Gauge transformations in relativistic two-particle constraint theory
International Nuclear Information System (INIS)
Jallouli, H.; Sazdjian, H.
1996-01-01
The forms of the local potentials in linear covariant gauges are investigated and relationships are found between them. The gauge transformation properties of the Green's function and of the Bethe-Salpeter wave function are reviewed. The infinitesimal gauge transformation laws of the constraint theory wave functions and potentials are determined. The case of the local approximation of potentials is considered. The general properties of the gauge transformations in the local approximation are studied. (K.A.)
DEFF Research Database (Denmark)
Michelsen, Aage U.
2004-01-01
Tankegangen bag Theory of Constraints samt planlægningsprincippet Drum-Buffer-Rope. Endvidere skitse af The Thinking Process.......Tankegangen bag Theory of Constraints samt planlægningsprincippet Drum-Buffer-Rope. Endvidere skitse af The Thinking Process....
Full nuclear field theory treatment of two-particle-one-hole-excitations
International Nuclear Information System (INIS)
Silvestre-Brac, B.; Liotta, R.J.
1981-01-01
The nuclear field theory series is summed up to all orders of perturbation theory including only Tamm-Dancoff vertices for the case of two-particle-one-hole-excitations. It is found that the theory gives the same results as those provided by the shell-model method, but only if all possible basis states are included in the formalism. Applicability of the theory is discussed in a simple model
International Nuclear Information System (INIS)
Skachkov, N.; Solovtsov, I.
1979-01-01
Based on the hamiltonian formulation of quantum field theory proposed by Kadyshevsky the three-dimensional relativistic approach is developed for describing the form factors of composite systems. The main features of the diagram technique appearing in the covariant hamiltonian formulation of field theory are discussed. The three-dimensional relativistic equation for the vertex function is derived and its connection with that for the quasipotential wave function is found. The expressions are obtained for the form factor of the system through equal-time two-particle wave functions both in momentum and relativistic configurational representations. An explicit expression for the form factor is found for the case of two-particle interaction through the Coulomb potential
Ke, Weiyao; Moreland, J. Scott; Bernhard, Jonah E.; Bass, Steffen A.
2017-10-01
We study the initial three-dimensional spatial configuration of the quark-gluon plasma (QGP) produced in relativistic heavy-ion collisions using centrality and pseudorapidity-dependent measurements of the medium's charged particle density and two-particle correlations. A cumulant-generating function is first used to parametrize the rapidity dependence of local entropy deposition and extend arbitrary boost-invariant initial conditions to nonzero beam rapidities. The model is then compared to p +Pb and Pb + Pb charged-particle pseudorapidity densities and two-particle pseudorapidity correlations and systematically optimized using Bayesian parameter estimation to extract high-probability initial condition parameters. The optimized initial conditions are then compared to a number of experimental observables including the pseudorapidity-dependent anisotropic flows, event-plane decorrelations, and flow correlations. We find that the form of the initial local longitudinal entropy profile is well constrained by these experimental measurements.
Infrared Constraint on Ultraviolet Theories
Energy Technology Data Exchange (ETDEWEB)
Tsai, Yuhsin [Cornell Univ., Ithaca, NY (United States)
2012-08-01
While our current paradigm of particle physics, the Standard Model (SM), has been extremely successful at explaining experiments, it is theoretically incomplete and must be embedded into a larger framework. In this thesis, we review the main motivations for theories beyond the SM (BSM) and the ways such theories can be constrained using low energy physics. The hierarchy problem, neutrino mass and the existence of dark matter (DM) are the main reasons why the SM is incomplete . Two of the most plausible theories that may solve the hierarchy problem are the Randall-Sundrum (RS) models and supersymmetry (SUSY). RS models usually suffer from strong flavor constraints, while SUSY models produce extra degrees of freedom that need to be hidden from current experiments. To show the importance of infrared (IR) physics constraints, we discuss the flavor bounds on the anarchic RS model in both the lepton and quark sectors. For SUSY models, we discuss the difficulties in obtaining a phenomenologically allowed gaugino mass, its relation to R-symmetry breaking, and how to build a model that avoids this problem. For the neutrino mass problem, we discuss the idea of generating small neutrino masses using compositeness. By requiring successful leptogenesis and the existence of warm dark matter (WDM), we can set various constraints on the hidden composite sector. Finally, to give an example of model independent bounds from collider experiments, we show how to constrain the DM–SM particle interactions using collider results with an effective coupling description.
Perturbation theory corrections to the two-particle reduced density matrix variational method.
Juhasz, Tamas; Mazziotti, David A
2004-07-15
In the variational 2-particle-reduced-density-matrix (2-RDM) method, the ground-state energy is minimized with respect to the 2-particle reduced density matrix, constrained by N-representability conditions. Consider the N-electron Hamiltonian H(lambda) as a function of the parameter lambda where we recover the Fock Hamiltonian at lambda=0 and we recover the fully correlated Hamiltonian at lambda=1. We explore using the accuracy of perturbation theory at small lambda to correct the 2-RDM variational energies at lambda=1 where the Hamiltonian represents correlated atoms and molecules. A key assumption in the correction is that the 2-RDM method will capture a fairly constant percentage of the correlation energy for lambda in (0,1] because the nonperturbative 2-RDM approach depends more significantly upon the nature rather than the strength of the two-body Hamiltonian interaction. For a variety of molecules we observe that this correction improves the 2-RDM energies in the equilibrium bonding region, while the 2-RDM energies at stretched or nearly dissociated geometries, already highly accurate, are not significantly changed. At equilibrium geometries the corrected 2-RDM energies are similar in accuracy to those from coupled-cluster singles and doubles (CCSD), but at nonequilibrium geometries the 2-RDM energies are often dramatically more accurate as shown in the bond stretching and dissociation data for water and nitrogen. (c) 2004 American Institute of Physics.
Modifier constraint in alkali borophosphate glasses using topological constraint theory
Energy Technology Data Exchange (ETDEWEB)
Li, Xiang [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zeng, Huidan, E-mail: hdzeng@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Jiang, Qi [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao, Donghui [Unifrax Corporation, Niagara Falls, NY 14305 (United States); Chen, Guorong [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Wang, Zhaofeng; Sun, Luyi [Department of Chemical & Biomolecular Engineering and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Chen, Jianding [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)
2016-12-01
In recent years, composition-dependent properties of glasses have been successfully predicted using the topological constraint theory. The constraints of the glass network are derived from two main parts: network formers and network modifiers. The constraints of the network formers can be calculated on the basis of the topological structure of the glass. However, the latter cannot be accurately calculated in this way, because of the existing of ionic bonds. In this paper, the constraints of the modifier ions in phosphate glasses were thoroughly investigated using the topological constraint theory. The results show that the constraints of the modifier ions are gradually increased with the addition of alkali oxides. Furthermore, an improved topological constraint theory for borophosphate glasses is proposed by taking the composition-dependent constraints of the network modifiers into consideration. The proposed theory is subsequently evaluated by analyzing the composition dependence of the glass transition temperature in alkali borophosphate glasses. This method is supposed to be extended to other similar glass systems containing alkali ions.
Causality Constraints in Conformal Field Theory
CERN. Geneva
2015-01-01
Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d-dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂φ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinni...
Causality constraints in conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Hartman, Thomas; Jain, Sachin; Kundu, Sandipan [Department of Physics, Cornell University,Ithaca, New York (United States)
2016-05-17
Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂ϕ){sup 4} coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators.
Solar system constraints on disformal gravity theories
International Nuclear Information System (INIS)
Ip, Hiu Yan; Schmidt, Fabian; Sakstein, Jeremy
2015-01-01
Disformal theories of gravity are scalar-tensor theories where the scalar couples derivatively to matter via the Jordan frame metric. These models have recently attracted interest in the cosmological context since they admit accelerating solutions. We derive the solution for a static isolated mass in generic disformal gravity theories and transform it into the parameterised post-Newtonian form. This allows us to investigate constraints placed on such theories by local tests of gravity. The tightest constraints come from preferred-frame effects due to the motion of the Solar System with respect to the evolving cosmological background field. The constraints we obtain improve upon the previous solar system constraints by two orders of magnitude, and constrain the scale of the disformal coupling for generic models to ℳ ∼> 100 eV. These constraints render all disformal effects irrelevant for cosmology
Cosmological constraints on Brans-Dicke theory.
Avilez, A; Skordis, C
2014-07-04
We report strong cosmological constraints on the Brans-Dicke (BD) theory of gravity using cosmic microwave background data from Planck. We consider two types of models. First, the initial condition of the scalar field is fixed to give the same effective gravitational strength Geff today as the one measured on Earth, GN. In this case, the BD parameter ω is constrained to ω>692 at the 99% confidence level, an order of magnitude improvement over previous constraints. In the second type, the initial condition for the scalar is a free parameter leading to a somewhat stronger constraint of ω>890, while Geff is constrained to 0.981theory and are valid for any Horndeski theory, the most general second-order scalar-tensor theory, which approximates the BD theory on cosmological scales. In this sense, our constraints place strong limits on possible modifications of gravity that might explain cosmic acceleration.
Some cosmological constraints on gauge theories
International Nuclear Information System (INIS)
Schramm, D.N.
1983-01-01
In these lectures, a review is made of various constraints cosmology may place on gauge theories. Particular emphasis is placed on those constraints obtainable from Big Bang Nucleosynthesis, with only brief mention made of Big Bang Baryosynthesis. There is also a considerable discussion of astrophysical constraints on masses and lifetimes of neutrinos with specific mention of the 'missing mass (light)' problem of galactic dynamics. (orig./HSI)
Constraint theory multidimensional mathematical model management
Friedman, George J
2017-01-01
Packed with new material and research, this second edition of George Friedman’s bestselling Constraint Theory remains an invaluable reference for all engineers, mathematicians, and managers concerned with modeling. As in the first edition, this text analyzes the way Constraint Theory employs bipartite graphs and presents the process of locating the “kernel of constraint” trillions of times faster than brute-force approaches, determining model consistency and computational allowability. Unique in its abundance of topological pictures of the material, this book balances left- and right-brain perceptions to provide a thorough explanation of multidimensional mathematical models. Much of the extended material in this new edition also comes from Phan Phan’s PhD dissertation in 2011, titled “Expanding Constraint Theory to Determine Well-Posedness of Large Mathematical Models.” Praise for the first edition: "Dr. George Friedman is indisputably the father of the very powerful methods of constraint theory...
Constraint theory, singular lagrangians and multitemporal dynamics
International Nuclear Information System (INIS)
Lusanna, L.
1988-01-01
Singular Lagrangians and constraint theory permeate theoretical physics, as shown by the relevance of gauge theories, string models and general relativity. Their study used finite---dimensional models as a guide to develop the theory, but their main use was in classical field theory, due to the necessity of understanding their quantization. The covariant quantization of singular Lagrangians led to the BRST approach and to the theory of the effective action. On the other hand their phase---space formulation, culminated with the BFV approach for first class, second class and reducible constraints. It, in turn, gave new insights in the theory of singular Lagrangians and constraints and in their cohomological aspects. However the Hamiltonian approach to field theory is highly nontrivial, is open to criticism due to its problems with locality, geometry and manifest covariance and its canonical quantization has still to be developed, because there is no proof of the renormalizability of the Schroedinger representation of field theory. This paper discusses how, notwithstanding these developments, there is still a big amount of ambiguity at every level of the theory
Hamiltonian constraint in polymer parametrized field theory
International Nuclear Information System (INIS)
Laddha, Alok; Varadarajan, Madhavan
2011-01-01
Recently, a generally covariant reformulation of two-dimensional flat spacetime free scalar field theory known as parametrized field theory was quantized using loop quantum gravity (LQG) type ''polymer'' representations. Physical states were constructed, without intermediate regularization structures, by averaging over the group of gauge transformations generated by the constraints, the constraint algebra being a Lie algebra. We consider classically equivalent combinations of these constraints corresponding to a diffeomorphism and a Hamiltonian constraint, which, as in gravity, define a Dirac algebra. Our treatment of the quantum constraints parallels that of LQG and obtains the following results, expected to be of use in the construction of the quantum dynamics of LQG: (i) the (triangulated) Hamiltonian constraint acts only on vertices, its construction involves some of the same ambiguities as in LQG and its action on diffeomorphism invariant states admits a continuum limit, (ii) if the regulating holonomies are in representations tailored to the edge labels of the state, all previously obtained physical states lie in the kernel of the Hamiltonian constraint, (iii) the commutator of two (density weight 1) Hamiltonian constraints as well as the operator correspondent of their classical Poisson bracket converge to zero in the continuum limit defined by diffeomorphism invariant states, and vanish on the Lewandowski-Marolf habitat, (iv) the rescaled density 2 Hamiltonian constraints and their commutator are ill-defined on the Lewandowski-Marolf habitat despite the well-definedness of the operator correspondent of their classical Poisson bracket there, (v) there is a new habitat which supports a nontrivial representation of the Poisson-Lie algebra of density 2 constraints.
QCD unitarity constraints on Reggeon Field Theory
Energy Technology Data Exchange (ETDEWEB)
Kovner, Alex [Physics Department, University of Connecticut,2152 Hillside Road, Storrs, CT 06269 (United States); Levin, Eugene [Departemento de Física, Universidad Técnica Federico Santa María,and Centro Científico-Tecnológico de Valparaíso,Avda. Espana 1680, Casilla 110-V, Valparaíso (Chile); Department of Particle Physics, Tel Aviv University,Tel Aviv 69978 (Israel); Lublinsky, Michael [Physics Department, Ben-Gurion University of the Negev,Beer Sheva 84105 (Israel); Physics Department, University of Connecticut,2152 Hillside Road, Storrs, CT 06269 (United States)
2016-08-04
We point out that the s-channel unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun’s Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a “black disk limit' as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature.
QCD unitarity constraints on Reggeon Field Theory
International Nuclear Information System (INIS)
Kovner, Alex; Levin, Eugene; Lublinsky, Michael
2016-01-01
We point out that the s-channel unitarity of QCD imposes meaningful constraints on a possible form of the QCD Reggeon Field Theory. We show that neither the BFKL nor JIMWLK nor Braun’s Hamiltonian satisfy the said constraints. In a toy, zero transverse dimensional case we construct a model that satisfies the analogous constraint and show that at infinite energy it indeed tends to a “black disk limit' as opposed to the model with triple Pomeron vertex only, routinely used as a toy model in the literature.
Canonical and D-transformations in Theories with Constraints
Gitman, Dmitri M.
1995-01-01
A class class of transformations in a super phase space (we call them D-transformations) is described, which play in theories with second-class constraints the role of ordinary canonical transformations in theories without constraints.
Constraints on grand unified superstring theories
International Nuclear Information System (INIS)
Ellis, J.; Lopez, J.L.; Nanopoulos, D.V.; Houston Advanced Research Center
1990-01-01
We evaluate some constraints on the construction of grand unified superstring theories (GUSTs) using higher level Kac-Moody algebras on the world-sheet. In the most general formulation of the heterotic string in four dimensions, an analysis of the basic GUST model-building constraints, including a realistic hidden gauge group, reveals that there are no E 6 models and any SO(10) models can only exist at level-5. Also, any such SU(5) models can exist only for levels 4≤k≤19. These SO(10) and SU(5) models risk having many large, massless, phenomenologically troublesome representations. We also show that with a suitable hidden sector gauge group, it is possible to avoid free light fractionally charged particles, which are endemic to string derived models. We list all such groups and their representations for the flipped SU(5)xU(1) model. We conclude that a sufficiently binding hidden sector gauge group becomes a basic model-building constraint. (orig.)
Three level constraints on conformal field theories and string models
International Nuclear Information System (INIS)
Lewellen, D.C.
1989-05-01
Simple tree level constraints for conformal field theories which follow from the requirement of crossing symmetry of four-point amplitudes are presented, and their utility for probing general properties of string models is briefly illustrated and discussed. 9 refs
Receptor theory and biological constraints on value.
Berns, Gregory S; Capra, C Monica; Noussair, Charles
2007-05-01
Modern economic theories of value derive from expected utility theory. Behavioral evidence points strongly toward departures from linear value weighting, which has given rise to alternative formulations that include prospect theory and rank-dependent utility theory. Many of the nonlinear forms for value assumed by these theories can be derived from the assumption that value is signaled by neurotransmitters in the brain, which obey simple laws of molecular movement. From the laws of mass action and receptor occupancy, we show how behaviorally observed forms of nonlinear value functions can arise.
Theory of constraints: A state-of-art review
Directory of Open Access Journals (Sweden)
Maryam Orouji
2015-11-01
Full Text Available The theory of constraints (TOC is a management tool, which considers any manageable system as being limited in reaching more of its objectives by some constraints. According to TOC, there is always, at least, one single constraint, and TOC implements a concentrating process to detect the constraint and restructure the remaining of the organization around it. This paper presents an overview of different perspectives of TOC and its implementation in different industries such as project management, quality management, outsourcing, product mix, make-to-buy, accounting, banking and health care, etc. The results indicate that the method has been extensively implemented in different areas of accounting.
Constraints and stability in vector theories with spontaneous Lorentz violation
International Nuclear Information System (INIS)
Bluhm, Robert; Gagne, Nolan L.; Potting, Robertus; Vrublevskis, Arturs
2008-01-01
Vector theories with spontaneous Lorentz violation, known as bumblebee models, are examined in flat spacetime using a Hamiltonian constraint analysis. In some of these models, Nambu-Goldstone modes appear with properties similar to photons in electromagnetism. However, depending on the form of the theory, additional modes and constraints can appear that have no counterparts in electromagnetism. An examination of these constraints and additional degrees of freedom, including their nonlinear effects, is made for a variety of models with different kinetic and potential terms, and the results are compared with electromagnetism. The Hamiltonian constraint analysis also permits an investigation of the stability of these models. For certain bumblebee theories with a timelike vector, suitable restrictions of the initial-value solutions are identified that yield ghost-free models with a positive Hamiltonian. In each case, the restricted phase space is found to match that of electromagnetism in a nonlinear gauge
Bond constraint theory and the quest for the glass computer
Indian Academy of Sciences (India)
The tool that leads to this deeper understanding is the bond constraint theory. We explain how this theory leads to an explanation of switching and of the behavior and properties of amorphous materials in general. Finally, the prospects for developing. GST-related materials into non-volatile memory media that could be the ...
General quadratic gauge theory: constraint structure, symmetries and physical functions
Energy Technology Data Exchange (ETDEWEB)
Gitman, D M [Institute of Physics, University of Sao Paulo (Brazil); Tyutin, I V [Lebedev Physics Institute, Moscow (Russian Federation)
2005-06-17
How can we relate the constraint structure and constraint dynamics of the general gauge theory in the Hamiltonian formulation to specific features of the theory in the Lagrangian formulation, especially relate the constraint structure to the gauge transformation structure of the Lagrangian action? How can we construct the general expression for the gauge charge if the constraint structure in the Hamiltonian formulation is known? Whether we can identify the physical functions defined as commuting with first-class constraints in the Hamiltonian formulation and the physical functions defined as gauge invariant functions in the Lagrangian formulation? The aim of the present paper is to consider the general quadratic gauge theory and to answer the above questions for such a theory in terms of strict assertions. To fulfil such a programme, we demonstrate the existence of the so-called superspecial phase-space variables in terms of which the quadratic Hamiltonian action takes a simple canonical form. On the basis of such a representation, we analyse a functional arbitrariness in the solutions of the equations of motion of the quadratic gauge theory and derive the general structure of symmetries by analysing a symmetry equation. We then use these results to identify the two definitions of physical functions and thus prove the Dirac conjecture.
LEP constraints on grand unified theories
International Nuclear Information System (INIS)
Sarkar, Utpal
1993-01-01
Recent developments on grand unified theories (GUTs) in the context of the LEP measurements of the coupling constants are reviewed. The three coupling constants at the electroweak scale have been measured at LEP quite precisely. One can allow these couplings to evolve with energy following the renormalization group equations for the various groups and find out whether all the coupling constants meet at any energy. It was pointed out that the minimal SU(5) grand unified theory fails to satisfy this test. However, various extensions of the theory are still allowed. These extensions include (i) supersymmetric SU(5) GUT, with some arbitrariness in the susy breaking scale arising from the threshold corrections, (ii) non-susy SU(5) GUTs with additional fermions as well as Higgs multiplets, which has masses of the order of TeV, and (iii) non-renormalizable effect of gravity with a fine tuned relation among the coupling constants at the unification energy. The LEP results also constrain GUTs with an intermediate symmetry breaking scale. By adjusting the intermediate symmetry breaking scale, one usually can have unification, but these theories get constrained. For example, the left-right symmetric theories coming from GUTs can be broken only at energies higher than about ∼10 10 GeV. This implies that if right handed gauge bosons are found at energies lower than this scale, then that will rule out the possibility of grand unification. Another recent interesting development on the subject, namely, low energy unification, is discussed in this context. All the coupling constants are unified at energies of the order of ∼10 8 GeV when they are embedded in an SU(15)GUT, with some particular symmetry breaking pattern. But even in this case the results of the intermediate symmetry breaking scale remain unchanged. (author). 16 refs., 3 figs
Importance of the local constraint in slave-boson theories
International Nuclear Information System (INIS)
Zhang, L.; Jain, J.K.; Emery, V.J.
1993-01-01
Slave bosons are commonly introduced in order to implement an infinite Hubbard U by means of a local constraint. The usual starting point for investigations within this scheme is a mean-field theory in which the constraint is taken to be global. This approximate treatment of the constraint is studied in the context of a two-band Hubbard model, and it is shown that (i) the ground state has a significant number of doubly occupied sites, despite the infinite on-site repulsion in the original model, and (ii) there is an unphysical tendency for pairing. However, it is found that if the local constraint is retained for the insulator at half filling, then mean-field theory gives the correct result that the double occupancy is zero
Improving SALT productivity by using the theory of constraints
Coetzee, Johannes C.; Väisänen, Petri; O'Donoghue, Darragh E.; Kotze, Paul; Romero Colmenero, Encarni; Miszalski, Brent; Crawford, Steven M.; Kniazev, Alexei; Depagne, Éric; Rabe, Paul; Hettlage, Christian
2016-07-01
SALT, the Southern African Large Telescope, is a very cost effective 10 m class telescope. The operations cost per refereed science paper is currently approximately $70,000. To achieve this competitive advantage, specific design tradeoffs had to be made leading to technical constraints. On the other hand, the telescope has many advantages, such as being able to rapidly switch between different instruments and observing modes during the night. We provide details of the technical and operational constraints and how they were dealt with, by applying the theory of constraints, to substantially improve the observation throughput during the last semester.
Consistent constraints on the Standard Model Effective Field Theory
International Nuclear Information System (INIS)
Berthier, Laure; Trott, Michael
2016-01-01
We develop the global constraint picture in the (linear) effective field theory generalisation of the Standard Model, incorporating data from detectors that operated at PEP, PETRA, TRISTAN, SpS, Tevatron, SLAC, LEPI and LEP II, as well as low energy precision data. We fit one hundred and three observables. We develop a theory error metric for this effective field theory, which is required when constraints on parameters at leading order in the power counting are to be pushed to the percent level, or beyond, unless the cut off scale is assumed to be large, Λ≳ 3 TeV. We more consistently incorporate theoretical errors in this work, avoiding this assumption, and as a direct consequence bounds on some leading parameters are relaxed. We show how an S,T analysis is modified by the theory errors we include as an illustrative example.
Application of the Theory of Constraints in Project Based Structures
Martynas Sarapinas; Vytautas Pranas Sūdžius
2011-01-01
The article deals with the application of the Theory of Constraints (TOC) in project management. This article involves a short introduction to TOC as a project management method and deep analysis of project management specialties using the TOC: TOC based project planning, timetable management, tasks synchronization, project control and “relay runner work ethic”. Moreover, the article describes traditional and TOC based project management theories in their comparison, and emphasize the main be...
Constraints and Hamiltonian in light-front quantized field theory
International Nuclear Information System (INIS)
Srivastava, P.P.
1993-01-01
Self-consistent hamiltonian formulation of scalar theory on the null plane is constructed and quantized following the Dirac procedure. The theory contains also constraint equations which would give, if solved, to a nonlocal Hamiltonian. In contrast to the equal-time formulation we obtain a different description of the spontaneous symmetry breaking in the continuum and the symmetry generators are found to annihilate the light-front vacuum. Two examples are given where the procedure cannot be applied self-consistently. The corresponding theories are known to be ill-defined from the equal-time quantization. (author)
Sewing constraints for conformal field theories on surfaces with boundaries
International Nuclear Information System (INIS)
Lewellen, D.C.
1992-01-01
In a conformal field theory, correlation functions on any Riemann surface are in principle unambiguously defined by sewing together three-point functions on the sphere, provided that the four-point functions on the sphere are crossing symmetric, and the one-point functions on the torus are modular covariant. In this work we extend Sonoda's proof of this result to conformal field theories defined on surfaces with boundaries. Four additional sewing constraints arise; three on the half-plane and one on the cylinder. These relate the various OPE coefficients in the theory (bulk, boundary, and bulk-boundary) to one another. In rational theories these relations can be expressed in terms of data arising solely within the bulk theory: The matrix S which implements modular transformations on the characters, and the matrices implementing duality transformations on the four-point conformal-block functions. As an example we solve these relations for the boundary and bulk-boundary structure constants in the Ising model with all possible conformally invariant boundary conditions. The role of the basic sewing constraints in the construction of open string theories is discussed. (orig.)
Modular constraints on conformal field theories with currents
Bae, Jin-Beom; Lee, Sungjay; Song, Jaewon
2017-12-01
We study constraints coming from the modular invariance of the partition function of two-dimensional conformal field theories. We constrain the spectrum of CFTs in the presence of holomorphic and anti-holomorphic currents using the semi-definite programming. In particular, we find the bounds on the twist gap for the non-current primaries depend dramatically on the presence of holomorphic currents, showing numerous kinks and peaks. Various rational CFTs are realized at the numerical boundary of the twist gap, saturating the upper limits on the degeneracies. Such theories include Wess-Zumino-Witten models for the Deligne's exceptional series, the Monster CFT and the Baby Monster CFT. We also study modular constraints imposed by W -algebras of various type and observe that the bounds on the gap depend on the choice of W -algebra in the small central charge region.
Application of the Theory of Constraints in Project Based Structures
Directory of Open Access Journals (Sweden)
Martynas Sarapinas
2011-04-01
Full Text Available The article deals with the application of the Theory of Constraints (TOC in project management. This article involves a short introduction to TOC as a project management method and deep analysis of project management specialties using the TOC: TOC based project planning, timetable management, tasks synchronization, project control and “relay runner work ethic”. Moreover, the article describes traditional and TOC based project management theories in their comparison, and emphasize the main benefits we received as the results of the study. Article in Lithuanian
Theory of constraints for publicly funded health systems.
Sadat, Somayeh; Carter, Michael W; Golden, Brian
2013-03-01
Originally developed in the context of publicly traded for-profit companies, theory of constraints (TOC) improves system performance through leveraging the constraint(s). While the theory seems to be a natural fit for resource-constrained publicly funded health systems, there is a lack of literature addressing the modifications required to adopt TOC and define the goal and performance measures. This paper develops a system dynamics representation of the classical TOC's system-wide goal and performance measures for publicly traded for-profit companies, which forms the basis for developing a similar model for publicly funded health systems. The model is then expanded to include some of the factors that affect system performance, providing a framework to apply TOC's process of ongoing improvement in publicly funded health systems. Future research is required to more accurately define the factors affecting system performance and populate the model with evidence-based estimates for various parameters in order to use the model to guide TOC's process of ongoing improvement.
Supersymmetric two-particle equations
International Nuclear Information System (INIS)
Sissakyan, A.N.; Skachkov, N.B.; Shevchenko, O.Yu.
1986-01-01
In the framework of the scalar superfield model, a particular case of which is the well-known Wess-Zumino model, the supersymmetric Schwinger equations are found. On their basis with the use of the second Legendre transformation the two-particle supersymmetric Edwards and Bethe-Salpeter equations are derived. A connection of the kernels and inhomogeneous terms of these equations with generating functional of the second Legendre transformation is found
Experimental constraints on theories of high Tc superconductors
International Nuclear Information System (INIS)
Little, W.A.
1989-01-01
Recent experiments on the high-T c superconductors have begun to narrow the possible theoretical explanations of the phenomenon. Experimental evidence on the size, structure and symmetry of the charge carriers will be reviewed; evidence for and against strong coupling; and, recent results on a search for direct evidence of magnetic signature in the coupling mechanism will be presented. The authors show how these experiments impose strong constraints on the theories of these superconductors. A new type of experiment is also discussed which appears capable of identifying the true nature of the coupling mechanism if the superconductors prove to be BCS-like in nature
Five fundamental constraints on theories of the origins of music.
Merker, Bjorn; Morley, Iain; Zuidema, Willem
2015-03-19
The diverse forms and functions of human music place obstacles in the way of an evolutionary reconstruction of its origins. In the absence of any obvious homologues of human music among our closest primate relatives, theorizing about its origins, in order to make progress, needs constraints from the nature of music, the capacities it engages, and the contexts in which it occurs. Here we propose and examine five fundamental constraints that bear on theories of how music and some of its features may have originated. First, cultural transmission, bringing the formal powers of cultural as contrasted with Darwinian evolution to bear on its contents. Second, generativity, i.e. the fact that music generates infinite pattern diversity by finite means. Third, vocal production learning, without which there can be no human singing. Fourth, entrainment with perfect synchrony, without which there is neither rhythmic ensemble music nor rhythmic dancing to music. And fifth, the universal propensity of humans to gather occasionally to sing and dance together in a group, which suggests a motivational basis endemic to our biology. We end by considering the evolutionary context within which these constraints had to be met in the genesis of human musicality. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Unique sodium phosphosilicate glasses designed through extended topological constraint theory.
Zeng, Huidan; Jiang, Qi; Liu, Zhao; Li, Xiang; Ren, Jing; Chen, Guorong; Liu, Fude; Peng, Shou
2014-05-15
Sodium phosphosilicate glasses exhibit unique properties with mixed network formers, and have various potential applications. However, proper understanding on the network structures and property-oriented methodology based on compositional changes are lacking. In this study, we have developed an extended topological constraint theory and applied it successfully to analyze the composition dependence of glass transition temperature (Tg) and hardness of sodium phosphosilicate glasses. It was found that the hardness and Tg of glasses do not always increase with the content of SiO2, and there exist maximum hardness and Tg at a certain content of SiO2. In particular, a unique glass (20Na2O-17SiO2-63P2O5) exhibits a low glass transition temperature (589 K) but still has relatively high hardness (4.42 GPa) mainly due to the high fraction of highly coordinated network former Si((6)). Because of its convenient forming and manufacturing, such kind of phosphosilicate glasses has a lot of valuable applications in optical fibers, optical amplifiers, biomaterials, and fuel cells. Also, such methodology can be applied to other types of phosphosilicate glasses with similar structures.
Teaching Australian Football in Physical Education: Constraints Theory in Practice
Pill, Shane
2013-01-01
This article outlines a constraints-led process of exploring, modifying, experimenting, adapting, and developing game appreciation known as Game Sense (Australian Sports Commission, 1997; den Duyn, 1996, 1997) for the teaching of Australian football. The game acts as teacher in this constraints-led process. Rather than a linear system that…
Theory of Constraints and Its Application in a Specific Company
Directory of Open Access Journals (Sweden)
Jakub Linhart
2014-01-01
Full Text Available This article analyses the possibilities of the practical utilization of Critical Chain Project Management methodology. Our study analyzed key processes related to the implementation and utilization of such a tool in a concrete company. For this purpose an original program was created. The logic of this program is based on the fundamental principles of the CCPM methodology. The impetus for the design and creation of such a program stemmed from the almost non-existence of such a tool on the Czech market. The theoretical part of the article focuses concisely on the Theory of Constraints and Critical Chain principles, which the conceptual ideas of all algorithms included in the new program come from.The system was used for two years and it enabled the processing of requests significantly faster than before. The evaluation of economical and practical benefits based on real project data demonstrates that after implementation of the Appello system and corresponding rules of usage, project managers completed more tasks in the first year than in the previous two years in which the CCPM was not applied and nearly 85% of planned requests were either on time or delayed up to 30 days in comparison with the amount of work from the preceding two years.Currently, a significant number of project oriented companies are looking for competitive advantages which, allow for the mastering of the largest number of projects that have a delivery time specified within agreed time frames. The use of our system or similar ones designed according to CCMP rules fully ensures the fulfilment of such requirements.
Constraints on four dimensional effective field theories from string and F-theory
Energy Technology Data Exchange (ETDEWEB)
Baume, Florent
2017-06-21
This thesis is a study of string theory compactifications to four dimensions and the constraints the Effective Field theories must exhibit, exploring both the closed and open sectors. In the former case, we focus on axion monodromy scenarios and the impact the backreaction of the energy density induced by the vev of an axion has on its field excursions. For all the cases studied, we find that the backreaction is small up to a critical value, and the proper field distance is flux independent and at most logarithmic in the axion vev. We then move to the open sector, where we use the framework of F-theory. We first explore the relation between the spectra arising from F-theory GUTs and those coming from a decomposition of the adjoint of E{sub 8} to SU(5) x U(1){sup n}. We find that extending the latter spectrum with new SU(5)-singlet fields, and classifying all possible ways of breaking the Abelian factors, all the spectra coming from smooth elliptic fibration constructed in the literature fit in our classification. We then explore generic properties of the spectra arising when breaking SU(5) to the Standard Model gauge group while retaining some anomaly properties. We finish by a study of F-theory compactications on a singular elliptic fibration via Matrix Factorisation, and find the charged spectrum of two non-Abelian examples.
Constraints on four dimensional effective field theories from string and F-theory
International Nuclear Information System (INIS)
Baume, Florent
2017-01-01
This thesis is a study of string theory compactifications to four dimensions and the constraints the Effective Field theories must exhibit, exploring both the closed and open sectors. In the former case, we focus on axion monodromy scenarios and the impact the backreaction of the energy density induced by the vev of an axion has on its field excursions. For all the cases studied, we find that the backreaction is small up to a critical value, and the proper field distance is flux independent and at most logarithmic in the axion vev. We then move to the open sector, where we use the framework of F-theory. We first explore the relation between the spectra arising from F-theory GUTs and those coming from a decomposition of the adjoint of E 8 to SU(5) x U(1) n . We find that extending the latter spectrum with new SU(5)-singlet fields, and classifying all possible ways of breaking the Abelian factors, all the spectra coming from smooth elliptic fibration constructed in the literature fit in our classification. We then explore generic properties of the spectra arising when breaking SU(5) to the Standard Model gauge group while retaining some anomaly properties. We finish by a study of F-theory compactications on a singular elliptic fibration via Matrix Factorisation, and find the charged spectrum of two non-Abelian examples.
Using the Theory of Constraints for Effective Supply Chain Management
Directory of Open Access Journals (Sweden)
Archie Lockhamy III
1999-08-01
Full Text Available This article provides methodology and guidelines for employing a 'constraint-based approach for effective supply chain management. The article explores the shortcomings of using a traditional supply chain management as well as an Activity Based Management (ABM approach in the managing of supply chains. In addition, the article introduces a supply chain management methodology based on achieving a global optimum for the entire chain. Examples are provided on how constraint-based techniques are currently being applied to the management of certain subsets of the supply chain. Guidelines are presented for managing supply chains using a constraint-based approach. Finally, the article ends with the discussion of the implications regarding the use of a constraint-based approach to the management of supply chains along with the need for future research in this area.
Testing the master constraint programme for loop quantum gravity: V. Interacting field theories
International Nuclear Information System (INIS)
Dittrich, B; Thiemann, T
2006-01-01
This is the fifth and final paper in our series of five in which we test the master constraint programme for solving the Hamiltonian constraint in loop quantum gravity. Here we consider interacting quantum field theories, specifically we consider the non-Abelian Gauss constraints of Einstein-Yang-Mills theory and 2 + 1 gravity. Interestingly, while Yang-Mills theory in 4D is not yet rigorously defined as an ordinary (Wightman) quantum field theory on Minkowski space, in background-independent quantum field theories such as loop quantum gravity (LQG) this might become possible by working in a new, background-independent representation. While for the Gauss constraint the master constraint can be solved explicitly, for the 2 + 1 theory we are only able to rigorously define the master constraint operator. We show that the, by other methods known, physical Hilbert is contained in the kernel of the master constraint, however, to systematically derive it by only using spectral methods is as complicated as for 3 + 1 gravity and we therefore leave the complete analysis for 3 + 1 gravity
Saha equation, single and two particle states
International Nuclear Information System (INIS)
Kraeft, W.D.; Girardeau, M.D.; Strege, B.
1990-01-01
Single and two particle porperties in dense plasma are discussed in connection with their role in the mass action law for a partially ionized plasma. The two particle bound states are nearly density independent, while the continuum is essentially shifted. The single particle states are damped, and their energy has a negative shift and a parabolic behaviour for small momenta. (orig.)
Elsukova Tatiana Vasilevna
2014-01-01
This article analyzes the techniques and methods of inventory management company with the information of a management accounting system based on the principles of the theory of constraints, both financial and non-financial.
Directory of Open Access Journals (Sweden)
Elsukova Tatiana Vasilevna
2014-02-01
Full Text Available This article analyzes the techniques and methods of inventory management company with the information of a management accounting system based on the principles of the theory of constraints, both financial and non-financial.
Solar system constraints on multifield theories of modified dynamics
Sanders, R. H.
2006-01-01
Any viable theory of modified Newtonian dynamics (MOND) as modified gravity is likely to require fields in addition to the usual tensor field of General Relativity. For these theories, the MOND phenomenology emerges as an effective fifth force probably associated with a scalar field. Here, I
New formulation of Horava-Lifshitz quantum gravity as a master constraint theory
Energy Technology Data Exchange (ETDEWEB)
Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Yang Jinsong, E-mail: Yangksong@gmail.com [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Yu, Hoi-Lai, E-mail: hlyu@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China)
2011-07-04
Both projectable and non-projectable versions of Horava-Lifshitz gravity face serious challenges. In the non-projectable version, the constraint algebra is seemingly inconsistent. The projectable version lacks a local Hamiltonian constraint, thus allowing for an extra scalar mode which can be problematic. A new formulation of non-projectable Horava-Lifshitz gravity, naturally realized as a representation of the master constraint algebra studied by loop quantum gravity researchers, is presented. This yields a consistent canonical theory with first class constraints. It captures the essence of Horava-Lifshitz gravity in retaining only spatial diffeomorphisms (instead of full space-time covariance) as the physically relevant non-trivial gauge symmetry; at the same time the local Hamiltonian constraint needed to eliminate the extra mode is equivalently enforced by the master constraint.
Two particle states in an asymmetric box
Li, Xin; Liu, Chuan
2004-01-01
The exact two-particle energy eigenstates in an asymmetric rectangular box with periodic boundary conditions in all three directions are studied. Their relation with the elastic scattering phases of the two particles in the continuum are obtained. These results can be viewed as a generalization of the corresponding formulae in a cubic box obtained by L\\"uscher before. In particular, the s-wave scattering length is related to the energy shift in the finite box. Possible applications of these f...
Applying the theory of constraints in health care: Part 1--The philosophy.
Breen, Anne M; Burton-Houle, Tracey; Aron, David C
2002-01-01
The imperative to improve both technical and service quality while simultaneously reducing costs is quite clear. The Theory of Constraints (TOC) is an emerging philosophy that rests on two assumptions: (1) systems thinking and (2) if a constraint "is anything that limits a system from achieving higher performance versus its goal," then every system must have at least one (and at most no more than a few) constraints or limiting factors. A constraint is neither good nor bad in itself. Rather, it just is. In fact, recognition of the existence of constraints represents an excellent opportunity for improvement because it allows one to focus ones efforts in the most productive area--identifying and managing the constraints. This is accomplished by using the five focusing steps of TOC: (1) identify the system's constraint; (2) decide how to exploit it; (3) subordinate/synchronize everything else to the above decisions; (4) elevate the system's constraint; and (5) if the constraint has shifted in the above steps, go back to step 1. Do not allow inertia to become the system's constraint. TOC also refers to a series of tools termed "thinking processes" and the sequence in which they are used.
APPLYING THE THEORY OF CONSTRAINTS TO INCREASE ECONOMIC VALUE ADDED: PART 1—THEORY
Directory of Open Access Journals (Sweden)
Malan Smith
2012-01-01
Full Text Available
ENGLISH ABSTRACT: This article, presented in two parts, explains how to apply the Theory of Constraints (TOC in a business to increase Economic Value Added (EVA. The first part deals with the theory, while the second part deals with the implementation. The goal of a business, the measurements of the goal and the priority of the measurements are discussed. The future reality of a company which implements TOC principles is shown through cause and effect to lead to an increase in EVA. The increase in EVA is caused by an increase in return on investment and a reduction in the cost of capital. The actions the company must take to increase EVA is presented.
AFRIKAANSE OPSOMMING: Hierdie artikel, aangebied in twee dele, verduidelik hoe om die Teorie van Beperkinge (TVB in a besigheid toe te pas om Ekonomiese Toegevoegde Waarde (ETW te vermeerder. Die eerste gedeelte verduidelik die teorie, terwyl die tweede gedeelte die toepassing hanteer. Die doel van ’n besigheid, die maatstawwe van die doel en die prioriteit van die maatstawwe word bespreek. Deur middel van oorsaak en effek word gewys dat die toekomstige werklikheid van ’n besigheid wat TVB beginsels toepas lei tot ’n toename in ETW. Die toename in ETW word veroorsaak deur ’n toename in opbrengs op belegging en ’n afname in die koste van kapitaal. Die aksies wat ’n besigheid moet neem om ETW te vermeerder, word genoem.
Harnessing Resistance: Using the Theory of Constraints To Assist Change Management.
Mabin, Victoria J.; Forgeson, Steve; Green, Lawrence
2001-01-01
Applies the Theory of Constraints, which views resistance to change as a necessary, positive force, to a case study of a bank merger. For each resistance factor, the theory provides tools for using it and managing change successfully. (Contains 46 references.) (SK)
Supersymmetry Constraints and String Theory on K3
Energy Technology Data Exchange (ETDEWEB)
Lin, Ying-Hsuan; Shao, Shu-Heng [Jefferson Physical Laboratory, Harvard University,Cambridge, MA 02138 (United States); Wang, Yifan [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Yin, Xi [Jefferson Physical Laboratory, Harvard University,Cambridge, MA 02138 (United States)
2015-12-22
We study supervertices in six dimensional (2,0) supergravity theories, and derive supersymmetry non-renormalization conditions on the 4- and 6-derivative four-point couplings of tensor multiplets. As an application, we obtain exact non-perturbative results of such effective couplings in type IIB string theory compactified on K3 surface, extending previous work on type II/heterotic duality. The weak coupling limit thereof, in particular, gives certain integrated four-point functions of half-BPS operators in the nonlinear sigma model on K3 surface, that depend nontrivially on the moduli, and capture worldsheet instanton contributions.
Constraints on GUT 7-brane topology in F-theory
International Nuclear Information System (INIS)
Hayashi, Hirotaka; Kawano, Teruhiko; Watari, Taizan
2012-01-01
We study the relation between phenomenological requirements and the topology of the surfaces that GUT 7-branes wrap in F-theory compactifications. In addition to the exotic matter free condition in the hypercharge flux scenario of SU(5) GUT breaking, we analyze a new condition that comes from a discrete symmetry aligning the contributions to low-energy Yukawa matrices from a number of codimension-three singularity points. We see that the exotic matter free condition excludes Hirzebruch surfaces (except F 0 ) as the GUT surface, correcting an existing proof in the literature. We further find that the discrete symmetry for the alignment of the Yukawa matrices excludes del Pezzo surfaces and a rational elliptic surface as the GUT surface. Therefore, some GUT 7-brane surfaces are good for some phenomenological requirements, but sometimes not for others, and this aspect should be kept in mind in geometry search in F-theory compactifications.
Two particle states in an asymmetric box
International Nuclear Information System (INIS)
Li Xin; Liu Chuan
2004-01-01
The exact two-particle energy eigenstates in an asymmetric rectangular box with periodic boundary conditions in all three directions are studied. Their relation with the elastic scattering phases of the two particles in the continuum are obtained. These results can be viewed as a generalization of the corresponding formulae in a cubic box obtained by Luescher before. In particular, the s-wave scattering length is related to the energy shift in the finite box. Possible applications of these formulae are also discussed
Carbon chemistry in dense molecular clouds: Theory and observational constraints
International Nuclear Information System (INIS)
Blake, G.A.
1990-01-01
For the most part, gas phase models of the chemistry of dense molecular clouds predict the abundances of simple species rather well. However, for larger molecules and even for small systems rich in carbon these models often fail spectacularly. Researchers present a brief review of the basic assumptions and results of large scale modeling of the carbon chemistry in dense molecular clouds. Particular attention is to the influence of the gas phase C/O ratio in molecular clouds, and the likely role grains play in maintaining this ratio as clouds evolve from initially diffuse objects to denser cores with associated stellar and planetary formation. Recent spectral line surveys at centimeter and millimeter wavelengths along with selected observations in the submillimeter have now produced an accurate inventory of the gas phase carbon budget in several different types of molecular clouds, though gaps in our knowledge clearly remain. The constraints these observations place on theoretical models of interstellar chemistry can be used to gain insights into why the models fail, and show also which neglected processes must be included in more complete analyses. Looking toward the future, larger molecules are especially difficult to study both experimentally and theoretically in such dense, cold regions, and some new methods are therefore outlined which may ultimately push the detectability of small carbon chains and rings to much heavier species
Supergravity and Yang-Mills theories as generalized topological fields with constraints
International Nuclear Information System (INIS)
Ling Yi; Tung Rohsuan; Guo Hanying
2004-01-01
We present a general approach to construct a class of generalized topological field theories with constraints by means of generalized differential calculus and its application to connection theory. It turns out that not only the ordinary BF formulations of general relativity and Yang-Mills theories, but also the N=1,2 chiral supergravities can be reformulated as these constrained generalized topological field theories once the free parameters in the Lagrangian are specially chosen. We also show that the Chern-Simons action on the boundary may naturally be induced from the generalized topological action in the bulk, rather than introduced by hand
Aizawa, Hirohito; Kuroki, Kazuhiko
2018-03-01
We present a first-principles band calculation for the quasi-one-dimensional (Q1D) organic superconductor (TMTSF) 2ClO4 . An effective tight-binding model with the TMTSF molecule to be regarded as the site is derived from a calculation based on maximally localized Wannier orbitals. We apply a two-particle self-consistent (TPSC) analysis by using a four-site Hubbard model, which is composed of the tight-binding model and an onsite (intramolecular) repulsive interaction, which serves as a variable parameter. We assume that the pairing mechanism is mediated by the spin fluctuation, and the sign of the superconducting gap changes between the inner and outer Fermi surfaces, which correspond to a d -wave gap function in a simplified Q1D model. With the parameters we adopt, the critical temperature for superconductivity estimated by the TPSC approach is approximately 1 K, which is consistent with experiment.
Generalized canonical formalism and the S-matrix of theories with constraints of the general type
International Nuclear Information System (INIS)
Fradkina, T.Ye.
1987-01-01
A canonical quantization method is given for systems with first and second class constraints of arbitrary rank. The effectiveness of the method is demonstrated using sample Yang-Mills and gravitational fields. A correct expression is derived for the S-matrix of theories that are momentum-quadratic within the scope of canonical gauges, including ghost fields. Generalized quantization is performed and the S-matrix is derived in configurational space for theories of relativistic membranes representing a generalization of theories of strings to the case of an extended spatial implementation. It is demonstrated that the theory of membranes in n+l-dimensional space is a system with rank-n constraints
International Nuclear Information System (INIS)
Blaquiere, Augustin
1981-01-01
A least action principle with unilateral constraints on the velocity is applied to an example in the area of the special theory of relativity. Equations obtained for a particle with non-zero rest-mass, and speed c the speed of light, are those which are usually associated with the photon, namely: the equation of eikonale and the wave equation of d'Alembert. Extension of the theory [fr
The relativistic two-body potentials of constraint theory from summation of Feynman diagrams
Jallouli, H.; Sazdjian, H.
1996-01-01
The relativistic two-body potentials of constraint theory for systems composed of two spin-0 or two spin-1/2 particles are calculated, in perturbation theory, by means of the Lippmann-Schwinger type equation that relates them to the scattering amplitude. The cases of scalar and vector interactions with massless photons are considered. The two-photon exchange contributions, calculated with covariant propagators,are globally free of spurious infra-red singularities and produce at leading order ...
Application of a methodology based on the Theory of Constraints in the sector of tourism services
Directory of Open Access Journals (Sweden)
Reyner Pérez Campdesuñer
2017-04-01
Full Text Available Purpose: The objective of the research was aimed at achieving the implementation of the theory of constraints on the operating conditions of a hotel, which differs by its characteristics of traditional processes that have applied this method, from the great heterogeneity of resources needed to meet the demand of customers. Design/methodology/approach: To achieve this purpose, a method of generating conversion equations that allowed to express all the resources of the organization under study depending on the number of customers to serve facilitating comparison between different resources and estimated demand through techniques developed traditional forecasting, these features were integrated into the classical methodology of theory of constraints. Findings: The application of tools designed for hospitality organizations allowed to demonstrate the applicability of the theory of constraints on entities under conditions different from the usual, develop a set of conversion equations of different resources facilitating comparison with demand and consequently achieve improve levels of efficiency and effectiveness of the organization. Originality/value: The originality of the research is summarized in the application of the theory of constraints in a very different from the usual conditions, covering 100% of the processes and resources in hospitality organizations.
Two particle states, lepton mixing and oscillations
Kachelriess, M; Schönert, S
2000-01-01
Discussions of lepton mixing and oscillations consider generally only flavor oscillations of neutrinos and neglect the accompanying charged leptons. In cases of experimental interest like pion or nuclear beta decay an oscillation pattern is expected indeed only for neutrinos if only one of the two produced particles is observed. We argue that flavor oscillations of neutrinos without detecting the accompanying lepton is a peculiarity of the two-particle states $|l\
Precision constraints on the top-quark effective field theory at future lepton colliders
Energy Technology Data Exchange (ETDEWEB)
Durieux, Gauthier
2017-08-15
We examine the constraints that future lepton colliders would impose on the effective field theory describing modifications of top-quark interactions beyond the standard model, through measurements of the e{sup +}e{sup -}→bW{sup +} anti bW{sup -} process. Statistically optimal observables are exploited to constrain simultaneously and efficiently all relevant operators. Their constraining power is sufficient for quadratic effective-field-theory contributions to have negligible impact on limits which are therefore basis independent. This is contrasted with the measurements of cross sections and forward-backward asymmetries. An overall measure of constraints strength, the global determinant parameter, is used to determine which run parameters impose the strongest restriction on the multidimensional effective-field-theory parameter space.
Precision constraints on the top-quark effective field theory at future lepton colliders
International Nuclear Information System (INIS)
Durieux, Gauthier
2017-08-01
We examine the constraints that future lepton colliders would impose on the effective field theory describing modifications of top-quark interactions beyond the standard model, through measurements of the e + e - →bW + anti bW - process. Statistically optimal observables are exploited to constrain simultaneously and efficiently all relevant operators. Their constraining power is sufficient for quadratic effective-field-theory contributions to have negligible impact on limits which are therefore basis independent. This is contrasted with the measurements of cross sections and forward-backward asymmetries. An overall measure of constraints strength, the global determinant parameter, is used to determine which run parameters impose the strongest restriction on the multidimensional effective-field-theory parameter space.
Evolutionary constraints and the neutral theory. [mutation-caused nucleotide substitutions in DNA
Jukes, T. H.; Kimura, M.
1984-01-01
The neutral theory of molecular evolution postulates that nucleotide substitutions inherently take place in DNA as a result of point mutations followed by random genetic drift. In the absence of selective constraints, the substitution rate reaches the maximum value set by the mutation rate. The rate in globin pseudogenes is about 5 x 10 to the -9th substitutions per site per year in mammals. Rates slower than this indicate the presence of constraints imposed by negative (natural) selection, which rejects and discards deleterious mutations.
Constraints for anomalous dimensions of local light-cone operators in [φ3]6 theory
International Nuclear Information System (INIS)
Mueller, D.
1991-01-01
Using the MS scheme, we derive in [φ 3 ] 6 theory the collinear conformal Ward identity for the Green's functions of local light-cone operators of leading twist. The Ward identity for special collinear conformal transformations and renormalization group invariance give constraints for the off-diagonal part of the anomalous dimension matrix for the general case of β≠0. We compute the anomaly of special conformal tranformation in lowest loop order and obtain from the constraints the off-diagonal part of the anomalous dimension in 2-loop order. (orig.)
Constraints on Interacting Scalars in 2T Field Theory and No Scale Models in 1T Field Theory
Bars, Itzhak
2010-01-01
In this paper I determine the general form of the physical and mathematical restrictions that arise on the interactions of gravity and scalar fields in the 2T field theory setting, in d+2 dimensions, as well as in the emerging shadows in d dimensions. These constraints on scalar fields follow from an underlying Sp(2,R) gauge symmetry in phase space. Determining these general constraints provides a basis for the construction of 2T supergravity, as well as physical applications in 1T-field theory, that are discussed briefly here, and more detail elsewhere. In particular, no scale models that lead to a vanishing cosmological constant at the classical level emerge naturally in this setting.
Two particle correlations in small systems
Palmeiro Pazos, Brais
2015-01-01
The present report summarizes the work on the Summer Student project within the ALICE Collaboration. The aim of the project is to study the two-particle correlations in peripheral Pb-Pb collisions with the ALICE detector. The first part of this project is the development of a Toy Monte Carlo (MC) generator to reproduce and understand the Physics behind and probe the analysis in a controlled data set. Then, once the Toy MC is fully understood, it is possible to move to real data where some unexpected effects might appear and should be comprehended in order to have the whole physical picture of the peripheral Pb-Pb collisions.
Gato-Rivera, B.
1993-01-01
We use the Kontsevich-Miwa transform to relate the different pictures describing matter coupled to topological gravity in two dimensions: topological theories, Virasoro constraints on integrable hierarchies, and a DDK-type formalism. With the help of the Kontsevich-Miwa transform, we solve the Virasoro constraints on the KP hierarchy in terms of minimal models dressed with a (free) Liouville-like scalar. The dressing prescription originates in a topological (twisted N=2) theory. The Virasoro constraints are thus related to essentially the N=2 null state decoupling equations. The N=2 generators are constructed out of matter, the `Liouville' scalar, and $c=-2$ ghosts. By a `dual' construction involving the reparametrization $c=-26$ ghosts, the DDK dressing prescription is reproduced from the N=2 symmetry. As a by-product we thus observe that there are two ways to dress arbitrary $d\\leq1$ or $d\\geq25$ matter theory, that allow its embedding into a topological theory. By th e Kontsevich-Miwa transform, which intr...
Two-particle self-consistent approach to unconventional superconductivity
Energy Technology Data Exchange (ETDEWEB)
Otsuki, Junya [Department of Physics, Tohoku University, Sendai (Japan); Theoretische Physik III, Zentrum fuer Elektronische Korrelationen und Magnetismus, Universitaet Augsburg (Germany)
2013-07-01
A non-perturbative approach to unconventional superconductivity is developed based on the idea of the two-particle self-consistent (TPSC) theory. An exact sum-rule which the momentum-dependent pairing susceptibility satisfies is derived. Effective pairing interactions between quasiparticles are determined so that an approximate susceptibility should fulfill this sum-rule, in which fluctuations belonging to different symmetries mix at finite momentum. The mixing leads to a suppression of the d{sub x{sup 2}-y{sup 2}} pairing close to the half-filling, resulting in a maximum of T{sub c} away from half-filling.
New Constraints on Dark Matter Effective Theories from Standard Model Loops
Crivellin, Andreas; Procura, Massimiliano
2014-01-01
We consider an effective field theory for a gauge singlet Dirac dark matter (DM) particle interacting with the Standard Model (SM) fields via effective operators suppressed by the scale $\\Lambda \\gtrsim 1$ TeV. We perform a systematic analysis of the leading loop contributions to spin-independent (SI) DM--nucleon scattering using renormalization group evolution between $\\Lambda$ and the low-energy scale probed by direct detection experiments. We find that electroweak interactions induce operator mixings such that operators that are naively velocity-suppressed and spin-dependent can actually contribute to SI scattering. This allows us to put novel constraints on Wilson coefficients that were so far poorly bounded by direct detection. Constraints from current searches are comparable to LHC bounds, and will significantly improve in the near future. Interestingly, the loop contribution we find is maximally isospin violating even if the underlying theory is isospin conserving.
International Nuclear Information System (INIS)
Mlinar, Vladan
2015-01-01
To facilitate the design and optimization of nanomaterials for a given application it is necessary to understand the relationship between structure and physical properties. For large nanomaterials, there is imprecise structural information so the full structure is only resolved at the level of partial representations. Here we show how to reconcile partial structural representations using constraints from structural characterization measurements and theory to maximally exploit the limited amount of data available from experiment. We determine a range of parameter space where predictive theory can be used to design and optimize the structure. Using an example of variation of chemical composition profile across the interface of two nanomaterials, we demonstrate how, given experimental and theoretical constraints, to find a region of structure-parameter space within which computationally explored partial representations of the full structure will have observable real-world counterparts. (paper)
Directory of Open Access Journals (Sweden)
Tim Palmer
2015-11-01
Full Text Available Invariant Set (IS theory is a locally causal ontic theory of physics based on the Cosmological Invariant Set postulate that the universe U can be considered a deterministic dynamical system evolving precisely on a (suitably constructed fractal dynamically invariant set in U's state space. IS theory violates the Bell inequalities by violating Measurement Independence. Despite this, IS theory is not fine tuned, is not conspiratorial, does not constrain experimenter free will and does not invoke retrocausality. The reasons behind these claims are discussed in this paper. These arise from properties not found in conventional ontic models: the invariant set has zero measure in its Euclidean embedding space, has Cantor Set structure homeomorphic to the p-adic integers (p>>0 and is non-computable. In particular, it is shown that the p-adic metric encapulates the physics of the Cosmological Invariant Set postulate, and provides the technical means to demonstrate no fine tuning or conspiracy. Quantum theory can be viewed as the singular limit of IS theory when when p is set equal to infinity. Since it is based around a top-down constraint from cosmology, IS theory suggests that gravitational and quantum physics will be unified by a gravitational theory of the quantum, rather than a quantum theory of gravity. Some implications arising from such a perspective are discussed.
Barausse, Enrico; Yunes, Nicolás; Chamberlain, Katie
2016-06-17
The aLIGO detection of the black-hole binary GW150914 opens a new era for probing extreme gravity. Many gravity theories predict the emission of dipole gravitational radiation by binaries. This is excluded to high accuracy in binary pulsars, but entire classes of theories predict this effect predominantly (or only) in binaries involving black holes. Joint observations of GW150914-like systems by aLIGO and eLISA will improve bounds on dipole emission from black-hole binaries by 6 orders of magnitude relative to current constraints, provided that eLISA is not dramatically descoped.
Sensitivity theory for general non-linear algebraic equations with constraints
International Nuclear Information System (INIS)
Oblow, E.M.
1977-04-01
Sensitivity theory has been developed to a high state of sophistication for applications involving solutions of the linear Boltzmann equation or approximations to it. The success of this theory in the field of radiation transport has prompted study of possible extensions of the method to more general systems of non-linear equations. Initial work in the U.S. and in Europe on the reactor fuel cycle shows that the sensitivity methodology works equally well for those non-linear problems studied to date. The general non-linear theory for algebraic equations is summarized and applied to a class of problems whose solutions are characterized by constrained extrema. Such equations form the basis of much work on energy systems modelling and the econometrics of power production and distribution. It is valuable to have a sensitivity theory available for these problem areas since it is difficult to repeatedly solve complex non-linear equations to find out the effects of alternative input assumptions or the uncertainties associated with predictions of system behavior. The sensitivity theory for a linear system of algebraic equations with constraints which can be solved using linear programming techniques is discussed. The role of the constraints in simplifying the problem so that sensitivity methodology can be applied is highlighted. The general non-linear method is summarized and applied to a non-linear programming problem in particular. Conclusions are drawn in about the applicability of the method for practical problems
Howes, Andrew; Lewis, Richard L; Vera, Alonso
2009-10-01
The authors assume that individuals adapt rationally to a utility function given constraints imposed by their cognitive architecture and the local task environment. This assumption underlies a new approach to modeling and understanding cognition-cognitively bounded rational analysis-that sharpens the predictive acuity of general, integrated theories of cognition and action. Such theories provide the necessary computational means to explain the flexible nature of human behavior but in doing so introduce extreme degrees of freedom in accounting for data. The new approach narrows the space of predicted behaviors through analysis of the payoff achieved by alternative strategies, rather than through fitting strategies and theoretical parameters to data. It extends and complements established approaches, including computational cognitive architectures, rational analysis, optimal motor control, bounded rationality, and signal detection theory. The authors illustrate the approach with a reanalysis of an existing account of psychological refractory period (PRP) dual-task performance and the development and analysis of a new theory of ordered dual-task responses. These analyses yield several novel results, including a new understanding of the role of strategic variation in existing accounts of PRP and the first predictive, quantitative account showing how the details of ordered dual-task phenomena emerge from the rational control of a cognitive system subject to the combined constraints of internal variance, motor interference, and a response selection bottleneck.
International Nuclear Information System (INIS)
Sugano, R.; Kimura, T.
1985-01-01
As a model of gauge theory, it is investigated a system of point particles described by a singular Lagrangian from the standpoint of our formulation of constrained dynamical systems which was developed in the series of previous papers. Canonical quantization is carried out by two methods in order to clarify the role of the secondary constraints and their conjugate gauge constraints. The first method is to find a full set of the stationary external constraints and use the Dirac bracket. The other is to fix the gauges and remove unphysical states by imposing subsidiary condition on the state vectors. It is shown that unphysical components associated with a series of primary and secondary constraints are removed by a single subsidiary condition for each gauge degree. There appear an unphysical state with negative norm and a physical state with zero norm. It implies that the appearance of states with indefinite metrics is not due to the metric structure of space-time but is ascribed to gauge properties
Constraints on effective Lagrangian of D-branes from non-commutative gauge theory
International Nuclear Information System (INIS)
Okawa, Yuji; Terashima, Seiji
2000-01-01
It was argued that there are two different descriptions of the effective Lagrangian of gauge fields on D-branes by non-commutative gauge theory and by ordinary gauge theory in the presence of a constant B field background. In the case of bosonic string theory, however, it was found in the previous works that the two descriptions are incompatible under the field redefinition which relates the non-commutative gauge field to the ordinary one found by Seiberg and Witten. In this paper we resolve this puzzle to observe the necessity of gauge-invariant but B-dependent correction terms involving metric in the field redefinition which have not been considered before. With the problem resolved, we establish a systematic method under the α' expansion to derive the constraints on the effective Lagrangian imposed by the compatibility of the two descriptions where the form of the field redefinition is not assumed
On the description of classical Einstein relativistic two-particle systems
International Nuclear Information System (INIS)
Aaberge, T.
1978-01-01
The author starts by considering the system of one free particle, and gives a sufficiently general description of this system to include the center of mass of systems of several particles. He then passes to the system of two particles. The coordinates separating the center of mass and the internal system are defined and the dynamics discussed. Finally the author outlines the construction of a more restrictive two-particle theory, and studies some consequences of the definition of a particle in an external field as a two-particle system in the limit where the mass of one of the particles becomes infinite. (Auth.)
A two-particle exchange interaction model
International Nuclear Information System (INIS)
Lyubina, Julia; Mueller, Karl-Hartmut; Wolf, Manfred; Hannemann, Ullrich
2010-01-01
The magnetisation reversal of two interacting particles was investigated within a simple model describing exchange coupling of magnetically uniaxial single-domain particles. Depending on the interaction strength W, the reversal may be cooperative or non-cooperative. A non-collinear reversal mode is obtained even for two particles with parallel easy axes. The model yields different phenomena as observed in spring magnets such as recoil hysteresis in the second quadrant of the field-magnetisation-plane, caused by exchange bias, as well as the mentioned reversal-rotation mode. The Wohlfarth's remanence analysis performed on aggregations of such pairs of interacting particles shows that the deviation δM(H m ) usually being considered as a hallmark of magnetic interaction vanishes for all maximum applied fields H m not only at W=0, but also for sufficiently large values of W. Furthermore, this so-called δM-plot depends on whether the sample is ac-field or thermally demagnetised.
A two-particle exchange interaction model
Energy Technology Data Exchange (ETDEWEB)
Lyubina, Julia, E-mail: j.lyubina@ifw-dresden.d [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, D-01171 Dresden (Germany); Mueller, Karl-Hartmut; Wolf, Manfred; Hannemann, Ullrich [IFW Dresden, Institute for Metallic Materials, P.O. Box 270016, D-01171 Dresden (Germany)
2010-10-15
The magnetisation reversal of two interacting particles was investigated within a simple model describing exchange coupling of magnetically uniaxial single-domain particles. Depending on the interaction strength W, the reversal may be cooperative or non-cooperative. A non-collinear reversal mode is obtained even for two particles with parallel easy axes. The model yields different phenomena as observed in spring magnets such as recoil hysteresis in the second quadrant of the field-magnetisation-plane, caused by exchange bias, as well as the mentioned reversal-rotation mode. The Wohlfarth's remanence analysis performed on aggregations of such pairs of interacting particles shows that the deviation {delta}M(H{sub m}) usually being considered as a hallmark of magnetic interaction vanishes for all maximum applied fields H{sub m} not only at W=0, but also for sufficiently large values of W. Furthermore, this so-called {delta}M-plot depends on whether the sample is ac-field or thermally demagnetised.
The capability and constraint model of recoverability: An integrated theory of continuity planning.
Lindstedt, David
2017-01-01
While there are best practices, good practices, regulations and standards for continuity planning, there is no single model to collate and sort their various recommended activities. To address this deficit, this paper presents the capability and constraint model of recoverability - a new model to provide an integrated foundation for business continuity planning. The model is non-linear in both construct and practice, thus allowing practitioners to remain adaptive in its application. The paper presents each facet of the model, outlines the model's use in both theory and practice, suggests a subsequent approach that arises from the model, and discusses some possible ramifications to the industry.
Current and Future Constraints on Higgs Couplings in the Nonlinear Effective Theory
Energy Technology Data Exchange (ETDEWEB)
de Blas, Jorge [INFN, Padua; Eberhardt, Otto [Valencia U., IFIC; Krause, Claudius [Fermilab
2018-03-02
We perform a Bayesian statistical analysis of the constraints on the nonlinear Effective Theory given by the Higgs electroweak chiral Lagrangian. We obtain bounds on the effective coefficients entering in Higgs observables at the leading order, using all available Higgs-boson signal strengths from the LHC runs 1 and 2. Using a prior dependence study of the solutions, we discuss the results within the context of natural-sized Wilson coefficients. We further study the expected sensitivities to the different Wilson coefficients at various possible future colliders. Finally, we interpret our results in terms of some minimal composite Higgs models.
Statzner, B; Hildrew, A G; Resh, V H
2001-01-01
The role that entomology has played in the historical (1800s-1970s) development of ecological theories that match species traits with environmental constraints is reviewed along three lineages originating from the ideas of a minister (Malthus TR. 1798. An Essay on the Principle of Population. London: Johnson) and a chemist (Liebig J. 1840. Die Organische Chemie in ihrer Anwendung auf Agricultur und Physiologie. Braunschweig: Vieweg). Major developments in lineage 1 focus on habitat as a filter for species traits, succession, nonequilibrium and equilibrium conditions, and generalizations about the correlation of traits to environmental constraints. In lineage 2, we trace the evolution of the niche concept and focus on ecophysiological traits, biotic interactions, and environmental conditions. Finally, we describe the conceptual route from early demographic studies of human and animal populations to the r-K concept in lineage 3. In the 1970s, the entomologist Southwood merged these three lineages into the "habitat templet concept" (Southwood TRE. 1977. J. Anim. Ecol. 46:337-65), which has stimulated much subsequent research in entomology and general ecology. We conclude that insects have been a far more important resource for the development of ecological theory than previously acknowledged.
Two particle entanglement and its geometric duals
Energy Technology Data Exchange (ETDEWEB)
Wasay, Muhammad Abdul [University of Agriculture, Department of Physics, Faisalabad (Pakistan); Quaid-i-Azam University Campus, National Centre for Physics, Islamabad (Pakistan); Bashir, Asma [University of Agriculture, Department of Physics, Faisalabad (Pakistan)
2017-12-15
We show that for a system of two entangled particles, there is a dual description to the particle equations in terms of classical theory of conformally stretched spacetime. We also connect these entangled particle equations with Finsler geometry. We show that this duality translates strongly coupled quantum equations in the pilot-wave limit to weakly coupled geometric equations. (orig.)
Two particle entanglement and its geometric duals
International Nuclear Information System (INIS)
Wasay, Muhammad Abdul; Bashir, Asma
2017-01-01
We show that for a system of two entangled particles, there is a dual description to the particle equations in terms of classical theory of conformally stretched spacetime. We also connect these entangled particle equations with Finsler geometry. We show that this duality translates strongly coupled quantum equations in the pilot-wave limit to weakly coupled geometric equations. (orig.)
The connection of two-particle relativistic quantum mechanics with the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Sazdjian, H.
1986-02-01
We show the formal equivalence between the wave equations of two-particle relativistic quantum mechanics, based on the manifestly covariant hamiltonian formalism with constraints, and the Bethe-Salpeter equation. This is achieved by algebraically transforming the latter so as to separate it into two independent equations which match the equations of hamiltonian relativistic quantum mechanics. The first equation determines the relative time evolution of the system, while the second one yields a three-dimensional eigenvalue equation. A connection is thus established between the Bethe-Salpeter wave function and its kernel on the one hand and the quantum mechanical wave function and interaction potential on the other. For the sector of solutions of the Bethe-Salpeter equation having non-relativistic limits, this relationship can be evaluated in perturbation theory. We also device a generalized form of the instantaneous approximation which simplifies the various expressions involved in the above relations. It also permits the evaluation of the normalization condition of the quantum mechanical wave function as a three-dimensional integral
Applying the theory of constraints to the logistics service of medical records of a hospital
Directory of Open Access Journals (Sweden)
Víctor-G. Aguilar-Escobar
2016-09-01
Full Text Available Management of patient records in a hospital is of major importance, for its impact both on the quality of care and on the associated costs. Since this process is circular, the prevention of the building up of bottlenecks is especially important. Thus, the objective of this paper was to analyze whether the Theory of Constraints (TOC can be useful to the logistics of medical records in hospitals. The paper is based on a case study conducted about the 2007-2011 period in the Medical Records Logistics Service at the Hospital Universitario Virgen Macarena in Seville (Spain. From April 2008, a set of actions in the clinical record logistics system were implemented based on the application of TOC principles. The results obtained show a significant increase in the level of service and employee productivity, as well as a reduction of cost and the number of patients’ complaints.
Light-by-Light Scattering Constraint on Born-Infeld Theory.
Ellis, John; Mavromatos, Nick E; You, Tevong
2017-06-30
The recent measurement by ATLAS of light-by-light scattering in LHC Pb-Pb collisions is the first direct evidence for this basic process. We find that it excludes a range of the mass scale of a nonlinear Born-Infeld extension of QED that is ≲100 GeV, a much stronger constraint than those derived previously. In the case of a Born-Infeld extension of the standard model in which the U(1)_{Y} hypercharge gauge symmetry is realized nonlinearly, the limit on the corresponding mass reach is ∼90 GeV, which, in turn, imposes a lower limit of ≳11 TeV on the magnetic monopole mass in such a U(1)_{Y} Born-Infeld theory.
The two-fermion relativistic wave equations of Constraint Theory in the Pauli-Schroedinger form
International Nuclear Information System (INIS)
Mourad, J.; Sazdjian, H.
1994-01-01
The two-fermion relativistic wave equations of Constraint Theory are reduced, after expressing the components of the 4x4 matrix wave function in terms of one of the 2x2 components, to a single equation of the Pauli-Schroedinger type, valid for all sectors of quantum numbers. The potentials that are present belong to the general classes of scalar, pseudoscalar and vector interactions and are calculable in perturbation theory from Feynman diagrams. In the limit when one of the masses becomes infinite, the equation reduces to the two-component form of the one-particle Dirac equation with external static potentials. The Hamiltonian, to order 1/c 2 , reproduces most of the known theoretical results obtained by other methods. The gauge invariance of the wave equation is checked, to that order, in the case of QED. The role of the c.m. energy dependence of the relativistic interquark confining potential is emphasized and the structure of the Hamiltonian, to order 1/c 2 , corresponding to confining scalar potentials, is displayed. (authors). 32 refs., 2 figs
Rezapour, Ehsan; Pettersen, Kristin Y; Liljebäck, Pål; Gravdahl, Jan T; Kelasidi, Eleni
This paper considers path following control of planar snake robots using virtual holonomic constraints. In order to present a model-based path following control design for the snake robot, we first derive the Euler-Lagrange equations of motion of the system. Subsequently, we define geometric relations among the generalized coordinates of the system, using the method of virtual holonomic constraints. These appropriately defined constraints shape the geometry of a constraint manifold for the system, which is a submanifold of the configuration space of the robot. Furthermore, we show that the constraint manifold can be made invariant by a suitable choice of feedback. In particular, we analytically design a smooth feedback control law to exponentially stabilize the constraint manifold. We show that enforcing the appropriately defined virtual holonomic constraints for the configuration variables implies that the robot converges to and follows a desired geometric path. Numerical simulations and experimental results are presented to validate the theoretical approach.
Directory of Open Access Journals (Sweden)
Diego Augusto Pacheco
2012-08-01
Full Text Available This paper presents a model of management capacity in productive systems integrating the concepts of the Theory of Constraints and Total Productive Maintenance (TPM. The main objective of this study is to discuss and propose a model of management capacity, able to answer the following key questions: i capacity indicators which should be considered and how to measure them to measure the productive capacity of manufacturing systems? ii what is the real productive capacity of the system analyzed under a determined relationship between capacity and demand? The discussion of the proposed model is relevant because the definition of productive capacity system enables better management of resources and capabilities, improve production scheduling on the factory floor and meeting the demands imposed by the market. This paper presents the proposition of using the Operating Income Index Global (IROG with a different approach from traditional literature dealing with the theme, presented by Nakajima (1988. The results of this paper enable to develop a model to determine the capacity of the production system and the impact on the productive capacity of the entire system, not to consider the quality conformances that occur after the bottleneck resource of the production flow.
Single-polymer dynamics under constraints: scaling theory and computer experiment
International Nuclear Information System (INIS)
Milchev, Andrey
2011-01-01
The relaxation, diffusion and translocation dynamics of single linear polymer chains in confinement is briefly reviewed with emphasis on the comparison between theoretical scaling predictions and observations from experiment or, most frequently, from computer simulations. Besides cylindrical, spherical and slit-like constraints, related problems such as the chain dynamics in a random medium and the translocation dynamics through a nanopore are also considered. Another particular kind of confinement is imposed by polymer adsorption on attractive surfaces or selective interfaces-a short overview of single-chain dynamics is also contained in this survey. While both theory and numerical experiments consider predominantly coarse-grained models of self-avoiding linear chain molecules with typically Rouse dynamics, we also note some recent studies which examine the impact of hydrodynamic interactions on polymer dynamics in confinement. In all of the aforementioned cases we focus mainly on the consequences of imposed geometric restrictions on single-chain dynamics and try to check our degree of understanding by assessing the agreement between theoretical predictions and observations. (topical review)
International Nuclear Information System (INIS)
Ma Zhongshui; Su Zhaobin.
1992-09-01
By applying the Dirac quantization method, we build the constraint that all electrons are in the lowest Landau level into the Chern-Simons field theory approach for the fractional quantum Hall system and show that the constraint can be transmuted from hierarchy to hierarchy. For a finite system, we derive that the action for each hierarchy can be split into two parts: a surface part provides the action for the edge excitations while the remaining part is precisely the bulk action for the next hierarchy. An the action for the edge could be decoupled from the bulk only at the hierarchy filling. (author). 16 refs
Kinetic mean field theories: Results of energy constraint in maximizing entropy
Stell, G.; Karkheck, J.; Beijeren, H. van
1983-01-01
Structure of liquids and solids; crystallography Classical, semiclassical, and quantum theories of liquid structure Statistical theories of liquid structure - Kinetic and transport theory of fluids; physical properties of gases Kinetic and transport theory
Numerical Solution of Mixed Problems of the Theory of Elasticity with One-Sided Constraints
Directory of Open Access Journals (Sweden)
I. V. Stankevich
2017-01-01
Full Text Available The paper deals with the application features of the finite element technologies to solve the problems of elasticity with one-sided constraints. On the one hand, the area of this study is determined by the fact that many critical parts and assemblies of mechanical and power engineering constructions have a significant contact within some given surface. To assess the strength and the life of these parts and assemblies, reliable stress-strain state data are demandable. Data on the stress-strain state can be obtained using the contemporary mathematical modeling means, e.g., finite element technology.To solve the problems of the theory of elasticity with one-sided constraints, a method of finite elements in a traditional classical form can be used, but it is necessary to consider some of its shortcomings. The most significant one is an approximation of the tensile stress and strain, as well as a considerably lower order of convergence of the approximation for stresses and strains as compared to displacements. Improving the accuracy through increasing a density of the finite element models and/or the transition to more complex approximations is not always optimal, because increasing a dimension of the discrete problem leads to a significant computational cost and demand for expensive computing resources.One of the alternatives in numerical analysis of contact problems of the elasticity theory is to use the mixed variational formulations of the finite element method in which stresses and/or strains appear in the resolving equations along with displacements as equal unknown. A major positive factor when using the mixed formulations of the finite element method is reduction of the approximation error of stress and strain, which leads to a more accurate assessment of the stress-strain state in comparison with the classical approach of the finite element method in the form of the method of displacements.Besides, mixed schemes of the finite element method
Cochran, John K
2017-08-01
Recently, Robert Agnew introduced a new general theory of crime and delinquency in which he attempted to corral the vast array of theoretical "causes" of criminal conduct into a more parsimonious statement organized into one of five life domains: self, family, peers, school, and work as well as constraints against crime and motivation for it. These domains are depicted as the source of constraints and motivations and whose effects are, in part, mediated by these constraints and motivations. Based on self-report data on academic dishonesty from a sample of college students, the present study attempts to test this general theory. While several of the life domain variables had significant effects of cheating in the baseline model, all of these effects were fully mediated by constraints and motivations. In the final model, academic dishonesty was observed to be most significantly affected by the perceived severity of formal sanction threats, the number of credit hours enrolled, the frequency of skipping classes, and pressure from friends.
γ parameter and Solar System constraint in chameleon-Brans-Dicke theory
International Nuclear Information System (INIS)
Saaidi, Kh.; Mohammadi, A.; Sheikhahmadi, H.
2011-01-01
The post Newtonian parameter is considered in the chameleon-Brans-Dicke model. In the first step, the general form of this parameter and also effective gravitational constant is obtained. An arbitrary function for f(Φ), which indicates the coupling between matter and scalar field, is introduced to investigate validity of solar system constraint. It is shown that the chameleon-Brans-Dicke model can satisfy the solar system constraint and gives us an ω parameter of order 10 4 , which is in comparable to the constraint which has been indicated in [19].
Orr, Mark G; Thrush, Roxanne; Plaut, David C
2013-01-01
The reasoned action approach, although ubiquitous in health behavior theory (e.g., Theory of Reasoned Action/Planned Behavior), does not adequately address two key dynamical aspects of health behavior: learning and the effect of immediate social context (i.e., social influence). To remedy this, we put forth a computational implementation of the Theory of Reasoned Action (TRA) using artificial-neural networks. Our model re-conceptualized behavioral intention as arising from a dynamic constraint satisfaction mechanism among a set of beliefs. In two simulations, we show that constraint satisfaction can simultaneously incorporate the effects of past experience (via learning) with the effects of immediate social context to yield behavioral intention, i.e., intention is dynamically constructed from both an individual's pre-existing belief structure and the beliefs of others in the individual's social context. In a third simulation, we illustrate the predictive ability of the model with respect to empirically derived behavioral intention. As the first known computational model of health behavior, it represents a significant advance in theory towards understanding the dynamics of health behavior. Furthermore, our approach may inform the development of population-level agent-based models of health behavior that aim to incorporate psychological theory into models of population dynamics.
Directory of Open Access Journals (Sweden)
Mark G Orr
Full Text Available The reasoned action approach, although ubiquitous in health behavior theory (e.g., Theory of Reasoned Action/Planned Behavior, does not adequately address two key dynamical aspects of health behavior: learning and the effect of immediate social context (i.e., social influence. To remedy this, we put forth a computational implementation of the Theory of Reasoned Action (TRA using artificial-neural networks. Our model re-conceptualized behavioral intention as arising from a dynamic constraint satisfaction mechanism among a set of beliefs. In two simulations, we show that constraint satisfaction can simultaneously incorporate the effects of past experience (via learning with the effects of immediate social context to yield behavioral intention, i.e., intention is dynamically constructed from both an individual's pre-existing belief structure and the beliefs of others in the individual's social context. In a third simulation, we illustrate the predictive ability of the model with respect to empirically derived behavioral intention. As the first known computational model of health behavior, it represents a significant advance in theory towards understanding the dynamics of health behavior. Furthermore, our approach may inform the development of population-level agent-based models of health behavior that aim to incorporate psychological theory into models of population dynamics.
Particle-two particle interaction in configuration space
International Nuclear Information System (INIS)
Kuzmichev, V.E.
1982-07-01
The problem if three indentical particles with zero-range two-particle interaction is considered. An explicit expression for the effective potential between one particle and the remaining two-particle system is obtained in the coordinate representation. It is shown that for arbitrary energies, at small and, for zero energy, at large distances rho between the one particle and centre of mass of the other two particles the diagonal matrix element of the effective potential is attractive and proportional to 1/rho 2 . This property of the effective potenial explains both the Thomas singularity and the Efimov effect. In the case of zero total energy of the system the general form of the solution of the three-particle integral equation is found in configuration space. (orig.)
Mancarella, P.; Terreni, G.; Sadri, F.; Toni, F.; Endriss, U.
2009-01-01
We present the CIFF proof procedure for abductive logic programming with constraints, and we prove its correctness. CIFF is an extension of the IFF proof procedure for abductive logic programming, relaxing the original restrictions over variable quantification (allowedness conditions) and
Two-particle interference in standard and Bohmian quantum mechanics
International Nuclear Information System (INIS)
Guay, E; Marchildon, L
2003-01-01
The compatibility of standard and Bohmian quantum mechanics has recently been challenged in the context of two-particle interference, both from a theoretical and an experimental point of view. We analyse different setups proposed and derive corresponding exact forms for Bohmian equations of motion. The equations are then solved numerically, and shown to reproduce standard quantum-mechanical results
Teleportation of Two-Particle Entangled State via Cluster State
Institute of Scientific and Technical Information of China (English)
LI Da-Chuang; CAO Zhuo-Liang
2007-01-01
In this paper,two schemes for teleporting an unknown two-particle entangled state from the sender (Alice)to the receiver (Bob) via a four-particle entangled cluster state are proposed.In these two schemes,the unknown twoparticle entangled state can be teleported perfectly.The successful probabilities and fidelities of the schemes can reach unity.
Canonical Quantum Teleportation of Two-Particle Arbitrary State
Institute of Scientific and Technical Information of China (English)
HAO Xiang; ZHU Shi-Qun
2005-01-01
The canonical quantum teleportation of two-particle arbitrary state is realized by means of phase operator and number operator. The maximally entangled eigenstates between the difference of phase operators and the sum of number operators are considered as the quantum channels. In contrast to the standard quantum teleportation, the different unitary local operation of canonical teleportation can be simplified by a general expression.
Post-Newtonian (and higher order) observational constraints on gravitation field theories
International Nuclear Information System (INIS)
Nordtvedt, K.
1982-01-01
The empirically confirmed premise that gravity is a metric theory is accepted. The general class of all Lagrangian-based metric field theories of gravity is considered. A collection of observational tests of gravitational phenomena which points to a specific metric theory of gravity and rules out alternatives is created
Directory of Open Access Journals (Sweden)
Mohammad Sadegh Arabi Ashtiani
2013-08-01
Full Text Available This study presents an empirical investigation to measure the relationship between traditional accounting performance measurement as well as theory of constraint-based figures with operating cash flow. Traditional accounting measurement includes net profit and return of investment and theory of constraint method includes net profit and return of investment based on theory of constraints. The study selects 69 firms list on Tehran Stock Exchange over the period 2000-2010. Using panel data and fixed effect, the study performs regression analysis and the results confirm that there was a positive relationship between net profit measured by theory of constraints and cash flow and it can be effectively used for performance measurement.
Howes, Andrew; Lewis, Richard L.; Vera, Alonso
2009-01-01
The authors assume that individuals adapt rationally to a utility function given constraints imposed by their cognitive architecture and the local task environment. This assumption underlies a new approach to modeling and understanding cognition--cognitively bounded rational analysis--that sharpens the predictive acuity of general, integrated…
Constraint-induced movement therapy: some thoughts about theories and evidence
van der Lee, Johanna H.
2003-01-01
Constraint-Induced Movement Therapy (CIMT) is a type of treatment for hemiparetic stroke patients in which the patient is strongly encouraged to use the affected arm. One way of doing this is to immobilise the unaffected arm. This treatment is meant to help patients overcome 'learned non-use'. The
Directory of Open Access Journals (Sweden)
Kapustina Larisa M.
2017-05-01
Full Text Available The paper presents a concrete example of the selected Theory of Constraints (TOC technique implementation in order to identify the main causes of undesirable consequences in the context of supply logistics issues. Determining the undesirable consequences of supply logistics is primarily related to the adverse impact on costs, profitability and quality of outsourcing enterprise which provide services in supply chain field. Particularly, this implementation includes individual steps of the process related to the creation of the specific TOC technique. The outcome is to identify the main causes which have the most significant impact on the negative consequences.
Probabilistic Teleportation of an Arbitrary Two-particle State
Institute of Scientific and Technical Information of China (English)
顾永建; 郑亦庄; 郭光灿
2001-01-01
A scheme for the teleportation of an arbitrary two-particle state via two non-maximally entangled particle pairsis proposed. We show that teleportation can be successfully realized with a certain probability if the receiveradopts an appropriate unitary-reduction strategy. A specific strategy is provided in detail The probability of successful teleportation is determined by the smaller coefficients of the two entangled pairs.
Setiawan, R.
2018-03-01
In this paper, Economic Order Quantity (EOQ) of probabilistic two-level supply – chain system for items with imperfect quality has been analyzed under service level constraint. A firm applies an active service level constraint to avoid unpredictable shortage terms in the objective function. Mathematical analysis of optimal result is delivered using two equilibrium scheme concept in game theory approach. Stackelberg’s equilibrium for cooperative strategy and Stackelberg’s Equilibrium for noncooperative strategy. This is a new approach to game theory result in inventory system whether service level constraint is applied by a firm in his moves.
Constraints on the minimal N=1 supergravity theory from electroweak symmetry breaking
International Nuclear Information System (INIS)
Giudice, G.F.; Ridolfi, G.
1988-01-01
We reanalyze the constraints on the minimal N=1 supergravity extension of the standard model arising from the requirement of a correct spontaneous breakdown of the electroweak symmetry. Driven by recent experimental results, we devote special attention to the case of a top quark much heavier than the conventional choice of 40 GeV, used in previous analyses. Our results are stated in a space of phenomenologically meaningful parameters, providing a direct comparison between the constraints from SU(2) x U(1) breaking and the predictions for supersymmetric particle production. Moreover, an upper bound for the ratio of the two Higgs vacuum expectation values is given, for any value of the top quark mass. (orig.)
Theory of many-body radiative heat transfer without the constraint of reciprocity
Zhu, Linxiao; Guo, Yu; Fan, Shanhui
2018-03-01
Using a self-consistent scattered field approach based on fluctuational electrodynamics, we develop compact formulas for radiative heat transfer in many-body systems without the constraint of reciprocity. The formulas allow for efficient numerical calculation for a system consisting of a large number of bodies, and are in principle exact. As a demonstration, for a nonreciprocal many-body system, we investigate persistent heat current at thermal equilibrium and directional heat transfer when the system is away from thermal equilibrium.
Significance of constraints associated with Green's functions in Hamiltonian perturbation theory
International Nuclear Information System (INIS)
Maharana, L.; Muller-Kirsten, H.J.W.; Wiedemann, A.
1987-01-01
In many formulations of Hamiltonian perturbation theory a Green's function becomes undefined when some parameter is allowed to vanish. Here various examples are discussed to illustrate this phenomenon, and it is shown that they are all realizations of a general theorem. The cases considered are examples in classical mechanics, quantum mechanics, electrodynamics and field theory. The prime object is to illustrate the unity of the examples and thus to make the application of the procedure to field theory models of current interest more transparent. One example that it is referred to is the skyrmion model
Solar System constraints on a cosmologically viable f(R) theory
Energy Technology Data Exchange (ETDEWEB)
Bisabr, Yousef, E-mail: y-bisabr@srttu.ed [Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran 16788 (Iran, Islamic Republic of)
2010-01-18
Recently, a model f(R) theory is proposed (Miranda et al. (2009)) which is cosmologically viable and distinguishable from LAMBDACDM. We use chameleon mechanism to investigate viability of the model in terms of Solar System experiments.
Solar System constraints on a cosmologically viable f(R) theory
International Nuclear Information System (INIS)
Bisabr, Yousef
2010-01-01
Recently, a model f(R) theory is proposed (Miranda et al. (2009)) which is cosmologically viable and distinguishable from ΛCDM. We use chameleon mechanism to investigate viability of the model in terms of Solar System experiments.
Energy Technology Data Exchange (ETDEWEB)
Salvatelli, Valentina; Piazza, Federico; Marinoni, Christian, E-mail: Valentina.Salvatelli@cpt.univ-mrs.fr, E-mail: Federico.Piazza@cpt.univ-mrs.fr, E-mail: Christian.Marinoni@cpt.univ-mrs.fr [CPT—Centre du Physique Théorique—UMR 7332, Aix Marseille Univ., Université de Toulon, CNRS #8232, 163 avenue de Luminy, 13288 Marseille (France)
2016-09-01
We use the effective field theory of dark energy (EFT of DE) formalism to constrain dark energy models belonging to the Horndeski class with the recent Planck 2015 CMB data. The space of theories is spanned by a certain number of parameters determining the linear cosmological perturbations, while the expansion history is set to that of a standard ΛCDM model. We always demand that the theories be free of fatal instabilities. Additionally, we consider two optional conditions, namely that scalar and tensor perturbations propagate with subliminal speed. Such criteria severely restrict the allowed parameter space and are thus very effective in shaping the posteriors. As a result, we confirm that no theory performs better than ΛCDM when CMB data alone are analysed. Indeed, the healthy dark energy models considered here are not able to reproduce those phenomenological behaviours of the effective Newton constant and gravitational slip parameters that, according to previous studies, best fit the data.
Two-Particle Four-Mode Interferometer for Atoms
Dussarrat, Pierre; Perrier, Maxime; Imanaliev, Almazbek; Lopes, Raphael; Aspect, Alain; Cheneau, Marc; Boiron, Denis; Westbrook, Christoph I.
2017-10-01
We present a free-space interferometer to observe two-particle interference of a pair of atoms with entangled momenta. The source of atom pairs is a Bose-Einstein condensate subject to a dynamical instability, and the interferometer is realized using Bragg diffraction on optical lattices, in the spirit of our recent Hong-Ou-Mandel experiment. We report on an observation ruling out the possibility of a purely mixed state at the input of the interferometer. We explain how our current setup can be extended to enable a test of a Bell inequality on momentum observables.
Energy Technology Data Exchange (ETDEWEB)
Cruz-Dombriz, Álvaro de la; Dunsby, Peter K.S.; Luongo, Orlando; Reverberi, Lorenzo, E-mail: alvaro.delacruzdombriz@uct.ac.za, E-mail: peter.dunsby@uct.ac.za, E-mail: luongo@na.infn.it, E-mail: lorenzo.reverberi@uct.ac.za [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa)
2016-12-01
The onset of dark energy domination depends on the particular gravitational theory driving the cosmic evolution. Model independent techniques are crucial to test the both the present ΛCDM cosmological paradigm and alternative theories, making the least possible number of assumptions about the Universe. In this paper we investigate whether cosmography is able to distinguish between different gravitational theories, by determining bounds on model parameters for three different extensions of General Relativity, namely quintessence, F (Τ) and f ( R ) gravitational theories. We expand each class of theories in powers of redshift z around the present time, making no additional assumptions. This procedure is an extension of previous work and can be seen as the most general approach for testing extended theories of gravity through the use of cosmography. In the case of F (Τ) and f ( R ) theories, we show that some assumptions on model parameters often made in previous works are superfluous or even unjustified. We use data from the Union 2.1 supernovae catalogue, baryonic acoustic oscillation data and H ( z ) differential age compilations, which probe cosmology on different scales of the cosmological evolution. We perform a Monte Carlo analysis using a Metropolis-Hastings algorithm with a Gelman-Rubin convergence criterion, reporting 1-σ and 2-σ confidence levels. To do so, we perform two distinct fits, assuming only data within z < 1 first and then without limitations in redshift. We obtain the corresponding numerical intervals in which coefficients span, and find that the data is compatible the ΛCDM limit of all three theories at the 1-σ level, while still compatible with quite a large portion of parameter space. We compare our results to the truncated ΛCDM paradigm, demonstrating that our bounds divert from the expectations of previous works, showing that the permitted regions of coefficients are significantly modified and in general widened with respect to
Are particle rest masses variable: Theory and constraints from solar system experiments
International Nuclear Information System (INIS)
Bekenstein, J.D.
1977-01-01
Particle rest mass variation in spacetime is considered. According to Dicke, if this is the case various null experiments indicate that all masses vary in the same way. Their variation relative to the Planck-Wheeler mass defines a universal scalar rest-mass field. We construct the relativistic dynamics for this field based on very general assumptions. In addition, we assume Einstein's equations to be valid in Planck-Wheeler units. A special case of the theory coincides with Dicke's reformulation of Brans-Dicke theory as general relativity with variable rest masses. In the general case the rest-mass field is some power r of a scalar field which obeys an ordinary scalar equation with coupling to the curvature of strength q. The r and q are the only parameters of the theory. Comparison with experiment is facilitated by recasting the theory into units in which rest masses are constant, the Planck-Wheeler mass varies, and the metric satisfies the equations of a small subset of the scalar-tensor theories of gravitation. The results of solar system experiments, usually used to test general relativity, are here used to delimit the acceptable values of r and q. We conclude that if cosmological considerations are not invoked, then the solar system experiments do not rule out the possibility of rest-mass variability. That is, there are theories which agree with all null and solar system experiments, and yet contradict the strong equivalence principle by allowing rest masses to vary relative to the Planck-Wheeler mass. We show that the field theory of the rest-mass field can be quantized and interpreted in terms of massless scalar quanta which interact very weakly with matter. This explains why they have not turned up in high-energy experiments. In future reports we shall investigate the implications of various cosmological and astrophysical data for the theory of variable rest masses. The ultimate goal is a firm decision on whether rest masses vary or not
Threshold Concept Theory as an Enabling Constraint: A Facilitated Practitioner Action Research Study
Harlow, Ann; Cowie, Bronwen; McKie, David; Peter, Mira
2017-01-01
International interest is growing in how threshold concept theory can transform tertiary teaching and learning. A facilitated practitioner action research project investigating the potential of threshold concepts across several disciplines offers a practical contribution and helps to consolidate this international field of research. In this…
Cairns, Iver H.; Robinson, P. A.
1998-01-01
Existing, competing theories for coronal and interplanetary type III solar radio bursts appeal to one or more of modulational instability, electrostatic (ES) decay processes, or stochastic growth physics to preserve the electron beam, limit the levels of Langmuir-like waves driven by the beam, and produce wave spectra capable of coupling nonlinearly to generate the observed radio emission. Theoretical constraints exist on the wavenumbers and relative sizes of the wave bandwidth and nonlinear growth rate for which Langmuir waves are subject to modulational instability and the parametric and random phase versions of ES decay. A constraint also exists on whether stochastic growth theory (SGT) is appropriate. These constraints are evaluated here using the beam, plasma, and wave properties (1) observed in specific interplanetary type III sources, (2) predicted nominally for the corona, and (3) predicted at heliocentric distances greater than a few solar radii by power-law models based on interplanetary observations. It is found that the Langmuir waves driven directly by the beam have wavenumbers that are almost always too large for modulational instability but are appropriate to ES decay. Even for waves scattered to lower wavenumbers (by ES decay, for instance), the wave bandwidths are predicted to be too large and the nonlinear growth rates too small for modulational instability to occur for the specific interplanetary events studied or the great majority of Langmuir wave packets in type III sources at arbitrary heliocentric distances. Possible exceptions are for very rare, unusually intense, narrowband wave packets, predominantly close to the Sun, and for the front portion of very fast beams traveling through unusually dilute, cold solar wind plasmas. Similar arguments demonstrate that the ES decay should proceed almost always as a random phase process rather than a parametric process, with similar exceptions. These results imply that it is extremely rare for
International Nuclear Information System (INIS)
Yang Huatong
2007-01-01
Some exact identities connecting one- and two-particle Green's functions in the presence of spin-orbit coupling have been derived. These identities are similar to the Ward identity in usual quantum transport theory of electrons. A satisfying approximate calculation of the spin transport in spin-orbit coupling system should also preserve these identities, just as the Ward identities should be remained in the usual electronic transport theory
International Nuclear Information System (INIS)
Negri, L.J.
1982-01-01
A tecnique permiting the construction of a lagrangian function for nao-holononic systems is established. The classical formalism of the relativistic strings is discussed in the point of view of the Dirac theory for singular systems and in the context of a problem of two-dimensional surface immersion in space-time. It is shown how to solve the problem corresponding to the immersion in the case of free-finite and open strings by the specification of a non-conventional gauge. The relation between the string theory and Maxwell fields of place 2 is analyzed and the properties of string 'current density' to obtain new information about the model is explored. (L.C.) [pt
Directory of Open Access Journals (Sweden)
Luis Juiña
2017-06-01
Full Text Available In the following project, the theory of constraints was applied in order to implement a manufacture CAD-CAM system into the metal mechanic industry processes of polymers injection and blown of polymers. The research showed that the manufacture of the mold with the engraving took 223,17 hours. In the workflow for the manufacture of the mold, a restriction was found in the outsource service of CNC. It took 120 hours of the whole process and represent the 51,47 % the total time of tooling manufacturing. There is also a constraint found in the design time. It was 60 hours that corresponds to 26,88 % of the overall time. In order to reduce the time, a modern system of design in 3D and CAM was established to improve the model process of design and manufacture. A simulation by computational resource was applied to the plastic. The design was changed from 2D to 3D. The implementation was focused in the design. A software was installed to improve the speed of modeling methods with reliable information. In the manufacture of molds, a new CNC machine was acquired with three simultaneous axes to eliminate the outsource service. By acquiring the design system, the working time was diminished in 79% and regarding to the CNC process, the working time was improved in 88%.
Schweickert, Richard; Xi, Zhuangzhuang
2010-05-01
Dream reports from 21 dreamers in which a metamorphosis of a person-like entity or animal occurred were coded for characters and animals and for inner states attributed to them (Theory of Mind). In myths and fairy tales, Kelly and Keil (1985) found that conscious beings (people, gods) tend to be transformed into entities nearby in the conceptual structure of Keil (1979). This also occurred in dream reports, but perceptual nearness seemed more important than conceptual nearness. In dream reports, most inanimate objects involved in metamorphoses with person-like entities were objects such as statues that ordinarily resemble people physically, and moreover represent people. A metamorphosis of a person-like entity or animal did not lead to an increase in the amount of Theory of Mind attribution. We propose that a character-line starts when a character enters a dream; properties and Theory of Mind attributions tend to be preserved along the line, regardless of whether, metamorphoses occur on it. Copyright © 2009 Cognitive Science Society, Inc.
Directory of Open Access Journals (Sweden)
Salvador Lucas
2015-12-01
Full Text Available Recent developments in termination analysis for declarative programs emphasize the use of appropriate models for the logical theory representing the program at stake as a generic approach to prove termination of declarative programs. In this setting, Order-Sorted First-Order Logic provides a powerful framework to represent declarative programs. It also provides a target logic to obtain models for other logics via transformations. We investigate the automatic generation of numerical models for order-sorted first-order logics and its use in program analysis, in particular in termination analysis of declarative programs. We use convex domains to give domains to the different sorts of an order-sorted signature; we interpret the ranked symbols of sorted signatures by means of appropriately adapted convex matrix interpretations. Such numerical interpretations permit the use of existing algorithms and tools from linear algebra and arithmetic constraint solving to synthesize the models.
Self-similar two-particle separation model
DEFF Research Database (Denmark)
Lüthi, Beat; Berg, Jacob; Ott, Søren
2007-01-01
.g.; in the inertial range as epsilon−1/3r2/3. Particle separation is modeled as a Gaussian process without invoking information of Eulerian acceleration statistics or of precise shapes of Eulerian velocity distribution functions. The time scale is a function of S2(r) and thus of the Lagrangian evolving separation......We present a new stochastic model for relative two-particle separation in turbulence. Inspired by material line stretching, we suggest that a similar process also occurs beyond the viscous range, with time scaling according to the longitudinal second-order structure function S2(r), e....... The model predictions agree with numerical and experimental results for various initial particle separations. We present model results for fixed time and fixed scale statistics. We find that for the Richardson-Obukhov law, i.e., =gepsilont3, to hold and to also be observed in experiments, high Reynolds...
Two-particle approach to the electronic structure of solids
International Nuclear Information System (INIS)
Gonis, A.
2007-01-01
Based on an extension of Hubbard's treatment of the electronic structure of correlated electrons in matter we propose a methodology that incorporates the scattering off the Coulomb interaction through the determination of a two-particle propagator. The Green function equations of motion are then used to obtain single-particle Green functions and related properties such as densities of states. The solutions of the equations of motion in two- and single-particle spaces are accomplished through applications of the coherent potential approximation. The formalism is illustrated by means of calculations for a single-band model system representing a linear arrangement of sites with nearest neighbor hopping and an one-site repulsion when two electrons of opposite spin occupy the same site in the lattice in the manner described by the so-called Hubbard Hamiltonian
International Nuclear Information System (INIS)
Cannon, R.D.
1984-01-01
The author attempts to: (i) discuss some of the data which are available for testing the theory of evolution of low mass stars; and (ii) point out some problem areas where observations and theory do not seem to agree very well. He concentrates on one particular aspect, namely the study of star clusters and especially their colour-magnitude (CM) diagrams. Star clusters provide large samples of stars at the same distance and with the same age, and the CM diagram gives the easiest way of comparing theoretical predictions with observations, although crucial evidence is also provided by spectroscopic abundance analyses and studies of variable stars. Since this is primarily a review of observational data it is natural to divide it into two parts: (i) galactic globular clusters, and (ii) old and intermediate-age open clusters. Some additional evidence comes from Local Group galaxies, especially now that CM diagrams which reach the old main sequence are becoming available. For each class of cluster successive stages of evolution from the main sequence, up the hydrogen-burning red giant branch, and through the helium-burning giant phase are considered. (Auth.)
Dynamics of relativistic point particles as a problem with constraints
International Nuclear Information System (INIS)
Todorov, I.T.
1976-01-01
The relativistic n-particle dynamics is studied as a problem with constraints of the type (2phisub(i)=)msub(i)sup(2)-psub(i)sup(2)+PHIsub(i)=0, i=1,...,n, (C) where PHIsub(i) are Poincare invariant functions of the particles' coordinates, momenta and spin components; PHIsib(i) is assumed to vanish asymptotically when the i-th particle coordinates tend to infinity. In the two particle case it is assumed in addition that the Poisson bracket [phi 1 , phi 2 ] vanishes on the surface (C). That allows us to give a formulation of the theory, invariant with respect to the choice of the time-parameter on each trajectory. The quantization of the relative two-particle motion is also discussed. It is pointed out that the stationary Schrodinger equation obtained in this manner is a local quasipotential equation
International Nuclear Information System (INIS)
Provost, J.
1984-01-01
Accurate tests of the theory of stellar structure and evolution are available from the Sun's observations. The solar constraints are reviewed, with a special attention to the recent progress in observing global solar oscillations. Each constraint is sensitive to a given region of the Sun. The present solar models (standard, low Z, mixed) are discussed with respect to neutrino flux, low and high degree five-minute oscillations and low degree internal gravity modes. It appears that actually there do not exist solar models able to fully account for all the observed quantities. (Auth.)
The organic surface of 5145 Pholus: Constraints set by scattering theory
Wilson, Peter D.; Sagan, Carl; Thompson, W. Reid
1994-01-01
No known body in the Solar System has a spectrum redder than that of object 5145 Pholus. We use Hapke scattering theory and optical constants measured in this laboratory to examine the ability of mixtures of a number of organic solids and ices to reproduce the observed spectrum and phase variation. The primary materials considered are poly-HCN, kerogen, Murchison organic extract, Titan tholin, ice tholin, and water ice. In a computer grid search of over 10 million models, we find an intraparticle mixture of 15% Titan tholin, 10% poly-HCN, and 75% water ice with 10-micrometers particles to provide an excellent fit. Replacing water ice with ammonia ice improves the fits significantly while using a pure hydrocarbon tholin, Tholin alpha, instead of Titan tholin makes only modest improvements. All acceptable fits require Titan tholin or some comparable material to provide the steep slope in the visible, and poly-HCN or some comparable material to provide strong absorption in the near-infrared. A pure Titan tholin surface with 16-micrometers particles, as well as all acceptable Pholus models, fit the present spectrophotometric data for the transplutonian object 1992 QB(sub 1). The feasibility of gas-phase chemistry to generate material like Titan tholin on such small objects is examined. An irradiated transient atmosphere arising from sublimating ices may generate at most a few centimeters of tholin over the lifetime of the Solar System, but this is insignificant compared to the expected lag deposit of primordial contaminants left behind by the sublimating ice. Irradiation of subsurface N2/CH4 or NH3/CH4 ice by cosmic rays may generate approximately 20 cm of tholin in the upper 10 m of regolith in the same time scale but the identity of this tholin to its gas-phase equivalent has not been demonstrated.
Beghin, Christian; Randriamboarison, Orelien; Hamelin, Michel; Karkoschka, Erich; Sotin, Christophe; Whitten, Robert C.; Berthelier, Jean-Jacques; Grard, Rejean; Simoes, Fernando
2013-01-01
This study presents an approximate model for the atypical Schumann resonance in Titan's atmosphere that accounts for the observations of electromagnetic waves and the measurements of atmospheric conductivity performed with the Huygens Atmospheric Structure and Permittivity, Wave and Altimetry (HASI-PWA) instrumentation during the descent of the Huygens Probe through Titan's atmosphere in January 2005. After many years of thorough analyses of the collected data, several arguments enable us to claim that the Extremely Low Frequency (ELF) wave observed at around 36 Hz displays all the characteristics of the second harmonic of a Schumann resonance. On Earth, this phenomenon is well known to be triggered by lightning activity. Given the lack of evidence of any thunderstorm activity on Titan, we proposed in early works a model based on an alternative powering mechanism involving the electric current sheets induced in Titan's ionosphere by the Saturn's magnetospheric plasma flow. The present study is a further step in improving the initial model and corroborating our preliminary assessments. We first develop an analytic theory of the guided modes that appear to be the most suitable for sustaining Schumann resonances in Titan's atmosphere. We then introduce the characteristics of the Huygens electric field measurements in the equations, in order to constrain the physical parameters of the resonating cavity. The latter is assumed to be made of different structures distributed between an upper boundary, presumably made of a succession of thin ionized layers of stratospheric aerosols spread up to 150 km and a lower quasi-perfect conductive surface hidden beneath the non-conductive ground. The inner reflecting boundary is proposed to be a buried water-ammonia ocean lying at a likely depth of 55-80 km below a dielectric icy crust. Such estimate is found to comply with models suggesting that the internal heat could be transferred upwards by thermal conduction of the crust, while
Massive spin-two particle in a gravitational field
International Nuclear Information System (INIS)
Tauber, G.
1980-01-01
The spin-two particle is described by a symmetric tensor hsub(μupsilon) subject to the subsidiary conditions hsub(α)sup(α) deltasub(α)hsup(αβ) = O. Their covariant generalization and the 'wave equation' have been obtained directly from the Eulerian variational equations by algebraic methods only. In addition to the tensor field hsub(μupsilon) a symmetric third-rank tensor suplambda)GAMMAsub(μupsilon) sup(lambda)GAMMAsub(upsilonμ) as well as a vector field Asub(μ) have been added, neither of which enter in the final result. The Lagrangian function is taken as a linear sum of all combinations which can be constructed from these functions, as well as terms involving the curvature and its two possible contractions. Variation with respect to hsup(μupsilon), sup(lambda)GAMMAsub(μupsilon) and Asub(μ) independently gives the Euler equations. Combining the various trace equations and choice of arbitrary constants yields the subsidiary conditions, while the Euler equations themselves give the connection between the auxiliary functions and the tensor hsub(μupsilon) Finally, variation with respect to gsup(μupsilon) yields the energy-momentum tensor. (author)
Directory of Open Access Journals (Sweden)
Vinicius Amorim Sobreiro
2013-06-01
Full Text Available The definition of the product mix provides the allocation of the productive resources in the manufacture process and the optimization of productive system. However, the definition of the product mix is a problem of the NP-complete, in other words, of difficult solution. Taking this into account, with the aid of the Theory of Constraints - TOC, some constructive heuristics have been presented to help to solve this problem. Thus, the objective in this paper is to propose a new heuristics to provide better solutions when compared with the main heuristics presented in the literature, TOC-h of Fredendall and Lea. To accomplish this comparison, simulations were accomplished with the objective of identifying the production mix with the best throughput, considering CPU time and the characteristics of the productive ambient. The results show that the heuristics proposal was more satisfactory when compared to TOC-h and it shows good solution when compared with the optimum solution. This fact evidence the importance of the heuristics proposal in the definition of product mix.
International Nuclear Information System (INIS)
Brand, J.; Cederbaum, L.S.
1996-01-01
An extension of the fermionic particle-particle propagator is presented that possesses similar algebraic properties to the single-particle Green close-quote s function. In particular, this extended two-particle Green close-quote s function satisfies Dyson close-quote s equation and its self energy has the same analytic structure as the self energy of the single-particle Green close-quote s function. For the case of a system interacting with one-particle potentials only, the two-particle self energy takes on a particularly simple form, just like the common self energy does. The new two-particle self energy also serves as a well behaved optical potential for the elastic scattering of a two-particle projectile by a many-body target. Due to its analytic structure, the two-particle self energy avoids divergences that appear with effective potentials derived by other means. Copyright copyright 1996 Academic Press, Inc
Haddout, Soufiane
2018-01-01
The equations of motion of a bicycle are highly nonlinear and rolling of wheels without slipping can only be expressed by nonholonomic constraint equations. A geometrical theory of general nonholonomic constrained systems on fibered manifolds and their jet prolongations, based on so-called Chetaev-type constraint forces, was proposed and developed in the last decade by O. Krupková (Rossi) in 1990's. Her approach is suitable for study of all kinds of mechanical systems-without restricting to Lagrangian, time-independent, or regular ones, and is applicable to arbitrary constraints (holonomic, semiholonomic, linear, nonlinear or general nonholonomic). The goal of this paper is to apply Krupková's geometric theory of nonholonomic mechanical systems to study a concrete problem in nonlinear nonholonomic dynamics, i.e., autonomous bicycle. The dynamical model is preserved in simulations in its original nonlinear form without any simplifying. The results of numerical solutions of constrained equations of motion, derived within the theory, are in good agreement with measurements and thus they open the possibility of direct application of the theory to practical situations.
Directory of Open Access Journals (Sweden)
Michael Brown
2015-11-01
Full Text Available Approximations based on two-particle irreducible (2PI effective actions (also known as Φ-derivable, Cornwall–Jackiw–Tomboulis or Luttinger–Ward functionals depending on context have been widely used in condensed matter and non-equilibrium quantum/statistical field theory because this formalism gives a robust, self-consistent, non-perturbative and systematically improvable approach which avoids problems with secular time evolution. The strengths of 2PI approximations are often described in terms of a selective resummation of Feynman diagrams to infinite order. However, the Feynman diagram series is asymptotic and summation is at best a dangerous procedure. Here we show that, at least in the context of a toy model where exact results are available, the true strength of 2PI approximations derives from their self-consistency rather than any resummation. This self-consistency allows truncated 2PI approximations to capture the branch points of physical amplitudes where adjustments of coupling constants can trigger an instability of the vacuum. This, in effect, turns Dyson's argument for the failure of perturbation theory on its head. As a result we find that 2PI approximations perform better than Padé approximation and are competitive with Borel–Padé resummation. Finally, we introduce a hybrid 2PI–Padé method.
A focusing spectrometer for one and two particles
The focusing spectrometer is a device based on existing magnets and proven technology that solves the problem of extracting physics in the high-particle-multiplicity environment of high energy heavy-ion collisions (from S on S up to Pb on Pb) as well as in proton-proton collisions. It sweeps a small central acceptance over interesting regions of phase space, thereby dealing with only a few particles at a time. Because of its resulting excellent momentum resolution, ability to identify particles $(\\pi^{\\pm}, K^{\\pm}, p, \\bar{p}, d$ and $\\bar{d})$, and appropriate acceptance for particle pairs, it is well suited to making detailed studies of two of the more promising observables that have come to light as a result of the first two years of SPS and AGS heavy-ion running: two and three particle interferometry and single identified particle inclusive spectra.\\\\\\\\ Two pion interferometry is a technique which allows one to extract, with an appropriate theory, the space-time evolution of the pion source distribution ...
A computer program for two-particle intrinsic coefficients of fractional parentage
Deveikis, A.
2012-06-01
j-shells with isospin. Solution method: The method is based on the observation that CESOs may be obtained by diagonalizing the center-of-mass Hamiltonian in the basis set of antisymmetric A-particle oscillator functions with singled out dependence on Jacobi coordinates of two last particles and choosing the subspace of its eigenvectors corresponding to the minimal eigenvalue equal to 3/2. Restrictions: One run of the code CESOS generates CESOs for one specified set of (A,E,J,T) values only. The restrictions on the (A,E,J,T) values are completely determined by the restrictions on the computation of the single-shell CFPs and two-particle multishell CFPs (GCFPs) [1]. The full sets of single-shell CFPs may be calculated up to the j=9/2 shell (for any particular shell of the configuration); the shell with j⩾11/2 cannot get full (it is the implementation constraint). The calculation of GCFPs is limited by Agenerated by the GCFP program - CPC Program Library, Catalogue Id. AEBI_v1_0. The actual scale of the CESOs computation problem depends strongly on the magnitude of the A and E values. Though there are no limitations on A and E values (within the limits of single-shell CFPs and multishell CFPs calculation), however the generation of corresponding list of CESOs is the subject of available computing resources. For example, the computing time of CESOs for A=6, JT=10 at E=5 took around 14 hours. The system with A=11, JT=1/23/2 at E=2 requires around 15 hours. These computations were performed on Pentium 3 GHz PC with 1 GB RAM [2]. Unusual features: It is possible to test the computed CESOs without saving them to a file. This allows the user to learn their number and approximate computation time and to evaluate the accuracy of calculations. Additional comments: The program CESOS uses the code from GCFP program for calculation of the two-particle multishell coefficients of fractional parentage. Running time: It depends on the size of the problem. The A=6 particle system
Ferrara, Katrina; Hoffman, James E.; O'Hearn, Kirsten; Landau, Barbara
2016-01-01
The ability to track moving objects is a crucial skill for performance in everyday spatial tasks. The tracking mechanism depends on representation of moving items as coherent entities, which follow the spatiotemporal constraints of objects in the world. In the present experiment, participants tracked 1 to 4 targets in a display of 8 identical…
Orr, Mark G.; Thrush, Roxanne; Plaut, David C.
2013-01-01
The reasoned action approach, although ubiquitous in health behavior theory (e.g., Theory of Reasoned Action/Planned Behavior), does not adequately address two key dynamical aspects of health behavior: learning and the effect of immediate social context (i.e., social influence). To remedy this, we put forth a computational implementation of the Theory of Reasoned Action (TRA) using artificial-neural networks. Our model re-conceptualized behavioral intention as arising from a dynamic constrain...
Directory of Open Access Journals (Sweden)
Ayten ERSOY
2011-08-01
Full Text Available This study examines the importance of the theory of constraints compared to the conventional cost accounting in making adequate product mix decisions. To this end, an application in a chemistry enterprise was executed to determine product mix decisions and their effect on profitability by comparing the theory of constraints variable costing method with the full costing method in respect to the throughput approach, the contribution margin approach and the unit profit approach respectively.
Dynamics and causality constraints
International Nuclear Information System (INIS)
Sousa, Manoelito M. de
2001-04-01
The physical meaning and the geometrical interpretation of causality implementation in classical field theories are discussed. Causality in field theory are kinematical constraints dynamically implemented via solutions of the field equation, but in a limit of zero-distance from the field sources part of these constraints carries a dynamical content that explains old problems of classical electrodynamics away with deep implications to the nature of physicals interactions. (author)
Czech Academy of Sciences Publication Activity Database
Janiš, Václav
2003-01-01
Roč. 15, - (2003), s. L311-L317 ISSN 0953-8984 R&D Projects: GA ČR GA202/01/0764 Institutional research plan: CEZ:AV0Z1010914 Keywords : Ward identity * electron correlations * conservation laws Subject RIV: BE - Theoretical Physics Impact factor: 1.757, year: 2003
Institute of Scientific and Technical Information of China (English)
DAIHong-Yi; KUANGLe-Man; LICheng-Zu
2005-01-01
We propose a scheme to probabilistically teleport an unknown arbitrary three-level two-particle state by using two partial entangled two-particle states of three-level as the quantum channel. The classical communication cost required in the ideal probabilistic teleportation process is also calculated. This scheme can be directly generalized to teleport an unknown and arbitrary three-level K-particle state by using K partial entangled two-particle states of three-level as the quantum channel.
International Nuclear Information System (INIS)
Mazziotti, David A.
2002-01-01
Atomic and molecular ground-state energies are variationally determined by constraining the two-particle reduced density matrix (2-RDM) to satisfy positivity conditions. Because each positivity condition corresponds to correcting the ground-state energies for a class of Hamiltonians with two-particle interactions, these conditions collectively provide a new approach to many-body theory that, unlike perturbation theory, can capture significantly correlated phenomena including the multireference effects of potential-energy surfaces. The D, Q, and G conditions for the 2-RDM are extended through generalized lifting operators inspired from the formal solution of N-representability. These lifted conditions agree with the hierarchy of positivity conditions presented by Mazziotti and Erdahl [Phys. Rev. A 63, 042113 (2001)]. The connection between positivity and the formal solution explains how constraining higher RDMs to be positive semidefinite improves the N representability of the 2-RDM and suggests using pieces of higher positivity conditions that computationally scale like the D condition. With the D, Q, and G conditions as well as pieces of higher positivity the electronic energies for Be, LiH, H 2 O, and BH are computed through a primal-dual interior-point algorithm for positive semidefinite programming. The variational method produces potential-energy surfaces that are highly accurate even far from the equilibrium geometry where single-reference perturbation-based methods often fail to produce realistic energies
DEFF Research Database (Denmark)
Mödersheim, Sebastian Alexander; Basin, David; Viganò, Luca
2010-01-01
We introduce constraint differentiation, a powerful technique for reducing search when model-checking security protocols using constraint-based methods. Constraint differentiation works by eliminating certain kinds of redundancies that arise in the search space when using constraints to represent...... results show that constraint differentiation substantially reduces search and considerably improves the performance of OFMC, enabling its application to a wider class of problems....
Search for heavy resonances in two-particle final states with leptons, jets and photons at CMS
Gueth, Andreas
2014-01-01
At the LHC, the production of heavy resonances decaying into a pair of particles can be probed at unprecedented centre-of-mass energies. Two-particle resonances are predicted in a variety of BSM models and can be searched for in a largely model-independent fashion. Results from searches for resonances in final states with leptons, jets and photons based on the full dataset of 20/fb taken by the CMS detector in 2012 in proton-proton collisions at a centre-of-mass energy of 8 TeV are presented. They are interpreted in terms of various theories of BSM physics ranging from generic heavy resonances such as the Z' to excited quarks or Randall-Sundrum gravitons. In the absence of a significant deviation from the expected SM background 95\\% CL limits are set on model parameters of the theories under study.
International Nuclear Information System (INIS)
Townsend, P.K.; Sierra, G.
1983-01-01
Chiral anomalies for gauge theories in any even dimension are computed and the results applied to supersymmetric theories in D=6, 8 and 10. For D=8 there is an anomalous chiral U(1) invariance, just as in D=4, except for certain special groups. For D=6 and D=10 there is no anomalous chiral U(1) symmetry, but the gauge current is anomalous except for certain ''anomaly-free'' groups. For D=6 the group is thereby constrained to be one of [SU(2), SU(3), exceptional], while for D=10 it is constrained to be one of [SU(n)n 8 ]. (orig.)
Goh, Jonathan Wee Pin
2009-01-01
With the global economy becoming more integrated, the issues of cross-cultural relevance and transferability of leadership theories and practices have become increasingly urgent. Drawing upon the concept of parallel leadership in schools proposed by Crowther, Kaagan, Ferguson, and Hann as an example, the purpose of this paper is to examine the…
Energy Technology Data Exchange (ETDEWEB)
Kneur, J.L
2006-06-15
This document is divided into 2 parts. The first part describes a particular re-summation technique of perturbative series that can give a non-perturbative results in some cases. We detail some applications in field theory and in condensed matter like the calculation of the effective temperature of Bose-Einstein condensates. The second part deals with the minimal supersymmetric standard model. We present an accurate calculation of the mass spectrum of supersymmetric particles, a calculation of the relic density of supersymmetric black matter, and the constraints that we can infer from models.
Reliability of Lyapunov characteristic exponents computed by the two-particle method
Mei, Lijie; Huang, Li
2018-03-01
For highly complex problems, such as the post-Newtonian formulation of compact binaries, the two-particle method may be a better, or even the only, choice to compute the Lyapunov characteristic exponent (LCE). This method avoids the complex calculations of variational equations compared with the variational method. However, the two-particle method sometimes provides spurious estimates to LCEs. In this paper, we first analyze the equivalence in the definition of LCE between the variational and two-particle methods for Hamiltonian systems. Then, we develop a criterion to determine the reliability of LCEs computed by the two-particle method by considering the magnitude of the initial tangent (or separation) vector ξ0 (or δ0), renormalization time interval τ, machine precision ε, and global truncation error ɛT. The reliable Lyapunov characteristic indicators estimated by the two-particle method form a V-shaped region, which is restricted by d0, ε, and ɛT. Finally, the numerical experiments with the Hénon-Heiles system, the spinning compact binaries, and the post-Newtonian circular restricted three-body problem strongly support the theoretical results.
MacDonald, Sharyn L S; Cowan, Ian A; Floyd, Richard; Mackintosh, Stuart; Graham, Rob; Jenkins, Emma; Hamilton, Richard
2013-10-01
We describe how techniques traditionally used in the manufacturing industry (lean management, the theory of constraints and production planning) can be applied to planning radiology services to reduce the impact of constraints such as limited radiologist hours, and to subsequently reduce delays in accessing imaging and in report turnaround. Targets for imaging and reporting were set aligned with clinical needs. Capacity was quantified for each modality and for radiologists and recorded in activity lists. Demand was quantified and forecasting commenced based on historical referral rates. To try and mitigate the impact of radiologists as a constraint, lean management processes were applied to radiologist workflows. A production planning process was implemented. Outpatient waiting times to access imaging steadily decreased. Report turnaround times improved with the percentage of overnight/on-call reports completed by a 1030 target time increased from approximately 30% to 80 to 90%. The percentage of emergency and inpatient reports completed within one hour increased from approximately 15% to approximately 50% with 80 to 90% available within 4 hours. The number of unreported cases on the radiologist work-list at the end of the working day reduced. The average weekly accuracy for demand forecasts for emergency and inpatient CT, MRI and plain film imaging was 91%, 83% and 92% respectively. For outpatient CT, MRI and plain film imaging the accuracy was 60%, 55% and 77% respectively. Reliable routine weekly and medium to longer term service planning is now possible. Tools from industry can be successfully applied to diagnostic imaging services to improve performance. They allow an accurate understanding of the demands on a service, capacity, and can reliably predict the impact of changes in demand or capacity on service delivery. © 2013 The Royal Australian and New Zealand College of Radiologists.
International Nuclear Information System (INIS)
MacDonald, Sharyn L.S.; Cowan, Ian A.; Floyd, Richard; Mackintosh, Stuart; Graham, Rob; Jenkins, Emma; Hamilton, Richard
2013-01-01
We describe how techniques traditionally used in the manufacturing industry (lean management, the theory of constraints and production planning) can be applied to planning radiology services to reduce the impact of constraints such as limited radiologist hours, and to subsequently reduce delays in accessing imaging and in report turnaround. Targets for imaging and reporting were set aligned with clinical needs. Capacity was quantified for each modality and for radiologists and recorded in activity lists. Demand was quantified and forecasting commenced based on historical referral rates. To try and mitigate the impact of radiologists as a constraint, lean management processes were applied to radiologist workflows. A production planning process was implemented. Outpatient waiting times to access imaging steadily decreased. Report turnaround times improved with the percentage of overnight/on-call reports completed by a 1030 target time increased from approximately 30% to 80 to 90%. The percentage of emergency and inpatient reports completed within one hour increased from approximately 15% to approximately 50% with 80 to 90% available within 4 hours. The number of unreported cases on the radiologist work-list at the end of the working day reduced. The average weekly accuracy for demand forecasts for emergency and inpatient CT, MRI and plain film imaging was 91%, 83% and 92% respectively. For outpatient CT, MRI and plain film imaging the accuracy was 60%, 55% and 77% respectively. Reliable routine weekly and medium to longer term service planning is now possible. Tools from industry can be successfully applied to diagnostic imaging services to improve performance. They allow an accurate understanding of the demands on a service, capacity, and can reliably predict the impact of changes in demand or capacity on service delivery.
A computer program for two-particle generalized coefficients of fractional parentage
Deveikis, A.; Juodagalvis, A.
2008-10-01
RAM at E=0 and ˜70 MB at E=2 (note, however, that the calculation of this system will take a very long time). If the computation and output mode is set to 4, the memory demands by GCFP are significantly larger. Calculation of GCFPs of A=12 system at E=1 requires 145 MB. The program parGCFP requires additional 2.5 and 4.5 MB of memory for the serial and parallel version, respectively. Classification: 17.18 Nature of problem: The program GCFP generates a list of two-particle coefficients of fractional parentage for several j-shells with isospin. Solution method: The method is based on the observation that multishell coefficients of fractional parentage can be expressed in terms of single-shell CFPs [1]. The latter are calculated using the algorithm [2,3] for a spectral decomposition of an antisymmetrization operator matrix Y. The coefficients of fractional parentage are those eigenvectors of the antisymmetrization operator matrix Y that correspond to unit eigenvalues. A computer code for these coefficients is available [4]. The program GCFP offers computation of two-particle multishell coefficients of fractional parentage. The program parGCFP allows a batch calculation using one input file. Sets of GCFPs are independent and can be calculated in parallel. Restrictions:A<86 when E=0 (due to the memory constraints); small numbers of particles allow significantly higher excitations, though the shell with j⩾11/2 cannot get full (it is the implementation constraint). Unusual features: Using the program GCFP it is possible to determine allowed particle configurations without the GCFP computation. The GCFPs can be calculated either for all particle configurations at once or for a specified particle configuration. The values of GCFPs can be printed out with a complete specification in either one file or with the parent and daughter configurations printed in separate files. The latter output mode requires additional time and RAM memory. It is possible to restrict the ( J
Donlon, Katharine
2012-01-01
Social Cognitive Theory (SCT) posits that survivors of a traumatic event have the ability to influence their own outcomes and do so most aptly when they perceive they can exert control over their outcomes. Posttraumatic growth outcomes are associated with a greater perception of controllability, while posttraumatic stress outcomes can be related to the lack of perceived control. In the context of the Virginia Tech shootings, several social factors were examined three months after the trauma ...
Directory of Open Access Journals (Sweden)
Álvaro de la Cruz Dombriz
2018-02-01
Full Text Available Combined cosmological, astrophysical and numerical tests may shed some light on the viability of theories of gravity beyond Einsteinian relativity. In this letter, we present two different techniques providing complementary ways of testing new physics beyond the Λ CDM cosmological paradigm. First, we shall present some of the latest progress and shortcomings in the cosmographic model-independent approach for several modified gravity theories using supernovae catalogues, baryonic acoustic oscillation data and H ( z differential age compilations. Second, we shall show how once the Einsteinian paradigm is abandoned, the phenomenology of neutron stars changes dramatically since neutron-star masses can be much larger than their General Relativity counterparts. Consequently, the total energy available for radiating gravitational waves could be of the order of several solar masses, and thus a merger of these stars constitutes a privileged wave source. Unfortunately at the present time our persisting lack of understanding in the strong interaction sector does not allow to distinguish the alternative theories from the usual General Relativity predictions.
On the dilute gas two particle density matrices of p--H2 and He4
International Nuclear Information System (INIS)
Weres, O.
1976-01-01
In the preceding paper we demonstrated that the reduced two- particle density matrix of simple quantum liquids could profitably be re-expressed in terms of a Taylor expansion of its logarithm about the diagonal. In the present publication we examine the Taylor coefficients which arise when the dilute gas two particle density matrix is expanded in this way. In particular, we evaluate the leading coefficients of p-H 2 and He 4 exactly and extend the Wigner--Kirkwood approximation to provided approximate expressions for them. We demonstrate how these approximate expressions may be applied to yield results superior to those yielded by the ordinary Wigner--Kirkwood approximation. In an appendix we demonstrate how the Block equation for the dilute gas two particle density matrix may be reduced to an equivalent closed set of equations for the leading Taylor coefficients
Two-particle angular correlations in pp collisions recorded with the ALICE detector at the LHC
Janik, Małgorzata
2014-01-01
We report on the studies of two-particle angular correlations measured in proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV recorded by ALICE at the LHC. Two-particle correlations in relative azimuth ({\\Delta}{\\phi}) and pseudorapidity ({\\Delta}{\\eta}) are expected to exhibit several structures which arise from different physics mechanisms and allow us to study the wide landscape of correlations. The results include the dependence of the correlation function on the event multiplicity, the charge combination and species (pions, kaons or protons) of particles in the pair.
Teleportation of an unknown bipartite state via non-maximally entangled two-particle state
Institute of Scientific and Technical Information of China (English)
Cao Hai-Jing; Guo Yan-Qing; Song He-Shan
2006-01-01
In this paper a new scheme for teleporting an unknown entangled state of two particles is proposed. To weaken the requirement for the quantum channel, without loss of generality, two communicators only share a non-maximally entangled two-particle state. Teleportation can be probabilistically realized if sender performs Bell-state measurements and Hadamard transformation and receiver introduces two auxiliary particles, operates G-not operation, single-qubit measurements and appropriate unitary transformations. The probability of successful teleportation is determined by the smaller one among the coefficients' absolute values of the quantum channel.
Energy Technology Data Exchange (ETDEWEB)
Garattini, Remo [Univ. degli Studi di Bergamo, Dalmine (Italy). Dept. of Engineering and Applied Sciences; I.N.F.N., Sezione di Milano, Milan (Italy); De Laurentis, Mariafelicia [Tomsk State Pedagogical Univ. (Russian Federation). Dept. of Theoretical Physics; INFN, Sezione di Napoli (Italy); Complutense Univ. di Monte S. Angelo, Napoli (Italy)
2017-01-15
In the framework of a Varying Speed of Light theory, we study the eigenvalues associated with the Wheeler-DeWitt equation representing the vacuum expectation values associated with the cosmological constant. We find that the Wheeler-DeWitt equation for the Friedmann-Lemaitre-Robertson-Walker metric is completely equivalent to a Sturm-Liouville problem provided that the related eigenvalue and the cosmological constant be identified. The explicit calculation is performed with the help of a variational procedure with trial wave functionals related to the Bessel function of the second kind K{sub ν}(x). After having verified that in ordinary General Relativity no eigenvalue appears, we find that in a Varying Speed of Light theory this is not the case. Nevertheless, instead of a single eigenvalue, we discover the existence of a family of eigenvalues associated to a negative power of the scale. A brief comment on what happens at the inflationary scale is also included. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Altieri, Nicholas; Pisoni, David B.; Townsend, James T.
2012-01-01
Summerfield (1987) proposed several accounts of audiovisual speech perception, a field of research that has burgeoned in recent years. The proposed accounts included the integration of discrete phonetic features, vectors describing the values of independent acoustical and optical parameters, the filter function of the vocal tract, and articulatory dynamics of the vocal tract. The latter two accounts assume that the representations of audiovisual speech perception are based on abstract gestures, while the former two assume that the representations consist of symbolic or featural information obtained from visual and auditory modalities. Recent converging evidence from several different disciplines reveals that the general framework of Summerfield’s feature-based theories should be expanded. An updated framework building upon the feature-based theories is presented. We propose a processing model arguing that auditory and visual brain circuits provide facilitatory information when the inputs are correctly timed, and that auditory and visual speech representations do not necessarily undergo translation into a common code during information processing. Future research on multisensory processing in speech perception should investigate the connections between auditory and visual brain regions, and utilize dynamic modeling tools to further understand the timing and information processing mechanisms involved in audiovisual speech integration. PMID:21968081
International Nuclear Information System (INIS)
Ol'khovskij, I.I.; Sadykov, N.M.
1980-01-01
The paper deals with the development of classical-statistical approach to the orientational effect theory with account of the influence of the two-particle correlation function of a crystal on diffusion processes. Peculiarities of fast particle movement in the crystal moving at small angles to crystallographic axes and planes are caused by a great number of correlated collisions of the beam particle with the crystal atoms during which the particle slightly deviates in each collision from the direction of its movement before the collision. Obtained is the kinetic equation for the distribution function over coordinates and velocities describing the movement of these particles in the crystal. Lacking the particle deceleration the equation describing movement of the beam particles in the averaged potential and their diffusion by velocities is also obtained. The main peculiarity of these equations is the fact that they take into account strong spatial non-uniformity in the crystal atom distribution [ru
Psychological constraints on egalitarianism
DEFF Research Database (Denmark)
Kasperbauer, Tyler Joshua
2015-01-01
processes motivating people to resist various aspects of egalitarianism. I argue for two theses, one normative and one descriptive. The normative thesis holds that egalitarians must take psychological constraints into account when constructing egalitarian ideals. I draw from non-ideal theories in political...... philosophy, which aim to construct moral goals with current social and political constraints in mind, to argue that human psychology must be part of a non-ideal theory of egalitarianism. The descriptive thesis holds that the most fundamental psychological challenge to egalitarian ideals comes from what......Debates over egalitarianism for the most part are not concerned with constraints on achieving an egalitarian society, beyond discussions of the deficiencies of egalitarian theory itself. This paper looks beyond objections to egalitarianism as such and investigates the relevant psychological...
Suppression and Two-Particle Correlations of Heavy Mesons in Heavy-Ion Collisions
Energy Technology Data Exchange (ETDEWEB)
Cao, Shanshan [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Qin, Guang-You [Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan, 430079 (China); Bass, Steffen A. [Department of Physics, Duke University, Durham, NC 27708 (United States)
2016-12-15
We study the medium modification of heavy quarks produced in heavy-ion collisions. The evolution of heavy quarks inside the QGP is described using a modified Langevin framework that simultaneously incorporates their collisional and radiative energy loss. Within this framework, we provide good descriptions of the heavy meson suppression and predictions for the two-particle correlation functions of heavy meson pairs.
Off-shell two-particle scattering amplitude in the P-matrix approach
International Nuclear Information System (INIS)
Babenko, V.A.; Petrov, N.M.
1988-01-01
A generalization of the P-matrix approach which makes it possible to describe the interaction of two particles off the energy shell is proposed. Explicit separation in the wave function of a part corresponding to free motion yields a compact expression for the off-shell scattering amplitude and gives directly a method for separable expansion of the amplitude
C112 C123 generated by two particle correlations through v2 and v3
Energy Technology Data Exchange (ETDEWEB)
Longacre, Ronald S.
2018-01-31
Abstract: In this note we consider the three particle correlators C112 and C123 and how they can be generated from a pure two particle correlation by interacting with a v2 and a v3 of the overall system.
Two-particle momentum correlations in jets produced in e e ...
Indian Academy of Sciences (India)
2012-05-03
May 3, 2012 ... Abstract. The goal of this analysis is to measure the two-particle momentum correlation in jets, in the reaction e+e− → hadrons, to study its dependence on jet energy, and compare the results with analytical predictions of the next-to-leading log approximation (NLLA), using data collected by the.
Luppino, G. A.; Gioia, I. M.
1995-01-01
During the course of a gravitational lensing survey of distant, X-ray selected Einstein Observatory Extended Medium Sensitivity Survey (EMSS) clusters of galaxies, we have studied six X-ray-luminous (L(sub x) greater than 5 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) clusters at redshifts exceeding z = 0.5. All of these clusters are apparently massive. In addition to their high X-ray luminosity, two of the clusters at z approximately 0.6 exhibit gravitationally lensed arcs. Furthermore, the highest redshift cluster in our sample, MS 1054-0321 at z = 0.826, is both extremely X-ray luminous (L(sub 0.3-3.5keV)=9.3 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) and exceedingly rich with an optical richness comparable to an Abell Richness Class 4 cluster. In this Letter, we discuss the cosmological implications of the very existence of these clusters for hierarchical structure formation theories such as standard Omega = 1 CDM (cold dark matter), hybrid Omega = 1 C + HDM (hot dark matter), and flat, low-density Lambda + CDM models.
Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement
International Nuclear Information System (INIS)
Deng Fuguo; Zhou Hongyu; Li Chunyan; Wang Yan; Li Yansong
2005-01-01
We present a way for symmetric multiparty-controlled teleportation of an arbitrary two-particle entangled state based on Bell-basis measurements by using two Greenberger-Horne-Zeilinger states, i.e., a sender transmits an arbitrary two-particle entangled state to a distant receiver, an arbitrary one of the n+1 agents, via the control of the others in a network. It will be shown that the outcomes in the cases that n is odd or is even are different in principle as the receiver has to perform a controlled-NOT operation on his particles for reconstructing the original arbitrary entangled state in addition to some local unitary operations in the former. Also we discuss the applications of this controlled teleporation for quantum secret sharing of classical and quantum information. As all the instances can be used to carry useful information, its efficiency for qubit approaches the maximal value
Rapidity correlations in inclusive two-particle production at storage ring energies
Dibon, Heinz; Gottfried, Christian; Nefkens, B M K; Neuhofer, G; Niebergall, F; Regler, Meinhard; Schmidt-Parzefall, W; Schubert, K R; Schumacher, P E; Winter, Klaus
1973-01-01
Inclusive two-particle production in the reaction pp to gamma +ch+ (anything) has been measured at the CERN ISR for four energies ( square root s=23, 30.5, 45, and 53 GeV) at two production angles of the charged particles (ch) and at eight production angles of the gamma -rays. The rapidity correlation of the two particles is weak and of short range. The peak correlation is sigma /sub inel/(d/sup 2/ sigma /sub gamma ch//d sigma /sub gamma /d sigma /sub ch/)-1=0.62+or-0.08, the correlation range (y/sub gamma /-y/sub ch/)=1.17+or-0.05, independently of s. The phi correlation extends over a wide gap in rapidity; its strength is increasing with increasing transverse momentum. (7 refs).
International Nuclear Information System (INIS)
Alwis, S.P. de
2016-01-01
We discuss constraints on KKLT/KKLMMT and LVS scenarios that use anti-branes to get an uplift to a deSitter vacuum, coming from requiring the validity of an effective field theory description of the physics. We find these are not always satisfied or are hard to satisfy.
Single particle measurements and two particle interferometry results from CERN experiment NA44
International Nuclear Information System (INIS)
Simon-Gillo, J.
1994-01-01
CERN experiment NA44 is optimized for the study of identified single and multiple particle distributions to p T = 0 near mid-rapidity. We measure π +- , K +- , p, bar p, d and bar d, in p + A and A + A collisions at 450 and 20OGeV/u, respectively. Two-particle intensity interferometry results from π + π + , K + K + , and K - K - measurements and single particle distributions are presented
Probabilistic Teleportation of an Arbitrary Two-Particle State and Its Quantum Circuits
Institute of Scientific and Technical Information of China (English)
GUO Zhan-Ying; FANG Jian-Xing; ZHU Shi-Qun; QIAN Xue-Min
2006-01-01
Two simple schemes for probabilistic teleportation of an arbitrary unknown two-particle state using a non-maximally entangled EPR pair and a non-maximally entangled GHZ state as quantum channels are proposed.After receiving Alice's Bell state measurement results, Bob performs a collective unitary transformation on his inherent particles without introducing the auxiliary qubit. The original state can be probabilistically teleported. Meanwhile,quantum circuits for realization of successful teleportation are also presented.
Magnetic moment of a two-particle bound state in quantum electrodynamics
International Nuclear Information System (INIS)
Martynenko, A.P.; Faustov, R.N.
2002-01-01
A quasipotential method for calculating relativistic and radiative corrections to the magnetic moment of a two-particle bound state is formulated for particles of arbitrary spin. It is shown that the expression for the g factors of bound particles involve O(α 2 ) terms depending on the particle spin. Numerical values are obtained for the g factors of the electron in the hydrogen atom and in deuterium
Two-particle correlations from droplet formation in high multiplicity anti pp events
International Nuclear Information System (INIS)
Ruuskanen, P.V.; Seibert, D.
1988-01-01
We study the correlations that arise from the formation of plasma droplets in high multiplicity events observed in recent FNAL anti pp collisions at √s=1.8 TeV. We show how the correlation between the final particles depends on the droplet size and density and on correlations between the droplets. We find that the two-particle correlation function R 2 could provide a clear signal for the formation of droplets. (orig.)
Two-particle correlations in pp collisions at 13 TeV measured with CMS
AUTHOR|(CDS)2079326
2016-01-01
Results on two-particle angular correlations for charged particles emitted in $pp$ collisions at a center-of-mass energy of 13 TeV are presented as a function of charged-particle multiplicity and transverse momentum $(p_{T})$. In high$-$multiplicity events, a long-range $(\\mid \\eta \\mid> 2.0)$, near-side $(\\Delta \\phi = 0)$ structure emerges in the two-particle $\\Delta\\eta - \\Delta\\phi $ correlation functions. The overall correlation strength is similar to that found in earlier $pp$ data at 7 TeV, but is measured up to much higher multiplicity values. A detailed study in $pp$ collisions at 7 TeV of the second-order $(v_{2})$ % and third-order $(v_{3})$ azimuthal anisotropy harmonics of charged particles, $K_{S}^{0}$ and $\\Lambda/\\bar{\\Lambda}$ particles are extracted from long-range two-particle correlations as a function of particle multiplicity and transverse momentum and are also compared with values obtained in pPb and PbPb collisions at similar multiplicities.
Two-particle versus three-particle interactions in single ionization of helium by ion impact
International Nuclear Information System (INIS)
Schulz, M; Moshammer, R; Fischer, D; Ullrich, J
2004-01-01
We have performed kinematically complete experiments on single ionization of He by 100 MeV amu -1 C 6+ and 3.6 MeV amu -1 Au 24,53+ impact. By analysing doubly differential cross sections (DDCS) as a function of the momenta of all two-particle sub-systems we studied the importance of two-particle interactions. Furthermore, presenting the squared momenta of all three collision fragments simultaneously in a Dalitz plot, we evaluated the role of three-particle interactions. Finally, both for the DDCS and the Dalitz plots the corresponding correlation function was analysed. While the absolute cross sections confirm that ionization predominantly leads to a momentum exchange between the electron and the recoil-ion, the correlation function reveals strong correlations between the particles of any two-particle sub-system. Three-particle correlations, which are not accounted for by perturbative calculations, are quite significant as well, at least for certain kinematic conditions
Energy Technology Data Exchange (ETDEWEB)
Ramanan, Narayanan; Lee, Bongmook; Misra, Veena, E-mail: vmisra@ncsu.edu [Department of Electrical and Computer Engineering, North Carolina State University, 2410 Campus Shore Drive, Raleigh, North Carolina 27695 (United States)
2015-06-15
Many dielectrics have been proposed for the gate stack or passivation of AlGaN/GaN based metal oxide semiconductor heterojunction field effect transistors, to reduce gate leakage and current collapse, both for power and RF applications. Atomic Layer Deposition (ALD) is preferred for dielectric deposition as it provides uniform, conformal, and high quality films with precise monolayer control of film thickness. Identification of the optimum ALD dielectric for the gate stack or passivation requires a critical investigation of traps created at the dielectric/AlGaN interface. In this work, a pulsed-IV traps characterization method has been used for accurate characterization of interface traps with a variety of ALD dielectrics. High-k dielectrics (HfO{sub 2}, HfAlO, and Al{sub 2}O{sub 3}) are found to host a high density of interface traps with AlGaN. In contrast, ALD SiO{sub 2} shows the lowest interface trap density (<2 × 10{sup 12 }cm{sup −2}) after annealing above 600 °C in N{sub 2} for 60 s. The trend in observed trap densities is subsequently explained with bonding constraint theory, which predicts a high density of interface traps due to a higher coordination state and bond strain in high-k dielectrics.
Constraints on the Grueneisen Theory
2007-02-01
TOMSK 634024 RUSSIA 5 DEPARTMENTO DE QUIMICA FISICA I FACULTAD DE CIENCIAS QUIMICAS UNIVERSIDAD COMPLUTENSE DE MADRID V G BAONZA...OVIEDO FACULTAD DE QUIMICA DEPARTMENTO DE QUIMICA FISICA Y ANALITICA E FRANCISCO AVENIDA JULIAN CLAVERIA S/N 33006 - OVIEDO
Misconceptions and constraints
International Nuclear Information System (INIS)
Whitten, M.; Mahon, R.
2005-01-01
In theory, the sterile insect technique (SIT) is applicable to a wide variety of invertebrate pests. However, in practice, the approach has been successfully applied to only a few major pests. Chapters in this volume address possible reasons for this discrepancy, e.g. Klassen, Lance and McInnis, and Robinson and Hendrichs. The shortfall between theory and practice is partly due to the persistence of some common misconceptions, but it is mainly due to one constraint, or a combination of constraints, that are biological, financial, social or political in nature. This chapter's goal is to dispel some major misconceptions, and view the constraints as challenges to overcome, seeing them as opportunities to exploit. Some of the common misconceptions include: (1) released insects retain residual radiation, (2) females must be monogamous, (3) released males must be fully sterile, (4) eradication is the only goal, (5) the SIT is too sophisticated for developing countries, and (6) the SIT is not a component of an area-wide integrated pest management (AW-IPM) strategy. The more obvious constraints are the perceived high costs of the SIT, and the low competitiveness of released sterile males. The perceived high up-front costs of the SIT, their visibility, and the lack of private investment (compared with alternative suppression measures) emerge as serious constraints. Failure to appreciate the true nature of genetic approaches, such as the SIT, may pose a significant constraint to the wider adoption of the SIT and other genetically-based tactics, e.g. transgenic genetically modified organisms (GMOs). Lack of support for the necessary underpinning strategic research also appears to be an important constraint. Hence the case for extensive strategic research in ecology, population dynamics, genetics, and insect behaviour and nutrition is a compelling one. Raising the competitiveness of released sterile males remains the major research objective of the SIT. (author)
Two-particle lepton-nucleon processes in the dual QCD approach
International Nuclear Information System (INIS)
Bel'kov, A.A.
1984-01-01
The data on elastic and quasielastic lepton-nucleon scattering and on Δ 33 electro- and neutrino-production are analyzed in the dual approach based on finite-energy sum rules and QCD. A large class of two-particle lepton-nucleon processes at small and moderate momentum transfers 0.4 (GeV/c) 2 2 2 are described. It is shown that the data on these processes, used as an additional information, essentially decrease the ambiguity in determination of QCD parameters from analysis of deep inelastic lepton-nucleon scattering
Two-particle lepton--nucleon processes in the dual QCD approach
International Nuclear Information System (INIS)
Bel'kov, A.A.; Ivanov, Y.P.; Kovalenko, S.G.
1984-01-01
Using a dual approach based on finite-energy sum rules and QCD, an analysis is made of data on elastic and quasielastic lepton--nucleon scattering and on the reactions of electron- and neutrino-induced production of the Δ 33 isobar. A description is obtained of a wide range of two-particle lepton--nucleon processes in the region of small and moderate momentum transfers 0.4 (GeV/c) 2 2 2 . It is shown that the use of data on these processes as additional information substantially reduces the ambiguity in the determination of the QCD parameters in the analysis of deep inelastic lepton--nucleon scattering
Measuring two-particle Bose-Einstein correlations with PHOBOS at sign RHIC
International Nuclear Information System (INIS)
Betts, R.; Barton, D.; Carroll, A.
1995-01-01
We present results of a simulation of the measurement of two-particle Bose-Einstein correlations in central Au-Au collisions with the PHOBOS detector at RHIC. This measurement is expected to yield information on the relevant time and distance scales in these collisions. As the space-time scale is directly connected with the equation of state governing the evolution of the particle source, this information will be essential in understanding the physics of nucleus-nucleus collisions at RHIC energies. We demonstrate that the PHOBOS detector has sufficient resolution and acceptance to distinguish a variety of physics scenarios
On two-particle N=1 supersymmetric composite grand unified models
International Nuclear Information System (INIS)
Pirogov, Yu.F.
1984-01-01
A class of two-particle N=1 supersymmetric composite grand unified models, satisfying the anomaly matching and cancellation conditions, n-independence and survival hypothesis is considered. A unique admissible set of the light states, containing spectator states on a par with the composite ones is found. At low mass scales this set contains exactly four families of ordinary fermions without any additional exotics. The interactions of the light states at distances greater than the compositeness radius are described by the N=1 sypersymmetric chiral grand unified model [SU(6)] 2 (or [SU(8)] 2 with a fixed set of four second-rank tensors as matter fields
Efficient quantum secret sharing scheme with two-particle entangled states
International Nuclear Information System (INIS)
Zhu Zhen-Chao; Fu An-Min; Zhang Yu-Qing
2011-01-01
This paper proposes a protocol for multi-party quantum secret sharing utilizing four non-orthogonal two-particle entangled states following some ideas in the schemes proposed by Liu et al. (2006 Chin. Phys. Lett. 23 3148) and Zhang et al. (2009 Chin. Phys. B 18 2149) respectively. The theoretical efficiency for qubits of the new protocol is improved from 50% to approaching 100%. All the entangled states can be used for generating the private key except those used for the eavesdropping check. The validity of a probable attack called opaque cheat attack to this kind of protocols is considered in the paper for the first time. (general)
Optimal conclusive teleportation of a d-dimensional two-particle unknown quantum state
Institute of Scientific and Technical Information of China (English)
Yang Yu-Guang; Wen Qiao-Yan; Zhu Fu-Chen
2006-01-01
A conclusive teleportation protocol of a d-dimensional two-particle unknown quantum state using three ddimensional particles in an arbitrary pure state is proposed. A sender teleports the unknown state conclusively to a receiver by using the positive operator valued measure(POVM) and introducing an ancillary qudit to perform the generalized Bell basis measurement. We calculate the optimal teleportation fidelity. We also discuss and analyse the reason why the information on the teleported state is lost in the course of the protocol.
Interference of two-particle states in elementary particle physics and in astronomy
International Nuclear Information System (INIS)
Kopylov, G.I.; Podgoretskij, M.I.
1975-01-01
Comparison is given of two versions of an experiment for observing of the interference of two-particle states of identical particles: time - space and momentum - energy versions. Both versions are considered in detail and make it possible to measure dimensions of particle souces. An interesting symmetry has been found. Expressions for the phase of interfering states in both versions of the experiment are obtained by mutual replacement of particle sources on their detector. An imaginary experiment is suggested which makes it possible to follow how these mutually exclusive versions of the experiment turn one into another
Two-particle correlations in 40Ar + 197Au at 60 MeV/A
International Nuclear Information System (INIS)
Quebert, J.
1986-01-01
Two-particle correlations have been measured at GANIL with a multidetector array of 21 telescopes (a part of which was set-up in a close-packed geometry). Simultaneously a plastic wall, made of 96 scintillators, set-up at foward angles, was triggered either by coincidence events or single events. The correlation functions R, are measured for different sets of light particles. They are also studied versus collective data given by the plastic wall detection of each event. We deduce different informations concerning the spatial extent of the emitting source, as well as the population of particle unstable states of light nuclei
Trickey, Heather; Newburn, Mary
2014-01-01
Three important infant feeding support problems are addressed: (1) mothers who use formula milk can feel undersupported and judged; (2) mothers can feel underprepared for problems with breastfeeding; and (3) many mothers who might benefit from breastfeeding support do not access help. Theory of constraints (TOC) is used to examine these problems in relation to ante-natal education and post-natal support. TOC suggests that long-standing unresolved problems or 'undesirable effects' in any system (in this case a system to provide education and support) are caused by conflicts, or dilemmas, within the system, which might not be explicitly acknowledged. Potential solutions are missed by failure to question assumptions which, when interrogated, often turn out to be invalid. Three core dilemmas relating to the three problems are identified, articulated and explored using TOC methodology. These are whether to: (1) promote feeding choice or to promote breastfeeding; (2) present breastfeeding positively, as straightforward and rewarding, or focus on preparing mothers for problems; and (3) offer support proactively or ensure that mothers themselves initiate requests for support. Assumptions are identified and interrogated, leading to clarified priorities for action relating to each problem. These are (1) shift the focus from initial decision-making towards support for mothers throughout their feeding journeys, enabling and protecting decisions to breastfeed as one aspect of ongoing support; (2) to promote the concept of an early-weeks investment and adjustment period during which breastfeeding is established; and (3) to develop more proactive mother-centred models of support for all forms of infant feeding. © 2012 John Wiley & Sons Ltd.
Two-particle quantum walks applied to the graph isomorphism problem
International Nuclear Information System (INIS)
Gamble, John King; Friesen, Mark; Zhou Dong; Joynt, Robert; Coppersmith, S. N.
2010-01-01
We show that the quantum dynamics of interacting and noninteracting quantum particles are fundamentally different in the context of solving a particular computational problem. Specifically, we consider the graph isomorphism problem, in which one wishes to determine whether two graphs are isomorphic (related to each other by a relabeling of the graph vertices), and focus on a class of graphs with particularly high symmetry called strongly regular graphs (SRGs). We study the Green's functions that characterize the dynamical evolution single-particle and two-particle quantum walks on pairs of nonisomorphic SRGs and show that interacting particles can distinguish nonisomorphic graphs that noninteracting particles cannot. We obtain the following specific results. (1) We prove that quantum walks of two noninteracting particles, fermions or bosons, cannot distinguish certain pairs of nonisomorphic SRGs. (2) We demonstrate numerically that two interacting bosons are more powerful than single particles and two noninteracting particles, in that quantum walks of interacting bosons distinguish all nonisomorphic pairs of SRGs that we examined. By utilizing high-throughput computing to perform over 500 million direct comparisons between evolution operators, we checked all tabulated pairs of nonisomorphic SRGs, including graphs with up to 64 vertices. (3) By performing a short-time expansion of the evolution operator, we derive distinguishing operators that provide analytic insight into the power of the interacting two-particle quantum walk.
Two-particle correlations in p+p and Pb+Pb collisions at SPS energies
AUTHOR|(CDS)2081214
In this thesis two-particle correlations in pseudorapidity and azimuthal angle in p+p collisions at beam momenta: 20, 31, 40, 80, and 158 GeV/c are presented. Data were recorded in the NA61/SHINE experiment at the CERN Super Proton Synchrotron (SPS). The results are compared to the EPOS and the UrQMD models as well as to the results from various experiments at the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC). Dedicated comparison analysis was done also on NA49 data of Pb+Pb collisions. The inclusive results in p+p show correlation structures connected with resonance decays, Bose-Einstein statistics, momentum conservation, and strings fragmentation. No structures connected with hard processes were observed even at 158 GeV/c beam momentum. The EPOS model reproduces data fine except of Bose-Einstein enhancement; the UrQMD model shows many disagreements with data. The results provide an insight into forgotten realm of soft physics where jet peaks do not cast shadows onto two-particle...
International Nuclear Information System (INIS)
Tanuma, T.; Oneda, S.; Terasaki, K.
1984-01-01
A new approach to nonleptonic weak interactions is presented. It is argued that the presence and violation of the Vertical BarΔIVertical Bar = 1/2 rule as well as those of the quark-line selection rules can be explained in a unified way, along with other fundamental physical quantities [such as the value of g/sub A/(0) and the smallness of the isoscalar nucleon magnetic moments], in terms of a single dynamical asymptotic ansatz imposed at the level of observable hadrons. The ansatz prescribes a way in which asymptotic flavor SU(N) symmetry is secured levelwise for a certain class of chiral algebras in the standard QCD model. It yields severe asymptotic constraints upon the two-particle hadronic matrix elements of nonleptonic weak Hamiltonians as well as QCD currents and their charges. It produces for weak matrix elements the asymptotic Vertical BarΔIVertical Bar = 1/2 rule and its charm counterpart for the ground-state hadrons, while for strong matrix elements quark-line-like approximate selection rules. However, for the less important weak two-particle vertices involving higher excited states, the Vertical BarΔIVertical Bar = 1/2 rule and its charm counterpart are in general violated, providing us with an explicit source of the violation of these selection rules in physical processes
International Nuclear Information System (INIS)
Liu Qingjun; Guo Liqun; Piao Xingliang
2006-01-01
Partonic effects on two-particle transverse momentum correlations are studied for Au + Au collisions at √S NN =130 GeV in the Monte Carlo model, AMPT. This study demonstrates that in these collisions partonic interactions contribute significantly to the correlations. Additionally, model calculations are compared with data of the two-particle transverse momentum correlations measured by the STAR Collaboration at RHIC, and it is found that AMPT with string melting can well reproduce the measured centrality dependence of the two-particle transverse momentum correlations in Au + Au collisions at √S NN =130 GeV. (authors)
Exact evaluation of entropic quantities in a solvable two-particle model
International Nuclear Information System (INIS)
Glasser, M.L.; Nagy, I.
2013-01-01
It has long been known that the von Neumann entropy S N and the Jozsa–Robb–Wootters subentropy Q JRW [R. Jozsa, et al., Phys. Rev. A 49 (1994) 668] are, respectively, upper and lower bounds on the accessible information one can obtain about the identity of a pure state by performing a quantum measurement on a system whose pure state is initially unknown. We determine these bounds exactly in terms of the occupation numbers of normalized natural orbitals of an externally confined interacting two-particle model system. The occupation numbers are obtained via a sign-correct direct decomposition of the underlying exact Schrödinger wave function in terms of an infinite sum of products of Löwdin's natural orbitals, avoiding thus the solution of the eigenvalue problem with the corresponding reduced one-particle matrix.
Measurement of two-particle semi-inclusive rapidity distributions at the CERN ISR
Amendolia, S R; Bosisio, L; Braccini, Pier Luigi; Bradaschia, C; Castaldi, R; Cavasinni, V; Cerri, C; Del Prete, T; Finocchiaro, G; Foà, L; Giromini, P; Grannis, P; Green, D; Jöstlein, H; Kephart, R; Laurelli, P; Menzione, A; Ristori, L; Sanguinetti, G; Thun, R; Valdata, M
1976-01-01
Data are presented on the semi-inclusive distributions of rapidities of secondary particles produced in pp collisions at very high energies. The experiment was performed at the CERN Intersecting Storage Rings (ISR). The data given, at centre-of-mass energies of square root s=23 and 62 GeV, include the single-particle distributions and two-particle correlations. The semi-inclusive correlations show pronounced short-range correlation effects which have a width considerably narrower than in the case of inclusive correlations. It is shown that these short-range effects can be understood empirically in terms of three parameters whose energy and multiplicity dependence are studied. The data support the picture of multiparticle production in which clusters of small multiplicity and small dispersion are emitted with subsequent decay into hadrons. (32 refs).
Small-threshold behaviour of two-loop self-energy diagrams: two-particle thresholds
International Nuclear Information System (INIS)
Berends, F.A.; Davydychev, A.I.; Moskovskij Gosudarstvennyj Univ., Moscow; Smirnov, V.A.; Moskovskij Gosudarstvennyj Univ., Moscow
1996-01-01
The behaviour of two-loop two-point diagrams at non-zero thresholds corresponding to two-particle cuts is analyzed. The masses involved in a cut and the external momentum are assumed to be small as compared to some of the other masses of the diagram. By employing general formulae of asymptotic expansions of Feynman diagrams in momenta and masses, we construct an algorithm to derive analytic approximations to the diagrams. In such a way, we calculate several first coefficients of the expansion. Since no conditions on relative values of the small masses and the external momentum are imposed, the threshold irregularities are described analytically. Numerical examples, using diagrams occurring in the standard model, illustrate the convergence of the expansion below the first large threshold. (orig.)
Exact evaluation of entropic quantities in a solvable two-particle model
Energy Technology Data Exchange (ETDEWEB)
Glasser, M.L., E-mail: laryg@clarkson.edu [Department of Physics, Clarkson University, Potsdam, NY 13699-5820 (United States); Donostia International Physics Center, P. Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Nagy, I. [Donostia International Physics Center, P. Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Department of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, H-1521 Budapest (Hungary)
2013-11-08
It has long been known that the von Neumann entropy S{sub N} and the Jozsa–Robb–Wootters subentropy Q{sub JRW} [R. Jozsa, et al., Phys. Rev. A 49 (1994) 668] are, respectively, upper and lower bounds on the accessible information one can obtain about the identity of a pure state by performing a quantum measurement on a system whose pure state is initially unknown. We determine these bounds exactly in terms of the occupation numbers of normalized natural orbitals of an externally confined interacting two-particle model system. The occupation numbers are obtained via a sign-correct direct decomposition of the underlying exact Schrödinger wave function in terms of an infinite sum of products of Löwdin's natural orbitals, avoiding thus the solution of the eigenvalue problem with the corresponding reduced one-particle matrix.
One- and two-particle correlation functions in the dynamical quantum cluster approach
International Nuclear Information System (INIS)
Hochkeppel, Stephan
2008-01-01
This thesis is dedicated to a theoretical study of the 1-band Hubbard model in the strong coupling limit. The investigation is based on the Dynamical Cluster Approximation (DCA) which systematically restores non-local corrections to the Dynamical Mean Field approximation (DMFA). The DCA is formulated in momentum space and is characterised by a patching of the Brillouin zone where momentum conservation is only recovered between two patches. The approximation works well if k-space correlation functions show a weak momentum dependence. In order to study the temperature and doping dependence of the spin- and charge excitation spectra, we explicitly extend the Dynamical Cluster Approximation to two-particle response functions. The full irreducible two-particle vertex with three momenta and frequencies is approximated by an effective vertex dependent on the momentum and frequency of the spin and/or charge excitations. The effective vertex is calculated by using the Quantum Monte Carlo method on the finite cluster whereas the analytical continuation of dynamical quantities is performed by a stochastic version of the maximum entropy method. A comparison with high temperature auxiliary field quantum Monte Carlo data serves as a benchmark for our approach to two-particle correlation functions. Our method can reproduce basic characteristics of the spin- and charge excitation spectrum. Near and beyond optimal doping, our results provide a consistent overall picture of the interplay between charge, spin and single-particle excitations: a collective spin mode emerges at optimal doping and sufficiently low temperatures in the spin response spectrum and exhibits the energy scale of the magnetic exchange interaction J. Simultaneously, the low energy single-particle excitations are characterised by a coherent quasiparticle with bandwidth J. The origin of the quasiparticle can be quite well understood in a picture of a more or less antiferromagnetic ordered background in which holes
Ding, E. J.
2015-06-01
The time-independent lattice Boltzmann algorithm (TILBA) is developed to calculate the hydrodynamic interactions between two particles in a Stokes flow. The TILBA is distinguished from the traditional lattice Boltzmann method in that a background matrix (BGM) is generated prior to the calculation. The BGM, once prepared, can be reused for calculations for different scenarios, and the computational cost for each such calculation will be significantly reduced. The advantage of the TILBA is that it is easy to code and can be applied to any particle shape without complicated implementation, and the computational cost is independent of the shape of the particle. The TILBA is validated and shown to be accurate by comparing calculation results obtained from the TILBA to analytical or numerical solutions for certain problems.
Jagiellonian University Two-particle correlations in $p$-Pb collisions at the LHCb
Małecki, Bartosz
2017-01-01
This paper describes the analysis of two-particle angular correlations in proton–lead collisions at $\\sqrt{s_{NN}}$ = 5 TeV nucleon–nucleon center-of-mass energy performed by the LHCb experiment. Correlations in function of relative pseudorapidity $\\Delta \\eta$ and relative azimuthal angle $\\Delta \\phi$ are measured in different event activity classes and bins of particle transverse momentum. The analysis is done separately for the two beam configurations corresponding to the two proton beam directions. Long-range near-side correlations are observed in high-activity events, thus extending previous analyses of this effect to the forward region (2.0 < $\\eta$ < 4.9). The near-side effect becomes stronger with increasing event activity and seems to be more prominent in the lead–proton mode. However, when comparing both beam configurations for events with similar absolute activity, the results are compatible with each other.
Optimal control of transverse mode coupling instability based on the two particle model
International Nuclear Information System (INIS)
Ogata, Atsushi
1985-01-01
The optimal regulator design technique is applied to asymptotically stabilize the transverse mode coupling instability of a storage ring. The state equations are based on the two particle model. These are a pair of equation sets, one for the first and one for the second half of the synchrotron phase. Each set consists of first-order difference equations in vector-matrix form, with time step equal to the revolution time of the ring. Solution of the discrete Riccati equation gives the optimal gain matrix of the transverse feedback. Computer simulations are carried out to verify its effectiveness. Some modifications necessary to apply it to the real accelerator operation are made. The old methods, the classical output feedback and the reactive feedback, are interpreted from the viewpoint of the optimal control. (orig.)
International Nuclear Information System (INIS)
Jones, P.M.S.
1987-01-01
There are considerable incentives for the use of nuclear in preference to other sources for base load electricity generation in most of the developed world. These are economic, strategic, environmental and climatic. However, there are two potential constraints which could hinder the development of nuclear power to its full economic potential. These are public opinion and financial regulations which distort the nuclear economic advantage. The concerns of the anti-nuclear lobby are over safety, (especially following the Chernobyl accident), the management of radioactive waste, the potential effects of large scale exposure of the population to radiation and weapons proliferation. These are discussed. The financial constraint is over two factors, the availability of funds and the perception of cost, both of which are discussed. (U.K.)
Studies of P-matrix formalism on the basis of the potential description of two-particle interaction
International Nuclear Information System (INIS)
Babenko, V.A.; Petrov, N.M.
1991-01-01
A study is made of mathematical and physical aspects of the P-matrix approach within the framework of the potential description of two particle interaction when the dynamics is based on the nonrelativistic Schroedinger equation. A dispersion formula for the P-matrix is derived correctly, different ways of its expansion by means of which it is possible to develop different methods of an approximate description of the quantities characterizing the two-particle interaction are suggested. 15 refs. (author)
Computational analysis of sedimentation of two particles in a narrow channel
Aidun, Cyrus K.; Ding, Ejiang
1998-11-01
The motion and interaction of two spherical bodies of diameter d in a narrow channel (width 4d) is simulated by Lattice-Boltzmann method at Reynolds numbers between 0 and 10. The initial positions of the particles are midway between the centerline of the channel and the side wall while one particle is 2d above the other. At low Reynolds numbers, the particles oscillate around the centerline of the channel while they approach each other, and eventually settle in contact. At higher Reynolds numbers, the trailing particle approaches the leading one; jointly, the particles enter into a damping oscillation without contacting each other. This motion has been described as drafting, kissing and tumbling (Hu, Joseph, and Crochet, Theoret. Comput. Fluid Dyn. 3 1992; Feng, Hu, and Joseph, J. Fluid Mech. 261 1994). In the phase space, constructed by the distances between each particle and the side wall, the attractor is a fixed point, representing a steady state. At even higher Reynolds number the dynamics changes into a stable limit cycle. The amplitude of the limit cycle increases as the Reynolds number increases in value. As Reynolds number increases further the motion becomes more complex. The trajectory in the phase space suggests the existence of a strange attractor. The dynamics of two particle sedimentation at this range of Reynolds number will be presented.
Constraint Specialisation in Horn Clause Verification
DEFF Research Database (Denmark)
Kafle, Bishoksan; Gallagher, John Patrick
2015-01-01
We present a method for specialising the constraints in constrained Horn clauses with respect to a goal. We use abstract interpretation to compute a model of a query-answer transformation of a given set of clauses and a goal. The effect is to propagate the constraints from the goal top......-down and propagate answer constraints bottom-up. Our approach does not unfold the clauses at all; we use the constraints from the model to compute a specialised version of each clause in the program. The approach is independent of the abstract domain and the constraints theory underlying the clauses. Experimental...
Constraint specialisation in Horn clause verification
DEFF Research Database (Denmark)
Kafle, Bishoksan; Gallagher, John Patrick
2017-01-01
We present a method for specialising the constraints in constrained Horn clauses with respect to a goal. We use abstract interpretation to compute a model of a query–answer transformed version of a given set of clauses and a goal. The constraints from the model are then used to compute...... a specialised version of each clause. The effect is to propagate the constraints from the goal top-down and propagate answer constraints bottom-up. The specialisation procedure can be repeated to yield further specialisation. The approach is independent of the abstract domain and the constraint theory...
International Nuclear Information System (INIS)
Batiz, Zoltan; Gross, Franz
2000-01-01
The momentum conservation sum rule for deep inelastic scattering (DIS) from composite particles is investigated using the general theory of relativity. For two (1+1)-dimensional examples, it is shown that covariant theories automatically satisy the DIS momentum conservation sum rule provided the bound state is covariantly normalized. Therefore, in these cases the two DIS sum rules for baryon conservation and momentum conservation are equivalent. (c) 2000 The American Physical Society
Macroscopic constraints on string unification
International Nuclear Information System (INIS)
Taylor, T.R.
1989-03-01
The comparison of sting theory with experiment requires a huge extrapolation from the microscopic distances, of order of the Planck length, up to the macroscopic laboratory distances. The quantum effects give rise to large corrections to the macroscopic predictions of sting unification. I discus the model-independent constraints on the gravitational sector of string theory due to the inevitable existence of universal Fradkin-Tseytlin dilatons. 9 refs
Brustein, Ram
2011-01-01
We reconsider, from a novel perspective, how unitarity constrains the corrections to the ratio of shear viscosity \\eta\\ to entropy density s. We start with higher-derivative extensions of Einstein gravity in asymptotically anti-de Sitter spacetimes. It is assumed that these theories are derived from string theory and thus have a unitary UV completion that is dual to a unitary, UV-complete boundary gauge theory. We then propose that the gravitational perturbations about a solution of the UV complete theory are described by an effective theory whose linearized equations of motion have at most two time derivatives. Our proposal leads to a concrete prescription for the calculation of \\eta/s for theories of gravity with arbitrary higher-derivative corrections. The resulting ratio can take on values above or below 1/4\\pi\\ and is consistent with all the previous calculations, even though our reasoning is substantially different. For the purpose of calculating \\eta/s, our proposal also leads to only two possible cand...
Principle Component Analysis of two-particle correlations in PbPb and pPb collisions at CMS
Energy Technology Data Exchange (ETDEWEB)
Milosevic, Jovan, E-mail: Jovan.Milosevic@cern.ch
2016-12-15
A Principle Component Analysis (PCA) of two-particle azimuthal correlations as a function of transverse momentum (p{sub T}) is presented in PbPb collisions at 2.76 TeV and high-multiplicity pPb collisions at 5.02 TeV. The data were recorded using the CMS detector at the LHC. It was shown that factorization breaking of two-particle azimuthal correlations can be attributed to the effect of initial-state fluctuations. Using a PCA approach, Fourier coefficients of observed two-particle azimuthal correlations as a function of both particles' p{sub T} are characterized into leading and sub-leading mode terms. The leading modes are essentially equivalent to anisotropy harmonics (v{sub n}) previously extracted from two-particle correlation methods as a function of p{sub T}. The sub-leading modes represent the largest sources of factorization breaking. In the context of hydrodynamic models, they are a direct consequence of initial-state fluctuations. The results are presented over a wide range of centrality and event multiplicity. The results are connected to the measurement of p{sub T}-dependent flow factorization breaking.
Two particle correlations at mid-rapidity in Si+A and Au+Au from E859/E866
International Nuclear Information System (INIS)
Baker, M.D.
1997-01-01
Two particle correlation measurements for Si-A and Au- Au collisions from Brookhaven E859 and E866 are discussed. These measurements allow us, with some interpretation, to deduce the size of the participant region in a heavy ion collision. We show that various source parameterizations yield consistent results and we explore the dependence of the apparent source size on the pion yield
Principle Component Analysis of two-particle correlations in PbPb and pPb collisions at CMS
AUTHOR|(CDS)2076725
2015-01-01
A Principle Component Analysis (PCA) of two-particle azimuthal correlations as a function of transverse momentum ($p_T$) is presented in PbPb collisions at 2.76 TeV and high-multiplicity pPb collisions at 5.02 TeV. The data were recorded using the CMS detector at the LHC. It was shown that factorization breaking of two-particle azimuthal correlations can be attributed to the effect of initial-state fluctuations. Using a PCA approach, Fourier coefficients of observed two-particle azimuthal correlations as a function of both particles $p_T$ are characterized into leading and sub-leading mode terms. The leading modes are essentially equivalent to anisotropy harmonics ($v_n$) previously extracted from two-particle correlation methods as a function of $p_T$. The sub-leading modes represent the largest sources of factorization breaking. In the context of hydrodynamic models, they are a direct consequence of initial-state fluctuations. The results are presented over a wide range of centrality and event multiplicity....
CMS Collaboration
2015-01-01
A Principle Component Analysis (PCA) of two-particle azimuthal correlations as a function of transverse momentum ($p_T$) is presented in PbPb collisions at 2.76 TeV and high-multiplicity pPb collisions at 5.02 TeV. The data were recorded using the CMS detector at the LHC. It has recently been shown that factorization breaking of two-particle azimuthal correlations can be attributed to the effect of initial-state fluctuations. Using a PCA approach, Fourier coefficients of observed two-particle azimuthal correlations as a function of both particles $p_T$ are characterized into leading and sub-leading mode terms. The leading modes are essentially equivalent to anisotropy harmonics ($v_n$) previously extracted from two-particle correlation methods as a function of $p_T$. The sub-leading modes represent the largest sources of factorization breaking. In the context of hydrodynamic models, they are a direct consequence of initial-state fluctuations, particularly providing new insights on the radial excitations of in...
Modifier constraints in alkali ultraphosphate glasses
DEFF Research Database (Denmark)
Rodrigues, B.P.; Mauro, J.C.; Yue, Yuanzheng
2014-01-01
In applying the recently introduced concept of cationic constraint strength [J. Chem. Phys. 140, 214501 (2014)] to bond constraint theory (BCT) of binary phosphate glasses in the ultraphosphate region of xR2O-(1-x)P2O5 (with x ≤ 0.5 and R = {Li, Na, Cs}), we demonstrate that a fundamental limitat...
Wegner-type Bounds for a Two-particle Lattice Model with a Generic 'Rough' Quasi-periodic Potential
International Nuclear Information System (INIS)
Gaume, Martin
2010-01-01
In this paper, we consider a class of two-particle tight-binding Hamiltonians, describing pairs of interacting quantum particles on the lattice Z d , d ≥ 1, subject to a common external potential V(x) which we assume quasi-periodic and depending on auxiliary parameters. Such parametric families of ergodic deterministic potentials ('grands ensembles') have been introduced earlier in Chulaevsky (2007), in the framework of single-particle lattice systems, where it was proved that a non-uniform analog of the Wegner bound holds true for a class of quasi-periodic grands ensembles. Using the approach proposed in Chulaevsky and Suhov (Commun Math Phys 283(2):479-489, 2008), we establish volume-dependent Wegner-type bounds for a class of quasi-periodic two-particle lattice systems with a non-random short-range interaction.
International Nuclear Information System (INIS)
Lednicky, R.; Lyuboshitz, V.L.
1996-01-01
The structure of pair correlations of interacting particles moving with nearby velocities is analysed. A general formalism of the two-particle space-time density matrix, taking into account the space-time coherence of the production process, is developed. The influence of strong final state interaction on two-particle correlations in the case of the production of a system resonance + particle is investigated in detail. It is shown that in the limit of small distances between the resonance and particle production points the effect of final state interaction is enhanced due to logarithmic singularity of the triangle diagram. Numerical estimates indicate that, in this limit, the effect of strong final state interaction becomes important even for two-pion correlations. (author)
Sicking, Eva
2012-01-01
We investigate properties of jets in proton-proton collisions using two-particle angular correlations. By choosing an analysis approach based on two-particle angular correlations, also the properties of low-energetic jets can be accessed. Observing the strength of the correlation as a function of the charged particle multiplicity reveals jet fragmentation properties as well as the contribution of jets to the overall charged particle multiplicity. Furthermore, the analysis discloses information on the underlying multiple parton interactions. We present results from proton-proton collisions at the center-of-mass energies $\\sqrt{s}$ = 0.9, 2.76, and 7.0 TeV recorded by the ALICE experiment. The ALICE data are compared to Pythia6, Pythia8, and Phojet simulations.
International Nuclear Information System (INIS)
Aduszkiewicz, A.; Dominik, W.; Kuich, M.; Matulewicz, T.; Posiadala, M.; Walewski, M.; Ali, Y.; Andronov, E.; Feofilov, G.A.; Igolkin, S.; Kondratiev, V.P.; Kovalenko, V.; Merzlaya, A.; Seryakov, A.; Vechernin, V.V.; Vinogradov, L.; Anticic, T.; Kadija, K.; Susa, T.; Antoniou, N.; Christakoglou, P.; Diakonos, F.; Kapoyannis, A.; Panagiotou, A.D.; Vassiliou, M.; Baatar, B.; Brandin, A.; Selyuzhenkov, I.; Taranenko, A.; Bay, F.; Di Luise, S.; Rubbia, A.; Sgalaberna, D.; Blondel, A.; Bravar, A.; Damyanova, A.; Haesler, A.; Korzenev, A.; Ravonel, M.; Bogomilov, M.; Kolev, D.; Tsenov, R.; Brzychczyk, J.; Larsen, D.; Planeta, R.; Richter-Was, E.; Staszel, P.; Wyszynski, O.; Bunyatov, S.A.; Kolesnikov, V.I.; Krasnoperov, A.; Lyubushkin, V.V.; Malakhov, A.I.; Matveev, V.; Melkumov, G.L.; Tereshchenko, V.; Busygina, O.; Golubeva, M.; Guber, F.; Ivashkin, A.; Kurepin, A.; Sadovsky, A.; Cirkovic, M.; Knezevic, N.; Manic, D.; Puzovic, J.; Czopowicz, T.; Grebieszkow, K.; Mackowiak-Pawlowska, M.; Maksiak, B.; Sarnecki, R.; Slodkowski, M.; Tefelska, A.; Tefelski, D.; Davis, N.; Kielbowicz, M.; Ozvenchuk, V.; Rybicki, A.; Dembinski, H.; Engel, R.; Herve, A.E.; Mathes, H.J.; Roth, M.; Szuba, M.; Ulrich, R.; Unger, M.; Veberic, D.; Deveaux, M.; Koziel, M.; Renfordt, R.; Stroebele, H.; Dumarchez, J.; Robert, A.; Ereditato, A.; Hierholzer, M.; Nirkko, M.; Pistillo, C.; Redij, A.; Fodor, Z.; Garibov, A.; Gazdzicki, M.; Grzeszczuk, A.; Kaptur, E.; Kisiel, J.; Kowalski, S.; Pulawski, S.; Schmidt, K.; Wilczek, A.; Hasegawa, T.; Kobayashi, T.; Nakadaira, T.; Nishikawa, K.; Sakashita, K.; Sekiguchi, T.; Shibata, M.; Tada, M.; Hylen, J.; Lundberg, B.; Marchionni, A.; Rameika, R.; Zwaska, R.; Johnson, S.R.; Marino, A.D.; Nagai, Y.; Rumberger, B.T.; Zimmerman, E.D.; Kowalik, K.; Rondio, E.; Stepaniak, J.; Laszlo, A.; Marton, K.; Vesztergombi, G.; Lewicki, M.; Naskret, M.; Turko, L.; Marcinek, A.; Messerly, B.; Paolone, V.; Wickremasinghe, A.; Mills, G.B.; Morozov, S.; Petukhov, O.; Mrowczynski, S.; Rybczynski, M.; Seyboth, P.; Stefanek, G.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A.; Pavin, M.; Popov, B.A.; Rauch, W.; Roehrich, D.; Rustamov, A.; Zambelli, L.
2017-01-01
Results on two-particle ΔηΔφ correlations in inelastic p + p interactions at 20, 31, 40, 80, and 158 GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. The results are compared with the Epos and UrQMD models. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Aduszkiewicz, A.; Dominik, W.; Kuich, M.; Matulewicz, T.; Posiadala, M.; Walewski, M. [University of Warsaw, Warsaw (Poland); Ali, Y. [Jagiellonian University, Cracow (Poland); COMSATS Institute of Information Technology, Islamabad (Pakistan); Andronov, E.; Feofilov, G.A.; Igolkin, S.; Kondratiev, V.P.; Kovalenko, V.; Merzlaya, A.; Seryakov, A.; Vechernin, V.V.; Vinogradov, L. [St. Petersburg State University, St. Petersburg (Russian Federation); Anticic, T.; Kadija, K.; Susa, T. [Ruder Boskovic Institute, Zagreb (Croatia); Antoniou, N.; Christakoglou, P.; Diakonos, F.; Kapoyannis, A.; Panagiotou, A.D.; Vassiliou, M. [University of Athens, Athens (Greece); Baatar, B.; Brandin, A.; Selyuzhenkov, I.; Taranenko, A. [National Research Nuclear University (Moscow Engineering Physics Institute), Moscow (Russian Federation); Bay, F.; Di Luise, S.; Rubbia, A.; Sgalaberna, D. [ETH Zuerich, Zuerich (Switzerland); Blondel, A.; Bravar, A.; Damyanova, A.; Haesler, A.; Korzenev, A.; Ravonel, M. [University of Geneva, Geneva (Switzerland); Bogomilov, M.; Kolev, D.; Tsenov, R. [University of Sofia, Faculty of Physics, Sofia (Bulgaria); Brzychczyk, J.; Larsen, D.; Planeta, R.; Richter-Was, E.; Staszel, P.; Wyszynski, O. [Jagiellonian University, Cracow (Poland); Bunyatov, S.A.; Kolesnikov, V.I.; Krasnoperov, A.; Lyubushkin, V.V.; Malakhov, A.I.; Matveev, V.; Melkumov, G.L.; Tereshchenko, V. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Busygina, O.; Golubeva, M.; Guber, F.; Ivashkin, A.; Kurepin, A.; Sadovsky, A. [Institute for Nuclear Research, Moscow (Russian Federation); Cirkovic, M.; Knezevic, N.; Manic, D.; Puzovic, J. [University of Belgrade, Belgrade (Serbia); Czopowicz, T.; Grebieszkow, K.; Mackowiak-Pawlowska, M.; Maksiak, B.; Sarnecki, R.; Slodkowski, M.; Tefelska, A.; Tefelski, D. [Warsaw University of Technology, Warsaw (Poland); Davis, N.; Kielbowicz, M.; Ozvenchuk, V.; Rybicki, A. [H. Niewodniczanski Institute of Nuclear Physics of the Polish Academy of Sciences, Krakow (Poland); Dembinski, H.; Engel, R.; Herve, A.E.; Mathes, H.J.; Roth, M.; Szuba, M.; Ulrich, R.; Unger, M.; Veberic, D. [Karlsruhe Institute of Technology, Karlsruhe (Germany); Deveaux, M.; Koziel, M.; Renfordt, R.; Stroebele, H. [University of Frankfurt, Frankfurt (Germany); Dumarchez, J.; Robert, A. [LPNHE, University of Paris VI and VII, Paris (France); Ereditato, A.; Hierholzer, M.; Nirkko, M.; Pistillo, C.; Redij, A. [University of Bern, Bern (Switzerland); Fodor, Z. [Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Budapest (Hungary); University of Wroclaw, Wroclaw (Poland); Garibov, A. [National Nuclear Research Center, Baku (Azerbaijan); Gazdzicki, M. [University of Frankfurt, Frankfurt (Germany); Jan Kochanowski University in Kielce, Kielce (Poland); Grzeszczuk, A.; Kaptur, E.; Kisiel, J.; Kowalski, S.; Pulawski, S.; Schmidt, K.; Wilczek, A. [University of Silesia, Katowice (Poland); Hasegawa, T.; Kobayashi, T.; Nakadaira, T.; Nishikawa, K.; Sakashita, K.; Sekiguchi, T.; Shibata, M.; Tada, M. [Institute for Particle and Nuclear Studies, Tsukuba (Japan); Hylen, J.; Lundberg, B.; Marchionni, A.; Rameika, R.; Zwaska, R. [Fermilab, Batavia (United States); Johnson, S.R.; Marino, A.D.; Nagai, Y.; Rumberger, B.T.; Zimmerman, E.D. [University of Colorado, Boulder (United States); Kowalik, K.; Rondio, E.; Stepaniak, J. [National Centre for Nuclear Research, Warsaw (Poland); Laszlo, A.; Marton, K.; Vesztergombi, G. [Wigner Research Centre for Physics of the Hungarian Academy of Sciences, Budapest (Hungary); Lewicki, M.; Naskret, M.; Turko, L. [University of Wroclaw, Wroclaw (Poland); Marcinek, A. [Jagiellonian University, Cracow (Poland); University of Wroclaw, Wroclaw (Poland); Messerly, B.; Paolone, V.; Wickremasinghe, A. [University of Pittsburgh, Pittsburgh (United States); Mills, G.B. [Los Alamos National Laboratory, Los Alamos (United States); Morozov, S.; Petukhov, O. [Institute for Nuclear Research, Moscow (Russian Federation); National Research Nuclear University (Moscow Engineering Physics Institute), Moscow (Russian Federation); Mrowczynski, S.; Rybczynski, M.; Seyboth, P.; Stefanek, G.; Wlodarczyk, Z.; Wojtaszek-Szwarc, A. [Jan Kochanowski University in Kielce, Kielce (Poland); Pavin, M. [Ruder Boskovic Institute, Zagreb (Croatia); LPNHE, University of Paris VI and VII, Paris (France); Popov, B.A. [LPNHE, University of Paris VI and VII, Paris (France); Joint Institute for Nuclear Research, Dubna (Russian Federation); Rauch, W. [Fachhochschule Frankfurt, Frankfurt (Germany); Roehrich, D. [University of Bergen, Bergen (Norway); Rustamov, A. [National Nuclear Research Center, Baku (Azerbaijan); University of Frankfurt, Frankfurt (Germany); Zambelli, L. [LPNHE, University of Paris VI and VII, Paris (France); Institute for Particle and Nuclear Studies, Tsukuba (Japan)
2017-02-15
Results on two-particle ΔηΔφ correlations in inelastic p + p interactions at 20, 31, 40, 80, and 158 GeV/c are presented. The measurements were performed using the large acceptance NA61/SHINE hadron spectrometer at the CERN Super Proton Synchrotron. The data show structures which can be attributed mainly to effects of resonance decays, momentum conservation, and quantum statistics. The results are compared with the Epos and UrQMD models. (orig.)
Notes on Timed Concurrent Constraint Programming
DEFF Research Database (Denmark)
Nielsen, Mogens; Valencia, Frank D.
2004-01-01
and program reactive systems. This note provides a comprehensive introduction to the background for and central notions from the theory of tccp. Furthermore, it surveys recent results on a particular tccp calculus, ntcc, and it provides a classification of the expressive power of various tccp languages.......A constraint is a piece of (partial) information on the values of the variables of a system. Concurrent constraint programming (ccp) is a model of concurrency in which agents (also called processes) interact by telling and asking information (constraints) to and from a shared store (a constraint...
Revisiting the simplicity constraints and coherent intertwiners
International Nuclear Information System (INIS)
Dupuis, Maite; Livine, Etera R
2011-01-01
In the context of loop quantum gravity and spinfoam models, the simplicity constraints are essential in that they allow one to write general relativity as a constrained topological BF theory. In this work, we apply the recently developed U(N) framework for SU(2) intertwiners to the issue of imposing the simplicity constraints to spin network states. More particularly, we focus on solving on individual intertwiners in the 4D Euclidean theory. We review the standard way of solving the simplicity constraints using coherent intertwiners and we explain how these fit within the U(N) framework. Then we show how these constraints can be written as a closed u(N) algebra and we propose a set of U(N) coherent states that solves all the simplicity constraints weakly for an arbitrary Immirzi parameter.
Supergravity constraints on monojets
International Nuclear Information System (INIS)
Nandi, S.
1986-01-01
In the standard model, supplemented by N = 1 minimal supergravity, all the supersymmetric particle masses can be expressed in terms of a few unknown parameters. The resulting mass relations, and the laboratory and the cosmological bounds on these superpartner masses are used to put constraints on the supersymmetric origin of the CERN monojets. The latest MAC data at PEP excludes the scalar quarks, of masses up to 45 GeV, as the origin of these monojets. The cosmological bounds, for a stable photino, excludes the mass range necessary for the light gluino-heavy squark production interpretation. These difficulties can be avoided by going beyond the minimal supergravity theory. Irrespective of the monojets, the importance of the stable γ as the source of the cosmological dark matter is emphasized
A compendium of chameleon constraints
International Nuclear Information System (INIS)
Burrage, Clare; Sakstein, Jeremy
2016-01-01
The chameleon model is a scalar field theory with a screening mechanism that explains how a cosmologically relevant light scalar can avoid the constraints of intra-solar-system searches for fifth-forces. The chameleon is a popular dark energy candidate and also arises in f ( R ) theories of gravity. Whilst the chameleon is designed to avoid historical searches for fifth-forces it is not unobservable and much effort has gone into identifying the best observables and experiments to detect it. These results are not always presented for the same models or in the same language, a particular problem when comparing astrophysical and laboratory searches making it difficult to understand what regions of parameter space remain. Here we present combined constraints on the chameleon model from astrophysical and laboratory searches for the first time and identify the remaining windows of parameter space. We discuss the implications for cosmological chameleon searches and future small-scale probes.
A compendium of chameleon constraints
Energy Technology Data Exchange (ETDEWEB)
Burrage, Clare [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Sakstein, Jeremy, E-mail: clare.burrage@nottingham.ac.uk, E-mail: jeremy.sakstein@port.ac.uk [Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104 (United States)
2016-11-01
The chameleon model is a scalar field theory with a screening mechanism that explains how a cosmologically relevant light scalar can avoid the constraints of intra-solar-system searches for fifth-forces. The chameleon is a popular dark energy candidate and also arises in f ( R ) theories of gravity. Whilst the chameleon is designed to avoid historical searches for fifth-forces it is not unobservable and much effort has gone into identifying the best observables and experiments to detect it. These results are not always presented for the same models or in the same language, a particular problem when comparing astrophysical and laboratory searches making it difficult to understand what regions of parameter space remain. Here we present combined constraints on the chameleon model from astrophysical and laboratory searches for the first time and identify the remaining windows of parameter space. We discuss the implications for cosmological chameleon searches and future small-scale probes.
Aubin, Jean-Pierre; Saint-Pierre, Patrick
2011-01-01
Viability theory designs and develops mathematical and algorithmic methods for investigating the adaptation to viability constraints of evolutions governed by complex systems under uncertainty that are found in many domains involving living beings, from biological evolution to economics, from environmental sciences to financial markets, from control theory and robotics to cognitive sciences. It involves interdisciplinary investigations spanning fields that have traditionally developed in isolation. The purpose of this book is to present an initiation to applications of viability theory, explai
International Nuclear Information System (INIS)
Chin Yongho.
1986-09-01
In order to explain the large discrepancy between the measured transverse coherent tune shifts and analytical ones in a short bunch in PETRA, the effects of the closed orbit distortion y co and the dispersion η on a beam instability is studied with a two-particle model. It follows the result which supports Kohaupt's previous results; they hardly contribute to real tune shift, while the momentum dependence of the wake force can make a beam unstable, with the growth rate which is proportional to the product of y co and η. (orig.)
Two-particle correlations in the one-dimensional Hubbard model: a ground-state analytical solution
Vallejo, E; Espinosa, J E
2003-01-01
A solution to the extended Hubbard Hamiltonian for the case of two-particles in an infinite one-dimensional lattice is presented, using a real-space mapping method and the Green function technique. This Hamiltonian considers the on-site (U) and the nearest-neighbor (V) interactions. The method is based on mapping the correlated many-body problem onto an equivalent site-impurity tight-binding one in a higher dimensional space. In this new space we obtained the analytical solution for the ground state binding energy. Results are in agreement with the numerical solution obtained previously [1], and with those obtained in the reciprocal space [2]. (Author)
Two-particle azimuthal correlations at high transverse momentum in Pb-Au at 158 AGeV/c
International Nuclear Information System (INIS)
Ploskon, M.
2006-01-01
The study of two-particle azimuthal correlations at high transverse momentum has become an important tool to investigate the interaction of hard partons with the medium formed in high-energy nucleus-nucleus collisions. At SPS energies, pioneering studies by the CERES Collaboration indicated a significant modification of the away-side structure in central collisions. Here we present new results emerging from the analysis of the year 2000 data set recorded with the CERES Time-Projection Chamber, which provides excellent tracking efficiency and significantly improved momentum determination. (author)
International Nuclear Information System (INIS)
Ness, H.; Dash, L. K.
2014-01-01
We study the non-equilibrium (NE) fluctuation-dissipation (FD) relations in the context of quantum thermoelectric transport through a two-terminal nanodevice in the steady-state. The FD relations for the one- and two-particle correlation functions are derived for a model of the central region consisting of a single electron level. Explicit expressions for the FD relations of the Green's functions (one-particle correlations) are provided. The FD relations for the current-current and charge-charge (two-particle) correlations are calculated numerically. We use self-consistent NE Green's functions calculations to treat the system in the absence and in the presence of interaction (electron-phonon) in the central region. We show that, for this model, there is no single universal FD theorem for the NE steady state. There are different FD relations for each different class of problems. We find that the FD relations for the one-particle correlation function are strongly dependent on both the NE conditions and the interactions, while the FD relations of the current-current correlation function are much less dependent on the interaction. The latter property suggests interesting applications for single-molecule and other nanoscale transport experiments
International Nuclear Information System (INIS)
Kishine, Jun-Ichiro; Yonemitsu, Kenji
1998-01-01
Physical nature of dimensional crossovers in weakly coupled Hubbard chains and ladders has been discussed within the framework of the perturbative renormalization-group (PRG) approach. The difference between these two cases originates from different universality classes which the corresponding isolated systems belong to. In the present work, we discuss the nature of the dimensional crossovers in the weakly coupled chains and ladders, with emphasis on the difference between the two cases within the framework of the PRG approach. The difference of the universality class of the isolated chain and ladder profoundly affects the relevance or irrelevance of the inter-chain/ladder one-particle hopping. The strong coupling phase of the isolated ladder makes the one-particle process irrelevant so that the d-wave superconducting transition can be induced via the two-particle crossover in the weakly coupled ladders. The weak coupling phase of the isolated chain makes the one-particle process relevant so that the two-particle crossover can hardly be realized in the coupled chains. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
On quantization of time-dependent systems with constraints
International Nuclear Information System (INIS)
Gadjiev, S A; Jafarov, R G
2007-01-01
The Dirac method of canonical quantization of theories with second-class constraints has to be modified if the constraints depend on time explicitly. A solution of the problem was given by Gitman and Tyutin. In the present work we propose an independent way to derive the rules of quantization for these systems, starting from the physical equivalent theory with trivial non-stationarity
On quantization of time-dependent systems with constraints
International Nuclear Information System (INIS)
Hadjialieva, F.G.; Jafarov, R.G.
1993-07-01
The Dirac method of canonical quantization of theories with second class constraints has to be modified if the constraints depend on time explicitly. A solution of the problem was given by Gitman and Tyutin. In the present work we propose an independent way to derive the rules of quantization for these systems, starting from physical equivalent theory with trivial nonstationarity. (author). 4 refs
On quantization of time-dependent systems with constraints
Energy Technology Data Exchange (ETDEWEB)
Gadjiev, S A; Jafarov, R G [Institute for Physical Problems, Baku State University, AZ11 48 Baku (Azerbaijan)
2007-03-30
The Dirac method of canonical quantization of theories with second-class constraints has to be modified if the constraints depend on time explicitly. A solution of the problem was given by Gitman and Tyutin. In the present work we propose an independent way to derive the rules of quantization for these systems, starting from the physical equivalent theory with trivial non-stationarity.
Portfolios with nonlinear constraints and spin glasses
Gábor, Adrienn; Kondor, I.
1999-12-01
In a recent paper Galluccio, Bouchaud and Potters demonstrated that a certain portfolio problem with a nonlinear constraint maps exactly onto finding the ground states of a long-range spin glass, with the concomitant nonuniqueness and instability of the optimal portfolios. Here we put forward geometric arguments that lead to qualitatively similar conclusions, without recourse to the methods of spin glass theory, and give two more examples of portfolio problems with convex nonlinear constraints.
Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz
2012-01-01
We present a measurement of two-particle angular correlations in proton-proton collisions at $\\sqrt{s}$ = 900 GeV and 7 TeV. The collision events were collected during 2009 and 2010 with the ATLAS detector at the Large Hadron Collider using a single-arm minimum bias trigger. Correlations are measured for charged particles produced in the kinematic range of transverse momentum pT > 100 MeV and pseudorapidity |$\\eta$| < 2.5. A complex structure in pseudorapidity and azimuth is observed at both collision energies. Results are compared to Pythia 8 and Herwig++ as well as to the AMBT2B, DW and Perugia 2011 tunes of Pythia 6. The data are not satisfactorily described by any of these models.
Fundamental constraints on some event data
International Nuclear Information System (INIS)
Watson, I.A.
1986-01-01
A modified version of Searle's theory of the structure of human action has been explained and applied to man machine interaction. The comprehensiveness of the theory has been demonstrated, in particular its explanation of human performance and that its consistency with current theories of human error for which it provides an overall setting. The importance of the mental component of human error is highlighted and the constraints that this puts on the collection analysis and use of human error data. Examples have been given to illustrate and apply the theory ranging from considerations of the tenuousness of the link between safety goals and data to simple valve operations. Two approaches which recognise the constraints shown by the theory have been explained. (orig./DG)
International Nuclear Information System (INIS)
Mansouri, F.; Suranyi, P; Wijewardhana, L.C.R.
1991-10-01
In the test particle approximation, the scattering amplitude for two-particle scattering in (2+1)-dimensional Chern-Simons-Witten gravity and supergravity was computed and compared to the corresponding metric solutions. The formalism was then extended to the exact gauge theoretic treatment of the two-particle scattering problem and compared to 't Hooft's results from the metric approach. We have studied dynamical symmetry breaking in 2+1 dimensional field theories. We have analyzed strong Extended Technicolor (ETC) models where the ETC coupling is close to a critical value. There are effective scalar fields in each of the theories. We have worked our how such scalar particles can be produced and how they decay. The φ 4 field theory was investigated in the Schrodinger representation. The critical behavior was extracted in an arbitrary number of dimensions in second order of a systematic truncation approximation. The correlation exponent agrees with known values within a few percent
Constraint theory and hierarchical protein dynamics
Energy Technology Data Exchange (ETDEWEB)
Phillips, J C [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854-8019 (United States)
2004-11-10
The complexity and functionality of proteins requires that they occupy an exponentially small fraction of configuration space (perhaps 10{sup -300}). How did evolution manage to create such unlikely objects? Thorpe has solved the static half of this problem (known in protein chemistry as Levinthal's paradox) by observing that for stress-free chain segments the complexity of optimally constrained elastic networks scales not with expN (where N {approx} 100-1000 is the number of amino acids in a protein), but only with N. Newman's results for diffusion in N-dimensional spaces provide suggestive insights into the dynamical half of the problem. He showed that the distribution of residence (or pausing) time between sign reversals changes qualitatively at N {approx}40. The overall sign of a protein can be defined in terms of a product of curvature and hydrophobic(philic) character over all amino acid residues. This construction agrees with the sizes of the smallest known proteins and prions, and it suggests a universal clock for protein molecular dynamics simulations.
Computational constraints in cognitive theories of forgetting.
Ecker, Ullrich K H; Lewandowsky, Stephan
2012-01-01
This article highlights some of the benefits of computational modeling for theorizing in cognition. We demonstrate how computational models have been used recently to argue that (1) forgetting in short-term memory is based on interference not decay, (2) forgetting in list-learning paradigms is more parsimoniously explained by a temporal distinctiveness account than by various forms of consolidation, and (3) intrusion asymmetries that appear when information is learned in different contexts can be explained by temporal context reinstatement rather than labilization and reconsolidation processes.
Constraint theory and hierarchical protein dynamics
International Nuclear Information System (INIS)
Phillips, J C
2004-01-01
The complexity and functionality of proteins requires that they occupy an exponentially small fraction of configuration space (perhaps 10 -300 ). How did evolution manage to create such unlikely objects? Thorpe has solved the static half of this problem (known in protein chemistry as Levinthal's paradox) by observing that for stress-free chain segments the complexity of optimally constrained elastic networks scales not with expN (where N ∼ 100-1000 is the number of amino acids in a protein), but only with N. Newman's results for diffusion in N-dimensional spaces provide suggestive insights into the dynamical half of the problem. He showed that the distribution of residence (or pausing) time between sign reversals changes qualitatively at N ∼40. The overall sign of a protein can be defined in terms of a product of curvature and hydrophobic(philic) character over all amino acid residues. This construction agrees with the sizes of the smallest known proteins and prions, and it suggests a universal clock for protein molecular dynamics simulations
Computational constraints in cognitive theories of forgetting
Directory of Open Access Journals (Sweden)
Ullrich eEcker
2012-10-01
Full Text Available This article highlights some of the benefits of computational modeling for theorizing in cognition. We demonstrate how computational models have been used recently to argue that (1 forgetting in short-term memory is based on interference not decay, (2 forgetting in list-learning paradigms is more parsimoniously explained by a temporal distinctiveness account than by various forms of consolidation, and (3 intrusion asymmetries that appear when information is learned in different contexts can be explained by temporal context reinstatement rather than labilization and reconsolidation processes.
Financing Constraints and Entrepreneurship
William R. Kerr; Ramana Nanda
2009-01-01
Financing constraints are one of the biggest concerns impacting potential entrepreneurs around the world. Given the important role that entrepreneurship is believed to play in the process of economic growth, alleviating financing constraints for would-be entrepreneurs is also an important goal for policymakers worldwide. We review two major streams of research examining the relevance of financing constraints for entrepreneurship. We then introduce a framework that provides a unified perspecti...
Temporal Concurrent Constraint Programming
DEFF Research Database (Denmark)
Nielsen, Mogens; Valencia Posso, Frank Dan
2002-01-01
The ntcc calculus is a model of non-deterministic temporal concurrent constraint programming. In this paper we study behavioral notions for this calculus. In the underlying computational model, concurrent constraint processes are executed in discrete time intervals. The behavioral notions studied...... reflect the reactive interactions between concurrent constraint processes and their environment, as well as internal interactions between individual processes. Relationships between the suggested notions are studied, and they are all proved to be decidable for a substantial fragment of the calculus...
International Nuclear Information System (INIS)
Brehm, Sascha
2009-01-01
Two-particle excitations, such as spin and charge excitations, play a key role in high-T c cuprate superconductors (HTSC). Due to the antiferromagnetism of the parent compound the magnetic excitations are supposed to be directly related to the mechanism of superconductivity. In particular, the so-called resonance mode is a promising candidate for the pairing glue, a bosonic excitation mediating the electronic pairing. In addition, its interactions with itinerant electrons may be responsible for some of the observed properties of HTSC. Hence, getting to the bottom of the resonance mode is crucial for a deeper understanding of the cuprate materials. To analyze the corresponding two-particle correlation functions we develop in the present thesis a new, non-perturbative and parameter-free technique for T=0 which is based on the Variational Cluster Approach (VCA, an embedded cluster method for one-particle Green's functions). Guided by the spirit of the VCA we extract an effective electron-hole vertex from an isolated cluster and use a fully renormalized bubble susceptibility χ 0 including the VCA one-particle propagators. Within our new approach, the magnetic excitations of HTSC are shown to be reproduced for the Hubbard model within the relevant strong-coupling regime. Exceptionally, the famous resonance mode occurring in the underdoped regime within the superconductivity-induced gap of spin-flip electron-hole excitations is obtained. Its intensity and hourglass dispersion are in good overall agreement with experiments. Furthermore, characteristic features such as the position in energy of the resonance mode and the difference of the imaginary part of the susceptibility in the superconducting and the normal states are in accord with Inelastic Neutron Scattering (INS) experiments. For the first time, a strongly-correlated parameter-free calculation revealed these salient magnetic properties supporting the S=1 magnetic exciton scenario for the resonance mode. Besides
Temporal Concurrent Constraint Programming
DEFF Research Database (Denmark)
Nielsen, Mogens; Palamidessi, Catuscia; Valencia, Frank Dan
2002-01-01
The ntcc calculus is a model of non-deterministic temporal concurrent constraint programming. In this paper we study behavioral notions for this calculus. In the underlying computational model, concurrent constraint processes are executed in discrete time intervals. The behavioral notions studied...
Evaluating Distributed Timing Constraints
DEFF Research Database (Denmark)
Kristensen, C.H.; Drejer, N.
1994-01-01
In this paper we describe a solution to the problem of implementing time-optimal evaluation of timing constraints in distributed real-time systems.......In this paper we describe a solution to the problem of implementing time-optimal evaluation of timing constraints in distributed real-time systems....
Route constraints model based on polychromatic sets
Yin, Xianjun; Cai, Chao; Wang, Houjun; Li, Dongwu
2018-03-01
With the development of unmanned aerial vehicle (UAV) technology, the fields of its application are constantly expanding. The mission planning of UAV is especially important, and the planning result directly influences whether the UAV can accomplish the task. In order to make the results of mission planning for unmanned aerial vehicle more realistic, it is necessary to consider not only the physical properties of the aircraft, but also the constraints among the various equipment on the UAV. However, constraints among the equipment of UAV are complex, and the equipment has strong diversity and variability, which makes these constraints difficult to be described. In order to solve the above problem, this paper, referring to the polychromatic sets theory used in the advanced manufacturing field to describe complex systems, presents a mission constraint model of UAV based on polychromatic sets.
Detailed analysis of two particle correlations in central Pb-Au collisions at 158 GeV per nucleon
Energy Technology Data Exchange (ETDEWEB)
Antonczyk, D.
2006-07-01
This thesis presents a two-particle correlation analysis of the fully calibrated high statistics CERES Pb+Au collision data at the top SPS energy, with the emphasis on the pion-proton correlations and the event-plane dependence of the correlation radii. CERES is a dilepton spectrometer at CERN SPS. After the upgrade, which improved the momentum resolution and extended the detector capabilities to hadrons, CERES collected 30 million Pb+Au events at 158 AGeV in the year 2000. A previous Hanbury-Brown-Twiss (HBT) analysis of pion pairs in a subset of these data, together with the results obtained at other beam energies, lead to a new freeze-out criterion [AAA+03]. In this work, the detailed transverse momentum and event-plane dependence of the pion correlation radii, as well as the pion-proton correlations, are discussed in the framework of the blast wave model of the expanding fireball. Furthermore, development of an electron drift velocity gas monitor for the ALICE TPC sub-detector is presented. The new method of the gas composition monitoring is based on the simultaneous measurement of the electron drift velocity and the gas gain and is sensitive to even small variations of the gas mixture composition. Several modifications of the apparatus were performed resulting in the final drift velocity resolution of 0.3 permille. (orig.)
Detailed analysis of two-particle correlations in central Pb - Au collisions at 158 GeV per nucleon
Dariusz, Antonczyk
This thesis presents a two-particle correlation analysis of the fully calibrated high statistics CERES Pb+Au collision data at the top SPS energy, with the emphasis on the pion-proton correlations and the event-plane dependence of the correlation radii. CERES is a dilepton spectrometer at CERN SPS. After the upgrade, which improved the momentum resolution and extended the detector capabilities to hadrons, CERES collected 30 million Pb+Au events at 158 AGeV in the year 2000. A previous Hanbury-Brown-Twiss (HBT) analysis of pion pairs in a subset of these data, together with the results obtained at other beam energies, lead to a new freeze-out criterion [AAA+03]. In this work, the detailed transverse momentum and event-plane dependence of the pion correlation radii, as well as the pion-proton correlations, are discussed in the framework of the blast wave model of the expanding fireball. Furthermore, development of an electron drift velocity gas monitor for the ALICE TPC sub-detector is presented. The new method...
NLO predictions for the production of a (750 GeV) spin-two particle at the LHC
Das, Goutam; Hirschi, Valentin; Maltoni, Fabio; Shao, Hua-Sheng
2017-07-10
We obtain predictions accurate at the next-to-leading order in QCD for the production of a generic spin-two particle in the most relevant channels at the LHC: production in association with colored particles (inclusive, one jet, two jets and $t\\bar t$), with vector bosons ($Z,W^\\pm,\\gamma$) and with the Higgs boson. We present total and differential cross sections as well as branching ratios corresponding to a spin-2 particle of 750 GeV of mass, possibly with non-universal couplings to standard model particles, at 13 TeV of center-of-mass energy. We find that the next-to-leading order corrections give rise to sizeable $K$ factors for many channels, in some cases exposing the unitarity-violating behaviour of non-universal couplings scenarios, and in general greatly reduce the theoretical uncertainties. Our predictions are publicly available in the \\amc\\ framework and can, therefore, be directly used in experimental simulations for any value of the mass and couplings.
Detailed analysis of two particle correlations in central Pb-Au collisions at 158 GeV per nucleon
International Nuclear Information System (INIS)
Antonczyk, D.
2006-01-01
This thesis presents a two-particle correlation analysis of the fully calibrated high statistics CERES Pb+Au collision data at the top SPS energy, with the emphasis on the pion-proton correlations and the event-plane dependence of the correlation radii. CERES is a dilepton spectrometer at CERN SPS. After the upgrade, which improved the momentum resolution and extended the detector capabilities to hadrons, CERES collected 30 million Pb+Au events at 158 AGeV in the year 2000. A previous Hanbury-Brown-Twiss (HBT) analysis of pion pairs in a subset of these data, together with the results obtained at other beam energies, lead to a new freeze-out criterion [AAA+03]. In this work, the detailed transverse momentum and event-plane dependence of the pion correlation radii, as well as the pion-proton correlations, are discussed in the framework of the blast wave model of the expanding fireball. Furthermore, development of an electron drift velocity gas monitor for the ALICE TPC sub-detector is presented. The new method of the gas composition monitoring is based on the simultaneous measurement of the electron drift velocity and the gas gain and is sensitive to even small variations of the gas mixture composition. Several modifications of the apparatus were performed resulting in the final drift velocity resolution of 0.3 permille. (orig.)
Einstein constraints in the Yang-Mills form
International Nuclear Information System (INIS)
Ashtekar, A.
1987-01-01
It is pointed out that constraints of Einstein's theory play a powerful role in both classical and quantum theory because they generate motions in spacetime, rather than in an internal space. New variables are then introduced on the Einstein phase space in terms of which constraints simplify considerably. In particular, the use of these variables enables one to imbed the constraint surface of Einstein's theory into that of Yang-Mills. The imbedding suggests new lines of attack to a number of problems in classical and quantum gravity and provides new concepts and tools to investigate the microscopic structure of space-time geometry
Loosening Psychometric Constraints on Educational Assessments
Kane, Michael T.
2017-01-01
In response to an argument by Baird, Andrich, Hopfenbeck and Stobart (2017), Michael Kane states that there needs to be a better fit between educational assessment and learning theory. In line with this goal, Kane will examine how psychometric constraints might be loosened by relaxing some psychometric "rules" in some assessment…
Cognitive Dissonance Reduction as Constraint Satisfaction.
Shultz, Thomas R.; Lepper, Mark R.
1996-01-01
It is argued that the reduction of cognitive dissonance can be viewed as a constraint satisfaction problem, and a computational model of the process of consonance seeking is proposed. Simulations from this model matched psychological findings from the insufficient justification and free-choice paradigms of cognitive dissonance theory. (SLD)
Energy Technology Data Exchange (ETDEWEB)
Sirunyan, Albert M; et al.
2017-08-23
For the first time a principle-component analysis is used to separate out different orthogonal modes of the two-particle correlation matrix from heavy ion collisions. The analysis uses data from sqrt(s[NN]) = 2.76 TeV PbPb and sqrt(s[NN]) = 5.02 TeV pPb collisions collected by the CMS experiment at the LHC. Two-particle azimuthal correlations have been extensively used to study hydrodynamic flow in heavy ion collisions. Recently it has been shown that the expected factorization of two-particle results into a product of the constituent single-particle anisotropies is broken. The new information provided by these modes may shed light on the breakdown of flow factorization in heavy ion collisions. The first two modes ("leading" and "subleading") of two-particle correlations are presented for elliptical and triangular anisotropies in PbPb and pPb collisions as a function of pt over a wide range of event activity. The leading mode is found to be essentially equivalent to the anisotropy harmonic previously extracted from two-particle correlation methods. The subleading mode represents a new experimental observable and is shown to account for a large fraction of the factorization breaking recently observed at high transverse momentum. The principle-component analysis technique has also been applied to multiplicity fluctuations. These also show a subleading mode. The connection of these new results to previous studies of factorization is discussed.
Directory of Open Access Journals (Sweden)
Arnaud Gotlieb
2013-02-01
Full Text Available Iterative imperative programs can be considered as infinite-state systems computing over possibly unbounded domains. Studying reachability in these systems is challenging as it requires to deal with an infinite number of states with standard backward or forward exploration strategies. An approach that we call Constraint-based reachability, is proposed to address reachability problems by exploring program states using a constraint model of the whole program. The keypoint of the approach is to interpret imperative constructions such as conditionals, loops, array and memory manipulations with the fundamental notion of constraint over a computational domain. By combining constraint filtering and abstraction techniques, Constraint-based reachability is able to solve reachability problems which are usually outside the scope of backward or forward exploration strategies. This paper proposes an interpretation of classical filtering consistencies used in Constraint Programming as abstract domain computations, and shows how this approach can be used to produce a constraint solver that efficiently generates solutions for reachability problems that are unsolvable by other approaches.
On covariant quantization of massive superparticle with first class constraints
International Nuclear Information System (INIS)
Huq, M.
1990-02-01
We use the technique of Batalin and Fradkin to convert the second class fermionic constraints of the massive superparticle into first class constraints. Then the Batalin-Vilkovisky formalism has been used to quantize covariantly the resulting theory. Appropriate gauge fixing conditions lead to a completely quadratic action. Some interesting properties of the physical space wave functions are discussed. (author). 16 refs
Resources, constraints and capabilities
Dhondt, S.; Oeij, P.R.A.; Schröder, A.
2018-01-01
Human and financial resources as well as organisational capabilities are needed to overcome the manifold constraints social innovators are facing. To unlock the potential of social innovation for the whole society new (social) innovation friendly environments and new governance structures
Design with Nonlinear Constraints
Tang, Chengcheng
2015-01-01
. The first application is the design of meshes under both geometric and static constraints, including self-supporting polyhedral meshes that are not height fields. Then, with a formulation bridging mesh based and spline based representations, the application
Integrable Hamiltonian systems and interactions through quadratic constraints
International Nuclear Information System (INIS)
Pohlmeyer, K.
1975-08-01
Osub(n)-invariant classical relativistic field theories in one time and one space dimension with interactions that are entirely due to quadratic constraints are shown to be closely related to integrable Hamiltonian systems. (orig.) [de
Constraints on effective interactions imposed by antisymmetry and charge independence
Energy Technology Data Exchange (ETDEWEB)
Stringari, S [Trento Univ. (Italy). Dipartimento di Matematica e Fisica; Brink, D M [Oxford Univ. (UK). Dept. of Theoretical Physics
1978-07-24
Restrictions on the form of the energy functional following antisymmetry and charge independence have been investigated for a Hartree-Fock theory based on effective interactions. These restrictions impose severe constraints on density dependent effective interactions.
Black hole entropy, universality, and horizon constraints
International Nuclear Information System (INIS)
Carlip, Steven
2006-01-01
To ask a question about a black hole in quantum gravity, one must restrict initial or boundary data to ensure that a black hole is actually present. For two-dimensional dilaton gravity, and probably a much wider class of theories, I show that the imposition of a 'stretched horizon' constraint modifies the algebra of symmetries at the horizon, allowing the use of conformal field theory techniques to determine the asymptotic density of states. The result reproduces the Bekenstein-Hawking entropy without any need for detailed assumptions about the microscopic theory. Horizon symmetries may thus offer an answer to the problem of universality of black hole entropy
Black hole entropy, universality, and horizon constraints
Energy Technology Data Exchange (ETDEWEB)
Carlip, Steven [Department of Physics, University of California, Davis, CA 95616 (United States)
2006-03-01
To ask a question about a black hole in quantum gravity, one must restrict initial or boundary data to ensure that a black hole is actually present. For two-dimensional dilaton gravity, and probably a much wider class of theories, I show that the imposition of a 'stretched horizon' constraint modifies the algebra of symmetries at the horizon, allowing the use of conformal field theory techniques to determine the asymptotic density of states. The result reproduces the Bekenstein-Hawking entropy without any need for detailed assumptions about the microscopic theory. Horizon symmetries may thus offer an answer to the problem of universality of black hole entropy.
Momentum constraint relaxation
International Nuclear Information System (INIS)
Marronetti, Pedro
2006-01-01
Full relativistic simulations in three dimensions invariably develop runaway modes that grow exponentially and are accompanied by violations of the Hamiltonian and momentum constraints. Recently, we introduced a numerical method (Hamiltonian relaxation) that greatly reduces the Hamiltonian constraint violation and helps improve the quality of the numerical model. We present here a method that controls the violation of the momentum constraint. The method is based on the addition of a longitudinal component to the traceless extrinsic curvature A ij -tilde, generated by a vector potential w i , as outlined by York. The components of w i are relaxed to solve approximately the momentum constraint equations, slowly pushing the evolution towards the space of solutions of the constraint equations. We test this method with simulations of binary neutron stars in circular orbits and show that it effectively controls the growth of the aforementioned violations. We also show that a full numerical enforcement of the constraints, as opposed to the gentle correction of the momentum relaxation scheme, results in the development of instabilities that stop the runs shortly
International Nuclear Information System (INIS)
Sugier, A.
2003-01-01
The selected new constraints should be consistent with the scale of concern i.e. be expressed roughly as fractions or multiples of the average annual background. They should take into account risk considerations and include the values of the currents limits, constraints and other action levels. The recommendation is to select four leading values for the new constraints: 500 mSv ( single event or in a decade) as a maximum value, 0.01 mSv/year as a minimum value; and two intermediate values: 20 mSv/year and 0.3 mSv/year. This new set of dose constraints, representing basic minimum standards of protection for the individuals taking into account the specificity of the exposure situations are thus coherent with the current values which can be found in ICRP Publications. A few warning need however to be noticed: There is no more multi sources limit set by ICRP. The coherence between the proposed value of dose constraint (20 mSv/year) and the current occupational dose limit of 20 mSv/year is valid only if the workers are exposed to one single source. When there is more than one source, it will be necessary to apportion. The value of 1000 mSv lifetimes used for relocation can be expressed into annual dose, which gives approximately 10 mSv/year and is coherent with the proposed dose constraint. (N.C.)
Lorentz covariant theory of gravitation
International Nuclear Information System (INIS)
Fagundes, H.V.
1974-12-01
An alternative method for the calculation of second order effects, like the secular shift of Mercury's perihelium is developed. This method uses the basic ideas of thirring combined with the more mathematical approach of Feyman. In the case of a static source, the treatment used is greatly simplified. Besides, Einstein-Infeld-Hoffmann's Lagrangian for a system of two particles and spin-orbit and spin-spin interactions of two particles with classical spin, ie, internal angular momentum in Moller's sense, are obtained from the Lorentz covariant theory
Domain general constraints on statistical learning.
Thiessen, Erik D
2011-01-01
All theories of language development suggest that learning is constrained. However, theories differ on whether these constraints arise from language-specific processes or have domain-general origins such as the characteristics of human perception and information processing. The current experiments explored constraints on statistical learning of patterns, such as the phonotactic patterns of an infants' native language. Infants in these experiments were presented with a visual analog of a phonotactic learning task used by J. R. Saffran and E. D. Thiessen (2003). Saffran and Thiessen found that infants' phonotactic learning was constrained such that some patterns were learned more easily than other patterns. The current results indicate that infants' learning of visual patterns shows the same constraints as infants' learning of phonotactic patterns. This is consistent with theories suggesting that constraints arise from domain-general sources and, as such, should operate over many kinds of stimuli in addition to linguistic stimuli. © 2011 The Author. Child Development © 2011 Society for Research in Child Development, Inc.
q-Virasoro constraints in matrix models
Energy Technology Data Exchange (ETDEWEB)
Nedelin, Anton [Dipartimento di Fisica, Università di Milano-Bicocca and INFN, sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano (Italy); Department of Physics and Astronomy, Uppsala university,Box 516, SE-75120 Uppsala (Sweden); Zabzine, Maxim [Department of Physics and Astronomy, Uppsala university,Box 516, SE-75120 Uppsala (Sweden)
2017-03-20
The Virasoro constraints play the important role in the study of matrix models and in understanding of the relation between matrix models and CFTs. Recently the localization calculations in supersymmetric gauge theories produced new families of matrix models and we have very limited knowledge about these matrix models. We concentrate on elliptic generalization of hermitian matrix model which corresponds to calculation of partition function on S{sup 3}×S{sup 1} for vector multiplet. We derive the q-Virasoro constraints for this matrix model. We also observe some interesting algebraic properties of the q-Virasoro algebra.
Sirunyan, A.M.; CMS Collaboration; Adam, Wolfgang; Ambrogi, Federico; Asilar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Grossmann, Johannes; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krammer, Natascha; Krätschmer, Ilse; Liko, Dietrich; Madlener, Thomas; Mikulec, Ivan; Pree, Elias; Rabady, Dinyar; Rad, Navid; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Spanring, Markus; Spitzbart, Daniel; Strauss, Josef; Waltenberger, Wolfgang; Wittmann, Johannes; Wulz, Claudia-Elisabeth; Zarucki, Mateusz; Chekhovsky, Vladimir; Mossolov, Vladimir; Suarez Gonzalez, Juan; De Wolf, Eddi A; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; De Bruyn, Isabelle; De Clercq, Jarne; Deroover, Kevin; Flouris, Giannis; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Skovpen, Kirill; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Vannerom, David; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Gul, Muhammad; Khvastunov, Illia; Poyraz, Deniz; Roskas, Christos; Salva Diblen, Sinem; Tytgat, Michael; Verbeke, Willem; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Komm, Matthias; Krintiras, Georgios; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Piotrzkowski, Krzysztof; Quertenmont, Loic; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Melo De Almeida, Miqueias; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Torres Da Silva De Araujo, Felipe; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Misheva, Milena; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Shopova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Gao, Xuyang; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Yazgan, Efe; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Courbon, Benoit; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Mesic, Benjamin; Susa, Tatjana; Ather, Mohsan Waseem; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Abdelalim, Ahmed Ali; Mohammed, Yasser; Salama, Elsayed; Dewanjee, Ram Krishna; Kadastik, Mario; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Jarvinen, Terhi; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Negro, Giulia; Rander, John; Rosowsky, André; Sahin, Mehmet Özgür; Titov, Maksym; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Lobanov, Artur; Martin Blanco, Javier; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Stahl Leiton, Andre Govinda; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Zghiche, Amina; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Jansová, Markéta; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Finco, Linda; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sordini, Viola; Vander Donckt, Muriel; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Preuten, Marius; Schomakers, Christian; Schulz, Johannes; Verlage, Tobias; Albert, Andreas; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Teyssier, Daniel; Thüer, Sebastian; Flügge, Günter; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Botta, Valeria; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Grohsjean, Alexander; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Lenz, Teresa; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Savitskyi, Mykola; Saxena, Pooja; Shevchenko, Rostyslav; Spannagel, Simon; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wen, Yiwen; Wichmann, Katarzyna; Wissing, Christoph; Zenaiev, Oleksandr; Bein, Samuel; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hoffmann, Malte; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Kurz, Simon; Lapsien, Tobias; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Sonneveld, Jory; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Akbiyik, Melike; Barth, Christian; Baur, Sebastian; Butz, Erik; Caspart, René; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Freund, Benedikt; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Kassel, Florian; Kudella, Simon; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Triantis, Frixos A; Csanad, Mate; Filipovic, Nicolas; Pasztor, Gabriella; Bencze, Gyorgy; Hajdu, Csaba; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Komaragiri, Jyothsna Rani; Bahinipati, Seema; Bhowmik, Sandeep; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Bhawandeep, Bhawandeep; Chawla, Ridhi; Dhingra, Nitish; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Shah, Aashaq; Bhardwaj, Ashutosh; Chauhan, Sushil; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhardwaj, Rishika; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Bhattacharya, Soham; Chatterjee, Suman; Das, Pallabi; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Pandey, Shubham; Rane, Aditee; Sharma, Seema; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Errico, Filippo; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Chatterjee, Kalyanmoy; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Russo, Lorenzo; Sguazzoni, Giacomo; Strom, Derek; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Brivio, Francesco; Ciriolo, Vincenzo; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pauwels, Kristof; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Khan, Wajid Ali; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Michelotto, Michele; Montecassiano, Fabio; Pantano, Devis; Pozzobon, Nicola; Ronchese, Paolo; Rossin, Roberto; Simonetto, Franco; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Fallavollita, Francesco; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Ressegotti, Martina; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Mariani, Valentina; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiga, Daniele; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Borrello, Laura; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; Daci, Nadir; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Monteno, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Jeongeun; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Kim, Hyunchul; Moon, Dong Ho; Oh, Geonhee; Brochero Cifuentes, Javier Andres; Goh, Junghwan; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Kim, Jae Sung; Lee, Haneol; Lee, Kyeongpil; Nam, Kyungwook; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Choi, Young-Il; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Lopez-Fernandez, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bozena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Pyskir, Andrzej; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Calpas, Betty; Di Francesco, Agostino; Faccioli, Pietro; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Voytishin, Nikolay; Zarubin, Anatoli; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Stepennov, Anton; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Aushev, Tagir; Bylinkin, Alexander; Chadeeva, Marina; Popova, Elena; Rusinov, Vladimir; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Demiyanov, Andrey; Ershov, Alexander; Gribushin, Andrey; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Blinov, Vladimir; Skovpen, Yuri; Shtol, Dmitry; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Barrio Luna, Mar; Cerrada, Marcos; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Álvarez Fernández, Adrian; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Erice, Carlos; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Suárez Andrés, Ignacio; Vischia, Pietro; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Chazin Quero, Barbara; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Martinez Ruiz del Arbol, Pablo; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Baillon, Paul; Ball, Austin; Barney, David; Bianco, Michele; Bloch, Philippe; Bocci, Andrea; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; Chapon, Emilien; Chen, Yi; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dorney, Brian; Du Pree, Tristan; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Everaerts, Pieter; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Glege, Frank; Gulhan, Doga; Gundacker, Stefan; Guthoff, Moritz; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Karacheban, Olena; Kieseler, Jan; Kirschenmann, Henning; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Milenovic, Predrag; Moortgat, Filip; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Selvaggi, Michele; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Verweij, Marta; Wardle, Nicholas; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Wiederkehr, Stephan Albert; Bachmair, Felix; Bäni, Lukas; Berger, Pirmin; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Klijnsma, Thomas; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Shchutska, Lesya; Starodumov, Andrei; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Vesterbacka Olsson, Minna Leonora; Wallny, Rainer; Zagozdzinska, Agnieszka; Zhu, De Hua; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; De Cosa, Annapaola; Donato, Silvio; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Seitz, Claudia; Zucchetta, Alberto; Candelise, Vieri; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Paganis, Efstathios; Psallidas, Andreas; Tsai, Jui-fa; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Adiguzel, Aytul; Bakirci, Mustafa Numan; Boran, Fatma; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kayis Topaksu, Aysel; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Tali, Bayram; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Karapinar, Guler; Ocalan, Kadir; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Tekten, Sevgi; Yetkin, Elif Asli; Nazlim Agaras, Merve; Atay, Serhat; Cakir, Altan; Cankocak, Kerem; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Baber, Mark; Bainbridge, Robert; Breeze, Shane; Buchmuller, Oliver; Bundock, Aaron; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Matsushita, Takashi; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Scott, Edward; Seez, Christopher; Shtipliyski, Antoni; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Winterbottom, Daniel; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Bartek, Rachel; Dominguez, Aaron; Buccilli, Andrew; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Cutts, David; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Pazzini, Jacopo; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Yu, David; Band, Reyer; Brainerd, Christopher; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Shi, Mengyao; Smith, John; Squires, Michael; Stolp, Dustin; Tos, Kyle; Tripathi, Mani; Wang, Zhangqier; Bachtis, Michail; Bravo, Cameron; Cousins, Robert; Dasgupta, Abhigyan; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Mccoll, Nickolas; Saltzberg, David; Schnaible, Christian; Valuev, Vyacheslav; Bouvier, Elvire; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Si, Weinan; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Hashemi, Bobak; Holzner, André; Klein, Daniel; Kole, Gouranga; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Masciovecchio, Mario; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Amin, Nick; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Franco Sevilla, Manuel; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mullin, Sam Daniel; Ovcharova, Ana; Qu, Huilin; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Bendavid, Joshua; Bornheim, Adolf; Lawhorn, Jay Mathew; Newman, Harvey B; Nguyen, Thong; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhang, Zhicai; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Ferguson, Thomas; Mudholkar, Tanmay; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Weinberg, Marc; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Leontsinis, Stefanos; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Apresyan, Artur; Apyan, Aram; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Canepa, Anadi; Cheung, Harry; Chlebana, Frank; Cremonesi, Matteo; Duarte, Javier; Elvira, Victor Daniel; Freeman, Jim; Gecse, Zoltan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Schneider, Basil; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strait, James; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Mitselmakher, Guenakh; Rank, Douglas; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Joshi, Yagya Raj; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Todd; Askew, Andrew; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Kolberg, Ted; Perry, Thomas; Prosper, Harrison; Santra, Arka; Yohay, Rachel; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Cavanaugh, Richard; Chen, Xuan; Evdokimov, Olga; Gerber, Cecilia Elena; Hangal, Dhanush Anil; Hofman, David Jonathan; Jung, Kurt; Kamin, Jason; Sandoval Gonzalez, Irving Daniel; Tonjes, Marguerite; Trauger, Hallie; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Castle, James; Khalil, Sadia; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Royon, Christophe; Sanders, Stephen; Schmitz, Erich; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Hadley, Nicholas John; Jabeen, Shabnam; Jeng, Geng-Yuan; Kellogg, Richard G; Kunkle, Joshua; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Azzolini, Virginia; Barbieri, Richard; Baty, Austin; Bi, Ran; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; D'Alfonso, Mariarosaria; Demiragli, Zeynep; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Maier, Benedikt; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Tatar, Kaya; Velicanu, Dragos; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Hansen, Peter; Kalafut, Sean; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Claes, Daniel R; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Nguyen, Duong; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Bhattacharya, Saptaparna; Charaf, Otman; Hahn, Kristan Allan; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Loukas, Nikitas; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Winer, Brian L; Wulsin, Howard Wells; Benaglia, Andrea; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Lange, David; Luo, Jingyu; Marlow, Daniel; Mei, Kelvin; Ojalvo, Isabel; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Svyatkovskiy, Alexey; Tully, Christopher; Malik, Sudhir; Norberg, Scarlet; Barker, Anthony; Barnes, Virgil E; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Khatiwada, Ajeeta; Miller, David Harry; Neumeister, Norbert; Schulte, Jan-Frederik; Sun, Jian; Wang, Fuqiang; Xie, Wei; Cheng, Tongguang; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Ciesielski, Robert; Goulianos, Konstantin; Mesropian, Christina; Agapitos, Antonis; Chou, John Paul; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Montalvo, Roy; Nash, Kevin; Osherson, Marc; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Damgov, Jordan; De Guio, Federico; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Sturdy, Jared; Zaleski, Shawn; Buchanan, James; Caillol, Cécile; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Hussain, Usama; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel
2017-12-05
For the first time a principal-component analysis is used to separate out different orthogonal modes of the two-particle correlation matrix from heavy ion collisions. The analysis uses data from $\\sqrt{s_{\\mathrm{NN}}} = $ 2.76 TeV PbPb and $\\sqrt{s_{\\mathrm{NN}}} = $ 5.02 TeV pPb collisions collected by the CMS experiment at the LHC. Two-particle azimuthal correlations have been extensively used to study hydrodynamic flow in heavy ion collisions. Recently it has been shown that the expected factorization of two-particle results into a product of the constituent single-particle anisotropies is broken. The new information provided by these modes may shed light on the breakdown of flow factorization in heavy ion collisions. The first two modes ("leading" and "subleading") of two-particle correlations are presented for elliptical and triangular anisotropies in PbPb and pPb collisions as a function of $ p_{\\mathrm{T}} $ over a wide range of event activity. The leading mode is found to be essentially equivalent to...
International Nuclear Information System (INIS)
Jasielska, A.; Wiktor, S.
1977-01-01
The table of two-particle matrix elements calculated according to the formalism of MSDI approximation for the orbits 1fsub(7/2), 2psub(3/2), 2psub(1/2) and 1fsub(5/2) and published previously is now supplemented by inclusion of the 1gsub(9/2) orbit. (author)
Czech Academy of Sciences Publication Activity Database
Aad, G.; Abbott, B.; Abdallah, J.; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Němeček, Stanislav; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav
2015-01-01
Roč. 75, č. 10 (2015), s. 466 ISSN 1434-6044 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : ATLAS * transverse momentum dependence * CERN LHC Coll * correlation function * two-particle * saturation * kinematics * CERN Lab Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.912, year: 2015
Czech Academy of Sciences Publication Activity Database
Adams, J.; Bielčík, J.; Bielčíková, J.; Bysterský, Michal; Chaloupka, Petr; Jakl, P.; Kapitán, J.; Kushpil, Vasilij; Lednický, R.; Pachr, M.; Šumbera, Michal
2007-01-01
Roč. 34, č. 5 (2007), s. 799-816 ISSN 0954-3899 R&D Projects: GA ČR GA202/04/0793 Institutional research plan: CEZ:AV0Z10480505 Keywords : two -particle correlations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.485, year: 2007
Czech Academy of Sciences Publication Activity Database
Janiš, Václav; Pokorný, Vladislav
2014-01-01
Roč. 90, č. 4 (2014), "045143-1"-"045143-11" ISSN 1098-0121 Institutional support: RVO:68378271 Keywords : metal-insulator transition * disordered and interacting electron systems * dynamical mean-field theory * critical behavior Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014
New constraints for canonical general relativity
International Nuclear Information System (INIS)
Reisenberger, M.P.
1995-01-01
Ashtekar's canonical theory of classical complex Euclidean GR (no Lorentzian reality conditions) is found to be invariant under the full algebra of infinitesimal 4-diffeomorphisms, but non-invariant under some finite proper 4-diffeos when the densitized dreibein, E a i , is degenerate. The breakdown of 4-diffeo invariance appears to be due to the inability of the Ashtekar Hamiltonian to generate births and deaths of E flux loops (leaving open the possibility that a new 'causality condition' forbidding the birth of flux loops might justify the non-invariance of the theory).A fully 4-diffeo invariant canonical theory in Ashtekar's variables, derived from Plebanski's action, is found to have constraints that are stronger than Ashtekar's for rank E< 2. The corresponding Hamiltonian generates births and deaths of E flux loops.It is argued that this implies a finite amplitude for births and deaths of loops in the physical states of quantum GR in the loop representation, thus modifying this (partly defined) theory substantially.Some of the new constraints are second class, leading to difficulties in quantization in the connection representation. This problem might be overcome in a very nice way by transforming to the classical loop variables, or the 'Faraday line' variables of Newman and Rovelli, and then solving the offending constraints.Note that, though motivated by quantum considerations, the present paper is classical in substance. (orig.)
Metric approach to quantum constraints
International Nuclear Information System (INIS)
Brody, Dorje C; Hughston, Lane P; Gustavsson, Anna C T
2009-01-01
A framework for deriving equations of motion for constrained quantum systems is introduced and a procedure for its implementation is outlined. In special cases, the proposed new method, which takes advantage of the fact that the space of pure states in quantum mechanics has both a symplectic structure and a metric structure, reduces to a quantum analogue of the Dirac theory of constraints in classical mechanics. Explicit examples involving spin-1/2 particles are worked out in detail: in the first example, our approach coincides with a quantum version of the Dirac formalism, while the second example illustrates how a situation that cannot be treated by Dirac's approach can nevertheless be dealt with in the present scheme.
International Nuclear Information System (INIS)
Heilbron Filho, Paulo Fernando Lavalle; Xavier, Ana Maria
2005-01-01
The revision process of the international radiological protection regulations has resulted in the adoption of new concepts, such as practice, intervention, avoidable and restriction of dose (dose constraint). The latter deserving of special mention since it may involve reducing a priori of the dose limits established both for the public and to individuals occupationally exposed, values that can be further reduced, depending on the application of the principle of optimization. This article aims to present, with clarity, from the criteria adopted to define dose constraint values to the public, a methodology to establish the dose constraint values for occupationally exposed individuals, as well as an example of the application of this methodology to the practice of industrial radiography
de-Shalit, Amos; Massey, H S W
1963-01-01
Nuclear Shell Theory is a comprehensive textbook dealing with modern methods of the nuclear shell model. This book deals with the mathematical theory of a system of Fermions in a central field. It is divided into three parts. Part I discusses the single particle shell model. The second part focuses on the tensor algebra, two-particle systems. The last part covers three or more particle systems. Chapters on wave functions in a central field, tensor fields, and the m-Scheme are also presented. Physicists, graduate students, and teachers of nuclear physics will find the book invaluable.
Lorentz violation. Motivation and new constraints
International Nuclear Information System (INIS)
Liberati, S.; Maccione, L.
2009-09-01
We review the main theoretical motivations and observational constraints on Planck scale sup-pressed violations of Lorentz invariance. After introducing the problems related to the phenomenological study of quantum gravitational effects, we discuss the main theoretical frameworks within which possible departures from Lorentz invariance can be described. In particular, we focus on the framework of Effective Field Theory, describing several possible ways of including Lorentz violation therein and discussing their theoretical viability. We review the main low energy effects that are expected in this framework. We discuss the current observational constraints on such a framework, focusing on those achievable through high-energy astrophysics observations. In this context we present a summary of the most recent and strongest constraints on QED with Lorentz violating non-renormalizable operators. Finally, we discuss the present status of the field and its future perspectives. (orig.)
Lorentz violation. Motivation and new constraints
Energy Technology Data Exchange (ETDEWEB)
Liberati, S. [Scuola Internazionale Superiore di Studi Avanzati SISSA, Trieste (Italy); Istituto Nazionale di Fisica Nucleare INFN, Sezione di Trieste (Italy); Maccione, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2009-09-15
We review the main theoretical motivations and observational constraints on Planck scale sup-pressed violations of Lorentz invariance. After introducing the problems related to the phenomenological study of quantum gravitational effects, we discuss the main theoretical frameworks within which possible departures from Lorentz invariance can be described. In particular, we focus on the framework of Effective Field Theory, describing several possible ways of including Lorentz violation therein and discussing their theoretical viability. We review the main low energy effects that are expected in this framework. We discuss the current observational constraints on such a framework, focusing on those achievable through high-energy astrophysics observations. In this context we present a summary of the most recent and strongest constraints on QED with Lorentz violating non-renormalizable operators. Finally, we discuss the present status of the field and its future perspectives. (orig.)
Constraints and spandrels of interareal connectomes
Rubinov, Mikail
2016-12-01
Interareal connectomes are whole-brain wiring diagrams of white-matter pathways. Recent studies have identified modules, hubs, module hierarchies and rich clubs as structural hallmarks of these wiring diagrams. An influential current theory postulates that connectome modules are adequately explained by evolutionary pressures for wiring economy, but that the other hallmarks are not explained by such pressures and are therefore less trivial. Here, we use constraint network models to test these postulates in current gold-standard vertebrate and invertebrate interareal-connectome reconstructions. We show that empirical wiring-cost constraints inadequately explain connectome module organization, and that simultaneous module and hub constraints induce the structural byproducts of hierarchies and rich clubs. These byproducts, known as spandrels in evolutionary biology, include the structural substrate of the default-mode network. Our results imply that currently standard connectome characterizations are based on circular analyses or double dipping, and we emphasize an integrative approach to future connectome analyses for avoiding such pitfalls.
Constraint-based scheduling applying constraint programming to scheduling problems
Baptiste, Philippe; Nuijten, Wim
2001-01-01
Constraint Programming is a problem-solving paradigm that establishes a clear distinction between two pivotal aspects of a problem: (1) a precise definition of the constraints that define the problem to be solved and (2) the algorithms and heuristics enabling the selection of decisions to solve the problem. It is because of these capabilities that Constraint Programming is increasingly being employed as a problem-solving tool to solve scheduling problems. Hence the development of Constraint-Based Scheduling as a field of study. The aim of this book is to provide an overview of the most widely used Constraint-Based Scheduling techniques. Following the principles of Constraint Programming, the book consists of three distinct parts: The first chapter introduces the basic principles of Constraint Programming and provides a model of the constraints that are the most often encountered in scheduling problems. Chapters 2, 3, 4, and 5 are focused on the propagation of resource constraints, which usually are responsibl...
Ecosystems emerging. 5: Constraints
Czech Academy of Sciences Publication Activity Database
Patten, B. C.; Straškraba, Milan; Jorgensen, S. E.
2011-01-01
Roč. 222, č. 16 (2011), s. 2945-2972 ISSN 0304-3800 Institutional research plan: CEZ:AV0Z50070508 Keywords : constraint * epistemic * ontic Subject RIV: EH - Ecology, Behaviour Impact factor: 2.326, year: 2011 http://www.sciencedirect.com/science/article/pii/S0304380011002274
DEFF Research Database (Denmark)
Dove, Graham; Biskjær, Michael Mose; Lundqvist, Caroline Emilie
2017-01-01
groups of students building three models each. We studied groups building with traditional plastic bricks and also using a digital environment. The building tasks students undertake, and our subsequent analysis, are informed by the role constraints and ambiguity play in creative processes. Based...
Including Overweight or Obese Students in Physical Education: A Social Ecological Constraint Model
Li, Weidong; Rukavina, Paul
2012-01-01
In this review, we propose a social ecological constraint model to study inclusion of overweight or obese students in physical education by integrating key concepts and assumptions from ecological constraint theory in motor development and social ecological models in health promotion and behavior. The social ecological constraint model proposes…
Constraints on backreaction in dust universes
International Nuclear Information System (INIS)
Raesaenen, Syksy
2006-01-01
We study backreaction in dust universes using exact equations which do not rely on perturbation theory, concentrating on theoretical and observational constraints. In particular, we discuss the recent suggestion (Kolb et al 2005 Preprint hep-th/0503117) that superhorizon perturbations could explain present-day accelerated expansion as a useful example which can be ruled out. We note that a backreaction explanation of late-time acceleration will have to involve spatial curvature and subhorizon perturbations
Constraints on fermion mixing with exotics
International Nuclear Information System (INIS)
Nardi, E.; Tommasini, D.
1991-11-01
We analyze the constraints on the mixing angles of the standard fermions with new heavy particles with exotic SU(2) x U(1) quantum number assignments (left-handed singlets or right-handed doublets), that appear in many extensions of the electroweak theory. The updated Charged Current and Neutral Current experimental data, including also the recent Z-peak measurements, are considered. The results of the global analysis of all these data are then presented
Least Squares Problems with Absolute Quadratic Constraints
Directory of Open Access Journals (Sweden)
R. Schöne
2012-01-01
Full Text Available This paper analyzes linear least squares problems with absolute quadratic constraints. We develop a generalized theory following Bookstein's conic-fitting and Fitzgibbon's direct ellipse-specific fitting. Under simple preconditions, it can be shown that a minimum always exists and can be determined by a generalized eigenvalue problem. This problem is numerically reduced to an eigenvalue problem by multiplications of Givens' rotations. Finally, four applications of this approach are presented.
Causal vs. analytic constraints on anomalous quartic gauge couplings
International Nuclear Information System (INIS)
Vecchi, L.
2007-01-01
We derive one loop constraints on the anomalous quartic gauge couplings using a general non-forward dispersion relation for the elastic scattering amplitude of two longitudinally polarized vector bosons. We show that for exactly chiral theories more stringent bounds can be obtained by the assumption that the underlying theory satisfies the causality principle of Special Relativity
Exchange effects in Relativistic Schroedinger Theory
International Nuclear Information System (INIS)
Sigg, T.; Sorg, M.
1998-01-01
The Relativistic Schroedinger Theory predicts the occurrence of exchange and overlap effects in many-particle systems. For a 2-particle system, the interaction energy of the two particles consists of two contributions: Coulomb energy and exchange energy, where the first one is revealed to be the same as in standard quantum theory. However the exchange energy is mediated by an exchange potential, contrary to the kinematical origin of the exchange term in the standard theory
Graphical constraints: a graphical user interface for constraint problems
Vieira, Nelson Manuel Marques
2015-01-01
A constraint satisfaction problem is a classical artificial intelligence paradigm characterized by a set of variables (each variable with an associated domain of possible values), and a set of constraints that specify relations among subsets of these variables. Solutions are assignments of values to all variables that satisfy all the constraints. Many real world problems may be modelled by means of constraints. The range of problems that can use this representation is very diverse and embrace...
Distance Constraint Satisfaction Problems
Bodirsky, Manuel; Dalmau, Victor; Martin, Barnaby; Pinsker, Michael
We study the complexity of constraint satisfaction problems for templates Γ that are first-order definable in ({ Z}; {suc}), the integers with the successor relation. Assuming a widely believed conjecture from finite domain constraint satisfaction (we require the tractability conjecture by Bulatov, Jeavons and Krokhin in the special case of transitive finite templates), we provide a full classification for the case that Γ is locally finite (i.e., the Gaifman graph of Γ has finite degree). We show that one of the following is true: The structure Γ is homomorphically equivalent to a structure with a certain majority polymorphism (which we call modular median) and CSP(Γ) can be solved in polynomial time, or Γ is homomorphically equivalent to a finite transitive structure, or CSP(Γ) is NP-complete.
Zweben, Monte
1993-01-01
The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based iterative repair. Using this technique, one encodes both hard rules and preference criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for violated constraints. The system provides a general scheduling framework which is being tested on two NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails the scheduling of all the inspection, repair, and maintenance tasks required to prepare the orbiter for flight. The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system would be used for manufacturing, transportation, and military problems.
Efficient Searching with Linear Constraints
DEFF Research Database (Denmark)
Agarwal, Pankaj K.; Arge, Lars Allan; Erickson, Jeff
2000-01-01
We show how to preprocess a set S of points in d into an external memory data structure that efficiently supports linear-constraint queries. Each query is in the form of a linear constraint xd a0+∑d−1i=1 aixi; the data structure must report all the points of S that satisfy the constraint. This pr...
Deepening Contractions and Collateral Constraints
DEFF Research Database (Denmark)
Jensen, Henrik; Ravn, Søren Hove; Santoro, Emiliano
and occasionally non-binding credit constraints. Easier credit access increases the likelihood that constraints become slack in the face of expansionary shocks, while contractionary shocks are further amplified due to tighter constraints. As a result, busts gradually become deeper than booms. Based...
Identity theory and personality theory: mutual relevance.
Stryker, Sheldon
2007-12-01
Some personality psychologists have found a structural symbolic interactionist frame and identity theory relevant to their work. This frame and theory, developed in sociology, are first reviewed. Emphasized in the review are a multiple identity conception of self, identities as internalized expectations derived from roles embedded in organized networks of social interaction, and a view of social structures as facilitators in bringing people into networks or constraints in keeping them out, subsequently, attention turns to a discussion of the mutual relevance of structural symbolic interactionism/identity theory and personality theory, looking to extensions of the current literature on these topics.
Balancing Structural and Temporal Constraints in Multitasking Contexts
Salvucci, Dario D.; Kujala, Tuomo
2016-01-01
Recent research has shown that when people multitask, both the subtask structure and the temporal constraints of the component tasks strongly influence people’s task-switching behavior. In this paper, we propose an integrated theoretical account and associated computational model that aims to quantify how people balance structural and temporal constraints in everyday multitasking. We validate the theory using data from an empirical study in which drivers performed a vi...
Neutron star cooling constraints for color superconductivity in hybrid stars
International Nuclear Information System (INIS)
Popov, S.; Grigoryan, Kh.; Blaschke, D.
2005-01-01
We apply the recently developed LogN-LogS test of compact star cooling theories for the first time to hybrid stars with a color superconducting quark matter core. While there is not yet a microscopically founded superconducting quark matter phase which would fulfill constraints from cooling phenomenology, we explore the hypothetical 2SC+X phase and show that the magnitude and density-dependence of the X-gap can be chosen to satisfy a set of tests: temperature-age (T-t), the brightness constraint, LogN-LogS, and the mass spectrum constraint. The latter test appears as a new conjecture from the present investigation
The poloidal OHM's law and a profile constraint in tokamaks
International Nuclear Information System (INIS)
Segre, S.E.; Zanza, V.
1991-01-01
Explicit use of the poloidal Ohm's law, together with the radial plasma velocity (obtained from the distribution of plasma sources), leads to a very general constraint on the possible radial profiles of plasma density and temperature. The constraint does not require any ad hoc assumption; it can place severe restrictions on the allowed profiles and is independent of energy and particle transport; also, it may be the underlying principle of profile consistency. The constraint is discussed in the framework of neoclassical theory, using results from the Frascati tokamak. (author). 23 refs, 7 figs
Institute of Scientific and Technical Information of China (English)
2007-01-01
This paper presents a scheme for probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel. The sender Alice first teleports the coefficients of the unknown state to the receiver Bob, and then Bob reconstructs the state with an auxiliary particle and some unitary operations if the teleportation succeeds. This scheme has the advantage of transmitting much less particles for teleporting an arbitrary GHZ-class state than others. Moreover, it discusses the application of this scheme in quantum state sharing.
A new spin on causality constraints
Energy Technology Data Exchange (ETDEWEB)
Hartman, Thomas; Jain, Sachin; Kundu, Sandipan [Department of Physics, Cornell University, Ithaca, New York (United States)
2016-10-26
Causality in a shockwave state is related to the analytic properties of a four-point correlation function. Extending recent results for scalar probes, we show that this constrains the couplings of the stress tensor to light spinning operators in conformal field theory, and interpret these constraints in terms of the interaction with null energy. For spin-1 and spin-2 conserved currents in four dimensions, the resulting inequalities are a subset of the Hofman-Maldacena conditions for positive energy deposition. It is well known that energy conditions in holographic theories are related to causality on the gravity side; our results make a connection on the CFT side, and extend it to non-holographic theories.
Design with Nonlinear Constraints
Tang, Chengcheng
2015-12-10
Most modern industrial and architectural designs need to satisfy the requirements of their targeted performance and respect the limitations of available fabrication technologies. At the same time, they should reflect the artistic considerations and personal taste of the designers, which cannot be simply formulated as optimization goals with single best solutions. This thesis aims at a general, flexible yet e cient computational framework for interactive creation, exploration and discovery of serviceable, constructible, and stylish designs. By formulating nonlinear engineering considerations as linear or quadratic expressions by introducing auxiliary variables, the constrained space could be e ciently accessed by the proposed algorithm Guided Projection, with the guidance of aesthetic formulations. The approach is introduced through applications in different scenarios, its effectiveness is demonstrated by examples that were difficult or even impossible to be computationally designed before. The first application is the design of meshes under both geometric and static constraints, including self-supporting polyhedral meshes that are not height fields. Then, with a formulation bridging mesh based and spline based representations, the application is extended to developable surfaces including origami with curved creases. Finally, general approaches to extend hard constraints and soft energies are discussed, followed by a concluding remark outlooking possible future studies.
Searching for genomic constraints
Energy Technology Data Exchange (ETDEWEB)
Lio` , P [Cambridge, Univ. (United Kingdom). Genetics Dept.; Ruffo, S [Florence, Univ. (Italy). Fac. di Ingegneria. Dipt. di Energetica ` S. Stecco`
1998-01-01
The authors have analyzed general properties of very long DNA sequences belonging to simple and complex organisms, by using different correlation methods. They have distinguished those base compositional rules that concern the entire genome which they call `genomic constraints` from the rules that depend on the `external natural selection` acting on single genes, i. e. protein-centered constraints. They show that G + C content, purine / pyrimidine distributions and biological complexity of the organism are the most important factors which determine base compositional rules and genome complexity. Three main facts are here reported: bacteria with high G + C content have more restrictions on base composition than those with low G + C content; at constant G + C content more complex organisms, ranging from prokaryotes to higher eukaryotes (e.g. human) display an increase of repeats 10-20 nucleotides long, which are also partly responsible for long-range correlations; work selection of length 3 to 10 is stronger in human and in bacteria for two distinct reasons. With respect to previous studies, they have also compared the genomic sequence of the archeon Methanococcus jannaschii with those of bacteria and eukaryotes: it shows sometimes an intermediate statistical behaviour.
Searching for genomic constraints
International Nuclear Information System (INIS)
Lio', P.; Ruffo, S.
1998-01-01
The authors have analyzed general properties of very long DNA sequences belonging to simple and complex organisms, by using different correlation methods. They have distinguished those base compositional rules that concern the entire genome which they call 'genomic constraints' from the rules that depend on the 'external natural selection' acting on single genes, i. e. protein-centered constraints. They show that G + C content, purine / pyrimidine distributions and biological complexity of the organism are the most important factors which determine base compositional rules and genome complexity. Three main facts are here reported: bacteria with high G + C content have more restrictions on base composition than those with low G + C content; at constant G + C content more complex organisms, ranging from prokaryotes to higher eukaryotes (e.g. human) display an increase of repeats 10-20 nucleotides long, which are also partly responsible for long-range correlations; work selection of length 3 to 10 is stronger in human and in bacteria for two distinct reasons. With respect to previous studies, they have also compared the genomic sequence of the archeon Methanococcus jannaschii with those of bacteria and eukaryotes: it shows sometimes an intermediate statistical behaviour
International Nuclear Information System (INIS)
Lucha, W.; Neufeld, H.
1986-01-01
We investigate the relation between finiteness of a four-dimensional quantum field theory and global supersymmetry. To this end we consider the most general quantum field theory and analyse the finiteness conditions resulting from the requirement of the absence of divergent contributions to the renormalizations of the parameters of the theory. In addition to the gauge bosons, both fermions and scalar bosons turn out to be a necessary ingredient in a non-trivial finite gauge theory. In all cases discussed, the supersymmetric theory restricted by two well-known constraints on the dimensionless couplings proves to be the unique solution of the finiteness conditions. (Author)
Locality constraints and 2D quasicrystals
International Nuclear Information System (INIS)
Socolar, J.E.S.
1990-01-01
The plausible assumption that long-range interactions between atoms are negligible in a quasicrystal leaks to the study of tilings that obey constraints on the local configurations of tiles. The theory of such constraints (called matching rules) for 2D quasicrystal tilings is reviewed here. Different types of matching rules are defined and examples of tilings obeying them are given where known. The role of tile decoration is discussed and is shown to be significant in at least two cases (octagonal and dodecagonal duals of periodic 4-grids and 6-grids). A new result is introduced: a constructive procedure is described for generating weak matching rules for tilings with N-fold symmetry, for any N that is either a prime number or twice a prime number. The physics associated with weak matching rules, results on local growth rules, and the case of icosahedral symmetry are all briefly discussed. (author). 29 refs, 4 figs
International Nuclear Information System (INIS)
Mansouri, F.; Suranyi, P.; Wijewardhana, L.C.R.; Witten, L.
1990-10-01
A 2+1 dimensional deSitter Chern-Simons theory has been constructed and shown to be consistent. Wilson loop variables have been computed and shown to close under Poisson bracket operation for N = 2 Poincare supergravity. It has also been shown that there are two equivalent pictures of describing two particle scattering in 2+1 dimensional gravity theory, which are related by multivalued gauge transformations. We have generalized the Jackiw-Johnson sumrule, relating Goldstone boson decay constants to the dynamical masses of fermions, to an arbitrary symmetry group. We have analyzed dynamical parity breaking in 2+1 dimensional 4-fermi theories. Finally, we have found the partition function for a system of free parabosons and parafermions of order two. 53 refs
Learning With Mixed Hard/Soft Pointwise Constraints.
Gnecco, Giorgio; Gori, Marco; Melacci, Stefano; Sanguineti, Marcello
2015-09-01
A learning paradigm is proposed and investigated, in which the classical framework of learning from examples is enhanced by the introduction of hard pointwise constraints, i.e., constraints imposed on a finite set of examples that cannot be violated. Such constraints arise, e.g., when requiring coherent decisions of classifiers acting on different views of the same pattern. The classical examples of supervised learning, which can be violated at the cost of some penalization (quantified by the choice of a suitable loss function) play the role of soft pointwise constraints. Constrained variational calculus is exploited to derive a representer theorem that provides a description of the functional structure of the optimal solution to the proposed learning paradigm. It is shown that such an optimal solution can be represented in terms of a set of support constraints, which generalize the concept of support vectors and open the doors to a novel learning paradigm, called support constraint machines. The general theory is applied to derive the representation of the optimal solution to the problem of learning from hard linear pointwise constraints combined with soft pointwise constraints induced by supervised examples. In some cases, closed-form optimal solutions are obtained.
On diffeomorphism invariance for lattice theories
International Nuclear Information System (INIS)
Corichi, A.; Zapata, J.
1997-01-01
We consider the role of the diffeomorphism constraint in the quantization of lattice formulations of diffeomorphism invariant theories of connections. It has been argued that in working with abstract lattices one automatically takes care of the diffeomorphism constraint in the quantum theory. We use two systems in order to show that imposing the diffeomorphism constraint is imperative to obtain a physically acceptable quantum theory. First, we consider 2+1 gravity where an exact lattice formulation is available. Next, general theories of connections for compact gauge groups are treated, where the quantum theories are known - for both the continuum and the lattice - and can be compared. (orig.)
Hybrid systems with constraints
Daafouz, Jamal; Sigalotti, Mario
2013-01-01
Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open.This book is dedicated mainly to
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Fasanella, Giuseppe; Favart, Laurent; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; El-khateeb, Esraa; Elkafrawy, Tamer; Mohamed, Amr; Salama, Elsayed; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Filipovic, Nicolas; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schulte, Jan-Frederik; Verlage, Tobias; Weber, Hendrik; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behnke, Olaf; Behrens, Ulf; Bell, Alan James; Borras, Kerstin; Burgmeier, Armin; Campbell, Alan; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Seitz, Claudia; Spannagel, Simon; Trippkewitz, Karim Damun; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Gonzalez, Daniel; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Nowatschin, Dominik; Ott, Jochen; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Rathjens, Denis; Sander, Christian; Scharf, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schwandt, Joern; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Barth, Christian; Baur, Sebastian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Fink, Simon; Frensch, Felix; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Sieber, Georg; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hazi, Andras; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutta, Suchandra; Jain, Sandhya; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Mahakud, Bibhuprasad; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sarkar, Tanmay; Sur, Nairit; Sutar, Bajrang; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Kapoor, Anshul; Kothekar, Kunal; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Abbiendi, Giovanni; Battilana, Carlo; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zanetti, Marco; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Zanetti, Anna; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Sakharov, Alexandre; Son, Dong-Chul; Brochero Cifuentes, Javier Andres; Kim, Hyunsoo; Kim, Tae Jeong; Song, Sanghyeon; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Hong, Byung-Sik; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Leonardo, Nuno; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Khein, Lev; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Lukina, Olga; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Palencia Cortezon, Enrique; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; De Castro Manzano, Pablo; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Berruti, Gaia Maria; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Castello, Roberto; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Kortelainen, Matti J; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Nemallapudi, Mythra Varun; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Piparo, Danilo; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Takahashi, Maiko; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Ronga, Frederic Jean; Salerno, Daniel; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Bartek, Rachel; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Gecit, Fehime Hayal; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozcan, Merve; Ozdemir, Kadri; Ozturk, Sertac; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Vardarlı, Fuat Ilkehan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Futyan, David; Hall, Geoffrey; Iles, Gregory; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Gastler, Daniel; Lawson, Philip; Rankin, Dylan; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Zou, David; Alimena, Juliette; Berry, Edmund; Cutts, David; Ferapontov, Alexey; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova PANEVA, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Derdzinski, Mark; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Incandela, Joe; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; Suarez, Indara; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Nauenberg, Uriel; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Sun, Werner; Tan, Shao Min; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Wittich, Peter; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Gleyzer, Sergei V; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Rossin, Roberto; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bein, Samuel; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Kalakhety, Himali; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Turner, Paul; Varelas, Nikos; Wu, Zhenbin; Zakaria, Mohammed; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Osherson, Marc; Roskes, Jeffrey; Cocoros, Alice; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Sanders, Stephen; Stringer, Robert; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Dahmes, Bryan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Knowlton, Dan; Kravchenko, Ilya; Meier, Frank; Monroy, Jose; Ratnikov, Fedor; Siado, Joaquin Emilo; Snow, Gregory R; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Bhattacharya, Saptaparna; Hahn, Kristan Allan; Kubik, Andrew; Low, Jia Fu; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Brinkerhoff, Andrew; Dev, Nabarun; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Saka, Halil; Stickland, David; Tully, Christopher; Zuranski, Andrzej; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Jung, Kurt; Kumar, Ajay; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Petrillo, Gianluca; Tan, Ping; Verzetti, Mauro; Arora, Sanjay; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Nash, Kevin; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Riley, Grant; Rose, Keith; Spanier, Stefan; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Krutelyov, Vyacheslav; Mueller, Ryan; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Wood, John; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Sarangi, Tapas; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Woods, Nathaniel
2016-04-27
Results on two-particle angular correlations for charged particles produced in pp collisions at a center-of-mass energy of 13 TeV are presented. The data were taken with the CMS detector at the LHC and correspond to an integrated luminosity of about 270 inverse-nanobarns. The correlations are studied over a broad range of pseudo rapidity (|$ \\eta $| 2.0), near-side ($\\Delta\\phi\\approx$ 0) structure emerges in the two-particle $\\Delta\\eta$-$\\Delta\\phi$ correlation functions. The magnitude of the correlation exhibits a pronounced maximum in the range 1.0 < $p_{\\mathrm{T}}$ < 2.0 GeV/$c$ and an approximately linear increase with the charged particle multiplicity. The overall correlation strength at $\\sqrt{s} =$ 13TeV is similar to that found in earlier pp data at $\\sqrt{s} =$ 7 TeV, but is measured up to much higher multiplicity values. The observed long-range correlations are compared to those seen in pp, pPb, and PbPb collisions at lower collision energies.
Zhu, Xiangrong; Constantinos, Loizides; Zhongbao, Yin; Loizides, Constantinos; Zhongbao, Yin
Two-particle correlations is considered as a powerful probe for understanding the properties of the strongly interacting hot and dense medium. In such an analysis, a particle is chosen from higher $p_{\\rm T}$ region and called the trigger particle, which is presumably from jet fragmentations. The so called associated particles from lower $p_{\\rm T}$ region are always from the other fragmentation of the jet, or another production, such as collective flow. At RHIC and LHC, the measurements of the azimuthal angle distribution from two-particle correlations in A+A collisions show a strong suppression even disappeared at the high $p_{\\rm T}$ and enhancement with double-peak at the low $p_{\\rm T}$ on the away side, and ``ridge'' structure in pseudo-rapidity direction at the low $p_{\\rm T}$ on the near side compared to pp collisions. All the measurements can be explained as the effects of the hot and dense medium, and imply the Quark-Gluon Plasma is indeed formed in the heavy-ion collisions. When the direct ph...
Temporal Concurrent Constraint Programming
DEFF Research Database (Denmark)
Valencia, Frank Dan
Concurrent constraint programming (ccp) is a formalism for concurrency in which agents interact with one another by telling (adding) and asking (reading) information in a shared medium. Temporal ccp extends ccp by allowing agents to be constrained by time conditions. This dissertation studies...... temporal ccp by developing a process calculus called ntcc. The ntcc calculus generalizes the tcc model, the latter being a temporal ccp model for deterministic and synchronouss timed reactive systems. The calculus is built upon few basic ideas but it captures several aspects of timed systems. As tcc, ntcc...... structures, robotic devises, multi-agent systems and music applications. The calculus is provided with a denotational semantics that captures the reactive computations of processes in the presence of arbitrary environments. The denotation is proven to be fully-abstract for a substantial fragment...
The nuclear response in extended RPA theories
International Nuclear Information System (INIS)
Wambach, J.
1991-01-01
Linear response theories for small-amplitude nuclear motion are discussed. A review is given of the Random-Phase-Approximation and its successes and shortcomings are pointed out. Systematic improvements are presented which include two-particle two-hole excitations and account for dissipative effects due to binary collisions of nucleons in the mean field. These improved theories describe inelastic scattering experiments satisfactorily over a wide kinematical range. (author)
A note on the CFT origin of the strong constraint of DFT
International Nuclear Information System (INIS)
Betz, André; Blumenhagen, Ralph; Lüst, Dieter; Rennecke, Felix
2014-01-01
In double field theory, motivated by its field theoretic consistency, the level matching condition is generalized to the so-called strong constraint. In this note, it is investigated what the two-dimensional conformal field theory origin of this constraint is. Initially treating the left- and right-movers as independent, we compute the torus partition function as well as a generalized Virasoro-Shapiro amplitude. In non-compact directions the strong constraint arises from the factorization of the Virasoro-Shapiro amplitude over physical states as determined by the modular invariant partition function. From the same argument, along internal toroidal directions, no analogous constraint arises
Minimal Flavor Constraints for Technicolor
DEFF Research Database (Denmark)
Sakuma, Hidenori; Sannino, Francesco
2010-01-01
We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self-coupling and mas......We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self...
Social Constraints on Animate Vision
National Research Council Canada - National Science Library
Breazeal, Cynthia; Edsinger, Aaron; Fitzpatrick, Paul; Scassellati, Brian
2000-01-01
.... In humanoid robotic systems, or in any animate vision system that interacts with people, social dynamics provide additional levels of constraint and provide additional opportunities for processing economy...
Henneaux, Marc; Vasiliev, Mikhail A
2017-01-01
Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...
Seismological Constraints on Geodynamics
Lomnitz, C.
2004-12-01
Earth is an open thermodynamic system radiating heat energy into space. A transition from geostatic earth models such as PREM to geodynamical models is needed. We discuss possible thermodynamic constraints on the variables that govern the distribution of forces and flows in the deep Earth. In this paper we assume that the temperature distribution is time-invariant, so that all flows vanish at steady state except for the heat flow Jq per unit area (Kuiken, 1994). Superscript 0 will refer to the steady state while x denotes the excited state of the system. We may write σ 0=(J{q}0ṡX{q}0)/T where Xq is the conjugate force corresponding to Jq, and σ is the rate of entropy production per unit volume. Consider now what happens after the occurrence of an earthquake at time t=0 and location (0,0,0). The earthquake introduces a stress drop Δ P(x,y,z) at all points of the system. Response flows are directed along the gradients toward the epicentral area, and the entropy production will increase with time as (Prigogine, 1947) σ x(t)=σ 0+α {1}/(t+β )+α {2}/(t+β )2+etc A seismological constraint on the parameters may be obtained from Omori's empirical relation N(t)=p/(t+q) where N(t) is the number of aftershocks at time t following the main shock. It may be assumed that p/q\\sim\\alpha_{1}/\\beta times a constant. Another useful constraint is the Mexican-hat geometry of the seismic transient as obtained e.g. from InSAR radar interferometry. For strike-slip events such as Landers the distribution of \\DeltaP is quadrantal, and an oval-shaped seismicity gap develops about the epicenter. A weak outer triggering maxiμm is found at a distance of about 17 fault lengths. Such patterns may be extracted from earthquake catalogs by statistical analysis (Lomnitz, 1996). Finally, the energy of the perturbation must be at least equal to the recovery energy. The total energy expended in an aftershock sequence can be found approximately by integrating the local contribution over
Observational constraints on interstellar chemistry
International Nuclear Information System (INIS)
Winnewisser, G.
1984-01-01
The author points out presently existing observational constraints in the detection of interstellar molecular species and the limits they may cast on our knowledge of interstellar chemistry. The constraints which arise from the molecular side are summarised and some technical difficulties encountered in detecting new species are discussed. Some implications for our understanding of molecular formation processes are considered. (Auth.)
Market segmentation using perceived constraints
Jinhee Jun; Gerard Kyle; Andrew Mowen
2008-01-01
We examined the practical utility of segmenting potential visitors to Cleveland Metroparks using their constraint profiles. Our analysis identified three segments based on their scores on the dimensions of constraints: Other priorities--visitors who scored the highest on 'other priorities' dimension; Highly Constrained--visitors who scored relatively high on...
Fixed Costs and Hours Constraints
Johnson, William R.
2011-01-01
Hours constraints are typically identified by worker responses to questions asking whether they would prefer a job with more hours and more pay or fewer hours and less pay. Because jobs with different hours but the same rate of pay may be infeasible when there are fixed costs of employment or mandatory overtime premia, the constraint in those…
An Introduction to 'Creativity Constraints'
DEFF Research Database (Denmark)
Onarheim, Balder; Biskjær, Michael Mose
2013-01-01
Constraints play a vital role as both restrainers and enablers in innovation processes by governing what the creative agent/s can and cannot do, and what the output can and cannot be. Notions of constraints are common in creativity research, but current contributions are highly dispersed due to n...
Constraint Programming for Context Comprehension
DEFF Research Database (Denmark)
Christiansen, Henning
2014-01-01
A close similarity is demonstrated between context comprehension, such as discourse analysis, and constraint programming. The constraint store takes the role of a growing knowledge base learned throughout the discourse, and a suitable con- straint solver does the job of incorporating new pieces...
Tail Risk Constraints and Maximum Entropy
Directory of Open Access Journals (Sweden)
Donald Geman
2015-06-01
Full Text Available Portfolio selection in the financial literature has essentially been analyzed under two central assumptions: full knowledge of the joint probability distribution of the returns of the securities that will comprise the target portfolio; and investors’ preferences are expressed through a utility function. In the real world, operators build portfolios under risk constraints which are expressed both by their clients and regulators and which bear on the maximal loss that may be generated over a given time period at a given confidence level (the so-called Value at Risk of the position. Interestingly, in the finance literature, a serious discussion of how much or little is known from a probabilistic standpoint about the multi-dimensional density of the assets’ returns seems to be of limited relevance. Our approach in contrast is to highlight these issues and then adopt throughout a framework of entropy maximization to represent the real world ignorance of the “true” probability distributions, both univariate and multivariate, of traded securities’ returns. In this setting, we identify the optimal portfolio under a number of downside risk constraints. Two interesting results are exhibited: (i the left- tail constraints are sufficiently powerful to override all other considerations in the conventional theory; (ii the “barbell portfolio” (maximal certainty/ low risk in one set of holdings, maximal uncertainty in another, which is quite familiar to traders, naturally emerges in our construction.
International Nuclear Information System (INIS)
Nix, J.R.; Strottman, D.; Hecke, H.W. van; Schlei, B.R.; Sullivan, J.P.; Murray, M.J.
1998-02-01
The authors have used a nine-parameter expanding source model that includes special relativity, quantum statistics, resonance decays, and freeze-out on a realistic hypersurface in spacetime to analyze in detail invariant π + , K + , and K - one-particle multiplicity distributions and π + and π - two-particle correlations in nearly central collisions of Pb + Pb at p lab /A = 158 GeV/c. These studies confirm an earlier conclusion for nearly central collisions of Si + Au at p lab /A = 14.6 GeV/c that the freeze-out temperature is less than 100 meV and that both the longitudinal and transverse collective velocities -- which are anti-correlated with the temperature -- are substantial. The authors also reconciled their current results with those of previous analyses that yielded a much higher freeze-out temperature of approximately 140 meV for both Pb + Pb collisions at p lab /A = 158 GeV/c and other reactions. One type of analysis was based upon the use of a heuristic equation that neglects relativity to extrapolate slope parameters to zero particle mass. Another type of analysis utilized a thermal model in which there was an accumulation of effects from several approximations. The future should witness the arrival of much new data on invariant one-particle multiplicity distributions and two-particle correlations as functions of bombarding energy and/or size of the colliding nuclei. The proper analysis of these data in terms of a realistic model could yield accurate values for the density, temperature, collective velocity, size, and other properties of the expanding matter as it freezes out into a collection of noninteracting hadrons. A sharp discontinuity in the value of one or more of these properties could conceivably be the long-awaited signal for the formation of a quark-gluon plasma or other new physics
Identifying energy constraints to parasite resistance.
Allen, D E; Little, T J
2011-01-01
Life-history theory suggests that energetically expensive traits may trade off against each other, resulting in costs associated with the development or maintenance of a particular phenotype. The deployment of resistance mechanisms during parasite exposure is one such trait, and thus their potential benefit in fighting off parasites may be offset by costs to other fitness-related traits. In this study, we used trade-off theory as a basis to test whether stimulating an increased development rate in juvenile Daphnia would reveal energetic constraints to its ability to resist infection upon subsequent exposure to the castrating parasite, Pasteuria ramosa. We show that the presumably energetically expensive process of increased development rate does result in more infected hosts, suggesting that parasite resistance requires the allocation of resources from a limited source, and thus has the potential to be costly.
Contraint's theory and relativistic dynamics
International Nuclear Information System (INIS)
Longhi, G.; Lusanna, L.
1987-01-01
The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory
Group field theory with noncommutative metric variables.
Baratin, Aristide; Oriti, Daniele
2010-11-26
We introduce a dual formulation of group field theories as a type of noncommutative field theories, making their simplicial geometry manifest. For Ooguri-type models, the Feynman amplitudes are simplicial path integrals for BF theories. We give a new definition of the Barrett-Crane model for gravity by imposing the simplicity constraints directly at the level of the group field theory action.
Exact Constraint Design and its potential for Robust Embodiment
DEFF Research Database (Denmark)
Eifler, Tobias; Howard, Thomas J.
2017-01-01
Constraint Design. Examples are the calculation of a mechanisms’ mobility using the Grübler-Kutzbach criterion, the analysis of statically determinate assemblies by means of the screw theory or so called Schlussartenmatrizen, as well as the analysis of engaging surfaces in terms of location schemes...
Modeling Peak Oil and the Geological Constraints on Oil Production
Okullo, S.J.; Reynes, F.; Hofkes, M.W.
2014-01-01
We propose a model to reconcile the theory of inter-temporal non-renewable resource depletion with well-known stylized facts concerning the exploitation of exhaustible resources such as oil. Our approach introduces geological constraints into a Hotelling type extraction-exploration model. We show
Modeling peak oil and the geological constraints on oil production
Okullo, S.J.; Reynès, F.; Hofkes, M.W.
2015-01-01
We propose a model to reconcile the theory of inter-temporal non-renewable resource depletion with well-known stylized facts concerning the exploitation of exhaustible resources such as oil. Our approach introduces geological constraints into a Hotelling type extraction-exploration model. We show
Causal vs. Analytic constraints on anomalous quartic gauge couplings
Vecchi, Luca
2007-01-01
We derive one loop constraints on the anomalous quartic gauge couplings using a general non-forward dispersion relation for the elastic scattering amplitude of two longitudinally polarized vector bosons. We compare this result with another one derived by the assumption that the underlying theory satisfies the causality principle of Special Relativity and show that this latter is more constraining.
Vocabulary Constraint on Texts
Directory of Open Access Journals (Sweden)
C. Sutarsyah
2008-01-01
Full Text Available This case study was carried out in the English Education Department of State University of Malang. The aim of the study was to identify and describe the vocabulary in the reading text and to seek if the text is useful for reading skill development. A descriptive qualitative design was applied to obtain the data. For this purpose, some available computer programs were used to find the description of vocabulary in the texts. It was found that the 20 texts containing 7,945 words are dominated by low frequency words which account for 16.97% of the words in the texts. The high frequency words occurring in the texts were dominated by function words. In the case of word levels, it was found that the texts have very limited number of words from GSL (General Service List of English Words (West, 1953. The proportion of the first 1,000 words of GSL only accounts for 44.6%. The data also show that the texts contain too large proportion of words which are not in the three levels (the first 2,000 and UWL. These words account for 26.44% of the running words in the texts.Â It is believed that the constraints are due to the selection of the texts which are made of a series of short-unrelated texts. This kind of text is subject to the accumulation of low frequency words especially those of content words and limited of words from GSL. It could also defeat the development of students' reading skills and vocabulary enrichment.
The ethics of wildlife research: a nine R theory.
Curzer, Howard J; Wallace, Mark C; Perry, Gad; Muhlberger, Peter J; Perry, Dan
2013-01-01
The commonsense ethical constraints on laboratory animal research known as the three Rs are widely accepted, but no constraints tailored to research on animals in the wild are available. In this article, we begin to fill that gap. We sketch a set of commonsense ethical constraints on ecosystem research parallel to the constraints that govern laboratory animal research. Then we combine the animal and ecosystem constraints into a single theory to govern research on animals in the wild.
Hydrostatic equilibrium of stars without electroneutrality constraint
Krivoruchenko, M. I.; Nadyozhin, D. K.; Yudin, A. V.
2018-04-01
The general solution of hydrostatic equilibrium equations for a two-component fluid of ions and electrons without a local electroneutrality constraint is found in the framework of Newtonian gravity theory. In agreement with the Poincaré theorem on analyticity and in the context of Dyson's argument, the general solution is demonstrated to possess a fixed (essential) singularity in the gravitational constant G at G =0 . The regular component of the general solution can be determined by perturbation theory in G starting from a locally neutral solution. The nonperturbative component obtained using the method of Wentzel, Kramers and Brillouin is exponentially small in the inner layers of the star and grows rapidly in the outward direction. Near the surface of the star, both components are comparable in magnitude, and their nonlinear interplay determines the properties of an electro- or ionosphere. The stellar charge varies within the limits of -0.1 to 150 C per solar mass. The properties of electro- and ionospheres are exponentially sensitive to variations of the fluid densities in the central regions of the star. The general solutions of two exactly solvable stellar models without a local electroneutrality constraint are also presented.
Symposium on Optimal Control Theory
1987-01-01
Control theory can be roughly classified as deterministic or stochastic. Each of these can further be subdivided into game theory and optimal control theory. The central problem of control theory is the so called constrained maximization (which- with slight modifications--is equivalent to minimization). One can then say, heuristically, that the major problem of control theory is to find the maximum of some performance criterion (or criteria), given a set of constraints. The starting point is, of course, a mathematical representation of the performance criterion (or criteria)- sometimes called the objective functional--along with the constraints. When the objective functional is single valued (Le. , when there is only one objective to be maximized), then one is dealing with optimal control theory. When more than one objective is involved, and the objectives are generally incompatible, then one is dealing with game theory. The first paper deals with stochastic optimal control, using the dynamic programming ...
Observational constraints on Visser's cosmological model
International Nuclear Information System (INIS)
Alves, M. E. S.; Araujo, J. C. N. de; Miranda, O. D.; Wuensche, C. A.; Carvalho, F. C.; Santos, E. M.
2010-01-01
Theories of gravity for which gravitons can be treated as massive particles have presently been studied as realistic modifications of general relativity, and can be tested with cosmological observations. In this work, we study the ability of a recently proposed theory with massive gravitons, the so-called Visser theory, to explain the measurements of luminosity distance from the Union2 compilation, the most recent Type-Ia Supernovae (SNe Ia) data set, adopting the current ratio of the total density of nonrelativistic matter to the critical density (Ω m ) as a free parameter. We also combine the SNe Ia data with constraints from baryon acoustic oscillations (BAO) and cosmic microwave background (CMB) measurements. We find that, for the allowed interval of values for Ω m , a model based on Visser's theory can produce an accelerated expansion period without any dark energy component, but the combined analysis (SNe Ia+BAO+CMB) shows that the model is disfavored when compared with the ΛCDM model.
Adan, Mohammed Abdi; Orodho, John Aluko
2015-01-01
This study sought to find out the constraints of implementing free secondary education (FSE) in secondary schools in Mandera West Sub-County, Mandera County, Kenya. The study is based on the theory of constraints as the researcher examines the factors constraining the achievement of FSE objectives. The study used the survey design. The main…
Corporate capital structure and how soft budget constraints may affect it
Rizov, M.I.
2008-01-01
This survey paper examines existing theories of capital structure and related empirical tests with the aim to derive theoretical as well empirically testable predictions about the implications of the soft budget constraint for corporate capital structure. We show that the soft budget constraint
Machine tongues. X. Constraint languages
Energy Technology Data Exchange (ETDEWEB)
Levitt, D.
Constraint languages and programming environments will help the designer produce a lucid description of a problem domain, and then of particular situations and problems in it. Early versions of these languages were given descriptions of real world domain constraints, like the operation of electrical and mechanical parts. More recently, the author has automated a vocabulary for describing musical jazz phrases, using constraint language as a jazz improviser. General constraint languages will handle all of these domains. Once the model is in place, the system will connect built-in code fragments and algorithms to answer questions about situations; that is, to help solve problems. Bugs will surface not in code, but in designs themselves. 15 references.
Fluid convection, constraint and causation
Bishop, Robert C.
2012-01-01
Complexity—nonlinear dynamics for my purposes in this essay—is rich with metaphysical and epistemological implications but is receiving sustained philosophical analysis only recently. I will explore some of the subtleties of causation and constraint in Rayleigh–Bénard convection as an example of a complex phenomenon, and extract some lessons for further philosophical reflection on top-down constraint and causation particularly with respect to causal foundationalism. PMID:23386955
Experimental constraints on transport
International Nuclear Information System (INIS)
Luce, T.C.; Petty, K.H.; Burrell, K.H.; Forest, C.B.; Gohil, P.; Groebner, R.J.; De Haas, J.C.M.; James, R.A.; Makowski, M.A.
1994-12-01
Characterization of the cross-field energy transport in magnetic confinement experiments in a manner applicable to the accurate assessment of future machine performance continues to be a challenging goal. Experimental results from the DIII-D tokamak in the areas of dimensionless scaling and non-diffusive transport represent progress toward this goal. Dimensionless scaling shows how beneficial the increase in machine size and magnetic field is for future devices. The experiments on DIII-D are the first to determine separately the electron and ion scaling with normalized gyroradius ρ * ; the electrons scale as expected from gyro-Bohm class theories, while the ions scale consistent with the Goldston empirical scaling. This result predicts an increase in transport relative to Bohm diffusion as ρ * decreases in future devices. The existence of distinct ρ * scalings for ions and electrons cautions against a physical interpretation of one-fluid or global analysis. The second class of experiments reported here are the first to demonstrate the existence of non-diffusive energy transport. Electron cyclotron heating was applied at the half radius; the electron temperature profile remains substantially peaked. Power balance analysis indicates that heat must flow in the direction of increasing temperature, which is inconsistent with purely diffusive transport. The dynamics of electron temperature perturbations indicate the presence in the heat flux of a term dependent on temperature rather than its gradient. These two observations strongly constrain the types of models which can be applied to cross-field heat transport
Quantization of fields with constraints
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M.; Tyutin, I.V.
1990-01-01
The quantization of singular field theories, in particular, gauge theories, is one of the key problems in quantum field theory. This book - which addresses the reader acquainted with the foundations of quantum field theory - provides a comprehensive analysis of this problem and techniques for its solution. The main topics are canonical and Lagrangian quantization and the path integral method. (orig.).
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Perrini, Lucia; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Leggat, Duncan; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Abdelalim, Ahmed Ali; Awad, Adel; Mahrous, Ayman; Radi, Amr; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Peltola, Timo; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Filipovic, Nicolas; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schulte, Jan-Frederik; Verlage, Tobias; Weber, Hendrik; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behnke, Olaf; Behrens, Ulf; Borras, Kerstin; Burgmeier, Armin; Campbell, Alan; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Seitz, Claudia; Spannagel, Simon; Trippkewitz, Karim Damun; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Gonzalez, Daniel; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Nowatschin, Dominik; Ott, Jochen; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Rathjens, Denis; Sander, Christian; Scharf, Christian; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Fink, Simon; Frensch, Felix; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hazi, Andras; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutta, Suchandra; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Jain, Sandhya; Kole, Gouranga; Kumar, Sanjeev; Mahakud, Bibhuprasad; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sarkar, Tanmay; Sur, Nairit; Sutar, Bajrang; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Kapoor, Anshul; Kothekar, Kunal; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Abbiendi, Giovanni; Battilana, Carlo; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Bellato, Marco; Benato, Lisa; Boletti, Alessio; Branca, Antonio; Dall'Osso, Martino; Dorigo, Tommaso; Fantinel, Sergio; Fanzago, Federica; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Montecassiano, Fabio; Passaseo, Marina; Pazzini, Jacopo; Pegoraro, Matteo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Ventura, Sandro; Zanetti, Marco; Zotto, Pierluigi; Zucchetta, Alberto; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Zanetti, Anna; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Sakharov, Alexandre; Son, Dong-Chul; Brochero Cifuentes, Javier Andres; Kim, Hyunsoo; Kim, Tae Jeong; Song, Sanghyeon; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Hong, Byung-Sik; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Chadeeva, Marina; Danilov, Mikhail; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Kaminskiy, Alexandre; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Palencia Cortezon, Enrique; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; De Castro Manzano, Pablo; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Berruti, Gaia Maria; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Castello, Roberto; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Kortelainen, Matti J; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Nemallapudi, Mythra Varun; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Piparo, Danilo; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lecomte, Pierre; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Takahashi, Maiko; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Kovitanggoon, Kittikul; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Gecit, Fehime Hayal; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozcan, Merve; Ozdemir, Kadri; Ozturk, Sertac; Tali, Bayram; Topakli, Huseyin; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Vardarlı, Fuat Ilkehan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Dominic; Smith, Vincent J; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Futyan, David; Hall, Geoffrey; Iles, Gregory; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Alimena, Juliette; Berry, Edmund; Cutts, David; Ferapontov, Alexey; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Jesus, Orduna; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Paneva, Mirena Ivova; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Derdzinski, Mark; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Incandela, Joe; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; Suarez, Indara; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Nauenberg, Uriel; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Sun, Werner; Tan, Shao Min; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Wittich, Peter; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Gleyzer, Sergei V; Konigsberg, Jacobo; Korytov, Andrey; Kotov, Khristian; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Rossin, Roberto; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Terentyev, Nikolay; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bein, Samuel; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Kalakhety, Himali; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Turner, Paul; Varelas, Nikos; Wu, Zhenbin; Zakaria, Mohammed; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Osherson, Marc; Roskes, Jeffrey; Cocoros, Alice; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Dahmes, Bryan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bartek, Rachel; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Knowlton, Dan; Kravchenko, Ilya; Meier, Frank; Monroy, Jose; Ratnikov, Fedor; Siado, Joaquin Emilo; Snow, Gregory R; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Bhattacharya, Saptaparna; Hahn, Kristan Allan; Kubik, Andrew; Low, Jia Fu; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Brinkerhoff, Andrew; Dev, Nabarun; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Ling, Ta-Yung; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Tully, Christopher; Zuranski, Andrzej; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Jung, Kurt; Kumar, Ajay; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Petrillo, Gianluca; Tan, Ping; Verzetti, Mauro; Chou, John Paul; Contreras-Campana, Emmanuel; Ferencek, Dinko; Gershtein, Yuri; Halkiadakis, Eva; Heindl, Maximilian; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Nash, Kevin; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Kamon, Teruki; Krutelyov, Vyacheslav; Mueller, Ryan; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Wood, John; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Sarangi, Tapas; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Woods, Nathaniel
2017-07-31
Two-particle correlations in pPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV are studied as a function of the pseudorapidity separation ($\\Delta \\eta$) of the particle pair at small relative azimuthal angle ($ | \\Delta \\phi | < \\pi/3$). The correlations are decomposed into a jet component that dominates the short-range correlations ($ | \\Delta \\eta | < $ 1), and a component that persists at large $\\Delta \\eta$ and may originate from collective behavior of the produced system. The events are classified in terms of the multiplicity of the produced particles. Finite azimuthal anisotropies are observed in high-multiplicity events. The second and third Fourier components of the particle-pair azimuthal correlations, $V_2$ and $V_3$, are extracted after subtraction of the jet component. The single-particle anisotropy parameters $v_2$ and $v_3$ are normalized by their lab frame mid-rapidity value and are studied as a function of $\\eta_{\\text{cm}}$. The normalized $v_2$ distribution is foun...
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Mora Herrera, Clemencia; Pol, Maria Elena; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Heister, Arno; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Horton, Dean; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Novgorodova, Olga; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellato, Marco; Biasotto, Massimo; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Fanzago, Federica; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Klein, Daniel; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Cheng, Tongguang; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; De Mattia, Marco; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Vuosalo, Carl; Woods, Nathaniel
2015-03-06
Measurements of two-particle angular correlations between an identified strange hadron (${\\rm K}^0_{\\rm S}$ or $\\Lambda$/$\\overline{\\Lambda}$) and a charged particle, emitted in pPb collisions, are presented over a wide range in pseudorapidity and full azimuth. The data, corresponding to an integrated luminosity of approximately 35 nb$^{-1}$, were collected at a nucleon-nucleon center-of-mass energy ($\\sqrt{s_{NN}}$) of 5.02 TeV with the CMS detector at the LHC. The results are compared to semi-peripheral PbPb collision data at $\\sqrt{s_{NN}}$ = 2.76 TeV, covering similar charged-particle multiplicities in the events. The observed azimuthal correlations at large relative pseudorapidity are used to extract the second-order ($v_2$) and third-order ($v_3$) anisotropy harmonics of ${\\rm K}^0_{\\rm S}$ and $\\Lambda$/$\\overline{\\Lambda}$ particles. These quantities are studied as a function of the charged-particle multiplicity in the event and the transverse momentum of the particles. For high-multiplicity pPb event...
Qu, Zhiguo; Wu, Shengyao; Wang, Mingming; Sun, Le; Wang, Xiaojun
2017-12-01
As one of important research branches of quantum communication, deterministic remote state preparation (DRSP) plays a significant role in quantum network. Quantum noises are prevalent in quantum communication, and it can seriously affect the safety and reliability of quantum communication system. In this paper, we study the effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via different quantum channels including the χ state, Brown state and GHZ state. Firstly, the output states and fidelities of three DRSP algorithms via different quantum entangled channels in four noisy environments, including amplitude-damping, phase-damping, bit-flip and depolarizing noise, are presented, respectively. And then, the effects of noises on three kinds of preparation algorithms in the same noisy environment are discussed. In final, the theoretical analysis proves that the effect of noise in the process of quantum state preparation is only related to the noise type and the size of noise factor and independent of the different entangled quantum channels. Furthermore, another important conclusion is given that the effect of noise is also independent of how to distribute intermediate particles for implementing DRSP through quantum measurement during the concrete preparation process. These conclusions will be very helpful for improving the efficiency and safety of quantum communication in a noisy environment.
International Nuclear Information System (INIS)
Miake, Yasuo
1982-07-01
The production mechanism of backward energetic protons was studied in 800 MeV proton-nucleus collision from the measurement of two-particle correlation over a wide range of kinematic regions. The backward energetic protons at 118 deg were measured in coincidence with the particles emitted in the angular range from 15 deg to 100 deg. Both in-plane and out-of-plane coincidences were measured. The backward energetic protons were detected with a delta E-E counter in a momentum region from 350 to 750 MeV/c, whereas the coincident particles were detected with a magnetic spectrometer in the momentum region from 450 to 2000 MeV/c. The reaction process of the backward protons were decomposed into six categories by the measurement of the associated particles, p or d. The momentum spectra, angular distribution and the target mass dependence of these components were studied. The component of p-p QES was well reproduced by the PW1A model, but the backward energetic protons were not from this process. The momenta of two nucleons inside the quasi-deuteron are highly correlated. The components of p-p non-QES and p-p out-of-plane are the main components of the backward energetic proton production. (Kako, I.)
International Nuclear Information System (INIS)
Semerdzhiev, Kh.
1982-01-01
The two-particle correlations between secondary charged particles in a PI-n-interactions with PI-mesons at 40 GeV/c are studied in the frame of semiinclusive approach. For rapidity correlations two correlation functions are used and they are evaluated for four different multiplicities - 3, 5, 7 and >- 9. The obtained results are presented. Within the twofold (double) error limit the correlation function values at zero rapidities are non-zero and are vanishing with the multiplicity increase. The values for the particle with like charges are almost equal but are smaller than the values for opposite charges. It is concluded that the correlation function at zero rapidities does not depend on the target (p or n). For the first time semiinclusive azimuthal correlations in PI-n-interactions are investigated. The asymmetry coefficients are determined and the obtained values are given. It is shown that the asymmetry coefficient values for opposite charges are greater than ones for equal charges at rapidity differences (ΔY) smaller than 2. (author)
Determining physical constraints in transcriptional initiationcomplexes using DNA sequence analysis
Energy Technology Data Exchange (ETDEWEB)
Shultzaberger, Ryan K.; Chiang, Derek Y.; Moses, Alan M.; Eisen,Michael B.
2007-07-01
Eukaryotic gene expression is often under the control ofcooperatively acting transcription factors whose binding is limited bystructural constraints. By determining these structural constraints, wecan understand the "rules" that define functional cooperativity.Conversely, by understanding the rules of binding, we can inferstructural characteristics. We have developed an information theory basedmethod for approximating the physical limitations of cooperativeinteractions by comparing sequence analysis to microarray expressiondata. When applied to the coordinated binding of the sulfur amino acidregulatory protein Met4 by Cbf1 and Met31, we were able to create acombinatorial model that can correctly identify Met4 regulatedgenes.
Nonlocal, yet translation invariant, constraints for rotationally invariant slave bosons
Ayral, Thomas; Kotliar, Gabriel
The rotationally-invariant slave boson (RISB) method is a lightweight framework allowing to study the low-energy properties of complex multiorbital problems currently out of the reach of more comprehensive, yet more computationally demanding methods such as dynamical mean field theory. In the original formulation of this formalism, the slave-boson constraints can be made nonlocal by enlarging the unit cell and viewing the quantum states enclosed in this new unit cell as molecular levels. In this work, we extend RISB to constraints which are nonlocal while preserving translation invariance. We apply this extension to the Hubbard model.
Unparticle physics constraints from the hydrogen atom
Energy Technology Data Exchange (ETDEWEB)
Wondrak, Michael Florian; Nicolini, Piero; Bleicher, Marcus [Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main (Germany); Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet Frankfurt am Main, Frankfurt am Main (Germany)
2016-07-01
Unparticle stuff has been proposed as an extension of the Standard Model of particle physics by including scale invariant fields. In the framework of effective field theory, it describes the low-energy limit of a so-called Banks-Zaks sector which exhibits scale invariance below an energy scale Λ{sub U}. Unparticle fields are characterized by a non-integer canonical scaling dimension d{sub U}, which leads to unusual properties like resembling a fractional number of (un)particles. The existence of unparticle stuff may be detected experimentally through the interaction with conventional matter. After a review on the unparticle theory and the static potential due to virtual unparticle exchange, we focus on its impact on hydrogen atom energy levels. We obtain the energy shift of the ground state by using Rayleigh-Schroedinger perturbation theory and compare it with experimental data. In this way, bounds on the energy scale Λ{sub U} as a function of d{sub U} are derived. Finally, we offer a comparison with existing constraints in literature like the lepton magnetic anomaly. For some parameter regimes, the hydrogen bound provides competitive results.
Developmental constraints on behavioural flexibility.
Holekamp, Kay E; Swanson, Eli M; Van Meter, Page E
2013-05-19
We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility.
Data assimilation with inequality constraints
Thacker, W. C.
If values of variables in a numerical model are limited to specified ranges, these restrictions should be enforced when data are assimilated. The simplest option is to assimilate without regard for constraints and then to correct any violations without worrying about additional corrections implied by correlated errors. This paper addresses the incorporation of inequality constraints into the standard variational framework of optimal interpolation with emphasis on our limited knowledge of the underlying probability distributions. Simple examples involving only two or three variables are used to illustrate graphically how active constraints can be treated as error-free data when background errors obey a truncated multi-normal distribution. Using Lagrange multipliers, the formalism is expanded to encompass the active constraints. Two algorithms are presented, both relying on a solution ignoring the inequality constraints to discover violations to be enforced. While explicitly enforcing a subset can, via correlations, correct the others, pragmatism based on our poor knowledge of the underlying probability distributions suggests the expedient of enforcing them all explicitly to avoid the computationally expensive task of determining the minimum active set. If additional violations are encountered with these solutions, the process can be repeated. Simple examples are used to illustrate the algorithms and to examine the nature of the corrections implied by correlated errors.
Updated constraints on the cosmic string tension
International Nuclear Information System (INIS)
Battye, Richard; Moss, Adam
2010-01-01
We reexamine the constraints on the cosmic string tension from cosmic microwave background (CMB) and matter power spectra, and also from limits on a stochastic background of gravitational waves provided by pulsar timing. We discuss the different approaches to modeling string evolution and radiation. In particular, we show that the unconnected segment model can describe CMB spectra expected from thin string (Nambu) and field theory (Abelian-Higgs) simulations using the computed values for the correlation length, rms string velocity and small-scale structure relevant to each variety of simulation. Applying the computed spectra in a fit to CMB and SDSS data we find that Gμ/c 2 -7 (2σ) if the Nambu simulations are correct and Gμ/c 2 -7 in the Abelian-Higgs case. The degeneracy between Gμ/c 2 and the power spectrum slope n S is substantially reduced from previous work. Inclusion of constraints on the baryon density from big bang nucleosynthesis (BBN) imply that n S 2 and loop production size, α, we find that Gμ/c 2 -7 for αc 2 /(ΓGμ) 2 -11 /α for αc 2 /(ΓGμ)>>1.
Constraints on Nc in extensions of the standard model
International Nuclear Information System (INIS)
Shrock, Robert
2007-01-01
We consider a class of theories involving an extension of the standard model gauge group to an a priori arbitrary number of colors, N c , and derive constraints on N c . One motivation for this is the string theory landscape. For two natural classes of embeddings of this N c -extended standard model in a supersymmetric grand unified theory, we show that requiring unbroken electromagnetic gauge invariance, asymptotic freedom of color, and three generations of quarks and leptons forces one to choose N c =3. Similarly, we show that for a theory combining the N c -extended standard model with a one-family SU(2) TC technicolor theory, only the value N c =3 is allowed
International Nuclear Information System (INIS)
Efimov, V.N.; Schulz, H.
1976-01-01
It is shown that in the framework of the boundary condition models (BCM) for the two-particle interaction the Schroedinger equation for the system of three identical bosons can be reduced to the one-dimensional integral equation in an exact way. The method used for obtaining such an equation is based on a special consideration of the two-particle off-shell wave functions. The binding energy of the simple three-particle system is calculated. It is indicated that by means of the equation obtained it is possible to change the off-shell behaviour of the two-particle t-matrix and therefore to simulate three particle effects. (Auth.)
Constraints on the evolution of phenotypic plasticity
DEFF Research Database (Denmark)
Murren, Courtney J; Auld, Josh R.; Callahan, Hilary S
2015-01-01
Phenotypic plasticity is ubiquitous and generally regarded as a key mechanism for enabling organisms to survive in the face of environmental change. Because no organism is infinitely or ideally plastic, theory suggests that there must be limits (for example, the lack of ability to produce...... an optimal trait) to the evolution of phenotypic plasticity, or that plasticity may have inherent significant costs. Yet numerous experimental studies have not detected widespread costs. Explicitly differentiating plasticity costs from phenotype costs, we re-evaluate fundamental questions of the limits...... to the evolution of plasticity and of generalists vs specialists. We advocate for the view that relaxed selection and variable selection intensities are likely more important constraints to the evolution of plasticity than the costs of plasticity. Some forms of plasticity, such as learning, may be inherently...
A note on migration with borrowing constraints.
Ghatak, S; Levine, P
1994-12-01
"This note examines an important conflict between the theory and evidence on migration in LDCs. While the Harris-Todaro class of models explain the phenomenon of migration mainly by expected income differential between the economically advanced and the backward regions, the actual evidence in some cases suggests that migration could actually rise following a rise in income in backward areas. We resolve this puzzle by analysing migration in the context of the existence of imperfect credit markets in LDCs. We show that under certain plausible conditions, the rate of migration from the rural to the urban areas may actually rise when rural wages rise, as they ease the constraints on borrowing by potential migrants." excerpt
Hadronic EDM constraints on orbifold GUTs
International Nuclear Information System (INIS)
Hisano, Junji; Kakizaki, Mitsuru; Nagai, Minoru
2005-01-01
We point out that the null results of the hadronic electric dipole moment (EDM) searches constrain orbifold grand unified theories (GUTs), where the GUT symmetry and supersymmetry (SUSY) are both broken by boundary conditions in extra dimensions and it leads to rich fermion and sfermion flavor structures. A marginal chromoelectric dipole moment (CEDM) of the up quark is induced by the misalignment between the CP violating left- and right-handed up-type squark mixings, in contrast to the conventional four-dimensional SUSY GUTs. The up quark CEDM constraint is found to be as strong as those from charged lepton flavor violation (LFV) searches. The interplay between future EDM and LFV experiments will probe the structures of the GUTs and the SUSY breaking mediation mechanism
Constraint programming and decision making
Kreinovich, Vladik
2014-01-01
In many application areas, it is necessary to make effective decisions under constraints. Several area-specific techniques are known for such decision problems; however, because these techniques are area-specific, it is not easy to apply each technique to other applications areas. Cross-fertilization between different application areas is one of the main objectives of the annual International Workshops on Constraint Programming and Decision Making. Those workshops, held in the US (El Paso, Texas), in Europe (Lyon, France), and in Asia (Novosibirsk, Russia), from 2008 to 2012, have attracted researchers and practitioners from all over the world. This volume presents extended versions of selected papers from those workshops. These papers deal with all stages of decision making under constraints: (1) formulating the problem of multi-criteria decision making in precise terms, (2) determining when the corresponding decision problem is algorithmically solvable; (3) finding the corresponding algorithms, and making...
Comments on the nilpotent constraint of the goldstino superfield
Ghilencea, D M
2016-01-01
Superfield constraints were often used in the past, in particular to describe the Akulov-Volkov action of the goldstino by a superfield formulation with $L=(\\Phi^\\dagger \\Phi)_D + [(f\\Phi)_F + h.c.]$ endowed with the nilpotent constraint $\\Phi^2=0$ for the goldstino superfield ($\\Phi$). Inspired by this, such constraint is often used to define the goldstino superfield even in the presence of additional superfields, for example in models of "nilpotent inflation". In this review we show that the nilpotent property is not valid in general, under the assumption of a microscopic (ultraviolet) description of the theory with linear supermultiplets. Sometimes only weaker versions of the nilpotent relation are true such as $\\Phi^3=0$ or $\\Phi^4=0$ ($\\Phi^2\
Institute of Scientific and Technical Information of China (English)
蔡东方; 孔淑红
2017-01-01
This paper compares the effects of financial constraint and financial incentive in public-private-partnership(PPP) mode on the supply efficient of public goods and social welfare,and analyzes the efficiency loss under financial constraints by constructing a general equilibrium model based on the incomplete contracting theory.The result shows as follows:depending on the professionalization,financial incentives from private sectors could improve the productivity of public goods,but financial constraints eliminate the benefit of professionalization,which results in the loss of social welfare.Finally,it suggests that the government should break the financial constraints and institutional discrimination,and improve financial market,and introduce specialized private sectors into the various industries of public goods in fair and competitive market environment.%通过构建不完全契约理论下的一般均衡模型,对比分析了PPP模式中的融资约束和融资激励对公共产品提供效率和社会福利的影响,并探讨了融资约束条件下的效率损失.结果显示:私人融资的专业性可以提高公共产品合意程度,但是私人部门的融资约束会抵消其专业性带来的好处,导致社会福利损失.最后针对民营企业参与PPP项目对政府提出建议:必须打破融资约束和制度歧视,完善和规范金融市场,在公平、竞争的市场环境下引入专业机构参与公共产品提供的各个领域.
Symmetry gauge theory for paraparticles
International Nuclear Information System (INIS)
Kursawe, U.
1986-01-01
In the present thesis it was shown that for identical particles the wave function of which has a more complicated symmetry than it is the case at the known kinds of particles, the bosons and fermions, a gauge theory can be formulated, the so-called 'symmetry gauge theory'. This theory has its origin alone in the symmetry of the particle wave functions and becomes first relevant when more than two particles are considered. It was shown that for particles with mixed-symmetrical wave functions, so-called 'paraparticles', the quantum mechanical state is no more described by one Hilbert-space element but by a many-dimensional subspace of this Hilbert space. The gauge freedom consists then just in the freedom of the choice of the basis in this subspace, the corresponding gauge group is the group of the unitary basis transformation in this subspace. (orig./HSI) [de
Phonological Similarity in Serial Recall: Constraints on Theories of Memory
Lewandowsky, Stephan; Farrell, Simon
2008-01-01
In short-term serial recall, similar-sounding items are remembered more poorly than items that do not sound alike. When lists mix similar and dissimilar items, performance on the dissimilar items is of considerable theoretical interest. Farrell and Lewandowsky [Farrell, S., & Lewandowsky, S. (2003). Dissimilar items benefit from phonological…
A variational theory of immiscible mixtures with mechanic constraints
International Nuclear Information System (INIS)
Carmo, E.G.D. do.
1982-02-01
A variational formulation for immiscible mixtures with mechanical restrictions is put forward and the arbitrary parts of the interactional force and stress tensor of the constituents are determined. (Author) [pt
Constraints on modular inflation in supergravity and string theory
International Nuclear Information System (INIS)
Covi, L.; Palma, G.A.; Gomez-Reino, M.; Gross, C.; Louis, J.; Hamburg Univ.; Scrucca, C.A.
2008-05-01
We perform a general algebraic analysis on the possibility of realising slow-roll inflation in the moduli sector of string models. This problem turns out to be very closely related to the characterisation of models admitting metastable vacua with non-negative cosmological constant. In fact, we show that the condition for the existence of viable inflationary trajectories is a deformation of the condition for the existence of metastable de Sitter vacua. This condition depends on the ratio between the scale of inflation and the gravitino mass and becomes stronger as this parameter grows. After performing a general study within arbitrary supergravity models, we analyse the implications of our results in several examples. More concretely, in the case of heterotic and orientifold string compactifications on a Calabi-Yau in the large volume limit we show that there may exist fully viable models, allowing both for inflation and stabilisation. Additionally, we show that subleading corrections breaking the no-scale property shared by these models always allow for slow-roll inflation but with an inflationary scale suppressed with respect to the gravitino scale. A scale of inflation larger than the gravitino scale can also be achieved under more restrictive circumstances and only for certain types of compactifications. (orig.)
Constraint elimination in dynamical systems
Singh, R. P.; Likins, P. W.
1989-01-01
Large space structures (LSSs) and other dynamical systems of current interest are often extremely complex assemblies of rigid and flexible bodies subjected to kinematical constraints. A formulation is presented for the governing equations of constrained multibody systems via the application of singular value decomposition (SVD). The resulting equations of motion are shown to be of minimum dimension.
Constraint Programming versus Mathematical Programming
DEFF Research Database (Denmark)
Hansen, Jesper
2003-01-01
Constraint Logic Programming (CLP) is a relatively new technique from the 80's with origins in Computer Science and Artificial Intelligence. Lately, much research have been focused on ways of using CLP within the paradigm of Operations Research (OR) and vice versa. The purpose of this paper...
Sterile neutrino constraints from cosmology
DEFF Research Database (Denmark)
Hamann, Jan; Hannestad, Steen; Raffelt, Georg G.
2012-01-01
The presence of light particles beyond the standard model's three neutrino species can profoundly impact the physics of decoupling and primordial nucleosynthesis. I review the observational signatures of extra light species, present constraints from recent data, and discuss the implications of po...... of possible sterile neutrinos with O(eV)-masses for cosmology....
Intertemporal consumption and credit constraints
DEFF Research Database (Denmark)
Leth-Petersen, Søren
2010-01-01
There is continuing controversy over the importance of credit constraints. This paper investigates whether total household expenditure and debt is affected by an exogenous increase in access to credit provided by a credit market reform that enabled Danish house owners to use housing equity...
Financial Constraints: Explaining Your Position.
Cargill, Jennifer
1988-01-01
Discusses the importance of educating library patrons about the library's finances and the impact of budget constraints and the escalating cost of serials on materials acquisition. Steps that can be taken in educating patrons by interpreting and publicizing financial information are suggested. (MES)
Where is pragmatics in optimality theory?
Zeevat, H.; Kecskes, I.; Mey, J.
2008-01-01
This paper deals with the architectural issues of pragmatics within an overall account of natural language in optimality theory. It is argued that pragmatics can be seen as an optimisation problem described by its own constraint system which lies outside the constraint system that defines grammar
Statistical Inference for Cultural Consensus Theory
2014-02-24
Social Network Conference XXXII , Redondo Beach, California, March 2012. Agrawal, K. (Presenter), and Batchelder, W. H. Cultural Consensus Theory...Aggregating Complete Signed Graphs Under a Balance Constraint -- Part 2. International Sunbelt Social Network Conference XXXII , Redondo Beach
Numerical bifurcation analysis of conformal formulations of the Einstein constraints
International Nuclear Information System (INIS)
Holst, M.; Kungurtsev, V.
2011-01-01
The Einstein constraint equations have been the subject of study for more than 50 years. The introduction of the conformal method in the 1970s as a parametrization of initial data for the Einstein equations led to increased interest in the development of a complete solution theory for the constraints, with the theory for constant mean curvature (CMC) spatial slices and closed manifolds completely developed by 1995. The first general non-CMC existence result was establish by Holst et al. in 2008, with extensions to rough data by Holst et al. in 2009, and to vacuum spacetimes by Maxwell in 2009. The non-CMC theory remains mostly open; moreover, recent work of Maxwell on specific symmetry models sheds light on fundamental nonuniqueness problems with the conformal method as a parametrization in non-CMC settings. In parallel with these mathematical developments, computational physicists have uncovered surprising behavior in numerical solutions to the extended conformal thin sandwich formulation of the Einstein constraints. In particular, numerical evidence suggests the existence of multiple solutions with a quadratic fold, and a recent analysis of a simplified model supports this conclusion. In this article, we examine this apparent bifurcation phenomena in a methodical way, using modern techniques in bifurcation theory and in numerical homotopy methods. We first review the evidence for the presence of bifurcation in the Hamiltonian constraint in the time-symmetric case. We give a brief introduction to the mathematical framework for analyzing bifurcation phenomena, and then develop the main ideas behind the construction of numerical homotopy, or path-following, methods in the analysis of bifurcation phenomena. We then apply the continuation software package AUTO to this problem, and verify the presence of the fold with homotopy-based numerical methods. We discuss these results and their physical significance, which lead to some interesting remaining questions to
Constraints on cosmic superstrings from Kaluza-Klein emission.
Dufaux, Jean-François
2012-07-06
Cosmic superstrings interact generically with a tower of light and/or strongly coupled Kaluza-Klein (KK) modes associated with the geometry of the internal space. We study the production of KK particles by cosmic superstring loops, and show that it is constrained by big bang nucleosynthesis. We study the resulting constraints in the parameter space of the underlying string theory model and highlight their complementarity with the regions that can be probed by current and upcoming gravitational wave experiments.
International Nuclear Information System (INIS)
Vatkins, D.
1975-01-01
Two-particle K 0 π + and K 0 π - rapidity correlations in K + p interactions at 8.2 and 16 GeV/c are compared for different regions of (K 0 π +- ) effective mass. It is shown that the strong Ksup(*)(892) resonance production has a small effect on the K 0 π - rapidity correlation behaviour
Constraints on the Lee-Wick Higgs sector
International Nuclear Information System (INIS)
Carone, Christopher D.; Primulando, Reinard
2009-01-01
Lee-Wick partners to the standard model Higgs doublet may appear at a mass scale that is significantly lower than that of the remaining Lee-Wick partner states. The relevant effective theory is a two-Higgs doublet model in which one doublet has wrong-sign kinetic and mass terms. We determine bounds on this effective theory, including those from neutral B-meson mixing, b→X s γ, and Z→bb. The results differ from those of conventional two-Higgs doublet models and lead to meaningful constraints on the Lee-Wick Higgs sector.
Strong binary pulsar constraints on Lorentz violation in gravity.
Yagi, Kent; Blas, Diego; Yunes, Nicolás; Barausse, Enrico
2014-04-25
Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of general relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.
Strong Binary Pulsar Constraints on Lorentz Violation in Gravity
Yagi, Kent; Yunes, Nicolas; Barausse, Enrico
2014-01-01
Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of General Relativity. One of these is Lorentz symmetry which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.
Strong Constraints on Cosmological Gravity from GW170817 and GRB 170817A
Baker, T.; Bellini, E.; Ferreira, P. G.; Lagos, M.; Noller, J.; Sawicki, I.
2017-12-01
The detection of an electromagnetic counterpart (GRB 170817A) to the gravitational-wave signal (GW170817) from the merger of two neutron stars opens a completely new arena for testing theories of gravity. We show that this measurement allows us to place stringent constraints on general scalar-tensor and vector-tensor theories, while allowing us to place an independent bound on the graviton mass in bimetric theories of gravity. These constraints severely reduce the viable range of cosmological models that have been proposed as alternatives to general relativistic cosmology.
Creativity from Constraints in Engineering Design
DEFF Research Database (Denmark)
Onarheim, Balder
2012-01-01
This paper investigates the role of constraints in limiting and enhancing creativity in engineering design. Based on a review of literature relating constraints to creativity, the paper presents a longitudinal participatory study from Coloplast A/S, a major international producer of disposable...... and ownership of formal constraints played a crucial role in defining their influence on creativity – along with the tacit constraints held by the designers. The designers were found to be highly constraint focused, and four main creative strategies for constraint manipulation were observed: blackboxing...
Sontag, Michael
2012-01-01
Researchers in the twenty-first century face a set of challenges unknown to researchers a half century ago--the need to justify the moral acceptability of their research methods through formal review processes. However, the role that moral constraints play in the development and demise of scientific theories has largely gone unappreciated. The rise of Institutional Review Boards (IRB) in the 1960s compounded the impact of moral constraints on scientific research and on the theories that develop out of such highly monitored research. To demonstrate the effects of moral constraints on scientific theory and research, this paper offers a history and analysis of the interaction between evolving moral standards and twentieth century emotion theory. Recommendations regarding IRB reform are also reviewed. The paper concludes by arguing that, while appropriate IRB reform is important, it cannot eliminate the need for careful reflection on the broader forces that shape scientific practice and understanding.
International Nuclear Information System (INIS)
Queen, N.M.
1978-01-01
This series of lectures on basic scattering theory were given as part of a course for postgraduate high energy physicists and were designed to acquaint the student with some of the basic language and formalism used for the phenomenological description of nuclear reactions and decay processes used for the study of elementary particle interactions. Well established and model independent aspects of scattering theory, which are the basis of S-matrix theory, are considered. The subject is considered under the following headings; the S-matrix, cross sections and decay rates, phase space, relativistic kinematics, the Mandelstam variables, the flux factor, two-body phase space, Dalitz plots, other kinematic plots, two-particle reactions, unitarity, the partial-wave expansion, resonances (single-channel case), multi-channel resonances, analyticity and crossing, dispersion relations, the one-particle exchange model, the density matrix, mathematical properties of the density matrix, the density matrix in scattering processes, the density matrix in decay processes, and the helicity formalism. Some exercises for the students are included. (U.K.)
Supersymmetry for gauged double field theory and generalised Scherk–Schwarz reductions
International Nuclear Information System (INIS)
Berman, David S.; Lee, Kanghoon
2014-01-01
Previous constructions of supersymmetry for double field theory have relied on the so-called strong constraint. In this paper, the strong constraint is relaxed and the theory is shown to possess supersymmetry once the generalised Scherk–Schwarz reduction is imposed. The equivalence between the generalised Scherk–Schwarz reduced theory and the gauged double field theory is then examined in detail for the supersymmetric theory. As a biproduct we write the generalised Killing spinor equations for the supersymmetric double field theory
Self-Imposed Creativity Constraints
DEFF Research Database (Denmark)
Biskjaer, Michael Mose
2013-01-01
Abstract This dissertation epitomizes three years of research guided by the research question: how can we conceptualize creative self-binding as a resource in art and design processes? Concretely, the dissertation seeks to offer insight into the puzzling observation that highly skilled creative...... practitioners sometimes freely and intentionally impose rigid rules, peculiar principles, and other kinds of creative obstructions on themselves as a means to spur momentum in the process and reach a distinctly original outcome. To investigate this the dissertation is composed of four papers (Part II) framed...... of analysis. Informed by the insight that constraints both enable and restrain creative agency, the dissertation’s main contention is that creative self- binding may profitably be conceptualized as the exercise of self-imposed creativity constraints. Thus, the dissertation marks an analytical move from vague...
Unitarity constraints on trimaximal mixing
International Nuclear Information System (INIS)
Kumar, Sanjeev
2010-01-01
When the neutrino mass eigenstate ν 2 is trimaximally mixed, the mixing matrix is called trimaximal. The middle column of the trimaximal mixing matrix is identical to tribimaximal mixing and the other two columns are subject to unitarity constraints. This corresponds to a mixing matrix with four independent parameters in the most general case. Apart from the two Majorana phases, the mixing matrix has only one free parameter in the CP conserving limit. Trimaximality results in interesting interplay between mixing angles and CP violation. A notion of maximal CP violation naturally emerges here: CP violation is maximal for maximal 2-3 mixing. Similarly, there is a natural constraint on the deviation from maximal 2-3 mixing which takes its maximal value in the CP conserving limit.
Financial Constraints and Franchising Decisions
Kai-Uwe Kuhn; Francine Lafontaine; Ying Fan
2013-01-01
We study how the financial constraints of agents affect the behavior of principals in the context of franchising. We develop an empirical model of franchising starting with a principal-agent framework that emphasizes the role of franchisees' collateral from an incentive perspective. We estimate the determinants of chains' entry (into franchising) and growth decisions using data on franchised chains and data on local macroeconomic conditions. In particular, we use collateralizable housing weal...
Analysis of Space Tourism Constraints
Bonnal, Christophe
2002-01-01
Space tourism appears today as a new Eldorado in a relatively near future. Private operators are already proposing services for leisure trips in Low Earth Orbit, and some happy few even tested them. But are these exceptional events really marking the dawn of a new space age ? The constraints associated to the space tourism are severe : - the economical balance of space tourism is tricky; development costs of large manned - the technical definition of such large vehicles is challenging, mainly when considering - the physiological aptitude of passengers will have a major impact on the mission - the orbital environment will also lead to mission constraints on aspects such as radiation, However, these constraints never appear as show-stoppers and have to be dealt with pragmatically: - what are the recommendations one can make for future research in the field of space - which typical roadmap shall one consider to develop realistically this new market ? - what are the synergies with the conventional missions and with the existing infrastructure, - how can a phased development start soon ? The paper proposes hints aiming at improving the credibility of Space Tourism and describes the orientations to follow in order to solve the major hurdles found in such an exciting development.
Isocurvature constraints on portal couplings
Energy Technology Data Exchange (ETDEWEB)
Kainulainen, Kimmo; Nurmi, Sami; Vaskonen, Ville [Department of Physics, University of Jyväskylä, P.O.Box 35 (YFL), FI-40014 University of Jyväskylä (Finland); Tenkanen, Tommi; Tuominen, Kimmo, E-mail: kimmo.kainulainen@jyu.fi, E-mail: sami.t.nurmi@jyu.fi, E-mail: tommi.tenkanen@helsinki.fi, E-mail: kimmo.i.tuominen@helsinki.fi, E-mail: ville.vaskonen@jyu.fi [Department of Physics, University of Helsinki P.O. Box 64, FI-00014, Helsinki (Finland)
2016-06-01
We consider portal models which are ultraweakly coupled with the Standard Model, and confront them with observational constraints on dark matter abundance and isocurvature perturbations. We assume the hidden sector to contain a real singlet scalar s and a sterile neutrino ψ coupled to s via a pseudoscalar Yukawa term. During inflation, a primordial condensate consisting of the singlet scalar s is generated, and its contribution to the isocurvature perturbations is imprinted onto the dark matter abundance. We compute the total dark matter abundance including the contributions from condensate decay and nonthermal production from the Standard Model sector. We then use the Planck limit on isocurvature perturbations to derive a novel constraint connecting dark matter mass and the singlet self coupling with the scale of inflation: m {sub DM}/GeV ∼< 0.2λ{sub s}{sup 3/8} ( H {sub *}/10{sup 11} GeV){sup −3/2}. This constraint is relevant in most portal models ultraweakly coupled with the Standard Model and containing light singlet scalar fields.
Relaxations of semiring constraint satisfaction problems
CSIR Research Space (South Africa)
Leenen, L
2007-03-01
Full Text Available The Semiring Constraint Satisfaction Problem (SCSP) framework is a popular approach for the representation of partial constraint satisfaction problems. In this framework preferences can be associated with tuples of values of the variable domains...
Constraint algebra in Smolin's G →0 limit of 4D Euclidean gravity
Varadarajan, Madhavan
2018-05-01
Smolin's generally covariant GNewton→0 limit of 4d Euclidean gravity is a useful toy model for the study of the constraint algebra in loop quantum gravity (LQG). In particular, the commutator between its Hamiltonian constraints has a metric dependent structure function. While a prior LQG-like construction of nontrivial anomaly free constraint commutators for the model exists, that work suffers from two defects. First, Smolin's remarks on the inability of the quantum dynamics to generate propagation effects apply. Second, the construction only yields the action of a single Hamiltonian constraint together with the action of its commutator through a continuum limit of corresponding discrete approximants; the continuum limit of a product of two or more constraints does not exist. Here, we incorporate changes in the quantum dynamics through structural modifications in the choice of discrete approximants to the quantum Hamiltonian constraint. The new structure is motivated by that responsible for propagation in an LQG-like quantization of paramatrized field theory and significantly alters the space of physical states. We study the off shell constraint algebra of the model in the context of these structural changes and show that the continuum limit action of multiple products of Hamiltonian constraints is (a) supported on an appropriate domain of states, (b) yields anomaly free commutators between pairs of Hamiltonian constraints, and (c) is diffeomorphism covariant. Many of our considerations seem robust enough to be applied to the setting of 4d Euclidean gravity.
Transmission and capacity pricing and constraints
International Nuclear Information System (INIS)
Fusco, M.
1999-01-01
A series of overhead viewgraphs accompanied this presentation which discussed the following issues regarding the North American electric power industry: (1) capacity pricing transmission constraints, (2) nature of transmission constraints, (3) consequences of transmission constraints, and (4) prices as market evidence. Some solutions suggested for pricing constraints included the development of contingent contracts, back-up power in supply regions, and new line capacity construction. 8 tabs., 20 figs
Ant colony optimization and constraint programming
Solnon, Christine
2013-01-01
Ant colony optimization is a metaheuristic which has been successfully applied to a wide range of combinatorial optimization problems. The author describes this metaheuristic and studies its efficiency for solving some hard combinatorial problems, with a specific focus on constraint programming. The text is organized into three parts. The first part introduces constraint programming, which provides high level features to declaratively model problems by means of constraints. It describes the main existing approaches for solving constraint satisfaction problems, including complete tree search
Towards weakly constrained double field theory
Directory of Open Access Journals (Sweden)
Kanghoon Lee
2016-08-01
Full Text Available We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.
The Ambiguous Role of Constraints in Creativity
DEFF Research Database (Denmark)
Biskjær, Michael Mose; Onarheim, Balder; Wiltschnig, Stefan
2011-01-01
The relationship between creativity and constraints is often described in the literature either in rather imprecise, general concepts or in relation to very specific domains. Cross-domain and cross-disciplinary takes on how the handling of constraints influences creative activities are rare. In t......-disciplinary research into the ambiguous role of constraints in creativity....
Learning and Parallelization Boost Constraint Search
Yun, Xi
2013-01-01
Constraint satisfaction problems are a powerful way to abstract and represent academic and real-world problems from both artificial intelligence and operations research. A constraint satisfaction problem is typically addressed by a sequential constraint solver running on a single processor. Rather than construct a new, parallel solver, this work…
A general treatment of dynamic integrity constraints
de Brock, EO
This paper introduces a general, set-theoretic model for expressing dynamic integrity constraints, i.e., integrity constraints on the state changes that are allowed in a given state space. In a managerial context, such dynamic integrity constraints can be seen as representations of "real world"
Dimensional modeling: beyond data processing constraints.
Bunardzic, A
1995-01-01
The focus of information processing requirements is shifting from the on-line transaction processing (OLTP) issues to the on-line analytical processing (OLAP) issues. While the former serves to ensure the feasibility of the real-time on-line transaction processing (which has already exceeded a level of up to 1,000 transactions per second under normal conditions), the latter aims at enabling more sophisticated analytical manipulation of data. The OLTP requirements, or how to efficiently get data into the system, have been solved by applying the Relational theory in the form of Entity-Relation model. There is presently no theory related to OLAP that would resolve the analytical processing requirements as efficiently as Relational theory provided for the transaction processing. The "relational dogma" also provides the mathematical foundation for the Centralized Data Processing paradigm in which mission-critical information is incorporated as 'one and only one instance' of data, thus ensuring data integrity. In such surroundings, the information that supports business analysis and decision support activities is obtained by running predefined reports and queries that are provided by the IS department. In today's intensified competitive climate, businesses are finding that this traditional approach is not good enough. The only way to stay on top of things, and to survive and prosper, is to decentralize the IS services. The newly emerging Distributed Data Processing, with its increased emphasis on empowering the end user, does not seem to find enough merit in the relational database model to justify relying upon it. Relational theory proved too rigid and complex to accommodate the analytical processing needs. In order to satisfy the OLAP requirements, or how to efficiently get the data out of the system, different models, metaphors, and theories have been devised. All of them are pointing to the need for simplifying the highly non-intuitive mathematical constraints found
A Mobile Application Recommendation Framework by Exploiting Personal Preference with Constraints
Directory of Open Access Journals (Sweden)
Konglin Zhu
2017-01-01
Full Text Available Explosive mobile applications (Apps are proliferating with the popularity of mobile devices (e.g., smartphones, tablets. These Apps are developed to satisfy different function needs of users. Majority of existing App Stores have difficulty in recommending proper Apps for users. Therefore, it is of significance to recommend mobile Apps for users according to personal preference and various constraints of mobile devices (e.g., battery power. In this paper, we propose a mobile App recommendation framework by incorporating different requirements from users. We exploit modern portfolio theory (MPT to combine the popularity of mobile Apps, personal preference, and mobile device constraints for mobile App recommendation. Based on this framework, we discuss the recommendation approaches by constraints of phone power and limited mobile data plan. Extensive evaluations show that the proposed mobile App recommendation framework can well adapt to power and network data plan constraints. It satisfies the user App preference and mobile device constraints.
Relativistic mechanics of two interacting particles and bilocal theory
International Nuclear Information System (INIS)
Takabayasi, Takehiko
1975-01-01
New relativistic mechanics of two-particle system is set forth, where the two constituent particles are interacting by an arbitrary (central) action-at-a-distance. The fundamental equations are presented in a form covariant under general transformation of parameters parametrizing the world lines of constituent particles. The theory represents the proper relativistic generalization of the usual Newtonian mechanics in the sense that it tends in the non-relativistic (and weak interaction) limit to the usual mechanics of two particles moving under a corresponding non-relativistic potential. For the analysis of theory it is convenient to choose a certain particular gauge (i.e., parametrization) fixed by two gauge relations. This brings the theory to a canonical formalism accompanied by two weak equations, and in this gauge quantization can be performed. The result verifies that the relativistic quantum mechanics for two particles interacting by an action-at-a-distance is just represented by a bilocal wave equation and a subsidiary condition, with the clarification of its correspondence-theoretical foundation and internal dynamics. As an example the case of Hooke-type force is illustrated, where the internal motions are elliptic oscillations in the center-of-mass frame. Its quantum theory just reproduces the original form of bilocal theory giving bound states lying on a straightly rising trajectory and on its daughter trajectories. (auth.)
Stronger constraints on non-Newtonian gravity from the Casimir effect
Energy Technology Data Exchange (ETDEWEB)
Mostepanenko, V M; Klimchitskaya, G L [Center of Theoretical Studies and Institute for Theoretical Physics, Leipzig University, D-04009, Leipzig (Germany); Decca, R S [Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202 (United States); Fischbach, E; Krause, D E [Department of Physics, Purdue University, West Lafayette, IN 47907 (United States); Lopez, D [Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974 (United States)
2008-04-25
We review new constraints on the Yukawa-type corrections to Newtonian gravity obtained recently from gravitational experiments and from the measurements of the Casimir force. Special attention is paid to the constraints following from the most precise dynamic determination of the Casimir pressure between the two parallel plates by means of a micromechanical torsional oscillator. The possibility of setting limits on the predictions of chameleon field theories using the results of gravitational experiments and Casimir force measurements is discussed.
On the hybrid stability of the collocated virtual holonomic constraints basedwalking design
Czech Academy of Sciences Publication Activity Database
Anderle, Milan; Čelikovský, Sergej
2017-01-01
Roč. 6, č. 2 (2017), s. 47-56 ISSN 2223-7038 R&D Projects: GA ČR(CZ) GA17-04682S Institutional support: RVO:67985556 Keywords : Underactuated walking * Virtual holonomic constraints * Poincaré section method * collocated constraints Subject RIV: BC - Control Systems Theory OBOR OECD: Automation and control systems http://lib.physcon.ru/doc?id=60655c1961ed
An integral constraint for the evolution of the galaxy two-point correlation function
International Nuclear Information System (INIS)
Peebles, P.J.E.; Groth, E.J.
1976-01-01
Under some conditions an integral over the galaxy two-point correlation function, xi(x,t), evolves with the expansion of the universe in a simple manner easily computed from linear perturbation theory.This provides a useful constraint on the possible evolution of xi(x,t) itself. We test the integral constraint with both an analytic model and numerical N-body simulations for the evolution of irregularities in an expanding universe. Some applications are discussed. (orig.) [de
Multiparameter Elastic Full Waveform Inversion with Facies-based Constraints
Zhang, Zhen-dong; Alkhalifah, Tariq; Naeini, Ehsan Zabihi; Sun, Bingbing
2018-03-01
Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion beyond improved acoustic imaging, like in reservoir delineation, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Some anisotropic parameters are insufficiently updated because of their minor contributions to the surface collected data. Adding rock physics constraints to the inversion helps mitigate such limited sensitivity, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a global constraint for the whole area. Since similar rock formations inside the Earth admit consistent elastic properties and relative values of elasticity and anisotropy parameters (this enables us to define them as a seismic facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel approach to use facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such facies using Bayesian theory and update them at each iteration of the inversion using both the inverted models and a prior information. We take the uncertainties of the estimated parameters (approximated by radiation patterns) into consideration and improve the quality of estimated facies maps. Four numerical examples corresponding to different acquisition, physical assumptions and model circumstances are used to verify the effectiveness of the proposed method.
Multiparameter elastic full waveform inversion with facies-based constraints
Zhang, Zhen-dong; Alkhalifah, Tariq; Naeini, Ehsan Zabihi; Sun, Bingbing
2018-06-01
Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize FWI beyond improved acoustic imaging, like in reservoir delineation, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Some anisotropic parameters are insufficiently updated because of their minor contributions to the surface collected data. Adding rock physics constraints to the inversion helps mitigate such limited sensitivity, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a global constraint for the whole area. Since similar rock formations inside the Earth admit consistent elastic properties and relative values of elasticity and anisotropy parameters (this enables us to define them as a seismic facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel approach to use facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such facies using Bayesian theory and update them at each iteration of the inversion using both the inverted models and a priori information. We take the uncertainties of the estimated parameters (approximated by radiation patterns) into consideration and improve the quality of estimated facies maps. Four numerical examples corresponding to different acquisition, physical assumptions and model circumstances are used to verify the effectiveness of the proposed method.
Socioeconomic constraints on the technological choices in rural sewage treatment.
Gu, Baojing; Fan, Liangcong; Ying, Zechun; Xu, Qingshan; Luo, Weidong; Ge, Ying; Scott, Steffanie; Chang, Jie
2016-10-01
Technological innovation is one of the potential engines to mitigate environmental pollution. However, the implementation of new technologies sometimes fails owing to socioeconomic constraints from different stakeholders. Thus, it is essential to analyze constraints of environmental technologies in order to build a pathway for their implementation. In this study, taking three technologies on rural sewage treatment in Hangzhou, China as a case study, i.e., wastewater treatment plant (WTP), constructed wetland (CW), and biogas system, we analyzed how socioeconomic constraints affect the technological choices. Results showed that socioeconomic constraints play a key role through changing the relative opportunity cost of inputs from government as compared to that of residents to deliver the public good-sewage treatment-under different economic levels. Economic level determines the technological choice, and the preferred sewage treatment technologies change from biogas system to CW and further to WTP along with the increase of economic level. Mismatch of technological choice and economic level results in failures of rural sewage treatment, e.g., the CW only work well in moderately developed regions in Hangzhou. This finding expands the environmental Kuznets law by introducing the coproduction theory into analysis (i.e., inputs from both government and residents are essential for the delivery of public goods and services such as good environmental quality). A match between technology and socioeconomic conditions is essential to the environmental governance.
Multiparameter Elastic Full Waveform Inversion with Facies-based Constraints
Zhang, Zhendong
2018-03-20
Full waveform inversion (FWI) incorporates all the data characteristics to estimate the parameters described by the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion beyond improved acoustic imaging, like in reservoir delineation, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Some anisotropic parameters are insufficiently updated because of their minor contributions to the surface collected data. Adding rock physics constraints to the inversion helps mitigate such limited sensitivity, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a global constraint for the whole area. Since similar rock formations inside the Earth admit consistent elastic properties and relative values of elasticity and anisotropy parameters (this enables us to define them as a seismic facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel approach to use facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such facies using Bayesian theory and update them at each iteration of the inversion using both the inverted models and a prior information. We take the uncertainties of the estimated parameters (approximated by radiation patterns) into consideration and improve the quality of estimated facies maps. Four numerical examples corresponding to different acquisition, physical assumptions and model circumstances are used to verify the effectiveness of the proposed method.
Nuclear energy and external constraints
International Nuclear Information System (INIS)
Lattes, R.; Thiriet, L.
1983-01-01
The structural factors of this crisis probably predominate over factors arising out the economic situation, even if explanations vary in this respect. In this article devoted to nuclear energy, a possible means of Loosering external constraints the current international economic environment is firstly outlined; the context in which the policies of industrialized countries, and therefore that of France, must be developed. An examination of the possible role of energy policies in general and nuclear policies in particular as an instrument of economic policy in providing a partial solution to this crisis, will then enable to quantitatively evaluate the effects of such policies at a national level [fr
R4 terms in supergravities via T -duality constraint
Razaghian, Hamid; Garousi, Mohammad R.
2018-05-01
It has been speculated in the literature that the effective actions of string theories at any order of α' should be invariant under the Buscher rules plus their higher covariant-derivative corrections. This may be used as a constraint to find effective actions at any order of α', in particular, the metric, the B -field, and the dilaton couplings in supergravities at order α'3 up to an overall factor. For the simple case of zero B -field and diagonal metric in which we have done the calculations explicitly, we have found that the constraint fixes almost all of the seven independent Riemann curvature couplings. There is only one term which is not fixed, because when metric is diagonal, the reduction of two R4 terms becomes identical. The Riemann curvature couplings that the T -duality constraint produces for both type II and heterotic theories are fully consistent with the existing couplings in the literature which have been found by the S-matrix and by the sigma-model approaches.
Constraints and entropy in a model of network evolution
Tee, Philip; Wakeman, Ian; Parisis, George; Dawes, Jonathan; Kiss, István Z.
2017-11-01
Barabási-Albert's "Scale Free" model is the starting point for much of the accepted theory of the evolution of real world communication networks. Careful comparison of the theory with a wide range of real world networks, however, indicates that the model is in some cases, only a rough approximation to the dynamical evolution of real networks. In particular, the exponent γ of the power law distribution of degree is predicted by the model to be exactly 3, whereas in a number of real world networks it has values between 1.2 and 2.9. In addition, the degree distributions of real networks exhibit cut offs at high node degree, which indicates the existence of maximal node degrees for these networks. In this paper we propose a simple extension to the "Scale Free" model, which offers better agreement with the experimental data. This improvement is satisfying, but the model still does not explain why the attachment probabilities should favor high degree nodes, or indeed how constraints arrive in non-physical networks. Using recent advances in the analysis of the entropy of graphs at the node level we propose a first principles derivation for the "Scale Free" and "constraints" model from thermodynamic principles, and demonstrate that both preferential attachment and constraints could arise as a natural consequence of the second law of thermodynamics.
Planck satellite constraints on pseudo-Nambu-Goldstone boson quintessence
Energy Technology Data Exchange (ETDEWEB)
Smer-Barreto, Vanessa; Liddle, Andrew R., E-mail: vsm@roe.ac.uk, E-mail: arl@roe.ac.uk [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)
2017-01-01
The pseudo-Nambu-Goldstone Boson (PNGB) potential, defined through the amplitude M {sup 4} and width f of its characteristic potential V (φ) = M {sup 4}[1 + cos(φ/ f )], is one of the best-suited models for the study of thawing quintessence. We analyse its present observational constraints by direct numerical solution of the scalar field equation of motion. Observational bounds are obtained using Supernovae data, cosmic microwave background temperature, polarization and lensing data from Planck , direct Hubble constant constraints, and baryon acoustic oscillations data. We find the parameter ranges for which PNGB quintessence gives a viable theory for dark energy. This exact approach is contrasted with the use of an approximate equation-of-state parametrization for thawing theories. We also discuss other possible parameterization choices, as well as commenting on the accuracy of the constraints imposed by Planck alone. Overall our analysis highlights a significant prior dependence to the outcome coming from the choice of modelling methodology, which current data are not sufficient to override.
Sentence processing in an artificial language: Learning and using combinatorial constraints.
Amato, Michael S; MacDonald, Maryellen C
2010-07-01
A study combining artificial grammar and sentence comprehension methods investigated the learning and online use of probabilistic, nonadjacent combinatorial constraints. Participants learned a small artificial language describing cartoon monsters acting on objects. Self-paced reading of sentences in the artificial language revealed comprehenders' sensitivity to nonadjacent combinatorial constraints, without explicit awareness of the probabilities embedded in the language. These results show that even newly-learned constraints have an identifiable effect on online sentence processing. The rapidity of learning in this paradigm relative to others has implications for theories of implicit learning and its role in language acquisition. 2010 Elsevier B.V. All rights reserved.
On Gupta-Bleuler quantization of systems with second-class constraints
International Nuclear Information System (INIS)
Kalau, Wolfgang.
1992-01-01
In this paper Hamiltonian systems with mixed first and second-class constraints are discussed. The authors prove that in a neighborhood of the constraint surface the complexified constraints can always be split into a holomorphic and an anti-holomorphic set, such that the holomorphic set can be implemented consistently on the ket-states of the corresponding quantum theory. The quantization is performed with BRSY-methods using a non-hermitian BRST-operator. As an example this method is used to quantize the 4-dimensional superparticle. (author). 25 refs
A Three-Box Model of Thermohaline Circulation under the Energy Constraint
International Nuclear Information System (INIS)
Shen Yang; Guan Yu-Ping; Liang Chu-Jin; Chen Da-Ke
2011-01-01
The driving mechanism of thermohaline circulation is still a controversial topic in physical oceanography. Classic theory is based on Stommel's two-box model under buoyancy constraint. Recently, Guan and Huang proposed a new viewpoint in the framework of energy constraint with a two-box model. We extend it to a three-box model, including the effect of wind-driven circulation. Using this simple model, we further study how ocean mixing impacts on thermohaline circulation under the energy constraint. (geophysics, astronomy, and astrophysics)
Dynamical systems with first- and second-class constraints. II. Local-symmetry transformations
International Nuclear Information System (INIS)
Chitaia, N.P.; Gogilidze, S.A.; Surovtsev, Y.S.
1997-01-01
In the framework of the generalized Hamiltonian formalism by Dirac, local symmetries of dynamical systems with first- and second-class constraints are investigated. The method of constructing the generator of local-symmetry transformations is presented both for theories with an algebra of constraints of a special form (a majority of the physically interesting theories) and in the general case without restrictions on the algebra of constraints. It is proven that second-class constraints do not contribute to the transformation law of the local symmetry entirely stipulated by all the first-class constraints. A mechanism of the occurrence of higher derivatives of coordinates and group parameters in the symmetry transformation law in Noether close-quote s second theorem is elucidated. In the latter case it is shown that the obtained transformations of symmetry are canonical in the extended (by Ostrogradsky) phase space. It is thereby shown that in the general case the degeneracy of theories with first- and second-class constraints is due to their invariance under local-symmetry transformations. copyright 1997 The American Physical Society
Solar constraints on new couplings between electromagnetism and gravity
International Nuclear Information System (INIS)
Solanki, S.K.; Preuss, O.; Haugan, M.P.; Gandorfer, A.; Povel, H.P.; Steiner, P.; Stucki, K.; Bernasconi, P.N.; Soltau, D.
2004-01-01
The unification of quantum field theory and general relativity is a fundamental goal of modern physics. In many cases, theoretical efforts to achieve this goal introduce auxiliary gravitational fields, ones in addition to the familiar symmetric second-rank tensor potential of general relativity, and lead to nonmetric theories because of direct couplings between these auxiliary fields and matter. Here, we consider an example of a metric-affine gauge theory of gravity in which torsion couples nonminimally to the electromagnetic field. This coupling causes a phase difference to accumulate between different polarization states of light as they propagate through the metric-affine gravitational field. Solar spectropolarimetric observations are reported and used to set strong constraints on the relevant coupling constant k: k 2 2
Developmental constraint of insect audition
Directory of Open Access Journals (Sweden)
Strauß Johannes
2006-12-01
Full Text Available Abstract Background Insect ears contain very different numbers of sensory cells, from only one sensory cell in some moths to thousands of sensory cells, e.g. in cicadas. These differences still await functional explanation and especially the large numbers in cicadas remain puzzling. Insects of the different orders have distinct developmental sequences for the generation of auditory organs. These sensory cells might have different functions depending on the developmental stages. Here we propose that constraints arising during development are also important for the design of insect ears and might influence cell numbers of the adults. Presentation of the hypothesis We propose that the functional requirements of the subadult stages determine the adult complement of sensory units in the auditory system of cicadas. The hypothetical larval sensory organ should function as a vibration receiver, representing a functional caenogenesis. Testing the hypothesis Experiments at different levels have to be designed to test the hypothesis. Firstly, the neuroanatomy of the larval sense organ should be analyzed to detail. Secondly, the function should be unraveled neurophysiologically and behaviorally. Thirdly, the persistence of the sensory cells and the rebuilding of the sensory organ to the adult should be investigated. Implications of the hypothesis Usually, the evolution of insect ears is viewed with respect to physiological and neuronal mechanisms of sound perception. This view should be extended to the development of sense organs. Functional requirements during postembryonic development may act as constraints for the evolution of adult organs, as exemplified with the auditory system of cicadas.
Sum rules and constraints on passive systems
International Nuclear Information System (INIS)
Bernland, A; Gustafsson, M; Luger, A
2011-01-01
A passive system is one that cannot produce energy, a property that naturally poses constraints on the system. A system in convolution form is fully described by its transfer function, and the class of Herglotz functions, holomorphic functions mapping the open upper half-plane to the closed upper half-plane, is closely related to the transfer functions of passive systems. Following a well-known representation theorem, Herglotz functions can be represented by means of positive measures on the real line. This fact is exploited in this paper in order to rigorously prove a set of integral identities for Herglotz functions that relate weighted integrals of the function to its asymptotic expansions at the origin and infinity. The integral identities are the core of a general approach introduced here to derive sum rules and physical limitations on various passive physical systems. Although similar approaches have previously been applied to a wide range of specific applications, this paper is the first to deliver a general procedure together with the necessary proofs. This procedure is described thoroughly and exemplified with examples from electromagnetic theory.
Iranian nurses' constraint for research utilization
Directory of Open Access Journals (Sweden)
Mehrdad Neda
2009-09-01
Full Text Available Abstract Background This paper identifies the views of Iranian clinical nurses regarding the utilization of nursing research in practice. There is a need to understand what restricts Iranian clinical nurses to use research findings. The aim of this study was to identify practicing nurses' view of aspects which they perceived constrain them from research utilization that summarizes and uses research findings to address a nursing practice problem. Methods Data were collected during 6 months by means of face-to face interviews follow by one focus group. Analysis was undertaken using a qualitative content analysis. Results Findings disclosed some key themes perceived by nurses to restrict them to use research findings: level of support require to be research active, to be research minded, the extent of nurses knowledge and skills about research and research utilization, level of educational preparation relating to using research, administration and executive challenges in clinical setting, and theory-practice gap. Conclusion This study identifies constraints that require to be overcome for clinical nurses to actively get involved in research utilization. In this study nurses were generally interested to use research findings. However they felt restricted because of lack of time, lack of peer and manager support and limited knowledge and skills of the research process. This study also confirms that research utilization and the change to research nursing practice are complex issues which require both organizational and educational efforts.
Grammatical constraints on phonological encoding in speech production.
Heller, Jordana R; Goldrick, Matthew
2014-12-01
To better understand the influence of grammatical encoding on the retrieval and encoding of phonological word-form information during speech production, we examine how grammatical class constraints influence the activation of phonological neighbors (words phonologically related to the target--e.g., MOON, TWO for target TUNE). Specifically, we compare how neighbors that share a target's grammatical category (here, nouns) influence its planning and retrieval, assessed by picture naming latencies, and phonetic encoding, assessed by word productions in picture names, when grammatical constraints are strong (in sentence contexts) versus weak (bare naming). Within-category (noun) neighbors influenced planning time and phonetic encoding more strongly in sentence contexts. This suggests that grammatical encoding constrains phonological processing; the influence of phonological neighbors is grammatically dependent. Moreover, effects on planning times could not fully account for phonetic effects, suggesting that phonological interaction affects articulation after speech onset. These results support production theories integrating grammatical, phonological, and phonetic processes.
Observational Constraints on Quark Matter in Neutron Stars
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We study the observational constraints of mass and redshift on the properties of the equation of state (EOS) for quark matter in compact stars based on the quasi-particle description. We discuss two scenarios: strange stars and hybrid stars. We construct the equations of state utilizing an extended MIT bag model taking the medium effect into account for quark matter and the relativistic mean field theory for hadron matter. We show that quark matter may exist in strange stars and in the interior of neutron stars. The bag constant is a key parameter that affects strongly the mass of strange stars. The medium effect can lead to the stiffer hybrid-star EOS approaching the pure hadronic EOS, due to the reduction of quark matter, and hence the existence of heavy hybrid stars. We find that a middle range coupling constant may be the best choice for the hybrid stars being compatible with the observational constraints.
Departure time choice: Modelling individual preferences, intention and constraints
DEFF Research Database (Denmark)
Thorhauge, Mikkel
by nearly all studies within departure time. More importantly it shows that the underlying psychological processes are more complex than simply accounting for attitudes and perceptions which are typically used in other areas. The work in this PhD thesis accounts for the full Theory of Planned Behaviour......, but can also be perceived by the individuals as barriers towards participating in activities. Perceived constraints affect the departure time choice through the individual intention of being on time. This PhD thesis also contributes to the departure time literature by discussing the problem of collecting...... whether they are constrained. The thesis also provides empirical evidences of the policy implication of not accounting for other activities and their constraints. Thirdly, the thesis shows that the departure time choice can be partly explained by psychological factors, which have previously been neglected...
Wave functions constructed from an invariant sum over histories satisfy constraints
International Nuclear Information System (INIS)
Halliwell, J.J.; Hartle, J.B.
1991-01-01
Invariance of classical equations of motion under a group parametrized by functions of time implies constraints between canonical coordinates and momenta. In the Dirac formulation of quantum mechanics, invariance is normally imposed by demanding that physical wave functions are annihilated by the operator versions of these constraints. In the sum-over-histories quantum mechanics, however, wave functions are specified, directly, by appropriate functional integrals. It therefore becomes an interesting question whether the wave functions so specified obey the operator constraints of the Dirac theory. In this paper, we show for a wide class of theories, including gauge theories, general relativity, and first-quantized string theories, that wave functions constructed from a sum over histories are, in fact, annihilated by the constraints provided that the sum over histories is constructed in a manner which respects the invariance generated by the constraints. By this we mean a sum over histories defined with an invariant action, invariant measure, and an invariant class of paths summed over
Einstein-Podolsky-Rosen constraints on quantum action at a distance: the Sutherland paradox
International Nuclear Information System (INIS)
Cufaro-Petroni, N.; Dewdney, C.; Holland, P.R.; Kyprianidis, A.; Vigier, J.P.
1987-01-01
Assuming that future experiments confirm Aspect's discovery of nonlocal interactions between quantum pairs of correlated particles, the authors analyze the constraints imposed by the EPR reasoning on the said interactions. It is then shown that the nonlocal relativistic quantum potential approach plainly satisfies the Einstein causality criteria as well as the energy-momentum conservation in individual microprocesses. Furthermore, this approach bypasses a new causal paradox for timelike separated EPR measurements deduced by Sutherland in the frame of an approach by means of space-time zigzags with advanced potentials. It is finally demonstrated that this inherent quantum causal direct interaction established permanent EPR correlations which are always restricted to spacelike separations and are instantaneous only in the center-of-mass rest frame of the two-particle system
Thermomechanical constraints and constitutive formulations in thermoelasticity
Directory of Open Access Journals (Sweden)
Baek S.
2003-01-01
Full Text Available We investigate three classes of constraints in a thermoelastic body: (i a deformation-temperature constraint, (ii a deformation-entropy constraint, and (iii a deformation-energy constraint. These constraints are obtained as limits of unconstrained thermoelastic materials and we show that constraints (ii and (iii are equivalent. By using a limiting procedure, we show that for the constraint (i, the entropy plays the role of a Lagrange multiplier while for (ii and (iii, the absolute temperature plays the role of Lagrange multiplier. We further demonstrate that the governing equations for materials subject to constraint (i are identical to those of an unconstrained material whose internal energy is an affine function of the entropy, while those for materials subject to constraints (ii and (iii are identical to those of an unstrained material whose Helmholtz potential is affine in the absolute temperature. Finally, we model the thermoelastic response of a peroxide-cured vulcanizate of natural rubber and show that imposing the constraint in which the volume change depends only on the internal energy leads to very good predictions (compared to experimental results of the stress and temperature response under isothermal and isentropic conditions.
Deformations of superconformal theories
Energy Technology Data Exchange (ETDEWEB)
Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ 08540 (United States); Dumitrescu, Thomas T. [Department of Physics, Harvard University,17 Oxford Street, Cambridge, MA 02138 (United States); Intriligator, Kenneth [Department of Physics, University of California,9500 Gilman Drive, San Diego, La Jolla, CA 92093 (United States)
2016-11-22
We classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in d≥3 dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and non-central charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformations can be used to derive known and new constraints on moduli-space effective actions.
Critical constraints on chiral hierarchies
International Nuclear Information System (INIS)
Chivukula, R.S.; Golden, M.; Simmons, E.H.
1993-01-01
Critical dynamics constrains models of dynamical electroweak symmetry breaking in which the scale of high-energy physics is far above 1 TeV. A big hierarchy requires the high-energy theory to have a second-order chiral phase transition, near which the theory is described by a low-energy effective Lagrangian with composite ''Higgs'' scalars. As scalar theories with more than one Φ 4 coupling can have a Coleman-Weinberg instability and a first-order transition, such dynamical EWSB models cannot always support a large hierarchy. If the large-N c Nambu--Jona-Lasinio model is a good approximation to the top-condensate and strong extended technicolor models, they will not produce acceptable EWSB
International Nuclear Information System (INIS)
Thieke, Christian; Bortfeld, Thomas; Niemierko, Andrzej; Nill, Simeon
2003-01-01
Optimization algorithms in inverse radiotherapy planning need information about the desired dose distribution. Usually the planner defines physical dose constraints for each structure of the treatment plan, either in form of minimum and maximum doses or as dose-volume constraints. The concept of equivalent uniform dose (EUD) was designed to describe dose distributions with a higher clinical relevance. In this paper, we present a method to consider the EUD as an optimization constraint by using the method of projections onto convex sets (POCS). In each iteration of the optimization loop, for the actual dose distribution of an organ that violates an EUD constraint a new dose distribution is calculated that satisfies the EUD constraint, leading to voxel-based physical dose constraints. The new dose distribution is found by projecting the current one onto the convex set of all dose distributions fulfilling the EUD constraint. The algorithm is easy to integrate into existing inverse planning systems, and it allows the planner to choose between physical and EUD constraints separately for each structure. A clinical case of a head and neck tumor is optimized using three different sets of constraints: physical constraints for all structures, physical constraints for the target and EUD constraints for the organs at risk, and EUD constraints for all structures. The results show that the POCS method converges stable and given EUD constraints are reached closely
Naturality in conformal field theory
International Nuclear Information System (INIS)
Moore, G.; Seiberg, N.
1989-01-01
We discuss constraints on the operator product coefficients in diagonal and nondiagonal rational conformal field theories. Nondiagonal modular invariants always arise from automorphisms of the fusion rule algebra or from extensions of the chiral algebra. Moreover, when the chiral algebra has been maximally extended a strong form of the naturality principle of field theory can be proven for rational conformal field theory: operator product coefficients vanish if and only if the corresponding fusion rules vanish; that is, if and only if the vanishing can be understood in terms of a symmetry. We illustrate these ideas with several examples. We also generalize our ideas about rational conformal field theories to a larger class of theories: 'quasi-rational conformal field theories' and we explore some of their properties. (orig.)
DEFF Research Database (Denmark)
Wæver, Ole
2009-01-01
-empiricism and anti-positivism of his position. Followers and critics alike have treated Waltzian neorealism as if it was at bottom a formal proposition about cause-effect relations. The extreme case of Waltz being so victorious in the discipline, and yet being consistently mis-interpreted on the question of theory......, shows the power of a dominant philosophy of science in US IR, and thus the challenge facing any ambitious theorising. The article suggests a possible movement of fronts away from the ‘fourth debate' between rationalism and reflectivism towards one of theory against empiricism. To help this new agenda...
Cosmographic Constraints and Cosmic Fluids
Directory of Open Access Journals (Sweden)
Salvatore Capozziello
2013-12-01
Full Text Available The problem of reproducing dark energy effects is reviewed here with particular interest devoted to cosmography. We summarize some of the most relevant cosmological models, based on the assumption that the corresponding barotropic equations of state evolve as the universe expands, giving rise to the accelerated expansion. We describe in detail the ΛCDM (Λ-Cold Dark Matter and ωCDM models, considering also some specific examples, e.g., Chevallier–Polarsky–Linder, the Chaplygin gas and the Dvali–Gabadadze–Porrati cosmological model. Finally, we consider the cosmological consequences of f(R and f(T gravities and their impact on the framework of cosmography. Keeping these considerations in mind, we point out the model-independent procedure related to cosmography, showing how to match the series of cosmological observables to the free parameters of each model. We critically discuss the role played by cosmography, as a selection criterion to check whether a particular model passes or does not present cosmological constraints. In so doing, we find out cosmological bounds by fitting the luminosity distance expansion of the redshift, z, adopting the recent Union 2.1 dataset of supernovae, combined with the baryonic acoustic oscillation and the cosmic microwave background measurements. We perform cosmographic analyses, imposing different priors on the Hubble rate present value. In addition, we compare our results with recent PLANCK limits, showing that the ΛCDM and ωCDM models seem to be the favorite with respect to other dark energy models. However, we show that cosmographic constraints on f(R and f(T cannot discriminate between extensions of General Relativity and dark energy models, leading to a disadvantageous degeneracy problem.
Constraint Embedding for Multibody System Dynamics
Jain, Abhinandan
2009-01-01
This paper describes a constraint embedding approach for the handling of local closure constraints in multibody system dynamics. The approach uses spatial operator techniques to eliminate local-loop constraints from the system and effectively convert the system into tree-topology systems. This approach allows the direct derivation of recursive O(N) techniques for solving the system dynamics and avoiding the expensive steps that would otherwise be required for handling the closedchain dynamics. The approach is very effective for systems where the constraints are confined to small-subgraphs within the system topology. The paper provides background on the spatial operator O(N) algorithms, the extensions for handling embedded constraints, and concludes with some examples of such constraints.
Use of dose constraints in public exposure
International Nuclear Information System (INIS)
Tageldein, Amged
2015-02-01
An overview of the dose constraints in public exposures has been carried out in this project. The establishment, development and the application of the concept of dose constraints are reviewed with regards to public exposure. The role of dose constraints in the process of optimization of radiation protection was described and has been showed that the concept of the dose constraints along with many other concept of radiation protection is widely applied in the optimization of exposure to radiation. From the beginning of the establishment of dose constraints as a concept in radiation protection, the International Commission of Radiological Protection (ICRP) has published a number of documents that provides detailed application related to radiation protection and safety of public exposure from ionizing radiation. This work provides an overview of such publications and related documents with special emphasis on optimization of public exposure using dose constraints. (au)
Hamiltonian analysis of Plebanski theory
International Nuclear Information System (INIS)
Buffenoir, E; Henneaux, M; Noui, K; Roche, Ph
2004-01-01
We study the Hamiltonian formulation of Plebanski theory in both the Euclidean and Lorentzian cases. A careful analysis of the constraints shows that the system is non-regular, i.e., the rank of the Dirac matrix is non-constant on the non-reduced phase space. We identify the gravitational and topological sectors which are regular subspaces of the non-reduced phase space. The theory can be restricted to the regular subspace which contains the gravitational sector. We explicitly identify first- and second-class constraints in this case. We compute the determinant of the Dirac matrix and the natural measure for the path integral of the Plebanski theory (restricted to the gravitational sector). This measure is the analogue of the Leutwyler-Fradkin-Vilkovisky measure of quantum gravity
Constraint-based Word Segmentation for Chinese
DEFF Research Database (Denmark)
Christiansen, Henning; Bo, Li
2014-01-01
-hoc and statistically based methods. In this paper, we show experiments of implementing different approaches to CWSP in the framework of CHR Grammars [Christiansen, 2005] that provides a constraint solving approach to language analysis. CHR Grammars are based upon Constraint Handling Rules, CHR [Frühwirth, 1998, 2009......], which is a declarative, high-level programming language for specification and implementation of constraint solvers....
Stability Constraints for Robust Model Predictive Control
Directory of Open Access Journals (Sweden)
Amanda G. S. Ottoni
2015-01-01
Full Text Available This paper proposes an approach for the robust stabilization of systems controlled by MPC strategies. Uncertain SISO linear systems with box-bounded parametric uncertainties are considered. The proposed approach delivers some constraints on the control inputs which impose sufficient conditions for the convergence of the system output. These stability constraints can be included in the set of constraints dealt with by existing MPC design strategies, in this way leading to the “robustification” of the MPC.
Constraint and loneliness in agoraphobia: an empirical investigation.
Pehlivanidis, A; Koulis, S; Papakostas, Y
2014-01-01
While progress in the aetiopathology and treatment of panic disorder is indisputable, research regarding agoraphobia lacks behind. One significant-yet untested- theory by Guidano and Liotti, suggests the existence of inner representations of fear of "constraint" and fear of "loneliness" as two major schemata, important in the pathogenesis and manifestation of agoraphobia. Activation of these schemata may occur in situations in which the patient: (a) feels as in an inescapable trap (constraint) or (b) alone, unprotected and helpless (loneliness). Upon activation, the "constraint" schema elicits such symptoms as asphyxiation, chest pain, difficult breathing, motor agitation and muscular tension, while the "loneliness" schema elicits such symptoms as sensation of tachycardia, weakness of limbs, trembling or fainting. Activation of these schemata by content-compatible stimuli is expected to trigger various, yet distinct, response patterns, both of which are indiscriminately described within the term "agoraphobia". In order to investigate this hypothesis and its possible clinical applications, several mental and physical probes were applied to 20 patients suffering primarily from agoraphobia, and their responses and performance were recorded. Subjects also completed the "10-item Agoraphobia Questionnaire" prepared by our team aiming at assessing cognitions related to Guidano and Liotti's notion of "loneliness" and "constraint". Breath holding (BH) and Hyperventilation (HV) were selected as physical probes. BH was selected as an easily administered hypercapnea - induced clinical procedure, because of its apparent resemblance to the concept of "constraint". Subjects were instructed to hold their breath for as long as they could and stop at will. Similarly, it was hypothesized that HV might represent a physical "loneliness" probe, since it can elicit such symptoms as dizziness, paraesthesias, stiff muscles, cold hands or feet and trembling, reminiscent of a "collapsing
Generalized Pauli constraints in small atoms
DEFF Research Database (Denmark)
Schilling, Christian; Altunbulak, Murat; Knecht, Stefan
2018-01-01
investigations have found evidence that these constraints are exactly saturated in several physically relevant systems, e.g., in a certain electronic state of the beryllium atom. It has been suggested that, in such cases, the constraints, rather than the details of the Hamiltonian, dictate the system......'s qualitative behavior. Here, we revisit this question with state-of-the-art numerical methods for small atoms. We find that the constraints are, in fact, not exactly saturated, but that they lie much closer to the surface defined by the constraints than the geometry of the problem would suggest. While...
Production Team Maintenance: Systemic Constraints Impacting Implementation
National Research Council Canada - National Science Library
Moore, Terry
1997-01-01
.... Identified constraints included: integrating the PTM positioning strategy into the AMC corporate strategic planning process, manpower modeling simulator limitations, labor force authorizations and decentralization...
Review of Minimal Flavor Constraints for Technicolor
DEFF Research Database (Denmark)
S. Fukano, Hidenori; Sannino, Francesco
2010-01-01
We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self-coupling and mas......We analyze the constraints on the the vacuum polarization of the standard model gauge bosons from a minimal set of flavor observables valid for a general class of models of dynamical electroweak symmetry breaking. We will show that the constraints have a strong impact on the self...
Toward an automaton Constraint for Local Search
Directory of Open Access Journals (Sweden)
Jun He
2009-10-01
Full Text Available We explore the idea of using finite automata to implement new constraints for local search (this is already a successful technique in constraint-based global search. We show how it is possible to maintain incrementally the violations of a constraint and its decision variables from an automaton that describes a ground checker for that constraint. We establish the practicality of our approach idea on real-life personnel rostering problems, and show that it is competitive with the approach of [Pralong, 2007].
Optimization with PDE constraints ESF networking program 'OPTPDE'
2014-01-01
This book on PDE Constrained Optimization contains contributions on the mathematical analysis and numerical solution of constrained optimal control and optimization problems where a partial differential equation (PDE) or a system of PDEs appears as an essential part of the constraints. The appropriate treatment of such problems requires a fundamental understanding of the subtle interplay between optimization in function spaces and numerical discretization techniques and relies on advanced methodologies from the theory of PDEs and numerical analysis as well as scientific computing. The contributions reflect the work of the European Science Foundation Networking Programme ’Optimization with PDEs’ (OPTPDE).
Trivial constraints on orbital-free kinetic energy density functionals
Luo, Kai; Trickey, S. B.
2018-03-01
Approximate kinetic energy density functionals (KEDFs) are central to orbital-free density functional theory. Limitations on the spatial derivative dependencies of KEDFs have been claimed from differential virial theorems. We identify a central defect in the argument: the relationships are not true for an arbitrary density but hold only for the minimizing density and corresponding chemical potential. Contrary to the claims therefore, the relationships are not constraints and provide no independent information about the spatial derivative dependencies of approximate KEDFs. A simple argument also shows that validity for arbitrary v-representable densities is not restored by appeal to the density-potential bijection.
Regular perturbation theory for two-electron atoms
International Nuclear Information System (INIS)
Feranchuk, I.D.; Triguk, V.V.
2011-01-01
Regular perturbation theory (RPT) for the ground and excited states of two-electron atoms or ions is developed. It is shown for the first time that summation of the matrix elements from the electron-electron interaction operator over all intermediate states can be calculated in a closed form by means of the two-particle Coulomb Green's function constructed in the Letter. It is shown that the second order approximation of RPT includes the main part of the correlation energy both for the ground and excited states. This approach can be also useful for description of two-electron atoms in external fields. -- Highlights: → We develop regular perturbation theory for the two-electron atoms or ions. → We calculate the sum of the matrix elements over all intermediate states. → We construct the two-particle Coulomb Green's function.
Conformal symmetry and string theories
International Nuclear Information System (INIS)
Kumar, A.
1987-01-01
This thesis is devoted to the study of various aspects of the 2-dimensional conformal field theory and its applications to strings. We make a short review of the conformal field theory and its supersymmetric extension, called superconformal field theory. We present an elegant superspace formulation of these theories and solve the condition for the closure of the superconformal algebra. The we go on to classify the superconformal field theories according to these solutions. We prove that N ≥ 5 superconformal algebra, with N being the number of supersymmetries, does not have central charge. We find the primary representations of all the interesting superconformal algebra. We study the quantization of the superconformal theories and derive the constraints on the central charge of the algebra that has to be satisfied for a consistent quantum theory. This quantization process also determines the ground state energy of the system and the spectrum of the model. We study the global aspects of the conformal symmetry and its role in the construction of consistent heterotic string theories. We prove the uniqueness of heterotic superstring theories in 10 dimensions in the fermionic constructions. We show how the vertex operators are closely associated with the primary field representation of the conformal algebra. We utilize these vertex operator constructions to obtain tree amplitudes in the 10-dimensional heterotic string theory. We show by explicit calculation at the 3-point level that the scattering amplitudes derived from the heterotic superstring are same as the ones obtained from 10-dimensional supergravity theories
Directory of Open Access Journals (Sweden)
Isaac Pergher
2011-01-01
Full Text Available Este estudo apresenta uma reflexão teórica a respeito dos possíveis impactos nos indicadores da Teoria das Restrições (TOC provocados pelas Sete Perdas abordadas no Sistema Toyota de Produção (STP e por um tipo de perda não relatada neste contexto. Trata-se da 'Perda por má definição do mix de produtos' influenciada pelo uso de métodos inadequados para formular o mix de produtos. Desta forma é construído um neologismo conceitual identificado como as 'Pergas' para demostrar as perdas de Ganho global (TOC, derivadas desta prática. A necessidade de combater as perdas nos processos deve-se a não agregação de valor ao produto, bem como a geração de custos, motivando, em algumas situações, o compromentimento à competitividade da organização. Em sentido similar, o combate às Pergas proporciona um incremento nos índices monitorados pelos indicadores Globais da TOC por meio da constiuição de um mix de produtos que contribua com a meta da empresa. Um referencial estrutural é desenvolvido relacionando as Sete Perdas abordadas no STP e os indicadores da TOC, o qual fornecerá subsídios para fundamentar as relações impactantes e possibilitará a proposição de ações de melhoria tendo por objetivo minimizar os impactos apresentados.This study presents a theoretical reflection about the possible impacts on of the Theory of Constraints (TOC indicators caused by the Seven Wastes in the Toyota Production System (TPS and a type of waste which is not included in that context. It refers to the 'waste due to unsatisfactory definition of product mix' influenced by the use of inappropriate methods to formulate the product mix. Therefore, a conceptual neologism is introduced, identified as the "Pergas" to demonstrate the overall gain waste derived from this practice. The need to reduce process waste is due to the fact that no value is added to the product and the cost increase putting at risk, in some situations, the organizational
Observational constraints on transverse gravity: A generalization of unimodular gravity
International Nuclear Information System (INIS)
Lopez-Villarejo, J J
2010-01-01
We explore the hypothesis that the set of symmetries enjoyed by the theory that describes gravity is not the full group of diffeomorphisms (Diff(M)), as in General Relativity, but a maximal subgroup of it (TransverseDiff(M)), with its elements having a jacobian equal to unity; at the infinitesimal level, the parameter describing the coordinate change x μ → x μ + ξ μ (x) is transverse, i.e., δ μ ξ μ = 0. Incidentally, this is the smaller symmetry one needs to propagate consistently a graviton, which is a great theoretical motivation for considering these theories. Also, the determinant of the metric, g, behaves as a 'transverse scalar', so that these theories can be seen as a generalization of the better-known unimodular gravity. We present our results on the observational constraints on transverse gravity, in close relation with the claim of equivalence with general scalar-tensor theory. We also comment on the structure of the divergences of the quantum theory to the one-loop order.
Optimal Stopping with Information Constraint
International Nuclear Information System (INIS)
Lempa, Jukka
2012-01-01
We study the optimal stopping problem proposed by Dupuis and Wang (Adv. Appl. Probab. 34:141–157, 2002). In this maximization problem of the expected present value of the exercise payoff, the underlying dynamics follow a linear diffusion. The decision maker is not allowed to stop at any time she chooses but rather on the jump times of an independent Poisson process. Dupuis and Wang (Adv. Appl. Probab. 34:141–157, 2002), solve this problem in the case where the underlying is a geometric Brownian motion and the payoff function is of American call option type. In the current study, we propose a mild set of conditions (covering the setup of Dupuis and Wang in Adv. Appl. Probab. 34:141–157, 2002) on both the underlying and the payoff and build and use a Markovian apparatus based on the Bellman principle of optimality to solve the problem under these conditions. We also discuss the interpretation of this model as optimal timing of an irreversible investment decision under an exogenous information constraint.
Linear determining equations for differential constraints
International Nuclear Information System (INIS)
Kaptsov, O V
1998-01-01
A construction of differential constraints compatible with partial differential equations is considered. Certain linear determining equations with parameters are used to find such differential constraints. They generalize the classical determining equations used in the search for admissible Lie operators. As applications of this approach equations of an ideal incompressible fluid and non-linear heat equations are discussed
Optimal Portfolio Choice with Wash Sale Constraints
DEFF Research Database (Denmark)
Astrup Jensen, Bjarne; Marekwica, Marcel
2011-01-01
We analytically solve the portfolio choice problem in the presence of wash sale constraints in a two-period model with one risky asset. Our results show that wash sale constraints can heavily affect portfolio choice of investors with unrealized losses. The trading behavior of such investors...
Freedom and constraint analysis and optimization
Brouwer, Dannis Michel; Boer, Steven; Aarts, Ronald G.K.M.; Meijaard, Jacob Philippus; Jonker, Jan B.
2011-01-01
Many mathematical and intuitive methods for constraint analysis of mechanisms have been proposed. In this article we compare three methods. Method one is based on Grüblers equation. Method two uses an intuitive analysis method based on opening kinematic loops and evaluating the constraints at the
Network Design with Node Degree Balance Constraints
DEFF Research Database (Denmark)
Pedersen, Michael Berliner; Crainic, Teodor Gabriel
This presentation discusses an extension to the network design model where there in addition to the flow conservation constraints also are constraints that require design conservation. This means that the number of arcs entering and leaving a node must be the same. As will be shown the model has ...
Constraint solving for direct manipulation of features
Lourenco, D.; Oliveira, P.; Noort, A.; Bidarra, R.
2006-01-01
In current commercial feature modeling systems, support for direct manipulation of features is not commonly available. This is partly due to the strong reliance of such systems on constraints, but also to the lack of speed of current constraint solvers. In this paper, an approach to the optimization
A Temporal Concurrent Constraint Programming Calculus
DEFF Research Database (Denmark)
Palamidessi, Catuscia; Valencia Posso, Frank Darwin
2001-01-01
The tcc model is a formalism for reactive concurrent constraint programming. In this paper we propose a model of temporal concurrent constraint programming which adds to tcc the capability of modeling asynchronous and non-deterministic timed behavior. We call this tcc extension the ntcc calculus...
Specifying Dynamic and Deontic Integrity Constraints
Wieringa, Roelf J.; Meyer, John-Jules; Weigand, Hans
In the dominant view of knowledge bases (KB's), a KB is a set of facts (atomic sentences) and integrity constraints (IC's). An IC is then a sentence which must at least be consistent with the other sentences in the KB, This view obliterates the distinction between, for example, the constraint that
Quantization of 2 + 1-spinning particles and bifermionic constraint problem
Energy Technology Data Exchange (ETDEWEB)
Fresneda, R.; Gavrilov, S.P.; Gitman, D.M.; Moshin, P.Yu. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica
2004-07-01
In this paper, we have quantized a P- and T-noninvariant pseudoclassical model of a massive relativistic spin-1=2 particle in 2 + 1 dimensions, on the background of an arbitrary U(1) gauge vector field. A peculiar feature of the model at the classical level is that it contains a bifermionic first-class constraint, which does not admit gauge-fixing. It is shown that this first-class constraint can be realized at the quantum level as a bounded operator, which is imposed as a condition on the state vectors (by analogy with the Dirac quantization method). This allows us to generalize the quantization scheme [?] in case there is a bifermionic first-class constraint.We present a detailed construction of the Hilbert space and verify that the constructed QM possesses the necessary symmetry properties. We show that the condition of preservation of the classical symmetries under the restricted Lorentz transformations and the U(1) transformations allows one to realize the operator algebra in an unambiguous way. Within the constructed relativistic QM, we select a physical subspace which describes the one-particle sector. The physical sector of the QM contains both particles and antiparticles with positive energy hat {omega} levels, and exactly reproduces the one-particle sector of the quantum theory of the 2 + 1 spinor field. (author)
Energetic and ecological constraints on population density of reef fishes.
Barneche, D R; Kulbicki, M; Floeter, S R; Friedlander, A M; Allen, A P
2016-01-27
Population ecology has classically focused on pairwise species interactions, hindering the description of general patterns and processes of population abundance at large spatial scales. Here we use the metabolic theory of ecology as a framework to formulate and test a model that yields predictions linking population density to the physiological constraints of body size and temperature on individual metabolism, and the ecological constraints of trophic structure and species richness on energy partitioning among species. Our model was tested by applying Bayesian quantile regression to a comprehensive reef-fish community database, from which we extracted density data for 5609 populations spread across 49 sites around the world. Our results indicate that population density declines markedly with increases in community species richness and that, after accounting for richness, energetic constraints are manifested most strongly for the most abundant species, which generally are of small body size and occupy lower trophic groups. Overall, our findings suggest that, at the global scale, factors associated with community species richness are the major drivers of variation in population density. Given that populations of species-rich tropical systems exhibit markedly lower maximum densities, they may be particularly susceptible to stochastic extinction. © 2016 The Author(s).
Multiparameter Elastic Full Waveform Inversion With Facies Constraints
Zhang, Zhendong
2017-08-17
Full waveform inversion (FWI) aims fully benefit from all the data characteristics to estimate the parameters describing the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion as a tool beyond acoustic imaging applications, for example in reservoir analysis, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Adding rock physics constraints does help to mitigate these issues, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a boundary condition for the whole area. Since certain rock formations inside the Earth admit consistent elastic properties and relative values of elastic and anisotropic parameters (facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel confidence map based approach to utilize the facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such a confidence map using Bayesian theory, in which the confidence map is updated at each iteration of the inversion using both the inverted models and a prior information. The numerical examples show that the proposed method can reduce the trade-offs and also can improve the resolution of the inverted elastic and anisotropic properties.
The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders
International Nuclear Information System (INIS)
Gurau, Razvan
2012-01-01
Random tensor models for a generic complex tensor generalize matrix models in arbitrary dimensions and yield a theory of random geometries. They support a 1/N expansion dominated by graphs of spherical topology. Their Schwinger Dyson equations, generalizing the loop equations of matrix models, translate into constraints satisfied by the partition function. The constraints have been shown, in the large N limit, to close a Lie algebra indexed by colored rooted D-ary trees yielding a first generalization of the Virasoro algebra in arbitrary dimensions. In this paper we complete the Schwinger Dyson equations and the associated algebra at all orders in 1/N. The full algebra of constraints is indexed by D-colored graphs, and the leading order D-ary tree algebra is a Lie subalgebra of the full constraints algebra.
An extended topological Yang-Mills theory
International Nuclear Information System (INIS)
Deguchi, Shinichi
1992-01-01
Introducing infinite number of fields, we construct an extended version of the topological Yang-Mills theory. The properties of the extended topological Yang-Mills theory (ETYMT) are discussed from standpoint of the covariant canonical quantization. It is shown that the ETYMT becomes a cohomological topological field theory or a theory equivalent to a quantum Yang-Mills theory with anti-self-dual constraint according to subsidiary conditions imposed on state-vector space. On the basis of the ETYMT, we may understand a transition from an unbroken phase to a physical phase (broken phase). (author)
A Geometrically—Nonlinear Plate Theory 12
Institute of Scientific and Technical Information of China (English)
AlbertC.J.LUO
1999-01-01
An approximate plate theory developed in this paper is based on an assumed displacement field,the strains described by a Taylor series in the normal distance from the middle surface,the exact strains of the middle surface and the equations of equilibrium governing the exact configuration of the deformed middle surface,In this theory the exact geometry of the deformed middle surface is used to derive the strains and equilibrium of the plate.Application of this theory does not depend on the constitutive law.THis theory can reduce to some existing nonlinear theories through imposition of constraints.
Short-sale Constraints and Credit Runs
DEFF Research Database (Denmark)
Venter, Gyuri
), creditors with high private signals are more lenient to roll over debt, and a bank with lower asset quality remains solvent. This leads to higher allocative efficiency in the real economy. My result thus implies that the decrease in average informativeness due to short-sale constraints can be more than......This paper studies how short-sale constraints affect the informational efficiency of market prices and the link between prices and economic activity. I show that under short-sale constraints security prices contain less information. However, short-sale constraints increase the informativeness...... the price of an asset the bank holds. I show that short-selling constraints in the financial market lead to the revival of self-fulfilling beliefs about the beliefs and actions of others, and create multiple equilibria. In the equilibrium where agents rely more on public information (i.e., the price...
General Theory of Absorption in Porous Materials: Restricted Multilayer Theory.
Aduenko, Alexander A; Murray, Andy; Mendoza-Cortes, Jose L
2018-04-18
In this article, we present an approach for the generalization of adsorption of light gases in porous materials. This new theory goes beyond Langmuir and Brunauer-Emmett-Teller theories, which are the standard approaches that have a limited application to crystalline porous materials by their unphysical assumptions on the amount of possible adsorption layers. The derivation of a more general equation for any crystalline porous framework is presented, restricted multilayer theory. Our approach allows the determination of gas uptake considering only geometrical constraints of the porous framework and the interaction energy of the guest molecule with the framework. On the basis of this theory, we calculated optimal values for the adsorption enthalpy at different temperatures and pressures. We also present the use of this theory to determine the optimal linker length for a topologically equivalent framework series. We validate this theoretical approach by applying it to metal-organic frameworks (MOFs) and show that it reproduces the experimental results for seven different reported materials. We obtained the universal equation for the optimal linker length, given the topology of a porous framework. This work applied the general equation to MOFs and H 2 to create energy-storage materials; however, this theory can be applied to other crystalline porous materials and light gases, which opens the possibility of designing the next generations of energy-storage materials by first considering only the geometrical constraints of the porous materials.
Nonrelativistic Schroedinger equation in quasi-classical theory
International Nuclear Information System (INIS)
Wignall, J.W.G.
1987-01-01
The author has recently proposed a quasi-classical theory of particles and interactions in which particles are pictured as extended periodic disturbances in a universal field chi(x,t), interacting with each other via nonlinearity in the equation of motion for chi. The present paper explores the relationship of this theory to nonrelativistic quantum mechanics; as a first step, it is shown how it is possible to construct from chi a configuration-space wave function Psi(x 1 , X 2 , t), and that the theory requires that Psi satisfy the two-particle Schroedinger equation in the case where the two particles are well separated from each other. This suggests that the multiparticle Schroedinger equation can be obtained as a direct consequence of the quasi-classical theory without any use of the usual formalism (Hilbert space, quantization rules, etc.) of conventional quantum theory and in particular without using the classical canonical treatment of a system as a crutch theory which has subsequently to be quantized. The quasi-classical theory also suggests the existence of a preferred absolute gauge for the electromagnetic potentials
International Nuclear Information System (INIS)
Johansen, A.A.
1992-01-01
It is shown, that under the certain constraints the generating functional for the Donaldson invariants in the D=4 topological Yang-Mills theory can be interpreted as a partition function for the renormalizable theory. 20 refs
The antigravitation phenomenon in supergravity theories
International Nuclear Information System (INIS)
Kotrla, M.
1984-01-01
The supergravity theories describe the interaction of particles by means of the local field theory, contain the gravitational field and are invariant relative to local supersymmetry. In supergravity models gravitational interaction is mediated not only by the usual tensor field with spin two but also by a vector field and possibly by a scalar field. This results in the fact that in supergravity theories the gravitational force between a particle and an antiparticle may increase over small distances, and the gravitational force between two particles or two antiparticles may disappear. The properties of the model may be summed up by saying that the model is generally covariant but leads to the disturbance of the weak principle of equivalence, the gravitational law differs from Newton's law at small distances, and particles and antiparticles do not have the same mass. (B.S.)
Pricing general insurance with constraints
Emms, P.
2006-01-01
Deterministic control theory is used to find the optimal premium strategy for an insurer in order to maximise a given objective. The optimal strategy can be loss-leading depending on the model parameters, which may result in negative premium values. In such circumstances, it is optimal to capture as much of the market as possible before making a profit towards the end of the time horizon. In reality, the amount by which an insurer can lower premiums is constrained by borrowing restrictions an...
Jara, Pascual; Torrecillas, Blas
1988-01-01
The papers in this proceedings volume are selected research papers in different areas of ring theory, including graded rings, differential operator rings, K-theory of noetherian rings, torsion theory, regular rings, cohomology of algebras, local cohomology of noncommutative rings. The book will be important for mathematicians active in research in ring theory.
DEFF Research Database (Denmark)
Hendricks, Vincent F.
Game Theory is a collection of short interviews based on 5 questions presented to some of the most influential and prominent scholars in game theory. We hear their views on game theory, its aim, scope, use, the future direction of game theory and how their work fits in these respects....
Evidence for the Fundamental Difference Hypothesis or Not?: Island Constraints Revisited
Belikova, Alyona; White, Lydia
2009-01-01
This article examines how changes in linguistic theory affect the debate between the fundamental difference hypothesis and the access-to-Universal Grammar (UG) approach to SLA. With a focus on subjacency (Chomsky, 1973), a principle of UG that places constraints on "wh"-movement and that has frequently been taken as a test case for verifying…
Efficient Solving of Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure
Czech Academy of Sciences Publication Activity Database
Fränzle, M.; Herde, C.; Teige, T.; Ratschan, Stefan; Schubert, T.
2007-01-01
Roč. 1, - (2007), s. 209-236 ISSN 1574-0617 Grant - others:AVACS(DE) SFB/TR 14 Institutional research plan: CEZ:AV0Z10300504 Keywords : interval-based arithmetic constraint solving * SAT modulo theories Subject RIV: BA - General Mathematics
Yang, He; Hutchinson, Susan; Zinn, Harry; Watson, Alan
2011-01-01
How people make choices about activity engagement during discretionary time is a topic of increasing interest to those studying quality of life issues. Assuming choices are made to maximize individual welfare, several factors are believed to influence these choices. Constraints theory from the leisure research literature suggests these choices are…
He Yang; Susan Hutchinson; Harry Zinn; Alan Watson
2011-01-01
How people make choices about activity engagement during discretionary time is a topic of increasing interest to those studying quality of life issues. Assuming choices are made to maximize individual welfare, several factors are believed to influence these choices. Constraints theory from the leisure research literature suggests these choices are heavily influenced by...
A numerical approach to weak Pareto solutions to equilibrium problems with equilibrium constraints
Czech Academy of Sciences Publication Activity Database
Červinka, Michal
2006-01-01
Roč. 57, č. 7 (2006), s. 14-17 ISSN 1335-3632. [ISCAM 2006. International Conference in Applied Mathematics for undergraduate and graduate students. Bratislava, 07.04.2006-08.04.2006] Institutional research plan: CEZ:AV0Z10750506 Keywords : equilibrium problems with complementarity constraints * multiobjective optimization * variational analysis Subject RIV: BD - Theory of Information
Extended Nambu models: Their relation to gauge theories
Escobar, C. A.; Urrutia, L. F.
2017-05-01
Yang-Mills theories supplemented by an additional coordinate constraint, which is solved and substituted in the original Lagrangian, provide examples of the so-called Nambu models, in the case where such constraints arise from spontaneous Lorentz symmetry breaking. Some explicit calculations have shown that, after additional conditions are imposed, Nambu models are capable of reproducing the original gauge theories, thus making Lorentz violation unobservable and allowing the interpretation of the corresponding massless gauge bosons as the Goldstone bosons arising from the spontaneous symmetry breaking. A natural question posed by this approach in the realm of gauge theories is to determine under which conditions the recovery of an arbitrary gauge theory from the corresponding Nambu model, defined by a general constraint over the coordinates, becomes possible. We refer to these theories as extended Nambu models (ENM) and emphasize the fact that the defining coordinate constraint is not treated as a standard gauge fixing term. At this level, the mechanism for generating the constraint is irrelevant and the case of spontaneous Lorentz symmetry breaking is taken only as a motivation, which naturally bring this problem under consideration. Using a nonperturbative Hamiltonian analysis we prove that the ENM yields the original gauge theory after we demand current conservation for all time, together with the imposition of the Gauss laws constraints as initial conditions upon the dynamics of the ENM. The Nambu models yielding electrodynamics, Yang-Mills theories and linearized gravity are particular examples of our general approach.
Natural Constraints to Species Diversification.
Directory of Open Access Journals (Sweden)
Eric Lewitus
2016-08-01
Full Text Available Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the
Natural Constraints to Species Diversification.
Lewitus, Eric; Morlon, Hélène
2016-08-01
Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geometry of phylogenetic space is delimited by quantifiable trade-offs in tree size and the heterogeneity and stem-to-tip distribution of branching events. These trade-offs are indicative of the instability of certain diversification patterns and effectively bound speciation rates (for successful clades) within upper and lower limits. Finally, both the constrained range and geometry of phylogenetic space are established by the differential effects of macroevolutionary processes on patterns of diversification. Given these properties, we show that the average path through phylogenetic space over evolutionary time traverses several diversification stages, each of which is defined by a different principal pattern of diversification and directed by a different macroevolutionary process. The identification of universal patterns and natural constraints to diversification provides a foundation for understanding the deep-time evolution of
Natural Constraints to Species Diversification
Lewitus, Eric; Morlon, Hélène
2016-01-01
Identifying modes of species diversification is fundamental to our understanding of how biodiversity changes over evolutionary time. Diversification modes are captured in species phylogenies, but characterizing the landscape of diversification has been limited by the analytical tools available for directly comparing phylogenetic trees of groups of organisms. Here, we use a novel, non-parametric approach and 214 family-level phylogenies of vertebrates representing over 500 million years of evolution to identify major diversification modes, to characterize phylogenetic space, and to evaluate the bounds and central tendencies of species diversification. We identify five principal patterns of diversification to which all vertebrate families hold. These patterns, mapped onto multidimensional space, constitute a phylogenetic space with distinct properties. Firstly, phylogenetic space occupies only a portion of all possible tree space, showing family-level phylogenies to be constrained to a limited range of diversification patterns. Secondly, the geome