS + water + 1,4-dioxane) system at 298.15 K is documented. → The tie-lines within the two-liquid phase region were also determined at 298.15 K. → The effective excluded volume theory was applied to correlate the binodal LLE data. - Abstract: The buffers 4-morpholinepropanesulfonic acid (MOPS) and 3-morpholino-2-hydroxypropanesulfonic acid (MOPSO) are useful biological zwitterionic buffers within the pH range of 6.5 to 7.9 and 6.2 to 7.6, respectively. The solubilities of these buffers were determined in binary mixtures (1,4-dioxane + water) and (ethanol + water) at T = 298.15 K by using the results of density measurements. It has been observed that MOPS induced liquid-liquid phase splitting for the mixtures of 40% to 90% (w/w) 1,4-dioxane in water. The two-liquid phase formation was visualized with disperse orange 25. The phase equilibrium boundaries, including the regions of one liquid, two liquids, (one liquid + one solid) and (two liquids + one solid), for the (MOPS + water + 1,4-dioxane) system have been determined experimentally at T = 298.15 K. The tie lines of the (liquid + liquid) equilibrium were also measured. The Othmer-Tobias and Bancroft equation were used to evaluate the reliability of the tie-line data. The binodal curve was fitted to an empirical equation and the effective excluded volume (EEV) model. The apparent free energies of transfer (ΔG tr ' ) of MOPS and MOPSO from water to 1,4-dioxane and ethanol solutions have been calculated from the solubility data. These ΔG tr ' values were compared with those of some related biological buffers (TRIS, TAPS, TAPSO, and TABS). Furthermore, we also calculated the contribution of transfer free energies (Δg tr ' ) of -OH group from water to 1,4-dioxane and ethanol solutions.

  16. Simultaneous biodegradation of volatile and toxic contaminant mixtures by solid–liquid two-phase partitioning bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Poleo, Eduardo E.; Daugulis, Andrew J., E-mail: andrew.daugulis@chee.queensu.ca

    2013-06-15

    Highlights: • We investigate the simultaneous biodegradation of phenol and butyl acetate. • We identify an effective polymer mixture to selectively absorb each of the substrates and decrease their initial concentration. •The polymer mixture is used to overcome the high phenol cytotoxicity and reduce the abiotic losses of butyl acetate associated with volatility. • The solid–liquid Two Phase Partitioning Bioreactor (TPPB) outperforms the liquid–liquid TPPB and the single phase systems. -- Abstract: Microbial inhibition and stripping of volatile compounds are two common problems encountered in the biotreatment of contaminated wastewaters. Both can be addressed by the addition of a hydrophobic auxiliary phase that can absorb and subsequently re-release the substrates, lowering their initial aqueous concentrations. Such systems have been described as Two Phase Partitioning Bioreactors (TPPBs). In the current work the performances of a solid–liquid TPPB, a liquid–liquid TPPB and a single phase reactor for the simultaneous degradation of butyl acetate (the volatile component) and phenol (the toxic component) have been compared. The auxiliary phase used in the solid–liquid TPPB was a 50:50 polymer mixture of styrene–butadiene rubber and Hytrel{sup ®} 8206, with high affinities for butyl acetate and phenol, respectively. The liquid–liquid TPPB employed silicone oil which has fixed physical properties, and had no capacity to absorb the toxic contaminant (phenol). Butyl acetate degradation was enhanced in both TPPBs relative to the single phase, arising from its sequestration into the auxiliary phase, thereby reducing volatilization losses. The solid–liquid TPPB additionally showed a substantial increase in the phenol degradation rate, relative to the silicone oil system, demonstrating the superiority and versatility of polymer based systems.

  17. Aqueous biphasic systems composed of ionic liquids and sodium carbonate as enhanced routes for the extraction of tetracycline.

    Science.gov (United States)

    Marques, Carlos F C; Mourão, Teresa; Neves, Catarina M S S; Lima, Alvaro S; Boal-Palheiros, Isabel; Coutinho, João A P; Freire, Mara G

    2013-01-01

    Aqueous biphasic systems (ABS) using ionic liquids (ILs) offer an alternative approach for the extraction, recovery, and purification of biomolecules through their partitioning between two aqueous liquid phases. In this work, the ability of a wide range of ILs to form ABS with aqueous solutions of Na2 CO3 was evaluated. The ABS formed by IL + water + Na2 CO3 were determined at 25°C, and the respective solubility curves, tie-lines, and tie-line lengths are reported. The studied ILs share the common chloride anion, allowing the IL cation core, the cation isomerism, the presence of functionalized groups, and alkyl side chain length effects to be evaluated. An increase in the cation side alkyl chain length leads to a higher ability for liquid-liquid demixing whereas different positional isomers and the presence of an allyl group have no major influence in the phase diagrams behavior. Quaternary phosphonium- and ammonium-based fluids are more able to form an ABS when compared with imidazolium-, pyridinium-, pyrrolidinium-, and piperidium-based ILs. Moreover, the presence of an aromatic cation core has no major contribution to the formation of ABS when compared to the respective nonaromatic counterparts. Finally, to appraise on the systems applicability in downstream processing, selected systems were used for the partitioning of tetracyclines (neutral and salt forms) - a class of antibiotics produced by bacteria fermentation. Single-step extraction efficiencies for the IL-rich phase were always higher than 99% and confirm the great potential of ILs to be applied in the biotechnological field. © 2013 American Institute of Chemical Engineers.

  18. Aqueous preparation of polyethylene glycol/sulfonated graphene phase change composite with enhanced thermal performance

    International Nuclear Information System (INIS)

    Li, Hairong; Jiang, Ming; Li, Qi; Li, Denian; Chen, Zongyi; Hu, Waping; Huang, Jing; Xu, Xizhe; Dong, Lijie; Xie, Haian; Xiong, Chuanxi

    2013-01-01

    Highlights: • We report an aqueous preparation technique of PEG/graphene phase change composite. • Hydrophilic sulfonated graphene (SG) nanosheets were synthesized. • Large increase in thermal conductivity is attained at low SG loading. • High latent heat is retained due to the low filler loading. • Affinity between SG and PEG contributes to the enhanced thermal performance. - Abstract: A polyethylene glycol (PEG)/sulfonated graphene (SG) phase change composite with enhanced thermal performance was prepared by solution processing in aqueous medium. It is remarkable that the addition of only 4 wt.% of SG to PEG could lead to a four times higher increase in thermal conductivity and a slight decrease in the phase change enthalpy, which is attributed to the formation of efficient thermal conductive network within the PEG matrix relevant to the excellent thermal property and unique 2-dimensional morphology of graphene as well as strong interface affinity between PEG matrix and SG nanosheets. The aqueous preparation technique is expected to pioneer a new way to prepare environment friendly organic phase change materials, and the production of PEG/SG composites is potentially scalable due to the facile fabricating process

  19. The salting-out effect and phase separation in aqueous solutions of tri-sodium citrate and 1-butyl-3-methylimidazolium bromide

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Rahmat, E-mail: rsadeghi@uok.ac.i [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Golabiazar, Roonak [Department of Chemistry, University of Kurdistan, Sanandaj (Iran, Islamic Republic of); Shekaari, Hemayat [Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2010-04-15

    The aim of this work is to obtain further evidence about the salting-out effect produced by the addition of tri-sodium citrate to aqueous solutions of water miscible ionic liquid 1-butyl-3-methylimidazolium bromide ([C{sub 4}mim][Br]) by evaluating the effect of tri-sodium citrate on the thermodynamic properties of aqueous solutions of this ionic liquid. Experimental measurements of density and sound velocity at different temperatures ranging from (288.15 to 308.15) K, the refractive index at 308.15 K and the liquid-liquid phase diagram at different temperatures ranging from (288.15 to 338.15) K for aqueous solutions containing 1-butyl-3-methylimidazolium bromide ([C{sub 4}mim][Br]) and tri-sodium citrate (Na{sub 3}Cit) are taken. The apparent molar volume of transfer of [C{sub 4}mim][Br] from water to aqueous solutions of Na{sub 3}Cit have positive values and it increases by increasing salt molality. Although at high IL molality, the apparent molar isentropic compressibility shows similar behaviour with that of the apparent molar volume. However at low concentrations of IL, the apparent molar isentropic compressibility of transfer of [C{sub 4}mim][Br] from water to aqueous solutions of Na{sub 3}Cit have negative values. The effects of temperature and the addition of Na{sub 3}Cit and [C{sub 4}mim][Br] on the liquid-liquid phase diagram of the investigated system have been studied. It was found that an increase in temperature caused the expansion of the one-phase region. The presence of Na{sub 3}Cit triggers a salting-out effect, leading to significant upward shifts of the liquid-liquid de-mixing temperatures of the system. The effect of temperature on the phase-forming ability in the system investigated has been studied based on a salting-out coefficient obtained from fitting the binodal values to a Setschenow-type equation for each temperature. Based on cloud point values, the energetics of the clouding process have been estimated and it was found that both of

  20. Supramolecular Complexes Formed by the Self-assembly of Hydrophobic Bis(Zn(2+)-cyclen) Complexes, Copper, and Di- or Triimide Units for the Hydrolysis of Phosphate Mono- and Diesters in Two-Phase Solvent Systems (Cyclen=1,4,7,10-Tetraazacyclododecane).

    Science.gov (United States)

    Hisamatsu, Yosuke; Miyazawa, Yuya; Yoneda, Kakeru; Miyauchi, Miki; Zulkefeli, Mohd; Aoki, Shin

    2016-01-01

    We previously reported on supramolecular complexes 4 and 5, formed by the 4 : 4 : 4 or 2 : 2 : 2 assembly of a dimeric zinc(II) complex (Zn2L(1)) having 2,2'-bipyridyl linker, dianion of cyanuric acid (CA) or 5,5-diethylbarbituric acid (Bar), and copper(II) ion (Cu(2+)) in an aqueous solution. The supermolecule 4 possesses Cu2(μ-OH)2 centers and catalyzes hydrolysis of phosphate monoester dianion, mono(4-nitrophenyl)phosphate (MNP), at neutral pH. In this manuscript, we report on design and synthesis of hydrophobic supermolecules 9 and 10 by 4 : 4 : 4 and 2 : 2 : 2 self-assembly of hydrophobic Zn2L(2) and Zn2L(3) containing long alkyl chains, CA or Bar, and Cu(2+) and their phosphatase activity for the hydrolysis of MNP and bis(4-nitrophenyl)phosphate (BNP) in two-phase solvent systems. We assumed that the Cu2(μ-OH)2 active sites of 9 and 10 would be more stable in organic solvent than in aqueous solution and that product inhibition of the supermolecules might be avoided by the release of HPO4(2-) into the aqueous layer. The findings indicate that 9 and 10 exhibit phosphatase activity in the two-phase solvent system, although catalytic turnover was not observed. Furthermore, the hydrolysis of BNP catalyzed by the hydrophobic 2 : 2 : 2 supermolecules in the two-phase solvent system is described.

  1. RECOVERY OF CARBOXYLIC ACIDS FROM AQUEOUS SOLUTIONS BY LIQUID-LIQUID EXTRACTION WITH A TRIISOOCTYLAMINE DILUENT SYSTEM

    Directory of Open Access Journals (Sweden)

    G. Malmary

    2001-12-01

    Full Text Available Tertiary alkylamines in solution with organic diluents are attractive extractants for the recovery of carboxylic acids from dilute aqueous phases. The aim of this study was to investigate the mechanism for extraction of organic acids from water by a long-chain aliphatic tertiary amine. In order to attain this objective, we studied the liquid-liquid equilibria between the triisooctylamine + 1-octanol + n-heptane system as solvent and an aqueous solution of an individual carboxylic acid such as citric, lactic and malic acids. The experiments showed that the partition coefficient for a particular organic acid depends on the kind of solute, notably when the acid concentration in the aqueous phase is low. A mathematical model, where both chemical association and physical distribution are taken into consideration, is proposed. The model suggests that the various complexes obtained between amine and organic acids contribute to the distribution of the solute between the coexisting phases in equilibrium.

  2. Unconventional Topological Phase Transition in Two-Dimensional Systems with Space-Time Inversion Symmetry

    Science.gov (United States)

    Ahn, Junyeong; Yang, Bohm-Jung

    2017-04-01

    We study a topological phase transition between a normal insulator and a quantum spin Hall insulator in two-dimensional (2D) systems with time-reversal and twofold rotation symmetries. Contrary to the case of ordinary time-reversal invariant systems, where a direct transition between two insulators is generally predicted, we find that the topological phase transition in systems with an additional twofold rotation symmetry is mediated by an emergent stable 2D Weyl semimetal phase between two insulators. Here the central role is played by the so-called space-time inversion symmetry, the combination of time-reversal and twofold rotation symmetries, which guarantees the quantization of the Berry phase around a 2D Weyl point even in the presence of strong spin-orbit coupling. Pair creation and pair annihilation of Weyl points accompanying partner exchange between different pairs induces a jump of a 2D Z2 topological invariant leading to a topological phase transition. According to our theory, the topological phase transition in HgTe /CdTe quantum well structure is mediated by a stable 2D Weyl semimetal phase because the quantum well, lacking inversion symmetry intrinsically, has twofold rotation about the growth direction. Namely, the HgTe /CdTe quantum well can show 2D Weyl semimetallic behavior within a small but finite interval in the thickness of HgTe layers between a normal insulator and a quantum spin Hall insulator. We also propose that few-layer black phosphorus under perpendicular electric field is another candidate system to observe the unconventional topological phase transition mechanism accompanied by the emerging 2D Weyl semimetal phase protected by space-time inversion symmetry.

  3. Design and In Vitro Evaluation of a New Nano-Microparticulate System for Enhanced Aqueous-Phase Solubility of Curcumin

    Directory of Open Access Journals (Sweden)

    Diana Guzman-Villanueva

    2013-01-01

    Full Text Available Curcumin, a yellow polyphenol derived from the turmeric Curcuma longa, has been associated with a diverse therapeutic potential including anti-inflammatory, antioxidant, antiviral, and anticancer properties. However, the poor aqueous solubility and low bioavailability of curcumin have limited its potential when administrated orally. In this study, curcumin was encapsulated in a series of novel nano-microparticulate systems developed to improve its aqueous solubility and stability. The nano-microparticulate systems are based entirely on biocompatible, biodegradable, and edible polymers including chitosan, alginate, and carrageenan. The particles were synthesized via ionotropic gelation. Encapsulating the curcumin into the hydrogel nanoparticles yielded a homogenous curcumin dispersion in aqueous solution compared to the free form of curcumin. Also, the in vitro release profile showed up to 95% release of curcumin from the developed nano-microparticulate systems after 9 hours in PBS at pH 7.4 when freeze-dried particles were used.

  4. Design and in vitro evaluation of a new nano-microparticulate system for enhanced aqueous-phase solubility of curcumin.

    Science.gov (United States)

    Guzman-Villanueva, Diana; El-Sherbiny, Ibrahim M; Herrera-Ruiz, Dea; Smyth, Hugh D C

    2013-01-01

    Curcumin, a yellow polyphenol derived from the turmeric Curcuma longa, has been associated with a diverse therapeutic potential including anti-inflammatory, antioxidant, antiviral, and anticancer properties. However, the poor aqueous solubility and low bioavailability of curcumin have limited its potential when administrated orally. In this study, curcumin was encapsulated in a series of novel nano-microparticulate systems developed to improve its aqueous solubility and stability. The nano-microparticulate systems are based entirely on biocompatible, biodegradable, and edible polymers including chitosan, alginate, and carrageenan. The particles were synthesized via ionotropic gelation. Encapsulating the curcumin into the hydrogel nanoparticles yielded a homogenous curcumin dispersion in aqueous solution compared to the free form of curcumin. Also, the in vitro release profile showed up to 95% release of curcumin from the developed nano-microparticulate systems after 9 hours in PBS at pH 7.4 when freeze-dried particles were used.

  5. Two-phase flow characteristics in BWRs

    International Nuclear Information System (INIS)

    Katono, Kenichi; Aoyama, Goro; Nagayoshi, Takuji; Yasuda, Kenichi; Nishida, Koji

    2014-01-01

    Reliable prediction of two-phase flow characteristics is important for safety and economy improvements of BWR plants. We have been developing two-phase flow measurement tools and techniques for BWR thermal hydraulic conditions, such as a 3D time-averaged X-ray CT system, an ultrasonic liquid film sensor and a wire-mesh sensor. We applied the developed items in experiments using the multi-purpose steam-water test facility known as HUSTLE, which can simulate two-phase thermal-hydraulic conditions in a BWR reactor pressure vessel, and we constructed a detailed instrumentation database. We validated a 3D two-phase flow simulator using the database and developed the reactor internal two-phase flow analysis system. (author)

  6. Dissolved organic carbon enhances the mass transfer of hydrophobic organic compounds from Nonaqueous Phase Liquids (NAPLs) into the aqueous phase

    NARCIS (Netherlands)

    Smith, K.E.C.; Thullner, M.; Wick, L.Y.; Harms, H.

    2011-01-01

    The hypothesis that dissolved organic carbon (DOC) enhances the mass transfer of hydrophobic organic compounds from nonaqueous phase liquids (NAPLs) into the aqueous phase above that attributable to dissolved molecular diffusion alone was tested. In controlled experiments, mass transfer rates of

  7. Dynamics of a quantum two-level system under the action of phase-diffusion field

    Energy Technology Data Exchange (ETDEWEB)

    Sobakinskaya, E.A. [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation); Pankratov, A.L., E-mail: alp@ipm.sci-nnov.ru [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation); Vaks, V.L. [Institute for Physics of Microstructures of RAS, Nizhny Novgorod, 603950 (Russian Federation)

    2012-01-09

    We study a behavior of quantum two-level system, interacting with noisy phase-diffusion field. The dynamics is shown to split into two regimes, determined by the coherence time of the phase-diffusion field. For both regimes we present a model of quantum system behavior and discuss possible applications of the obtained effect for spectroscopy. In particular, the obtained analytical formula for the macroscopic polarization demonstrates that the phase-diffusion field does not affect the absorption line shape, which opens up an intriguing possibility of noisy spectroscopy, based on broadband sources with Lorentzian line shape. -- Highlights: ► We study dynamics of quantum system interacting with noisy phase-diffusion field. ► At short times the phase-diffusion field induces polarization in the quantum system. ► At long times the noise leads to polarization decay and heating of a quantum system. ► Simple model of interaction is derived. ► Application of the described effects for spectroscopy is discussed.

  8. Quantification and speciation of volatile fatty acids in the aqueous phase.

    Science.gov (United States)

    Lee, Jechan; Kim, Jieun; Oh, Jeong-Ik; Lee, Sang-Ryong; Kwon, Eilhann E

    2017-11-01

    This study lays great emphasis on establishing a reliable analytical platform to quantify and specify volatile fatty acids (VFAs) in the aqueous phase by derivatizing VFAs into their corresponding alkyl esters via thermally-induced rapid esterification (only 10 s reaction time). To this end, reaction conditions for the thermally-induced rapid esterification are optimized. A volumetric ratio of 0.5 at 400 °C for VFA/methanol is identified as the optimal reaction conditions to give ∼90% volatile fatty acid methyl ester (VFAME) yield. To maintain a high yield of VFAMEs, this study suggests that dilution of the sample to an optimum concentration (∼500 ppm for each VFA) is required. Derivatization of VFAs into VFAMEs via the thermally-induced rapid esterification is more reliable to quantify and specify VFAs in the aqueous phase than conventional colorimetric method. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Preferential localization of Lactococcus lactis cells entrapped in a caseinate/alginate phase separated system.

    Science.gov (United States)

    Léonard, Lucie; Gharsallaoui, Adem; Ouaali, Fahima; Degraeve, Pascal; Waché, Yves; Saurel, Rémi; Oulahal, Nadia

    2013-09-01

    This study aimed to entrap bioprotective lactic acid bacteria in a sodium caseinate/sodium alginate aqueous two-phase system. Phase diagram at pH=7 showed that sodium alginate and sodium caseinate were not miscible when their concentrations exceeded 1% (w/w) and 6% (w/w), respectively. The stability of the caseinate/alginate two-phase system was also checked at pH values of 6.0 and 5.5. Lactococcus lactis subsp. lactis LAB3 cells were added in a 4% (w/w) caseinate/1.5% (w/w) alginate two-phase system at pH=7. Fluorescence microscopy allowed to observe that the caseinate-rich phase formed droplets dispersed in a continuous alginate-rich phase. The distribution of bacteria in such a system was observed by epifluorescence microscopy: Lc. lactis LAB3 cells stained with Live/Dead(®) Baclight kit™ were located exclusively in the protein phase. Since zeta-potential measurements indicated that alginate, caseinate and bacterial cells all had an overall negative charge at pH 7, the preferential adhesion of LAB cells was assumed to be driven by hydrophobic effect or by depletion phenomena in such biopolymeric systems. Moreover, LAB cells viability was significantly higher in the ternary mixture obtained in the presence of both caseinate and alginate than in single alginate solution. Caseinate/alginate phase separated systems appeared thus well suited for Lc. lactis LAB3 cells entrapment. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Stability of Naturally Relevant Ternary Phases in the Cu–Sn–S system in Contact with an Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Andrea Giaccherini

    2016-07-01

    Full Text Available A relevant research effort is devoted to the synthesis and characterization of phases belonging to the ternary system Cu–Sn–S, mainly for their possible applications in semiconductor technology. Among all ternary phases, kuramite, Cu3SnS4, mohite, Cu2SnS3, and Cu4Sn7S16 have attracted the highest interest. Numerous studies were carried out claiming for the description of new phases in the ternary compositional field. In this study, we revise the existing literature on this ternary system, with a special focus on the phases stable in a temperature range at 25 °C. The only two ternary phases observed in nature are mohite and kuramite. Their occurrence is described as very rare. A numerical modelling of the stable solid phases in contact with a water solution was underwent to define stability relationships of the relevant phases of the system. The numerical modelling of the Eh-pH diagrams was carried out through the phreeqc software with the lnll.dat thermodynamic database. Owing to the complexity of this task, the subsystems Cu–O–H, Sn–O–H, Cu–S–O–H and Sn–S–O–H were firstly considered. The first Pourbaix diagram for the two naturally relevant ternary phases is then proposed.

  11. Improved methylene blue two-phase titration method for determining cationic surfactant concentration in high-salinity brine.

    Science.gov (United States)

    Cui, Leyu; Puerto, Maura; López-Salinas, José L; Biswal, Sibani L; Hirasaki, George J

    2014-11-18

    The methylene blue (MB) two-phase titration method is a rapid and efficient method for determining the concentrations of anionic surfactants. The point at which the aqueous and chloroform phases appear equally blue is called Epton's end point. However, many inorganic anions, e.g., Cl(-), NO3(-), Br(-), and I(-), can form ion pairs with MB(+) and interfere with Epton's end point, resulting in the failure of the MB two-phase titration in high-salinity brine. Here we present a method to extend the MB two-phase titration method for determining the concentration of various cationic surfactants in both deionized water and high-salinity brine (22% total dissolved solid). A colorless end point, at which the blue color is completely transferred from the aqueous phase to the chloroform phase, is proposed as titration end point. Light absorbance at the characteristic wavelength of MB is measured using a spectrophotometer. When the absorbance falls below a threshold value of 0.04, the aqueous phase is considered colorless, indicating that the end point has been reached. By using this improved method, the overall error for the titration of a permanent cationic surfactant, e.g., dodecyltrimethylammonium bromide, in deionized (DI) water and high-salinity brine is 1.274% and 1.322% with limits of detection (LOD) of 0.149 and 0.215 mM, respectively. Compared to the traditional acid-base titration method, the error of this improved method for a switchable cationic surfactant, e.g., tertiary amine surfactant (Ethomeen C12), is 2.22% in DI water and 0.106% with LOD of 0.369 and 0.439 mM, respectively.

  12. An Experimental Study of Two-Phase Pulse Flushing Technology in Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    Zhaozhao Tang

    2017-12-01

    Full Text Available The deterioration of drinking water during distribution process is caused by many factors. The microorganisms and substances peeling off from the “growth-ring” make the secondary pollution in drinking water distribution systems. To reduce the secondary pollution, two-phase pulse flushing technology is introduced to quickly remove the “growth-ring”. In this study, experiment is undertaken for investigating the efficiency of the two-phase pulse flushing and finding the best setting combination. A case study is undertaken to compare the efficiencies between the two-phase pulse and the single-phase flushing. The best setting combination of the two-phase pulse flushing is at the frequency 4 s–6 s (air inflow time is 4 s and air cut off time is 6 s and the round air inflow nozzle is set at the bottom of the pipe. Two-phase pulse flushing technology can save 95% of water and 6 h 40 min flushing time.

  13. Dynamic modelling for two-phase flow systems

    International Nuclear Information System (INIS)

    Guerra, M.A.

    1991-06-01

    Several models for two-phase flow have been studied, developing a thermal-hydraulic analysis code with one of these models. The program calculates, for one-dimensional cases with variable flow area, the transient behaviour of system process variables, when the boundary conditions (heat flux, flow rate, enthalpy and pressure) are functions of time. The modular structure of the code, eases the program growth. In fact, the present work is the basis for a general purpose accident and transient analysis code in nuclear reactors. Code verification has been made against RETRAN-02 results. Satisfactory results have been achieved with the present version of the code. (Author) [es

  14. Comparative performance and microbial community of single-phase and two-phase anaerobic systems co-digesting cassava pulp and pig manure

    DEFF Research Database (Denmark)

    Panichnumsin, P.; Ahring, B.K.; Nopharatana, A.

    2010-01-01

    In this study, we illustrated the performance and microbial community of single- and two-phase systems anaerobically co-digesting cassava pulp and pig manure. The results showed that the volatile solid reduction and biogas productivity of two-phase CSTR were 66 ± 4% and 2000 ± 210 ml l-1 d-1, while...... those of singlephase CSTR were 59 ± 1% and 1670 ± 60 ml l-1 d-1, respectively. Codigestion in two-phase CSTR gave higher 12% solid degradation and 25% methane production than single-phase CSTR. Phylogenetic analysis of 16S rDNA clone library revealed that the Bacteroidetes were the most abundant group......, followed by the Clostridia in singlephase CSTR. In hydrolysis/acidification reactor of two-phase system, the bacteria within the phylum Firmicutes, especially Clostridium, Eubacteriaceae and Lactobacillus were the dominant phylogenetic groups. Among the Archaea, Methanosaeta sp. was the exclusive...

  15. Application of Light Reflection Visualization for Measuring Organic-Liquid Saturation for Two-Phase Systems in Two-Dimensional Flow Cells.

    Science.gov (United States)

    DiFilippo, Erica L; Brusseau, Mark L

    2011-11-01

    A simple, noninvasive imaging technique was used to obtain in situ measurements of organic-liquid saturation in a two-phase system under dynamic conditions. Efficacy of the light reflection visualization (LRV) imaging method was tested through comparison of measured and known volumes of organic liquid for experiments conducted with a two-dimensional flow cell. Two sets of experiments were conducted, with source-zone configurations representing two archetypical residual-and-pool architectures. LRV measurements were collected during the injection of organic liquid and during a dissolution phase induced by water flushing. There was a strong correlation between measured and known organic-liquid volumes, with the LRV-measured values generally somewhat lower than the known volumes. Errors were greater for the system wherein organic liquid was present in multiple zones comprised of porous media of different permeabilities, and for conditions of multiphase flow. This method proved effective at determining organic-liquid distribution in a two-phase system using minimal specialized equipment.

  16. Response Surface Methodology Modelling of an Aqueous Two-Phase System for Purification of Protease from Penicillium candidum (PCA 1/TT031) under Solid State Fermentation and Its Biochemical Characterization

    Science.gov (United States)

    Alhelli, Amaal M.; Abdul Manap, Mohd Yazid; Mohammed, Abdulkarim Sabo; Mirhosseini, Hamed; Suliman, Eilaf; Shad, Zahra; Mohammed, Nameer Khairulla; Meor Hussin, Anis Shobirin

    2016-01-01

    Penicillium candidum (PCA 1/TT031) synthesizes different types of extracellular proteases. The objective of this study is to optimize polyethylene glycol (PEG)/citrate based on an aqueous two-phase system (ATPS) and Response Surface Methodology (RSM) to purify protease from Penicillium candidum (PCA 1/TT031). The effects of different PEG molecular weights (1500–10,000 g/mol), PEG concentration (9%–20%), concentrations of NaCl (0%–10%) and the citrate buffer (8%–16%) on protease were also studied. The best protease purification could be achieved under the conditions of 9.0% (w/w) PEG 8000, 5.2% NaCl, and 15.9% sodium citrate concentration, which resulted in a one-sided protease partitioning for the bottom phase with a partition coefficient of 0.2, a 6.8-fold protease purification factor, and a yield of 93%. The response surface models displayed a significant (p ≤ 0.05) response which was fit for the variables that were studied as well as a high coefficient of determination (R2). Similarly, the predicted and observed values displayed no significant (p > 0.05) differences. In addition, our enzyme characterization study revealed that Penicillium candidum (PCA 1/TT031) produced a slight neutral protease with a molecular weight between 100 and 140 kDa. The optimal activity of the purified enzyme occurred at a pH of 6.0 and at a temperature of 50 °C. The stability between different pH and temperature ranges along with the effect of chemical metal ions and inhibitors were also studied. Our results reveal that the purified enzyme could be used in the dairy industry such as in accelerated cheese ripening. PMID:27845736

  17. Response Surface Methodology Modelling of an Aqueous Two-Phase System for Purification of Protease from Penicillium candidum (PCA 1/TT031 under Solid State Fermentation and Its Biochemical Characterization

    Directory of Open Access Journals (Sweden)

    Amaal M. Alhelli

    2016-11-01

    Full Text Available Penicillium candidum (PCA 1/TT031 synthesizes different types of extracellular proteases. The objective of this study is to optimize polyethylene glycol (PEG/citrate based on an aqueous two-phase system (ATPS and Response Surface Methodology (RSM to purify protease from Penicillium candidum (PCA 1/TT031. The effects of different PEG molecular weights (1500–10,000 g/mol, PEG concentration (9%–20%, concentrations of NaCl (0%–10% and the citrate buffer (8%–16% on protease were also studied. The best protease purification could be achieved under the conditions of 9.0% (w/w PEG 8000, 5.2% NaCl, and 15.9% sodium citrate concentration, which resulted in a one-sided protease partitioning for the bottom phase with a partition coefficient of 0.2, a 6.8-fold protease purification factor, and a yield of 93%. The response surface models displayed a significant (p ≤ 0.05 response which was fit for the variables that were studied as well as a high coefficient of determination (R2. Similarly, the predicted and observed values displayed no significant (p > 0.05 differences. In addition, our enzyme characterization study revealed that Penicillium candidum (PCA 1/TT031 produced a slight neutral protease with a molecular weight between 100 and 140 kDa. The optimal activity of the purified enzyme occurred at a pH of 6.0 and at a temperature of 50 °C. The stability between different pH and temperature ranges along with the effect of chemical metal ions and inhibitors were also studied. Our results reveal that the purified enzyme could be used in the dairy industry such as in accelerated cheese ripening.

  18. Understanding of phase modulation in two-level systems through inverse scattering

    International Nuclear Information System (INIS)

    Hasenfeld, A.; Hammes, S.L.; Warren, W.S.

    1988-01-01

    Analytical and numerical calculations describe the effects of shaped radiation pulses on two-level systems in terms of quantum-mechanical scattering. Previous results obtained in the reduced case of amplitude modulation are extended to the general case of simultaneous amplitude and phase modulation. We show that an infinite family of phase- and amplitude-modulated pulses all generate rectangular inversion profiles. Experimental measurements also verify the theoretical analysis

  19. Enzyme Stability and Activity in Non-Aqueous Reaction Systems: A Mini Review

    Directory of Open Access Journals (Sweden)

    Shihui Wang

    2016-02-01

    Full Text Available Enormous interest in biocatalysis in non-aqueous phase has recently been triggered due to the merits of good enantioselectivity, reverse thermodynamic equilibrium, and no water-dependent side reactions. It has been demonstrated that enzyme has high activity and stability in non-aqueous media, and the variation of enzyme activity is attributed to its conformational modifications. This review comprehensively addresses the stability and activity of the intact enzymes in various non-aqueous systems, such as organic solvents, ionic liquids, sub-/super-critical fluids and their combined mixtures. It has been revealed that critical factors such as Log P, functional groups and the molecular structures of the solvents define the microenvironment surrounding the enzyme molecule and affect enzyme tertiary and secondary structure, influencing enzyme catalytic properties. Therefore, it is of high importance for biocatalysis in non-aqueous media to elucidate the links between the microenvironment surrounding enzyme surface and its stability and activity. In fact, a better understanding of the correlation between different non-aqueous environments and enzyme structure, stability and activity can contribute to identifying the most suitable reaction medium for a given biotransformation.

  20. Momentum, heat, and neutral mass transport in convective atmospheric pressure plasma-liquid systems and implications for aqueous targets

    Science.gov (United States)

    Lindsay, Alexander; Anderson, Carly; Slikboer, Elmar; Shannon, Steven; Graves, David

    2015-10-01

    There is a growing interest in the study of plasma-liquid interactions with application to biomedicine, chemical disinfection, agriculture, and other fields. This work models the momentum, heat, and neutral species mass transfer between gas and aqueous phases in the context of a streamer discharge; the qualitative conclusions are generally applicable to plasma-liquid systems. The problem domain is discretized using the finite element method. The most interesting and relevant model result for application purposes is the steep gradients in reactive species at the interface. At the center of where the reactive gas stream impinges on the water surface, the aqueous concentrations of OH and ONOOH decrease by roughly 9 and 4 orders of magnitude respectively within 50 μ m of the interface. Recognizing the limited penetration of reactive plasma species into the aqueous phase is critical to discussions about the therapeutic mechanisms for direct plasma treatment of biological solutions. Other interesting results from this study include the presence of a 10 K temperature drop in the gas boundary layer adjacent to the interface that arises from convective cooling. Though the temperature magnitudes may vary among atmospheric discharge types (different amounts of plasma-gas heating), this relative difference between gas and liquid bulk temperatures is expected to be present for any system in which convection is significant. Accounting for the resulting difference between gas and liquid bulk temperatures has a significant impact on reaction kinetics; factor of two changes in terminal aqueous species concentrations like H2O2, NO2- , and NO3- are observed in this study if the effect of evaporative cooling is not included.

  1. Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media

    KAUST Repository

    Chen, J.

    2014-06-03

    This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow. 2014 Jie Chen et al.

  2. Coupling Two-Phase Fluid Flow with Two-Phase Darcy Flow in Anisotropic Porous Media

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2014-06-01

    Full Text Available This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow.

  3. Thermo-Fluid Dynamics of Two-Phase Flow

    CERN Document Server

    Ishii, Mamrou

    2011-01-01

    "Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part

  4. Scaling of the steady state and stability behaviour of single and two-phase natural circulation systems

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Nayak, A.K.; Bade, M.H.; Kumar, N.; Saha, D.; Sinha, R.K.

    2002-01-01

    Scaling methods for both single-phase and two-phase natural circulation systems have been presented. For single-phase systems, simulation of the steady state flow can be achieved by preserving just one nondimensional parameter. For uniform diameter two-phase systems also, it is possible to simulate the steady state behaviour with just one non-dimensional parameter. Simulation of the stability behaviour requires geometric similarity in addition to the similarity of the physical parameters appearing in the governing equations. The scaling laws proposed have been tested with experimental data in case of single-phase natural circulation. (author)

  5. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility.

    Science.gov (United States)

    Yang, Chongyin; Suo, Liumin; Borodin, Oleg; Wang, Fei; Sun, Wei; Gao, Tao; Fan, Xiulin; Hou, Singyuk; Ma, Zhaohui; Amine, Khalil; Xu, Kang; Wang, Chunsheng

    2017-06-13

    Leveraging the most recent success in expanding the electrochemical stability window of aqueous electrolytes, in this work we create a unique Li-ion/sulfur chemistry of both high energy density and safety. We show that in the superconcentrated aqueous electrolyte, lithiation of sulfur experiences phase change from a high-order polysulfide to low-order polysulfides through solid-liquid two-phase reaction pathway, where the liquid polysulfide phase in the sulfide electrode is thermodynamically phase-separated from the superconcentrated aqueous electrolyte. The sulfur with solid-liquid two-phase exhibits a reversible capacity of 1,327 mAh/(g of S), along with fast reaction kinetics and negligible polysulfide dissolution. By coupling a sulfur anode with different Li-ion cathode materials, the aqueous Li-ion/sulfur full cell delivers record-high energy densities up to 200 Wh/(kg of total electrode mass) for >1,000 cycles at ∼100% coulombic efficiency. These performances already approach that of commercial lithium-ion batteries (LIBs) using a nonaqueous electrolyte, along with intrinsic safety not possessed by the latter. The excellent performance of this aqueous battery chemistry significantly promotes the practical possibility of aqueous LIBs in large-format applications.

  6. Gas-Phase Oxidation of Aqueous Ethanol by Nanoparticle Vanadia/Anatase Catalysts

    DEFF Research Database (Denmark)

    Jørgensen, Betina; Kristensen, Steffen Buus; Kunov-Kruse, Andreas Jonas

    2009-01-01

    The gas-phase oxidation of aqueous ethanol with dioxygen has been examined with a new nanoparticle V2O5/TiO2 catalyst. Product selectivity could to a large extent be controlled by small alterations of reaction parameters, allowing production of acetaldehyde at a selectivity higher than 90%, near...

  7. Strength and fracture of two-phase alloys: a comparison of two alloy systems

    International Nuclear Information System (INIS)

    Gurland, J.

    1978-01-01

    The functional roles of the hard and soft constituents in the deformation and fracture of two-phase alloys are discussed on the basis of two commercially important alloy systems, namely spheroidized carbon steels and cemented carbides, WC-Co. A modified rule of mixtures provides a structural approach to the yield and flow strength. Consideration of the fracture toughness is attempted by means of a phenomenological modelling of the fracture process on the microscale. While there are large differences in properties between the two alloys, the deformation and fracture processes show broad smilarities which are associated with the features of the interaction between constituents common to both alloys

  8. Design and In Vitro Evaluation of a New Nano-Microparticulate System for Enhanced Aqueous-Phase Solubility of Curcumin

    OpenAIRE

    Guzman-Villanueva, Diana; El-Sherbiny, Ibrahim M.; Herrera-Ruiz, Dea; Smyth, Hugh D. C.

    2013-01-01

    Curcumin, a yellow polyphenol derived from the turmeric Curcuma longa, has been associated with a diverse therapeutic potential including anti-inflammatory, antioxidant, antiviral, and anticancer properties. However, the poor aqueous solubility and low bioavailability of curcumin have limited its potential when administrated orally. In this study, curcumin was encapsulated in a series of novel nano-microparticulate systems developed to improve its aqueous solubility and stability. The nano-mi...

  9. Adsorptive removal of phthalate ester (Di-ethyl phthalate) from aqueous phase by activated carbon: a kinetic study.

    Science.gov (United States)

    Venkata Mohan, S; Shailaja, S; Rama Krishna, M; Sarma, P N

    2007-07-19

    Adsorptive studies were carried out on Di-ethyl phthalate (DEP) removal from aqueous phase onto activated carbon. Batch sorption studies were performed and the results revealed that activated carbon demonstrated ability to adsorb DEP. Influence of varying experimental conditions such as DEP concentration, pH of aqueous solution, and dosage of adsorbent were investigated on the adsorption process. Sorption interaction of DEP onto activated carbon obeyed the pseudo second order rate equation. Experimental data showed good fit with both the Langmuir and Freundlich adsorption isotherm models. DEP sorption was found to be dependent on the aqueous phase pH and the uptake was observed to be greater at acidic pH.

  10. Species dependent radiotracer study of Cr(VI) and Cr(III) using an aqueous biphasic system

    Energy Technology Data Exchange (ETDEWEB)

    Roy, K.; Lahiri, S. [Chemical Sciences Div., Saha Inst. of Nuclear Physics, Kolkata (India)

    2008-07-01

    The speciation study of Cr(III) and Cr(VI) was carried out using a polyethylene glycol (PEG) based aqueous biphasic extraction system (ABS). Neutron activated Cr(III) and Cr(VI) salts were assayed in a HPGe detector before and after employing aqueous biphasic extraction. Different salts of various salting out abilities were taken as the salt rich phase. The best condition for extraction of Cr(VI) and the maximum differential attitude of ABS to Cr(VI) and Cr(III) was observed when 2 M Na{sub 2}SO{sub 4} and PEG 4000 (50% w/w) solutions were used. Cr(III) can also be extracted by the PEG with prior complexation with diphenylthiocarbazone (dithizone). The chromium dithizonate complex is quantitatively extracted by the PEG rich phase. (orig.)

  11. Application of New Electrolyte Model to Phase Transfer Catalyst (PTC) Systems

    DEFF Research Database (Denmark)

    Hyung Kim, Sun; Anantpinijwatna, Amata; Kang, Jeong Won

    2015-01-01

    Abstract Phase transfer catalyst (PTC) is used to transfer the desirable active form of an anion from the aqueous phase to organic phase where the reaction occurs. One of major challenges for process design of the PTC system is to establish a reliable thermodynamic model capable of describing pha...... in PTC systems, thereby, extending the application range of the PTC-system model. The solubility of PTC in organic solvents, which is a key factor for strategy of PTC and solvent selection, has been calculated using the e-NRTL-SAC model....

  12. Forced two phase helium cooling of large superconducting magnets

    International Nuclear Information System (INIS)

    Green, M.A.; Burns, W.A.; Taylor, J.D.

    1979-08-01

    A major problem shared by all large superconducting magnets is the cryogenic cooling system. Most large magnets are cooled by some variation of the helium bath. Helium bath cooling becomes more and more troublesome as the size of the magnet grows and as geometric constraints come into play. An alternative approach to cooling large magnet systems is the forced flow, two phase helium system. The advantages of two phase cooling in many magnet systems are shown. The design of a two phase helium system, with its control dewar, is presented. The paper discusses pressure drop of a two phase system, stability of a two phase system and the method of cool down of a two phase system. The results of experimental measurements at LBL are discussed. Included are the results of cool down and operation of superconducting solenoids

  13. Modulating patterns of two-phase flow with electric fields.

    Science.gov (United States)

    Liu, Dingsheng; Hakimi, Bejan; Volny, Michael; Rolfs, Joelle; Anand, Robbyn K; Turecek, Frantisek; Chiu, Daniel T

    2014-07-01

    This paper describes the use of electro-hydrodynamic actuation to control the transition between three major flow patterns of an aqueous-oil Newtonian flow in a microchannel: droplets, beads-on-a-string (BOAS), and multi-stream laminar flow. We observed interesting transitional flow patterns between droplets and BOAS as the electric field was modulated. The ability to control flow patterns of a two-phase fluid in a microchannel adds to the microfluidic tool box and improves our understanding of this interesting fluid behavior.

  14. IONS FROM AQUEOUS PHASE BY WATER HYACINTH (Eichhornia

    African Journals Online (AJOL)

    Preferred Customer

    Most often there is incomplete metal ion removal, high reagent and ... environmentally friendly water filters for heavy metal ions removal in aqueous systems. Currently E. crassipes is ..... From the results, the singly charged ions have very little ...

  15. Quantum phase transition in a coupled two-level system embedded in anisotropic three-dimensional photonic crystals.

    Science.gov (United States)

    Shen, H Z; Shao, X Q; Wang, G C; Zhao, X L; Yi, X X

    2016-01-01

    The quantum phase transition (QPT) describes a sudden qualitative change of the macroscopic properties mapped from the eigenspectrum of a quantum many-body system. It has been studied intensively in quantum systems with the spin-boson model, but it has barely been explored for systems in coupled spin-boson models. In this paper, we study the QPT with coupled spin-boson models consisting of coupled two-level atoms embedded in three-dimensional anisotropic photonic crystals. The dynamics of the system is derived exactly by means of the Laplace transform method, which has been proven to be equivalent to the dissipationless non-Markovian dynamics. Drawing on methods for analyzing the ground state, we obtain the phase diagrams through two exact critical equations and two QPTs are found: one QPT is that from the phase without one bound state to the phase with one bound state and another is that from one phase with the bound state having one eigenvalue to another phase where the bound state has two eigenvalues. Our analytical results also suggest a way of control to overcome the effect of decoherence by engineering the spectrum of the reservoirs to approach the non-Markovian regime and to form the bound state of the whole system for quantum devices and quantum statistics.

  16. An example of transition from a corrosion process in gaseous phase to corrosion in aqueous environment: the case of Z2CN18-10 stainless steel by iodine and water in vapour phase

    International Nuclear Information System (INIS)

    Mathieu, Bruno

    1990-01-01

    This research thesis addresses an example of transition of a corrosion process in gaseous phase towards corrosion in aqueous environment, specifically in the case of the corrosion of the Z2CN18-10 stainless steel by gaseous iodine in presence of water vapour (and possibly nitrogen dioxide). This transition occurs in two steps: initiation in gaseous phase and growth in aqueous environment. This transition is due to hygroscopic properties of mostly chromium iodides and, to a lesser extent, iron iodides. Morphological, electrochemical and thermogravimetry studies have been performed by varying different parameters governing corrosion processes: corrosion temperature, iodine concentration, relative humidity, and reaction time [fr

  17. Factors influencing phase-disengagement rates in solvent-extraction systems employing tertiary amine extractants

    International Nuclear Information System (INIS)

    Moyer, B.A.; McDowell, W.J.

    1981-01-01

    The primary purpose of the present investigation was to examine the effects of amine size and structure on phase disengagement. Nine commercial tertiary amines were tested together with four laboratory-quality amines for uranium extraction and both organic-continuous (OC) and aqueous-continuous (AC) phase disengagement under Amex-type conditions. Synthetic acid sulfate solutions with and without added colloidal silica and actual ore leach solutions were used as the aqueous phases. Phase disengagement results were correlated with amine size and branching and solution wetting behavior on a silicate (glass) surface. The results suggest that the performance of some Amex systems may be improved by using branched chain tertiary amine extractants of higher molecular weight than are now normally used

  18. Analysis of Solid and Aqueous Phase Products from Hydrothermal Carbonization of Whole and Lipid-Extracted Algae

    Directory of Open Access Journals (Sweden)

    Amber Broch

    2013-12-01

    Full Text Available Microalgae have tremendous potential as a feedstock for production of liquid biofuels, particularly biodiesel fuel via transesterification of algal lipids. However, biodiesel production results in significant amounts of algal residues, or “lipid extracted algae” (LEA. Suitable utilization of the LEA residue will improve the economics of algal biodiesel. In the present study, we evaluate the hydrothermal carbonization (HTC of whole and lipid extracted algal (Spirulina maxima feedstocks in order to produce a solid biofuel (hydrochar and value-added co-products in the aqueous phase. HTC experiments were performed using a 2-L Parr reactor (batch type at 175–215 °C with a 30-min holding time. Solid, aqueous and gaseous products were analyzed using various laboratory methods to evaluate the mass and carbon balances, and investigate the existence of high value chemicals in the aqueous phase. The HTC method is effective in creating an energy dense, solid hydrochar from both whole algae and LEA at lower temperatures as compared to lignocellulosic feedstocks, and is effective at reducing the ash content in the resulting hydrochar. However, under the treatment temperatures investigated, less than 1% of the starting dry algae mass was recovered as an identified high-value chemical in the aqueous phase.

  19. A review of catalytic aqueous-phase reforming of oxygenated hydrocarbons derived from biorefinery water fractions

    NARCIS (Netherlands)

    Coronado, I.; Stekrova, M.; Reinikainen, M.; Simell, P.; Lefferts, Leonardus; Lehtonen, J.

    2016-01-01

    Aqueous-phase reforming (APR) of oxygenated hydrocarbons is a process for the production of hydrogen and light alkanes. The reactants of APR remain in liquid phase during the reaction avoiding an energetically demanding vaporization-step compared to processes such as steam reforming (SR).

  20. Solid phase microextraction speciation analysis of triclosan in aqueous mediacontaining sorbing nanoparticles

    NARCIS (Netherlands)

    Zielinska, K.

    2014-01-01

    Solid phase microextraction (SPME) is applied in the speciation analysis of the hydrophobic compound triclosan in an aqueous medium containing sorbing SiO2 nanoparticles (NPs). It is found that these NPs, as well as their complexes with triclosan, partition between the bulk medium and the solid

  1. Hydrogen production through aqueous-phase reforming of ethylene glycol in a washcoated microchannel

    NARCIS (Netherlands)

    Neira d'Angelo, M.F.; Ordomskiy, V.; Paunovic, V.; Schaaf, van der J.; Schouten, J.C.; Nijhuis, T.A.

    2013-01-01

    Aqueous-phase reforming (APR) of biocarbohydrates is conducted in a catalytically stable washcoated microreactor where multiphase hydrogen removal enhances hydrogen efficiency. Single microchannel experiments are conducted following a simplified model based on the microreactor concept. A coating

  2. Compositional evolution of particle-phase reaction products and water in the heterogeneous OH oxidation of model aqueous organic aerosols

    Directory of Open Access Journals (Sweden)

    M. M. Chim

    2017-12-01

    Full Text Available Organic compounds present at or near the surface of aqueous droplets can be efficiently oxidized by gas-phase OH radicals, which alter the molecular distribution of the reaction products within the droplet. A change in aerosol composition affects the hygroscopicity and leads to a concomitant response in the equilibrium amount of particle-phase water. The variation in the aerosol water content affects the aerosol size and physicochemical properties, which in turn governs the oxidation kinetics and chemistry. To attain better knowledge of the compositional evolution of aqueous organic droplets during oxidation, this work investigates the heterogeneous OH-radical-initiated oxidation of aqueous methylsuccinic acid (C5H8O4 droplets, a model compound for small branched dicarboxylic acids found in atmospheric aerosols, at a high relative humidity of 85 % through experimental and modeling approaches. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (Direct Analysis in Real Time, DART coupled with a high-resolution mass spectrometer reveal two major products: a five carbon atom (C5 hydroxyl functionalization product (C5H8O5 and a C4 fragmentation product (C4H6O3. These two products likely originate from the formation and subsequent reactions (intermolecular hydrogen abstraction and carbon–carbon bond scission of tertiary alkoxy radicals resulting from the OH abstraction occurring at the methyl-substituted carbon site. Based on the identification of the reaction products, a kinetic model of oxidation (a two-product model coupled with the Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients (AIOMFAC model is built to simulate the size and compositional changes of aqueous methylsuccinic acid droplets during oxidation. Model results show that at the maximum OH exposure, the droplets become slightly more hygroscopic after oxidation, as the mass fraction of water is predicted to increase from

  3. Recovery of Picloram and 2,4-Dichlorophenoxyacetic Acid from Aqueous Samples by Reversed-Phase Solid-Phase Extraction

    Science.gov (United States)

    Martha J.M. Wells; Jerry L. Michael

    1987-01-01

    Extensive preparation of samples before chromatographic analysis is usually the most time-consuming process in the determination of many organic compounds in environmental matrices. In the past, removal of some organic from aqueous solution was commonly done by liquid/liquid extraction. However, the introduction of stable, covalently bonded reversed-phase sorbents now...

  4. Enhancement in extraction rates by addition of organic acids to aqueous phase in solvent extraction of rare earth metals in presence of diethylenetriaminepentaacetic acid

    International Nuclear Information System (INIS)

    Matsuyama, Hideto; Azis, A.; Fujita, Mamoru; Teramoto, Masaaki.

    1996-01-01

    It is well known that the selectivity of rare earth metals by solvent extraction is increased by the addition of a chelating agent such as diethylenetriaminepentaacetic acid (DTPA) in the aqueous phase. One of the disadvantages of this method is the decrease in extraction rates due to complexation in the aqueous phase. In this paper, further addition of organic acids to the aqueous phase was examined for the purpose of enhancing the extraction rates in solvent extraction with DTPA. The addition of several kind of organic acids such as formic acid, acetic acid, malonic acid, lactic acid and citric acid was investigated for a Er/Y separation system. A remarkable enhancement in extraction rates was observed with a slight decrease in the selectivity by the addition of citric acid or lactic acid. Extraction rates in the presence of both DTPA and citric acid increased with the increase in citric acid concentration and with the increase in proton concentration. A 150 times enhancement in extraction rates was found in the low proton concentration condition. In order to analyze the extraction rates and selectivities obtained, mass transfer equations were presented by considering both the dissociation reaction of rare earth metal-DTPA complexes and the complex formation between rare earth metal and organic acid in the aqueous phase. The experimental data were analyzed by these equations. (author)

  5. Mechanistic insights into aqueous phase propanol dehydration in H-ZSM-5 zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Donghai [Pacific Northwest National Laboratory, Physical and Computational Sciences Directorate & Institute for Integrated Catalysis, Richland WA 99352; Lercher, Johannes A. [Pacific Northwest National Laboratory, Physical and Computational Sciences Directorate & Institute for Integrated Catalysis, Richland WA 99352; Dept. of Chemistry and Catalysis Research Institute, TU München, Lichtenbergstrasse 4 Garching 85748 Germany

    2016-10-06

    Aqueous phase dehydration of 1-propanol over H-ZSM-5 zeolite was investigated using density functional theory (DFT) calculations. The water molecules in the zeolite pores prefer to aggregate via the hydrogen bonding network and be protonated at the Brønsted acidic sites (BAS). Two typical configurations, i.e., dispersed and clustered, of water molecules were identified by ab initio molecular dynamics simulation of the mimicking aqueous phase H-ZSM-5 zeolite unit cell with 20 water molecules per unit cell. DFT calculated Gibbs free energies suggest that the dimeric propanol-propanol, the propanol-water complex, and the trimeric propanol-propanol-water are formed at high propanol concentrations, which provide a kinetically feasible dehydration reaction channel of 1-propanol to propene. However, calculation results also indicate that the propanol dehydration via the unimolecular mechanism becomes kinetically discouraged due to the enhanced stability of the protonated dimeric propanol and the protonated water cluster acting as the BAS site for alcohol dehydration reaction. This work was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.

  6. Metastable equilibrium for the quaternary system containing with lithium+potassium+magnesium+chloride in aqueous solution at 323K

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xudong; Yin, Qinghong; Jiang, Dongbo; Zeng, Ying [Chengdu University of Technology, Chengdu (China)

    2014-06-15

    The metastable equilibrium of the system contained with lithium, potassium, magnesium, and chloride in aqueous system was investigated at 323 K using an isothermal evaporation method. The isothermal experimental data and physicochemical properties, such as density and refractive index of the equilibrated solution, were determined. With the experimental results, the stereo phase diagram, the projected phase diagram, the water content diagram and the physicochemical properties versus composition diagrams were constructed. The projected phase diagram consists of three invariant points, seven univariant curves and five crystallization fields corresponding to single salts potassium chloride (KCl), lithium chloride monohydrate (LiCl·H{sub 2}O), bischofite (MgCl{sub 2}·6H{sub 2}O) and two double salts lithium carnallite (LiCl·MgCl{sub 2}·7H{sub 2}O) and potassium carnallite (KCl·MgCl{sub 2}·6H{sub 2}O). Salt KCl has the largest crystallization region; it contains almost 95% of the general crystallization field.

  7. Human plasma-derived immunoglobulin G fractionated by an aqueous two-phase system, caprylic acid precipitation, and membrane chromatography has a high purity level and is free of detectable in vitro thrombogenic activity.

    Science.gov (United States)

    Vargas, M; Segura, Á; Wu, Y-W; Herrera, M; Chou, M-L; Villalta, M; León, G; Burnouf, T

    2015-02-01

    Instituto Clodomiro Picado has developed an immunoglobulin G (IgG) plasma fractionation process combining a polyethylene glycol/phosphate aqueous two-phase system (ATPS), caprylic acid precipitation and anion-exchange membrane chromatography. We evaluated the purity and in vitro thrombogenicity of such IgG, in line with current international requirements. Contributions of the different production steps to reduce thrombogenicity were assessed at 0·2 l-scale, and then the methodology was scaled-up to a 10 l-scale and final products (n = 3) were analysed. Purity, immunoglobulin composition, and subclass distribution were determined by electrophoretic and immunochemical methods. The in vitro thrombogenic potential was determined by a thrombin generation assay (TGA) using a Technothrombin fluorogenic substrate. Prekallikrein activator (PKA), plasmin, factor Xa, thrombin and thrombin-like activities were assessed using S-2302, S-2251, S-2222, S-2238 and S-2288 chromogenic substrates, respectively, and FXI by an ELISA. The thrombogenicity markers were reduced mostly during the ATPS step and were found to segregate mostly into the discarded liquid upper phase. The caprylic acid precipitation eliminated the residual procoagulant activity. The IgG preparations made from the 10 l-batches contained 100% gamma proteins, low residual IgA and undetectable IgM. The IgG subclass distribution was not substantially affected by the process. TGA and amidolytic activities revealed an undetectable in vitro thrombogenic risk and the absence of proteolytic enzymes in the final product. Fractionating human plasma by an ATPS combined with caprylic acid and membrane chromatography resulted in an IgG preparation of high purity and free of a detectable in vitro thrombogenic risk. © 2014 International Society of Blood Transfusion.

  8. A thermodynamic model for aqueous solutions of liquid-like density

    Energy Technology Data Exchange (ETDEWEB)

    Pitzer, K.S.

    1987-06-01

    The paper describes a model for the prediction of the thermodynamic properties of multicomponent aqueous solutions and discusses its applications. The model was initially developed for solutions near room temperature, but has been found to be applicable to aqueous systems up to 300/sup 0/C or slightly higher. A liquid-like density and relatively small compressibility are assumed. A typical application is the prediction of the equilibrium between an aqueous phase (brine) and one or more solid phases (minerals). (ACR)

  9. Experimental measurements of U60 nanocluster stability in aqueous solution

    Science.gov (United States)

    Flynn, Shannon L.; Szymanowski, Jennifer E. S.; Gao, Yunyi; Liu, Tianbo; Burns, Peter C.; Fein, Jeremy B.

    2015-05-01

    In this study, the aqueous behavior of isolated U60 nanoclusters (K16Li25[UO2(O2)OH]60)-19 was studied under several pH conditions and nanocluster concentrations to determine if the nanoclusters exhibit solid phase buffering behavior or if they exhibit behavior more like aqueous complexes. U60 is a cage cluster consisting of 60 (UO2)(O2)2(OH)2 uranyl polyhedral which share OH and O2 groups with their neighboring uranyl polyhedral, resulting in negatively charged cage clusters whose charge is at least partially offset by K+ and Li+ in the aqueous phase. Batch experiments to monitor nanocluster stability were conducted for 16 days at pH 7.5, 8.0 and 8.5 at nanocluster suspension concentrations of 1.4, 2.8 and 6.0 g/L. The aqueous concentrations of U, Li, and K, determined after 10 kDa molecular weight filtration, achieved steady-state with the nanoclusters within 24 h. The steady-state aqueous U, Li, and K concentrations were independent of solution pH, however they increased with increasing nanocluster concentration, indicating that the nanoclusters do not buffer the aqueous activities as a bulk solid phase would, but exhibit behavior that is more characteristic of dissolved aqueous complexes. The ion activity product (I.A.P.) value was calculated using two approaches: (1) treating the nanoclusters as a solid phase with an activity of one, and (2) treating the nanoclusters as aqueous complexes with a non-unit activity equal to their concentration in solution. The I.A.P. values that were calculated with non-unit activity for the nanoclusters exhibited significantly less variation as a function of nanocluster concentration compared to the I.A.P. values calculated with a nanocluster activity of one. The results yield a calculated log dissociation constant for the U60 nanoclusters of 9.2 + 0.2/-0.3 (1σ). Our findings provide a better understanding of the thermodynamic stability and behavior of U60 nanoclusters in aqueous systems, and can be used to estimate the

  10. Ru decorated carbon nanotubes - a promising catalyst for reforming bio-based acetic acid in the aqueous phase

    NARCIS (Netherlands)

    de Vlieger, Dennis; Lefferts, Leonardus; Seshan, Kulathuiyer

    2014-01-01

    Catalytic reforming of biomass derived waste streams in the aqueous phase is a promising process for the production of sustainable hydrogen. Acetic acid will be a major component (up to 20 wt%) in many anticipated gasification feed streams (e.g. the aqueous fraction of pyrolysis oil). Conventional

  11. Two-phase flows and heat transfer within systems with ambient pressure above the thermodynamic critical pressure

    Science.gov (United States)

    Hendricks, R. C.; Braun, M. J.; Mullen, R. L.

    1986-01-01

    In systems where the design inlet and outlet pressure P sub amb are maintained above the thermodynamic critical pressure P sub c, it is often assumed that heat and mass transfer are governed by single-phase relations and that two-phase flows cannot occur. This simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines, boilers, and other systems where two-phase regions can exist even though P sub amb P sub c. Heat and mass transfer and rotordynamic-fluid-mechanic restoring forces depend on momentum differences, and those for a two-phase zone can differ significantly from those for a single-phase zone. By using a laminar, variable-property bearing code and a rotating boiler code, pressure and temperature surfaces were determined that illustrate nesting of a two-phase region within a supercritical pressure region. The method of corresponding states is applied to bearings with reasonable rapport.

  12. Unconventional phases in quantum spin and pseudospin systems in two dimensional and three dimensional lattices

    Science.gov (United States)

    Xu, Cenke

    Several examples of quantum spin systems and pseudo spin systems have been studied, and unconventional states of matters and phase transitions have been realized in all these systems under consideration. In the p +/- ip superconductor Josephson lattice and the p--band cold atomic system trapped in optical lattices, novel phases which behave similarly to 1+1 dimensional systems are realized, despite the fact that the real physical systems are in two or three dimensional spaces. For instance, by employing a spin-wave analysis together with a new duality transformation, we establish the existence and stability of a novel gapless "critical phase", which we refer to as a "bond algebraic liquid". This novel critical phase is analogous to the 1+1 dimensional algebraic boson liquid phase. The reason for the novel physics is that there is a quasilocal gauge symmetry in the effective low energy Hamiltonian. In a spin-1 system on the kagome lattice, and a hard-core boson system on the honeycomb lattice, the low energy physics is controlled by two components of compact U(1) gauge symmetries that emerge at low energy. Making use of the confinement nature of the 2+1 dimensional compact gauge theories and the powerful duality between gauge theories and height field theories, the crystalline phase diagrams are studied for both systems, and the transitions to other phases are also considered. These phase diagrams might be accessible in strongly correlated materials, or atomic systems in optical lattices. A novel quantum ground state of matter is realized in a bosonic model on three dimensional fcc lattice with emergent low energy excitations. The novel phase obtained is a stable gapless boson liquid phase, with algebraic boson density correlations. The stability of this phase is protected against the instanton effect and superfluidity by self-duality and large gauge symmetries on both sides of the duality. The gapless collective excitations of this phase closely resemble the

  13. Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process.

    Science.gov (United States)

    Leng, Lijian; Li, Jun; Wen, Zhiyou; Zhou, Wenguang

    2018-05-01

    Hydrothermal liquefaction (HTL) of microalgae biomass generates an aqueous phase (AP) byproduct with limited energy value. Recycling the AP solution as a source of nutrients for microalgae cultivation provides an opportunity for a cost-effective production of HTL based biofuel and algal biomass feedstock for HTL, allowing a closed-loop biofuel production in microalgae HTL biofuel system. This paper aims to provide a comprehensive overview of characteristics of AP and its nutrients recycling for algae production. Inhibitory effects resulted from the toxic compounds in AP and alleviation strategies are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Novel Displacement Agents for Aqueous 2-Phase Extraction Can Be Estimated Based on Hybrid Shortcut Calculations.

    Science.gov (United States)

    Kress, Christian; Sadowski, Gabriele; Brandenbusch, Christoph

    2016-10-01

    The purification of therapeutic proteins is a challenging task with immediate need for optimization. Besides other techniques, aqueous 2-phase extraction (ATPE) of proteins has been shown to be a promising alternative to cost-intensive state-of-the-art chromatographic protein purification. Most likely, to enable a selective extraction, protein partitioning has to be influenced using a displacement agent to isolate the target protein from the impurities. In this work, a new displacement agent (lithium bromide [LiBr]) allowing for the selective separation of the target protein IgG from human serum albumin (represents the impurity) within a citrate-polyethylene glycol (PEG) ATPS is presented. In order to characterize the displacement suitability of LiBr on IgG, the mutual influence of LiBr and the phase formers on the aqueous 2-phase system (ATPS) and partitioning is investigated. Using osmotic virial coefficients (B22 and B23) accessible by composition gradient multiangle light-scattering measurements, the precipitating effect of LiBr on both proteins and an estimation of both protein partition coefficients is estimated. The stabilizing effect of LiBr on both proteins was estimated based on B22 and experimentally validated within the citrate-PEG ATPS. Our approach contributes to an efficient implementation of ATPE within the downstream processing development of therapeutic proteins. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. A deteriorating two-system with two repair modes and sojourn times phase-type distributed

    International Nuclear Information System (INIS)

    Montoro-Cazorla, Delia; Perez-Ocon, Rafael

    2006-01-01

    We study a two-unit cold standby system in steady-state. The online unit goes through a finite number of stages of successive degradation preceding the failure. The units are reparable, there is a repairman and two types of maintenance are considered, preventive and corrective. The preventive repair aims to improve the degradation of a unit being operative. The corrective repair is necessary when the unit fails. We will assume that the preventive repair will be interrupted in favour of a corrective repair in order to increase the availability of the system. The random operational and repair times follow phase-type distributions. For this system, the stationary probability vector, the replacement times, and the involved costs are calculated. An optimisation problem is illustrated by a numerical example. In this, the optimal degradation stage for the preventive repair of the online unit is determined by taking into account the system availability and the incurred costs

  16. A deteriorating two-system with two repair modes and sojourn times phase-type distributed

    Energy Technology Data Exchange (ETDEWEB)

    Montoro-Cazorla, Delia [Departamento de Estadistica e I.O., Escuela Politecnica de Linares, Universidad de Jaen, 23700 Linares, Jaen (Spain); Perez-Ocon, Rafael [Departamento de Estadistica e I.O., Facultad de Ciencias, Universidad de Granada, Granada 18071 (Spain)]. E-mail: rperezo@ugr.es

    2006-01-01

    We study a two-unit cold standby system in steady-state. The online unit goes through a finite number of stages of successive degradation preceding the failure. The units are reparable, there is a repairman and two types of maintenance are considered, preventive and corrective. The preventive repair aims to improve the degradation of a unit being operative. The corrective repair is necessary when the unit fails. We will assume that the preventive repair will be interrupted in favour of a corrective repair in order to increase the availability of the system. The random operational and repair times follow phase-type distributions. For this system, the stationary probability vector, the replacement times, and the involved costs are calculated. An optimisation problem is illustrated by a numerical example. In this, the optimal degradation stage for the preventive repair of the online unit is determined by taking into account the system availability and the incurred costs.

  17. Purificação de três diferentes beta-galactosidades microbianas por partição em sistemas de duas fases aquosas Purification of three different microbial beta-galactosidases by partitioning in aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    Maria Estela SILVA

    1997-12-01

    Full Text Available Este trabalho tratou da investigação do efeito do peso molecular de polietilenoglicol (PEG sobre a partição de enzimas beta-galactosidases de diferentes origens microbianas: Escherichia coli, Klueveromyces lactis e Aspergillus orizae em sistemas de duas fases aquosas (SDFA.Foi observado que os melhores sistemas para purificação da enzima de E. coli foram os formados por PEG 4000, 6000 e 8000/fosfato, fornecendo os mais elevados fatores de purificação da enzima. As enzimas de Klueveromyces lactis e Aspergillus orizae não foram eficientemente purificadas nestes sistemas sendo insensíveis à alterações do peso molecular do PEG. Portanto, um outro sistema de duas fases aquosas foi desenvolvido contendo um ligante específico, p-aminofenil 1-tio-beta-D-galactopiranosídeo (APGP, acoplado ao PEG para purificar a enzima de Klueveromyces lactis. Uma etapa simples de partição no SDFA formado por 6% APGP-PEG4000 + 12% dextrana T505.000 foi capaz de recuperar 83% da enzima na fase superior do sistema e de aumentar 1,6 vezes o fator de purificação.This work investigated the effect of the molecular weight of polyethyleneglycol (PEG upon the partition coefficient of beta-galactosidases from three different microorganisms: Escherichia coli, Klueveromyces lactis and Aspergillus orizae. It was found that PEG 6,000 and PEG 8,000/phosphate were the best systems for achieving the highest purification factors of E. coli beta-galactosidase. However, the other two yeast beta-galactosidases were not efficiently separated from their contaminants in any of the PEG/salt systems. In order to improve the separation of Klueveromyces lactis beta-galactosidase from the main protein contaminants, the biospecific ligand p-aminophenyl 1-thio-beta-D-galactopyranoside (APGP was attached to activated PEG 4000. The affinity PEG having APGP bound to its backbone was synthesized in two steps. The partitioning of Klueveromyces lactis beta-galactosidase in aqueous two-phase

  18. “Towards building better linkages between aqueous phase chemistry and microphysics in CMAQ”

    Science.gov (United States)

    Currently, CMAQ’s aqueous phase chemistry routine (AQCHEM-base) assumes Henry’s Law equilibrium and employs a forward Euler method to solve a small set of oxidation equations, considering the additional processes of aitken scavenging and wet deposition in series and e...

  19. Microalgae growth on the aqueous phase from Hydrothermal Liquefaction of the same microalgae

    NARCIS (Netherlands)

    Garcia Alba, Laura; Torri, Cristian; Fabbri, Daniele; Kersten, Sascha R.A.; Brilman, Derk Willem Frederik

    2013-01-01

    Cultivation of Desmodesmus sp. microalgae in the recycled aqueous phase (AP) recovered after Hydrothermal Liquefaction (HTL) of the same microalgae was studied to evaluate the potential of nutrients recycling. AP dilution ratio was systematically varied, using either water or water enriched with

  20. Aqueous Alteration of Carbonaceous Chondrites: New Insights from Comparative Studies of Two Unbrecciated CM2 Chondrites, Y 791198 and ALH 81002

    Science.gov (United States)

    Chizmadia, L. J.; Brearley, A. J.

    2004-01-01

    Carbonaceous chondrites are an important resource for understanding the physical and chemical conditions in the early solar system. In particular, a long-standing question concerns the role of water in the cosmochemical evolution of carbonaceous chondrites. It is well established that extensive hydration of primary nebular phases occurred in the CM and CI chondrites, but the location where this alteration occurred remains controversial. In the CM2 chondrites, hydration formed secondary phases such as serpentine, tochilinite, pentlandite, carbonate and PCP. There are several textural observations which suggest that alteration occurred before the accretion of the final CM parent asteroid, i.e. preaccretionary alteration. Conversely, there is a significant body of evidence that supports parent-body alteration. In order to test these two competing hypotheses further, we studied two CM chondrites, Y-791198 and ALH81002, two meteorites that exhibit widely differing degrees of aqueous alteration. In addition, both meteorites have primary accretionary textures, i.e. experienced minimal asteroidal brecciation. Brecciation significantly complicates the task of unraveling alteration histories, mixing components that have been altered to different degrees from different locations on the same asteroidal parent body. Alteration in Y-791198 is mostly confined to chondrule mesostases, FeNi metal and fine-grained matrix and rims. In comparison, the primary chondrule silicates in ALH81002 have undergone extensive replacement by secondary hydrous phases. This study focuses on compositional and textural relationships between chondrule mesostasis and the associated rim materials. Our hypothesis is: both these components are highly susceptible to aqueous alteration and should be sensitive recorders of the alteration process. For parent body alteration, we expect systematic coupled mineralogical and compositional changes in rims and altered mesostasis, as elemental exchange between these

  1. Study on Two-Phase Flow in Heterogeneous Porous Media by Light Transmission Method

    Science.gov (United States)

    Qiao, W.

    2015-12-01

    The non-aqueous phase liquid (NAPL) released to the subsurface can form residual ganglia and globules occupying pores and also accumulate and form pools, in which multiphase system forms. Determining transient fluid saturations in a multiphase system is essential to understand the flow characteristics of systems and to perform effective remediation strategies. As a non-destructive and non-invasive laboratory technique utilized for the measurement of liquid saturation in porous media, light transmission is of the lowest cost and safe. Utilization of Coupled Charge Device camera in light transmission systems provides a nearly instantaneous high-density array of spatial measurements over a very large dynamic range. The migration of NAPL and air spariging technique applied to remove NAPL in aquifer systems are typically two-phase flow problem. Because of the natural aquifer normally being heterogeneous, two 2-D sandboxes (Length55cm×width1.3cm×hight45cm) are set up to study the migration of gas and DNAPL in heterogeneous porous media based on light transmission method and its application in two-phase flow. Model D for water/gas system developed by Niemet and Selker (2001) and Model NW-A for water/NAPL system developed by Zhang et al. (2014) are applied for the calculation of fluid saturation in the two experiments, respectively. The gas injection experiments show that the gas moves upward in the irregular channels, piling up beneath the low permeability lenses and starting lateral movement. Bypassing the lenses, the gas moves upward and forms continuous distribution in the top of the sandbox. The faster of gas injects, the wider of gas migration will be. The DNAPL infiltration experiment shows that TCE mainly moves downward as the influence of gravity, stopping vertical infiltration when reaching the low permeability lenses because of its failure to overcome the capillary pressure. Then, TCE accumulates on the surface and starts transverse movement. Bypassing the

  2. Animal-cell culture in aqueous two-phase systems

    NARCIS (Netherlands)

    Zijlstra, G.M.

    1998-01-01

    In current industrial biotechnology, animal-cell culture is an important source of therapeutic protein products. The conventional animal-cell production processes, however, include many unit operations as part of the fermentation and downstream processing strategy. The research described in

  3. Transient Behaviour of Interacting Extractive System

    International Nuclear Information System (INIS)

    El-Bialy, S.H.; Elsherbiny, A.E.

    2000-01-01

    The aim of this study is to investigate the dynamic behaviour of mixer-settler extractive system, which represents an interacting one. When a stimulus single is introduced to aqueous feed; the response of the aqueous phase of the first stage is considered as stimulus signals to both organic phase in the same stage and the aqueous phase of the second one. The response of the last phase represents-in turn- stimulus signals to both organic phase in the same stage and the aqueous phase in the next one. Mathematical model was derived for a system consisting of two stages in the cascade. The model assumed a continuous stirred tank reactor (CSTR) for mixer zone and variable holdups and flow rates of both aqueous and organic phases during operation. Non-linear equilibrium was considered. The obtained model-being non-linear- was linearized and Laplace transformation method was used to solve the model. The system constants are those corresponding to extraction of uranyl nitrate from 3 N nitric acid solution using Tbp dissolved in kerosene at 30% of the former. Stimulus-response test was carried out on the model by considering a step increase in solute concentration in aqueous feed stream. The system behaviour was tested at different values of operating parameters. First order behaviour for the first stage was observed and higher order for the rest of the system. A general relation for the difference in the power of the denominator and numerator of the transfer function of the i th stage was concluded for aqueous phase. The study showed that the system overdamp over the practical range of chosen parameters as explained from the values of transfer function roots

  4. Glycine phases formed from frozen aqueous solutions: Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Surovtsev, N. V. [Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Adichtchev, S. V.; Malinovsky, V. K. [Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Ogienko, A. G.; Manakov, A. Yu. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Drebushchak, V. A. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Ancharov, A. I.; Boldyreva, E. V. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Institute of Solid Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Yunoshev, A. S. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Lavrentiev Institute of Hydrodynamics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation)

    2012-08-14

    Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice I{sub h} was observed in all the cases. On cooling at the rates of 0.5 K/min and 5 K/min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into {beta}-polymorph of glycine. Quench cooling of glycine solutions (15% w/w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice I{sub h} and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine 'X-phase') at 209-216 K, which at 218-226 K transformed into {beta}-polymorph of glycine. The 'X-phase' was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a= 6.648 A, b= 25.867 A, c= 5.610 A, {beta}= 113.12 Masculine-Ordinal-Indicator ); the formation of 'X-phase' from the glycine glassy phase and its transformation into {beta}-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.

  5. Glycine phases formed from frozen aqueous solutions: Revisited

    Science.gov (United States)

    Surovtsev, N. V.; Adichtchev, S. V.; Malinovsky, V. K.; Ogienko, A. G.; Drebushchak, V. A.; Manakov, A. Yu.; Ancharov, A. I.; Yunoshev, A. S.; Boldyreva, E. V.

    2012-08-01

    Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice Ih was observed in all the cases. On cooling at the rates of 0.5 K/min and 5 K/min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into β-polymorph of glycine. Quench cooling of glycine solutions (15% w/w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice Ih and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine "X-phase") at 209-216 K, which at 218-226 K transformed into β-polymorph of glycine. The "X-phase" was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a = 6.648 Å, b = 25.867 Å, c = 5.610 Å, β = 113.12°); the formation of "X-phase" from the glycine glassy phase and its transformation into β-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.

  6. Study of phase separation in liquid-liquid systems using LIX 984N in organic phase; Estudio de separacion de fases en sistemas liquido-liquido usando LIX 984N en fase organica

    Energy Technology Data Exchange (ETDEWEB)

    Castillo-Segura, J.; Biela-Cornejo, F.; Navarro-Donoso, P.

    2012-11-01

    In this work we studied the sedimentation and coalescence phenomena in liquid-liquid dispersion without chemical reaction, the aqueous electrolyte consisted of 0.25 M sodium sulfate and an organic phase characteristic organic extractant for copper (LIX 984N) diluted in a commercial solvent (Shellsol 24 AR). The phenomena that dominate the phase separation have been studied by several researchers, which proposed a number of models to predict sedimentation and coalescence profiles. In this work we applied a semi-empirical model to describe the phenomena involved, varying the following experimental conditions: percentage of extractant in organic phase (5 - 30 % v / v), continuous phase (aqueous and organic), time and stirring speed (30 - 1800 s and 400 - 1200 rpm respectively). The main results show that from the 800 rpm of agitation this variable has no influence on primary breakup time, in the same way for 180 seconds of stirring produces the same effect. The fraction of dispersed phase in the packing zone found was 0.74. For higher levels of percentage of extractant in organic phase increased the phase separation time as when the organic phase was used as the continuous phase relative to the aqueous phase. We found a partial adjustment of the experimental data in relation to the simulated values , which is attributable to two factors: the initial inertia of the system once the agitation stopped and the existence of different times of inflection points of the curves of sedimentation and coalescence. In the different articles found in literature assume that the above phenomena occur simultaneously. (Author) 16 refs.

  7. The leachability of carbon-14-labelled 3,4-benzopyrene from coal ash into aqueous systems

    NARCIS (Netherlands)

    Besemer, A.C.; Kanij, J.

    1984-01-01

    The leachability of polycyclic aromatic hydrocarbons from coal ash into aqueous systems was studied. Carbon-14-labeled 3,4-Benzopyrene (BaP) was deposited on coal fly ash by adsorption from the liquid phase in quantities of about 10 ??g/g ash. After a thermal treatment in air at 120??C for 2 hours

  8. Analysis of two-phase flow induced vibrations in perpendiculary supported U-type piping systems

    International Nuclear Information System (INIS)

    Hiramatsu, Tsutomu; Komura, Yoshiaki; Ito, Atsushi.

    1984-01-01

    The perpose of this analysis is to predict the vibration level of a pipe conveying a two-phase flowing fluid. Experiments were carried out with a perpendiculary supported U-type piping system, conveying an air-water two-phase flow in a steady state condition. Fluctuation signals are observed by a void signal sensor, and power spectral densities and probability density functions are obtained from the void signals. Theoretical studies using FEM and an estimation of the exciting forces from the PSD of void signals, provided a good predictional estimation of vibration responses of the piping system. (author)

  9. Formation of aqueous-phase α-hydroxyhydroperoxides (α-HHP: potential atmospheric impacts

    Directory of Open Access Journals (Sweden)

    R. Zhao

    2013-06-01

    Full Text Available The focus of this work is on quantifying the degree of the aqueous-phase formation of α-hydroxyhydroperoxides (α-HHPs via reversible nucleophilic addition of H2O2 to aldehydes. Formation of this class of highly oxygenated organic hydroperoxides represents a poorly characterized aqueous-phase processing pathway that may lead to enhanced SOA formation and aerosol toxicity. Specifically, the equilibrium constants of α-HHP formation have been determined using proton nuclear-magnetic-resonance (1H NMR spectroscopy and proton-transfer-reaction mass spectrometry (PTR-MS. Significant α-HHP formation was observed from formaldehyde, acetaldehyde, propionaldehyde, glycolaldehyde, glyoxylic acid, and methylglyoxal, but not from methacrolein and ketones. Low temperatures enhanced the formation of α-HHPs but slowed their formation rates. High inorganic salt concentrations shifted the equilibria toward the hydrated form of the aldehydes and slightly suppressed α-HHP formation. Using the experimental equilibrium constants, we predict the equilibrium concentration of α-HHPs to be in the μM level in cloud water, but it may also be present in the mM level in aerosol liquid water (ALW, where the concentrations of H2O2 and aldehydes can be high. Formation of α-HHPs in ALW may significantly affect the effective Henry's law constants of H2O2 and aldehydes but may not affect their gas-phase levels. The photochemistry and reactivity of this class of atmospheric species have not been studied.

  10. Platinum–Rhenium synergy on reducible oxide supports in aqueous-phase glycerol reforming

    NARCIS (Netherlands)

    Ciftci, A.; Eren, S.; Ligthart, D.A.J.M.; Hensen, E.J.M.

    2014-01-01

    A significant support effect was observed for the aqueous-phase reforming (APR) of glycerol over a series of Pt- and PtRe-loaded ceria-, ceria–zirconia-, zirconia-, and titania-supported catalysts. Glycerol conversion rates decreased in the order Pt/TiO2>Pt/ZrO2>Pt/CeZrO2>Pt/CeO2. Upon addition of

  11. Measurement of Vertical Oil-in-water Two-phase Flow Using Dual-modality ERT-EMF System

    OpenAIRE

    Faraj, Yousef; Wang, Mi; Jia, Jiabin; Wang, Qiang; Xie, Cheng-gang; Oddie, Gary; Primrose , Ken; Qiu, Changhua

    2015-01-01

    Oil-in-water two-phase flows are often encountered in the upstream petroleum industry. The measurement of phase flow rates is of particular importance for managing oil production and water disposal and/or water reinjection. The complexity of oil-in-water flow structures creates a challenge to flow measurement. This paper proposes a new method of two-phase flow metering, which is based on the use of dual-modality system and multidimensional data fusion. The Electrical Resistance Tomography sys...

  12. Secondary organic aerosol (trans)formation through aqueous phase guaiacol photonitration: a kinetic study

    Science.gov (United States)

    Kroflič, Ana; Grgić, Irena

    2014-05-01

    It is well known that atmospheric aerosols play a crucial role in the Earth's climate and public health (Pöschl 2005). Despite a great effort invested in the studies of secondary organic aerosol (SOA) budget, composition, and its formation mechanisms, there is still a gap between field observations and atmospheric model predictions (Heald et al. 2005, Hallquist et al. 2009, and Lim et al. 2010). The insisting uncertainties surrounding SOA formation and aging thus gained an increasing interest in atmospheric aqueous phase chemistry; they call for more complex and time consuming studies at the environmentally relevant conditions allowing confident extrapolation to desired ambient conditions. In addition to the adverse health effects of atmospheric particulate matter (PM) as such, toxicity is also attributed to nitro-aromatic and other organic compounds which have already been detected in real aerosol samples (Traversi et al. 2009). Moreover, low-volatility aromatic derivatives are believed to form at least partly in the aerosol aqueous phase and not only in the gas phase from where they partition into water droplets (Ervens et al. 2011). Two nitro derivatives of biomass burning tracer guaiacol have recently been found in winter PM10 samples from the city of Ljubljana, Slovenia, and aqueous photonitration reaction was proposed as their possible production pathway (Kitanovski et al. 2012). In this study the kinetics of guaiacol nitration in aqueous solution was investigated in the presence of H2O2 and NO2¯ upon simulated solar irradiation (Xenon lamp, 300 W). During the experiment the DURAN® flask with the reaction mixture was held in the thermostated bath and thoroughly mixed. The reaction was monitored for 44 hours at different temperatures. Guaiacol and its main nitro-products (4-nitroguaiacol, 4-NG; 6-nitroguaiacol, 6-NG; and 4,6-dinitroguaiacol, 4,6-DNG) were quantified in every aliquot, taken from the reaction mixture, by use of high pressure liquid

  13. Melting in Two-Dimensional Lennard-Jones Systems: Observation of a Metastable Hexatic Phase

    International Nuclear Information System (INIS)

    Chen, K.; Kaplan, T.; Mostoller, M.

    1995-01-01

    Large scale molecular dynamics simulations of two-dimensional melting have been carried out using a recently revised Parrinello-Rahman scheme on massively parallel supercomputers. A metastable state is observed between the solid and liquid phases in Lennard-Jones systems of 36 864 and 102 400 atoms. This intermediate state shows the characteristics of the hexatic phase predicted by the theory of Kosterlitz, Thouless, Halperin, Nelson, and Young

  14. Modeling and design of reacting systems with phase transfer catalysis

    DEFF Research Database (Denmark)

    Piccolo, Chiara; Hodges, George; Piccione, Patrick M.

    2011-01-01

    Issues related to the design of biphasic (liquid) catalytic reaction operations are discussed. A chemical system involving the reaction of an organic-phase soluble reactant (A) with an aqueous-phase soluble reactant (B) in the presence of phase transfer catalyst (PTC) is modeled and based on it......, some of the design issues related to improved reaction operation are analyzed. Since the solubility of the different forms of the PTC in the organic solvent affects ultimately the catalyst partition coefficients, therefore, the organic solvent plays an important role in the design of PTC-based reacting...

  15. Aqueous-phase oxidation of green leaf volatiles by hydroxyl radical as a source of SOA: Product identification from methyl jasmonate and methyl salicylate oxidation

    Science.gov (United States)

    Hansel, Amie K.; Ehrenhauser, Franz S.; Richards-Henderson, Nicole K.; Anastasio, Cort; Valsaraj, Kalliat T.

    2015-02-01

    Green leaf volatiles (GLVs) are a group of biogenic volatile organic compounds (BVOCs) released into the atmosphere by vegetation. BVOCs produce secondary organic aerosol (SOA) via gas-phase reactions, but little is known of their aqueous-phase oxidation as a source of SOA. GLVs can partition into atmospheric water phases, e.g., fog, mist, dew or rain, and be oxidized by hydroxyl radicals (˙OH). These reactions in the liquid phase also lead to products that have higher molecular weights, increased polarity, and lower vapor pressures, ultimately forming SOA after evaporation of the droplet. To examine this process, we investigated the aqueous, ˙OH-mediated oxidation of methyl jasmonate (MeJa) and methyl salicylate (MeSa), two GLVs that produce aqueous-phase SOA. High performance liquid chromatography/electrospray ionization mass spectrometry (HPLC-ESI-MS) was used to monitor product formation. The oxidation products identified exhibit higher molecular mass than their parent GLV due to either dimerization or the addition of oxygen and hydroxyl functional groups. The proposed structures of potential products are based on mechanistic considerations combined with the HPLC/ESI-MS data. Based on the structures, the vapor pressure and the Henry's law constant were estimated with multiple methods (SPARC, SIMPOL, MPBPVP, Bond and Group Estimations). The estimated vapor pressures of the products identified are significantly (up to 7 orders of magnitude) lower than those of the associated parent compounds, and therefore, the GLV oxidation products may remain as SOA after evaporation of the water droplet. The contribution of the identified oxidation products to SOA formation is estimated based on measured HPLC-ESI/MS responses relative to previous aqueous SOA mass yield measurements.

  16. Studies on Three Liquid Phase Extraction (TLPE) system for separation of rare earths

    International Nuclear Information System (INIS)

    Yadav, Kartikey K.; Singh, D.K.; Anitha, M.; Singh, H.

    2014-01-01

    Three-liquid-phase extraction (TLPE) is relatively a new separation technique, which takes the advantage of the differences in physicochemical properties of three coexisted phases to achieve multi-phase liquid separation of two or more components in one-step extraction. TLPE system consists of three liquid layers namely an organic solvent phase (organophosphorous type) and two aqueous phases one rich in polymer phase (poly alkylene glycol) and other a salt solution. To study the feasibility of using such system for separation of rare earths, it is important to optimize the preparatory conditions by selective suitable polymer and salt solutions at an appropriate pH to obtain a stable three phase layers to effect the separation. D2EHPA (di-2-ethyl hexyl phosphoric acid) is a well- established extractant in the rare earth industry and has been chosen in the present work to form a TLPE with polymer and salt solution. In the present investigation after preparing the stable three phase, the feasibility of using TLPE has been examined to separate rare earths from a multicomponent solutions. This study has demonstrated the ability of TLPE having D2EHPA as organic phase to separate rare earths from a multicomponent system. Effect of pH, concentration and types of polymer, complexing agent and D2EHPA concentration has been studied. Variation in pH study indicated that 4.0 leads to extraction of rare earths in the polymer phase. PEG 600 was found to be best amongst the polymer investigated. Presence of DTPA as complexing agent in the salt solution having pH >4.0 resulted in enhanced extraction of rare earths in PEG phase

  17. Speciation of organotin compounds by capillary electrophoresis: comparison of aqueous and mixed organic-aqueous systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lei; Matysik, Frank-Michael; Glaeser, Petra [Universitaet Leipzig, Institut fuer Analytische Chemie, Leipzig (Germany)

    2004-10-01

    A capillary electrophoresis method with direct ultraviolet detection was developed for the analysis of organotin species. Despite the fact that direct detection of organotin compounds by ultraviolet absorption is difficult because most organotins possess poor chromophoric properties, the application of low wavelength ({lambda}=200 nm) and mixed organic-aqueous media enabled a significant enhancement in sensitivity. A mixed organic-aqueous system (10% methanol/40% acetonitrile/50% H{sub 2}O) containing acetic acid and tetrabutylammonium perchlorate formed the basis for rapid, efficient and sensitive determinations of organotin cations such as tripropyltin, tributyltin, triphenyltin and diphenyltin. The concentration limits of detection (LOD) for the four organotin compounds were in the range of 0.4-14 {mu}M, comparable to that obtained with the most sensitive indirect UV method reported until now, and took advantage of a stable baseline, a symmetric peak shape and an absence of disturbing system peaks. The relative standard deviations (n=7) for the relative peak time and peak area were 0.44-0.77 and 4.8-5.8%, respectively. In addition to sensitivity enhancements, the use of organic-aqueous systems instead of pure aqueous media resulted in improved selectivity and efficiency of separations. (orig.)

  18. Use of two-phase flow heat transfer method in spacecraft thermal system

    Science.gov (United States)

    Hye, A.

    1985-01-01

    In space applications, weight, volume and power are critical parameters. Presently liquid freon is used in the radiator planels of the Space Shuttle to dissipate heat. This requires a large amount of freon, large power for pumps, large volume and weight. Use of two-phase flow method to transfer heat can reduce them significantly. A modified commercial vapor compression refrigerator/freezer was sucessfully flown in STS-4 to study the effect of zero-gravity on the system. The duty cycle was about 5 percent higher in flight as compared to that on earth due to low flow velocity in condenser. The vapor Reynolds number at exit was about 4000 as compared to about 12,000. Efforts are underway to design a refrigerator/freezer using an oil-free compressor for Spacelab Mission 4 scheduled to fly in January 1986. A thermal system can be designed for spacecraft using the two-phase flow to transfer heat economically.

  19. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate.

    Science.gov (United States)

    Chokejaroenrat, Chanat; Comfort, Steve; Sakulthaew, Chainarong; Dvorak, Bruce

    2014-03-15

    Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO4(-)) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase (14)C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO2 rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with (14)C-TCE. Transport experiments showed that MnO4(-) alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO2 rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO4(-), the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP+MnO4(-) improved TCE destruction by ∼16% over MnO4(-) alone (56.5% vs. 40.1%). These results support combining permanganate with SHMP or SHMP and xanthan as a means of treating high concentrations of TCE in low permeable zones. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Phase Behavior and Evaporation Profile of Tween 20 - Eugenol System. Effect of Different Alkane Chain Length and Solvent System

    International Nuclear Information System (INIS)

    Kassim, A.; Lim, W.H.; Kuangl, D.; Rusmawati, W.W.M.; Abdullah, A.H.; Teoh, S.P.

    2003-01-01

    The isotropic region of Tween 20/eugenol/n-alkane in aqueous systems was determined. The solubilisation trend of isotropic solution formed in the presence of eugenol was studied as a function of different alkyl chain length of n-alkane. The solubility of solvent in surfactant solution is dependent on their molecular polarity. An increase in n-alkane chain length (lower polarity) lead to smaller isotropic region which will affect the surfactant partitioning between the interface, the oil phase and the aqueous phase of the microemulsion as the oil chain length is varied. The changes of evaporation behaviour were affected strongly by the types of phases existed in the systems. The increment of n-alkane and water content led to higher evaporation rate. But the formation of w/o microemulsion would lower the evaporation rate because water molecules were trapped in the core of aggregates. In solubilisation system, evaporation rate is dependent on the solvent content and the interaction between Tween 20 and solvent molecules in the mixed composition. (author)

  1. Some Central Nervous System Effects of the aqueous Extract of the ...

    African Journals Online (AJOL)

    The leaves of Phyllanthus amarus is used in Southern Nigeria to treat variety of diseases including epilepsy. The aqueous extract of the leaves of Phyllanthus amarus was investigated for some central nervous system effects. Two animals models (maximal electroshock and pentylenetetrazol-induced convulsion), were used ...

  2. Phases, phase equilibria, and phase rules in low-dimensional systems

    International Nuclear Information System (INIS)

    Frolov, T.; Mishin, Y.

    2015-01-01

    We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phase rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality

  3. Nonlinear dynamics of two-phase flow

    International Nuclear Information System (INIS)

    Rizwan-uddin

    1986-01-01

    Unstable flow conditions can occur in a wide variety of laboratory and industry equipment that involve two-phase flow. Instabilities in industrial equipment, which include boiling water reactor (BWR) cores, steam generators, heated channels, cryogenic fluid heaters, heat exchangers, etc., are related to their nonlinear dynamics. These instabilities can be of static (Ledinegg instability) or dynamic (density wave oscillations) type. Determination of regions in parameters space where these instabilities can occur and knowledge of system dynamics in or near these regions is essential for the safe operation of such equipment. Many two-phase flow engineering components can be modeled as heated channels. The set of partial differential equations that describes the dynamics of single- and two-phase flow, for the special case of uniform heat flux along the length of the channel, can be reduced to a set of two coupled ordinary differential equations [in inlet velocity v/sub i/(t) and two-phase residence time tau(t)] involving history integrals: a nonlinear ordinary functional differential equation and an integral equation. Hence, to solve these equations, the dependent variables must be specified for -(nu + tau) ≤ t ≤ 0, where nu is the single-phase residence time. This system of nonlinear equations has been solved analytically using asymptotic expansion series for finite but small perturbations and numerically using finite difference techniques

  4. Biodegradation of naphthalene from nonaqueous-phase liquids

    International Nuclear Information System (INIS)

    Ghoshal, S.; Luthy, R.G.; Ramaswami, A.

    1995-01-01

    Dissolution of polycyclic aromatic hydrocarbons (PAHs) from a non-aqueous-phase liquid (NAPL) to the aqueous phase renders these compounds bioavailable to microorganisms. Subsequent biodegradation of organic phase PAH then results in a depletion of PAH from the NAPL. This study focuses on identifying the rate-controlling processes affecting naphthalene biomineralization from a complex multicomponent NAPL, coal tar, and a simple two-component NAPL. A simplified dissolution degradation model is presented to identify quantitative criteria to assess whether mass transfer or biokinetic limitations control the overall rate of biotransformation of PAH compounds. Results show that the rate of mass transfer may control the overall rate of biotransformation in certain systems. Mass transfer does not limit biodegradation in slurry systems when coal tar is distributed in the micropores of a large number of small microporous silica particles. The end points of naphthalene degradation from the NAPLs have been evaluated, and results suggest that depletion of a significant mass of naphthalene from the NAPL phase is possible

  5. Integration of Aqueous Two-Phase Extraction as Cell Harvest and Capture Operation in the Manufacturing Process of Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Axel Schmidt

    2017-12-01

    Full Text Available Substantial improvements have been made to cell culturing processes (e.g., higher product titer in recent years by raising cell densities and optimizing cultivation time. However, this has been accompanied by an increase in product-related impurities and therefore greater challenges in subsequent clarification and capture operations. Considering the paradigm shift towards the design of continuously operating dedicated plants at smaller scales—with or without disposable technology—for treating smaller patient populations due to new indications or personalized medicine approaches, the rising need for new, innovative strategies for both clarification and capture technology becomes evident. Aqueous two-phase extraction (ATPE is now considered to be a feasible unit operation, e.g., for the capture of monoclonal antibodies or recombinant proteins. However, most of the published work so far investigates the applicability of ATPE in antibody-manufacturing processes at the lab-scale and for the most part, only during the capture step. This work shows the integration of ATPE as a combined harvest and capture step into a downstream process. Additionally, a model is applied that allows early prediction of settler dimensions with high prediction accuracy. Finally, a reliable process development concept, which guides through the necessary steps, starting from the definition of the separation task to the final stages of integration and scale-up, is presented.

  6. A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models.

    Science.gov (United States)

    Flores-Alsina, Xavier; Kazadi Mbamba, Christian; Solon, Kimberly; Vrecko, Darko; Tait, Stephan; Batstone, Damien J; Jeppsson, Ulf; Gernaey, Krist V

    2015-11-15

    There is a growing interest within the Wastewater Treatment Plant (WWTP) modelling community to correctly describe physico-chemical processes after many years of mainly focusing on biokinetics. Indeed, future modelling needs, such as a plant-wide phosphorus (P) description, require a major, but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems. In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation/pairing is presented and interfaced with industry standard models. The module accounts for extensive consideration of non-ideality, including ion activities instead of molar concentrations and complex ion pairing. The general equilibria are formulated as a set of Differential Algebraic Equations (DAEs) instead of Ordinary Differential Equations (ODEs) in order to reduce the overall stiffness of the system, thereby enhancing simulation speed. Additionally, a multi-dimensional version of the Newton-Raphson algorithm is applied to handle the existing multiple algebraic inter-dependencies. The latter is reinforced with the Simulated Annealing method to increase the robustness of the solver making the system not so dependent of the initial conditions. Simulation results show pH predictions when describing Biological Nutrient Removal (BNR) by the activated sludge models (ASM) 1, 2d and 3 comparing the performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) treatment plant configuration under different anaerobic/anoxic/aerobic conditions. The same framework is implemented in the Benchmark Simulation Model No. 2 (BSM2) version of the Anaerobic Digestion Model No. 1 (ADM1) (WWTP3) as well, predicting pH values at different cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated, by implementing the aqueous phase chemistry module in some

  7. Two-Phase Microfluidic Systems for High Throughput Quantification of Agglutination Assays

    KAUST Repository

    Castro, David

    2018-04-01

    Lab-on-Chip, the miniaturization of the chemical and analytical lab, is an endeavor that seems to come out of science fiction yet is slowly becoming a reality. It is a multidisciplinary field that combines different areas of science and engineering. Within these areas, microfluidics is a specialized field that deals with the behavior, control and manipulation of small volumes of fluids. Agglutination assays are rapid, single-step, low-cost immunoassays that use microspheres to detect a wide variety molecules and pathogens by using a specific antigen-antibody interaction. Agglutination assays are particularly suitable for the miniaturization and automation that two-phase microfluidics can offer, a combination that can help tackle the ever pressing need of high-throughput screening for blood banks, epidemiology, food banks diagnosis of infectious diseases. In this thesis, we present a two-phase microfluidic system capable of incubating and quantifying agglutination assays. The microfluidic channel is a simple fabrication solution, using laboratory tubing. These assays are incubated by highly efficient passive mixing with a sample-to-answer time of 2.5 min, a 5-10 fold improvement over traditional agglutination assays. It has a user-friendly interface that that does not require droplet generators, in which a pipette is used to continuously insert assays on-demand, with no down-time in between experiments at 360 assays/h. System parameters are explored, using the streptavidin-biotin interaction as a model assay, with a minimum detection limit of 50 ng/mL using optical image analysis. We compare optical image analysis and light scattering as quantification methods, and demonstrate the first light scattering quantification of agglutination assays in a two-phase ow format. The application can be potentially applied to other biomarkers, which we demonstrate using C-reactive protein (CRP) assays. Using our system, we can take a commercially available CRP qualitative slide

  8. Design of microemulsion system suitable for the oral delivery of poorly aqueous soluble beta-carotene.

    Science.gov (United States)

    Peng, Cheng; Svirskis, Darren; Lee, Sung Je; Oey, Indrawati; Kwak, Hae-Soo; Chen, Guanyu; Bunt, Craig; Wen, Jingyuan

    2017-02-14

    Beta-carotene is a potent antioxidant for maintaining human health. However, its oral absorption is low due to poor aqueous solubility of less than 1 μg/ml. A microemulsion delivery system was designed to solubilize beta-carotene toward enhancing its oral bioavailability. From seven pseudoternary diagrams constructed, three systems were selected with large microemulsion areas suitable for oral administration and dilution in the predominately aqueous gastrointestinal fluids. Conductivity and rheology characterization were conducted along four dilution lines within the selected systems. Three pseudoternary-phase diagrams were selected with large microemulsion regions, >60% of the total phase diagram area, which provide microemulsions with higher drug-loading capacity. A phenomenon was observed by which both propylene glycol and Capmul MCM EP stabilize the microstructure of the microemulsions has been proposed based on the characterization studies. An optimal bicontinuous microemulsion formulation was selected comprising 12% orange oil, 24% Capmul MCM, 18% Tween 20, 6% Labrasol, 20% propylene glycol and 20% water, with a high beta-carotene loading capacity of 140.8 μg/ml and droplet size of 117.4 nm. In conclusion, the developed novel microemulsion formulation allows solubilizing beta-carotene and is a promising basis for further development as a functional beverage.

  9. Aqueous-phase reforming of crude glycerol : effect of impurities on hydrogen production

    NARCIS (Netherlands)

    Boga, Dilek A.; Liu, Fang; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2016-01-01

    The aqueous-phase reforming (APR) of a crude glycerol that originates from an industrial process and the effect of the individual components of crude glycerol on APR activity have been studied over 1 wt% Pt/Mg-Al) O, 1 wt% Pt/Al2O3, 5 wt% Pt/Al2O3 and 5 wt% Pt/C catalysts at 29 bar and 225 degrees

  10. Application of two-component phase doppler interferometry to the measurement of particle size, mass flux, and velocities in two-phase flows

    OpenAIRE

    McDonell, VG; Samuelsen, GS

    1989-01-01

    The application of two-component interferometry is described for the spatially-resolved measurement of particle size, velocity and mass flux as well as continuous phase velocity. Such a capability is important to develop an understanding of the physical processes attendant to two-phase flow systems, especially those involving liquid atomization typical of a wide class of combustion systems. Adapted from laser anemometry, the technique (phase Doppler interferometry) measures single particle ev...

  11. Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (TCS) for future spacecraft

    International Nuclear Information System (INIS)

    Lee, S.H.; Mudawar, I.; Hasan, Mohammad M.

    2016-01-01

    Highlights: • Hybrid Thermal Control System (H-TCS) is proposed for future spacecraft. • Thermodynamic performance of H-TCS is examined for different space missions. • Operational modes including single-phase, two-phase and heat pump are explored. • R134a is deemed most appropriate working fluid. - Abstract: An urgent need presently exists to develop a new class of versatile spacecraft capable of conducting different types of missions and enduring varying gravitational and temperature environments, including Lunar, Martian and Near Earth Object (NEOs). This study concerns the spacecraft's Thermal Control System (TCS), which tackles heat acquisition, especially from crew and avionics, heat transport, and ultimate heat rejection by radiation. The primary goal of the study is to explore the design and thermal performance of a Hybrid Thermal Control System (H-TCS) that would satisfy the diverse thermal requirements of the different space missions. The H-TCS must endure both ‘cold’ and ‘hot’ environments, reduce weight and size, and enhance thermodynamic performance. Four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the

  12. Natural gas hydrate formation and inhibition in gas/crude oil/aqueous systems

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Pachitsas, Stylianos; von Solms, Nicolas

    2015-01-01

    Gas hydrate formation in multi phase mixtures containing an aqueous phase (with dissolved salts), reservoir fluid (crude oil) and natural gas phase was investigated by using a standard rocking cell (RC-5) apparatus. The hydrate formation temperature was reduced in the presence of crude oils...... can contribute to the safe operation of sub sea pipelines in the oil and gas industry....

  13. Study on liquid-metal MHD power generation system with two-phase natural circulation. Applicability to fast reactor conditions

    International Nuclear Information System (INIS)

    Saito, Masaki

    2001-03-01

    Feasibility study of the liquid-metal MHD power generation system combined with the high-density two-phase natural circulation has been performed for the applicability to the simple, autonomic energy conversion system of the liquid-metal cooled fast reactor. The present system has many promising aspects not only in the energy conversion process, but also in safety and economical improvements of the liquid-metal cooled fast reactor. In the previous report, as the first step of the feasibility study, the cycle analyses were performed to examine the effects of the main system parameters on the fundamental characteristics of the system. It was found that the cycle efficiency of the present system is enough competitive with that of the conventional steam turbine system. It was also found that the cycle efficiency depends strongly on the gas-liquid slip ratio in the two-phase flow channel. However, it is very difficult to estimate the gas-liquid slip ratio theoretically, especially in the heavy liquid metal two-phase natural circulation. For example, the effects of MHD load on the two-phase flow characteristics, such as the void fraction and gas-liquid slip ratio are not known well. In the present study, therefore, as the second step of the feasibility study, a series of the experiments were performed to investigate, especially, the effect of MHD load at the single-phase shown-comer flow channel on the characteristics of the two-phase natural circulation. In the first series of the experiments, Woods-metal (Density: 9517 Kg/m 3 ) and nitrogen gas were chosen as the two-phase working fluids. The MHD pressure drop was simulated by the ball valve. The experiments with water and nitrogen gas were also performed to check the effects of the physical properties. From the present experiments, it is found that the average void fraction in the two-phase flow channel is determined by the force balance between the MHD pressure drop, frictional and pressure losses in the tube, and

  14. Slug flow transitions in horizontal gas/liquid two-phase flows. Dependence on channel height and system pressure for air/water and steam/water two-phase flows

    International Nuclear Information System (INIS)

    Nakamura, Hideo

    1996-05-01

    The slug flow transitions and related phenomena for horizontal two-phase flows were studied for a better prediction of two-phase flows that typically appear during the reactor loss-of-coolant accidents (LOCAs). For better representation of the flow conditions experimentally, two large-scaled facility: TPTF for high-pressure steam/water two-phase flows and large duct test facility for air/water two-phase flows, were used. The visual observation of the flow using a video-probe was performed in the TPTF experiments for good understanding of the phenomena. The currently-used models and correlations based mostly on the small-scale low-pressure experiments were reviewed and improved based on these experimental results. The modified Taitel-Dukler model for prediction of transition into slug flow from wavy flow and the modified Steen-Wallis correlation for prediction of onset of liquid entrainment from the interfacial waves were obtained. An empirical correlation for the gas-liquid interfacial friction factor was obtained further for prediction of liquid levels at wavy flow. The region of slug flow regime that is generally under influences of the channel height and system pressure was predicted well when these models and correlations were applied together. (author). 90 refs

  15. Phase equilibria and critical phenomena in the cesium nitrate-water-diethylamine ternary system

    International Nuclear Information System (INIS)

    Il'in, K.K.; Kurskij, V.F.; Cherkasov, D.G.

    2008-01-01

    Phase equilibria and critical events in ternary cesium nitrate-water-diethylamine system, where border binary liquid system is characterized by aliquation with lower critical temperature of solution (LCTS), have been investigated by visual-polythermal method in the 60-150 Deg C range. Interaction of cesium nitrate in the water-diethylamine system leads to lowering of its LCTS from 146.1 to 69.3 Deg C and decrease of mutual solubility. Distribution ratios of diethylamine between water and organic phases of monotectic equilibrium are calculated at different temperatures. Diethylamine salting out from aqueous solutions by cesium nitrates becomes stronger with rising temperature. Plotted isotherms of phase confirms generalized scheme of topological transformations of ternary systems phase diagrams: salt-binary solvent with salting out

  16. Design of a two-phase loop thermosyphon for telecommunications system(II): analysis and simulation

    International Nuclear Information System (INIS)

    Kim, Won Tae; Song, Kyu Sub; Lee, Young

    1998-01-01

    A computer simulation is performed for a two-phase loop thermosyphon for the B-ISDN telecommunications. The aim of this code development is to provide capabilities to predict the affects of many variables on the performance of the proposed TLT system using different empirical correlations obtained from the literature for the evaporation and condensation, and the shape factors available. In this present study, the simulation code is based on the sectorial thermal resistance network built on the flow regimes of the two-phase flows involved. The nodal resistances are solved by the typical Gauss-Seidal iteration method. The code can predict whether the proposed design is possible based on the flooding limit calculation of the system and its results are compared with the experimental results

  17. Design of a two-phase loop thermosyphon for telecommunications system(II): analysis and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Tae [Kongju National Univ., Kongju (Korea, Republic of); Song, Kyu Sub [Electronics and Telecommunications Research Institute, Taejon (Korea, Republic of); Lee, Young [Univ. of Ottawa, Ontario (Canada)

    1998-10-01

    A computer simulation is performed for a two-phase loop thermosyphon for the B-ISDN telecommunications. The aim of this code development is to provide capabilities to predict the affects of many variables on the performance of the proposed TLT system using different empirical correlations obtained from the literature for the evaporation and condensation, and the shape factors available. In this present study, the simulation code is based on the sectorial thermal resistance network built on the flow regimes of the two-phase flows involved. The nodal resistances are solved by the typical Gauss-Seidal iteration method. The code can predict whether the proposed design is possible based on the flooding limit calculation of the system and its results are compared with the experimental results.

  18. Inertia and compressibility effects on density waves and Ledinegg phenomena in two-phase flow systems

    International Nuclear Information System (INIS)

    Ruspini, L.C.

    2012-01-01

    Highlights: ► The stability influence of piping fluid inertia on two-phase instabilities is studied. ► Inlet inertia stabilizes the system while outlet inertia destabilizes it. ► High-order modes oscillations are found and analyzed. ► The effect of compressible volumes in the system is studied. ► Inlet compressibility destabilizes the system while outlet comp. stabilizes it. - Abstract: The most common kind of static and dynamic two-phase flow instabilities namely Ledinegg and density wave oscillations are studied. A new model to study two-phase flow instabilities taking into account general parameters from real systems is proposed. The stability influence of external parameters such as the fluid inertia and the presence of compressible gases in the system is analyzed. High-order oscillation modes are found to be related with the fluid inertia of external piping. The occurrence of high-order modes in experimental works is analyzed with focus on the results presented in this work. Moreover, both inertia and compressibility are proven to have a high impact on the stability limits of the systems. The performed study is done by modeling the boiling channel using a one dimensional equilibrium model. An incompressible transient model describes the evolution of the flow and pressure in the non-heated regions and an ideal gas model is used to simulate the compressible volumes in the system. The use of wavelet decomposition analysis is proven to be an efficient tool in stability analysis of several frequencies oscillations.

  19. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen

    NARCIS (Netherlands)

    Zakzeski, J.|info:eu-repo/dai/nl/326160256; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2011-01-01

    The solubilization and aqueous phase reforming of lignin, including kraft, soda, and alcell lignin along with sugarcane bagasse, at low temperatures (T≤498 K) and pressures (P≤29 bar) is reported for the first time for the production of aromatic chemicals and hydrogen. Analysis of lignin model

  20. Solar light-facilitated oxytetracycline removal from the aqueous phase utilizing a H2O2/ZnWO4/CaO catalytic system

    Directory of Open Access Journals (Sweden)

    Pankaj Raizada

    2017-09-01

    Full Text Available A CaO-supported ZnWO4 nanocomposite (ZnWO4/CaO was successfully synthesized using a novel hydrothermal method and was characterized by scanning electron microscopy (SEM, tunnelling electron microscopy (TEM, X-ray diffraction (XRD, electron diffraction X-ray (EDX, Fourier transform infrared spectroscopy (FTIR and UV–visible (UV–vis spectral analysis. The ZnWO4/CaO composites exhibited rod-like morphologies with variable lengths from 45 nm to 147 nm and diameters from 26 nm to 36 nm. The catalytic efficiency of the synthesized ZnWO4/CaO composites was displayed for the photodegradation of oxytetracycline (OTC antibiotic from the aqueous phase. The synergistic degradation of OTC was investigated in the presence of H2O2 and ZnWO4/CaO. The rate of photodegradation followed pseudo-first-order kinetics. The antibiotic removal was strongly influenced by the catalyst loading, H2O2 concentration, pH and OTC concentration. Using a solar/H2O2/ZnWO4/CaO catalytic system, 85% COD removal was attained for OTC degradation in 210 min. The oxidative degradation occurred through hydroxyl radicals. The prepared nanocomposites possessed high recyclability and were easily separated from the aqueous solution by a simple sedimentation process.

  1. The stable nonequilibrium state of bicarbonate aqueous systems

    Science.gov (United States)

    Voeikov, V. L.; Vilenskaya, N. D.; Ha, Do Minh; Malyshenko, S. I.; Buravleva, E. V.; Yablonskaya, O. I.; Timofeev, K. N.

    2012-09-01

    Data obtained by electron paramagnetic resonance (EPR) and chemiluminescence analysis indicate that in aqueous solutions of bicarbonates, superoxide radical and other reactive oxygen species (ROS) are constantly produced. The stationary level of the superoxide radical is found to increase when a solution is illuminated. Reactions involving ROS are shown to be accompanied by the generation of electron excitation energy, keeping bicarbonate solutions in a stable nonequilibrium state. The system can emit part of this energy. Variations in emitting activity are found to correlate with variations in the cosmophysical factors. The emitting activity of solutions is found to vary in the presence of low and ultralow concentrations of hydrated fullerenes. It is noted that the phenomenon of spontaneous charge separation in aqueous systems (G. H. Pollack) could play a role in maintaining a stable nonequilibrium state in bicarbonate systems where the reactions with ROS participation are catalyzed by forms of carbonate. It is concluded that the abovementioned properties of bicarbonate aqueous systems most likely keep living matter whose structural basis is formed by these systems in a stable excited state, thereby making it highly sensitive to the action of external factors with low and ultralow intensities.

  2. Transient two-phase flow

    International Nuclear Information System (INIS)

    Hsu, Y.Y.

    1974-01-01

    The following papers related to two-phase flow are summarized: current assumptions made in two-phase flow modeling; two-phase unsteady blowdown from pipes, flow pattern in Laval nozzle and two-phase flow dynamics; dependence of radial heat and momentum diffusion; transient behavior of the liquid film around the expanding gas slug in a vertical tube; flooding phenomena in BWR fuel bundles; and transient effects in bubble two-phase flow. (U.S.)

  3. Development of a EIT Measurement System for Image Reconstruction of Two-Phase Flow

    International Nuclear Information System (INIS)

    Hyun, Jong Kwan

    2000-02-01

    In the thermal-hydraulic system of a nuclear power plant as well as in many engineering areas, it is common to encounter the two-phase flow phenomenon. It is essential to understand the mechanism of the two-phase flow for the analysis and design of the relevant systems. To obtain the detail information on air bubbles moving in the two-phase flow many various experiments have been attempted. One of them is the EIT (Electrical Impedance Tomography) method, which is getting popular in recent days. The EIT is less expensive than other methods because the system is relatively simple and easy to construct compared to other methods. Nowadays it becomes one of the reliable and efficient methods for estimating the inner structure of the given object and has a wide spectrum of applications in various fields. Especially, even though the spatial resolution of EIT is inferior to those of X-ray and MRI, its temporal resolution is excellent. And its small size and easiness to operate provides itself with the portability. For these reasons, the EIT is properly used in the medical field as an complementary equipment and its use will be expanded in the future. The EIT technology in the area of nuclear energy is suitable for studying the two-phase flow which is necessary for designing the thermal hydraulic system because it can reduce the uncertainty of information. The EIT is also so fast to get the result data during the experiment that it is possible to apply it to the thermal hydraulic system in which the physical process is usually fast. Although the EIT is apply to the complicated structure of rod bundle, its basic principles are the same as of the simple geometrical structure. The adaptation of EIT to the two-phase flow of complicated geometrical structure gives the superior results to those of other methods and it is possible to use it in the reactor thermal hydraulic system as a monitoring equipment. However, even the application fields of the EIT are very wide and its

  4. Two-phase flux simulations by robots

    International Nuclear Information System (INIS)

    Barrera, F.D.

    1997-01-01

    Two-Phase flow systems are studied following the statistical formulation, which takes into account the bubble population balances. This is done by means of automata simulation. Geometrical automata are associated to the dispersed phase, and are represented by discs on the plane, resembling bubbles moving in a fluid environment. Following pre-determined rules, the automata evolve, and useful statistical information about their interaction is obtained. This information is applied in the present work to study the mechanisms that induce bubble coalescence. Models for one and two sized automata are presented. It was found that in the case of the model for one size, the probability of interaction among bubbles and the pair correlation function depends not only on the void fraction, but also on the number of elements of the dispersed phase. A correlation for the collision probability between two bubbles is obtained, and this result was extended to the pair correlation function. For the case of systems with two characteristic sizes, a model was formulated for analyzing the interaction among bubbles of the two groups. The interaction of bubbles for one and two sized systems were related by a symmetry factor, which shows the dependence of the interaction among bubbles with the size distribution. By means of the automata simulation, the phenomena of bubble confinement and screening were characterized. It was found that the first phenomenon is stronger in systems with greater distance among bubbles, and that the second effect increases with void fraction and bubble number. (author)

  5. Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media

    KAUST Repository

    Chen, J.; Sun, S.; Chen, Z.

    2014-01-01

    in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition

  6. Two-phase flow models in unbounded two-phase critical flows

    International Nuclear Information System (INIS)

    Celata, G.P.; Cumo, M.; Farello, G.E.

    1985-01-01

    With reference to a Loss-of-Coolant Accident in Light Water Reactors, an analysis of the unbounded two-phase critical flow (i.e. the issuing two-phase jet) has been accomplished. Considering jets external shape, obtained by means of photographic pictures; pressure profiles inside the jet, obtained by means of a movable ''Pitot;'' and jet phases distribution information, obtained by means of X-rays pictures; a characterization of the flow pattern in the unbounded region of a two-phase critical flow is given. Jets X-ray pictures show the existence of a central high density ''core'' gradually evaporating all around, which gives place to a characteristic ''dartflow'' the length of which depends on stagnation thermodynamic conditions

  7. Aqueous phase partitioning of hexachlorocyclohexane (HCH) isomers by biosurfactant produced by Pseudomonas aeruginosa WH-2

    International Nuclear Information System (INIS)

    Sharma, Suman; Singh, Partapbir; Raj, Mayil; Chadha, Bhupinder Singh; Saini, Harvinder Singh

    2009-01-01

    The different isomers of technical-grade hexachlorocyclohexane (t-HCH) including the insecticidal γ-isomer, commonly known as lindane, have been reported to be toxic, carcinogenic and endocrine disrupters. The spatial arrangements of the chlorine atoms on different isomers and low aqueous phase solubility contribute to their persistence in environment, β-HCH being the most resistance to transformation. The biosurfactant preparation of Pseudomonas aeruginosa isolate WH-2 was evaluated for its ability to improve the aqueous phase partitioning of different isomers of HCH-muck. Further, the ability of biosurfactant preparation to emulsify HCH and n-hexadecane was checked under different conditions, usually characteristic of sites contaminated with pollutants viz. wide range of pH, temperature, and salinity. The data obtained from this study will be helpful in designing suitable bioremediation strategies for huge stock piles of HCH-muck and sites polluted by reckless use/disposal of HCH-isomers.

  8. Thermophysical Properties of Aqueous Solutions Used as Secondary Working Fluids

    OpenAIRE

    Melinder, Åke

    2007-01-01

    Secondary working fluids (secondary refrigerants, heat transfer fluids, antifreezes, brines) have long been used in various indirect re-frigeration and heat pump systems. Aqueous solutions (water solu-tions) have long been used as single phase (liquid only) secondary working fluids for cooling in supermarkets, ice rinks, heat recovery systems, heat pumps and other applications. However, aqueous solutions are increasingly used also for freezers in supermarkets and other applications in low tem...

  9. Two-phase flow models

    International Nuclear Information System (INIS)

    Delaje, Dzh.

    1984-01-01

    General hypothesis used to simplify the equations, describing two-phase flows, are considered. Two-component and one-component models of two-phase flow, as well as Zuber and Findlay model for actual volumetric steam content, and Wallis model, describing the given phase rates, are presented. The conclusion is made, that the two-component model, in which values averaged in time are included, is applicable for the solving of three-dimensional tasks for unsteady two-phase flow. At the same time, using the two-component model, including values, averaged in space only one-dimensional tasks for unsteady two-phase flow can be solved

  10. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate

    International Nuclear Information System (INIS)

    Chokejaroenrat, Chanat; Comfort, Steve; Sakulthaew, Chainarong; Dvorak, Bruce

    2014-01-01

    Graphical abstract: - Highlights: • Transport experiments used transmissive and low permeability zones (LPZs). • 14 C-labeled TCE was used to quantify oxidation of DNAPL in LPZs by permanganate. • Stabilization aids prevented MnO 2 rind formation. • DNAPL oxidation improved when xanthan and stabilization aids were used. - Abstract: Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO 4 − ) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase 14 C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO 2 rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with 14 C-TCE. Transport experiments showed that MnO 4 − alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO 2 rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO 4 − , the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP + MnO 4 − improved TCE destruction by ∼16% over MnO 4 − alone (56.5% vs. 40.1%). These results support

  11. A New Concept of Two-Stage Multi-Element Resonant-/Cyclo-Converter for Two-Phase IM/SM Motor

    Directory of Open Access Journals (Sweden)

    Mahmud Ali Rzig Abdalmula

    2013-01-01

    Full Text Available The paper deals with a new concept of power electronic two-phase system with two-stage DC/AC/AC converter and two-phase IM/PMSM motor. The proposed system consisting of two-stage converter comprises: input resonant boost converter with AC output, two-phase half-bridge cyclo-converter commutated by HF AC input voltage, and induction or synchronous motor. Such a system with AC interlink, as a whole unit, has better properties as a 3-phase reference VSI inverter: higher efficiency due to soft switching of both converter stages, higher switching frequency, smaller dimensions and weight with lesser number of power semiconductor switches and better price. In comparison with currently used conventional system configurations the proposed system features a good efficiency of electronic converters and also has a good torque overloading of two-phase AC induction or synchronous motors. Design of two-stage multi-element resonant converter and results of simulation experiments are presented in the paper.

  12. Characterisation and final disposal behaviour of theoria-based fuel kernels in aqueous phases

    International Nuclear Information System (INIS)

    Titov, M.

    2005-08-01

    Two high-temperature reactors (AVR and THTR) operated in Germany have produced about 1 million spent fuel elements. The nuclear fuel in these reactors consists mainly of thorium-uranium mixed oxides, but also pure uranium dioxide and carbide fuels were tested. One of the possible solutions of utilising spent HTR fuel is the direct disposal in deep geological formations. Under such circumstances, the properties of fuel kernels, and especially their leaching behaviour in aqueous phases, have to be investigated for safety assessments of the final repository. In the present work, unirradiated ThO 2 , (Th 0.906 ,U 0.094 )O 2 , (Th 0.834 ,U 0.166 )O 2 and UO 2 fuel kernels were investigated. The composition, crystal structure and surface of the kernels were investigated by traditional methods. Furthermore, a new method was developed for testing the mechanical properties of ceramic kernels. The method was successfully used for the examination of mechanical properties of oxide kernels and for monitoring their evolution during contact with aqueous phases. The leaching behaviour of thoria-based oxide kernels and powders was investigated in repository-relevant salt solutions, as well as in artificial leachates. The influence of different experimental parameters on the kernel leaching stability was investigated. It was shown that thoria-based fuel kernels possess high chemical stability and are indifferent to presence of oxidative and radiolytic species in solution. The dissolution rate of thoria-based materials is typically several orders of magnitude lower than of conventional UO 2 fuel kernels. The life time of a single intact (Th,U)O 2 kernel under aggressive conditions of salt repository was estimated as about hundred thousand years. The importance of grain boundary quality on the leaching stability was demonstrated. Numerical Monte Carlo simulations were performed in order to explain the results of leaching experiments. (orig.)

  13. Alternative (Potentially Green) Separations Media: Aqueous Biphasic and Related Systems Extending the Frontier Final Report For Period September 1, 2002 January 31, 2007

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Robin D

    2007-06-25

    Through the current DoE-BES funding, we have extended our fundamental understanding of the critical phase separation of aqueous polymer solutions at the molecular level, and have developed a similar understanding of their application as novel solvent systems. Our principal aims included mode of delivery of the aqueous biphasic system (ABS) solvent system and the application of this system to problems of reactive extraction. In the former case we have developed novel solid phase analogues, in the form of cross-linked polyethylene glycol hydrogels, and in the latter case we have examined the role that ABS might play in reaction engineering, with a view to greener, simpler, and safer processes. We have also developed a new salt/salt ABS and have extended our understanding of this system as well. The major outcomes are as follows: (1) Through the use of variable temperature phase diagrams, coupled with differential scanning calorimetry (DSC) measurements of the phases, a better understanding of the thermodynamics of phase formation was obtained. Evidence to the existence and role of an upper critical solution temperature (UCST) or lower critical solution temperature (LCST) (or both) in these systems was gained. With variable temperature solute partitioning, thermodynamic parameters were calculated, and inter-system comparisons were made. Through the use of Abraham's linear solvation energy regression (LSER) the solvent-solute properties of liquid/liquid ABS were examined. We have shown that ABS are indeed very tunable and LSERs have been used as a tool to compare these systems to traditional organic/water and other liquid/liquid systems. (2) We have successfully shown the development of novel reaction media for chemical synthesis and reaction; Aqueous Biphasic Reactive Extraction (ABRE). As a proof of concept, we have shown the synthesis of adipic acid from cyclohexene in an ABS, which represents an important development in the exploitation of this technology

  14. Shear-Induced Phase Separation in Aqueous Polymer Solutions: Temperature-Sensitive Microgels and Linear Polymer Chains

    NARCIS (Netherlands)

    Stieger, M.A.; Richtering, W.

    2003-01-01

    The influence of shear flow on the phase separation of aqueous poly(N-isopropylacrylamide) (PNiPAM) microgel suspensions was investigated by means of rheo-turbidity and rheo-small angle neutron scattering (rheo-SANS) and compared to the behavior of linear PNiPAM macromolecules. The rheological

  15. Two phase cooling for superconducting magnets

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Gibson, G.A.; Green, M.A.; Ross, R.R.; Smits, R.G.

    1986-01-01

    Comments on the use of two phase helium in a closed circuit tubular cooling system and some results obtained with the TPC superconducting magnet are given. Theoretical arguments and experimental evidence are given against a previously suggested method to determine helium two phase flow regimes. Two methods to reduce pressure in the magnet cooling tubes during quenches are discussed; 1) lowering the density of helium in the magnet cooling tubes and 2) proper location of pressure relief valves. Some techniques used to protect the refrigerator from too much cold return gas are also mentioned

  16. Optical measuring techniques and their application to two-phase and three-phase flows

    International Nuclear Information System (INIS)

    Liu Xiaozhi.

    1992-01-01

    First of all it is shown that by an optical system based on the Laser-Doppler technology, which uses a pair of cylindrical waves and two optical detectors, the particle size, speed and refractive index can be measured by means of the signal frequencies. The second optical method to characterize spherical particles in a multi-phase flow is an extended phase-Doppler system. By means of an additional pair of photodetectors it has been possible for the first time to measure the refractive index in addition to speed and particle size. The last part of the paper shows that by a special phase-Doppler anemometry system with only two detectors it is also possible to distinguish between reflecting and refractive particles. By means of such PDA system measurements were made in a gas-fluid-solid three-phase flow directed vertically upwards. (orig./DG) [de

  17. Chitosan-coated magnetic nanoparticles prepared in one-step by precipitation in a high-aqueous phase content reverse microemulsion.

    Science.gov (United States)

    Pineda, María Guadalupe; Torres, Silvia; López, Luis Valencia; Enríquez-Medrano, Francisco Javier; de León, Ramón Díaz; Fernández, Salvador; Saade, Hened; López, Raúl Guillermo

    2014-07-02

    Chitosan-coated magnetic nanoparticles (CMNP) were prepared in one-step by precipitation in a high-aqueous phase content reverse microemulsion in the presence of chitosan. The high-aqueous phase concentration led to productivities close to 0.49 g CMNP/100 g microemulsion; much higher than those characteristic of precipitation in reverse microemulsions for preparing magnetic nanoparticles. The obtained nanoparticles present a narrow particle size distribution with an average diameter of 4.5 nm; appearing to be formed of a single crystallite; furthermore they present superparamagnetism and high magnetization values; close to 49 emu/g. Characterization of CMNP suggests that chitosan is present as a non-homogeneous very thin layer; which explains the slight reduction in the magnetization value of CMNP in comparison with that of uncoated magnetic nanoparticles. The prepared nanoparticles show high heavy ion removal capability; as demonstrated by their use in the treatment of Pb2+ aqueous solutions; from which lead ions were completely removed within 10 min.

  18. Chitosan-Coated Magnetic Nanoparticles Prepared in One-Step by Precipitation in a High-Aqueous Phase Content Reverse Microemulsion

    Directory of Open Access Journals (Sweden)

    María Guadalupe Pineda

    2014-07-01

    Full Text Available Chitosan-coated magnetic nanoparticles (CMNP were prepared in one-step by precipitation in a high-aqueous phase content reverse microemulsion in the presence of chitosan. The high-aqueous phase concentration led to productivities close to 0.49 g CMNP/100 g microemulsion; much higher than those characteristic of precipitation in reverse microemulsions for preparing magnetic nanoparticles. The obtained nanoparticles present a narrow particle size distribution with an average diameter of 4.5 nm; appearing to be formed of a single crystallite; furthermore they present superparamagnetism and high magnetization values; close to 49 emu/g. Characterization of CMNP suggests that chitosan is present as a non-homogeneous very thin layer; which explains the slight reduction in the magnetization value of CMNP in comparison with that of uncoated magnetic nanoparticles. The prepared nanoparticles show high heavy ion removal capability; as demonstrated by their use in the treatment of Pb2+ aqueous solutions; from which lead ions were completely removed within 10 min.

  19. Numerical modeling and investigation of two-phase reactive flow in a high-low pressure chambers system

    International Nuclear Information System (INIS)

    Cheng, Cheng; Zhang, Xiaobing

    2016-01-01

    Highlights: • A novel two-dimensional two-phase flow model is established for the high-low pressure chambers system. • A strong packing of particles is observed at the projectile base and will cause the pressure to rise faster. • Different length–diameter ratios can affect the flow behavior through the vent-holes obviously. • The muzzle velocity decreases with the length–diameter ratio of the high-pressure chamber. - Abstract: A high-low pressure chambers system is proposed to meet the demands of low launch acceleration for informative equipment in many special fields such as Aeronautics, Astronautics and Weaponry. A two-dimensional two-phase flow numerical model is established to describe the complex physical process based on a modified two-fluid theory, which takes into account gas production, interphase drag, intergranular stress, and heat transfer between two phases. In order to reduce the computational cost, the parameters in the high-pressure chamber at the instant the vent-holes open are calculated by the zero-dimensional model as the initial conditions for the two-phase flow simulation in the high-low pressure chambers system. The simulation results reveal good agreement with the experiments and the launch acceleration of a projectile can be improved by this system. The propellant particles can be tracked clearly in both chambers and a strong packing of particles at the base of projectile will cause the pressure to rise faster than at other areas both in the axis and radial directions. The length–diameter ratio of the high-pressure chamber (a typical multi-dimensional parameter) is investigated. Different length–diameter ratios can affect the maximum pressure drop and the loss of total pressure impulse through the vent-hole, then the muzzle velocity and the launch acceleration of projectiles can be influenced directly. This article puts forward a new prediction tool for the understanding and design of transient processes in high-low pressure

  20. Phase transitions in two-dimensional systems

    International Nuclear Information System (INIS)

    Salinas, S.R.A.

    1983-01-01

    Some experiences are related using synchrotron radiation beams, to characterize solid-liquid (fusion) and commensurate solid-uncommensurate solid transitions in two-dimensional systems. Some ideas involved in the modern theories of two-dimensional fusion are shortly exposed. The systems treated consist of noble gases (Kr,Ar,Xe) adsorbed in the basal plane of graphite and thin films formed by some liquid crystal shells. (L.C.) [pt

  1. Ternary system of dihydroartemisinin with hydroxypropyl-β-cyclodextrin and lecithin: simultaneous enhancement of drug solubility and stability in aqueous solutions.

    Science.gov (United States)

    Wang, Dan; Li, Haiyan; Gu, Jingkai; Guo, Tao; Yang, Shuo; Guo, Zhen; Zhang, Xueju; Zhu, Weifeng; Zhang, Jiwen

    2013-09-01

    The purpose of this study was to simultaneously improve the solubility and stability of dihydroartemisinin (DHA) in aqueous solutions by a ternary cyclodextrin system comprised of DHA, hydroxypropyl-β-cyclodextrin (HP-β-CD) and a third auxiliary substance. Solubility and phase solubility studies were carried out to evaluate the solubilizing efficiency of HP-β-CD in association with various auxiliary substances. Then, the solid binary (DHA-HP-β-CD or DHA-lecithin) and ternary systems were prepared and characterized by Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC) and power X-ray diffraction (PXRD). The effect of the ternary system on the solubility, dissolution and stability of DHA in aqueous solutions was also investigated. As a result, the soybean lecithin was found to be the most promising third component in terms of solubility enhancement. For the solid characterization, the disappearance of the drug crystallinity indicated the formation of new solid phases, implicating the formation of the ternary system. The dissolution rate of the solid ternary system was much faster than that of the drug alone and binary systems. Importantly, compared with binary systems, the ternary system showed a significant improvement in the stability of DHA in Hank's balanced salt solutions (pH 7.4). The solubility and stability of DHA in aqueous solutions were simultaneously enhanced by the ternary system, which might be attributed to the possible formation of a ternary complex. For the ternary interactions, results of molecular docking studies further indicated that the lecithin covered the top of the wide rim of HP-β-CD and surrounded around the peroxide bridging of DHA, providing the possibility for the ternary complex formation. In summary, the ternary system prepared in our study, with simultaneous enhancement of DHA solubility and stability in aqueous solutions, might have an important pharmaceutical potential in the development of a better

  2. Dynamic speciation analysis of atrazine in aqueous latex nanoparticle dispersions using solid phase microextraction (SPME)

    NARCIS (Netherlands)

    Benhabib, K.; Town, R.M.; Leeuwen, van H.P.

    2009-01-01

    Solid phase microextraction (SPME) is applied in the dynamic speciation analysis of the pesticide atrazine in an aqueous medium containing sorbing latex nanoparticles. It is found that the overall rate of extraction of the analyte is faster than in the absence of nanoparticles and governed by the

  3. Simplified Eigen-structure decomposition solver for the simulation of two-phase flow systems

    International Nuclear Information System (INIS)

    Kumbaro, Anela

    2012-01-01

    This paper discusses the development of a new solver for a system of first-order non-linear differential equations that model the dynamics of compressible two-phase flow. The solver presents a lower-complexity alternative to Roe-type solvers because it only makes use of a partial Eigen-structure information while maintaining its accuracy: the outcome is hence a good complexity-tractability trade-off to consider as relevant in a large number of situations in the scope of two-phase flow numerical simulation. A number of numerical and physical benchmarks are presented to assess the solver. Comparison between the computational results from the simplified Eigen-structure decomposition solver and the conventional Roe-type solver gives insight upon the issues of accuracy, robustness and efficiency. (authors)

  4. Corrosion detection of carbon steel in water/oil two phases environment by electrochemical noise analysis

    International Nuclear Information System (INIS)

    Gusmano, G.; Montesperelli, G.; De Grandis, A.

    1998-01-01

    The aim of this paper is to demonstrate the effectiveness of the electrochemical noise analysis to detect the onset of corrosion phenomena in a very high resistivity medium. Tests were carried out on carbon steel electrodes immersed in a water/mineral oil two phases environment with high concentration of CO 2 , different aqueous/organic phase ratio, sulphide content between 0 and 0.5 g/l and pH between 1 and 5. The evolution of corrosion phenomena were followed by collecting current and potential noise between three nominally identical electrodes. The noise data were analysed in the time and in the frequency domain. In spite of a great loss of sensitivity of the method with respect to tests performed in aqueous solution, the data indicate a good agreement between the standard deviations and the power level of power spectra density (PSD) of current and potential noise signals and corrosion rates by means of weight loss. The values of the PSD slope, indicate the form of corrosion. The effect of water/oil ratio, sulphide concentration and pH on the corrosion rate was determined. Finally two methods to increase the sensitivity of the electrochemical noise are proposed. (orig.)

  5. Numerical method for two-phase flow discontinuity propagation calculation

    International Nuclear Information System (INIS)

    Toumi, I.; Raymond, P.

    1989-01-01

    In this paper, we present a class of numerical shock-capturing schemes for hyperbolic systems of conservation laws modelling two-phase flow. First, we solve the Riemann problem for a two-phase flow with unequal velocities. Then, we construct two approximate Riemann solvers: an one intermediate-state Riemann solver and a generalized Roe's approximate Riemann solver. We give some numerical results for one-dimensional shock-tube problems and for a standard two-phase flow heat addition problem involving two-phase flow instabilities

  6. Two-dimensional phase fraction charts

    International Nuclear Information System (INIS)

    Morral, J.E.

    1984-01-01

    A phase fraction chart is a graphical representation of the amount of each phase present in a system as a function of temperature, composition or other variable. Examples are phase fraction versus temperature charts used to characterize specific alloys and as a teaching tool in elementary texts, and Schaeffler diagrams used to predict the amount of ferrite in stainless steel welds. Isothermal-transformation diagrams (TTT diagrams) are examples that give phase (or microconstituent) amount versus temperature and time. The purpose of this communication is to discuss the properties of two-dimensional phase fraction charts in more general terms than have been reported before. It is shown that they can represent multi-component, multiphase equilibria in a way which is easier to read and which contains more information than the isotherms and isopleths of multi-component phase diagrams

  7. Heteroaggregation of graphene oxide with minerals in aqueous phase.

    Science.gov (United States)

    Zhao, Jian; Liu, Feifei; Wang, Zhenyu; Cao, Xuesong; Xing, Baoshan

    2015-03-03

    Upon release into waters, sediments, and soils, graphene oxide (GO) may interact with fine mineral particles. We investigated the heteroaggregation of GO with different minerals, including montmorillonite, kaolinite, and goethite, in aqueous phase. GO significantly enhanced the dispersion of positively charged goethite (>50%) via heteroaggregation, while there was no interaction between GO and negatively charged montmorillonite or kaolinite. Electrostatic attraction was the dominant force in the GO-goethite heteroaggregation (pH 4.0-8.5), and the dissolved Fe ions (formation of multilayered GO-goethite complex with high configurational stability. These findings are useful for understanding the interaction of GO with mineral surfaces, and potential fate and toxicity of GO under natural conditions in aquatic environments, as well as in soils and sediments.

  8. Engineering the Flow of Liquid Two-Phase Systems by Passive Noise Control

    Science.gov (United States)

    Zhang, Zeyi; Kong, Tiantian; Zhou, Chunmei; Wang, Liqiu

    2018-02-01

    We investigate a passive noise-control approach to engineering the two-phase flow in a microfluidic coflow system. The presence or absence of the jet breakup is studied for two immiscible oil phases, in a straight microchannel (referred to as the J device in the main text), an expansion microchannel (the W device) and a microchannel with the expansion-contraction geometry (the S device), respectively. We show that the jet breaks into droplets, in the jetting regime and the dripping regime (also referred to as the widening-jetting regime) for the straight channel and expansion channel, respectively, while a stable long jet does not break for the expansion-contraction geometry. As the inner phase passes the expansion-contraction functional unit, the random noise on the interface is significantly reduced and the hydrodynamic instability is suppressed, for a range of experimental parameters including flow rates, device geometry, liquid viscosity, and interfacial tension. We further present scale-up devices with multiple noise-control units and achieve decimeter-long yet stable jets. Our simple, effective, and robust noise-control approach can benefit microfluidic applications such as microfiber fabrication, interface chemical reaction, and on-chip distance transportation.

  9. Development of a generalized correlation for phase-velocity measurements obtained from impedance-probe pairs in two-phase flow systems

    International Nuclear Information System (INIS)

    Hsu, C.T.; Keshock, E.G.; McGill, R.N.

    1983-01-01

    A flag type electrical impedance probe has been developed at the Oak Ridge National Lab (ORNL) to measure liquid- and vapor-phase velocities in steam-water mixtures flowing through rod bundles. Measurements are made by utilizing the probes in pairs, installed in line, parallel to the flow direction, and extending out into the flow channel. The present study addresses performance difficulties by examining from a fundamental point of view the two-phase flow system which the impedance probes typically operate in. Specifically, the governing equations (continuity, momentum, energy) were formulated for both air-water and steam-water systems, and then subjected to a scaling analysis. The scaling analysis yielded the appropriate dimensionless parameters of significance in both kinds of systems. Additionally, with the aid of experimental data obtained at ORNL, those parameters of significant magnitude were established. As a result, a generalized correlation was developed for liquid and vapor phase velocities that makes it possible to employ the impedance probe velocity measurement technique in a wide variety of test configurations and fluid combinations

  10. Refinement of Modeled Aqueous-Phase Sulfate Production via the Fe- and Mn-Catalyzed Oxidation Pathway

    Directory of Open Access Journals (Sweden)

    Syuichi Itahashi

    2018-04-01

    Full Text Available We refined the aqueous-phase sulfate (SO42− production in the state-of-the-art Community Multiscale Air Quality (CMAQ model during the Japanese model inter-comparison project, known as Japan’s Study for Reference Air Quality Modeling (J-STREAM. In Japan, SO42− is the major component of PM2.5, and CMAQ reproduces the observed seasonal variation of SO42− with the summer maxima and winter minima. However, CMAQ underestimates the concentration during winter over Japan. Based on a review of the current modeling system, we identified a possible reason as being the inadequate aqueous-phase SO42− production by Fe- and Mn-catalyzed O2 oxidation. This is because these trace metals are not properly included in the Asian emission inventories. Fe and Mn observations over Japan showed that the model concentrations based on the latest Japanese emission inventory were substantially underestimated. Thus, we conducted sensitivity simulations where the modeled Fe and Mn concentrations were adjusted to the observed levels, the Fe and Mn solubilities were increased, and the oxidation rate constant was revised. Adjusting the concentration increased the SO42− concentration during winter, as did increasing the solubilities and revising the rate constant to consider pH dependencies. Statistical analysis showed that these sensitivity simulations improved model performance. The approach adopted in this study can partly improve model performance in terms of the underestimation of SO42− concentration during winter. From our findings, we demonstrated the importance of developing and evaluating trace metal emission inventories in Asia.

  11. Mechanisms of catalytic cleavage of benzyl phenyl ether in aqueous and apolar phases

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiayue; Lu, Lu; Zhao, Chen; Mei, Donghai; Lercher, Johannes A.

    2014-03-01

    Catalytic pathways for the cleavage of ether bonds in benzyl phenyl ether (BPE) in liquid phase using Ni- and zeolite-based catalysts are explored. In the absence of catalysts, the C-O bond is selectively cleaved in water by hydrolysis, forming phenol and benzyl alcohol as intermediates, followed by alkylation. The hydronium ions catalyzing the reactions are provided by the dissociation of water at 523 K. Upon addition of HZSM-5, rates of hydrolysis and alkylation are markedly increased in relation to proton concentrations. In the presence of Ni/SiO2, the selective hydrogenolysis dominates for cleaving the Caliphatic-O bond. Catalyzed by the dual-functional Ni/HZSM-5, hydrogenolysis occurs as the major route rather than hydrolysis (minor route). In apolar undecane, the non-catalytic thermal pyrolysis route dominates. Hydrogenolysis of BPE appears to be the major reaction pathway in undecane in the presence of Ni/SiO2 or Ni/HZSM-5, almost completely suppressing radical reactions. Density functional theory (DFT) calculations strongly support the proposed C-O bond cleavage mechanisms on BPE in aqueous and apolar phases. These calculations show that BPE is initially protonated and subsequently hydrolyzed in the aqueous phase. Finally, DFT calculations suggest that the radical reactions in non-polar solvents lead to primary benzyl and phenoxy radicals in undecane, which leads to heavier condensation products as long as metals are absent for providing dissociated hydrogen.

  12. Process for preparing organoclays for aqueous and polar-organic systems

    Science.gov (United States)

    Chaiko, David J.

    2001-01-01

    A process for preparing organoclays as thixotropic agents to control the rheology of water-based paints and other aqueous and polar-organic systems. The process relates to treating low-grade clay ores to achieve highly purified organoclays and/or to incorporate surface modifying agents onto the clay by adsorption and/or to produce highly dispersed organoclays without excessive grinding or high shear dispersion. The process involves the treatment of impure, or run-of-mine, clay using an aqueous biphasic extraction system to produce a highly dispersed clay, free of mineral impurities and with modified surface properties brought about by adsorption of the water-soluble polymers used in generating the aqueous biphasic extraction system. This invention purifies the clay to greater than 95%.

  13. RELAP5 two-phase fluid model and numerical scheme for economic LWR system simulation

    International Nuclear Information System (INIS)

    Ransom, V.H.; Wagner, R.J.; Trapp, J.A.

    1981-01-01

    The RELAP5 two-phase fluid model and the associated numerical scheme are summarized. The experience accrued in development of a fast running light water reactor system transient analysis code is reviewed and example of the code application are given

  14. Two-dimensional high-performance thin-layer chromatography of tryptic bovine albumin digest using normal- and reverse-phase systems with silanized silica stationary phase.

    Science.gov (United States)

    Gwarda, Radosław Łukasz; Dzido, Tadeusz Henryk

    2013-10-18

    Among many advantages of planar techniques, two-dimensional (2D) separation seems to be the most important for analysis of complex samples. Here we present quick, simple and efficient two-dimensional high-performance thin-layer chromatography (2D HPTLC) of bovine albumin digest using commercial HPTLC RP-18W plates (silica based stationary phase with chemically bonded octadecyl ligands of coverage density 0.5μmol/m(2) from Merck, Darmstadt). We show, that at low or high concentration of water in the mobile phase comprised methanol and some additives the chromatographic systems with the plates mentioned demonstrate normal- or reversed-phase liquid chromatography properties, respectively, for separation of peptides obtained. These two systems show quite different separation selectivity and their combination into 2D HPTLC process provides excellent separation of peptides of the bovine albumin digest. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Two phase cooling for superconducting magnets

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Gibson, G.A.; Green, M.A.; Ross, R.R.; Smits, R.G.; Taylor, J.D.; Watt, R.D.

    1986-01-01

    Comments on the use of two phase helium in a closed circuit tubular cooling system and some results obtained with the TPC superconducting magnet are given. Theoretical arguments and experimental evidence are given against a previously suggested method to determine helium two phase flow regimes. Two methods to reduce pressure in the magnet cooling tubes during quenches are discussed; (1) lowering the density of helium in the magnet cooling tubes and (2) proper location of pressure relief valves. Some techniques used to protect the refrigerator from too much cold return gas are also mentioned. 10 refs., 1 fig., 5 tabs

  16. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2014-03-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O : C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O : C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to depend on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O : C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  17. Aqueous-phase photochemical oxidation and direct photolysis of vanillin - a model compound of methoxy-phenols from biomass burning

    Science.gov (United States)

    Li, Y. J.; Huang, D. D.; Cheung, H. Y.; Lee, A. K. Y.; Chan, C. K.

    2013-10-01

    We present here experimental results on aqueous-phase (A) photochemical oxidation (with UV and OH radicals generated from H2O2 photolysis) and (B) direct photolysis (with only UV irradiation) of a methoxy-phenol, vanillin (VL), as a model compound from biomass burning. Both on-line aerosol mass spectrometric (AMS) characterization and off-line chemical analyses were performed. AMS analyses of dried atomized droplets of the bulk reacting mixtures showed that VL almost entirely evaporates during the drying process. Large amounts of organic mass remained in the particle phase after reactions under both conditions. Under condition (A), AMS measured organic mass first increased rapidly and then decreased, attributable to the formation of non-volatile products and subsequent formation of smaller and volatile products, respectively. The oxygen-to-carbon (O:C) ratio of the products reached 1.5 after about 80 min, but dropped substantially thereafter. In contrast, organic mass increased slowly under condition (B). The O:C ratio reached 1.0 after 180 min. In off-line analyses, small oxygenates were detected under condition (A), while hydroxylated products and dimers of VL were detected under condition (B). Particle hygroscopic growth factor (GF) and cloud condensation nuclei (CCN) activity of the reacting mixtures were found to be dependent on both organic volume fraction and the degree of oxygenation of organics. Results show that (1) aqueous-phase processes can lead to the retention of a large portion of the organic mass in the particle phase; (2) once retained, this portion of organic mass significantly changes the hygroscopicity and CCN activity of the aerosol particles; (3) intensive photochemical oxidation gave rise to an O:C ratio as high as 1.5 but the ratio decreased as further oxidation led to smaller and more volatile products; and (4) polymerization occurred with direct photolysis, resulting in high-molecular-weight products of a yellowish color. This study

  18. Phase- and size-controllable synthesis of hexagonal upconversion rare-earth fluoride nanocrystals through an oleic acid/ionic liquid two-phase system.

    Science.gov (United States)

    He, Meng; Huang, Peng; Zhang, Chunlei; Ma, Jiebing; He, Rong; Cui, Daxiang

    2012-05-07

    Herein, we introduce a facile, user- and environmentally friendly (n-octanol-induced) oleic acid (OA)/ionic liquid (IL) two-phase system for the phase- and size-controllable synthesis of water-soluble hexagonal rare earth (RE = La, Gd, and Y) fluoride nanocrystals with uniform morphologies (mainly spheres and elongated particles) and small sizes (size are discussed in detail. More importantly, the mechanism of the (n-octanol-induced) OA/IL two-phase system, the formation of the RE fluoride nanocrystals, and the distinctive size- and morphology-controlling capacity of the system are presented. BmimPF(6) is versatile in term of crystal-phase manipulation, size and shape maintenance, and providing water solubility in a one-step reaction. The luminescent properties of Er(3+)-, Ho(3+)-, and Tm(3+)-doped LaF(3), NaGdF(4), and NaYF(4) nanocrystals were also studied. It is worth noting that the as-prepared products can be directly dispersed in water due to the hydrophilic property of Bmim(+) (cationic part of the IL) as a capping agent. This advantageous feature has made the IL-capped products favorable in facile surface modifications, such as the classic Stober method. Finally, the cytotoxicity evaluation of NaYF(4):Yb,Er nanocrystals before and after silica coating was conducted for further biological applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Liquid-liquid transfer phenomena studies coupled with redox reactions: back-extraction of nitrous acid in the presence of scavengers in aqueous phase

    International Nuclear Information System (INIS)

    K'zerho, R.

    1998-01-01

    This work deals with the investigation of redox reaction contribution to the kinetics of liquid-liquid transfer, in relation with PUREX reprocessing of spent nuclear fuel. The chemical system chosen concerns the tripping of nitrous acid from tributylphosphate organic phase into a nitric acid aqueous solution containing an 'anti-nitrous' component, namely hydrazinium nitrate. According to the abundant literature, a major attention is devoted to the very important role of interfacial phenomena on the kinetics of solvent extraction with tributylphosphate. Although, a suitable experimental technique is chosen, using a constant interfacial area cell of the ARMOLLEX-type. Furthermore, the effects of the hydrodynamical and the physico-chemical parameters on the extraction rate led to the identification of the extraction regime nature: diffusional, then chemical limitation. When no 'anti-nitrous' component is used, the diffusional resistance is found to be mainly located in the aqueous diffusion layer. The presence of hydrazinium nitrate into the aqueous solution has an overall accelerating effect on the rate of extraction, related to both a complete suppression of the aqueous diffusional resistance, and a very significant enhancement of the interfacial transfer of the nitrous acid, as a function of hydrazinium concentration. If the first effect could be expected because of the well known fast redox reaction in aqueous phase, the second phenomenon represents a quite original and new result which has never been explored before, to the best of our knowledge. A reaction mechanism is postulated and validated, taking into account the reactive effect of hydrazinium on the interfacial step. In order to support the drawn general patterns, different complementary studies were attempted. When hydroxyl-ammonium nitrate is used, a surprising interfacial transfer blockage is observed, pointing out the extreme performance and specificity of the common hydrazinium component. (author)

  20. Derivatisation/solid-phase microextraction followed by gas chromatography-mass spectrometry for the analysis of phenoxy acid herbicides in aqueous samples

    DEFF Research Database (Denmark)

    Nilsson, Torben; Baglio, Daniela; Galdo-Miguez, Isabel

    1998-01-01

    Different combinations of derivatisation and solid-phase microextraction followed by gas chromatography-mass spectrometry were optimised and evaluated for the analysis of phenoxy acid herbicides in water. The most successful derivatisation approach was aqueous-phase derivatisation with benzyl...

  1. System for recording and displaying two-phase flow topographies

    International Nuclear Information System (INIS)

    Cary, C.N.; Block, J.A.

    1979-01-01

    A system of hardware and software has been developed and used to record and display in various forms details of the countercurrent flow topographies occurring in a scaled Pressurized Water Reactor downcomer annulus. An array of 288 conductivity sensors was mounted in a 1/15 scale PWR annulus. At each moment in time, the state of each probe indicates the presence or absence of water in this immediate vicinity. An electronic data acquisition system records the states of all probes 108 times per second on magnetic tape; software routines retrieve the data and reconstruct visual analogs of the flow topographies. The instantaneous two-phase state of the annulus at each instant can be displayed on a hard copy plotter or on a CRT screen. By synchronizing a camera drive with the CRT display, 16mm films have been made recreating the flow process at full speed and at various slow motion rates. All data obtained are stored in computer files in numerical form and can be subjected to various types of quantitative analysis to assist in advanced code development and verification

  2. Dual Alkali Solvent System for CO2 Capture from Flue Gas.

    Science.gov (United States)

    Li, Yang; Wang, H Paul; Liao, Chang-Yu; Zhao, Xinglei; Hsiung, Tung-Li; Liu, Shou-Heng; Chang, Shih-Ger

    2017-08-01

    A novel two-aqueous-phase CO 2 capture system, namely the dual alkali solvent (DAS) system, has been developed. Unlike traditional solvent-based CO 2 capture systems in which the same solvent is used for both CO 2 absorption and stripping, the solvent of the DAS system consists of two aqueous phases. The upper phase, which contains an organic alkali 1-(2-hydroxyethyl) piperazine (HEP), is used for CO 2 absorption. The lower phase, which consists of a mixture of K 2 CO 3 /KHCO 3 aqueous solution and KHCO 3 precipitate, is used for CO 2 stripping. Only a certain kind of amine (such as HEP) is able to ensure the phase separation, satisfactory absorption efficiency, effective CO 2 transfer from the upper phase to the lower phase, and regeneration of the upper phase. In the meantime, due to the presence of K 2 CO 3 /KHCO 3 in the lower phase, HEP in the upper phase is capable of being regenerated from its sulfite/sulfate heat stable salt, which enables the simultaneous absorption of CO 2 and SO 2 /SO 3 from the flue gas. Preliminary experiments and simulations indicate that the implementation of the DAS system can lead to 24.0% stripping energy savings compared to the Econamine process, without significantly lowering the CO 2 absorption efficiency (∼90%).

  3. Regioselective biooxidation of (+-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system

    Directory of Open Access Journals (Sweden)

    Schmid Rolf D

    2009-07-01

    Full Text Available Abstract Background (+-Nootkatone (4 is a high added-value compound found in grapefruit juice. Allylic oxidation of the sesquiterpene (+-valencene (1 provides an attractive route to this sought-after flavoring. So far, chemical methods to produce (+-nootkatone (4 from (+-valencene (1 involve unsafe toxic compounds, whereas several biotechnological approaches applied yield large amounts of undesirable byproducts. In the present work 125 cytochrome P450 enzymes from bacteria were tested for regioselective oxidation of (+-valencene (1 at allylic C2-position to produce (+-nootkatone (4 via cis- (2 or trans-nootkatol (3. The P450 activity was supported by the co-expression of putidaredoxin reductase (PdR and putidaredoxin (Pdx from Pseudomonas putida in Escherichia coli. Results Addressing the whole-cell system, the cytochrome CYP109B1 from Bacillus subtilis was found to catalyze the oxidation of (+-valencene (1 yielding nootkatol (2 and 3 and (+-nootkatone (4. However, when the in vivo biooxidation of (+-valencene (1 with CYP109B1 was carried out in an aqueous milieu, a number of undesired multi-oxygenated products has also been observed accounting for approximately 35% of the total product. The formation of these byproducts was significantly reduced when aqueous-organic two-liquid-phase systems with four water immiscible organic solvents – isooctane, n-octane, dodecane or hexadecane – were set up, resulting in accumulation of nootkatol (2 and 3 and (+-nootkatone (4 of up to 97% of the total product. The best productivity of 120 mg l-1 of desired products was achieved within 8 h in the system comprising 10% dodecane. Conclusion This study demonstrates that the identification of new P450s capable of producing valuable compounds can basically be achieved by screening of recombinant P450 libraries. The biphasic reaction system described in this work presents an attractive way for the production of (+-nootkatone (4, as it is safe and can easily be

  4. Regioselective biooxidation of (+)-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system.

    Science.gov (United States)

    Girhard, Marco; Machida, Kazuhiro; Itoh, Masashi; Schmid, Rolf D; Arisawa, Akira; Urlacher, Vlada B

    2009-07-10

    (+)-Nootkatone (4) is a high added-value compound found in grapefruit juice. Allylic oxidation of the sesquiterpene (+)-valencene (1) provides an attractive route to this sought-after flavoring. So far, chemical methods to produce (+)-nootkatone (4) from (+)-valencene (1) involve unsafe toxic compounds, whereas several biotechnological approaches applied yield large amounts of undesirable byproducts. In the present work 125 cytochrome P450 enzymes from bacteria were tested for regioselective oxidation of (+)-valencene (1) at allylic C2-position to produce (+)-nootkatone (4) via cis- (2) or trans-nootkatol (3). The P450 activity was supported by the co-expression of putidaredoxin reductase (PdR) and putidaredoxin (Pdx) from Pseudomonas putida in Escherichia coli. Addressing the whole-cell system, the cytochrome CYP109B1 from Bacillus subtilis was found to catalyze the oxidation of (+)-valencene (1) yielding nootkatol (2 and 3) and (+)-nootkatone (4). However, when the in vivo biooxidation of (+)-valencene (1) with CYP109B1 was carried out in an aqueous milieu, a number of undesired multi-oxygenated products has also been observed accounting for approximately 35% of the total product. The formation of these byproducts was significantly reduced when aqueous-organic two-liquid-phase systems with four water immiscible organic solvents - isooctane, n-octane, dodecane or hexadecane - were set up, resulting in accumulation of nootkatol (2 and 3) and (+)-nootkatone (4) of up to 97% of the total product. The best productivity of 120 mg l-1 of desired products was achieved within 8 h in the system comprising 10% dodecane. This study demonstrates that the identification of new P450s capable of producing valuable compounds can basically be achieved by screening of recombinant P450 libraries. The biphasic reaction system described in this work presents an attractive way for the production of (+)-nootkatone (4), as it is safe and can easily be controlled and scaled up.

  5. Review on two-phase flow instabilities in narrow spaces

    International Nuclear Information System (INIS)

    Tadrist, L.

    2007-01-01

    Instabilities in two-phase flow have been studied since the 1950s. These phenomena may appear in power generation and heat transfer systems where two-phase flow is involved. Because of thermal management in small size systems, micro-fluidics plays an important role. Typical processes must be considered when the channel hydraulic diameter becomes very small. In this paper, a brief review of two-phase flow instabilities encountered in channels having hydraulic diameters greater than 10 mm are presented. The main instability types are discussed according to the existing experimental results and models. The second part of the paper examines two-phase flow instabilities in narrow spaces. Pool and flow boiling cases are considered. Experiments as well as theoretical models existing in the literature are examined. It was found that several experimental works evidenced these instabilities meanwhile only limited theoretical developments exist in the literature. In the last part of the paper an interpretation of the two-phase flow instabilities linked to narrow spaces are presented. This approach is based on characteristic time scales of the two-phase flow and bubble growth in the capillaries

  6. Design of a two-phase loop thermosyphon for telecommunications system(I): experiments and visualization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Tae [Kongju National Univ., Kongju (Korea, Republic of); Song, Kyu Sub [Electronics and Telecommunications Research Institute, Taejon (Korea, Republic of); Lee, Young [Univ. of Ottawa, Ontario (Canada)

    1998-10-01

    A two-phase loop thermosyphon system is developed for the B-ISDN telecommunications system and its performance is evaluated both experimentally and by visualization techniques. The design of the thermosyphon system proposed is aimed to cool MultiChip Modules (MCM) upto heat flux of 8 W/cm{sup 2}. The results indicate that in the loop thermosyphon system cooling heat flux is capable of 12 W/cm{sup 2} with two condensers under the forced convection cooling of the condenser section with acetone or FC-87 as the working fluid. The instability of the working fluid flow within the loop is observed using the visualization techniques and temperature fluctuation is stabilized with orifice insertion.

  7. Design of a two-phase loop thermosyphon for telecommunications system(I): experiments and visualization

    International Nuclear Information System (INIS)

    Kim, Won Tae; Song, Kyu Sub; Lee, Young

    1998-01-01

    A two-phase loop thermosyphon system is developed for the B-ISDN telecommunications system and its performance is evaluated both experimentally and by visualization techniques. The design of the thermosyphon system proposed is aimed to cool MultiChip Modules (MCM) upto heat flux of 8 W/cm 2 . The results indicate that in the loop thermosyphon system cooling heat flux is capable of 12 W/cm 2 with two condensers under the forced convection cooling of the condenser section with acetone or FC-87 as the working fluid. The instability of the working fluid flow within the loop is observed using the visualization techniques and temperature fluctuation is stabilized with orifice insertion

  8. Two-phase air-water stratified flow measurement using ultrasonic techniques

    International Nuclear Information System (INIS)

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-01-01

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable

  9. Cold-induced aqueous acetonitrile phase separation: A salt-free way to begin quick, easy, cheap, effective, rugged, safe.

    Science.gov (United States)

    Shao, Gang; Agar, Jeffrey; Giese, Roger W

    2017-07-14

    Cooling a 1:1 (v/v) solution of acetonitrile and water at -16° C is known to result in two clear phases. We will refer to this event as "cold-induced aqueous acetonitrile phase separation (CIPS)". On a molar basis, acetonitrile is 71.7% and 13.6% in the upper and lower phases, respectively, in our study. The phase separation proceeds as a descending cloud of microdroplets. At the convenient temperature (typical freezer) employed here the lower phase is rather resistant to solidification, although it emerges from the freezer as a solid if various insoluble matter is present at the outset. In a preliminary way, we replaced the initial (salting-out) step of a representative QuEChERS procedure with CIPS, applying this modified procedure ("CIPS-QuEChERS") to a homogenate of salmon (and partly to beef). Three phases resulted, where only the upper, acetonitrile-rich phase is a liquid (that is completely clear). The middle phase comprises ice and precipitated lipids, while the lower phase is the residual matrix of undissolved salmon or meat. Treating the upper phase from salmon, after isolation, with anhydrous MgSO 4 and C18-Si (typical QuEChERS dispersive solid phase extraction sorbents), and injecting into a GC-MS in a nontargeted mode, gives two-fold more preliminary hits for chemicals, and also number of spiked pesticides recovered, relative to that from a comparable QuEChERS method. In part, this is because of much higher background signals in the latter case. Further study of CIPS-QuEChERS is encouraged, including taking advantage of other QuERChERS conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Unsteady State Two Phase Flow Pressure Drop Calculations

    OpenAIRE

    Ayatollahi, Shahaboddin

    1992-01-01

    A method is presented to calculate unsteady state two phase flow in a gas-liquid line based on a quasi-steady state approach. A computer program for numerical solution of this method was prepared. Results of calculations using the computer program are presented for several unsteady state two phase flow systems

  11. Experimental investigation two phase flow in direct methanol fuel cells

    International Nuclear Information System (INIS)

    Mat, M. D.; Kaplan, Y.; Celik, S.; Oeztural, A.

    2007-01-01

    Direct methanol fuel cells (DMFC) have received many attentions specifically for portable electronic applications since it utilize methanol which is in liquid form in atmospheric condition and high energy density of the methanol. Thus it eliminates the storage problem of hydrogen. It also eliminates humidification requirement of polymeric membrane which is a problem in PEM fuel cells. Some electronic companies introduced DMFC prototypes for portable electronic applications. Presence of carbon dioxide gases due to electrochemical reactions in anode makes the problem a two phase problem. A two phase flow may occur at cathode specifically at high current densities due to the excess water. Presence of gas phase in anode region and liquid phase in cathode region prevents diffusion of fuel and oxygen to the reaction sites thus reduces the performance of the system. Uncontrolled pressure buildup in anode region increases methanol crossover through membrane and adversely effect the performance. Two phase flow in both anode and cathode region is very effective in the performance of DMYC system and a detailed understanding of two phase flow for high performance DMFC systems. Although there are many theoretical and experimental studies available on the DMFC systems in the literature, only few studies consider problem as a two-phase flow problem. In this study, an experimental set up is developed and species distributions on system are measured with a gas chromatograph. System performance characteristics (V-I curves) is measured depending on the process parameters (temperature, fuel ad oxidant flow rates, methanol concentration etc)

  12. Review of two-phase instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han Ok; Seo, Han Ok; Kang, Hyung Suk; Cho, Bong Hyun; Lee, Doo Jeong

    1997-06-01

    KAERI is carrying out a development of the design for a new type of integral reactors. The once-through helical steam generator is important design features. The study on designs and operating conditions which prevent flow instability should precede the introduction of one-through steam generator. Experiments are currently scheduled to understand two-phase instability, evaluate the effect of each design parameter on the critical point, and determine proper inlet throttling for the prevention of instability. This report covers general two-phase instability with review of existing studies on this topics. The general classification of two phase flow instability and the characteristics of each type of instability are first described. Special attention is paid to BWR core flow instability and once-through steam generator instability. The reactivity feedback and the effect of system parameters are treated mainly for BWR. With relation to once-through steam generators, the characteristics of convective heating and dryout point oscillation are first investigated and then the existing experimental studies are summarized. Finally chapter summarized the proposed correlations for instability boundary conditions. (author). 231 refs., 5 tabs., 47 figs

  13. Carbon-coated ceramic membrane reactor for production of hydrogen via aqueous phase reforming of sorbitol

    NARCIS (Netherlands)

    Neira d'Angelo, M.F.; Ordomskiy, V.; Schouten, J.C.; Schaaf, van der J.; Nijhuis, T.A.

    2014-01-01

    Hydrogen was produced by aqueous-phase reforming (APR) of sorbitol in a carbon-on-alumina tubular membrane reactor (4 nm pore size, 7 cm long, 3 mm internal diameter) that allows the hydrogen gas to permeate to the shell side, whereas the liquid remains in the tube side. The hydrophobic nature of

  14. Two phase sampling

    CERN Document Server

    Ahmad, Zahoor; Hanif, Muhammad

    2013-01-01

    The development of estimators of population parameters based on two-phase sampling schemes has seen a dramatic increase in the past decade. Various authors have developed estimators of population using either one or two auxiliary variables. The present volume is a comprehensive collection of estimators available in single and two phase sampling. The book covers estimators which utilize information on single, two and multiple auxiliary variables of both quantitative and qualitative nature. Th...

  15. Improving the treatment of non-aqueous phase TCE in low permeability zones with permanganate

    Energy Technology Data Exchange (ETDEWEB)

    Chokejaroenrat, Chanat, E-mail: chanat@sut.ac.th [Department of Civil Engineering, University of Nebraska, Lincoln, NE 68588-0531 (United States); School of Environmental Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Comfort, Steve, E-mail: scomfort1@unl.edu [School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0915 (United States); Sakulthaew, Chainarong, E-mail: cvtcns@ku.ac.th [School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0915 (United States); Department of Veterinary Technology, Kasetsart University, Bangkok 10900 (Thailand); Dvorak, Bruce, E-mail: bdvorak1@unl.edu [Department of Civil Engineering, University of Nebraska, Lincoln, NE 68588-0531 (United States)

    2014-03-01

    Graphical abstract: - Highlights: • Transport experiments used transmissive and low permeability zones (LPZs). • {sup 14}C-labeled TCE was used to quantify oxidation of DNAPL in LPZs by permanganate. • Stabilization aids prevented MnO{sub 2} rind formation. • DNAPL oxidation improved when xanthan and stabilization aids were used. - Abstract: Treating dense non-aqueous phase liquids (DNAPLs) embedded in low permeability zones (LPZs) is a particularly challenging issue for injection-based remedial treatments. Our objective was to improve the sweeping efficiency of permanganate (MnO{sub 4}{sup −}) into LPZs to treat high concentrations of TCE. This was accomplished by conducting transport experiments that quantified the penetration of various permanganate flooding solutions into a LPZ that was spiked with non-aqueous phase {sup 14}C-TCE. The treatments we evaluated included permanganate paired with: (i) a shear-thinning polymer (xanthan); (ii) stabilization aids that minimized MnO{sub 2} rind formation and (iii) a phase-transfer catalyst. In addition, we quantified the ability of these flooding solutions to improve TCE destruction under batch conditions by developing miniature LPZ cylinders that were spiked with {sup 14}C-TCE. Transport experiments showed that MnO{sub 4}{sup −} alone was inefficient in penetrating the LPZ and reacting with non-aqueous phase TCE, due to a distinct and large MnO{sub 2} rind that inhibited the TCE from further oxidant contact. By including xanthan with MnO{sub 4}{sup −}, the sweeping efficiency increased (90%) but rind formation was still evident. By including the stabilization aid, sodium hexametaphosphate (SHMP) with xanthan, permanganate penetrated 100% of the LPZ, no rind was observed, and the percentage of TCE oxidized increased. Batch experiments using LPZ cylinders allowed longer contact times between the flooding solutions and the DNAPL and results showed that SHMP + MnO{sub 4}{sup −} improved TCE destruction by

  16. Two-phase cooling fluids; Les fluides frigoporteurs diphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)

    1997-12-31

    In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry

  17. Phase-controlled all-optical switching based on coherent population oscillation in a two-level system

    International Nuclear Information System (INIS)

    Liao, Ping; Yu, Song; Luo, Bin; Shen, Jing; Gu, Wanyi; Guo, Hong

    2011-01-01

    We theoretically propose a scheme of phase-controlled all-optical switching due to the effect of degenerate four-wave mixing (FWM) and coherent population oscillation (CPO) in a two-level system driven by a strong coupling field and two weak symmetrically detuned fields. The results show that the phase of the FWM field can be utilized to switch between constructive and destructive interference, which can lead to the transmission or attenuation of the probe field and thus switch the field on or off. We also find the intensity of the coupling field and the propagation distance have great influence on the performance of the switching. In our scheme, due to the quick response in semiconductor systems, a fast all-optical switching can be realized at low light level. -- Highlights: ► We study a new all-optical switching based on coherent population oscillation. ► The phase of the FWM field can be utilized to switch the probe field on or off. ► A fast and low-light-level switching can be realized in semiconductors.

  18. Extraction of rare earth metals (3) from aqueous solutions containing thorium and uranyl nitrates

    International Nuclear Information System (INIS)

    Pyartman, A.K.; Kopyrin, A.A.; Berinskij, A.E.; Keskinov, V.A.

    2000-01-01

    Isotherms of extraction of rare earth metals (3) from aqueous solutions containing thorium and uranyl nitrates by solutions of tributylphosphate (TBP) and diisooctylmethylphosphonate (DIOMP) in kerosene at 298.15 Deg C and pH 1 are presented. Equations for description of interphase distribution of components of the systems considered are suggested. These equations describe distribution of components adequately in the systems of thorium nitrate (uranyl nitrate) - rare earth nitrates - (TBP, DIOMP) in the case of wide variation of phase compositions. Dependences of separation factors on composition of aqueous phase are considered [ru

  19. The impact of ionic liquid fluorinated moieties on their thermophysical properties and aqueous phase behaviour.

    Science.gov (United States)

    Neves, Catarina M S S; Kurnia, Kiki A; Shimizu, Karina; Marrucho, Isabel M; Rebelo, Luís Paulo N; Coutinho, João A P; Freire, Mara G; Lopes, José N Canongia

    2014-10-21

    In this work, we demonstrate that the presence of fluorinated alkyl chains in Ionic Liquids (ILs) is highly relevant in terms of their thermophysical properties and aqueous phase behaviour. We have measured and compared the density and viscosity of pure 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, [C2C1im][FAP], with that of pure 1-ethyl-3-methylimidazolium hexafluorophosphate, [C2C1im][PF6], at atmospheric pressure and in the (288.15 to 363.15) K temperature range. The results show that the density of [C2C1im][PF6] is lower than that of [C2C1im][FAP], while the viscosity data reveal the opposite trend. The fluid phase behaviour of aqueous solutions of the two ILs was also evaluated under the same conditions and it was found that the mutual solubilities of [C2C1im][FAP] and water are substantially lower than those verified with [C2C1im][PF6]. The experimental data were lastly interpreted at a molecular level using Molecular Dynamics (MD) simulation results revealing that the interactions between the IL ions and the water molecules are mainly achieved via the six fluorine atoms of [PF6](-) and the three analogues in [FAP](-). The loss of three interaction centres when replacing [PF6](-) by [FAP](-), coupled with the bulkiness and relative inertness of the three perfluoroethyl groups, reduces its mutual solubility with water and also contributes to a lower viscosity displayed by the pure [FAP]-based IL as compared to that of the [PF6]-based compound.

  20. The buffering-out effect and phase separation in aqueous solutions of EPPS buffer with 1-propanol, 2-propanol, or 2-methyl-2-propanol at T = 298.15 K

    International Nuclear Information System (INIS)

    Taha, Mohamed; Teng, Han-Lan; Lee, Ming-Jer

    2012-01-01

    Highlights: ► Buffering-out is a new liquid–liquid phase separation containing biological buffer. ► EPPS buffer-induced phase separation of aqueous solutions of aliphatic alcohols. ► Phase diagrams of EPPS + water + 1-propanol/2-propanol/2-methyl-2-propanol are studied. ► EPPS breaks the 1-propanol + water and 2-methyl-2-propanol + water azeotropes. ► The (liquid + liquid) equilibria can be well correlated by the NRTL model. - Abstract: Buffering-out is a new liquid–liquid phase separation phenomenon observed in mixtures containing a buffer as a mass separating agent. The (liquid + liquid) equilibrium (LLE) and (solid + liquid + liquid) equilibrium (SLLE) data were measured for the ternary systems {3-[4-(2-hydroxyethyl)piperazin-1-yl]propanesulfonic acid (EPPS) buffer + 1-propanol, 2-propanol, or 2-methyl-2-propanol + water} at T = 298.15 K under atmospheric pressure. The phase boundary data were fitted to an empirical equation relating to the concentrations of organic solvent and buffer. The effective excluded volume (EEV) values of EPPS were obtained from the phase boundary data. The phase-separation abilities of the investigated aliphatic alcohols were discussed. The reliability of the experimental tie-lines was satisfactorily confirmed by the Othmer–Tobias correlation. The experimental tie-lines data for the ternary systems have been correlated using the NRTL activity coefficient model. The separation of these aliphatic alcohols from their azeotropic aqueous mixtures is of particular interest to industrial process. The addition of the EPPS as an auxiliary agent breaks the (1-propanol + water) and (2-methyl-2-propanol + water) azeotropes. The possibility of using the new phase separation systems in the extraction process is demonstrated by using different dyestuffs.

  1. Effects of aggregation on the excitation dynamics of LH2 from Thermochromatium tepidum in aqueous phase and in chromatophores.

    Science.gov (United States)

    Yang, Fan; Yu, Long-Jiang; Wang, Peng; Ai, Xi-Cheng; Wang, Zheng-Yu; Zhang, Jian-Ping

    2011-06-23

    We carried out femtosecond magic-angle and polarized pump-probe spectroscopies for the light-harvesting complex 2 (LH2) from Thermochromatium (Tch.) tepidum in aqueous phase and in chromatophores. To examine the effects of LH2 aggregation on the dynamics of excitation energy transfer, dominant monodispersed and aggregated LH2s were prepared by controlling the surfactant concentrations. The aqueous preparations solubilized with different concentrations of n-dodecyl-β-D-maltoside (DDM) show similar visible-to-near-infrared absorption spectra, but distinctively different aggregation states, as revealed by using dynamic light scattering. The B800 → B850 intra-LH2 energy transfer time was determined to be 1.3 ps for isolated LH2, which, upon aggregation in aqueous phase or clustering in chromatophores, shortened to 1.1 or 0.9 ps, respectively. The light-harvesting complex 1 (LH1) of this thermophilic purple sulfur bacterium contains bacteriochlorophyll a absorbing at 915 nm (B915), and the LH2(B850) → LH1(B915) intercomplex transfer time in chromatophores was found to be 6.6 ps. For chromatophores, a depolarization time of 21 ps was derived from the anisotropy kinetics of B850*, which is attributed to the migration of B850* excitation before being trapped by LH1. In addition, the B850* annihilation is accelerated upon LH2 aggregation in aqueous phase, but it is much less severe upon LH2 clustering in the intracytoplasmic membrane. These results are helpful in understanding the light-harvesting function of a bacterial photosynthetic membrane incorporating different types of antenna complexes.

  2. Visualization of Two Phase Natural Convection Flow in a Vertical Pipe using the Sulfuric Acid - Copper Sulfate Electroplating System

    Energy Technology Data Exchange (ETDEWEB)

    Ohk, Seung-Min; Chae, Myeong-Seon; Chung, Bum-Jin [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-10-15

    The passive containment cooling system (PCCS) driven by natural forces convection gain draws research interests after Fukushima NPP accident. The PCCS was classified into three categories: Containment pressure suppression, Containment passive heat removal/pressure suppression systems and Passive containment spray. Among the types of containment passive heat removal/pressure suppression systems, the system composed of an internal heat exchanger and an external coolant tank is considered. In a severe accident condition, the heat from the containment atmosphere is transferred to the outer surface of the heat exchanger by the convection and condensation of the mixture of steam and gases. On the other hand, the heat is transferred to external pool by single phase or two phase natural convection inside of heat exchanger pipes. The study aimed at investigating the influence of the diameter (D) and height (H) of the heat exchanger pipes on the single phase and two phase natural convection heat transfer. As the initial stage of the study, the two phase natural convection flow inside a vertical pipe is visualized. In order to achieve the aim with ample test rig, a sulfuric acid - cooper sulfate electroplating system was employed based on the analogy between heat and mass transfer. The reduction of hydrogen ion at the cathode surface at high potential was used to simulate the boiling phenomena. This study tried to visualize the boiling heat transfer inside a vertical pipe using a cupric acid-copper sulfate (H{sub 2}SO{sub 4}-CuSO{sub 4}) electroplating system. This seems to be successful so far. However further study has to be done to compare the result with real two phase flow situation. The surface tension and surface characteristics are to be tuned to simulate the real situation.

  3. Design of Two Feeder Three Phase Four Wire Distribution System Utilizing Multi Converter UPQC with Fuzzy Logic Controller

    Directory of Open Access Journals (Sweden)

    Chandra Babu Paduchuri

    2014-01-01

    Full Text Available This paper proposes the instantaneous p-q theory based fuzzy logic controller (FLC for multi converter unified power quality conditioner (MC-UPQC to mitigate power quality issues in two feeders three-phase four-wire distribution systems. The proposed system is extended system of the existing one feeder three-phase four-wire distribution system, which is operated with UPQC. This system is employed with three voltage source converters, which are connected commonly to two feeder distribution systems. The performance of this proposed system used to compensate voltage sag, neutral current mitigation and compensation of voltage and current harmonics under linear and nonlinear load conditions. The neutral current flowing in series transformers is zero in the implementation of the proposed system. The simulation performance analysis is carried out using MATLAB.

  4. Phytotoxic effects of aqueous leaf extracts of two eucalyptus SPP. against parthenium hysterophorus L

    International Nuclear Information System (INIS)

    Javaid, A.; Shah, M.B.M.

    2007-01-01

    The present study was carried out to investigate the phytotoxic effect of aqueous leaf extracts of two eucalyptus species viz. E citriodora Hook and E. camaldulensis Dehnh. Against the germination and seeding growth of alien aggressive weed parthenium hysterophorus L. The experiment was conducted in department of Mycology and plant Pathology in 2006. Aqueous leaf extracts of 2, 4, 6, 8 and 10% (w/v) of the two aforementioned Eucalyptus species were employed in the present study. Extracts of 2-8% concentration of both the Eucalyptus species significantly suppressed germination of the target weed species. A 10% extract of both the species completely arrested the germination. Aqueous extracts also reduced the root and shoot length of parthenium. Effect of extracts on seedling biomass was insignificant. (author)

  5. Highly selective bimetallic Pt-Cu/Mg(Al)O catalysts for the aqueous-phase reforming of glycerol

    NARCIS (Netherlands)

    Boga, D.A.; Oord, R.; Beale, A.M.; Chung, Y.M.; Bruijnincx, P.C.A.; Weckhuysen, B.M.

    2013-01-01

    Monometallic Pt and bimetallic Pt-Cu catalysts supported on Mg(Al)O mixed oxides, obtained by calcination of the corresponding layered double hydroxides (LDHs), were prepared and tested in the aqueous-phase reforming (APR) of glycerol. The effect of the Mg/Al ratio and calcination temperature of the

  6. Advanced Aqueous Phase Catalyst Development using Combinatorial Methods, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Combinatorial methods are proposed to develop advanced Aqueous Oxidation Catalysts (AOCs) with the capability to mineralize organic contaminants present in effluents...

  7. Heat transfer modelling of two-phase bubbles swarm condensing in three - phase direct - contact condenser

    Directory of Open Access Journals (Sweden)

    Mahood Hameed B.

    2016-01-01

    Full Text Available An analytical model for the convective heat transfer coefficient and the two-phase bubble size of a three-phase direct contact heat exchanger was developed. Until the present, there has only been a theoretical model available that deals with a single two-phase bubble and a bubble train condensation in an immiscible liquid. However, to understand the actual heat transfer process within the three-phase direct contact condenser, characteristic models are required. A quasi - steady energy equation in a spherical coordinate system with a potential flow assumption and a cell model configuration has been simplified and solved analytically. The convective heat transfer in terms of Nu number has been derived, and it was found to be a function to Pe number and a system void fraction. In addition, the two-phase bubble size relates to the system void fraction and has been developed by solving a simple energy balance equation and using the derived convective heat transfer coefficient expression. Furthermore, the model correlates well with previous experimental data and theoretical results.

  8. A pumped, two-phase flow heat transport system for orbiting instrument payloads

    Science.gov (United States)

    Fowle, A. A.

    1981-01-01

    A pumped two-phase (heat absorption/heat rejection) thermal transport system for orbiting instrument payloads is investigated. The thermofluid characteristics necessary for the system design are discussed. A preliminary design with a series arrangement of four instrument heat stations and six radiators in a single loop is described in detail, and the total mass is estimated to be 134 kg, with the radiators, instrument heat stations, and fluid reservoir accounting for approximately 86, 24, and 12 kg, respectively. The evaluation of preliminary test results shows that the system has potential advantages; however, further research is necessary in the areas of one-g and zero-g heat transfer coefficients/fluid regimes, fluid by-pass temperature control, and reliability of small pumps.

  9. Actinide recovery using aqueous biphasic extraction: Initial developmental studies

    International Nuclear Information System (INIS)

    Chaiko, D.J.; Mensah-Biney, R.; Mertz, C.J.; Rollins, A.N.

    1992-08-01

    Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less

  10. Actinide recovery using aqueous biphasic extraction: Initial developmental studies

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, D.J.; Mensah-Biney, R.; Mertz, C.J.; Rollins, A.N.

    1992-08-01

    Aqueous biphasic extraction systems are being developed to treat radioactive wastes. The separation technique involves the selective partitioning of either solutes or colloid-size particles between two scible aqueous phases. Wet grinding of plutonium residues to an average particle size of one micron will be used to liberate the plutonium from the bulk of the particle matrix. The goal is to produce a plutonium concentrate that will integrate with existing and developing chemical recovery processes. Ideally, the process would produce a nonTRU waste stream. Coupling physical beneficiation with chemical processing will result in a substantial reduction in the volume of mixed wastes generated from dissolution recovery processes. As part of this program, we will also explore applications of aqueous biphasic extraction that include the separation and recovery of dissolved species such as metal ions and water-soluble organics. The expertise and data generated in this work will form the basis for developing more cost-effective processes for handling waste streams from environmental restoration and waste management activities within the DOE community. This report summarizes the experimental results obtained during the first year of this effort. Experimental efforts were focused on elucidating the surface and solution chemistry variables which govern partitioning behavior of plutonium and silica in aqueous biphasic extraction systems. Additional efforts were directed toward the development of wet grinding methods for producing ultrafine particles with diameters of one micron or less.

  11. Hydrate phase equilibrium and structure for (methane + ethane + tetrahydrofuran + water) system

    International Nuclear Information System (INIS)

    Sun Changyu; Chen Guangjin; Zhang Lingwei

    2010-01-01

    The separation of methane and ethane through forming hydrate is a possible choice in natural gas, oil processing, or ethylene producing. The hydrate formation conditions of five groups of (methane + ethane) binary gas mixtures in the presence of 0.06 mole fraction tetrahydrofuran (THF) in water were obtained at temperatures ranging from (277.7 to 288.2) K. In most cases, the presence of THF in water can lower the hydrate formation pressure of (methane + ethane) remarkably. However, when the composition of ethane is as high as 0.832, it is more difficult to form hydrate than without THF system. Phase equilibrium model for hydrates containing THF was developed based on a two-step hydrate formation mechanism. The structure of hydrates formed from (methane + ethane + THF + water) system was also determined by Raman spectroscopy. When THF concentration in initial aqueous solution was only 0.06 mole fraction, the coexistence of structure I hydrate dominated by ethane and structure II hydrate dominated by THF in the hydrate sample was clearly demonstrated by Raman spectroscopic data. On the contrary, only structure II hydrate existed in the hydrate sample formed from (methane + ethane + THF + water) system when THF concentration in initial aqueous solution was increased to 0.10 mole fraction. It indicated that higher THF concentration inhibited the formation of structure I hydrate dominated by ethane and therefore lowered the trapping of ethane in hydrate. It implies a very promising method to increase the separation efficiency of methane and ethane.

  12. Strong enhancement of streaming current power by application of two phase flow

    NARCIS (Netherlands)

    Xie, Yanbo; Sherwood, John D.; Shui, Lingling; van den Berg, Albert; Eijkel, Jan C.T.

    2011-01-01

    We show that the performance of a streaming-potential based microfluidic energy conversion system can be strongly en-hanced by the use of two phase flow. In single-phase systems, the internal conduction current induced by the streaming poten-tial limits the output power, while in a two-phase system

  13. Photobleachable Diazonium Salt-Phenolic Resin Two-Layer Resist System

    Science.gov (United States)

    Uchino, Shou-ichi; Iwayanagi, Takao; Hashimoto, Michiaki

    1988-01-01

    This article describes a new negative two-layer photoresist system formed by a simple, successive spin-coating method. An aqueous acetic acid solution of diazonium salt and poly(N-vinylpyrrolidone) is deposited so as to contact a phenolic resin film spin-coated on a silicon wafer. The diazonium salt diffuses into the phenolic resin layer after standing for several minutes. The residual solution on the phenolic resin film doped with diazonium salt is spun to form the diazonium salt-poly(N-vinylpyrrolidone) top layer. This forms a uniform two-layer resist without phase separation or striation. Upon UV exposure, the diazonium salt in the top layer bleaches to act as a CEL dye, while the diazonium salt in the bottom layer decomposes to cause insolubilization. Half μm line-and-space patterns are obtained with an i-line stepper using 4-diazo-N,N-dimethylaniline chloride zinc chloride double salt as the diazonium salt and a cresol novolac resin for the bottom polymer layer. The resist formation processes, insolubilization mechanism, and the resolution capability of the new two-layer resist are discussed.

  14. Inverse modeling for the determination of hydrogeological parameters of a two-phase system

    International Nuclear Information System (INIS)

    Finsterle, S.

    1993-02-01

    Investigations related to the disposal of radioactive wastes in Switzerland consider formations containing natural gas as potential rocks for a repository. Moreover, gas generation in the repository itself may lead to an unsaturated zone of significant extent and impact on the system's performance. The site characterization procedure requires the estimation of hydraulic properties being used as input parameters for a two-phase two-component numerical simulator. In this study, estimates of gas-related formation parameters are obtained by inverse modeling. Based on discrete observations of the system's state, model parameters can be estimated within the framework of a given conceptual model by means of optimization techniques. This study presents the theoretical background that related field data to the model parameters. A parameter estimation procedure is proposed and implemented in a computer code for automatic model calibration. This tool allows identification of key parameters affecting flow of water and gas in porous media. The inverse modeling approach is verified using data from a synthetic laboratory experiment. In addition, the Gas test performed at the Grimsel Test Site is analyzed in order to demonstrate the applicability of the proposed procedure when used with data from a real geologic environment. Estimation of hydrogeologic parameters by automatic model calibration improves the understanding of the two-phase flow processes and therefore increases the reliability of the subsequent simulation runs. (author) figs., tabs., refs

  15. Inverse modeling for the determination of hydrogeological parameters of a two-phase system

    International Nuclear Information System (INIS)

    Finsterle, S.

    1993-01-01

    Investigations related to the disposal of radioactive wastes in Switzerland are dealing with formations containing natural gas as potential host rock for a repository. Moreover, gas generation in the repository itself may lead to an unsaturated zone of significant extent and impact on the system's performance. The site characterization procedure requires the estimation of hydraulic properties being used as input parameters for a two-phase two-component numerical simulator. In this study, estimates of gas related formation parameters are obtained by inverse modeling. Based on discrete observations of the system's state, model parameters can be estimated within the framework of a given conceptual model by means of optimization techniques. This study presents the theoretical background that relates field data to the model parameters. A parameter estimation procedure is proposed and implemented in a computer code for automatic model calibration. This tool allows to identify key parameters affecting flow of water and gas in porous media. The inverse modeling approach is verified using data from a synthetic laboratory experiment. In addition, the Gastest performed at the Grimsel Test Site is analyzed in order to demonstrate the applicability of the proposed procedure when used with data from a real geologic environment. Estimation of hydrogeologic parameters by automatic model calibration improves the understanding of the two-phase flow processes and therefore increases the reliability of the subsequent simulation runs. (author) figs., tabs., 100 refs

  16. Thermodynamic behavior of erythritol in aqueous solutions and in gelatine gels and its quantification

    International Nuclear Information System (INIS)

    Tyapkova, Oxana; Bader-Mittermaier, Stephanie; Schweiggert-Weisz, Ute

    2013-01-01

    Highlights: • Differential scanning calorimetry as a method to determine erythritol crystallization. • Determination of crystallization using solution enthalpy. • Erythritol crystallization influenced by area of air–water-interfaces. • DSC method is applicable for both aqueous solutions and gels. • Adaption of DSC method to other, more complex food matrices is possible. - Abstract: As crystallization of erythritol can cause a sandy mouth-feel in sugar-free products, strategies to avoid crystallization or adaption of food formulation should be elucidated. However, until now erythritol crystallization was only quantified in aqueous solutions, but not in model food systems. Differential scanning calorimetry (DSC) is a simple method for the quantification of phase transition in various systems. However, no methods for the quantification of crystallization from aqueous systems based on DSC have been published until now. In the present study DSC was found to be suitable for the quantification of crystallization using supersaturated aqueous solutions of erythritol and erythritol containing gelatine gels for the first time. The developed method was validated by comparing the crystallization values determined by gravimetric measurement of erythritol crystals and the values obtained by DSC. No significant differences (p < 0.05) have been obtained between the results of the two methods if an appropriate design of measurements was applied. Additionally, the method was adapted to gelatine gels to elucidate the transferability to model food systems. Hence, the method is suitable for quantification of the amount of erythritol crystals present in aqueous solutions and gels, respectively

  17. Industrial aspects of gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Hewitt, G.F.

    1977-01-01

    The lecture begins by reviewing the various types of plant in which two phase flow occurs. Specifically, boiling plant, condensing plant and pipelines are reviewed, and the various two phase flow problems occurring in them are described. Of course, many other kinds of chemical engineering plant involve two phase flow, but are somewhat outside the scope of this lecture. This would include distillation columns, vapor-liquid separators, absorption towers etc. Other areas of industrial two phase flow which have been omitted for space reasons from this lecture are those concerned with gas/solids, liquid/solid and liquid/liquid flows. There then follows a description of some of the two phase flow processes which are relevant in industrial equipment and where special problems occur. The topics chosen are as follows: (1) pressure drop; (2) horizontal tubes - separation effects non-uniformites in heat transfer coefficient, effect of bends on dryout; (3) multicomponent mixtures - effects in pool boiling, mass transfer effects in condensation and Marangoni effects; (4) flow distribution - manifold problems in single phase flow, separation effects at a single T-junction in two phase flow and distribution in manifolds in two phase flow; (5) instability - oscillatory instability, special forms of instability in cryogenic systems; (6) nucleate boiling - effect of variability of surface, unresolved problems in forced convective nucleate boiling; and (7) shell side flows - flow patterns, cross flow boiling, condensation in cross flow

  18. Phase separation in strongly correlated electron systems with two types of charge carriers

    International Nuclear Information System (INIS)

    Kugel, K.I.; Rakhmanov, A.L.; Sboychakov, A.O.

    2007-01-01

    Full text: A competition between the localization of the charge carriers due to Jahn-Teller distortions and the energy gain due to their delocalization in doped manganite and related magnetic oxides is analyzed based on a Kondo-lattice type model. The resulting effective Hamiltonian is, in fact, a generalization of the Falicov-Kimball model. We find that the number of itinerant charge carriers can be significantly lower than that implied by the doping level x. The phase diagram of the model in the T plane is constructed. The system exhibits magnetic ordered (antiferromagnetic, ferromagnetic, or canted) states as well the paramagnetic states with zero and nonzero density of the itinerant electrons. It is shown that a phase-separation is favorable in energy for a wide doping range. The characteristic size of inhomogeneities in a phase-separated state is of the order of several lattice constants. We also analyzed the two-band Hubbard model in the limit of strong on-site Coulomb repulsion. It was shown that such a system has a tendency to phase separation into the regions with different charge densities even in the absence of magnetic or any other ordering, if the ratio of the bandwidths is large enough. The work was supported by the European project CoMePhS and by the Russian Foundation for Basic Research, project no. 05-02-17600. (authors)

  19. Triton X-114 based cloud point extraction: a thermoreversible approach for separation/concentration and dispersion of nanomaterials in the aqueous phase.

    Science.gov (United States)

    Liu, Jing-fu; Liu, Rui; Yin, Yong-guang; Jiang, Gui-bin

    2009-03-28

    Capable of preserving the sizes and shapes of nanomaterials during the phase transferring, Triton X-114 based cloud point extraction provides a general, simple, and cost-effective route for reversible concentration/separation or dispersion of various nanomaterials in the aqueous phase.

  20. Interfacial Instability in Two-Phase Flow: Manipulating Coalescence and Condensation

    Data.gov (United States)

    National Aeronautics and Space Administration — Two-phase flow under microgravity conditions presents a number of technical challenges ( and ). Life support and habitation depend on systems that use two-phase flow...

  1. Preparation of CdS microtrumpets from a solvent extraction system by a two-phase approach

    International Nuclear Information System (INIS)

    Geng, Aifang; Liu, Yubing; Liao, Wuping

    2011-01-01

    Highlights: → CdS microtrumpets were prepared from an extraction system by a two-phase approach. → Triethanolamine plays a crucial role in the formation of the trumpets. → Some micro-lotus seedpods can also be obtained with trihydroxymethyl aminomethane. -- Abstract: CdS microtrumpets with the length being of about 4 μm and the bell wall being of 100 nm have been prepared using a cadmium di-(2-ethylhexyl) phosphoric acid chelate as the precursor by a two-phase thermal approach. The products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-vis spectroscopy. The effects of temperature, reaction time, and co-surfactant on the morphology were also examined. It was found that the co-surfactant triethanolamine plays a crucial role in the formation of the cubic phase trumpet-like CdS microstructures.

  2. Algebraic multigrid preconditioners for two-phase flow in porous media with phase transitions

    Science.gov (United States)

    Bui, Quan M.; Wang, Lu; Osei-Kuffuor, Daniel

    2018-04-01

    Multiphase flow is a critical process in a wide range of applications, including oil and gas recovery, carbon sequestration, and contaminant remediation. Numerical simulation of multiphase flow requires solving of a large, sparse linear system resulting from the discretization of the partial differential equations modeling the flow. In the case of multiphase multicomponent flow with miscible effect, this is a very challenging task. The problem becomes even more difficult if phase transitions are taken into account. A new approach to handle phase transitions is to formulate the system as a nonlinear complementarity problem (NCP). Unlike in the primary variable switching technique, the set of primary variables in this approach is fixed even when there is phase transition. Not only does this improve the robustness of the nonlinear solver, it opens up the possibility to use multigrid methods to solve the resulting linear system. The disadvantage of the complementarity approach, however, is that when a phase disappears, the linear system has the structure of a saddle point problem and becomes indefinite, and current algebraic multigrid (AMG) algorithms cannot be applied directly. In this study, we explore the effectiveness of a new multilevel strategy, based on the multigrid reduction technique, to deal with problems of this type. We demonstrate the effectiveness of the method through numerical results for the case of two-phase, two-component flow with phase appearance/disappearance. We also show that the strategy is efficient and scales optimally with problem size.

  3. Synchronized Anti-Phase and In-Phase Oscillations of Intracellular Calcium Ions in Two Coupled Hepatocytes System

    International Nuclear Information System (INIS)

    Chuan-Sheng, Shen; Han-Shuang, Chen; Ji-Qian, Zhang

    2008-01-01

    We study the dynamic behaviour of two intracellular calcium oscillators that are coupled through gap junctions both to Ca 2+ and inositol(1,4,5)-trisphosphate (IP 3 ). It is found that synchronized anti-phase and in-phase oscillations of cytoplasmic calcium coexist in parameters space. Especially, synchronized anti-phase oscillations only occur near the onset of a Hopf bifurcation point when the velocity of IP 3 synthesis is increased. In addition, two kinds of coupling effects, i.e., the diffusions of Ca 2+ and IP 3 among cells on synchronous behaviour, are considered. We find that small coupling of Ca 2+ and large coupling of IP 3 facilitate the emergence of synchronized anti-phase oscillations. However, the result is contrary for the synchronized in-phase case. Our findings may provide a qualitative understanding about the mechanism of synchronous behaviour of intercellular calcium signalling

  4. Stochastic modelling of two-phase flows including phase change

    International Nuclear Information System (INIS)

    Hurisse, O.; Minier, J.P.

    2011-01-01

    Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)

  5. Two-phase flow characteristics analysis code: MINCS

    International Nuclear Information System (INIS)

    Watanabe, Tadashi; Hirano, Masashi; Akimoto, Masayuki; Tanabe, Fumiya; Kohsaka, Atsuo.

    1992-03-01

    Two-phase flow characteristics analysis code: MINCS (Modularized and INtegrated Code System) has been developed to provide a computational tool for analyzing two-phase flow phenomena in one-dimensional ducts. In MINCS, nine types of two-phase flow models-from a basic two-fluid nonequilibrium (2V2T) model to a simple homogeneous equilibrium (1V1T) model-can be used under the same numerical solution method. The numerical technique is based on the implicit finite difference method to enhance the numerical stability. The code structure is highly modularized, so that new constitutive relations and correlations can be easily implemented into the code and hence evaluated. A flow pattern can be fixed regardless of flow conditions, and state equations or steam tables can be selected. It is, therefore, easy to calculate physical or numerical benchmark problems. (author)

  6. Constitutive equations for two-phase flows

    International Nuclear Information System (INIS)

    Boure, J.A.

    1974-12-01

    The mathematical model of a system of fluids consists of several kinds of equations complemented by boundary and initial conditions. The first kind equations result from the application to the system, of the fundamental conservation laws (mass, momentum, energy). The second kind equations characterize the fluid itself, i.e. its intrinsic properties and in particular its mechanical and thermodynamical behavior. They are the mathematical model of the particular fluid under consideration, the laws they expressed are so called the constitutive equations of the fluid. In practice the constitutive equations cannot be fully stated without reference to the conservation laws. Two classes of model have been distinguished: mixture model and two-fluid models. In mixture models, the mixture is considered as a single fluid. Besides the usual friction factor and heat transfer correlations, a single constitutive law is necessary. In diffusion models, the mixture equation of state is replaced by the phasic equations of state and by three consitutive laws, for phase change mass transfer, drift velocity and thermal non-equilibrium respectively. In the two-fluid models, the two phases are considered separately; two phasic equations of state, two friction factor correlations, two heat transfer correlations and four constitutive laws are included [fr

  7. Gibbs free energy of transfer of a methylene group on {UCON + (sodium or potassium) phosphate salts} aqueous two-phase systems: Hydrophobicity effects

    International Nuclear Information System (INIS)

    Silverio, Sara C.; Rodriguez, Oscar; Teixeira, Jose A.; Macedo, Eugenia A.

    2010-01-01

    The Gibbs free energy of transfer of a suitable hydrophobic probe can be regarded as a measure of the relative hydrophobicity of the different phases. The methylene group (CH 2 ) can be considered hydrophobic, and thus be a suitable probe for hydrophobicity. In this work, the partition coefficients of a series of five dinitrophenylated-amino acids were experimentally determined, at 23 o C, in three different tie-lines of the biphasic systems: (UCON + K 2 HPO 4 ), (UCON + potassium phosphate buffer, pH 7), (UCON + KH 2 PO 4 ), (UCON + Na 2 HPO 4 ), (UCON + sodium phosphate buffer, pH 7), and (UCON + NaH 2 PO 4 ). The Gibbs free energy of transfer of CH 2 units were calculated from the partition coefficients and used to compare the relative hydrophobicity of the equilibrium phases. The largest relative hydrophobicity was found for the ATPS formed by dihydrogen phosphate salts.

  8. First-order system least squares and the energetic variational approach for two-phase flow

    Science.gov (United States)

    Adler, J. H.; Brannick, J.; Liu, C.; Manteuffel, T.; Zikatanov, L.

    2011-07-01

    This paper develops a first-order system least-squares (FOSLS) formulation for equations of two-phase flow. The main goal is to show that this discretization, along with numerical techniques such as nested iteration, algebraic multigrid, and adaptive local refinement, can be used to solve these types of complex fluid flow problems. In addition, from an energetic variational approach, it can be shown that an important quantity to preserve in a given simulation is the energy law. We discuss the energy law and inherent structure for two-phase flow using the Allen-Cahn interface model and indicate how it is related to other complex fluid models, such as magnetohydrodynamics. Finally, we show that, using the FOSLS framework, one can still satisfy the appropriate energy law globally while using well-known numerical techniques.

  9. Evaluation of Two Biosorbents in the Removal of Metal Ions in Aqueous Using a Pilot Scale Fixed-bed System

    Directory of Open Access Journals (Sweden)

    Andre Gadelha Oliveira

    2014-05-01

    Full Text Available The aim of the present work was to investigate the adsorption of toxic metal ions copper, nickel and zinc from aqueous solutions using low cost natural biomass (sugar cane bagasse and green coconut fiber in pilot scale fixed-bed system. The Hydraulic retention time (HRT was 229 minutes and the lowest adsorbent usage rate (AUR found was 0.10 g.L-1 for copper using green coconut fibers. The highest values of adsorption capacities founded were 1.417 and 2.772 mg.g-1 of Cu(II ions for sugarcane bagasse and green coconut fibers, respectively. The results showed that both sugarcane bagasse and green coconut fiber presented potential in the removal of metal ions copper, nickel and zinc ions from aqueous solution and the possible use in wastewater treatment station.

  10. Application of non-equilibrium thermodynamics to two-phase flows with a change of phase

    International Nuclear Information System (INIS)

    Delhaye, J.M.

    1969-01-01

    In this report we use the methods of non-equilibrium thermodynamics in two-phase flows. This paper follows a prior one in which we have studied the conservation laws and derived the general equations of two-phase flow. In the first part the basic ideas of thermodynamics of irreversible systems are given. We follow the classical point of view. The second part is concerned with the derivation of a closed set of equations for the two phase elementary volume model. In this model we assume that the elementary volume contains two phases and that it is possible to define a volumetric local concentration. To obtain the entropy balance we can choose either the reversibility of the barycentric motion or the reversibility of each phase. We adopt the last assumption and our derivation is the same as this of I.Prigogine and P. Mazur about the hydrodynamics of liquid helium. The scope of this work is not to find a general solution to the problems of two phase flows but to obtain a new set of equations which may be used to explain some characteristic phenomena of two-phase flow such as wave propagation or critical states. (author) [fr

  11. Contribution to the theory of the two phase blowdown phenomenon

    International Nuclear Information System (INIS)

    Hutcherson, M.N.

    1975-12-01

    In order to accurately model the two phase portion of a pressure vessel blowdown, it becomes necessary to understand the bubble growth mechanism within the vessel during the early period of the decompression, the two phase flow behavior within the vessel, and the applicability of the available two phase critical flow models to the blowdown transient. To aid in providing answers to such questions, a small scale, separate effects, isothermal blowdown experiment has been conducted in a small pressure vessel. The tests simulated a full open, double ended, guillotine break in a large diameter, short exhaust duct from the vessel. The vaporization process at the initiation of the decompression is apparently that of thermally dominated bubble growth originating from the surface cavities inside the system. Thermodynamic equilibrium of the remaining fluid within the vessel existed in the latter portion of the decompression. A nonuniform distribution of fluid quality within the vessel was also detected in this experiment. By comparison of the experimental results from this and other similar transient, two phase critical flow studies with steady state, small duct, two phase critical flow data, it is shown that transient, two phase critical flow in large ducts appears to be similar to steady state, two phase critical flow in small ducts. Analytical models have been developed to predict the blowdown characteristics of a system during subcooled decompression, the bubble growth regime of blowdown, and also in the nearly dispersed period of depressurization. This analysis indicates that the system pressure history early in the blowdown is dependent on the internal vessel surface area, the internal vessel volume, and also on the exhaust flow area from the system. This analysis also illustrates that the later period of decompression can be predicted based on thermodynamic equilibrium

  12. Zero-G two phase flow regime modeling in adiabatic flow

    International Nuclear Information System (INIS)

    Reinarts, T.R.; Best, F.R.; Wheeler, M.; Miller, K.M.

    1993-01-01

    Two-phase flow, thermal management systems are currently being considered as an alternative to conventional, single phase systems for future space missions because of their potential to reduce overall system mass, size, and pumping power requirements. Knowledge of flow regime transitions, heat transfer characteristics, and pressure drop correlations is necessary to design and develop two-phase systems. This work is concerned with microgravity, two-phase flow regime analysis. The data come from a recent sets of experiments. The experiments were funded by NASA Johnson Space Center (JSC) and conducted by NASA JSC with Texas A ampersand M University. The experiment was on loan to NASA JSC from Foster-Miller, Inc., who constructed it with funding from the Air Force Phillips Laboratory. The experiment used R12 as the working fluid. A Foster-Miller two phase pump was used to circulate the two phase mixture and allow separate measurements of the vapor and liquid flow streams. The experimental package was flown 19 times for 577 parabolas aboard the NASA KC-135 aircraft which simulates zero-G conditions by its parabolic flight trajectory. Test conditions included bubbly, slug and annular flow regimes in 0-G. The superficial velocities of liquid and vapor have been obtained from the measured flow rates and are presented along with the observed flow regimes and several flow regime transition predictions. None of the predictions completely describe the transitions as indicated by the data

  13. Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls

    Science.gov (United States)

    Isoprene emitted by vegetation is an important precursor of secondary organic aerosol (SOA), but the mechanism and yields are uncertain. Aerosol is prevailingly aqueous under the humid conditions typical of isoprene-emitting regions. Here we develop an aqueous-phase mechanism for...

  14. The Condensation effect on the two-phase flow stability

    International Nuclear Information System (INIS)

    Abdou Mohamed, Hesham Nagah

    2005-01-01

    A one-dimensional analytical model has been developed to be used for the linear analysis of density-wave oscillations in a parallel heated channel and a natural circulation loop.The heater and the riser sections are divided into a single-phase and a two-phase region.The two-phase region is represented by the drift-flux model. The model accounts for aphasic slip and subcooled boiling.The localized friction at the heater and the riser exit is treated considering the two-phase mixture.Also the effects of the condensation in the riser and the change in the system pressure have been studied.The exact equation for the heated channel and the total loop pressure drop is perturbed around the steady state.he stability characteristics of the heated channel and the loop are investigated using the Root finding method criterion.The results are summarized on instability maps in the plane of subcooled boiling number vs. phase change number (i.e., inlet subcooling vs. heater heat flux).The predictions of the model are compared with experimental results published in open literature. The results show that, the treatment effect of localized friction in two-phase mixtures stabilizes the system and improves the agreement of the calculations with the experimental results.For a parallel heated channel, the results indicate a more stable system with high inlet restriction, low outlet restriction, and high inlet velocity. And for a natural circulation loop, an increase in the inlet restriction broadened the range of the continuous circulation mode and stabilized the system, a decrease in the exit restriction or the liquid charging level shifted to the right the range of the continuous circulation mode and stabilized the system and an increase in the riser condensation shifted to the right the range of the continuous circulation mode and stabilized the system.The results show that the model agrees well with the available experimental data. In particular, the results show the significance of

  15. Probing the liquid and solid phases in closely spaced two-dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ding

    2014-03-06

    partially filled Landau levels - can crystallize into a Wigner crystal. The Wigner crystal is bound to get pinned and hence localizes electrons in the bulk. This may cause an increase of the quantum Hall plateau width. To unveil the existence of such a solid, one has to go beyond standard transport investigations. Both microwave and NMR experiments have shown strong evidences for Wigner crystal formation. In Part I of the thesis, we present measurements of a thermodynamic quantity - the chemical potential. We provide further insight into this solid phase by studying the B-field as well as temperature dependence of the electron crystallization. The sensitive technique that we employ to measure the chemical potential is developed on a GaAs heterostructure with two quantum wells. In fact, in the presence of a perpendicular magnetic field this bilayer system hosts a unique quantum Hall state when each layer has a half filled Landau level. An electron residing in one layer can pair up with an empty state in the opposite layer and excitons may form. These excitons are believed to form an exciton condensate under appropriate conditions. Part II of this thesis is devoted to the understanding of this correlated state. We employ a single electron transistor to probe the chemical potential - more directly its derivative with respect to density, the compressibility - around the ν{sub tot} = 1 quantum Hall state. We then compare excitation gap obtained from this approach with the gap determined from thermally activated transport studies. Our results help to clarify the nature of the excitations at ν{sub tot} = 1. Apart from the thermodynamic measurement, we also perform tunneling experiments on the bilayer. A systematic study of the interlayer tunneling on the distance between the two layers is carried out. Also, we investigate the tunneling on a bilayer with a constriction in the center. Interesting phenomena are observed such as an oscillating pattern in the tunneling current as we

  16. Probing the liquid and solid phases in closely spaced two-dimensional systems

    International Nuclear Information System (INIS)

    Zhang, Ding

    2014-01-01

    filled Landau levels - can crystallize into a Wigner crystal. The Wigner crystal is bound to get pinned and hence localizes electrons in the bulk. This may cause an increase of the quantum Hall plateau width. To unveil the existence of such a solid, one has to go beyond standard transport investigations. Both microwave and NMR experiments have shown strong evidences for Wigner crystal formation. In Part I of the thesis, we present measurements of a thermodynamic quantity - the chemical potential. We provide further insight into this solid phase by studying the B-field as well as temperature dependence of the electron crystallization. The sensitive technique that we employ to measure the chemical potential is developed on a GaAs heterostructure with two quantum wells. In fact, in the presence of a perpendicular magnetic field this bilayer system hosts a unique quantum Hall state when each layer has a half filled Landau level. An electron residing in one layer can pair up with an empty state in the opposite layer and excitons may form. These excitons are believed to form an exciton condensate under appropriate conditions. Part II of this thesis is devoted to the understanding of this correlated state. We employ a single electron transistor to probe the chemical potential - more directly its derivative with respect to density, the compressibility - around the ν tot = 1 quantum Hall state. We then compare excitation gap obtained from this approach with the gap determined from thermally activated transport studies. Our results help to clarify the nature of the excitations at ν tot = 1. Apart from the thermodynamic measurement, we also perform tunneling experiments on the bilayer. A systematic study of the interlayer tunneling on the distance between the two layers is carried out. Also, we investigate the tunneling on a bilayer with a constriction in the center. Interesting phenomena are observed such as an oscillating pattern in the tunneling current as we gradually open

  17. Polling Systems with Two-Phase Gated Service: Heavy Traffic Results for the Waiting Time Distribution

    NARCIS (Netherlands)

    R.D. van der Mei (Rob); J.A.C. Resing

    2008-01-01

    htmlabstractWe study an asymmetric cyclic polling system with Poisson arrivals, general service-time and switch-over time distributions, and with so-called two-phase gated service at each queue, an interleaving scheme that aims to enforce some level of "fairness" among the different customer

  18. Modeling photodegradation kinetics of three systemic neonicotinoids-dinotefuran, imidacloprid, and thiamethoxam-in aqueous and soil environment.

    Science.gov (United States)

    Kurwadkar, Sudarshan; Evans, Amanda; DeWinne, Dustan; White, Peter; Mitchell, Forrest

    2016-07-01

    Environmental presence and retention of commonly used neonicotinoid insecticides such as dinotefuran (DNT), imidacloprid (IMD), and thiamethoxam (THM) are a cause for concern and prevention because of their potential toxicity to nontarget species. In the present study the kinetics of the photodegradation of these insecticides were investigated in water and soil compartments under natural light conditions. The results suggest that these insecticides are fairly unstable in both aqueous and soil environments when exposed to natural sunlight. All 3 insecticides exhibit strong first-order degradation rate kinetics in the aqueous phase, with rate constants kDNT , kIMD , and kTHM of 0.20 h(-1) , 0.30 h(-1) , and 0.18 h(-1) , respectively. However, in the soil phase, the modeled photodegradation kinetics appear to be biphasic, with optimal rate constants k1DNT and k2DNT of 0.0198 h(-1) and 0.0022 h(-1) and k1THM and k2THM of 0.0053 h(-1) and 0.0014 h(-1) , respectively. Differentially, in the soil phase, imidacloprid appears to follow the first-order rate kinetics with a kIMD of 0.0013 h(-1) . These results indicate that all 3 neonicotinoids are photodegradable, with higher degradation rates in aqueous environments relative to soil environments. In addition, soil-encapsulated imidacloprid appears to degrade slowly compared with dinotefuran and thiamethoxam and does not emulate the faster degradation rates observed in the aqueous phase. Environ Toxicol Chem 2016;35:1718-1726. © 2015 SETAC. © 2015 SETAC.

  19. Multiphase flow and transport caused by spontaneous gas phase growth in the presence of dense non-aqueous phase liquid.

    Science.gov (United States)

    Roy, James W; Smith, James E

    2007-01-30

    Disconnected bubbles or ganglia of trapped gas may occur below the top of the capillary fringe through a number of mechanisms. In the presence of dense non-aqueous phase liquid (DNAPL), the disconnected gas phase experiences mass transfer of dissolved gases, including volatile components from the DNAPL. The properties of the gas phase interface can also change. This work shows for the first time that when seed gas bubbles exist spontaneous gas phase growth can be expected to occur and can significantly affect water-gas-DNAPL distributions, fluid flow, and mass transfer. Source zone behaviour was observed in three different experiments performed in a 2-dimensional flow cell. In each case, a DNAPL pool was created in a zone of larger glass beads over smaller glass beads, which served as a capillary barrier. In one experiment effluent water samples were analyzed to determine the vertical concentration profile of the plume above the pool. The experiments effectively demonstrated a) a cycle of spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone, b) DNAPL redistribution caused by gas phase growth and mobilization, and c) that these processes can significantly affect mass transport from a NAPL source zone.

  20. Single phase inverter for a three phase power generation and distribution system

    Science.gov (United States)

    Lindena, S. J.

    1976-01-01

    A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.

  1. Analysis of Direct Samples of Early Solar System Aqueous Fluids

    Science.gov (United States)

    Zolensky, Michael E.; Bodnar, R J.; Fedele, L.; Yurimoto,H.; Itoh, S.; Fries, M.; Steele, A.

    2012-01-01

    Over the past three decades we have become increasingly aware of the fundamental importance of water, and aqueous alteration, on primitive solar-system bodies. Some carbonaceous and ordinary chondrites have been altered by interactions with liquid water within the first 10 million years after formation of their parent asteroids. Millimeter to centimeter-sized aggregates of purple halite containing aqueous fluid inclusions were found in the matrix of two freshly-fallen brecciated H chondrite falls, Monahans (1998, hereafter simply "Monahans") (H5) and Zag (H3-6) (Zolensky et al., 1999; Whitby et al., 2000; Bogard et al., 2001) In order to understand origin and evolution of the aqueous fluids inside these inclusions we much measure the actual fluid composition, and also learn the O and H isotopic composition of the water. It has taken a decade for laboratory analytical techniques to catch up to these particular nanomole-sized aqueous samples. We have recently been successful in (1) measuring the isotopic composition of H and O in the water in a few fluid inclusions from the Zag and Monahans halite, (2) mineralogical characterization of the solid mineral phases associated with the aqueous fluids within the halite, and (3) the first minor element analyses of the fluid itself. A Cameca ims-1270 equipped with a cryo-sample-stage of Hokkaido University was specially prepared for the O and H isotopic measurements. The cryo-sample-stage (Techno. I. S. Corp.) was cooled down to c.a. -190 C using liquid nitrogen at which the aqueous fluid in inclusions was frozen. We excavated the salt crystal surfaces to expose the frozen fluids using a 15 keV Cs+ beam and measured negative secondary ions. The secondary ions from deep craters of approximately 10 m in depth emitted stably but the intensities changed gradually during measurement cycles because of shifting states of charge compensation, resulting in rather poor reproducibility of multiple measurements of standard fluid

  2. Numerical simulation for two-phase jet problem

    International Nuclear Information System (INIS)

    Lee, W.H.; Shah, V.L.

    1981-01-01

    A computer program TWOP was developed for obtaining the numerical solutions of three-dimensional, transient, two-phase flow system with nonequilibrium and nonhomogeneous conditions. TWOP employs two-fluid model and a set of the conservation equations formulated by Harlow and Amsden along with their Implicit Multi-Field (IMF) numerical technique that allows all degrees of couplings between the two fields. We have further extended the procedure of Harlow and Amsden by incorporating the implicit couplings of phase transition and interfacial heat transfer terms in the energy equations. Numerical results of two tested problems are presented to demonstrate the capabilities of the TWOP code. The first problem is the separation of vapor and liquid, showing that the code can handle the computational difficulties such as liquid packing and sharp interface phenomena. The second problem is the high pressure two-phase jet impinged on vertical plate, demonstrating the important role of the interfacial mass and momentum exchange

  3. Two types of lamellar phase in TTAB/water/pentanol system as detected by positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Khani, P.H.; Yadav, R.; Singh, K.C.; Jain, P.C.

    2004-01-01

    Positron lifetime measurements were performed in TTAB(Tetradecyl trimethyl ammonium bromide)/water/pentanol ternary systems prepared by adding varying amounts of pentanol to different mother solutions of TTAB/water system having fixed TTAB concentrations. Besides delineating various phase boundaries as obtained by other conventional techniques, positron annihilation parameters were also found to be sensitive in detecting two kinds of lamellar structures in the otherwise considered to be a single liquid crystalline D phase of the system. The existence of such lamellar structures has been demonstrated by a change in the trend of o-Ps lifetime parameter when the system passes from one type of lamellar structure to the other type. The results of such a finding are presented in this paper. (orig.)

  4. Sol-gel transitions and liquid crystal phase transitions in concentrated aqueous suspensions of colloidal gibbsite platelets

    NARCIS (Netherlands)

    Mourad, M.C.D.; Byelov, D.V.; Petukhov, A.V.; de Winter, D.A.M.; Verkleij, A.J.; Lekkerkerker, H.N.W.

    2009-01-01

    In this paper, we present a comprehensive study of the sol-gel transitions and liquid crystal phase transitions in aqueous suspensions of positively charged colloidal gibbsite platelets at pH 4-5 over a wide range of particle concentrations (50-600 g/L) and salt concentrations (10-4-10-1 M NaCl). A

  5. Measurement of void fraction and bubble size distribution in two-phase flow system

    International Nuclear Information System (INIS)

    Huahun, G.

    1987-01-01

    The importance of study two phase flow parameter and microstructure has appeared increasingly, with the development of two-phase flow discipline. In the paper, the measurement methods of several important microstructure parameter in a two phase flow vertical channel have been studied. Using conductance probe the two phase flow pattern and the average void fraction have been measured previously by the authors. This paper concerns microstructure of the bubble size distribution and local void fraction. The authors studied the methods of measuring bubble velocity, size distribution and local void fraction using double conductance probes and a set of apparatus. Based on our experiments and Yoshihiro work, a formula of calculated local void fraction has been deduced by using the statistical characteristics of bubbles in two phase flow and the relation between calculated bubble size and voltage has been determined. Finally the authors checked by using photograph and fast valve, which is classical but reliable. The results are the same with what has been studied before

  6. Biosurfactant production by Pseudomonas sp. and its role in aqueous phase partitioning and biodegradation of chlorpyrifos.

    Science.gov (United States)

    Singh, P B; Sharma, S; Saini, H S; Chadha, B S

    2009-09-01

    To study the effect of biosurfactant on aqueous phase solubility and biodegradation of chlorpyrifos. A Pseudomonas sp. (ChlD), isolated from agricultural soil by enrichment culture technique in the presence of chlorpyrifos, was capable of producing biosurfactant (rhamnolipids) and degrading chlorpyrifos (0.01 g l(-1)). The partially purified rhamnolipid biosurfactant preparation, having a CMC of 0.2 g l(-1), was evaluated for its ability to enhance aqueous phase partitioning and degradation of chlorpyrifos (0.01 g l(-1)) by ChlD strain. The best degradation efficiency was observed at 0.1 g l(-1) supplement of biosurfactant, as validated by GC and HPLC studies. The addition of biosurfactant at 0.1 g l(-1) resulted in more than 98% degradation of chlorpyrifos when compared to 84% in the absence of biosurfactant after 120-h incubation. This first report, to the best of our knowledge, on enhanced degradation of chlorpyrifos in the presence of biosurfactant(s), would help in developing bioremediation protocols to counter accumulation of organophosphates to toxic/carcinogenic levels in environment.

  7. Colloidal behavior of Np(V) in aqueous systems

    International Nuclear Information System (INIS)

    Zhao Xin; Zhang Yingjie; Wei Liansheng; Lin Zhangji

    2004-01-01

    The speciation of Np(V) in solutions is measured by means of FT-Raman spectrometer. The formation of colloid of Np(V) in aqueous solutions is studied with the variation of pH(2-12), ionic strength (0.01 mol/L, 0.1 mol/L, 1.0 mol/L), storage time (6h, 30h, 1 week, 6 weeks) and neptunium concentration. The adsorption behavior of Np(V) on granite and its rock-forming minerals (quartz, microcline, albite, biotite and hornblende) is also studied in an aqueous phase of artificial ground water. The experiments are performed at ambient temperature. Experimental results show that a small fraction of Np removed from the solution is adsorbed on the walls of container at the pH above 6 due to the formation of colloid of Np. The formation of colloid of Np depends on its hydrolytic extent, ionic strength, and storage time. The adsorption of Np on granite and the individual mineral depends strongly on the formation of the colloids with the variation of pH in solutions. (author)

  8. Fundamental thermochemical properties of amino acids: gas-phase and aqueous acidities and gas-phase heats of formation.

    Science.gov (United States)

    Stover, Michele L; Jackson, Virgil E; Matus, Myrna H; Adams, Margaret A; Cassady, Carolyn J; Dixon, David A

    2012-03-08

    The gas-phase acidities of the 20 L-amino acids have been predicted at the composite G3(MP2) level. A broad range of structures of the neutral and anion were studied to determine the lowest energy conformer. Excellent agreement is found with the available experimental gas-phase deprotonation enthalpies, and the calculated values are within experimental error. We predict that tyrosine is deprotonated at the CO(2)H site. Cysteine is predicted to be deprotonated at the SH but the proton on the CO(2)H is shared with the S(-) site. Self-consistent reaction field (SCRF) calculations with the COSMO parametrization were used to predict the pK(a)'s of the non-zwitterion form in aqueous solution. The differences in the non-zwitterion pK(a) values were used to estimate the free energy difference between the zwitterion and nonzwitterion forms in solution. The heats of formation of the neutral compounds were calculated from atomization energies and isodesmic reactions to provide the first reliable set of these values in the gas phase. Further calculations were performed on five rare amino acids to predict their heats of formation, acidities, and pK(a) values.

  9. Finite-size effects in thermodynamics: Negative compressibility and global instability in two-phase systems

    Science.gov (United States)

    Todoshchenko, I.

    2018-04-01

    We have measured the equilibrium melting pressure of helium-4 as a function of the crystal size. Negative compressibility of a liquid with an inclusion of solid seed is predicted theoretically and verified experimentally with helium-4 crystal-superfluid system at 0.15 K. This two-phase system is shown to be stable if the crystal size is large enough, which is proven by the experiment. Crystal seeds that are too small spontaneously either melt completely or grow to a large enough size.

  10. Modeling and numerical study of two phase flow

    International Nuclear Information System (INIS)

    Champmartin, A.

    2011-01-01

    This thesis describes the modelization and the simulation of two-phase systems composed of droplets moving in a gas. The two phases interact with each other and the type of model to consider directly depends on the type of simulations targeted. In the first part, the two phases are considered as fluid and are described using a mixture model with a drift relation (to be able to follow the relative velocity between the two phases and take into account two velocities), the two-phase flows are assumed at the equilibrium in temperature and pressure. This part of the manuscript consists of the derivation of the equations, writing a numerical scheme associated with this set of equations, a study of this scheme and simulations. A mathematical study of this model (hyperbolicity in a simplified framework, linear stability analysis of the system around a steady state) was conducted in a frame where the gas is assumed baro-tropic. The second part is devoted to the modelization of the effect of inelastic collisions on the particles when the time of the simulation is shorter and the droplets can no longer be seen as a fluid. We introduce a model of inelastic collisions for droplets in a spray, leading to a specific Boltzmann kernel. Then, we build caricatures of this kernel of BGK type, in which the behavior of the first moments of the solution of the Boltzmann equation (that is mass, momentum, directional temperatures, variance of the internal energy) are mimicked. The quality of these caricatures is tested numerically at the end. (author) [fr

  11. Deep learning the quantum phase transitions in random two-dimensional electron systems

    International Nuclear Information System (INIS)

    Ohtsuki, Tomoki; Ohtsuki, Tomi

    2016-01-01

    Random electron systems show rich phases such as Anderson insulator, diffusive metal, quantum Hall and quantum anomalous Hall insulators, Weyl semimetal, as well as strong/weak topological insulators. Eigenfunctions of each matter phase have specific features, but owing to the random nature of systems, determining the matter phase from eigenfunctions is difficult. Here, we propose the deep learning algorithm to capture the features of eigenfunctions. Localization-delocalization transition, as well as disordered Chern insulator-Anderson insulator transition, is discussed. (author)

  12. High speed ultrasonic system to measure bubbles velocities in a horizontal two-phase flow

    International Nuclear Information System (INIS)

    Cunha Filho, Jurandyr S.; Jian Su; Farias, Marcos S.; Faccini, Jose L.H.; Lamy, Carlos A.

    2009-01-01

    In this work, a non invasive technique consisting of a high speed ultrasonic multitransducer pulse-echo system was developed to characterize gas-liquid two-phase flow parameters that are important in the study of the primary refrigeration circuit of nuclear reactors. The high speed ultrasonic system consists of two transducers (10 MHz/φ 6.35 mm), a generator/multiplexer board, and software that selects and has a data acquisition system of the ultrasonic signals. The resolutions of the system and the pulse time generated from each transducer are, respectively, 10 ns and 1.06 ms. The system initially was used in the local instantaneous measurement of gas-liquid interface in a circular horizontal pipe test section made of a 5 m long stainless steel pipe of 51.2 mm inner diameter, where the elongated bubbles velocity was measured (Taylor bubbles). The results show that the high speed ultrasonic pulse-echo system provides good results for the determination of elongated bubbles velocities. (author)

  13. Space qualification of an experimental two-phase flow thermal management system

    International Nuclear Information System (INIS)

    Koonmen, J.P.; Carswell, L.C.; Kvansnak, M.A.

    1991-01-01

    The Weapons Laboratory will launch a space experiment in March 1991 to investigate the effects of extended microgravity on two-phase (liquid/vapor) flow. The qualification process for the experimental flight system hardware differs significantly from the process used for complex, high cost, long life space systems. Some development, qualification, and acceptance tests normally included in the test program of an operational space system were omitted because of the low program cost and low consequence of experiment failure. Key environment and functional qualification tests were performed, however, in an effort to reduce the risk of failure inherent in any space mission. The environmental qualification program included short duration vacuum chamber tests, reduced gravity missions onboard a National Aeronautics and Space Administration (NASA) test aircraft, and a complete series of shock and vibration tests. The functional qualification program centered on thermal-hydraulic system performance tests and a complete check-out of the unique telemetry system used to retrieve the experimental data from the payload. The test program also contains a number of acceptance and prelaunch validation tests to be performed as final verification of payloads readiness for spaceflight

  14. A component architecture for the two-phase flows simulation system Neptune

    Energy Technology Data Exchange (ETDEWEB)

    Bechaud, C; Boucker, M; Douce, A [Electricite de France (EDF-RD/MFTT), 78 - Chatou (France); Grandotto, M [CEA Cadarache (DEN/DTP/STH), 13 - Saint-Paul-lez-Durance (France); Tajchman, M [CEA Saclay (DEN/DM2S/SFME), 91 - Gif-sur-Yvette (France)

    2003-07-01

    Electricite de France (EdF) and the French atomic energy commission (Cea) have planed a large project to build a new set of software in nuclear reactors analysis. One of the main idea is to allow coupled calculations in which several scientific domains are involved. This paper presents the software architecture of the two-phase flows simulation Neptune project. Neptune should allow computations of two-phase flows in 3 dimensions under normal operating conditions as well as safety conditions. Three scales are identified: the local scale where there is only homogenization between the two phases, an intermediate scale where solid internal structures are homogenized with the fluid and the system scale where some parts of the geometry under study are considered point-wise or subject to one dimensional simplifications. The main properties of this architecture are as follow: -) coupling with scientific domains, and between different scales, -) re-using of quite all or parts of existing validated codes, -) components usable by the different scales, -) easy introducing of new physical modeling as well as new numerical methods, -) local, distributed and parallel computing. The Neptune architecture is based on the component concept with stable and well suited interface. In the case of a distributed application the components are managed through a Corba bus. The building of the components is organized in shell: a programming shell (Fortran or C++ routines), a managing shell (C++ language), an interpreted shell (Python language), a Corba shell and a global driving shell (C++ or Python). Neptune will use the facilities offered by the Salome project: pre and post processors and controls. A data model has been built to have a common access to the information exchanged between the components (meshes, fields, physical and technical information). This architecture has first been setup and tested on some simple but significant cases and is now currently in use to build the Neptune

  15. A component architecture for the two-phase flows simulation system Neptune

    International Nuclear Information System (INIS)

    Bechaud, C.; Boucker, M.; Douce, A.; Grandotto, M.; Tajchman, M.

    2003-01-01

    Electricite de France (EdF) and the French atomic energy commission (Cea) have planed a large project to build a new set of software in nuclear reactors analysis. One of the main idea is to allow coupled calculations in which several scientific domains are involved. This paper presents the software architecture of the two-phase flows simulation Neptune project. Neptune should allow computations of two-phase flows in 3 dimensions under normal operating conditions as well as safety conditions. Three scales are identified: the local scale where there is only homogenization between the two phases, an intermediate scale where solid internal structures are homogenized with the fluid and the system scale where some parts of the geometry under study are considered point-wise or subject to one dimensional simplifications. The main properties of this architecture are as follow: -) coupling with scientific domains, and between different scales, -) re-using of quite all or parts of existing validated codes, -) components usable by the different scales, -) easy introducing of new physical modeling as well as new numerical methods, -) local, distributed and parallel computing. The Neptune architecture is based on the component concept with stable and well suited interface. In the case of a distributed application the components are managed through a Corba bus. The building of the components is organized in shell: a programming shell (Fortran or C++ routines), a managing shell (C++ language), an interpreted shell (Python language), a Corba shell and a global driving shell (C++ or Python). Neptune will use the facilities offered by the Salome project: pre and post processors and controls. A data model has been built to have a common access to the information exchanged between the components (meshes, fields, physical and technical information). This architecture has first been setup and tested on some simple but significant cases and is now currently in use to build the Neptune

  16. Use of a parallel artificial membrane system to evaluate passive absorption and elimination in small fish.

    Science.gov (United States)

    Kwon, Jung-Hwan; Katz, Lynn E; Liljestrand, Howard M

    2006-12-01

    A parallel artificial lipid membrane system was developed to mimic passive mass transfer of hydrophobic organic chemicals in fish. In this physical model system, a membrane filter-supported lipid bilayer separates two aqueous phases that represent the external and internal aqueous environments of fish. To predict bioconcentration kinetics in small fish with this system, literature absorption and elimination rates were analyzed with an allometric diffusion model to quantify the mass transfer resistances in the aqueous and lipid phases of fish. The effect of the aqueous phase mass transfer resistance was controlled by adjusting stirring intensity to mimic bioconcentration rates in small fish. Twenty-three simple aromatic hydrocarbons were chosen as model compounds for purposes of evaluation. For most of the selected chemicals, literature absorption/elimination rates fall into the range predicted from measured membrane permeabilities and elimination rates of the selected chemicals determined by the diffusion model system.

  17. Headspace liquid-phase microextraction of methamphetamine and amphetamine in urine by an aqueous drop

    International Nuclear Information System (INIS)

    He Yi; Vargas, Angelica; Kang, Youn-Jung

    2007-01-01

    This study developed a headspace liquid-phase microextraction (LPME) method by using a single aqueous drop in combination with high performance liquid chromatography (HPLC)-UV detection for the determination of methamphetamine (MAP) and amphetamine (AP) in urine samples. The analytes, volatile and basic, were released from sample matrix into the headspace first, and then protonated and dissolved in an aqueous H 3 PO 4 drop hanging in the headspace by a HPLC syringe. After extraction, this drop was directly injected into HPLC. Parameters affecting extraction efficiency were investigated and optimized. This method showed good linearity in the investigated concentration range of 1.0-1500 μg L -1 , repeatability of the extraction (R.S.D. -1 for both analytes). Enrichment factors of about 400-fold and 220-fold were achieved for MAP and AP, respectively, at optimum conditions. The feasibility of the method was demonstrated by analyzing human urine samples

  18. Odd-even effect on the formation of aqueous biphasic systems formed by 1-alkyl-3-methylimidazolium chloride ionic liquids and salts

    Science.gov (United States)

    Belchior, Diana C. V.; Sintra, Tânia E.; Carvalho, Pedro J.; Soromenho, Mário R. C.; Esperança, José M. S. S.; Ventura, Sónia P. M.; Rogers, Robin D.; Coutinho, João A. P.; Freire, Mara G.

    2018-05-01

    This work provides a comprehensive evaluation of the effect of the cation alkyl side chain length of the 1-alkyl-3-methylimidazolium chloride series ([CnC1im]Cl, n = 2-14) of ionic liquids (ILs) on their capability to form aqueous biphasic systems (ABSs) with salts and self-aggregation derived properties. The liquid-liquid phase behavior of ternary systems composed of [CnC1im]Cl, water, and K3PO4 or K2CO3 and the respective Setschenow salting-out coefficients (ks), a quantitative measure of the two-phase formation ability, were determined. An odd-even effect in the ks values along the number of methylene groups of the longest IL cation alkyl side chain was identified for the ABS formed by K2CO3, a weaker salting-out agent where the phenomenon is clearly identified. In general, cations with even alkyl side chains, being likely to display higher molar volumes, are more easily salted-out and thus more prone to undergo phase separation. The odd-even effect in the ks values is, however, more significant in ILs up to n = 6, where the nanostructuration/nanosegregation of ILs plays a less relevant role. Still, with the [CnC1im]Cl (n = 7-14) series of ILs, an odd-even effect was also identified in the ILs' ionization degree, molar conductivity, and conductivity at infinite dilution. In summary, it is shown here that the ILs' odd-even effect occurs in IL aqueous solutions and not just in neat ILs, an already well-established phenomenon occurring in a series of ILs' properties described as a result of the orientation of the terminal methyl groups to the imidazolium ring cation and consequent effect in the ILs' cohesive energy.

  19. Motif distributions in phase-space networks for characterizing experimental two-phase flow patterns with chaotic features.

    Science.gov (United States)

    Gao, Zhong-Ke; Jin, Ning-De; Wang, Wen-Xu; Lai, Ying-Cheng

    2010-07-01

    The dynamics of two-phase flows have been a challenging problem in nonlinear dynamics and fluid mechanics. We propose a method to characterize and distinguish patterns from inclined water-oil flow experiments based on the concept of network motifs that have found great usage in network science and systems biology. In particular, we construct from measured time series phase-space complex networks and then calculate the distribution of a set of distinct network motifs. To gain insight, we first test the approach using time series from classical chaotic systems and find a universal feature: motif distributions from different chaotic systems are generally highly heterogeneous. Our main finding is that the distributions from experimental two-phase flows tend to be heterogeneous as well, suggesting the underlying chaotic nature of the flow patterns. Calculation of the maximal Lyapunov exponent provides further support for this. Motif distributions can thus be a feasible tool to understand the dynamics of realistic two-phase flow patterns.

  20. Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Jager, de A.G.; Willems, F.P.T.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat

  1. Fabrication of platinum nanoparticles in aqueous solution and solid phase using amphiphilic PB-b-PEO copolymer nanoreactors

    International Nuclear Information System (INIS)

    Hoda, Numan; Budama, Leyla; Çakır, Burçin Acar; Topel, Önder; Ozisik, Rahmi

    2013-01-01

    Graphical abstract: TEM image of Pt nanoparticles produced by reducing by NaBH 4 within PB-b-PEO micelles in aqueous media (scale bar 1 nm). - Highlights: • Pt nanoparticles were synthesized within amphiphilic diblock copolymer micelles. • The effects of reducing agents and precursor dose on Pt np size were investigated. • The effect on fabrication of Pt np by reducing in aqueous and solid phases was compared. • The size of nanoparticles was about 1.4 nm for all doses and reducing agents types. - Abstract: Fabrication of Pt nanoparticles using an amphiphilic copolymer template in aqueous solution was achieved via polybutadiene-block-polyethyleneoxide copolymer micelles, which acted as nanoreactors. In addition, Pt nanoparticles were synthesized using hydrogen gas as the reducing agent in solid state for the first time to compare against solution synthesis. The influences of loaded precursor salt amount to micelles and the type of reducing agent on the size of nanoparticles were investigated through transmission electron microscopy. It was found that increasing the ratio of precursor salt to copolymer and using different type of reducing agent, even in solid phase reduction, did not affect the nanoparticle size. The average size of Pt nanoparticles was estimated to be 1.4 ± 0.1 nm. The reason for getting same sized nanoparticles was discussed in the light of nucleation, growth process, stabilization and diffusion of nanoparticles within micelles

  2. Comparative calculations on selected two-phase flow phenomena using major PWR system codes

    International Nuclear Information System (INIS)

    1990-01-01

    In 1988 a comparative study on important features and models in six major best estimate thermal hydraulic codes for PWR systems was implemented (Comparison of thermal hydraulic safety codes for PWR Graham, Trotman, London, EUR 11522). It was a limitation of that study that the source codes themselves were not available but the comparison had to be based on the available documentation. In the present study, the source codes were available and the capability of four system codes to predict complex two-phase flow phenomena has been assessed. Two areas of investigation were selected: (a) pressurized spray phenomena; (b) boil-up phenomena in rod bundles. As regards the first area, experimental data obtained in 1972 on the Neptunus Facility (Delft University of Technology) were compared with the results of the calculations using Athlet, Cathare, Relap 5 and TRAC-PT1 and, concerning the second area, the results of two experimental facilities obtained in 1980 and 1985 on Thetis (UKEA) and Pericles (CEA-Grenoble) were considered

  3. Non-aqueous heavy oil extraction from oil sand

    Energy Technology Data Exchange (ETDEWEB)

    Bohnert, George [National Nuclear Security Administration (United States)

    2011-07-01

    The Kansas City plant operated by Honeywell has a long history of working with DOE NNSA on engineering and manufacturing services supporting national security requirements. The plant has developed a non-aqueous method for heavy oil extraction from oil sands. This method is environmentally friendly as it does not use any external body of water, which would normally be contaminated in the conventional method. It is a 2 phase process consisting of terpene, limonene or alpha pinene, and carbon dioxide. The CO2 and terpene phases are both closed loop systems which minimizes material loss. The limonene and alpha pinene are both naturally derived solvents that come from citrus sources or pine trees respectively. Carbon dioxide is an excellent co-solvent with terpene. There is also a possibility for heat loss recovery during the distillation phase. This process produces clean dry sand. Laboratory tests have concluded that this using non-aqueous liquids process works effectively.

  4. WDM Phase-Modulated Millimeter-Wave Fiber Systems

    DEFF Research Database (Denmark)

    Yu, Xianbin; Prince, Kamau; Gibbon, Timothy Braidwood

    2012-01-01

    This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one of the lat......This chapter presents a computer simulation case study of two typical WDM phase-modulated millimeter-wave systems. The phase-modulated 60 GHz fiber multi-channel transmission systems employ single sideband (SSB) and double sideband subcarrier modulation (DSB-SC) schemes and present one...... of the latest research efforts in the rapidly emerging Radio-over-Fiber (RoF) application space for in-house access networks....

  5. Aqueous nitrite ion determination by selective reduction and gas phase nitric oxide chemiluminescence

    Science.gov (United States)

    Dunham, A. J.; Barkley, R. M.; Sievers, R. E.; Clarkson, T. W. (Principal Investigator)

    1995-01-01

    An improved method of flow injection analysis for aqueous nitrite ion exploits the sensitivity and selectivity of the nitric oxide (NO) chemilluminescence detector. Trace analysis of nitrite ion in a small sample (5-160 microL) is accomplished by conversion of nitrite ion to NO by aqueous iodide in acid. The resulting NO is transported to the gas phase through a semipermeable membrane and subsequently detected by monitoring the photoemission of the reaction between NO and ozone (O3). Chemiluminescence detection is selective for measurement of NO, and, since the detection occurs in the gas-phase, neither sample coloration nor turbidity interfere. The detection limit for a 100-microL sample is 0.04 ppb of nitrite ion. The precision at the 10 ppb level is 2% relative standard deviation, and 60-180 samples can be analyzed per hour. Samples of human saliva and food extracts were analyzed; the results from a standard colorimetric measurement are compared with those from the new chemiluminescence method in order to further validate the latter method. A high degree of selectivity is obtained due to the three discriminating steps in the process: (1) the nitrite ion to NO conversion conditions are virtually specific for nitrite ion, (2) only volatile products of the conversion will be swept to the gas phase (avoiding turbidity or color in spectrophotometric methods), and (3) the NO chemiluminescence detector selectively detects the emission from the NO + O3 reaction. The method is free of interferences, offers detection limits of low parts per billion of nitrite ion, and allows the analysis of up to 180 microL-sized samples per hour, with little sample preparation and no chromatographic separation. Much smaller samples can be analyzed by this method than in previously reported batch analysis methods, which typically require 5 mL or more of sample and often need chromatographic separations as well.

  6. Vapor Compressor Driven Hybrid Two-Phase Loop, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will demonstrate a vapor compressor driven hybrid two-phase loop technology. The hybrid two-phase loop...

  7. In-situ treatment of hydrocarbons contamination through enhanced bio-remediation and two phase extraction system

    International Nuclear Information System (INIS)

    Aglietto, I.; Brunero Bronzin, M.

    2005-01-01

    It happens frequently to find industrial site affected by contamination of subsoil and groundwater with consequent presence of free phase product floating on the water table. The remediation technologies in this case shall be properly selected and coordinated in a way that the interactions between each activities will help to decontaminate the site. The case study deals with an industrial site located near Turin, in Italy, of about 50 hectares of extension where has been found an area of about 4000 square meters with contamination of subsoil and groundwater. The compounds with higher concentrations are petroleum hydrocarbons found both in soil and in groundwater. Another big problem is represented by the presence of a layer of free product floating on the water table with a maximum measured thickness of 70 cm; this situation can be considered in fact one of the major difficulty in management of selected remediation technologies because the complete recover of the free phase is a priority for any kind of remediation system to apply subsequently. The present work is based upon the selection and implementation of a multiple treatment for definitive remediation of subsoil and groundwater. Free product recovery has been faced with a two-phase extraction technology, then for the remediation of subsoil we implemented a bio-venting system to improve biodegradation processes and finally for groundwater treatment we apply an enhanced in situ bio-remediation injecting oxygen release compounds directly into the aquifer. To reach these choices we have to pass through a complex activity of investigation of the site made up of more than 40 sampling point, 8 monitoring wells, about 140 analysis on subsoil samples and 10 on groundwater samples and one well used for an aquifer test. The preliminary design of the remediation system was therefore based on an extensive site characterization that included geological and geochemical, microbiological and hydrological data, together with

  8. Microgravity Two-Phase Flow Transition

    Science.gov (United States)

    Parang, M.; Chao, D.

    1999-01-01

    Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.

  9. High-velocity two-phase flow two-dimensional modeling

    International Nuclear Information System (INIS)

    Mathes, R.; Alemany, A.; Thilbault, J.P.

    1995-01-01

    The two-phase flow in the nozzle of a LMMHD (liquid metal magnetohydrodynamic) converter has been studied numerically and experimentally. A two-dimensional model for two-phase flow has been developed including the viscous terms (dragging and turbulence) and the interfacial mass, momentum and energy transfer between the phases. The numerical results were obtained by a finite volume method based on the SIMPLE algorithm. They have been verified by an experimental facility using air-water as a simulation pair and a phase Doppler particle analyzer for velocity and droplet size measurement. The numerical simulation of a lithium-cesium high-temperature pair showed that a nearly homogeneous and isothermal expansion of the two phases is possible with small pressure losses and high kinetic efficiencies. In the throat region a careful profiling is necessary to reduce the inertial effects on the liquid velocity field

  10. Hydrogen production by aqueous phase catalytic reforming of glycerine

    International Nuclear Information System (INIS)

    Ozguer, Derya Oncel; Uysal, Bekir Zuehtue

    2011-01-01

    Hydrogen is believed to be the one of the main energy carriers in the near future. In this research glycerine, which is produced in large quantities as a by-product of biodiesel process, was converted to hydrogen aiming to contribute to clean energy initiative. Conversion of glycerol to hydrogen was achieved via aqueous-phase reforming (APR) with Pt/Al 2 O 3 catalyst. The experiments were carried out in an autoclave reactor and a continuous fixed-bed reactor. The effects of reaction temperature (160-280 o C), feed flow rate (0.05-0.5 mL/dak) and feed concentration (5-85 wt-% glycerine) on product distribution were investigated. Optimum temperature for hydrogen production with APR was determined as 230 o C. Maximum gas production rate was found at the feed flow rates around 0.1 mL/min. It was also found that hydrogen concentration in the gas product increased with decreasing glycerol concentration in the feed.

  11. Phase Behavior of Aqueous NA-K-MG-CA-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    M.S. Gruszkiewiez; D.A. Palmer; R.D. Springer; P. Wang; A. Anderko

    2006-09-14

    A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems.

  12. Modeling and numerical analysis of non-equilibrium two-phase flows

    International Nuclear Information System (INIS)

    Rascle, P.; El Amine, K.

    1997-01-01

    We are interested in the numerical approximation of two-fluid models of nonequilibrium two-phase flows described by six balance equations. We introduce an original splitting technique of the system of equations. This technique is derived in a way such that single phase Riemann solvers may be used: moreover, it allows a straightforward extension to various and detailed exchange source terms. The properties of the fluids are first approached by state equations of ideal gas type and then extended to real fluids. For the construction of numerical schemes , the hyperbolicity of the full system is not necessary. When based on suitable kinetic unwind schemes, the algorithm can compute flow regimes evolving from mixture to single phase flows and vice versa. The whole scheme preserves the physical features of all the variables which remain in the set of physical states. Several stiff numerical tests, such as phase separation and phase transition are displayed in order to highlight the efficiency of the proposed method. The document is a PhD thesis divided in 6 chapters and two annexes. They are entitled: 1. - Introduction (in French), 2. - Two-phase flow, modelling and hyperbolicity (in French), 3. - A numerical method using upwind schemes for the resolution of two-phase flows without exchange terms (in English), 4. - A numerical scheme for one-phase flow of real fluids (in English), 5. - An upwind numerical for non-equilibrium two-phase flows (in English), 6. - The treatment of boundary conditions (in English), A.1. The Perthame scheme (in English) and A.2. The Roe scheme (in English)

  13. Moving Boudary Models for Dynamic Simulations of Two-phase Flows

    DEFF Research Database (Denmark)

    Jensen, Jakob Munch; Tummelscheit, H.

    2002-01-01

    . The Dymola Modelica translator can automatically reduce the DAE index and thus makes efficient simulation possible. Usually the flow entering a dry-expansion evaporator in a refrigeration system is two-phase, and there is thus no liquid region. The general MB model has a number of special cases where only...... model is used. The overall robustness and the simplicity of the MB model, makes it well suited for open loop as well as closed loop simulations of two-phase flows. Simulation results for an evaporator in a refrigeration system are shown. The open loop system is simulated both with the reduced MB...... but is less complex. The reduced MB-model is well suited for control purposes both for determining control parameters and for model based control strategies and examples of a controlled refrigeration system are shown. The general MB model divides the flow into three regions (liquid, two-phase and vapor...

  14. Deacidification of oils and fats of biological origine by aqueous solutions of tertiary amines*

    Directory of Open Access Journals (Sweden)

    Peter Siegfried

    2001-01-01

    Full Text Available Deacidification of triacylglycerols by extraction is investigated using aqueous solutions of amines as extractants. Tertiary amines with boiling points ranging between 100° and 170°C, such as 2-methylamino-diethanol, 2-dimethylamino-ethanol, 4-methylmorpholine, 1-dimethylamino-2-propanol etc. were found to be suitable substances. Especially the deacidification by aqueous solutions of 2-dimethylamino-ethanol (DMAE was amply investigated as it is used as an active agent in remedies. Amazingly gelatinous soap stocks are not formed, when the concentration of DMAE exceeds 20% if the free fatty acid content of the oil is below 15%. Two liquid phases are formed in systems composed of triacylglyceroles and aqueous solutions containing 20 to 80% DMAE. Palm oil containing 4.3 wt.% free fatty acids was mixed with an equal amount of an aqueous solution of 30 wt.% DMAE at 60°C. In equilibrium an extract containing 86 wt.% free fatty acids (solvents deducted and a raffinate of 0.09 wt.% free fatty acids are obtained. Loss of neutral oil being 0.7 wt.%.

  15. TWO-LAYER PHASE COMPENSATING INTERFERENCE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Georgiy V. Nikandrov

    2014-09-01

    Full Text Available The paper deals with creation of optical interferential coatings, giving the possibility to form the wave front without the change of energy characteristics of the incident and reflected radiation. Correction is achieved due to the layer, which thickness is a function of coordinate of an optical element surface. Selection technique is suggested for refractive index materials, forming two-layer interference coating that creates a coating with a constant coefficient of reflection on the surface of the optical element. By this procedure the change of coefficient of reflection for the optical element surface, arising because of the variable thickness is eliminated. Magnesium oxide and zirconium dioxide were used as the film-forming materials. The paper presents experimentally obtained thickness distribution of the layer, which is a part of the phase compensating coating. A new class of optical coatings proposed in the paper can find its application for correcting the form of a wave front.

  16. Local gas- and liquid-phase measurements for air-water two-phase flows in a rectangular channel

    International Nuclear Information System (INIS)

    Zhou, X.; Sun, X.; Williams, M.; Fu, Y.; Liu, Y.

    2014-01-01

    Local gas- and liquid-phase measurements of various gas-liquid two-phase flows, including bubbly, cap-bubbly, slug, and churn-turbulent flows, were performed in an acrylic vertical channel with a rectangular cross section of 30 mm x 10 mm and height of 3.0 m. All the measurements were carried out at three measurement elevations along the flow channel, with z/D h = 9, 72, and 136, respectively, to study the flow development. The gas-phase velocity, void fraction, and bubble number frequency were measured using a double-sensor conductivity probe. A high-speed imaging system was utilized to perform the flow regime visualization and to provide additional quantitative information of the two-phase flow structure. An image processing scheme was developed to obtain the gas-phase velocity, void fraction, Sauter mean diameter, bubble number density, and interfacial area concentration. The liquid-phase velocity and turbulence measurements were conducted using a particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system, which enables whole-field and high-resolution data acquisition. An optical phase separation method, which uses fluorescent particles and optical filtration technique, is adopted to extract the velocity information of the liquid phase. An image pre-processing scheme is imposed on the raw PIV images acquired to remove noises due to the presence of bubble residuals and optically distorted particles in the images captured by the PIV-PLIF system. Due to the better light access and less bubble distortion in the narrow rectangular channel, the PIV-PLIF system were able to perform reasonably well in flows of even higher void fractions as compared to the situations with circular pipe test sections. The flow conditions being studied covered various flow regime transitions, void fractions, and liquid-phase flow Reynolds numbers. The obtained experimental data can also be used to validate two-phase CFD results. (author)

  17. Microgravity two-phase flow and heat transfer

    CERN Document Server

    Gabriel, Kamiel S

    2007-01-01

    Advances in understanding the behaviour of multiphase thermal systems could lead to higher efficiency energy production systems, but such advances have been greatly hindered by the strong effect of gravitational acceleration on the flow. This book presents a coverage of various aspects of two-phase flow behaviour in the virtual absence of gravity.

  18. Shear-induced structural transitions in Newtonian non-Newtonian two-phase flow

    Science.gov (United States)

    Cristobal, G.; Rouch, J.; Colin, A.; Panizza, P.

    2000-09-01

    We show the existence under shear flow of steady states in a two-phase region of a brine-surfactant system in which lyotropic dilute lamellar (non-Newtonian) and sponge (Newtonian) phases are coexisting. At high shear rates and low sponge phase-volume fractions, we report on the existence of a dynamic transition corresponding to the formation of a colloidal crystal of multilamellar vesicles (or ``onions'') immersed in the sponge matrix. As the sponge phase-volume fraction increases, this transition exhibits a hysteresis loop leading to a structural bistability of the two-phase flow. Contrary to single phase lamellar systems where it is always 100%, the onion volume fraction can be monitored continuously from 0 to 100 %.

  19. Complex network analysis in inclined oil–water two-phase flow

    International Nuclear Information System (INIS)

    Zhong-Ke, Gao; Ning-De, Jin

    2009-01-01

    Complex networks have established themselves in recent years as being particularly suitable and flexible for representing and modelling many complex natural and artificial systems. Oil–water two-phase flow is one of the most complex systems. In this paper, we use complex networks to study the inclined oil–water two-phase flow. Two different complex network construction methods are proposed to build two types of networks, i.e. the flow pattern complex network (FPCN) and fluid dynamic complex network (FDCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K-means clustering, useful and interesting results are found which can be used for identifying three inclined oil–water flow patterns. To investigate the dynamic characteristics of the inclined oil–water two-phase flow, we construct 48 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of the inclined oil–water two-phase flow. In this paper, from a new perspective, we not only introduce a complex network theory into the study of the oil–water two-phase flow but also indicate that the complex network may be a powerful tool for exploring nonlinear time series in practice. (general)

  20. Phase diagram of dense two-color QCD within lattice simulations

    Directory of Open Access Journals (Sweden)

    Braguta V.V.

    2017-01-01

    Full Text Available We present the results of a low-temperature scan of the phase diagram of dense two-color QCD with Nf = 2 quarks. The study is conducted using lattice simulation with rooted staggered quarks. At small chemical potential we observe the hadronic phase, where the theory is in a confining state, chiral symmetry is broken, the baryon density is zero and there is no diquark condensate. At the critical point μ = mπ/2 we observe the expected second order transition to Bose-Einstein condensation of scalar diquarks. In this phase the system is still in confinement in conjunction with nonzero baryon density, but the chiral symmetry is restored in the chiral limit. We have also found that in the first two phases the system is well described by chiral perturbation theory. For larger values of the chemical potential the system turns into another phase, where the relevant degrees of freedom are fermions residing inside the Fermi sphere, and the diquark condensation takes place on the Fermi surface. In this phase the system is still in confinement, chiral symmetry is restored and the system is very similar to the quarkyonic state predicted by SU(Nc theory at large Nc.

  1. Headspace liquid-phase microextraction of methamphetamine and amphetamine in urine by an aqueous drop

    Energy Technology Data Exchange (ETDEWEB)

    He Yi [Department of Sciences, John Jay College of Criminal Justice, City University of New York, 445 W 59th Street, New York, NY 10019 (United States)]. E-mail: yhe@jjay.cuny.edu; Vargas, Angelica [Department of Sciences, John Jay College of Criminal Justice, City University of New York, 445 W 59th Street, New York, NY 10019 (United States); Kang, Youn-Jung [Department of Sciences, John Jay College of Criminal Justice, City University of New York, 445 W 59th Street, New York, NY 10019 (United States)

    2007-04-25

    This study developed a headspace liquid-phase microextraction (LPME) method by using a single aqueous drop in combination with high performance liquid chromatography (HPLC)-UV detection for the determination of methamphetamine (MAP) and amphetamine (AP) in urine samples. The analytes, volatile and basic, were released from sample matrix into the headspace first, and then protonated and dissolved in an aqueous H{sub 3}PO{sub 4} drop hanging in the headspace by a HPLC syringe. After extraction, this drop was directly injected into HPLC. Parameters affecting extraction efficiency were investigated and optimized. This method showed good linearity in the investigated concentration range of 1.0-1500 {mu}g L{sup -1}, repeatability of the extraction (R.S.D. < 5%, n = 6), and low detection limits (0.3 {mu}g L{sup -1} for both analytes). Enrichment factors of about 400-fold and 220-fold were achieved for MAP and AP, respectively, at optimum conditions. The feasibility of the method was demonstrated by analyzing human urine samples.

  2. Three-Phase Melting Curves in the Binary System of Carbon Dioxide and Water

    Science.gov (United States)

    Abramson, E. H.

    2017-10-01

    Invariant, three-phase melting curves, of ice VI in equilibrium with solid CO2, of ice VII in equilibrium with solid CO2, and of solid CO2 in simultaneous equilibrium with a majority aqueous and a majority CO2 fluid, were explored in the binary system of carbon dioxide and water. Diamond-anvil cells were used to develop pressures of 5 GPa. Water exhibits a large melting temperature depression (73°C less than its pure melting temperature of 253°C at 5 GPa) indicative of large concentrations of CO2 in the aqueous solution. The melting point of water-saturated CO2 does not show a measureable departure from that of the pure system at temperatures lower than ∼200°C and only 10°C at 5 GPa (from 327°C).

  3. A Novel and Sensitive Method for the Determination of Vitamin B2 (Riboflavin in Urine and Pharmaceutical Samples Using an Aqueous Two-Phase Extraction

    Directory of Open Access Journals (Sweden)

    Sabah Shiri

    2013-01-01

    Full Text Available A novel, simple, and more sensitive spectrophotometric procedure has been developed for the determination of vitamin B2 (riboflavin by an aqueous two-phase extraction (ATPE. An ATPE is formed mostly by water and does not require an organic solvent. Other ATPE components used in this study were the polymer, polyethylene glycol (PEG, and some salts such as Na2SO4 and Na2CO3. The method is based on the interaction between vitamin B2 (riboflavin and sodium sulfate (Na2SO4 in an acidic medium (pH 6.4. The influences of effective parameters such as salt (type and concentration, polyethylene glycol (molecular weight and concentration, temperature, centrifuging time, and pH of the sample solution were studied and optimized. The linear range was 1.3–320 ng/mL (R2=0.9991; n=10 with the relative standard deviation (RSD for 60 ng/mL 3.68%. The limit of detection (LOD calculated from three times of standard deviation of blank were 0.2 ng/mL and recoveries from analysis of real samples between 94.82% and 103.98% were obtained for the determination of vitamin B2 (riboflavin in urine and pharmaceutical samples.

  4. Aqueous two-phase systems of polyoxyethylene lauryl ether and potassium gluconate/potassium oxalate/potassium citrate at different temperature-experimental results and modeling of (liquid + liquid) equilibrium data

    International Nuclear Information System (INIS)

    Lu, Yang; Hao, Tongfan; Zhou, Yan; Han, Juan; Tan, Zhenjiang; Yan, Yongsheng

    2014-01-01

    Highlights: • The phase diagrams of POELE10-organic salts ATPSs were determined experimentally. • The experiential equations were used to correlate the binodal data. • The effect of salt on the binodal curve for the studied systems has been discussed. • The LLE data were correlated using the thermodynamic model. -- Abstract: The binodal data for the systems containing the POELE10 and KC 6 H 11 O 7 /K 2 C 2 O 4 /K 3 C 6 H 5 O 7 were determined at the T = (288.15, 298.15, 308.15) K. The three experiential equations were used to fit the binodal data and they achieved the satisfactory fitting effect. The effect of salt type on the phase-seperation ability of salt was studied. It was found that the phase-seperation ability of the salt with the higher valence anion is stronger than that with lower valence anion, namely, the order of the phase-seperation ability for the investigated salts is potassium citrate > potassium oxalate > potassium gluconate, which is also validated by the effective excluded volume (EEV). The (liquid + liquid) equilibrium data for the studied systems were determined and correlated by using the Pitzer–Debye–Hückel equation and Chen-NRTL model along with the Flory–Huggins equation, and good agreement was obtained with using these thermodynamic models

  5. Encyclopedia of two-phase heat transfer and flow IV modeling methodologies, boiling of CO₂, and micro-two-phase cooling

    CERN Document Server

    2018-01-01

    Set IV is a new addition to the previous Sets I, II and III. It contains 23 invited chapters from international specialists on the topics of numerical modeling of pulsating heat pipes and of slug flows with evaporation; lattice Boltzmann modeling of pool boiling; fundamentals of boiling in microchannels and microfin tubes, CO2 and nanofluids; testing and modeling of micro-two-phase cooling systems for electronics; and various special topics (flow separation in microfluidics, two-phase sensors, wetting of anisotropic surfaces, ultra-compact heat exchangers, etc.). The invited authors are leading university researchers and well-known engineers from leading corporate research laboratories (ABB, IBM, Nokia Bell Labs). Numerous "must read" chapters are also included here for the two-phase community. Set IV constitutes a "must have" engineering and research reference together with previous Sets I, II and III for thermal engineering researchers and practitioners.

  6. Enhanced mixing in two-phase Taylor-Couette flows

    International Nuclear Information System (INIS)

    Dherbecourt, Diane

    2015-01-01

    In the scope of the nuclear fuel reprocessing, Taylor-Couette flows between two concentric cylinders (the inner one in rotation and the outer one at rest) are used at laboratory scale to study the performances of new liquid/liquid extraction processes. Separation performances are strongly related to the mixing efficiency, the quantification of the latter is therefore of prime importance. A previous Ph.D. work has related the mixing properties to the hydrodynamics parameters in single-phase flow, using both experimental and numerical investigations. The Reynolds number, flow state and vortices height (axial wavelength) impacts were thus highlighted. This Ph.D. work extends the previous study to two-phase configurations. For experimental simplification, and to avoid droplets coalescence or breakage, spherical solid particles of PMMA from 800 μm to 1500 μm diameter are used to model rigid droplets. These beads are suspended in an aqueous solution of dimethyl sulfoxide (DMSO) and potassium Thiocyanate (KSCN). The experimental setup uses coupled Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF) to access simultaneously the hydrodynamic and the mixing properties. Although the two phases are carefully chosen to match in density and refractive index, these precautions are not sufficient to ensure a good measurement quality, and a second PLIF channel is added to increase the precision of the mixing quantification. The classical PLIF channel monitors the evolution of Rhodamine WT concentration, while the additional PLIF channel is used to map a Fluorescein dye, which is homogeneously concentrated inside the gap. This way, a dynamic mask of the bead positions can be created and used to correct the Rhodamine WT raw images. Thanks to this experimental setup, a parametric study of the particles size and concentration is achieved. A double effect of the dispersed phase is evidenced. On one hand, the particles affect the flow hydrodynamic properties

  7. Retention of ionisable compounds on high-performance liquid chromatography. XV. Estimation of the pH variation of aqueous buffers with the change of the acetonitrile fraction of the mobile phase.

    Science.gov (United States)

    Subirats, Xavier; Bosch, Elisabeth; Rosés, Martí

    2004-12-03

    The most commonly used mobile phases in reversed-phase high-performance liquid chromatography (RP-HPLC) are hydro-organic mixtures of an aqueous buffer and an organic modifier. The addition of this organic solvent to buffered aqueous solutions involves a variation of the buffer properties (pH and buffer capacity). In this paper, the pH variation is studied for acetic acid-acetate, phosphoric acid-dihydrogenphosphate-hydrogenphosphate, citric acid-dihydrogencitrate-citrate, and ammonium-ammonia buffers. The proposed equations allow pH estimation of acetonitrile-water buffered mobile phases up to 60% (v/v) of organic modifier and initial aqueous buffer concentrations between 0.001 and 0.1 mol L(-1), from the initial aqueous pH. The estimated pH variation of the mobile phase and the pKa variation of the analytes allow us to predict the degree of ionisation of the analytes and from this and analyte hydrophobicities, to interpret the relative retention and separation of analyte mixtures.

  8. Study on flow instabilities in two-phase mixtures

    International Nuclear Information System (INIS)

    Ishii, M.

    1976-03-01

    Various mechanisms that can induce flow instabilities in two-phase flow systems are reviewed and their relative importance discussed. In view of their practical importance, the density-wave instabilities have been analyzed in detail based on the one-dimensional two-phase flow formulation. The dynamic response of the system to the inlet flow perturbations has been derived from the model; thus the characteristic equation that predicts the onset of instabilities has been obtained. The effects of various system parameters, such as the heat flux, subcooling, pressure, inlet velocity, inlet orificing, and exit orificing on the stability boundary have been analyzed. In addition to numerical solutions, some simple stability criteria under particular conditions have been obtained. Both results have been compared with various experimental data, and a satisfactory agreement has been demonstrated

  9. Segmented Spiral Waves and Anti-phase Synchronization in a Model System with Two Identical Time-Delayed Coupled Layers

    International Nuclear Information System (INIS)

    Yuan Guoyong; Yang Shiping; Wang Guangrui; Chen Shigang

    2008-01-01

    In this paper, we consider a model system with two identical time-delayed coupled layers. Synchronization and anti-phase synchronization are exhibited in the reactive system without diffusion term. New segmented spiral waves, which are constituted by many thin trips, are found in each layer of two identical time-delayed coupled layers, and are different from the segmented spiral waves in a water-in-oil aerosol sodium bis(2-ethylhexyl) sulfosuccinate (AOT) micro-emulsion (ME) (BZ-AOT system), which consists of many small segments. 'Anti-phase spiral wave synchronization' can be realized between the first layer and the second one. For different excitable parameters, we also give the minimum values of the coupling strength to generate segmented spiral waves and the tip orbits of spiral waves in the whole bilayer.

  10. Fluid dynamics of cryogenic two-phase flows

    International Nuclear Information System (INIS)

    Verfondern, K.; Jahn, W.

    2004-01-01

    The objective of this study was to examine the flow behavior of a methane hydrate/methane-liquid hydrogen dispersed two-phase fluid through a given design of a moderator chamber for the ESS target system. The calculations under simplified conditions, e.g., taking no account of heat input from outside, have shown that the computer code used, CFX, was able to simulate the behavior of the two-phase flow through the moderator chamber, producing reasonable results up to a certain level of the solid phase fraction, that allowed a continuous flow process through the chamber. Inlet flows with larger solid phase fractions than 40 vol% were found to be a ''problem'' for the computer code. From the computer runs based on fractions between 20 and 40 vol%, it was observed that with increasing solid phase fraction at the inlet, the resulting flow pattern revealed a strong tendency for blockage within the chamber, supported by the ''heavy weight'' of the pellets compared to the carrying liquid. Locations which are prone to the development of such uneven flow behavior are the areas around the turning points in the semispheres and near the exit of the moderator. The considered moderator chamber with horizontal inlet and outlet flow for a solid-liquid two-phase fluid does not seem to be an appropriate design. (orig.)

  11. Cold water injection into two-phase mixtures

    International Nuclear Information System (INIS)

    1989-07-01

    This report presents the results of a review of the international literature regarding the dynamic loadings associated with the injection of cold water into two-phase mixtures. The review placed emphasis on waterhammer in nuclear power plants. Waterhammmer incidence data were reviewed for information related to thermalhydraulic conditions, underlying causes and consequential damage. Condensation induced waterhammer was found to be the most significant consequence of injecting cold water into a two-phase system. Several severe waterhammer incidents have been attributed to slug formation and steam bubble collapse under conditions of stratified steam and cold water flows. These phenomena are complex and not well understood. The current body of experimental and analytical knowledge is not large enough to establish maps of expected regimes of condensation induced waterhammer. The Electric Power Research Institute, in the United States, has undertaken a major research and development programme to develop the knowledge base for this area. The limited models and data currently available show that mechanical parameters are as important as thermodynamic conditions for the initiation of condensation induced waterhammer. Examples of bounds for avoiding two-phase waterhammer are given. These bounds are system specific and depend upon parameters such as pump capacity, pipe length and pipe orientation

  12. Key Role of Nitrate in Phase Transitions of Urban Particles: Implications of Important Reactive Surfaces for Secondary Aerosol Formation

    Science.gov (United States)

    Sun, Jiaxing; Liu, Lei; Xu, Liang; Wang, Yuanyuan; Wu, Zhijun; Hu, Min; Shi, Zongbo; Li, Yongjie; Zhang, Xiaoye; Chen, Jianmin; Li, Weijun

    2018-01-01

    Ammonium sulfate (AS) and ammonium nitrate (AN) are key components of urban fine particles. Both field and model studies showed that heterogeneous reactions of SO2, NO2, and NH3 on wet aerosols accelerated the haze formation in northern China. However, little is known on phase transitions of AS-AN containing haze particles. Here hygroscopic properties of laboratory-generated AS-AN particles and individual particles collected during haze events in an urban site were investigated using an individual particle hygroscopicity system. AS-AN particles showed a two-stage deliquescence at mutual deliquescence relative humidity (MDRH) and full deliquescence relative humidity (DRH) and three physical states: solid before MDRH, solid-aqueous between MDRH and DRH, and aqueous after DRH. During hydration, urban haze particles displayed a solid core and aqueous shell at RH = 60-80% and aqueous phase at RH > 80%. Most particles were in aqueous phase at RH > 50% during dehydration. Our results show that AS content in individual particles determines their DRH and AN content determines their MDRH. AN content increase can reduce MDRH, which indicates occurrence of aqueous shell at lower RH. The humidity-dependent phase transitions of nitrate-abundant urban particles are important to provide reactive surfaces of secondary aerosol formation in the polluted air.

  13. A propofol microemulsion with low free propofol in the aqueous phase: formulation, physicochemical characterization, stability and pharmacokinetics.

    Science.gov (United States)

    Cai, WeiHui; Deng, WanDing; Yang, HuiHui; Chen, XiaoPing; Jin, Fang

    2012-10-15

    The purpose of this study was to develop a propofol microemulsion with a low concentration of free propofol in the aqueous phase. Propofol microemulsions were prepared based on single-factor experiments and orthogonal design. The optimal microemulsion was evaluated for pH, osmolarity, particle size, zeta potential, morphology, free propofol in the aqueous phase, stability, and pharmacokinetics in beagle dogs, and comparisons made with the commercial emulsion, Diprivan(®). The pH and osmolarity of the microemulsion were similar to those of Diprivan(®). The average particle size was 22.6±0.2 nm, and TEM imaging indicated that the microemulsion particles were spherical in appearance. The concentration of free propofol in the microemulsion was 21.3% lower than that of Diprivan(®). Storage stability tests suggested that the microemulsion was stable long-term under room temperature conditions. The pharmacokinetic profile for the microemulsion showed rapid distribution and elimination compared to Diprivan(®). We conclude that the prepared microemulsion may be clinically useful as a potential carrier for propofol delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. An Isotopic Dilution Experiment Using Liquid Scintillation: A Simple Two-System, Two-Phase Analysis.

    Science.gov (United States)

    Moehs, Peter J.; Levine, Samuel

    1982-01-01

    A simple isotonic, dilution analysis whose principles apply to methods of more complex radioanalyses is described. Suitable for clinical and instrumental analysis chemistry students, experimental manipulations are kept to a minimum involving only aqueous extraction before counting. Background information, procedures, and results are discussed.…

  15. Stratified steady and unsteady two-phase flows between two parallel plates

    International Nuclear Information System (INIS)

    Sim, Woo Gun

    2006-01-01

    To understand fluid dynamic forces acting on a structure subjected to two-phase flow, it is essential to get detailed information about the characteristics of two-phase flow. Stratified steady and unsteady two-phase flows between two parallel plates have been studied to investigate the general characteristics of the flow related to flow-induced vibration. Based on the spectral collocation method, a numerical approach has been developed for the unsteady two-phase flow. The method is validated by comparing numerical result to analytical one given for a simple harmonic two-phase flow. The flow parameters for the steady two-phase flow, such as void fraction and two-phase frictional multiplier, are evaluated. The dynamic characteristics of the unsteady two-phase flow, including the void fraction effect on the complex unsteady pressure, are illustrated

  16. The immiscible aqueous solutions of alkyl phosphates. Study for the purpose of uranium extraction from phosphoric acid solutions

    International Nuclear Information System (INIS)

    Mauborgne, Bernard

    1979-01-01

    Systems of immiscible aqueous solutions composed by a phase rich in mineral salt and by another phase almost totally containing an organic salt, have been studied for years, with quaternary ammonium salts with an organic cation. The objective of this research is to study systems symmetric to the previous ones, i.e. with organic anions such as alkyl phosphates, and then to try to understand mechanisms of extraction of metals in these environments. Based on properties of immiscible aqueous solutions, an original three-phase process of liquid-liquid extraction has been developed, and is used to separate uranium in phosphoric acids with better performance than the existing industrial processes [fr

  17. Instrumentation for localized measurements in two-phase flow conditions

    International Nuclear Information System (INIS)

    Neff, G.G.; Averill, R.H.; Shurts, S.W.

    1979-01-01

    Three types of instrumentation that have been developed by EG and G Idaho, Inc., and its predecessor, Aerojet Nuclear company, at the Idaho National Engineering Laboratory to investigate two-phase flow phenomenon in a nuclear reactor at the Loss-of-Fluid Test (LOFT) facility are discussed: (a) a combination drag disc-turbine transducer (DTT), (b) a multibeam nuclear hardened gamma densitometer system, and (c) a conductivity sensitive liquid level transducer (LLT). The DTT obtains data on the complex problem of two-phase flow conditions in the LOFT primary coolant system during a loss-os-coolant experiment (LOCE). The discussion of the DTT describes how a turbine, measuring coolant velocity, and a drag disc, measuring coolant momentum flux, can provide valuable mass flow data. The nuclear hardened gamma densitometer is used to obtain density and flow regime information for two-phase flow in the LOFT primary coolant system during a LOCE. The LLT is used to measure water and steam conditions within the LOFT reactor core during a LOCE. The LLT design and the type of data obtained are described

  18. The U phase formation in cement-based systems containing high amounts of Na2SO4

    International Nuclear Information System (INIS)

    Li, G.; Moranville, M.; Le Bescop, P.

    1996-01-01

    Simulated cemented low level wastes containing high amounts of Na 2 SO 4 (10--15%) were examined with respect to the mineralogy of the solid phases, chemical composition of the interstitial aqueous phase and immersion behavior in water. All results reveal the formation of a mineral called U phase, first observed by Dosch and zur Strassen in 1967, and its deleterious effects on the samples immersed in water. It appears that this phase can form only at very high alkaline concentration, not compatible with traditional cement paste. Two possible degradation mechanisms associated with the U phase are proposed which are to be elucidated in further works

  19. Local wettability reversal during steady-state two-phase flow in porous media.

    Science.gov (United States)

    Sinha, Santanu; Grøva, Morten; Ødegården, Torgeir Bryge; Skjetne, Erik; Hansen, Alex

    2011-09-01

    We study the effect of local wettability reversal on remobilizing immobile fluid clusters in steady-state two-phase flow in porous media. We consider a two-dimensional network model for a porous medium and introduce a wettability alteration mechanism. A qualitative change in the steady-state flow patterns, destabilizing the percolating and trapped clusters, is observed as the system wettability is varied. When capillary forces are strong, a finite wettability alteration is necessary to move the system from a single-phase to a two-phase flow regime. When both phases are mobile, we find a linear relationship between fractional flow and wettability alteration.

  20. Two Phase Flow Simulation Using Cellular Automata

    International Nuclear Information System (INIS)

    Marcel, C.P.

    2002-01-01

    The classical mathematical treatment of two-phase flows is based on the average of the conservation equations for each phase.In this work, a complementary approach to the modeling of these systems based on statistical population balances of aut omata sets is presented.Automata are entities defined by mathematical states that change following iterative rules representing interactions with the neighborhood.A model of automata for two-phase flow simulation is presented.This model consists of fie lds of virtual spheres that change their volumes and move around a certain environment.The model is more general than the classical cellular automata in two respects: the grid of cellular automata is dismissed in favor of a trajectory generator, and the rules of interaction involve parameters representing the actual physical interactions between phases.Automata simulation was used to study unsolved two-phase flow problems involving high heat flux rates. One system described in this work consists of a vertical channel with saturated water at normal pressure heated from the lower surface.The heater causes water to boil and starts the bubble production.We used cellular automata to describe two-phase flows and the interaction with the heater.General rule s for such cellular automata representing bubbles moving in stagnant liquid were used, with special attention to correct modeling of different mechanisms of heat transfer.The results of the model were compared to previous experiments and correlations finding good agreement.One of the most important findings is the confirmation of Kutateladze's idea about a close relation between the start of critical heat flux and a change in the flow's topology.This was analyzed using a control volume located in the upper surface of the heater.A strong decrease in the interfacial surface just before the CHF start was encountered.The automata describe quite well some characteristic parameters such as the shape of the local void fraction in the