WorldWideScience

Sample records for two-parameter power law

  1. Constraints on cosmological parameters in power-law cosmology

    International Nuclear Information System (INIS)

    Rani, Sarita; Singh, J.K.; Altaibayeva, A.; Myrzakulov, R.; Shahalam, M.

    2015-01-01

    In this paper, we examine observational constraints on the power law cosmology; essentially dependent on two parameters H 0 (Hubble constant) and q (deceleration parameter). We investigate the constraints on these parameters using the latest 28 points of H(z) data and 580 points of Union2.1 compilation data and, compare the results with the results of ΛCDM . We also forecast constraints using a simulated data set for the future JDEM, supernovae survey. Our studies give better insight into power law cosmology than the earlier done analysis by Kumar [arXiv:1109.6924] indicating it tuning well with Union2.1 compilation data but not with H(z) data. However, the constraints obtained on and i.e. H 0 average and q average using the simulated data set for the future JDEM, supernovae survey are found to be inconsistent with the values obtained from the H(z) and Union2.1 compilation data. We also perform the statefinder analysis and find that the power-law cosmological models approach the standard ΛCDM model as q → −1. Finally, we observe that although the power law cosmology explains several prominent features of evolution of the Universe, it fails in details

  2. A two-parameter family of double-power-law biorthonormal potential-density expansions

    Science.gov (United States)

    Lilley, Edward J.; Sanders, Jason L.; Evans, N. Wyn

    2018-05-01

    We present a two-parameter family of biorthonormal double-power-law potential-density expansions. Both the potential and density are given in closed analytic form and may be rapidly computed via recurrence relations. We show that this family encompasses all the known analytic biorthonormal expansions: the Zhao expansions (themselves generalizations of ones found earlier by Hernquist & Ostriker and by Clutton-Brock) and the recently discovered Lilley et al. (2017a) expansion. Our new two-parameter family includes expansions based around many familiar spherical density profiles as zeroth-order models, including the γ models and the Jaffe model. It also contains a basis expansion that reproduces the famous Navarro-Frenk-White (NFW) profile at zeroth order. The new basis expansions have been found via a systematic methodology which has wide applications in finding other new expansions. In the process, we also uncovered a novel integral transform solution to Poisson's equation.

  3. Electrohydrodynamic stability of two stratified power law liquid in couette flow

    International Nuclear Information System (INIS)

    Eldabe, N.T.

    1988-01-01

    Consideration is given to the stability of the flow of two power law liquids under the influence of normal electric field between two infinite parallel planes when one of the planes moves with constant velocity in its own plane. It is found that the electric fields have a dramatic effect and can be chosen to stabilize or destabilize the flow. The effects of the power law parameters on the problem are examinated

  4. Determining Rheological Parameters of Generalized Yield-Power-Law Fluid Model

    Directory of Open Access Journals (Sweden)

    Stryczek Stanislaw

    2004-09-01

    Full Text Available The principles of determining rheological parameters of drilling muds described by a generalized yield-power-law are presented in the paper. Functions between tangent stresses and shear rate are given. The conditions of laboratory measurements of rheological parameters of generalized yield-power-law fluids are described and necessary mathematical relations for rheological model parameters given. With the block diagrams, the methodics of numerical solution of these relations has been presented. Rheological parameters of an exemplary drilling mud have been calculated with the use of this numerical program.

  5. Non-Darcy Free Convection of Power-Law Fluids Over a Two-Dimensional Body Embedded in a Porous Medium

    KAUST Repository

    El-Amin, Mohamed

    2010-11-27

    A boundary layer analysis was presented to study the non-Darcy-free convection of a power-law fluid over a non-isothermal two-dimensional body embedded in a porous medium. The Ostwald-de Waele power-law model was used to characterize the non-Newtonian fluid behavior. Similarity solutions were obtained with variations in surface temperature or surface heat flux. In view of the fact that most of the non-Newtonian fluids have large Prandtl numbers, this study was directed toward such fluids. The effects of the porous medium parameters, k1 and k2, body shape parameter, m, and surface thermal variations parameter, p, as well as the power-law index, n, were examined. © 2010 Springer Science+Business Media B.V.

  6. Non-Darcy Free Convection of Power-Law Fluids Over a Two-Dimensional Body Embedded in a Porous Medium

    KAUST Repository

    El-Amin, Mohamed; Sun, Shuyu; El-Ameen, M. A.; Jaha, Y. A.; Gorla, Rama Subba Reddy

    2010-01-01

    A boundary layer analysis was presented to study the non-Darcy-free convection of a power-law fluid over a non-isothermal two-dimensional body embedded in a porous medium. The Ostwald-de Waele power-law model was used to characterize the non-Newtonian fluid behavior. Similarity solutions were obtained with variations in surface temperature or surface heat flux. In view of the fact that most of the non-Newtonian fluids have large Prandtl numbers, this study was directed toward such fluids. The effects of the porous medium parameters, k1 and k2, body shape parameter, m, and surface thermal variations parameter, p, as well as the power-law index, n, were examined. © 2010 Springer Science+Business Media B.V.

  7. A generalized power-law scaling law for a two-phase imbibition in a porous medium

    KAUST Repository

    El-Amin, Mohamed

    2013-11-01

    Dimensionless time is a universal parameter that may be used to predict real field behavior from scaled laboratory experiments in relation to imbibition processes in porous media. Researchers work to nondimensionalize the time has been through the use of parameters that are inherited to the properties of the moving fluids and the porous matrix, which may be applicable to spontaneous imbibition. However, in forced imbibition, the dynamics of the process depends, in addition, on injection velocity. Therefore, we propose the use of scaling velocity in the form of a combination of two velocities, the first of which (the characteristic velocity) is defined by the fluid and the porous medium parameters and the second is the injection velocity, which is a characteristic of the process. A power-law formula is suggested for the scaling velocity such that it may be used as a parameter to nondimensionalize time. This may reduce the complexities in characterizing two-phase imbibition through porous media and works well in both the cases of spontaneous and forced imbibition. The proposed scaling-law is tested against some oil recovery experimental data from the literature. In addition, the governing partial differential equations are nondimensionalized so that the governing dimensionless groups are manifested. An example of a one-dimensional countercurrent imbibition is considered numerically. The calculations are carried out for a wide range of Ca and Da to illustrate their influences on water saturation as well as relative water/oil permeabilities. © 2013 Elsevier B.V.

  8. A generalized power-law scaling law for a two-phase imbibition in a porous medium

    KAUST Repository

    El-Amin, Mohamed; Salama, Amgad; Sun, Shuyu

    2013-01-01

    Dimensionless time is a universal parameter that may be used to predict real field behavior from scaled laboratory experiments in relation to imbibition processes in porous media. Researchers work to nondimensionalize the time has been through the use of parameters that are inherited to the properties of the moving fluids and the porous matrix, which may be applicable to spontaneous imbibition. However, in forced imbibition, the dynamics of the process depends, in addition, on injection velocity. Therefore, we propose the use of scaling velocity in the form of a combination of two velocities, the first of which (the characteristic velocity) is defined by the fluid and the porous medium parameters and the second is the injection velocity, which is a characteristic of the process. A power-law formula is suggested for the scaling velocity such that it may be used as a parameter to nondimensionalize time. This may reduce the complexities in characterizing two-phase imbibition through porous media and works well in both the cases of spontaneous and forced imbibition. The proposed scaling-law is tested against some oil recovery experimental data from the literature. In addition, the governing partial differential equations are nondimensionalized so that the governing dimensionless groups are manifested. An example of a one-dimensional countercurrent imbibition is considered numerically. The calculations are carried out for a wide range of Ca and Da to illustrate their influences on water saturation as well as relative water/oil permeabilities. © 2013 Elsevier B.V.

  9. Two-phase flow in porous media: power-law scaling of effective permeability

    Energy Technology Data Exchange (ETDEWEB)

    Groeva, Morten; Hansen, Alex, E-mail: Morten.Grova@ntnu.no, E-mail: Alex.Hansen@ntnu.no [Department of Physics, NTNU, NO-7491 Trondheim (Norway)

    2011-09-15

    A recent experiment has reported power-law scaling of effective permeability of two-phase flow with respect to capillary number for a two-dimensional model porous medium. In this paper, we consider the simultaneous flow of two phases through a porous medium under steady-state conditions, fixed total flow-rate and saturation, using a two-dimensional network simulator. We obtain power-law exponents for the scaling of effective permeability with respect to capillary number. The simulations are performed both for viscosity matched fluids and for a high viscosity ratio resembling that of air and water. Good power-law behaviour is found for both cases. Different exponents are found, depending on saturation.

  10. Estimation of inflation parameters for Perturbed Power Law model using recent CMB measurements

    International Nuclear Information System (INIS)

    Mukherjee, Suvodip; Das, Santanu; Souradeep, Tarun; Joy, Minu

    2015-01-01

    Cosmic Microwave Background (CMB) is an important probe for understanding the inflationary era of the Universe. We consider the Perturbed Power Law (PPL) model of inflation which is a soft deviation from Power Law (PL) inflationary model. This model captures the effect of higher order derivative of Hubble parameter during inflation, which in turn leads to a non-zero effective mass m eff for the inflaton field. The higher order derivatives of Hubble parameter at leading order sources constant difference in the spectral index for scalar and tensor perturbation going beyond PL model of inflation. PPL model have two observable independent parameters, namely spectral index for tensor perturbation ν t and change in spectral index for scalar perturbation ν st to explain the observed features in the scalar and tensor power spectrum of perturbation. From the recent measurements of CMB power spectra by WMAP, Planck and BICEP-2 for temperature and polarization, we estimate the feasibility of PPL model with standard ΛCDM model. Although BICEP-2 claimed a detection of r=0.2, estimates of dust contamination provided by Planck have left open the possibility that only upper bound on r will be expected in a joint analysis. As a result we consider different upper bounds on the value of r and show that PPL model can explain a lower value of tensor to scalar ratio (r<0.1 or r<0.01) for a scalar spectral index of n s =0.96 by having a non-zero value of effective mass of the inflaton field m 2 eff /H 2 . The analysis with WP + Planck likelihood shows a non-zero detection of m 2 eff /H 2 with 5.7 σ and 8.1 σ respectively for r<0.1 and r<0.01. Whereas, with BICEP-2 likelihood m 2 eff /H 2  = −0.0237 ± 0.0135 which is consistent with zero

  11. Beta Function Quintessence Cosmological Parameters and Fundamental Constants I: Power and Inverse Power Law Dark Energy Potentials

    Science.gov (United States)

    Thompson, Rodger I.

    2018-04-01

    This investigation explores using the beta function formalism to calculate analytic solutions for the observable parameters in rolling scalar field cosmologies. The beta function in this case is the derivative of the scalar ϕ with respect to the natural log of the scale factor a, β (φ )=d φ /d ln (a). Once the beta function is specified, modulo a boundary condition, the evolution of the scalar ϕ as a function of the scale factor is completely determined. A rolling scalar field cosmology is defined by its action which can contain a range of physically motivated dark energy potentials. The beta function is chosen so that the associated "beta potential" is an accurate, but not exact, representation of the appropriate dark energy model potential. The basic concept is that the action with the beta potential is so similar to the action with the model potential that solutions using the beta action are accurate representations of solutions using the model action. The beta function provides an extra equation to calculate analytic functions of the cosmologies parameters as a function of the scale factor that are that are not calculable using only the model action. As an example this investigation uses a quintessence cosmology to demonstrate the method for power and inverse power law dark energy potentials. An interesting result of the investigation is that the Hubble parameter H is almost completely insensitive to the power of the potentials and that ΛCDM is part of the family of quintessence cosmology power law potentials with a power of zero.

  12. Stretched exponentials and power laws in granular avalanching

    Science.gov (United States)

    Head, D. A.; Rodgers, G. J.

    1999-02-01

    We introduce a model for granular surface flow which exhibits both stretched exponential and power law avalanching over its parameter range. Two modes of transport are incorporated, a rolling layer consisting of individual particles and the overdamped, sliding motion of particle clusters. The crossover in behaviour observed in experiments on piles of rice is attributed to a change in the dominant mode of transport. We predict that power law avalanching will be observed whenever surface flow is dominated by clustered motion.

  13. Power Law Distributions in Two Community Currencies

    Science.gov (United States)

    Kichiji, N.; Nishibe, M.

    2007-07-01

    The purpose of this paper is to highlight certain newly discovered social phenomena that accord with Zipf's law, in addition to the famous natural and social phenomena including word frequencies, earthquake magnitude, city size, income1 etc. that are already known to follow it. These phenomena have recently been discovered within the transaction amount (payments or receipts) distributions within two different Community Currencies (CC) that had been initiated as social experiments. One is a local CC circulating in a specific geographical area, such as a town. The other is a virtual CC used among members who belong to a certain community of interest (COI) on the Internet. We conducted two empirical studies to estimate the economic vitalization effects they had on their respective local economies. The results we found were that the amount of transactions (payments and receipts) of the two CCs was distributed according to a power-law distribution with a unity rank exponent. In addition, we found differences between the two CCs with regard to the shapes of their distribution over a low-transaction range. The result may originate from the difference in methods of issuing CCs or in the magnitudes of the minimum-value unit; however, this result calls for further investigation.

  14. The rate coefficients of unimolecular reactions in the systems with power-law distributions

    Science.gov (United States)

    Yin, Cangtao; Guo, Ran; Du, Jiulin

    2014-08-01

    The rate coefficient formulae of unimolecular reactions are generalized to the systems with the power-law distributions based on nonextensive statistics, and the power-law rate coefficients are derived in the high and low pressure limits, respectively. The numerical analyses are made of the rate coefficients as functions of the ν-parameter, the threshold energy, the temperature and the number of degrees of freedom. We show that the new rate coefficients depend strongly on the ν-parameter different from one (thus from a Boltzmann-Gibbs distribution). Two unimolecular reactions, CH3CO→CH3+CO and CH3NC→CH3CN, are taken as application examples to calculate their power-law rate coefficients, which obtained with the ν-parameters slightly different from one can be exactly in agreement with all the experimental studies on these two reactions in the given temperature ranges.

  15. Regularized lattice Boltzmann model for immiscible two-phase flows with power-law rheology

    Science.gov (United States)

    Ba, Yan; Wang, Ningning; Liu, Haihu; Li, Qiang; He, Guoqiang

    2018-03-01

    In this work, a regularized lattice Boltzmann color-gradient model is developed for the simulation of immiscible two-phase flows with power-law rheology. This model is as simple as the Bhatnagar-Gross-Krook (BGK) color-gradient model except that an additional regularization step is introduced prior to the collision step. In the regularization step, the pseudo-inverse method is adopted as an alternative solution for the nonequilibrium part of the total distribution function, and it can be easily extended to other discrete velocity models no matter whether a forcing term is considered or not. The obtained expressions for the nonequilibrium part are merely related to macroscopic variables and velocity gradients that can be evaluated locally. Several numerical examples, including the single-phase and two-phase layered power-law fluid flows between two parallel plates, and the droplet deformation and breakup in a simple shear flow, are conducted to test the capability and accuracy of the proposed color-gradient model. Results show that the present model is more stable and accurate than the BGK color-gradient model for power-law fluids with a wide range of power-law indices. Compared to its multiple-relaxation-time counterpart, the present model can increase the computing efficiency by around 15%, while keeping the same accuracy and stability. Also, the present model is found to be capable of reasonably predicting the critical capillary number of droplet breakup.

  16. A recommended procedure for estimating the cosmic-ray spectral parameter of a simple power law

    CERN Document Server

    Howell, L W

    2002-01-01

    A simple power law model with single spectral index alpha sub 1 is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10 sup 1 sup 3 eV. Two procedures for estimating alpha sub 1 --the method of moments and maximum likelihood (ML)--are developed and their statistical performance are compared. The ML procedure is shown to be the superior approach and is then generalized for application to real cosmic-ray data sets. Several other important results, such as the relationship between collecting power and detector energy resolution and inclusion of a non-Gaussian detector response function, are presented. These results have many practical benefits in the design phase of a cosmic-ray detector as they permit instrument developers to make important trade studies in design parameters as a function of one of the science objectives.

  17. The p-sphere and the geometric substratum of power-law probability distributions

    International Nuclear Information System (INIS)

    Vignat, C.; Plastino, A.

    2005-01-01

    Links between power law probability distributions and marginal distributions of uniform laws on p-spheres in R n show that a mathematical derivation of the Boltzmann-Gibbs distribution necessarily passes through power law ones. Results are also given that link parameters p and n to the value of the non-extensivity parameter q that characterizes these power laws in the context of non-extensive statistics

  18. Breakup characteristics of power-law liquid sheets formed by two impinging jets

    International Nuclear Information System (INIS)

    Bai, Fuqiang; Diao, Hai; Chang, Qing; Wang, Endong; Du, Qing; Zhang, Mengzheng

    2014-01-01

    The breakup characteristics of the shear-thinning power-law liquid sheets formed by two impinging jets have been investigated with the shadowgraph technique. This paper focuses on the effects of spray parameters (jet velocity), physical parameters (viscosity) and geometry parameters (impinging angle and nozzle cross-sectional shape) on the breakup behaviors of liquid sheets. The breakup mode, sheet length and expansion angle of the sheet are extracted from the spray images obtained by a high speed camera. Impinging angle and Weber number play the similar roles in promoting the breakup of liquid sheets. With the increase of jet velocity, five different breakup modes are observed and the expansion angle increases consistently after the closed-rim mode while the sheet length first increases and then decreases. But there exists a concave consisting of a fierce drop and a second rising process on the sheet length curve for the fluid with smaller viscosity. Different nozzle cross-sectional shapes emphasize significant effects on the sheet length and expansion angle of liquid sheets. At a fixed Weber number, the liquid sheet with greater viscosity has a greater sheet length and a smaller expansion angle due to the damping effect of viscosity. (papers)

  19. Power law analysis of the human microbiome.

    Science.gov (United States)

    Ma, Zhanshan Sam

    2015-11-01

    Taylor's (1961, Nature, 189:732) power law, a power function (V = am(b) ) describing the scaling relationship between the mean and variance of population abundances of organisms, has been found to govern the population abundance distributions of single species in both space and time in macroecology. It is regarded as one of few generalities in ecology, and its parameter b has been widely applied to characterize spatial aggregation (i.e. heterogeneity) and temporal stability of single-species populations. Here, we test its applicability to bacterial populations in the human microbiome using extensive data sets generated by the US-NIH Human Microbiome Project (HMP). We further propose extending Taylor's power law from the population to the community level, and accordingly introduce four types of power-law extensions (PLEs): type I PLE for community spatial aggregation (heterogeneity), type II PLE for community temporal aggregation (stability), type III PLE for mixed-species population spatial aggregation (heterogeneity) and type IV PLE for mixed-species population temporal aggregation (stability). Our results show that fittings to the four PLEs with HMP data were statistically extremely significant and their parameters are ecologically sound, hence confirming the validity of the power law at both the population and community levels. These findings not only provide a powerful tool to characterize the aggregations of population and community in both time and space, offering important insights into community heterogeneity in space and/or stability in time, but also underscore the three general properties of power laws (scale invariance, no average and universality) and their specific manifestations in our four PLEs. © 2015 John Wiley & Sons Ltd.

  20. Power Laws are Disguised Boltzmann Laws

    Science.gov (United States)

    Richmond, Peter; Solomon, Sorin

    Using a previously introduced model on generalized Lotka-Volterra dynamics together with some recent results for the solution of generalized Langevin equations, we derive analytically the equilibrium mean field solution for the probability distribution of wealth and show that it has two characteristic regimes. For large values of wealth, it takes the form of a Pareto style power law. For small values of wealth, wGeneralized Lotka-Volterra type of stochastic dynamics. The power law that arises in the distribution function is identified with new additional logarithmic terms in the familiar Boltzmann distribution function for the system. These are a direct consequence of the multiplicative stochastic dynamics and are absent for the usual additive stochastic processes.

  1. Power laws in citation distributions: evidence from Scopus.

    Science.gov (United States)

    Brzezinski, Michal

    Modeling distributions of citations to scientific papers is crucial for understanding how science develops. However, there is a considerable empirical controversy on which statistical model fits the citation distributions best. This paper is concerned with rigorous empirical detection of power-law behaviour in the distribution of citations received by the most highly cited scientific papers. We have used a large, novel data set on citations to scientific papers published between 1998 and 2002 drawn from Scopus. The power-law model is compared with a number of alternative models using a likelihood ratio test. We have found that the power-law hypothesis is rejected for around half of the Scopus fields of science. For these fields of science, the Yule, power-law with exponential cut-off and log-normal distributions seem to fit the data better than the pure power-law model. On the other hand, when the power-law hypothesis is not rejected, it is usually empirically indistinguishable from most of the alternative models. The pure power-law model seems to be the best model only for the most highly cited papers in "Physics and Astronomy". Overall, our results seem to support theories implying that the most highly cited scientific papers follow the Yule, power-law with exponential cut-off or log-normal distribution. Our findings suggest also that power laws in citation distributions, when present, account only for a very small fraction of the published papers (less than 1 % for most of science fields) and that the power-law scaling parameter (exponent) is substantially higher (from around 3.2 to around 4.7) than found in the older literature.

  2. Transport coefficients in Lorentz plasmas with the power-law kappa-distribution

    International Nuclear Information System (INIS)

    Jiulin, Du

    2013-01-01

    Transport coefficients in Lorentz plasma with the power-law κ-distribution are studied by means of using the transport equation and macroscopic laws of Lorentz plasma without magnetic field. Expressions of electric conductivity, thermoelectric coefficient, and thermal conductivity for the power-law κ-distribution are accurately derived. It is shown that these transport coefficients are significantly modified by the κ-parameter, and in the limit of the parameter κ→∞ they are reduced to the standard forms for a Maxwellian distribution

  3. Dimensionless parameters, scaling laws, and the implications for ETG

    Energy Technology Data Exchange (ETDEWEB)

    Castle, G.G.

    1995-04-20

    ETG will be useful in resolving several physical issues relevant to Spherical Tokamak Reactor concepts. First, it will provide a test of whether transport is Bohm or gyro-Bohm in nature. The second point is that ETG will operate in a completely different range of {rho}* space from other high performance machines, opening up a previously inaccessible region of parameter space. ETG is also a (very) high-{beta} machine. It would be the only device that would have all of its parameters except {rho}* similar to those of a Spherical tokamak Reactor. If it turns out that the transport scales definitively as either Bohm or gyro-Bohm, then extrapolation to reactor conditions with significantly lower values of {rho}* would become more credible. It is also shown that in general one cannot obtain a power law relation in the dimensionless variables for the confinement tim from a power law fit to the engineering variables. It is shown, however, that if T{sub i}/T{sub e} and n{sub i}/n{sub e} are constant or if a modified definition of certain dimensionless variables is adopted, then such a power law conversion is possible.

  4. Empirical Scaling Laws of Neutral Beam Injection Power in HL-2A Tokamak

    International Nuclear Information System (INIS)

    Cao Jian-Yong; Wei Hui-Ling; Liu He; Yang Xian-Fu; Zou Gui-Qing; Yu Li-Ming; Li Qing; Luo Cui-Wen; Pan Yu-Dong; Jiang Shao-Feng; Lei Guang-Jiu; Li Bo; Rao Jun; Duan Xu-Ru

    2015-01-01

    We present an experimental method to obtain neutral beam injection (NBI) power scaling laws with operating parameters of the NBI system on HL-2A, including the beam divergence angle, the beam power transmission efficiency, the neutralization efficiency and so on. With the empirical scaling laws, the estimating power can be obtained in every shot of experiment on time, therefore the important parameters such as the energy confinement time can be obtained precisely. The simulation results by the tokamak simulation code (TSC) show that the evolution of the plasma parameters is in good agreement with the experimental results by using the NBI power from the empirical scaling law. (paper)

  5. Observational constraints on phantom power-law cosmology

    International Nuclear Information System (INIS)

    Kaeonikhom, Chakkrit; Gumjudpai, Burin; Saridakis, Emmanuel N.

    2011-01-01

    We investigate phantom cosmology in which the scale factor is a power law, and we use cosmological observations from Cosmic Microwave Background (CMB), Baryon Acoustic Oscillations (BAO) and observational Hubble data, in order to impose complete constraints on the model parameters. We find that the power-law exponent is β∼-6.51 -0.25 +0.24 , while the Big Rip is realized at t s ∼104.5 -2.0 +1.9 Gyr, in 1σ confidence level. Providing late-time asymptotic expressions, we find that the dark-energy equation-of-state parameter at the Big Rip remains finite and equal to w DE ∼-1.153, with the dark-energy density and pressure diverging. Finally, we reconstruct the phantom potential.

  6. On the universality of power laws for tokamak plasma predictions

    Science.gov (United States)

    Garcia, J.; Cambon, D.; Contributors, JET

    2018-02-01

    Significant deviations from well established power laws for the thermal energy confinement time, obtained from extensive databases analysis as the IPB98(y,2), have been recently reported in dedicated power scans. In order to illuminate the adequacy, validity and universality of power laws as tools for predicting plasma performance, a simplified analysis has been carried out in the framework of a minimal modeling for heat transport which is, however, able to account for the interplay between turbulence and collinear effects with the input power known to play a role in experiments with significant deviations from such power laws. Whereas at low powers, the usual scaling laws are recovered with little influence of other plasma parameters, resulting in a robust power low exponent, at high power it is shown how the exponents obtained are extremely sensitive to the heating deposition, the q-profile or even the sampling or the number of points considered due to highly non-linear behavior of the heat transport. In particular circumstances, even a minimum of the thermal energy confinement time with the input power can be obtained, which means that the approach of the energy confinement time as a power law might be intrinsically invalid. Therefore plasma predictions with a power law approximation with a constant exponent obtained from a regression of a broad range of powers and other plasma parameters which can non-linearly affect and suppress heat transport, can lead to misleading results suggesting that this approach should be taken cautiously and its results continuously compared with modeling which can properly capture the underline physics, as gyrokinetic simulations.

  7. Power law scaling for rotational energy transfer

    International Nuclear Information System (INIS)

    Pritchard, D.E.; Smith, N.; Driver, R.D.; Brunner, T.A.

    1979-01-01

    We have applied a new scaling law to several sets of rotational energy transfer cross sections. The new law asserts that the square of the T-matrix depends on the amount of energy transferred as a power law. Two different kinds of angular momentum statistics are assumed, one corresponding to m/sub j/ being conserved and the other corresponding to m/sub j/ being completely randomized. Numerical fits are presented which demonstrate that the data follow the power law better than the widely used exponential gap law

  8. Resurrecting power law inflation in the light of Planck results

    International Nuclear Information System (INIS)

    Unnikrishnan, Sanil; Sahni, Varun

    2013-01-01

    It is well known that a canonical scalar field with an exponential potential can drive power law inflation (PLI). However, the tensor-to-scalar ratio in such models turns out to be larger than the stringent limit set by recent Planck results. We propose a new model of power law inflation for which the scalar spectra index, the tensor-to-scalar ratio and the non-gaussianity parameter f NL equil are in excellent agreement with Planck results. Inflation, in this model, is driven by a non-canonical scalar field with an inverse power law potential. The Lagrangian for our model is structurally similar to that of a canonical scalar field and has a power law form for the kinetic term. A simple extension of our model resolves the graceful exit problem which usually afflicts models of power law inflation

  9. Crossover of two power laws in the anomalous diffusion of a two lipid membrane.

    Science.gov (United States)

    Bakalis, Evangelos; Höfinger, Siegfried; Venturini, Alessandro; Zerbetto, Francesco

    2015-06-07

    Molecular dynamics simulations of a bi-layer membrane made by the same number of 1-palmitoyl-2-oleoyl-glycero-3-phospho-ethanolamine and palmitoyl-oleoyl phosphatidylserine lipids reveal sub-diffusional motion, which presents a crossover between two different power laws. Fractional Brownian motion is the stochastic mechanism that governs the motion in both regimes. The location of the crossover point is justified with simple geometrical arguments and is due to the activation of the mechanism of circumrotation of lipids about each other.

  10. Crossover of two power laws in the anomalous diffusion of a two lipid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bakalis, Evangelos, E-mail: ebakalis@gmail.com, E-mail: francesco.zerbetto@unibo.it; Höfinger, Siegfried; Zerbetto, Francesco, E-mail: ebakalis@gmail.com, E-mail: francesco.zerbetto@unibo.it [Dipartimento di Chimica “G. Ciamician”, Universita’ di Bologna, Via F. Selmi 2, 40126 Bologna (Italy); Venturini, Alessandro [Institute for the Organic Synthesis and Photoreactivity, National Research Council of Italy, Via Gobetti 101, 40129 Bologna (Italy)

    2015-06-07

    Molecular dynamics simulations of a bi-layer membrane made by the same number of 1-palmitoyl-2-oleoyl-glycero-3-phospho-ethanolamine and palmitoyl-oleoyl phosphatidylserine lipids reveal sub-diffusional motion, which presents a crossover between two different power laws. Fractional Brownian motion is the stochastic mechanism that governs the motion in both regimes. The location of the crossover point is justified with simple geometrical arguments and is due to the activation of the mechanism of circumrotation of lipids about each other.

  11. Evidence for two hard X-ray components in double power-law fits to the 1980 June 7 flare

    Science.gov (United States)

    Smith, Dean F.; Orwig, Larry E.

    1988-01-01

    The June 7, 1980 flare at 0312 UT was analyzed with double power-law fits on the basis of SMM hard X-ray burst spectrometer data. The flare is found to consist of seven peaks of characteristic time scale of about 8 sec followed by seven valleys which may contain significant peak components because of overlap. It is suggested that the possibility of thermal spectra for the peaks is unlikely. An investigation of the double power-law parameters through the third and fourth peaks revealed a hysteresis effect in the fourth peak. The present results have been interpreted in terms of a trap plus precipitation model.

  12. Orbits in elementary, power-law galaxy bars - 1. Occurrence and role of single loops

    Science.gov (United States)

    Struck, Curtis

    2018-05-01

    Orbits in galaxy bars are generally complex, but simple closed loop orbits play an important role in our conceptual understanding of bars. Such orbits are found in some well-studied potentials, provide a simple model of the bar in themselves, and may generate complex orbit families. The precessing, power ellipse (p-ellipse) orbit approximation provides accurate analytic orbit fits in symmetric galaxy potentials. It remains useful for finding and fitting simple loop orbits in the frame of a rotating bar with bar-like and symmetric power-law potentials. Second-order perturbation theory yields two or fewer simple loop solutions in these potentials. Numerical integrations in the parameter space neighbourhood of perturbation solutions reveal zero or one actual loops in a range of such potentials with rising rotation curves. These loops are embedded in a small parameter region of similar, but librating orbits, which have a subharmonic frequency superimposed on the basic loop. These loops and their librating companions support annular bars. Solid bars can be produced in more complex potentials, as shown by an example with power-law indices varying with radius. The power-law potentials can be viewed as the elementary constituents of more complex potentials. Numerical integrations also reveal interesting classes of orbits with multiple loops. In two-dimensional, self-gravitating bars, with power-law potentials, single-loop orbits are very rare. This result suggests that gas bars or oval distortions are unlikely to be long-lived, and that complex orbits or three-dimensional structure must support self-gravitating stellar bars.

  13. Models of fragmentation with composite power laws

    Science.gov (United States)

    Tavassoli, Z.; Rodgers, G. J.

    1999-06-01

    Some models for binary fragmentation are introduced in which a time dependent transition size produces two regions of fragment sizes above and below the transition size. In the first model we assume a fixed rate of fragmentation for the largest fragment and two different rates of fragmentation in the two regions of sizes above and below the transition size. The model is solved exactly in the long time limit to reveal stable time-invariant solutions for the fragment size and mass distributions. These solutions exhibit composite power law behaviours; power laws with two different exponents for fragments in smaller and larger regions. A special case of the model with no fragmentation in the smaller size region is also examined. Another model is also introduced which have three regions of fragment sizes with different rates of fragmentation. The similarities between the stable distributions in our models and composite power law distributions from experimental work on shock fragmentation of long thin glass rods and thick clay plates are discussed.

  14. Seepage Characteristics Study on Power-Law Fluid in Fractal Porous Media

    Directory of Open Access Journals (Sweden)

    Meijuan Yun

    2014-01-01

    Full Text Available We present fractal models for the flow rate, velocity, effective viscosity, apparent viscosity, and effective permeability for power-law fluid based on the fractal properties of porous media. The proposed expressions realize the quantitative description to the relation between the properties of the power-law fluid and the parameters of the microstructure of the porous media. The model predictions are compared with related data and good agreement between them is found. The analytical expressions will contribute to the revealing of physical principles for the power-law fluid flow in porous media.

  15. The distance-decay function of geographical gravity model: Power law or exponential law?

    International Nuclear Information System (INIS)

    Chen, Yanguang

    2015-01-01

    Highlights: •The distance-decay exponent of the gravity model is a fractal dimension. •Entropy maximization accounts for the gravity model based on power law decay. •Allometric scaling relations relate gravity models with spatial interaction models. •The four-parameter gravity models have dual mathematical expressions. •The inverse power law is the most probable distance-decay function. -- Abstract: The distance-decay function of the geographical gravity model is originally an inverse power law, which suggests a scaling process in spatial interaction. However, the distance exponent of the model cannot be reasonably explained with the ideas from Euclidean geometry. This results in a dimension dilemma in geographical analysis. Consequently, a negative exponential function was used to replace the inverse power function to serve for a distance-decay function. But a new puzzle arose that the exponential-based gravity model goes against the first law of geography. This paper is devoted for solving these kinds of problems by mathematical reasoning and empirical analysis. New findings are as follows. First, the distance exponent of the gravity model is demonstrated to be a fractal dimension using the geometric measure relation. Second, the similarities and differences between the gravity models and spatial interaction models are revealed using allometric relations. Third, a four-parameter gravity model possesses a symmetrical expression, and we need dual gravity models to describe spatial flows. The observational data of China's cities and regions (29 elements indicative of 841 data points) in 2010 are employed to verify the theoretical inferences. A conclusion can be reached that the geographical gravity model based on power-law decay is more suitable for analyzing large, complex, and scale-free regional and urban systems. This study lends further support to the suggestion that the underlying rationale of fractal structure is entropy maximization. Moreover

  16. Second-order small-disturbance solutions for hypersonic flow over power-law bodies

    Science.gov (United States)

    Townsend, J. C.

    1975-01-01

    Similarity solutions were found which give the adiabatic flow of an ideal gas about two-dimensional and axisymmetric power-law bodies at infinite Mach number to second order in the body slenderness parameter. The flow variables were expressed as a sum of zero-order and perturbation similarity functions for which the axial variations in the flow equations separated out. The resulting similarity equations were integrated numerically. The solutions, which are universal functions, are presented in graphic and tabular form. To avoid a singularity in the calculations, the results are limited to body power-law exponents greater than about 0.85 for the two-dimensional case and 0.75 for the axisymmetric case. Because of the entropy layer induced by the nose bluntness (for power-law bodies other than cones and wedges), only the pressure function is valid at the body surface. The similarity results give excellent agreement with the exact solutions for inviscid flow over wedges and cones having half-angles up to about 20 deg. They give good agreement with experimental shock-wave shapes and surface-pressure distributions for 3/4-power axisymmetric bodies, considering that Mach number and boundary-layer displacement effects are not included in the theory.

  17. Unobserved heterogeneity in the power law nonhomogeneous Poisson process

    International Nuclear Information System (INIS)

    Asfaw, Zeytu Gashaw; Lindqvist, Bo Henry

    2015-01-01

    A study of possible consequences of heterogeneity in the failure intensity of repairable systems is presented. The basic model studied is the nonhomogeneous Poisson process with power law intensity function. When several similar systems are under observation, the assumption that the corresponding processes are independent and identically distributed is often questionable. In practice there may be an unobserved heterogeneity among the systems. The heterogeneity is modeled by introduction of unobserved gamma distributed frailties. The relevant likelihood function is derived, and maximum likelihood estimation is illustrated. In a simulation study we then compare results when using a power law model without taking into account heterogeneity, with the corresponding results obtained when the heterogeneity is accounted for. A motivating data example is also given. - Highlights: • Consequences of overlooking heterogeneity in similar repairable systems are studied. • Likelihood functions are established for power law NHPP w/ and w/o heterogeneity. • ML estimators for parameters of power law NHPP with heterogeneity are derived. • A simulation study shows the effects of heterogeneity and its ignorance in models

  18. Asymptotic scaling laws for precision of parameter estimates in dynamical systems

    International Nuclear Information System (INIS)

    Horbelt, W.; Timmer, J.

    2003-01-01

    When parameters are estimated from noisy data, the uncertainty of the estimates in terms of their standard deviation typically scales like the inverse square root of the number of data points. In the case of deterministic dynamical systems with added observation noise, superior scaling laws can be achieved. This is demonstrated numerically for the logistic map, the van der Pol oscillator and the Lorenz system, where exponential scaling laws and power laws have been found, depending on the number of degrees of freedom. For some special cases, analytical expressions are derived

  19. Power-law ansatz in complex systems: Excessive loss of information

    Science.gov (United States)

    Tsai, Sun-Ting; Chang, Chin-De; Chang, Ching-Hao; Tsai, Meng-Xue; Hsu, Nan-Jung; Hong, Tzay-Ming

    2015-12-01

    The ubiquity of power-law relations in empirical data displays physicists' love of simple laws and uncovering common causes among seemingly unrelated phenomena. However, many reported power laws lack statistical support and mechanistic backings, not to mention discrepancies with real data are often explained away as corrections due to finite size or other variables. We propose a simple experiment and rigorous statistical procedures to look into these issues. Making use of the fact that the occurrence rate and pulse intensity of crumple sound obey a power law with an exponent that varies with material, we simulate a complex system with two driving mechanisms by crumpling two different sheets together. The probability function of the crumple sound is found to transit from two power-law terms to a bona fide power law as compaction increases. In addition to showing the vicinity of these two distributions in the phase space, this observation nicely demonstrates the effect of interactions to bring about a subtle change in macroscopic behavior and more information may be retrieved if the data are subject to sorting. Our analyses are based on the Akaike information criterion that is a direct measurement of information loss and emphasizes the need to strike a balance between model simplicity and goodness of fit. As a show of force, the Akaike information criterion also found the Gutenberg-Richter law for earthquakes and the scale-free model for a brain functional network, a two-dimensional sandpile, and solar flare intensity to suffer an excessive loss of information. They resemble more the crumpled-together ball at low compactions in that there appear to be two driving mechanisms that take turns occurring.

  20. Power-law ansatz in complex systems: Excessive loss of information.

    Science.gov (United States)

    Tsai, Sun-Ting; Chang, Chin-De; Chang, Ching-Hao; Tsai, Meng-Xue; Hsu, Nan-Jung; Hong, Tzay-Ming

    2015-12-01

    The ubiquity of power-law relations in empirical data displays physicists' love of simple laws and uncovering common causes among seemingly unrelated phenomena. However, many reported power laws lack statistical support and mechanistic backings, not to mention discrepancies with real data are often explained away as corrections due to finite size or other variables. We propose a simple experiment and rigorous statistical procedures to look into these issues. Making use of the fact that the occurrence rate and pulse intensity of crumple sound obey a power law with an exponent that varies with material, we simulate a complex system with two driving mechanisms by crumpling two different sheets together. The probability function of the crumple sound is found to transit from two power-law terms to a bona fide power law as compaction increases. In addition to showing the vicinity of these two distributions in the phase space, this observation nicely demonstrates the effect of interactions to bring about a subtle change in macroscopic behavior and more information may be retrieved if the data are subject to sorting. Our analyses are based on the Akaike information criterion that is a direct measurement of information loss and emphasizes the need to strike a balance between model simplicity and goodness of fit. As a show of force, the Akaike information criterion also found the Gutenberg-Richter law for earthquakes and the scale-free model for a brain functional network, a two-dimensional sandpile, and solar flare intensity to suffer an excessive loss of information. They resemble more the crumpled-together ball at low compactions in that there appear to be two driving mechanisms that take turns occurring.

  1. Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective

    Science.gov (United States)

    Cheng, W.; Samtaney, R.

    2014-01-01

    The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can not provide sufficient clues, in this study we present an insight into this debate from a large-eddy simulation (LES) viewpoint. The LES organically combines state-of-the-art models (the stretched-vortex model and inflow rescaling method) with a virtual-wall model derived under different scaling law assumptions (the log-law or the power-law by George and Castillo ["Zero-pressure-gradient turbulent boundary layer," Appl. Mech. Rev. 50, 689 (1997)]). Comparison of LES results for Reθ ranging from 105 to 1011 for zero-pressure-gradient turbulent boundary layer flows are carried out for the mean streamwise velocity, its gradient and its scaled gradient. Our results provide strong evidence that for both sets of modeling assumption (log law or power law), the turbulence gravitates naturally towards the log-law scaling at extremely large Reynolds numbers.

  2. Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective

    KAUST Repository

    Cheng, W.

    2014-01-29

    The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can not provide sufficient clues, in this study we present an insight into this debate from a large-eddy simulation (LES) viewpoint. The LES organically combines state-of-the-art models (the stretched-vortex model and inflow rescaling method) with a virtual-wall model derived under different scaling law assumptions (the log-law or the power-law by George and Castillo [“Zero-pressure-gradient turbulent boundary layer,” Appl. Mech. Rev.50, 689 (1997)]). Comparison of LES results for Re θ ranging from 105 to 1011 for zero-pressure-gradient turbulent boundary layer flows are carried out for the mean streamwise velocity, its gradient and its scaled gradient. Our results provide strong evidence that for both sets of modeling assumption (log law or power law), the turbulence gravitates naturally towards the log-law scaling at extremely large Reynolds numbers.

  3. Self-tuning wireless power transmission scheme based on on-line scattering parameters measurement and two-side power matching.

    Science.gov (United States)

    Luo, Yanting; Yang, Yongmin; Chen, Zhongsheng

    2014-04-10

    Sub-resonances often happen in wireless power transmission (WPT) systems using coupled magnetic resonances (CMR) due to environmental changes, coil movements or component degradations, which is a serious challenge for high efficiency power transmission. Thus self-tuning is very significant to keep WPT systems following strongly magnetic resonant conditions in practice. Traditional coupled-mode ways is difficult to solve this problem. In this paper a two-port power wave model is presented, where power matching and the overall systemic power transmission efficiency are firstly defined by scattering (S) parameters. Then we propose a novel self-tuning scheme based on on-line S parameters measurements and two-side power matching. Experimental results testify the feasibility of the proposed method. These findings suggest that the proposed method is much potential to develop strongly self-adaptive WPT systems with CMR.

  4. Constraints on the tensor-to-scalar ratio for non-power-law models

    International Nuclear Information System (INIS)

    Vázquez, J. Alberto; Bridges, M.; Ma, Yin-Zhe; Hobson, M.P.

    2013-01-01

    Recent cosmological observations hint at a deviation from the simple power-law form of the primordial spectrum of curvature perturbations. In this paper we show that in the presence of a tensor component, a turn-over in the initial spectrum is preferred by current observations, and hence non-power-law models ought to be considered. For instance, for a power-law parameterisation with both a tensor component and running parameter, current data show a preference for a negative running at more than 2.5σ C.L. As a consequence of this deviation from a power-law, constraints on the tensor-to-scalar ratio r are slightly broader. We also present constraints on the inflationary parameters for a model-independent reconstruction and the Lasenby and Doran (LD) model. In particular, the constraints on the tensor-to-scalar ratio from the LD model are: r LD = 0.11±0.024. In addition to current data, we show expected constraints from Planck-like and CMB-Pol sensitivity experiments by using Markov-Chain-Monte-Carlo sampling chains. For all the models, we have included the Bayesian Evidence to perform a model selection analysis. The Bayes factor, using current observations, shows a strong preference for the LD model over the standard power-law parameterisation, and provides an insight into the accuracy of differentiating models through future surveys

  5. MHD free convection flow of a non-Newtonian power-law fluid over ...

    African Journals Online (AJOL)

    ... flow have been presented for various parameters such as Prandtl number, flow behavior index (n), porous plate parameter and magnetic parameter. The local Nusselt number and skin friction coefficient is also presented graphically. Keywords: Magnetohydrodynamic flow; free convection flow; Non-Newtonian power-law

  6. Power-law versus log-law in wall-bounded turbulence: A large-eddy simulation perspective

    KAUST Repository

    Cheng, W.; Samtaney, Ravi

    2014-01-01

    The debate whether the mean streamwise velocity in wall-bounded turbulent flows obeys a log-law or a power-law scaling originated over two decades ago, and continues to ferment in recent years. As experiments and direct numerical simulation can

  7. Hydrodynamics-based functional forms of activity metabolism: a case for the power-law polynomial function in animal swimming energetics.

    Science.gov (United States)

    Papadopoulos, Anthony

    2009-01-01

    The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined.

  8. Hydrodynamics-based functional forms of activity metabolism: a case for the power-law polynomial function in animal swimming energetics.

    Directory of Open Access Journals (Sweden)

    Anthony Papadopoulos

    Full Text Available The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined.

  9. Fractional power-law spatial dispersion in electrodynamics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.; Trujillo, Juan J.

    2013-01-01

    Electric fields in non-local media with power-law spatial dispersion are discussed. Equations involving a fractional Laplacian in the Riesz form that describe the electric fields in such non-local media are studied. The generalizations of Coulomb’s law and Debye’s screening for power-law non-local media are characterized. We consider simple models with anomalous behavior of plasma-like media with power-law spatial dispersions. The suggested fractional differential models for these plasma-like media are discussed to describe non-local properties of power-law type. -- Highlights: •Plasma-like non-local media with power-law spatial dispersion. •Fractional differential equations for electric fields in the media. •The generalizations of Coulomb’s law and Debye’s screening for the media

  10. An EOQ Model with Two-Parameter Weibull Distribution Deterioration and Price-Dependent Demand

    Science.gov (United States)

    Mukhopadhyay, Sushanta; Mukherjee, R. N.; Chaudhuri, K. S.

    2005-01-01

    An inventory replenishment policy is developed for a deteriorating item and price-dependent demand. The rate of deterioration is taken to be time-proportional and the time to deterioration is assumed to follow a two-parameter Weibull distribution. A power law form of the price dependence of demand is considered. The model is solved analytically…

  11. Comparative power law analysis of structured breast phantom and patient images in digital mammography and breast tomosynthesis.

    Science.gov (United States)

    Cockmartin, L; Bosmans, H; Marshall, N W

    2013-08-01

    This work characterizes three candidate mammography phantoms with structured background in terms of power law analysis in the low frequency region of the power spectrum for 2D (planar) mammography and digital breast tomosynthesis (DBT). The study was performed using three phantoms (spheres in water, Voxmam, and BR3D CIRS phantoms) on two DBT systems from two different vendors (Siemens Inspiration and Hologic Selenia Dimensions). Power spectra (PS) were calculated for planar projection, DBT projection, and reconstructed images and curve fitted in the low frequency region from 0.2 to 0.7 mm(-1) with a power law function characterized by an exponent β and magnitude κ. The influence of acquisition dose and tube voltage on the power law parameters was first explored. Then power law parameters were calculated from images acquired with the same anode∕filter combination and tube voltage for the three test objects, and compared with each other. Finally, PS curves for automatic exposure controlled acquisitions (anode∕filter combination and tube voltages selected by the systems based on the breast equivalent thickness of the test objects) were compared against PS analysis performed on patient data (for Siemens 80 and for Hologic 48 mammograms and DBT series). Dosimetric aspects of the three test objects were also examined. The power law exponent (β) was found to be independent of acquisition dose for planar mammography but varied more for DBT projections of the sphere-phantom. Systematic increase of tube voltage did not affect β but decreased κ, both in planar and DBT projection phantom images. Power spectra of the BR3D phantom were closer to those of the patients than these of the Voxmam phantom; the Voxmam phantom gave high values of κ compared to the other phantoms and the patient series. The magnitude of the PS curves of the BR3D phantom was within the patient range but β was lower than the average patient value. Finally, PS magnitude for the sphere

  12. Power law deformation of Wishart–Laguerre ensembles of random matrices

    International Nuclear Information System (INIS)

    Akemann, Gernot; Vivo, Pierpaolo

    2008-01-01

    We introduce a one-parameter deformation of the Wishart–Laguerre or chiral ensembles of positive definite random matrices with Dyson index β = 1,2 and 4. Our generalized model has a fat-tailed distribution while preserving the invariance under orthogonal, unitary or symplectic transformations. The spectral properties are derived analytically for finite matrix size N × M for all three values of β, in terms of the orthogonal polynomials of the standard Wishart–Laguerre ensembles. For large N in a certain double-scaling limit we obtain a generalized Marčenko–Pastur distribution on the macroscopic scale, and a generalized Bessel law at the hard edge which is shown to be universal. Both macroscopic and microscopic correlations exhibit power law tails, where the microscopic limit depends on β and the difference M−N. In the limit where our parameter governing the power law goes to infinity we recover the correlations of the Wishart–Laguerre ensembles. To illustrate these findings, the generalized Marčenko–Pastur distribution is shown to be in very good agreement with empirical data from financial covariance matrices

  13. Quantum dissipation from power-law memory

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2012-01-01

    A new quantum dissipation model based on memory mechanism is suggested. Dynamics of open and closed quantum systems with power-law memory is considered. The processes with power-law memory are described by using integration and differentiation of non-integer orders, by methods of fractional calculus. An example of quantum oscillator with linear friction and power-law memory is considered. - Highlights: ► A new quantum dissipation model based on memory mechanism is suggested. ► The generalization of Lindblad equation is considered. ► An exact solution of generalized Lindblad equation for quantum oscillator with linear friction and power-law memory is derived.

  14. Dynamics of a map with a power-law tail

    International Nuclear Information System (INIS)

    Botella-Soler, V; Ros, J; Oteo, J A

    2009-01-01

    We analyze a one-dimensional piecewise continuous discrete model proposed originally in studies on population ecology. The map is composed of a linear part and a power-law decreasing piece, and has three parameters. The system presents both regular and chaotic behavior. We study numerically and, in part, analytically different bifurcation structures. Particularly interesting is the description of the abrupt order-to-chaos transition mediated by an attractor made of an infinite number of limit cycles with only a finite number of different periods. It is shown that the power-law piece in the map is at the origin of this type of bifurcation. The system exhibits interior crises and crisis-induced intermittency.

  15. Free convection heat and mass transfer in a power law fluid past an inclined surface with thermophoresis

    Directory of Open Access Journals (Sweden)

    Medhat M. Helal

    2013-10-01

    Full Text Available The problem of heat and mass transfer in a power law, two-dimensional, laminar, boundary layer flow of a viscous incompressible fluid over an inclined plate with heat generation and thermophoresis is investigated by the characteristic function method. The governing non-linear partial differential equations describing the flow and heat transfer problem are transformed into a set of coupled non-linear ordinary differential equation which was solved using Runge–Kutta shooting method. Exact solutions for the dimensionless temperature and concentration profiles, are presented graphically for different physical parameters and for the different power law exponents 0  0.5.

  16. Genetic Algorithm Optimizes Q-LAW Control Parameters

    Science.gov (United States)

    Lee, Seungwon; von Allmen, Paul; Petropoulos, Anastassios; Terrile, Richard

    2008-01-01

    A document discusses a multi-objective, genetic algorithm designed to optimize Lyapunov feedback control law (Q-law) parameters in order to efficiently find Pareto-optimal solutions for low-thrust trajectories for electronic propulsion systems. These would be propellant-optimal solutions for a given flight time, or flight time optimal solutions for a given propellant requirement. The approximate solutions are used as good initial solutions for high-fidelity optimization tools. When the good initial solutions are used, the high-fidelity optimization tools quickly converge to a locally optimal solution near the initial solution. Q-law control parameters are represented as real-valued genes in the genetic algorithm. The performances of the Q-law control parameters are evaluated in the multi-objective space (flight time vs. propellant mass) and sorted by the non-dominated sorting method that assigns a better fitness value to the solutions that are dominated by a fewer number of other solutions. With the ranking result, the genetic algorithm encourages the solutions with higher fitness values to participate in the reproduction process, improving the solutions in the evolution process. The population of solutions converges to the Pareto front that is permitted within the Q-law control parameter space.

  17. Dynamic intersectoral models with power-law memory

    Science.gov (United States)

    Tarasova, Valentina V.; Tarasov, Vasily E.

    2018-01-01

    Intersectoral dynamic models with power-law memory are proposed. The equations of open and closed intersectoral models, in which the memory effects are described by the Caputo derivatives of non-integer orders, are derived. We suggest solutions of these equations, which have the form of linear combinations of the Mittag-Leffler functions and which are characterized by different effective growth rates. Examples of intersectoral dynamics with power-law memory are suggested for two sectoral cases. We formulate two principles of intersectoral dynamics with memory: the principle of changing of technological growth rates and the principle of domination change. It has been shown that in the input-output economic dynamics the effects of fading memory can change the economic growth rate and dominant behavior of economic sectors.

  18. Zipf's law, power laws and maximum entropy

    International Nuclear Information System (INIS)

    Visser, Matt

    2013-01-01

    Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines—from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation (RGF) attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present paper I argue that the specific cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified. (paper)

  19. Dust-acoustic waves and stability in the permeating dusty plasma. II. Power-law distributions

    International Nuclear Information System (INIS)

    Gong Jingyu; Du Jiulin; Liu Zhipeng

    2012-01-01

    The dust-acoustic waves and the stability theory for the permeating dusty plasma with power-law distributions are studied by using nonextensive q-statistics. In two limiting physical cases, when the thermal velocity of the flowing dusty plasma is much larger than, and much smaller than the phase velocity of the waves, we derived the dust-acoustic wave frequency, the instability growth rate, and the instability critical flowing velocity. As compared with the formulae obtained in part I [Gong et al., Phys. Plasmas 19, 043704 (2012)], all formulae of the present cases and the resulting plasma characteristics are q-dependent, and the power-law distribution of each plasma component of the permeating dusty plasma has a different q-parameter and thus has a different nonextensive effect. Further, we make numerical analyses of an example that a cometary plasma tail is passing through the interplanetary space dusty plasma and we show that these power-law distributions have significant effects on the plasma characteristics of this kind of plasma environment.

  20. Power-law creep behavior of a semiflexible chain.

    Science.gov (United States)

    Majumdar, Arnab; Suki, Béla; Rosenblatt, Noah; Alencar, Adriano M; Stamenović, Dimitrije

    2008-10-01

    Rheological properties of adherent cells are essential for their physiological functions, and microrheological measurements on living cells have shown that their viscoelastic responses follow a weak power law over a wide range of time scales. This power law is also influenced by mechanical prestress borne by the cytoskeleton, suggesting that cytoskeletal prestress determines the cell's viscoelasticity, but the biophysical origins of this behavior are largely unknown. We have recently developed a stochastic two-dimensional model of an elastically joined chain that links the power-law rheology to the prestress. Here we use a similar approach to study the creep response of a prestressed three-dimensional elastically jointed chain as a viscoelastic model of semiflexible polymers that comprise the prestressed cytoskeletal lattice. Using a Monte Carlo based algorithm, we show that numerical simulations of the chain's creep behavior closely correspond to the behavior observed experimentally in living cells. The power-law creep behavior results from a finite-speed propagation of free energy from the chain's end points toward the center of the chain in response to an externally applied stretching force. The property that links the power law to the prestress is the chain's stiffening with increasing prestress, which originates from entropic and enthalpic contributions. These results indicate that the essential features of cellular rheology can be explained by the viscoelastic behaviors of individual semiflexible polymers of the cytoskeleton.

  1. COSMOLOGY OF CHAMELEONS WITH POWER-LAW COUPLINGS

    International Nuclear Information System (INIS)

    Mota, David F.; Winther, Hans A.

    2011-01-01

    In chameleon field theories, a scalar field can couple to matter with gravitational strength and still evade local gravity constraints due to a combination of self-interactions and the couplings to matter. Originally, these theories were proposed with a constant coupling to matter; however, the chameleon mechanism also extends to the case where the coupling becomes field dependent. We study the cosmology of chameleon models with power-law couplings and power-law potentials. It is found that these generalized chameleons, when viable, have a background expansion very close to ΛCDM, but can in some special cases enhance the growth of the linear perturbations at low redshifts. For the models we consider, it is found that this region of the parameter space is ruled out by local gravity constraints. Imposing a coupling to dark matter only, the local constraints are avoided, and it is possible to have observable signatures on the linear matter perturbations.

  2. Stochastic model of Zipf's law and the universality of the power-law exponent.

    Science.gov (United States)

    Yamamoto, Ken

    2014-04-01

    We propose a stochastic model of Zipf's law, namely a power-law relation between rank and size, and clarify as to why a specific value of its power-law exponent is quite universal. We focus on the successive total of a multiplicative stochastic process. By employing properties of a well-known stochastic process, we concisely show that the successive total follows a stationary power-law distribution, which is directly related to Zipf's law. The formula of the power-law exponent is also derived. Finally, we conclude that the universality of the rank-size exponent is brought about by symmetry between an increase and a decrease in the random growth rate.

  3. Ground level enhancement (GLE) energy spectrum parameters model

    Science.gov (United States)

    Qin, G.; Wu, S.

    2017-12-01

    We study the ground level enhancement (GLE) events in solar cycle 23 with the four energy spectra parameters, the normalization parameter C, low-energy power-law slope γ 1, high-energy power-law slope γ 2, and break energy E0, obtained by Mewaldt et al. 2012 who fit the observations to the double power-law equation. we divide the GLEs into two groups, one with strong acceleration by interplanetary (IP) shocks and another one without strong acceleration according to the condition of solar eruptions. We next fit the four parameters with solar event conditions to get models of the parameters for the two groups of GLEs separately. So that we would establish a model of energy spectrum for GLEs for the future space weather prediction.

  4. Power laws in Ising nanostripes

    International Nuclear Information System (INIS)

    Drzewinski, A.; Sznajd, J.; Szota, K.

    2005-01-01

    The results of high accuracy density-matrix renormalization-group calculations for infinite Ising stripes of finite widths 100 ≤ L ≤ 400 are presented. It is shown that in the presence of the small external magnetic field the infinite system critical power laws can be observed for L of order hundreds nm. The single power law describes the field dependence of the magnetization or the longitudinal correlation length only on the infinite system critical isotherm independently of the value of L. The approximate power law which describes how the magnetization varies with a distance from the infinite system critical point for several directions in the plane (temperature, external field) is also studied. (author)

  5. Preliminary limits on deviation from the inverse-square law of gravity in the solar system: a power-law parameterization

    International Nuclear Information System (INIS)

    Liu Meng-Yao; Zhong Ze-Hao; Han Yi-Chen; Wang Xiao-Yu; Yang Zong-Shui; Xie Yi

    2014-01-01

    New physics beyond the standard model of particles might cause a deviation from the inverse-square law of gravity. In some theories, it is parameterized by a power-law correction to the Newtonian gravitational force, which might originate from the simultaneous exchange of particles or modified and extended theories of gravity. Using the supplementary advances of the perihelia provided by INPOP10a (IMCCE, France) and EPM2011 (IAA RAS, Russia) ephemerides, we obtain preliminary limits on this correction. In our estimation, we take the Lense-Thirring effect due to the Sun's angular momentum into account. The parameters of the power-law correction and the uncertainty of the Sun's quadrupole moment are simultaneously estimated with the method of minimizing χ 2 . From INPOP10a, we find N = 0.605 for the exponent of the power-law correction. However, from EPM2011, we find that, although it yields N = 3.001, the estimated uncertainty in the Sun's quadrupole moment is much larger than the value given by current observations. This might be caused by the intrinsic nonlinearity in the power-law correction, which makes the estimation very sensitive to the supplementary advances of the perihelia. (research papers)

  6. Anisotropic power-law inflation for a conformal-violating Maxwell model

    Science.gov (United States)

    Do, Tuan Q.; Kao, W. F.

    2018-05-01

    A set of power-law solutions of a conformal-violating Maxwell model with a non-standard scalar-vector coupling will be shown in this paper. In particular, we are interested in a coupling term of the form X^{2n} F^{μ ν }F_{μ ν } with X denoting the kinetic term of the scalar field. Stability analysis indicates that the new set of anisotropic power-law solutions is unstable during the inflationary phase. The result is consistent with the cosmic no-hair conjecture. We show, however, that a set of stable slowly expanding solutions does exist for a small range of parameters λ and n. Hence a small anisotropy can survive during the slowly expanding phase.

  7. MHD axisymmetric flow of power-law fluid over an unsteady stretching sheet with convective boundary conditions

    Directory of Open Access Journals (Sweden)

    Jawad Ahmed

    Full Text Available This paper examines the boundary layer flow and heat transfer characteristic in power law fluid model over unsteady radially stretching sheet under the influence of convective boundary conditions. A uniform magnetic field is applied transversely to the direction of the flow. The governing time dependent nonlinear boundary layer equations are reduced into nonlinear ordinary differential equations with the help of similarity transformations. The transformed coupled ordinary differential equations are then solved analytically by homotopy analysis method (HAM and numerically by shooting procedure. Effects of various governing parameters like, power law index n, magnetic parameter M, unsteadiness A, suction/injection S, Biot number γ and generalized Prandtl number Pr on velocity, temperature, local skin friction and the local Nusselt number are studied and discussed. It is found from the analysis that the magnetic parameter diminishes the velocity profile and the corresponding thermal boundary layer thickness. Keywords: Axisymmetric flow, Power law fluid, Unsteady stretching, Convective boundary conditions

  8. Relation of the second law of thermodynamics to the power conversion of energy fluctuations

    International Nuclear Information System (INIS)

    Yater, J.C.

    1979-01-01

    The relation of the second law of thermodynamics to the power conversion of fluctuation energy is analyzed using the master equation of the model for the conversion circuit. The performance equation for independent particles shows that the power-conversion performance is given by the second law both for classical and quantum-effect diodes. The relation of the second law to power-conversion models based on the theoretical and experimental results for diode performance for interacting particles exhibiting many-body, multiparticle, or other anomalous and excess-current effects is examined. The performance equations are derived from the master equation for models for interacting particles to determine the conditions required by the second law for power conversion. These conditions are given in terms of the distribution throughout the power-conversion circuit for all the parameters that determine the particle and multiparticle barrier-crossing probability such as the effective mass and spectral density functions. Circuits for spectroscopic measurements for power-conversion circuits with interacting particles are noted. Using selected experimental values for the diode nonlinearity factors in these circuits, open circuit voltages are computed that are not predicted by the second law of thermodynamics

  9. A TWO-COMPONENT POWER LAW COVERING NEARLY FOUR ORDERS OF MAGNITUDE IN THE POWER SPECTRUM OF SPITZER FAR-INFRARED EMISSION FROM THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Block, David L.; Puerari, Ivanio; Elmegreen, Bruce G.; Bournaud, Frederic

    2010-01-01

    Power spectra of Large Magellanic Cloud (LMC) emission at 24, 70, and 160 μm observed with the Spitzer Space Telescope have a two-component power-law structure with a shallow slope of -1.6 at low wavenumber, k, and a steep slope of -2.9 at high k. The break occurs at k -1 ∼ 100-200 pc, which is interpreted as the line-of-sight thickness of the LMC disk. The slopes are slightly steeper for longer wavelengths, suggesting the cooler dust emission is smoother than the hot emission. The power spectrum (PS) covers ∼3.5 orders of magnitude, and the break in the slope is in the middle of this range on a logarithmic scale. Large-scale driving from galactic and extragalactic processes, including disk self-gravity, spiral waves, and bars, presumably causes the low-k structure in what is effectively a two-dimensional geometry. Small-scale driving from stellar processes and shocks causes the high-k structure in a three-dimensional geometry. This transition in dimensionality corresponds to the observed change in PS slope. A companion paper models the observed power law with a self-gravitating hydrodynamics simulation of a galaxy like the LMC.

  10. Variational principle for the Pareto power law.

    Science.gov (United States)

    Chakraborti, Anirban; Patriarca, Marco

    2009-11-27

    A mechanism is proposed for the appearance of power-law distributions in various complex systems. It is shown that in a conservative mechanical system composed of subsystems with different numbers of degrees of freedom a robust power-law tail can appear in the equilibrium distribution of energy as a result of certain superpositions of the canonical equilibrium energy densities of the subsystems. The derivation only uses a variational principle based on the Boltzmann entropy, without assumptions outside the framework of canonical equilibrium statistical mechanics. Two examples are discussed, free diffusion on a complex network and a kinetic model of wealth exchange. The mechanism is illustrated in the general case through an exactly solvable mechanical model of a dimensionally heterogeneous system.

  11. Tornado outbreak variability follows Taylor's power law of fluctuation scaling and increases dramatically with severity.

    Science.gov (United States)

    Tippett, Michael K; Cohen, Joel E

    2016-02-29

    Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from 'outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954-2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related.

  12. Tornado outbreak variability follows Taylor's power law of fluctuation scaling and increases dramatically with severity

    Science.gov (United States)

    Tippett, Michael K.; Cohen, Joel E.

    2016-01-01

    Tornadoes cause loss of life and damage to property each year in the United States and around the world. The largest impacts come from ‘outbreaks' consisting of multiple tornadoes closely spaced in time. Here we find an upward trend in the annual mean number of tornadoes per US tornado outbreak for the period 1954–2014. Moreover, the variance of this quantity is increasing more than four times as fast as the mean. The mean and variance of the number of tornadoes per outbreak vary according to Taylor's power law of fluctuation scaling (TL), with parameters that are consistent with multiplicative growth. Tornado-related atmospheric proxies show similar power-law scaling and multiplicative growth. Path-length-integrated tornado outbreak intensity also follows TL, but with parameters consistent with sampling variability. The observed TL power-law scaling of outbreak severity means that extreme outbreaks are more frequent than would be expected if mean and variance were independent or linearly related. PMID:26923210

  13. Breaking the power law: Multiscale simulations of self-ion irradiated tungsten

    Science.gov (United States)

    Jin, Miaomiao; Permann, Cody; Short, Michael P.

    2018-06-01

    The initial stage of radiation defect creation has often been shown to follow a power law distribution at short time scales, recently so with tungsten, following many self-organizing patterns found in nature. The evolution of this damage, however, is dominated by interactions between defect clusters, as the coalescence of smaller defects into clusters depends on the balance between transport, absorption, and emission to/from existing clusters. The long-time evolution of radiation-induced defects in tungsten is studied with cluster dynamics parameterized with lower length scale simulations, and is shown to deviate from a power law size distribution. The effects of parameters such as dose rate and total dose, as parameters affecting the strength of the driving force for defect evolution, are also analyzed. Excellent agreement is achieved with regards to an experimentally measured defect size distribution at 30 K. This study provides another satisfactory explanation for experimental observations in addition to that of primary radiation damage, which should be reconciled with additional validation data.

  14. Visiting Power Laws in Cyber-Physical Networking Systems

    Directory of Open Access Journals (Sweden)

    Ming Li

    2012-01-01

    Full Text Available Cyber-physical networking systems (CPNSs are made up of various physical systems that are heterogeneous in nature. Therefore, exploring universalities in CPNSs for either data or systems is desired in its fundamental theory. This paper is in the aspect of data, aiming at addressing that power laws may yet be a universality of data in CPNSs. The contributions of this paper are in triple folds. First, we provide a short tutorial about power laws. Then, we address the power laws related to some physical systems. Finally, we discuss that power-law-type data may be governed by stochastically differential equations of fractional order. As a side product, we present the point of view that the upper bound of data flow at large-time scaling and the small one also follows power laws.

  15. Helmholtz solitons in power-law optical materials

    International Nuclear Information System (INIS)

    Christian, J. M.; McDonald, G. S.; Potton, R. J.; Chamorro-Posada, P.

    2007-01-01

    A nonlinear Helmholtz equation for optical materials with regimes of power-law type of nonlinearity is proposed. This model captures the evolution of broad beams at any angle with respect to the reference direction in a wide range of media, including some semiconductors, doped glasses, and liquid crystals. Exact analytical soliton solutions are presented for a generic nonlinearity, within which known Kerr solitons comprise a subset. Three general conservation laws are also reported. Analysis and numerical simulations examine the stability of the Helmholtz power-law solitons. A propagation feature, associated with spatial solitons in power-law media, constituting a class of oscillatory solution, is identified

  16. The mean first passage time in an energy-diffusion controlled regime with power-law distributions

    International Nuclear Information System (INIS)

    Zhou, Yanjun; Du, Jiulin

    2013-01-01

    Based on the mean first passage time (MFPT) theory, we derive an expression of the MFPT in an energy-diffusion controlled regime with a power-law distribution. We discuss the finite barrier effect (i.e. the thermal energy k B T is not small with respect to the potential barrier E b ) and compare it with Kramers’ infinite barrier result both in a power-law distribution and in a Maxwell–Boltzmann distribution. It is shown that the MFPT with a power-law distribution extends Kramers’ low-damping result to a relatively low barrier. We pay attention to the energy-diffusion controlled regime, which is of great interest in the context of Josephson junctions, and study how the power-law parameter κ affects the current distribution function in experiments with Josephson junctions. (paper)

  17. Power series like relation of power law and coupled creep ...

    African Journals Online (AJOL)

    When a solid deforms at high temperature its microstructure may in some sense be altered- holes and cracks may nucleate and grow inside the solid by various mechanism controlled by diffusion and by power law creep or by a combination of these mechanisms. Considering a coupled diffusion power law creep mechanism ...

  18. The speed-curvature power law of movements: a reappraisal.

    Science.gov (United States)

    Zago, Myrka; Matic, Adam; Flash, Tamar; Gomez-Marin, Alex; Lacquaniti, Francesco

    2018-01-01

    Several types of curvilinear movements obey approximately the so called 2/3 power law, according to which the angular speed varies proportionally to the 2/3 power of the curvature. The origin of the law is debated but it is generally thought to depend on physiological mechanisms. However, a recent paper (Marken and Shaffer, Exp Brain Res 88:685-690, 2017) claims that this power law is simply a statistical artifact, being a mathematical consequence of the way speed and curvature are calculated. Here we reject this hypothesis by showing that the speed-curvature power law of biological movements is non-trivial. First, we confirm that the power exponent varies with the shape of human drawing movements and with environmental factors. Second, we report experimental data from Drosophila larvae demonstrating that the power law does not depend on how curvature is calculated. Third, we prove that the law can be violated by means of several mathematical and physical examples. Finally, we discuss biological constraints that may underlie speed-curvature power laws discovered in empirical studies.

  19. Power-law-lapse time gauges

    International Nuclear Information System (INIS)

    Jantzen, R.T.

    1988-01-01

    The choice of time function for cosmological solutions of gravitational field equations is related to the action of the group of independent scale transformations of the unit of length along orthogonal spatial directions. This is accomplished by the introduction of lapse functions which depend explicitly on the spatial metric in an appropriately defined power-law fashion. The resulting power-law-lapse time gauges are the key to producing nearly all exact solutions of the class of models for which the field equations reduce to ordinary differential equations

  20. Numerical analysis of the transient conjugated heat transfer in a circular duct with a power-law fluid

    Energy Technology Data Exchange (ETDEWEB)

    Luna, N. [Secretaria de Energia, Direccion de Operacion Petrolera, Mexico DF (Mexico); Mendez, F. [UNAM, Facultad de Ingenieria, Mexico DF (Mexico); Bautista, O. [ITESM, Division de Ingenieria y Arquitectura, Mexico DF (Mexico)

    2005-05-01

    We treat numerically in this paper, the transient analysis of a conjugated heat transfer process in the thermal entrance region of a circular tube with a fully developed laminar power-law fluid flow. We apply the quasi-steady approximation for the power-law fluid, identifying the suitable time scales of the process. Thus, the energy equation in the fluids is solved analytically using the well-known integral boundary layer technique. This solution is coupled to the transient energy equation for the solid where the transverse and longitudinal heat conduction effects are taken into account. The numerical results for the temporal evolution of the average temperature of the tube wall, {theta}{sub av,} is plotted for different nondimensional parameters such as conduction parameter, {alpha}, the aspect ratios of the tube, {epsilon} and {epsilon}{sub 0} and the index of power-law fluid, n. (orig.)

  1. Maxwell's Demon at work: Two types of Bose condensate fluctuations in power-law traps.

    Science.gov (United States)

    Grossmann, S; Holthaus, M

    1997-11-10

    After discussing the idea underlying the Maxwell's Demon ensemble, we employ this ensemble for calculating fluctuations of ideal Bose gas condensates in traps with power-law single-particle energy spectra. Two essentially different cases have to be distinguished. If the heat capacity is continuous at the condensation point, the fluctuations of the number of condensate particles vanish linearly with temperature, independent of the trap characteristics. In this case, microcanonical and canonical fluctuations are practically indistinguishable. If the heat capacity is discontinuous, the fluctuations vanish algebraically with temperature, with an exponent determined by the trap, and the micro-canonical fluctuations are lower than their canonical counterparts.

  2. Phase diagram of power law and Lennard-Jones systems: Crystal phases

    International Nuclear Information System (INIS)

    Travesset, Alex

    2014-01-01

    An extensive characterization of the low temperature phase diagram of particles interacting with power law or Lennard-Jones potentials is provided from Lattice Dynamical Theory. For power law systems, only two lattice structures are stable for certain values of the exponent (or softness) (A15, body centered cube (bcc)) and two more (face centered cubic (fcc), hexagonal close packed (hcp)) are always stable. Among them, only the fcc and bcc are equilibrium states. For Lennard-Jones systems, the equilibrium states are either hcp or fcc, with a coexistence curve in pressure and temperature that shows reentrant behavior. The hcp solid never coexists with the liquid. In all cases analyzed, for both power law and Lennard-Jones potentials, the fcc crystal has higher entropy than the hcp. The role of anharmonic terms is thoroughly analyzed and a general thermodynamic integration to account for them is proposed

  3. Power law for the duration of recession and prosperity in Latin American countries

    Science.gov (United States)

    Redelico, Francisco O.; Proto, Araceli N.; Ausloos, Marcel

    2008-11-01

    Ormerod and Mounfield [P. Ormerod, C. Mounfield, Power law distribution of duration and magnitude of recessions in capitalist economies: Breakdown of scaling, Physica A 293 (2001) 573] and Ausloos et al. [M. Ausloos, J. Mikiewicz, M. Sanglier, The durations of recession and prosperity: Does their distribution follow a power or an exponential law? Physica A 339 (2004) 548] have independently analyzed the duration of recessions for developed countries through the evolution of the GDP in different time windows. It was found that there is a power law governing the duration distribution. We have analyzed data collected from 19 Latin American countries in order to observe whether such results are valid or not for developing countries. The case of prosperity years is also discussed. We observe that the power law of recession time intervals, see Ref. [1], is valid for Latin American countries as well. Thus an interesting point is discovered: the same scaling time is found in the case of recessions for the three data sets (ca. 1 year), and this could represent a universal feature. Other time scale parameters differ significantly from each other.

  4. Dual plane problems for creeping flow of power-law incompressible medium

    Directory of Open Access Journals (Sweden)

    Dmitriy S. Petukhov

    2016-09-01

    Full Text Available In this paper, we consider the class of solutions for a creeping plane flow of incompressible medium with power-law rheology, which are written in the form of the product of arbitrary power of the radial coordinate by arbitrary function of the angular coordinate of the polar coordinate system covering the plane. This class of solutions represents the asymptotics of fields in the vicinity of singular points in the domain occupied by the examined medium. We have ascertained the duality of two problems for a plane with wedge-shaped notch, at which boundaries in one of the problems the vector components of the surface force vanish, while in the other—the vanishing components are the vector components of velocity, We have investigated the asymptotics and eigensolutions of the dual nonlinear eigenvalue problems in relation to the rheological exponent and opening angle of the notch for the branch associated with the eigenvalue of the Hutchinson–Rice–Rosengren problem learned from the problem of stress distribution over a notched plane for a power law medium. In the context of the dual problem we have determined the velocity distribution in the flow of power-law medium at the vertex of a rigid wedge, We have also found another two eigenvalues, one of which was determined by V. V. Sokolovsky for the problem of power-law fluid flow in a convergent channel.

  5. On heat transfer of weakly compressible power-law flows

    Directory of Open Access Journals (Sweden)

    Li Botong

    2017-01-01

    Full Text Available This paper completes a numerical research on steady momentum and heat transfer in power-law fluids in a channel. Weakly compressible laminar fluids are studied with no slip at the walls and uniform wall temperatures. The full governing equations are solved by continuous finite element method. Three thermal conductivity models are adopted in this paper, that is, constant thermal conductivity model, thermal conductivity varying as a function of temperature gradient, and a modified temperature-gradient-dependent thermal conductivity model. The results are compared with each other and the physical characteristics for values of parameters are also discussed in details. It is shown that the velocity curve from the solution becomes straight at higher power-law index. The effects of Reynolds numbers on the dilatant fluid and the pseudo-plastic look similar to each other and their trends can be easily predicted. Furthermore, for different models, the temperature curves also present pseudo-plastic and dilatant properties.

  6. Pascal (Yang Hui) triangles and power laws in the logistic map

    International Nuclear Information System (INIS)

    Velarde, Carlos; Robledo, Alberto

    2015-01-01

    We point out the joint occurrence of Pascal triangle patterns and power-law scaling in the standard logistic map, or more generally, in unimodal maps. It is known that these features are present in its two types of bifurcation cascades: period and chaotic-band doubling of attractors. Approximate Pascal triangles are exhibited by the sets of lengths of supercycle diameters and by the sets of widths of opening bands. Additionally, power-law scaling manifests along periodic attractor supercycle positions and chaotic band splitting points. Consequently, the attractor at the mutual accumulation point of the doubling cascades, the onset of chaos, displays both Gaussian and power-law distributions. Their combined existence implies both ordinary and exceptional statistical-mechanical descriptions of dynamical properties. (paper)

  7. Power laws reveal phase transitions in landscape controls of fire regimes

    Science.gov (United States)

    Donald McKenzie; Maureen C. Kennedy

    2012-01-01

    Understanding the environmental controls on historical wildfires, and how they changed across spatial scales, is difficult because there are no surviving explicit records of either weather or vegetation (fuels). Here we show how power laws associated with fire-event time series arise in limited domains of parameters that represent critical transitions in the controls...

  8. Active Power Filter DC Bus Voltage Piecewise Reaching Law Variable Structure Control

    OpenAIRE

    Liu, Baolian; Ding, Zujun; Zhao, Huanyu; Jin, Defei

    2014-01-01

    The DC bus voltage stability control is one key technology to ensure that Active Power Filter (APF) operates stably. The external disturbances such as power grid and load fluctuation and the system parameters changing may affect the stability of APF DC bus voltage and the normal operation of APF. The mathematical model of DC bus voltage is established according to power balance principle and a DC bus voltage piecewise reaching law variable structure control algorithm is proposed to solve the ...

  9. Eigenstates of the higher power of the annihilation operator of two-parameter deformed harmonic oscillator

    International Nuclear Information System (INIS)

    Wang Jisuo; Sun Changyong; He Jinyu

    1996-01-01

    The eigenstates of the higher power of the annihilation operator a qs k (k≥3) of the two-parameter deformed harmonic oscillator are constructed. Their completeness is demonstrated in terms of the qs-integration

  10. On the identification of behavior laws parameters of argillaceous rocks

    International Nuclear Information System (INIS)

    Lecampion, Brice

    2002-01-01

    This work aims to develop methods for identification of constitutive parameters of argillaceous rocks. Under the proposed underground research laboratory of the ANDRA, it is necessary to develop such methods for the interpretation of many steps to be performed on site. We focused on two major aspects of the rheological behavior of this type of rock: poro-elastic behavior on the one hand and the elasto-viscoplastic other. The first part focuses on the identification of poro-elastic parameters. Chapter 2 refers to the direct problem and discusses a number of important points concerning the inverse problem of identification. The third chapter is dedicated to the formulation of techniques for calculating gradient for linear poro-elastic case. The numerical finite element is discussed. The methods of direct differentiation and adjoint state are validated on a two-dimensional numerical example using the code of finite element Cast3M. Identification of poro-elastic coefficients argillaceous rocks of the Meuse Haute-Marne from laboratory tests is discussed in detail in Chapter 4. The use of semi-explicit approximate solution of problems provides a direct method for quick identification. The second part of the dissertation on the identification of elasto-viscoplastic parameters. The features of visco-plastic behaviours argillaceous rocks Meuse Haute-Marne are discussed in Chapter 5 on the basis of experimental results. Modeling this behavior is considered. It proposes a model isotropic nonlinear viscoplastic strain hardening to duplicate tests. The parameters of this law of behavior are identified on a creep test unidimensional drained conditions. The deformations arise when poro-elastic and viscoplastic behavior of the rock. We show that it is possible to separate these two phenomena. All parameters are identified poro-elastic viscoplastic, a semi-explicit solution of the creep test is used. Chapter 6 presents a method for identifying parameters elasto-viscoplastic in the

  11. Scaling laws for fractional Brownian motion with power-law clock

    International Nuclear Information System (INIS)

    O'Malley, Daniel; Cushman, John H; Johnson, Graham

    2011-01-01

    We study the mean first passage time (MFPT) for fractional Brownian motion (fBm) in a finite interval with absorbing boundaries at each end. Analytical arguments are used to suggest a simple scaling law for the MFPT and numerical experiments are performed to verify its accuracy. The same approach is used to derive a scaling law for fBm with a power-law clock (fBm-plc). The MFPT scaling laws are employed to develop scaling laws for the finite-size Lyapunov exponent (FSLE) of fBm and fBm-plc. We apply these results to diffusion of a large polymer in a region with absorbing boundaries. (letter)

  12. Automated image enhancement using power law transformations

    Indian Academy of Sciences (India)

    We propose a scheme for automating power law transformations which are used for image enhancement. The scheme we propose does not require the user to choose the exponent in the power law transformation. This method works well for images having poor contrast, especially to those images in which the peaks ...

  13. Power laws in the information production process Lotkaian informetrics

    CERN Document Server

    Egghe, Leo

    2005-01-01

    Explains many informetric regularities, only based on a decreasing power law as size-frequency function, that is Lotka''s law. This book revives the historical formulation of Alfred Lotka and shows the power of this power law, both in classical aspects of informetrics as well as in applications such as social networks and others.

  14. Predicting the long tail of book sales: Unearthing the power-law exponent

    Science.gov (United States)

    Fenner, Trevor; Levene, Mark; Loizou, George

    2010-06-01

    The concept of the long tail has recently been used to explain the phenomenon in e-commerce where the total volume of sales of the items in the tail is comparable to that of the most popular items. In the case of online book sales, the proportion of tail sales has been estimated using regression techniques on the assumption that the data obeys a power-law distribution. Here we propose a different technique for estimation based on a generative model of book sales that results in an asymptotic power-law distribution of sales, but which does not suffer from the problems related to power-law regression techniques. We show that the proportion of tail sales predicted is very sensitive to the estimated power-law exponent. In particular, if we assume that the power-law exponent of the cumulative distribution is closer to 1.1 rather than to 1.2 (estimates published in 2003, calculated using regression by two groups of researchers), then our computations suggest that the tail sales of Amazon.com, rather than being 40% as estimated by Brynjolfsson, Hu and Smith in 2003, are actually closer to 20%, the proportion estimated by its CEO.

  15. Energy consumption reduction in existing HVAC-R systems via a power law controlling kit

    International Nuclear Information System (INIS)

    Pinnola, C.F.; Vargas, J.V.C.; Buiar, C.L.; Ordonez, J.C.

    2015-01-01

    This paper presents an alternative solution for reducing energy consumption in heating, ventilation, air conditioning and refrigeration (HVAC-R) systems. For that, an existing typical commercial refrigeration system was equipped with a novel control system based on a power law, using a frequency inverter and a programmable logic controller (PLC). Hence, it was possible to compare the operation and energy consumption of the system with the power law control and with the on-off system, quantifying the obtained gains. The experimental unit consisted of a cooling chamber, an enclosing chamber (antechamber), and a vapor compression refrigeration system, i.e., an example of a practical commercial cooling system. A set of graphs shows the experimental measurements performed with the two systems. In this way, the measured temperatures in some selected points of the two systems, as well as the consumption in kWh for a period of 6 h and 10 min were compared in the tests. The main conclusions of this work are: i) The system operating with the power law control with respect to the conventional on-off control, showed energy consumption savings of up to 31% in a test period of 6 h and 10 min, and ii) The system compressor cycling frequency in the system operating with the power law control is smaller than with the traditional on-off system. Therefore, the study shows that the developed power law control kit has potential to be installed in any existing system with immediate significant energy savings with no need for HVAC-R hardware changes. - Highlights: • An energy consumption reduction strategy for HVAC-R systems is presented. • Power law and on-off control actions are experimentally compared. • Energy savings of 31% were obtained with power law control. • Compressor cycling frequency is smaller with power law control. • Power law control kit has potential to be installed in any existing system

  16. Undersampling power-law size distributions: effect on the assessment of extreme natural hazards

    Science.gov (United States)

    Geist, Eric L.; Parsons, Thomas E.

    2014-01-01

    The effect of undersampling on estimating the size of extreme natural hazards from historical data is examined. Tests using synthetic catalogs indicate that the tail of an empirical size distribution sampled from a pure Pareto probability distribution can range from having one-to-several unusually large events to appearing depleted, relative to the parent distribution. Both of these effects are artifacts caused by limited catalog length. It is more difficult to diagnose the artificially depleted empirical distributions, since one expects that a pure Pareto distribution is physically limited in some way. Using maximum likelihood methods and the method of moments, we estimate the power-law exponent and the corner size parameter of tapered Pareto distributions for several natural hazard examples: tsunamis, floods, and earthquakes. Each of these examples has varying catalog lengths and measurement thresholds, relative to the largest event sizes. In many cases where there are only several orders of magnitude between the measurement threshold and the largest events, joint two-parameter estimation techniques are necessary to account for estimation dependence between the power-law scaling exponent and the corner size parameter. Results indicate that whereas the corner size parameter of a tapered Pareto distribution can be estimated, its upper confidence bound cannot be determined and the estimate itself is often unstable with time. Correspondingly, one cannot statistically reject a pure Pareto null hypothesis using natural hazard catalog data. Although physical limits to the hazard source size and by attenuation mechanisms from source to site constrain the maximum hazard size, historical data alone often cannot reliably determine the corner size parameter. Probabilistic assessments incorporating theoretical constraints on source size and propagation effects are preferred over deterministic assessments of extreme natural hazards based on historic data.

  17. A common mode of origin of power laws in models of market and earthquake

    Science.gov (United States)

    Bhattacharyya, Pratip; Chatterjee, Arnab; Chakrabarti, Bikas K.

    2007-07-01

    We show that there is a common mode of origin for the power laws observed in two different models: (i) the Pareto law for the distribution of money among the agents with random-saving propensities in an ideal gas-like market model and (ii) the Gutenberg-Richter law for the distribution of overlaps in a fractal-overlap model for earthquakes. We find that the power laws appear as the asymptotic forms of ever-widening log-normal distributions for the agents’ money and the overlap magnitude, respectively. The identification of the generic origin of the power laws helps in better understanding and in developing generalized views of phenomena in such diverse areas as economics and geophysics.

  18. On the power law of passive scalars in turbulence

    Science.gov (United States)

    Gotoh, Toshiyuki; Watanabe, Takeshi

    2015-11-01

    It has long been considered that the moments of the scalar increment with separation distance r obey power law with scaling exponents in the inertial convective range and the exponents are insensitive to variation of pumping of scalar fluctuations at large scales, thus the scaling exponents are universal. We examine the scaling behavior of the moments of increments of passive scalars 1 and 2 by using DNS up to the grid points of 40963. They are simultaneously convected by the same isotropic steady turbulence atRλ = 805 , but excited by two different methods. Scalar 1 is excited by the random scalar injection which is isotropic, Gaussian and white in time at law wavenumber band, while Scalar 2 is excited by the uniform mean scalar gradient. It is found that the local scaling exponents of the scalar 1 has a logarithmic correction, meaning that the moments of the scalar 1 do not obey simple power law. On the other hand, the moments of the scalar 2 is found to obey the well developed power law with exponents consistent with those in the literature. Physical reasons for the difference are explored. Grants-in-Aid for Scientific Research 15H02218 and 26420106, NIFS14KNSS050, HPCI project hp150088 and hp140024, JHPCN project jh150012.

  19. Determination of modeling parameters for power IGBTs under pulsed power conditions

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E [Los Alamos National Laboratory; Van Gordon, Jim A [U. OF MISSOURI; Kovaleski, Scott D [U. OF MISSOURI

    2010-01-01

    While the power insulated gate bipolar transistor (IGRT) is used in many applications, it is not well characterized under pulsed power conditions. This makes the IGBT difficult to model for solid state pulsed power applications. The Oziemkiewicz implementation of the Hefner model is utilized to simulate IGBTs in some circuit simulation software packages. However, the seventeen parameters necessary for the Oziemkiewicz implementation must be known for the conditions under which the device will be operating. Using both experimental and simulated data with a least squares curve fitting technique, the parameters necessary to model a given IGBT can be determined. This paper presents two sets of these seventeen parameters that correspond to two different models of power IGBTs. Specifically, these parameters correspond to voltages up to 3.5 kV, currents up to 750 A, and pulse widths up to 10 {micro}s. Additionally, comparisons of the experimental and simulated data will be presented.

  20. Analysis of projectile motion: A comparative study using fractional operators with power law, exponential decay and Mittag-Leffler kernel

    Science.gov (United States)

    Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; López-López, M. G.; Alvarado-Martínez, V. M.

    2018-03-01

    In this paper, the two-dimensional projectile motion was studied; for this study two cases were considered, for the first one, we considered that there is no air resistance and, for the second case, we considered a resisting medium k . The study was carried out by using fractional calculus. The solution to this study was obtained by using fractional operators with power law, exponential decay and Mittag-Leffler kernel in the range of γ \\in (0,1] . These operators were considered in the Liouville-Caputo sense to use physical initial conditions with a known physical interpretation. The range and the maximum height of the projectile were obtained using these derivatives. With the aim of exploring the validity of the obtained results, we compared our results with experimental data given in the literature. A multi-objective particle swarm optimization approach was used for generating Pareto-optimal solutions for the parameters k and γ for different fixed values of velocity v0 and angle θ . The results showed some relevant qualitative differences between the use of power law, exponential decay and Mittag-Leffler law.

  1. Estimation of the hydraulic conductivity of a two-dimensional fracture network using effective medium theory and power-law averaging

    Science.gov (United States)

    Zimmerman, R. W.; Leung, C. T.

    2009-12-01

    Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through generated stochastically two-dimensional fracture networks. The centers and orientations of the fractures are uniformly distributed, whereas their lengths follow a lognormal distribution. The aperture of each fracture is correlated with its length, either through direct proportionality, or through a nonlinear relationship. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this value by starting with the individual fracture conductances, and using various upscaling methods. Kirkpatrick’s effective medium approximation, which works well for pore networks on a core scale, generally underestimates the conductivity of the fracture networks. We attribute this to the fact that the conductances of individual fracture segments (between adjacent intersections with other fractures) are correlated with each other, whereas Kirkpatrick’s approximation assumes no correlation. The power-law averaging approach proposed by Desbarats for porous media is able to match the numerical value, using power-law exponents that generally lie between 0 (geometric mean) and 1 (harmonic mean). The appropriate exponent can be correlated with statistical parameters that characterize the fracture density.

  2. Recalling items from a category for 1 hour: an inquiry into power-law behavior and memory foraging.

    Science.gov (United States)

    Rhodes, Theo

    2013-07-01

    There are two complementary approaches to characterizing performance in a free recall task (retrieving items from a specified category). The historic, or top down approach, considers the overall structure of the produced responses, generally as the parameters of a fitted cumulative recall curve. Alternatively, free recall can be considered as a time series of recalls or inter-recall intervals. Earlier work employing this approach (Rhodes & Turvey, 2007) suggested power law behavior. Long trial durations (1 hour) are employed to more rigorously test for the presence of power law behavior and more generally, the hypothesis that the dynamics of free recall reflect complex, multiplicative processes. The outlined empirical methods are also employed to test predictions about the relative structure of differently sized categories. Consequences for an asymptotic curve based understanding of free recall and foraging metaphors of retrieval are discussed.

  3. Integral Parameters of the Thermal Neutron Scattering Law

    International Nuclear Information System (INIS)

    Purohit, S.N.

    1964-09-01

    Integral parameters of the thermal neutron scattering law - the thermalization binding parameter (M 2 ), the Placzek's moments of the generalized frequency spectrum of dynamical modes and the energy transfer moments of the scattering law - are theoretically discussed. A detailed study of the variation of M 2 , the thermalization time constant and the effective temperature of the vibrating atoms, with the relative weight between intra-molecular vibrations and hindered rotations for H 2 O, is presented. Theoretical results for different scattering models of H 2 O are compared with the measurements of integral experiments. A set of integral parameters for D 2 O, using Butler's model, have been obtained. Importance of the structure of hindered rotations of H 2 O and D 2 O in the study of integral parameters has also been discussed

  4. Power-law Decay and the Ergodic-Nonergodic Transition in Simple Fluids

    OpenAIRE

    Spyridis, Paul; Mazenko, Gene F.

    2013-01-01

    It is well known that mode coupling theory (MCT) leads to a two step power-law time decay in dense simple fluids. We show that much of the mathematical machinery used in the MCT analysis can be taken over to the analysis of the systematic theory developed in the Fundamental Theory of Statistical Particle Dynamics (arXiv:0905.4904). We show how the power-law exponents can be computed in the second-order approximation where we treat hard-sphere fluids with statics described by the Percus-Yevick...

  5. Theoretical scaling law of coronal magnetic field and electron power-law index in solar microwave burst sources

    Science.gov (United States)

    Huang, Y.; Song, Q. W.; Tan, B. L.

    2018-04-01

    It is first proposed a theoretical scaling law respectively for the coronal magnetic field strength B and electron power-law index δ versus frequency and coronal height in solar microwave burst sources. Based on the non-thermal gyro-synchrotron radiation model (Ramaty in Astrophys. J. 158:753, 1969), B and δ are uniquely solved by the observable optically-thin spectral index and turnover (peak) frequency, the other parameters (plasma density, temperature, view angle, low and high energy cutoffs, etc.) are relatively insensitive to the calculations, thus taken as some typical values. Both of B and δ increase with increasing of radio frequency but with decreasing of coronal height above photosphere, and well satisfy a square or cubic logarithmic fitting.

  6. Problems and legislative remedies of the parallel law systems in Japan for nuclear power reactors

    International Nuclear Information System (INIS)

    Irie, Kazutomo

    2011-01-01

    There are two established laws governing nuclear power reactors in Japan. One is the Electricity Utilities Industry Law, which regulates the nuclear power reactors, and the other is the so-called 'Reactor Regulation Law', which dually regulates the reactors in some phases. When a graded approach on the regulation of nuclear reactors was adopted, it extended over these two laws and was legislatively imperfect. Such imperfection created problems from the beginning. Also, the original regulatory structures presented by these laws had become obscure during the operation process of the graded regulation. The situation becomes further complicated by the revision of these laws in recent years. It appears that the trait of the regulatory procedural structure of the Electricity Utilities Industry Law has been weakened. As there is a pressing need to review the entire regulatory structure and to propose a unified regulatory system by combining these laws, this paper examines the merits and demerits of combining these laws under a unified regulation. (author)

  7. Power-law Exponent in Multiplicative Langevin Equation with Temporally Correlated Noise

    Science.gov (United States)

    Morita, Satoru

    2018-05-01

    Power-law distributions are ubiquitous in nature. Random multiplicative processes are a basic model for the generation of power-law distributions. For discrete-time systems, the power-law exponent is known to decrease as the autocorrelation time of the multiplier increases. However, for continuous-time systems, it is not yet clear how the temporal correlation affects the power-law behavior. Herein, we analytically investigated a multiplicative Langevin equation with colored noise. We show that the power-law exponent depends on the details of the multiplicative noise, in contrast to the case of discrete-time systems.

  8. Integral Parameters of the Thermal Neutron Scattering Law

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, S N

    1964-09-15

    Integral parameters of the thermal neutron scattering law - the thermalization binding parameter (M{sub 2}), the Placzek's moments of the generalized frequency spectrum of dynamical modes and the energy transfer moments of the scattering law - are theoretically discussed. A detailed study of the variation of M{sub 2}, the thermalization time constant and the effective temperature of the vibrating atoms, with the relative weight between intra-molecular vibrations and hindered rotations for H{sub 2}O, is presented. Theoretical results for different scattering models of H{sub 2}O are compared with the measurements of integral experiments. A set of integral parameters for D{sub 2}O, using Butler's model, have been obtained. Importance of the structure of hindered rotations of H{sub 2}O and D{sub 2}O in the study of integral parameters has also been discussed.

  9. Spreading dynamics of power-law fluid droplets

    International Nuclear Information System (INIS)

    Liang Zhanpeng; Peng Xiaofeng; Wang Xiaodong; Lee, D-J; Su Ay

    2009-01-01

    This paper aims at providing a summary of the theoretical models available for non-Newtonian fluid spreading dynamics. Experimental findings and model predictions for a Newtonian fluid spreading test are briefly reviewed. Then how the complete wetting and partial wetting power-law fluids spread over a solid substrate is examined. The possible extension of Newtonian fluid models to power-law fluids is also discussed.

  10. Power-law relaxation in human violent conflicts

    Science.gov (United States)

    Picoli, Sergio; Antonio, Fernando J.; Itami, Andreia S.; Mendes, Renio S.

    2017-08-01

    We study relaxation patterns of violent conflicts after bursts of activity. Data were obtained from available catalogs on the conflicts in Iraq, Afghanistan and Northern Ireland. We find several examples in each catalog for which the observed relaxation curves can be well described by an asymptotic power-law decay (the analog of the Omori's law in geophysics). The power-law exponents are robust, nearly independent of the conflict. We also discuss the exogenous or endogenous nature of the shocks. Our results suggest that violent conflicts share with earthquakes and other natural and social phenomena a common feature in the dynamics of aftershocks.

  11. On the Measurement of Power Law Creep Parameters from Instrumented Indentation

    Science.gov (United States)

    Sudharshan Phani, P.; Oliver, W. C.; Pharr, G. M.

    2017-11-01

    Recently the measurement of the creep response of materials at small scales has received renewed interest largely because the equipment required to perform high-temperature nanomechanical testing has become available to an increasing number of researchers. Despite that increased access, there remain several significant experimental and modeling challenges in small-scale mechanical testing at elevated temperatures that are as yet unresolved. In this regard, relating the creep response observed with high-temperature instrumented indentation experiments to macroscopic uniaxial creep response is of great practical value. In this review, we present an overview of various methods currently being used to measure creep with instrumented indentation, with a focus on geometrically self-similar indenters, and their relative merits and demerits from an experimental perspective. A comparison of the various methods to use those instrumented indentation results to predict the uniaxial power law creep response of a wide range of materials will be presented to assess their validity.

  12. Deformation of a Capsule in a Power-Law Shear Flow

    Directory of Open Access Journals (Sweden)

    Fang-Bao Tian

    2016-01-01

    Full Text Available An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid. In this method, the flexible structure (e.g., capsule dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values.

  13. Non-thermal Power-Law Distributions in Solar and Space Plasmas

    Science.gov (United States)

    Oka, M.; Battaglia, M.; Birn, J.; Chaston, C. C.; Effenberger, F.; Eriksson, E.; Fletcher, L.; Hatch, S.; Imada, S.; Khotyaintsev, Y. V.; Kuhar, M.; Livadiotis, G.; Miyoshi, Y.; Retino, A.

    2017-12-01

    Particles are accelerated to very high, non-thermal energies in solar and space plasma environments. While energy spectra of accelerated particles often exhibit a power-law and are characterized by the power-law index δ, it remains unclear how particles are accelerated to high energies and how δ is determined. Here, we review previous observations of the power-law index δ in a variety of different plasma environments with a particular focus on sub-relativistic electrons. It appears that in regions more closely related to magnetic reconnection (such as the "above-the-looptop" solar hard X-ray source and the plasma sheet in Earth's magnetotail), the spectra are typically soft (δ> 4). This is in contrast to the typically hard spectra (δuniform in the plasma sheet, while power-law distributions still exist even in quiet times. The role of magnetotail reconnection in the electron power-law formation could therefore be confounded with these background conditions. Because different regions have been studied with different instrumentations and methodologies, we point out a need for more systematic and coordinated studies of power-law distributions for a better understanding of possible scaling laws in particle acceleration as well as their universality.

  14. Higher-order superclustering in the Ostriker explosion scenario I. Three-point correlation functions of clusters in the constant and power-law models

    International Nuclear Information System (INIS)

    Jing Yipeng.

    1989-08-01

    We study the three-point correlation functions ρ(r, u, v) of clusters in the two types of explosion models by numerical simulations. The clusters are identified as the ''knots'' where three shells intersect. The shells are assumed to have the constant radii (the constant models) or have the power law radius distributions (the power law models). In both kinds of models, we find that ρ can be approximately expressed by the scaling form: ρ = Q(ξ 1 ξ 2 + ξ 2 ξ 3 + ξ 3 ξ 1 ), and Q is about 1, which are consistent with the observations. More detailed studies of r-, u- and v-dependences of Q show that Q remains constant in the constant models. In the power-law models, Q is independent of the shape parameters u and v, while it has some moderate r-dependences (variations with r about a factor of 1 or 2). (author). 27 refs, 9 figs

  15. Power laws for gravity and topography of Solar System bodies

    Science.gov (United States)

    Ermakov, A.; Park, R. S.; Bills, B. G.

    2017-12-01

    When a spacecraft visits a planetary body, it is useful to be able to predict its gravitational and topographic properties. This knowledge is important for determining the level of perturbations in spacecraft's motion as well as for planning the observation campaign. It has been known for the Earth that the power spectrum of gravity follows a power law, also known as the Kaula rule (Kaula, 1963; Rapp, 1989). A similar rule was derived for topography (Vening-Meinesz, 1951). The goal of this paper is to generalize the power law that can characterize the gravity and topography power spectra for bodies across a wide range of size. We have analyzed shape power spectra of the bodies that have either global shape and gravity field measured. These bodies span across five orders of magnitude in their radii and surface gravities and include terrestrial planets, icy moons and minor bodies. We have found that despite having different internal structure, composition and mechanical properties, the topography power spectrum of these bodies' shapes can be modeled with a similar power law rescaled by the surface gravity. Having empirically found a power law for topography, we can map it to a gravity power law. Special care should be taken for low-degree harmonic coefficients due to potential isostatic compensation. For minor bodies, uniform density can be assumed. The gravity coefficients are a linear function of the shape coefficients for close-to-spherical bodoes. In this case, the power law for gravity will be steeper than the power law of topography due to the factor (2n+1) in the gravity expansion (e.g. Eq. 10 in Wieczorek & Phillips, 1998). Higher powers of topography must be retained for irregularly shaped bodies, which breaks the linearity. Therefore, we propose the following procedure to derive an a priori constraint for gravity. First, a surface gravity needs to be determined assuming typical density for the relevant class of bodies. Second, the scaling coefficient of the

  16. On the structure and phase transitions of power-law Poissonian ensembles

    Science.gov (United States)

    Eliazar, Iddo; Oshanin, Gleb

    2012-10-01

    Power-law Poissonian ensembles are Poisson processes that are defined on the positive half-line, and that are governed by power-law intensities. Power-law Poissonian ensembles are stochastic objects of fundamental significance; they uniquely display an array of fractal features and they uniquely generate a span of important applications. In this paper we apply three different methods—oligarchic analysis, Lorenzian analysis and heterogeneity analysis—to explore power-law Poissonian ensembles. The amalgamation of these analyses, combined with the topology of power-law Poissonian ensembles, establishes a detailed and multi-faceted picture of the statistical structure and the statistical phase transitions of these elemental ensembles.

  17. Characterising rock fracture aperture-spacing relationships using power-law relationships: some considerations

    Science.gov (United States)

    Brook, Martin; Hebblewhite, Bruce; Mitra, Rudrajit

    2016-04-01

    The size-scaling of rock fractures is a well-studied problem in geology, especially for permeability quantification. The intensity of fractures may control the economic exploitation of fractured reservoirs because fracture intensity describes the abundance of fractures potentially available for fluid flow. Moreover, in geotechnical engineering, fractures are important for parameterisation of stress models and excavation design. As fracture data is often collected from widely-spaced boreholes where core recovery is often incomplete, accurate interpretation and representation of fracture aperture-frequency relationships from sparse datasets is important. Fracture intensity is the number of fractures encountered per unit length along a sample scanline oriented perpendicular to the fractures in a set. Cumulative frequency of fractures (F) is commonly related to fracture aperture (A) in the form of a power-law (F = aA-b), with variations in the size of the a coefficient between sites interpreted to equate to fracture frequency for a given aperture (A). However, a common flaw in this approach is that even a small change in b can have a large effect on the response of the fracture frequency (F) parameter. We compare fracture data from the Late Permian Rangal Coal Measures from Australia's Bowen Basin, with fracture data from Jurassic carbonates from the Sierra Madre Oriental, northeastern Mexico. Both power-law coefficient a and exponent b control the fracture aperture-frequency relationship in conjunction with each other; that is, power-laws with relatively low a coefficients have relatively high b exponents and vice versa. Hence, any comparison of different power-laws must take both a and b into consideration. The corollary is that different sedimentary beds in the Sierra Madre carbonates do not show ˜8× the fracture frequency for a given fracture aperture, as based solely on the comparison of coefficient a. Rather, power-law "sensitivity factors" developed from both

  18. The new law on radiation and nuclear power

    International Nuclear Information System (INIS)

    Niittylae, A.

    1990-01-01

    The Law on Nuclear Energy, which entered into force in 1988, controls the use of nuclear power. The new Law on Radiation is under consideration in the Parliament. The internationally approved main principles on radiation protection are the basis of the law. In the article, these principles and the contents of the law are described

  19. Tachyon with an inverse power-law potential in a braneworld cosmology

    Science.gov (United States)

    Bilić, Neven; Domazet, Silvije; Djordjevic, Goran S.

    2017-08-01

    We study a tachyon cosmological model based on the dynamics of a 3-brane in the bulk of the second Randall-Sundrum model extended to more general warp functions. A well known prototype of such a generalization is the bulk with a selfinteracting scalar field. As a consequence of a generalized bulk geometry the cosmology on the observer brane is modified by the scale dependent four-dimensional gravitational constant. In particular, we study a power law warp factor which generates an inverse power-law potential V\\propto \\varphi-n of the tachyon field φ. We find a critical power n cr that divides two subclasses with distinct asymptotic behaviors: a dust universe for n>n_cr and a quasi de Sitter universe for 0.

  20. The speed-curvature power law in Drosophila larval locomotion.

    Science.gov (United States)

    Zago, Myrka; Lacquaniti, Francesco; Gomez-Marin, Alex

    2016-10-01

    We report the discovery that the locomotor trajectories of Drosophila larvae follow the power-law relationship between speed and curvature previously found in the movements of human and non-human primates. Using high-resolution behavioural tracking in controlled but naturalistic sensory environments, we tested the law in maggots tracing different trajectory types, from reaching-like movements to scribbles. For most but not all flies, we found that the law holds robustly, with an exponent close to three-quarters rather than to the usual two-thirds found in almost all human situations, suggesting dynamic effects adding on purely kinematic constraints. There are different hypotheses for the origin of the law in primates, one invoking cortical computations, another viscoelastic muscle properties coupled with central pattern generators. Our findings are consistent with the latter view and demonstrate that the law is possible in animals with nervous systems orders of magnitude simpler than in primates. Scaling laws might exist because natural selection favours processes that remain behaviourally efficient across a wide range of neural and body architectures in distantly related species. © 2016 The Authors.

  1. Power Law and Logarithmic Ricci Dark Energy Models in Hořava-Lifshitz Cosmology

    Science.gov (United States)

    Pasqua, Antonio; Chattopadhyay, Surajit; Khurshudyan, Martiros; Myrzakulov, Ratbay; Hakobyan, Margarit; Movsisyan, Artashes

    2015-03-01

    In this work, we studied the Power Law and the Logarithmic Entropy Corrected versions of the Ricci Dark Energy (RDE) model in a spatially non-flat universe and in the framework of Hořava-Lifshitz cosmology. For the two cases containing non-interacting and interacting RDE and Dark Matter (DM), we obtained the exact differential equation that determines the evolutionary form of the RDE energy density. Moreover, we obtained the expressions of the deceleration parameter q and, using a parametrization of the equation of state (EoS) parameter ω D given by the relation ω D ( z) = ω 0+ ω 1 z, we derived the expressions of both ω 0 and ω 1. We interestingly found that the expression of ω 0 is the same for both non-interacting and interacting case. The expression of ω 1 for the interacting case has strong dependence from the interacting parameter b 2. The parameters derived in this work are done in small redshift approximation and for low redshift expansion of the EoS parameter.

  2. Kant on causal laws and powers.

    Science.gov (United States)

    Henschen, Tobias

    2014-12-01

    The aim of the paper is threefold. Its first aim is to defend Eric Watkins's claim that for Kant, a cause is not an event but a causal power: a power that is borne by a substance, and that, when active, brings about its effect, i.e. a change of the states of another substance, by generating a continuous flow of intermediate states of that substance. The second aim of the paper is to argue against Watkins that the Kantian concept of causal power is not the pre-critical concept of real ground but the category of causality, and that Kant holds with Hume that causal laws cannot be inferred non-inductively (that he accordingly has no intention to show in the Second analogy or elsewhere that events fall under causal laws). The third aim of the paper is to compare the Kantian position on causality with central tenets of contemporary powers ontology: it argues that unlike the variants endorsed by contemporary powers theorists, the Kantian variants of these tenets are resistant to objections that neo-Humeans raise to these tenets.

  3. Unconfined Unsteady Laminar Flow of a Power-Law Fluid across a Square Cylinder

    Directory of Open Access Journals (Sweden)

    Asterios Pantokratoras

    2016-11-01

    Full Text Available The flow of a non-Newtonian, power-law fluid, directed normally to a horizontal cylinder with square cross-section (two-dimensional flow is considered in the present paper. The problem is investigated numerically with a very large calculation domain in order that the flow could be considered unconfined. The investigation covers the power-law index from 0.1 up to 2 and the Reynolds number ranges from 60 to 160. Over this range of Reynolds numbers the flow is unsteady. It is found that the drag coefficient and the Strouhal number are higher in a confined flow compared to those of an unconfined flow. In addition some flow characteristics are lost in a confined flow. Complete results for the drag coefficient and Strouhal number in the entire shear-thinning and shear-thickening region have been produced. In shear-thinning fluids chaotic structures exist which diminish at higher values of power-law index. This study represents the first investigation of unsteady, non-Newtonian power-law flow past a square cylinder in an unconfined field.

  4. The origin of power-law distributions in self-organized criticality

    International Nuclear Information System (INIS)

    Yang, C B

    2004-01-01

    The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is then regarded as a first-return random-walk process in a one-dimensional lattice. Power-law distributions of the lifetime and spatial size are found when the random walk is unbiased with equal probability to move in opposite directions. This shows that power-law distributions in self-organized criticality may be caused by the balance of competitive interactions. At the mean time, the mean spatial size for avalanches with the same lifetime is found to increase in a power law with the lifetime. (letter to the editor)

  5. Quantum healing of classical singularities in power-law spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Helliwell, T M [Department of Physics, Harvey Mudd College, Claremont, CA 91711 (United States); Konkowski, D A [Department of Mathematics, US Naval Academy, Annapolis, MD 21402 (United States)

    2007-07-07

    We study a broad class of spacetimes whose metric coefficients reduce to powers of a radius r in the limit of small r. Among these four-parameter 'power-law' metrics, we identify those parameters for which the spacetimes have classical singularities as r {yields} 0. We show that a large set of such classically-singular spacetimes is nevertheless non-singular quantum mechanically, in that the Hamiltonian operator is essentially self-adjoint, so that the evolution of quantum wave packets lacks the ambiguity associated with scattering off singularities. Using these metrics, the broadest class yet studied to compare classical with quantum singularities, we explore the physical reasons why some that are singular classically are 'healed' quantum mechanically, while others are not. We show that most (but not all) of the remaining quantum-mechanically singular spacetimes can be excluded if either the weak energy condition or the dominant energy condition is invoked, and we briefly discuss the effect of this work on the strong cosmic censorship conjecture.

  6. Power-law approach to modeling biological systems. II. Application to ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Voit, E O; Savageau, M A

    1982-01-01

    The use of the power-law formalism is illustrated by modeling yeast ethanol production in batch culture at high cell densities. Parameter values are estimated from experimental data. The results suggest that ethanol killing of viable cells and lysis of nonviable cells are major determinants of system behavior, whereas catabolism of ethanol and inhibition of cell growth by ethanol appear to be insignificant under these experimental conditions.

  7. Econophysical anchoring of unimodal power-law distributions

    International Nuclear Information System (INIS)

    Eliazar, Iddo I; Cohen, Morrel H

    2013-01-01

    The sciences are abundant with size distributions whose densities have a unimodal shape and power-law tails both at zero and at infinity. The quintessential examples of such unimodal and power-law (UPL) distributions are the sizes of income and wealth in human societies. While the tails of UPL distributions are precisely quantified by their corresponding power-law exponents, their bulks are only qualitatively characterized as unimodal. Consequently, different statistical models of UPL distributions exist, the most popular considering lognormal bulks. In this paper we present a general econophysical framework for UPL distributions termed ‘the anchoring method’. This method: (i) universally approximates UPL distributions via three ‘anchors’ set at zero, at infinity, and at an intermediate point between zero and infinity (e.g. the mode); (ii) is highly versatile and broadly applicable; (iii) encompasses the existing statistical models of UPL distributions as special cases; (iv) facilitates the introduction of new statistical models of UPL distributions and (v) yields a socioeconophysical analysis of UPL distributions. (paper)

  8. Power-law and intermediate inflationary models in f(T)-gravity

    Energy Technology Data Exchange (ETDEWEB)

    Rezazadeh, K. [Department of Physics, University of Kurdistan,Pasdaran St., Sanandaj (Iran, Islamic Republic of); Abdolmaleki, A. [Research Institute for Astronomy Astrophysics of Maragha (RIAAM),P.O. Box 55134-441, Maragha (Iran, Islamic Republic of); Karami, K. [Department of Physics, University of Kurdistan,Pasdaran St., Sanandaj (Iran, Islamic Republic of)

    2016-01-21

    We study inflation in the framework of f(T)-gravity in the presence of a canonical scalar field. After reviewing the basic equations governing the background cosmology in f(T)-gravity, we turn to study the cosmological perturbations and obtain the evolutionary equations for the scalar and tensor perturbations. Solving those equations, we find the power spectra for the scalar and tensor perturbations. Then, we consider a power-law f(T) function and investigate the inflationary models with the power-law and intermediate scale factors. We see that in contrast with the standard inflationary scenario based on the Einstein gravity, the power-law and intermediate inflationary models in f(T)-gravity can be compatible with the observational results of Planck 2015 at 68% CL. We find that in our f(T) setting, the potentials responsible for the both power-law and intermediate inflationary models have the power-law form V(ϕ)∝ϕ{sup m} but the power m is different for them. Therefore, we can refine some of power-law inflationary potentials in the framework of f(T)-gravity while they are disfavored by the observational data in the standard inflationary scenario. Interestingly enough, is that the self-interacting quartic potential V(ϕ)∝ϕ{sup 4} which has special reheating properties, can be consistent with the Planck 2015 data in our f(T) scenario while it is ruled out in the standard inflationary scenario.

  9. Power-law and intermediate inflationary models in f(T)-gravity

    International Nuclear Information System (INIS)

    Rezazadeh, K.; Abdolmaleki, A.; Karami, K.

    2016-01-01

    We study inflation in the framework of f(T)-gravity in the presence of a canonical scalar field. After reviewing the basic equations governing the background cosmology in f(T)-gravity, we turn to study the cosmological perturbations and obtain the evolutionary equations for the scalar and tensor perturbations. Solving those equations, we find the power spectra for the scalar and tensor perturbations. Then, we consider a power-law f(T) function and investigate the inflationary models with the power-law and intermediate scale factors. We see that in contrast with the standard inflationary scenario based on the Einstein gravity, the power-law and intermediate inflationary models in f(T)-gravity can be compatible with the observational results of Planck 2015 at 68% CL. We find that in our f(T) setting, the potentials responsible for the both power-law and intermediate inflationary models have the power-law form V(ϕ)∝ϕ m but the power m is different for them. Therefore, we can refine some of power-law inflationary potentials in the framework of f(T)-gravity while they are disfavored by the observational data in the standard inflationary scenario. Interestingly enough, is that the self-interacting quartic potential V(ϕ)∝ϕ 4 which has special reheating properties, can be consistent with the Planck 2015 data in our f(T) scenario while it is ruled out in the standard inflationary scenario.

  10. Scaling laws of design parameters for plasma wakefield accelerators

    International Nuclear Information System (INIS)

    Uhm, Han S.; Nam, In H.; Suk, Hyyong

    2012-01-01

    Simple scaling laws for the design parameters of plasma wakefield accelerators were obtained using a theoretical model, which were confirmed via particle simulation studies. It was found that the acceleration length was given by Δx=0.804λ p /(1−β g ), where λ p is the plasma wavelength and β g c the propagation velocity of the ion cavity. The acceleration energy can also be given by ΔE=(γ m −1)mc 2 =2.645mc 2 /(1−β g ), where m is the electron rest mass. As expected, the acceleration length and energy increase drastically as β g approached unity. These simple scaling laws can be very instrumental in the design of better-performing plasma wakefield accelerators. -- Highlights: ► Simple scaling laws for the design parameters of laser wakefield accelerators were obtained using a theoretical model. ► The scaling laws for acceleration length and acceleration energy were compared with particle-in-cell simulation results. ► The acceleration length and the energy increase drastically as β g approaches unity. ► These simple scaling laws can be very instrumental in the design of laser wakefield accelerators.

  11. Power-law and runaway growth in conserved aggregation systems

    International Nuclear Information System (INIS)

    Yamamoto, Hiroshi; Ohtsuki, Toshiya; Fujihara, Akihiro; Tanimoto, Satoshi

    2006-01-01

    The z-transform technique is used to analyze the Smoluchowski coagulation equation for conserved aggregation systems. A universal power law with the exponent -5/2 appears when a total 'mass' has a certain critical value. Below the threshold, ordinary scaling relations hold and the system exhibits a behavior like usual critical phenomena. Above the threshold, in contrast, the excess amount of mass coagulates into a runaway member, and remaining members follow the power law. Here the runaway growth coexists with the power law. It is argued that these behaviors are observed universally in conserved aggregation processes

  12. Financial power laws: Empirical evidence, models, and mechanisms

    International Nuclear Information System (INIS)

    Lux, Thomas; Alfarano, Simone

    2016-01-01

    Financial markets (share markets, foreign exchange markets and others) are all characterized by a number of universal power laws. The most prominent example is the ubiquitous finding of a robust, approximately cubic power law characterizing the distribution of large returns. A similarly robust feature is long-range dependence in volatility (i.e., hyperbolic decline of its autocorrelation function). The recent literature adds temporal scaling of trading volume and multi-scaling of higher moments of returns. Increasing awareness of these properties has recently spurred attempts at theoretical explanations of the emergence of these key characteristics form the market process. In principle, different types of dynamic processes could be responsible for these power-laws. Examples to be found in the economics literature include multiplicative stochastic processes as well as dynamic processes with multiple equilibria. Though both types of dynamics are characterized by intermittent behavior which occasionally generates large bursts of activity, they can be based on fundamentally different perceptions of the trading process. The present paper reviews both the analytical background of the power laws emerging from the above data generating mechanisms as well as pertinent models proposed in the economics literature.

  13. How Power-Laws Re-Write The Rules Of Cyber Warfare

    Directory of Open Access Journals (Sweden)

    David L. Bibighaus

    2015-12-01

    Full Text Available All warfare contains and element of randomness. This article will argue that, the kind uncertainty encountered in cyber warfare (Power-Law randomness is fundamentally different from the uncertainty the military has evolved to deal with in the physical world (Gaussian-Randomness. The article will explain the difference between these two kinds of randomness, and how cyber weapons appear to operate under Power-Law randomness. It then will show how in cyberspace, key aspects of strategic thought are based on a flaws assumption of randomness. Finally, this article shall argue that if the American military is going to be effective in cyberspace, it must re-examine the way the military assumes risk, recruits is forces, plans for war and maintains the peace.

  14. The Legal Regime of Nuclear Power Satellites-A Problem at the Cross-Roads of Nuclear Law and Space Law

    International Nuclear Information System (INIS)

    Courteix, S.

    1992-01-01

    The number of nuclear-powered satellites rises constantly and, recalling the fear generated by the crash of the Cosmos 954 satellite, the author points out that radioactive debris falling on earth could represent as great a hazard as accidental releases of radioactive material from land-based nuclear installations. Such satellites, therefore, can be governed by both space law and nuclear law. On the basis of international conventions applicable in the two fields and also with reference to the Law of the Sea and environmental law, the article analyses preventive and radiation protection measures as well as emergency plans and also raises the problem of liability and compensation for damage. (NEA)

  15. Testing power-law cross-correlations: Rescaled covariance test

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2013-01-01

    Roč. 86, č. 10 (2013), 418-1-418-15 ISSN 1434-6028 R&D Projects: GA ČR GA402/09/0965 Institutional support: RVO:67985556 Keywords : power-law cross-correlations * testing * long-term memory Subject RIV: AH - Economics Impact factor: 1.463, year: 2013 http://library.utia.cas.cz/separaty/2013/E/kristoufek-testing power-law cross-correlations rescaled covariance test.pdf

  16. Thermodynamics of charged rotating dilaton black branes with power-law Maxwell field

    International Nuclear Information System (INIS)

    Zangeneh, M.K.; Sheykhi, A.; Dehghani, M.H.

    2015-01-01

    In this paper, we construct a new class of charged rotating dilaton black brane solutions, with a complete set of rotation parameters, which is coupled to a nonlinear Maxwell field. The Lagrangian of the matter field has the form of the power-law Maxwell field. We study the causal structure of the spacetime and its physical properties in ample details. We also compute thermodynamic and conserved quantities of the spacetime, such as the temperature, entropy, mass, charge, and angular momentum. We find a Smarr-formula for the mass and verify the validity of the first law of thermodynamics on the black brane horizon. Finally, we investigate the thermal stability of solutions in both the canonical and the grand-canonical ensembles and disclose the effects of dilaton field and nonlinearity of the Maxwell field on the thermal stability of the solutions. We find that, for α ≤ 1, charged rotating black brane solutions are thermally stable independent of the values of the other parameters. For α > 1, the solutions can encounter an unstable phase depending on the metric parameters. (orig.)

  17. Power-law behavior in complex organizational communication networks during crisis

    Science.gov (United States)

    Uddin, Shahadat; Murshed, Shahriar Tanvir Hasan; Hossain, Liaquat

    2011-08-01

    Communication networks can be described as patterns of contacts which are created due to the flow of messages and information shared among participating actors. Contemporary organizations are now commonly viewed as dynamic systems of adaptation and evolution containing several parts, which interact with one another both in internal and in external environment. Although there is limited consensus among researchers on the precise definition of organizational crisis, there is evidence of shared meaning: crisis produces individual crisis, crisis can be associated with positive or negative conditions, crises can be situations having been precipitated quickly or suddenly or situations that have developed over time and are predictable etc. In this research, we study the power-law behavior of an organizational email communication network during crisis from complexity perspective. Power law simply describes that, the probability that a randomly selected node has k links (i.e. degree k) follows P(k)∼k, where γ is the degree exponent. We used social network analysis tools and techniques to analyze the email communication dataset. We tested two propositions: (1) as organization goes through crisis, a few actors, who are prominent or more active, will become central, and (2) the daily communication network as well as the actors in the communication network exhibit power-law behavior. Our preliminary results support these two propositions. The outcome of this study may provide significant advancement in exploring organizational communication network behavior during crisis.

  18. Evapotranspiration Power Law in Self-Organized and Human-Managed Ecosystems

    Science.gov (United States)

    Zeng, R.; Cai, X.

    2017-12-01

    Natural systems display a profound degree of self-organization, often apparent even to the untrained eye. However, in this age of increased coupling among human and natural systems, it is unclear to what degree natural organization principles continue to govern human-managed landscapes. Here we present an emerging characteristic of terrestrial evapotranspiration (ET), one of the key components of the water cycle and energy budget, adhered to by both naturally organized and intensively managed landscapes. We find that ET variance and ET mean for ecosystems throughout the world with diverse climate conditions, vegetation structures, and land covers and land uses organize themselves according to a specific power law curve. From multi-source observations, the ET power law curve stands true through varying spatial scales, from field to region. Moreover, a phenomenon of similar ecosystems gravitating toward particular segments of the power law curve, suggests that the feature of self-optimization of ecosystems establishes the ET power law together with climatic conditions. Perhaps surprisingly, we find that landscapes persistently follow the power law curve even upon human-induced transition from rain-fed to irrigated agriculture in the American High Plains and from wetland to agricultural land in American Midwest. As such, the ET power law can be an informative tool for predicting consequences of anthropogenic disturbances to the hydrologic cycle and understanding constraints to sustainable land use.

  19. Explaining the power-law distribution of human mobility through transportation modality decomposition

    Science.gov (United States)

    Zhao, Kai; Musolesi, Mirco; Hui, Pan; Rao, Weixiong; Tarkoma, Sasu

    2015-03-01

    Human mobility has been empirically observed to exhibit Lévy flight characteristics and behaviour with power-law distributed jump size. The fundamental mechanisms behind this behaviour has not yet been fully explained. In this paper, we propose to explain the Lévy walk behaviour observed in human mobility patterns by decomposing them into different classes according to the different transportation modes, such as Walk/Run, Bike, Train/Subway or Car/Taxi/Bus. Our analysis is based on two real-life GPS datasets containing approximately 10 and 20 million GPS samples with transportation mode information. We show that human mobility can be modelled as a mixture of different transportation modes, and that these single movement patterns can be approximated by a lognormal distribution rather than a power-law distribution. Then, we demonstrate that the mixture of the decomposed lognormal flight distributions associated with each modality is a power-law distribution, providing an explanation to the emergence of Lévy Walk patterns that characterize human mobility patterns.

  20. Power-law and exponential rank distributions: A panoramic Gibbsian perspective

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2015-01-01

    Rank distributions are collections of positive sizes ordered either increasingly or decreasingly. Many decreasing rank distributions, formed by the collective collaboration of human actions, follow an inverse power-law relation between ranks and sizes. This remarkable empirical fact is termed Zipf’s law, and one of its quintessential manifestations is the demography of human settlements — which exhibits a harmonic relation between ranks and sizes. In this paper we present a comprehensive statistical-physics analysis of rank distributions, establish that power-law and exponential rank distributions stand out as optimal in various entropy-based senses, and unveil the special role of the harmonic relation between ranks and sizes. Our results extend the contemporary entropy-maximization view of Zipf’s law to a broader, panoramic, Gibbsian perspective of increasing and decreasing power-law and exponential rank distributions — of which Zipf’s law is one out of four pillars

  1. Power-law and exponential rank distributions: A panoramic Gibbsian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il

    2015-04-15

    Rank distributions are collections of positive sizes ordered either increasingly or decreasingly. Many decreasing rank distributions, formed by the collective collaboration of human actions, follow an inverse power-law relation between ranks and sizes. This remarkable empirical fact is termed Zipf’s law, and one of its quintessential manifestations is the demography of human settlements — which exhibits a harmonic relation between ranks and sizes. In this paper we present a comprehensive statistical-physics analysis of rank distributions, establish that power-law and exponential rank distributions stand out as optimal in various entropy-based senses, and unveil the special role of the harmonic relation between ranks and sizes. Our results extend the contemporary entropy-maximization view of Zipf’s law to a broader, panoramic, Gibbsian perspective of increasing and decreasing power-law and exponential rank distributions — of which Zipf’s law is one out of four pillars.

  2. Numerical Modeling of the Flow of a Power Law Ceramic Slurry in the Tape Casting Process

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Hattel, Jesper Henri

    2012-01-01

    Multilayer ceramics and their application have increased recently. One of the most common ways used to produce these products is tape casting. In this process the wet tape thickness is one of the most determining parameters affecting the final properties of the product and it is therefore of great...... interest to be able to control it. In the present work the flow of La0.85Sr0.15MnO3 (LSM) material in the doctor blade region is modelled numerically with ANSYS Fluent in combination with an Ostwald power law constitutive equation. Based on rheometer experiments the constants in the Ostwald power law...

  3. Do wealth distributions follow power laws? Evidence from ‘rich lists’

    Science.gov (United States)

    Brzezinski, Michal

    2014-07-01

    We use data on the wealth of the richest persons taken from the 'rich lists' provided by business magazines like Forbes to verify if the upper tails of wealth distributions follow, as often claimed, a power-law behaviour. The data sets used cover the world's richest persons over 1996-2012, the richest Americans over 1988-2012, the richest Chinese over 2006-2012, and the richest Russians over 2004-2011. Using a recently introduced comprehensive empirical methodology for detecting power laws, which allows for testing the goodness of fit as well as for comparing the power-law model with rival distributions, we find that a power-law model is consistent with data only in 35% of the analysed data sets. Moreover, even if wealth data are consistent with the power-law model, they are usually also consistent with some rivals like the log-normal or stretched exponential distributions.

  4. Power laws from linear neuronal cable theory

    DEFF Research Database (Denmark)

    Pettersen, Klas H; Lindén, Henrik Anders; Tetzlaff, Tom

    2014-01-01

    suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general...... are homogeneously distributed across the neural membranes and themselves exhibit pink ([Formula: see text]) noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion...

  5. Human learning: Power laws or multiple characteristic time scales?

    Directory of Open Access Journals (Sweden)

    Gottfried Mayer-Kress

    2006-09-01

    Full Text Available The central proposal of A. Newell and Rosenbloom (1981 was that the power law is the ubiquitous law of learning. This proposition is discussed in the context of the key factors that led to the acceptance of the power law as the function of learning. We then outline the principles of an epigenetic landscape framework for considering the role of the characteristic time scales of learning and an approach to system identification of the processes of performance dynamics. In this view, the change of performance over time is the product of a superposition of characteristic exponential time scales that reflect the influence of different processes. This theoretical approach can reproduce the traditional power law of practice – within the experimental resolution of performance data sets - but we hypothesize that this function may prove to be a special and perhaps idealized case of learning.

  6. Analysis of Power Laws, Shape Collapses, and Neural Complexity: New Techniques and MATLAB Support via the NCC Toolbox.

    Science.gov (United States)

    Marshall, Najja; Timme, Nicholas M; Bennett, Nicholas; Ripp, Monica; Lautzenhiser, Edward; Beggs, John M

    2016-01-01

    Neural systems include interactions that occur across many scales. Two divergent methods for characterizing such interactions have drawn on the physical analysis of critical phenomena and the mathematical study of information. Inferring criticality in neural systems has traditionally rested on fitting power laws to the property distributions of "neural avalanches" (contiguous bursts of activity), but the fractal nature of avalanche shapes has recently emerged as another signature of criticality. On the other hand, neural complexity, an information theoretic measure, has been used to capture the interplay between the functional localization of brain regions and their integration for higher cognitive functions. Unfortunately, treatments of all three methods-power-law fitting, avalanche shape collapse, and neural complexity-have suffered from shortcomings. Empirical data often contain biases that introduce deviations from true power law in the tail and head of the distribution, but deviations in the tail have often been unconsidered; avalanche shape collapse has required manual parameter tuning; and the estimation of neural complexity has relied on small data sets or statistical assumptions for the sake of computational efficiency. In this paper we present technical advancements in the analysis of criticality and complexity in neural systems. We use maximum-likelihood estimation to automatically fit power laws with left and right cutoffs, present the first automated shape collapse algorithm, and describe new techniques to account for large numbers of neural variables and small data sets in the calculation of neural complexity. In order to facilitate future research in criticality and complexity, we have made the software utilized in this analysis freely available online in the MATLAB NCC (Neural Complexity and Criticality) Toolbox.

  7. Exponential and power laws in public procurement markets

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Skuhrovec, J.

    2012-01-01

    Roč. 99, č. 2 (2012), 28005-1-28005-6 ISSN 0295-5075 R&D Projects: GA ČR GA402/09/0965 Grant - others:GA UK(CZ) 118310; SVV(CZ) 265 504; GA TA ČR(CZ) TD010133 Institutional support: RVO:67985556 Keywords : Public procurement * Scaling * Power law Subject RIV: AH - Economics Impact factor: 2.260, year: 2012 http://library.utia.cas.cz/separaty/2012/E/kristoufek-exponential and power laws in public procurement markets.pdf

  8. Power-law thermal model for blackbody sources

    International Nuclear Information System (INIS)

    Del Grande, N.K.

    1979-01-01

    The spectral radiant emittance W/sub E/ from a blackbody at a temperature kT for photons at energies E above the spectral peak (2.82144 kT) varies as (kT)/sup E/kT/. This power-law temperature dependence, an approximation of Planck's radiation law, may have applications for measuring the emissivity of sources emitting in the soft x-ray region

  9. Power Politics and the Rule of Law in Post-Dayton Bosnia

    Directory of Open Access Journals (Sweden)

    Timothy Donais

    2013-06-01

    Full Text Available Over the past two decades, therule of law has emerged as a key priority within contemporary peacebuildingefforts. Drawing on examples from post-Dayton Bosnia, this article examines theimpact of rule of law reform efforts on broader patterns of power and politicalauthority in peacebuilding contexts. It suggests that in the case of Bosnia,the use of rule of law strategies to restructure political life has largelyfailed. Thus, despite some notable achievements on the rule of law front, thecore dynamics of Bosnia’s political conflict remain intact, and country’s peaceprocess is as fragile as ever. The article concludes by noting that charting acourse between accepting the political status quo and fundamentallytransforming it requires more nuanced approaches that advance the rule of laweven while accepting its limits as an instrument of deep politicaltransformation.

  10. Mixed-correlated ARFIMA processes for power-law cross-correlations

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2013-01-01

    Roč. 392, č. 24 (2013), s. 6484-6493 ISSN 0378-4371 R&D Projects: GA ČR GA402/09/0965 Institutional support: RVO:67985556 Keywords : power-law cross-correlations * long - term memory * econophysics Subject RIV: AH - Economics Impact factor: 1.722, year: 2013 http://library.utia.cas.cz/separaty/2013/E/kristoufek-mixed-correlated arfima processes for power-law cross-correlations.pdf

  11. Mobile user forecast and power-law acceleration invariance of scale-free networks

    International Nuclear Information System (INIS)

    Guo Jin-Li; Guo Zhao-Hua; Liu Xue-Jiao

    2011-01-01

    This paper studies and predicts the number growth of China's mobile users by using the power-law regression. We find that the number growth of the mobile users follows a power law. Motivated by the data on the evolution of the mobile users, we consider scenarios of self-organization of accelerating growth networks into scale-free structures and propose a directed network model, in which the nodes grow following a power-law acceleration. The expressions for the transient and the stationary average degree distributions are obtained by using the Poisson process. This result shows that the model generates appropriate power-law connectivity distributions. Therefore, we find a power-law acceleration invariance of the scale-free networks. The numerical simulations of the models agree with the analytical results well. (interdisciplinary physics and related areas of science and technology)

  12. The Normalising Power of Marriage Law: An Irish Genealogy, 1945 – 2010

    OpenAIRE

    McGowan, Deirdre

    2015-01-01

    Marriage law is often conceptualised as an instrument of power that illegitimately imposes the will of the State on its citizens. Paradoxically, marriage law is also offered as a route to liberation. In this thesis, I question the efficacy of this type of analysis by investigating the actual power effects of marriage law. Using Michel Foucault’s concepts of bio-power and government, and his genealogical approach to history, I identify the role played by marriage law in governing the social do...

  13. Accuracy analysis of measurements on a stable power-law distributed series of events

    International Nuclear Information System (INIS)

    Matthews, J O; Hopcraft, K I; Jakeman, E; Siviour, G B

    2006-01-01

    We investigate how finite measurement time limits the accuracy with which the parameters of a stably distributed random series of events can be determined. The model process is generated by timing the emigration of individuals from a population that is subject to deaths and a particular choice of multiple immigration events. This leads to a scale-free discrete random process where customary measures, such as mean value and variance, do not exist. However, converting the number of events occurring in fixed time intervals to a 1-bit 'clipped' process allows the construction of well-behaved statistics that still retain vestiges of the original power-law and fluctuation properties. These statistics include the clipped mean and correlation function, from measurements of which both the power-law index of the distribution of events and the time constant of its fluctuations can be deduced. We report here a theoretical analysis of the accuracy of measurements of the mean of the clipped process. This indicates that, for a fixed experiment time, the error on measurements of the sample mean is minimized by an optimum choice of the number of samples. It is shown furthermore that this choice is sensitive to the power-law index and that the approach to Poisson statistics is dominated by rare events or 'outliers'. Our results are supported by numerical simulation

  14. Stable power laws in variable economies; Lotka-Volterra implies Pareto-Zipf

    Science.gov (United States)

    Solomon, S.; Richmond, P.

    2002-05-01

    In recent years we have found that logistic systems of the Generalized Lotka-Volterra type (GLV) describing statistical systems of auto-catalytic elements posses power law distributions of the Pareto-Zipf type. In particular, when applied to economic systems, GLV leads to power laws in the relative individual wealth distribution and in market returns. These power laws and their exponent α are invariant to arbitrary variations in the total wealth of the system and to other endogenously and exogenously induced variations.

  15. About the identification of behaviour law parameters of clayey rocks

    International Nuclear Information System (INIS)

    Lecampion, B.

    2002-09-01

    This work aims at developing identification methods for clayey rock parameters. These methods are necessary for the interpretation of the numerous data obtained at the ANDRA's Meuse/Haute-Marne underground laboratory. Two main rheological aspects have been considered: the poro-elastic behaviour and the elasto-visco-plastic behaviour. The first part of the study focusses on the poro-elastic parameters. Chapter 2 recalls the direct problem and discusses some important points of the identification inverse problem. Chapter 3 deals with the formulation of gradient calculation techniques for the linear poro-elastic case. The resolution using the finite-element method is discussed. The direct and associated state differentiation methods are validated for a 2D numerical example using the finite-element code Cast3M. The identification of poro-elastic coefficients of the Meuse/Haute-Marne argillaceous rocks is discussed in detail in chapter 4. The use of approximate semi-explicit solutions of the direct problems allows to obtain a fast identification method. The second part deals with the identification of elasto-visco-plastic parameters. The visco-plastic behaviour of Meuse/Haute-Marne rocks is discussed in chapter 5 and a visco-plastic model with nonlinear isotropic cold-drawing is proposed which allows to reproduce the tests. The parameters of this behaviour law are identified on a 1D creep test in drained conditions. Thus, the delayed deformations come from the poro-elastic and visco-plastic behaviour of the rock. It is shown that both phenomena can be separated. All poro-elasto-visco-plastic parameters are identified and a semi-explicit solution of the creep test is used. Chapter 6 presents an identification method of the elasto-visco-plastic parameters for the general case. The identification is equivalent to the minimization of a cost functional. The gradient of the functional is calculated by direct differentiation. The direct differentiation method is developed in

  16. Emergence of power-law in a market with mixed models

    Science.gov (United States)

    Ali Saif, M.; Gade, Prashant M.

    2007-10-01

    We investigate the problem of wealth distribution from the viewpoint of asset exchange. Robust nature of Pareto's law across economies, ideologies and nations suggests that this could be an outcome of trading strategies. However, the simple asset exchange models fail to reproduce this feature. A Yardsale (YS) model in which amount put on the bet is a fraction of minimum of the two players leads to condensation of wealth in hands of some agent while theft and fraud (TF) model in which the amount to be exchanged is a fraction of loser's wealth leads to an exponential distribution of wealth. We show that if we allow few agents to follow a different model than others, i.e., there are some agents following TF model while rest follow YS model, it leads to distribution with power-law tails. Similar effect is observed when one carries out transactions for a fraction of one's wealth using TF model and for the rest YS model is used. We also observe a power-law tail in wealth distribution if we allow the agents to follow either of the models with some probability.

  17. Power-law distributions for a trapped ion interacting with a classical buffer gas.

    Science.gov (United States)

    DeVoe, Ralph G

    2009-02-13

    Classical collisions with an ideal gas generate non-Maxwellian distribution functions for a single ion in a radio frequency ion trap. The distributions have power-law tails whose exponent depends on the ratio of buffer gas to ion mass. This provides a statistical explanation for the previously observed transition from cooling to heating. Monte Carlo results approximate a Tsallis distribution over a wide range of parameters and have ab initio agreement with experiment.

  18. 29 CFR 102.35 - Duties and powers of administrative law judges; stipulations of cases to administrative law...

    Science.gov (United States)

    2010-07-01

    ..., the judge (or the Board) will decide the case or make other disposition of it. (10) To make and file... 29 Labor 2 2010-07-01 2010-07-01 false Duties and powers of administrative law judges; stipulations of cases to administrative law judges or to the Board; assignment and powers of settlement judges...

  19. Power-Law Statistics of Driven Reconnection in the Magnetically Closed Corona

    Science.gov (United States)

    Klimchuk, J. A.; DeVore, C. R.; Knizhnik, K. J.; Uritskiy, V. M.

    2018-01-01

    Numerous observations have revealed that power-law distributions are ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme ultraviolet radiation, and radio waves all display power-law frequency distributions. Since magnetic reconnection is the driving mechanism for many energetic solar phenomena, it is likely that reconnection events themselves display such power-law distributions. In this work, we perform numerical simulations of the solar corona driven by simple convective motions at the photospheric level. Using temperature changes, current distributions, and Poynting fluxes as proxies for heating, we demonstrate that energetic events occurring in our simulation display power-law frequency distributions, with slopes in good agreement with observations. We suggest that the braiding-associated reconnection in the corona can be understood in terms of a self-organized criticality model driven by convective rotational motions similar to those observed at the photosphere.

  20. Power-law Statistics of Driven Reconnection in the Magnetically Closed Corona

    Science.gov (United States)

    Knizhnik, K. J.; Uritsky, V. M.; Klimchuk, J. A.; DeVore, C. R.

    2018-01-01

    Numerous observations have revealed that power-law distributions are ubiquitous in energetic solar processes. Hard X-rays, soft X-rays, extreme ultraviolet radiation, and radio waves all display power-law frequency distributions. Since magnetic reconnection is the driving mechanism for many energetic solar phenomena, it is likely that reconnection events themselves display such power-law distributions. In this work, we perform numerical simulations of the solar corona driven by simple convective motions at the photospheric level. Using temperature changes, current distributions, and Poynting fluxes as proxies for heating, we demonstrate that energetic events occurring in our simulation display power-law frequency distributions, with slopes in good agreement with observations. We suggest that the braiding-associated reconnection in the corona can be understood in terms of a self-organized criticality model driven by convective rotational motions similar to those observed at the photosphere.

  1. Power Laws in Stochastic Processes for Social Phenomena: An Introductory Review

    Science.gov (United States)

    Kumamoto, Shin-Ichiro; Kamihigashi, Takashi

    2018-03-01

    Many phenomena with power laws have been observed in various fields of the natural and social sciences, and these power laws are often interpreted as the macro behaviors of systems that consist of micro units. In this paper, we review some basic mathematical mechanisms that are known to generate power laws. In particular, we focus on stochastic processes including the Yule process and the Simon process as well as some recent models. The main purpose of this paper is to explain the mathematical details of their mechanisms in a self-contained manner.

  2. Power-law citation distributions are not scale-free.

    Science.gov (United States)

    Golosovsky, Michael

    2017-09-01

    We analyze time evolution of statistical distributions of citations to scientific papers published in the same year. While these distributions seem to follow the power-law dependence we find that they are nonstationary and the exponent of the power-law fit decreases with time and does not come to saturation. We attribute the nonstationarity of citation distributions to different longevity of the low-cited and highly cited papers. By measuring citation trajectories of papers we found that citation careers of the low-cited papers come to saturation after 10-15 years while those of the highly cited papers continue to increase indefinitely: The papers that exceed some citation threshold become runaways. Thus, we show that although citation distribution can look as a power-law dependence, it is not scale free and there is a hidden dynamic scale associated with the onset of runaways. We compare our measurements to our recently developed model of citation dynamics based on copying-redirection-triadic closure and find explanations to our empirical observations.

  3. A power-law coupled three-form dark energy model

    Science.gov (United States)

    Yao, Yan-Hong; Yan, Yang-Jie; Meng, Xin-He

    2018-02-01

    We consider a field theory model of coupled dark energy which treats dark energy as a three-form field and dark matter as a spinor field. By assuming the effective mass of dark matter as a power-law function of the three-form field and neglecting the potential term of dark energy, we obtain three solutions of the autonomous system of evolution equations, including a de Sitter attractor, a tracking solution and an approximate solution. To understand the strength of the coupling, we confront the model with the latest Type Ia Supernova, Baryon Acoustic Oscillations and Cosmic Microwave Background radiation observations, with the conclusion that the combination of these three databases marginalized over the present dark matter density parameter Ω _{m0} and the present three-form field κ X0 gives stringent constraints on the coupling constant, - 0.017< λ <0.047 (2σ confidence level), by which we present the model's applicable parameter range.

  4. A power-law coupled three-form dark energy model

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yan-Hong; Yan, Yang-Jie; Meng, Xin-He [Nankai University, Department of Physics, Tianjin (China)

    2018-02-15

    We consider a field theory model of coupled dark energy which treats dark energy as a three-form field and dark matter as a spinor field. By assuming the effective mass of dark matter as a power-law function of the three-form field and neglecting the potential term of dark energy, we obtain three solutions of the autonomous system of evolution equations, including a de Sitter attractor, a tracking solution and an approximate solution. To understand the strength of the coupling, we confront the model with the latest Type Ia Supernova, Baryon Acoustic Oscillations and Cosmic Microwave Background radiation observations, with the conclusion that the combination of these three databases marginalized over the present dark matter density parameter Ω{sub m0} and the present three-form field κX{sub 0} gives stringent constraints on the coupling constant, -0.017 < λ < 0.047 (2σ confidence level), by which we present the model's applicable parameter range. (orig.)

  5. Dense power-law networks and simplicial complexes

    Science.gov (United States)

    Courtney, Owen T.; Bianconi, Ginestra

    2018-05-01

    There is increasing evidence that dense networks occur in on-line social networks, recommendation networks and in the brain. In addition to being dense, these networks are often also scale-free, i.e., their degree distributions follow P (k ) ∝k-γ with γ ∈(1 ,2 ] . Models of growing networks have been successfully employed to produce scale-free networks using preferential attachment, however these models can only produce sparse networks as the numbers of links and nodes being added at each time step is constant. Here we present a modeling framework which produces networks that are both dense and scale-free. The mechanism by which the networks grow in this model is based on the Pitman-Yor process. Variations on the model are able to produce undirected scale-free networks with exponent γ =2 or directed networks with power-law out-degree distribution with tunable exponent γ ∈(1 ,2 ) . We also extend the model to that of directed two-dimensional simplicial complexes. Simplicial complexes are generalization of networks that can encode the many body interactions between the parts of a complex system and as such are becoming increasingly popular to characterize different data sets ranging from social interacting systems to the brain. Our model produces dense directed simplicial complexes with power-law distribution of the generalized out-degrees of the nodes.

  6. Uniformity measure for power-law mass spectrum in nuclear fragmentation

    International Nuclear Information System (INIS)

    Wislicki, W.

    1992-11-01

    Description is given in terms of the Renyi entropy and the uniformity for the canonical ensemble, the grand canonical ensemble and the power-law probability measures. The study is presented of the power-law spectra of cluster masses observed in nuclear interactions in the vicinity of the liquid-gas transition point. 6 figs., 1 tab., 15 refs. (author)

  7. Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection.

    Science.gov (United States)

    Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin

    2014-10-10

    Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ ≡ B(2)/(4πnm(e)c(2))>1 and when the system size is sufficiently large. In the limit σ ≫ 1, the spectral index approaches p = 1 and most of the available energy is converted into nonthermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection.

  8. Exploring the effect of power law social popularity on language evolution.

    Science.gov (United States)

    Gong, Tao; Shuai, Lan

    2014-01-01

    We evaluate the effect of a power-law-distributed social popularity on the origin and change of language, based on three artificial life models meticulously tracing the evolution of linguistic conventions including lexical items, categories, and simple syntax. A cross-model analysis reveals an optimal social popularity, in which the λ value of the power law distribution is around 1.0. Under this scaling, linguistic conventions can efficiently emerge and widely diffuse among individuals, thus maintaining a useful level of mutual understandability even in a big population. From an evolutionary perspective, we regard this social optimality as a tradeoff among social scaling, mutual understandability, and population growth. Empirical evidence confirms that such optimal power laws exist in many large-scale social systems that are constructed primarily via language-related interactions. This study contributes to the empirical explorations and theoretical discussions of the evolutionary relations between ubiquitous power laws in social systems and relevant individual behaviors.

  9. Adaptive function projective synchronization of two-cell Quantum-CNN chaotic oscillators with uncertain parameters

    International Nuclear Information System (INIS)

    Sudheer, K. Sebastian; Sabir, M.

    2009-01-01

    This work investigates function projective synchronization of two-cell Quantum-CNN chaotic oscillators using adaptive method. Quantum-CNN oscillators produce nano scale chaotic oscillations under certain conditions. By Lyapunove stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems function projective synchronized. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.

  10. On generalized scaling laws with continuously varying exponents

    International Nuclear Information System (INIS)

    Sittler, Lionel; Hinrichsen, Haye

    2002-01-01

    Many physical systems share the property of scale invariance. Most of them show ordinary power-law scaling, where quantities can be expressed as a leading power law times a scaling function which depends on scaling-invariant ratios of the parameters. However, some systems do not obey power-law scaling, instead there is numerical evidence for a logarithmic scaling form, in which the scaling function depends on ratios of the logarithms of the parameters. Based on previous ideas by Tang we propose that this type of logarithmic scaling can be explained by a concept of local scaling invariance with continuously varying exponents. The functional dependence of the exponents is constrained by a homomorphism which can be expressed as a set of partial differential equations. Solving these equations we obtain logarithmic scaling as a special case. The other solutions lead to scaling forms where logarithmic and power-law scaling are mixed

  11. Simple model for the power-law blinking of single semiconductor nanocrystals

    NARCIS (Netherlands)

    Verberk, Rogier; Oijen, Antoine M. van; Orrit, Michel

    2002-01-01

    We assign the blinking of nanocrystals to electron tunneling towards a uniform spatial distribution of traps. This naturally explains the power-law distribution of off times, and the power-law correlation function we measured on uncapped CdS dots. Capped dots, on the other hand, present extended on

  12. The quick convolution of galaxy profiles, with application to power-law intensity distributions

    International Nuclear Information System (INIS)

    Bailey, M.E.; Sparks, W.B.

    1983-01-01

    The two-dimensional convolution of a circularly symmetric galaxy model with a Gaussian point-spread function of dispersion σ reduces to a single integral. This is solved analytically for models with power-law intensity distributions and results are given which relate the apparent core radius to σ and the power-law index k. The convolution integral is also simplified for the case of a point-spread function corresponding to a circular aperture. Models of galactic nuclei with stellar density cusps can only be distinguished from alternatives with small core radii if both the brightness and seeing profiles are measured accurately. The results are applied to data on the light distribution at the Galactic Centre. (author)

  13. Regulatory Powers in Public Procurement Law of Peruvian Administrative Agencies

    Directory of Open Access Journals (Sweden)

    Juan Carlos Morón Urbina

    2017-12-01

    Full Text Available Peruvian law has explicitly recognized regulatory powers to administrative agencies, which allows them to have a preponderant role in the production of rules in public procurement. Although these delegations of legislative authority are positively defined, distortions in the system of legal sources arise when agencies exceed delegated powers or when measures issued by administrative entities are mistaken for regulations. This paper aims to identify regulatory powers of Peruvian administrative agencies, as well as the regulatory measures they issue, and their relation with other sources of law.

  14. Power law scaling in synchronization of brain signals depends on cognitive load

    Directory of Open Access Journals (Sweden)

    Jose Luis ePerez Velazquez

    2014-05-01

    Full Text Available As it has several features that optimize information processing, it has been proposed that criticality governs the dynamics of nervous system activity. Indications of such dynamics have been reported for a variety of in vitro and in vivo recordings, ranging from in vitro slice electrophysiology to human functional magnetic resonance imaging. However, there still remains considerable debate as to whether the brain actually operates close to criticality or in another governing state such as stochastic or oscillatory dynamics. A tool used to investigate the criticality of nervous system data is the inspection of power-law distributions. Although the findings are controversial, such power-law scaling has been found in different types of recordings. Here, we studied whether there is a power law scaling in the distribution of the phase synchronization derived from magnetoencephalographic recordings during executive function tasks performed by children with and without autism. Characterizing the brain dynamics that is different between autistic and non-autistic individuals is important in order to find differences that could either aid diagnosis or provide insights as to possible therapeutic interventions in autism. We report in this study that power law scaling in the distributions of a phase synchrony index is not very common and its frequency of occurrence is similar in the control and the autism group. In addition, power law scaling tends to diminish with increased cognitive load (difficulty or engagement in the task. There were indications of changes in the probability distribution functions for the phase synchrony that were associated with a transition from power law scaling to lack of power law (or vice versa, which suggests the presence of phenomenological bifurcations in brain dynamics associated with cognitive load. Hence, brain dynamics may fluctuate between criticality and other regimes depending upon context and behaviours.

  15. Finite-size effects in transcript sequencing count distribution: its power-law correction necessarily precedes downstream normalization and comparative analysis.

    Science.gov (United States)

    Wong, Wing-Cheong; Ng, Hong-Kiat; Tantoso, Erwin; Soong, Richie; Eisenhaber, Frank

    2018-02-12

    Though earlier works on modelling transcript abundance from vertebrates to lower eukaroytes have specifically singled out the Zip's law, the observed distributions often deviate from a single power-law slope. In hindsight, while power-laws of critical phenomena are derived asymptotically under the conditions of infinite observations, real world observations are finite where the finite-size effects will set in to force a power-law distribution into an exponential decay and consequently, manifests as a curvature (i.e., varying exponent values) in a log-log plot. If transcript abundance is truly power-law distributed, the varying exponent signifies changing mathematical moments (e.g., mean, variance) and creates heteroskedasticity which compromises statistical rigor in analysis. The impact of this deviation from the asymptotic power-law on sequencing count data has never truly been examined and quantified. The anecdotal description of transcript abundance being almost Zipf's law-like distributed can be conceptualized as the imperfect mathematical rendition of the Pareto power-law distribution when subjected to the finite-size effects in the real world; This is regardless of the advancement in sequencing technology since sampling is finite in practice. Our conceptualization agrees well with our empirical analysis of two modern day NGS (Next-generation sequencing) datasets: an in-house generated dilution miRNA study of two gastric cancer cell lines (NUGC3 and AGS) and a publicly available spike-in miRNA data; Firstly, the finite-size effects causes the deviations of sequencing count data from Zipf's law and issues of reproducibility in sequencing experiments. Secondly, it manifests as heteroskedasticity among experimental replicates to bring about statistical woes. Surprisingly, a straightforward power-law correction that restores the distribution distortion to a single exponent value can dramatically reduce data heteroskedasticity to invoke an instant increase in

  16. Spectral Properties, Generation Order Parameters, and Luminosities for Spin-powered X-Ray Pulsars

    Science.gov (United States)

    Wang, Wei; Zhao, Yongheng

    2004-02-01

    We show the spectral properties of 15 spin-powered X-ray pulsars, and the correlation between the average power-law photon index and spin-down rate. Generation order parameters (GOPs) based on polar cap models are introduced to characterize the X-ray pulsars. We calculate three definitions of generation order parameters arising from the different effects of magnetic and electric fields on photon absorption during cascade processes, and study the relations between the GOPs and spectral properties of X-ray pulsars. There exists a possible correlation between the photon index and GOP in our pulsar sample. Furthermore, we present a method stemming from the concept of GOPs to estimate the nonthermal X-ray luminosity for spin-powered pulsars. Then X-ray luminosity is calculated in the context of our polar cap accelerator model, which is consistent with most observed X-ray pulsar data. The ratio between the X-ray luminosity estimated by our method and the pulsar's spin-down power is consistent with the LX~10-3Lsd feature.

  17. Single heavy flavour baryons using Coulomb plus a power law interquark potential

    International Nuclear Information System (INIS)

    Majethiya, A.; Patel, B.; Vinodkumar, P.C.

    2008-01-01

    Properties of single heavy flavor baryons in a non-relativistic potential model with colour Coulomb plus a power law confinement potential have been studied using a simple variational method. The ground-state masses of single heavy baryons and the mass difference between the J P =3/2 + and J P =1/2 + states are computed using a spin-dependent two-body potential. Using the spin-flavour structure of the constituting quarks and by defining an effective confined mass of the constituent quarks within the baryons, the magnetic moments are computed. The masses and magnetic moments of the single heavy baryons are found to be in accordance with the existing experimental values and with other theoretical predictions. It is found that an additional attractive interaction of the order of -200 MeV is required for the antisymmetric states of Λ Q (Q element of c,b). It is also found that the spin-hyperfine interaction parameters play a decisive role in hadron spectroscopy. (orig.)

  18. A theory of power-law distributions in financial market fluctuations.

    Science.gov (United States)

    Gabaix, Xavier; Gopikrishnan, Parameswaran; Plerou, Vasiliki; Stanley, H Eugene

    2003-05-15

    Insights into the dynamics of a complex system are often gained by focusing on large fluctuations. For the financial system, huge databases now exist that facilitate the analysis of large fluctuations and the characterization of their statistical behaviour. Power laws appear to describe histograms of relevant financial fluctuations, such as fluctuations in stock price, trading volume and the number of trades. Surprisingly, the exponents that characterize these power laws are similar for different types and sizes of markets, for different market trends and even for different countries--suggesting that a generic theoretical basis may underlie these phenomena. Here we propose a model, based on a plausible set of assumptions, which provides an explanation for these empirical power laws. Our model is based on the hypothesis that large movements in stock market activity arise from the trades of large participants. Starting from an empirical characterization of the size distribution of those large market participants (mutual funds), we show that the power laws observed in financial data arise when the trading behaviour is performed in an optimal way. Our model additionally explains certain striking empirical regularities that describe the relationship between large fluctuations in prices, trading volume and the number of trades.

  19. Active Power Filter DC Bus Voltage Piecewise Reaching Law Variable Structure Control

    Directory of Open Access Journals (Sweden)

    Baolian Liu

    2014-01-01

    Full Text Available The DC bus voltage stability control is one key technology to ensure that Active Power Filter (APF operates stably. The external disturbances such as power grid and load fluctuation and the system parameters changing may affect the stability of APF DC bus voltage and the normal operation of APF. The mathematical model of DC bus voltage is established according to power balance principle and a DC bus voltage piecewise reaching law variable structure control algorithm is proposed to solve the above problem, and the design method is given. The simulation and experiment results proved that the proposed variable structure control algorithm can eliminate the chattering problem existing in traditional variable structure control effectively, is insensitive to system disturbance, and has good robustness and fast dynamic response speed and stable DC bus voltage with small fluctuation. The above advantages ensure the compensation effect of APF.

  20. Power-law to Power-law Mapping of Blazar Spectra from Intergalactic Absorption

    International Nuclear Information System (INIS)

    Stecker, F W; Scully, S T

    2007-01-01

    We have derived a useful analytic approximation for determining the effect of intergalactic absorption on the γ-ray spectra of TeV blazars the energy range 0.2 TeV γ γ ) is approximately logarithmic. The effect of this energy dependence is to steepen intrinsic source spectra such that a source with an approximate power-law spectral index Γ s is converted to one with an observed spectral index Γ o ≅ Γ s + ΔΓ(z) where ΔΓ(z) is a linear function of z in the redshift range 0.05-0.4. We apply this approximation to the spectra of 7 TeV blazars

  1. Tunable power law in the desynchronization events of coupled chaotic electronic circuits

    International Nuclear Information System (INIS)

    Oliveira, Gilson F. de; Lorenzo, Orlando di; Chevrollier, Martine; Passerat de Silans, Thierry; Oriá, Marcos; Souza Cavalcante, Hugo L. D. de

    2014-01-01

    We study the statistics of the amplitude of the synchronization error in chaotic electronic circuits coupled through linear feedback. Depending on the coupling strength, our system exhibits three qualitatively different regimes of synchronization: weak coupling yields independent oscillations; moderate to strong coupling produces a regime of intermittent synchronization known as attractor bubbling; and stronger coupling produces complete synchronization. In the regime of moderate coupling, the probability distribution for the sizes of desynchronization events follows a power law, with an exponent that can be adjusted by changing the coupling strength. Such power-law distributions are interesting, as they appear in many complex systems. However, most of the systems with such a behavior have a fixed value for the exponent of the power law, while here we present an example of a system where the exponent of the power law is easily tuned in real time

  2. Electron-atom spin asymmetry and two-electron photodetachment - Addenda to the Coulomb-dipole threshold law

    Science.gov (United States)

    Temkin, A.

    1984-01-01

    Temkin (1982) has derived the ionization threshold law based on a Coulomb-dipole theory of the ionization process. The present investigation is concerned with a reexamination of several aspects of the Coulomb-dipole threshold law. Attention is given to the energy scale of the logarithmic denominator, the spin-asymmetry parameter, and an estimate of alpha and the energy range of validity of the threshold law, taking into account the result of the two-electron photodetachment experiment conducted by Donahue et al. (1984).

  3. Birth and death of protein domains: A simple model of evolution explains power law behavior

    Directory of Open Access Journals (Sweden)

    Berezovskaya Faina S

    2002-10-01

    Full Text Available Abstract Background Power distributions appear in numerous biological, physical and other contexts, which appear to be fundamentally different. In biology, power laws have been claimed to describe the distributions of the connections of enzymes and metabolites in metabolic networks, the number of interactions partners of a given protein, the number of members in paralogous families, and other quantities. In network analysis, power laws imply evolution of the network with preferential attachment, i.e. a greater likelihood of nodes being added to pre-existing hubs. Exploration of different types of evolutionary models in an attempt to determine which of them lead to power law distributions has the potential of revealing non-trivial aspects of genome evolution. Results A simple model of evolution of the domain composition of proteomes was developed, with the following elementary processes: i domain birth (duplication with divergence, ii death (inactivation and/or deletion, and iii innovation (emergence from non-coding or non-globular sequences or acquisition via horizontal gene transfer. This formalism can be described as a birth, death and innovation model (BDIM. The formulas for equilibrium frequencies of domain families of different size and the total number of families at equilibrium are derived for a general BDIM. All asymptotics of equilibrium frequencies of domain families possible for the given type of models are found and their appearance depending on model parameters is investigated. It is proved that the power law asymptotics appears if, and only if, the model is balanced, i.e. domain duplication and deletion rates are asymptotically equal up to the second order. It is further proved that any power asymptotic with the degree not equal to -1 can appear only if the hypothesis of independence of the duplication/deletion rates on the size of a domain family is rejected. Specific cases of BDIMs, namely simple, linear, polynomial and rational

  4. Influence of the power law index on the fiber breakage during injection molding by numerical simulations

    Science.gov (United States)

    Desplentere, Frederik; Six, Wim; Bonte, Hilde; Debrabandere, Eric

    2013-04-01

    In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length > 15mm) this investigation concentrates on the influence of the power law index on the final fiber length distribution within the injection molded part. To realize this, the Autodesk Simulation Moldflow Insight Scandium 2013 software has been used. In this software, a fiber breakage algorithm is available from this release on. Using virtual material data with realistic viscosity levels allows to separate the influence of the power law index on the fiber breakage from the other material and process parameters. Applying standard settings for the fiber breakage parameters results in an obvious influence on the fiber length distribution through the thickness of the part and also as function of position in the part. Finally, the influence of the shear rate constant within the fiber breakage model has been investigated illustrating the possibility to fit the virtual fiber length distribution to the possible experimentally available data.

  5. From conservation laws to port-Hamiltonian representations of distributed-parameter systems

    NARCIS (Netherlands)

    Maschke, B.M.; van der Schaft, Arjan; Piztek, P.

    Abstract: In this paper it is shown how the port-Hamiltonian formulation of distributed-parameter systems is closely related to the general thermodynamic framework of systems of conservation laws and closure equations. The situation turns out to be similar to the lumped-parameter case where the

  6. Inertia effects in the laminar radial flow of a power law fluid with an electromagnetic field

    International Nuclear Information System (INIS)

    Chen, C.-K.; Chen, K.-H.; Wu, C.-Y.

    1984-01-01

    An approximate study of the pressure distribution for the radial flow of a non-newtonian (power law) fluid between two parallel disks in the presence of an axial electrical field is obtained by using the momentum and energy integral methods. For a non-newtonian fluid it is shown that the inertia effect must be considered to be significant for the pressure distribution, especially for the power law fluids with n >= 1. Furthermore, it is seen that the inertia effect will also lower the load capacity of the disks. (Auth.)

  7. Two-dimensional divertor modeling and scaling laws

    International Nuclear Information System (INIS)

    Catto, P.J.; Connor, J.W.; Knoll, D.A.

    1996-01-01

    Two-dimensional numerical models of divertors contain large numbers of dimensionless parameters that must be varied to investigate all operating regimes of interest. To simplify the task and gain insight into divertor operation, we employ similarity techniques to investigate whether model systems of equations plus boundary conditions in the steady state admit scaling transformations that lead to useful divertor similarity scaling laws. A short mean free path neutral-plasma model of the divertor region below the x-point is adopted in which all perpendicular transport is due to the neutrals. We illustrate how the results can be used to benchmark large computer simulations by employing a modified version of UEDGE which contains a neutral fluid model. (orig.)

  8. Virtual walks in spin space: A study in a family of two-parameter models

    Science.gov (United States)

    Mullick, Pratik; Sen, Parongama

    2018-05-01

    We investigate the dynamics of classical spins mapped as walkers in a virtual "spin" space using a generalized two-parameter family of spin models characterized by parameters y and z [de Oliveira et al., J. Phys. A 26, 2317 (1993), 10.1088/0305-4470/26/10/006]. The behavior of S (x ,t ) , the probability that the walker is at position x at time t , is studied in detail. In general S (x ,t ) ˜t-αf (x /tα) with α ≃1 or 0.5 at large times depending on the parameters. In particular, S (x ,t ) for the point y =1 ,z =0.5 corresponding to the Voter model shows a crossover in time; associated with this crossover, two timescales can be defined which vary with the system size L as L2logL . We also show that as the Voter model point is approached from the disordered regions along different directions, the width of the Gaussian distribution S (x ,t ) diverges in a power law manner with different exponents. For the majority Voter case, the results indicate that the the virtual walk can detect the phase transition perhaps more efficiently compared to other nonequilibrium methods.

  9. Numerical Study of the Magnetic Field Effects on the Heat Transfer and Entropy Generation Aspects of a Power Law Fluid over an Axisymmetric Stretching Plate Structure

    Directory of Open Access Journals (Sweden)

    Payam Hooshmand

    2017-03-01

    Full Text Available Numerical investigation of the effects of magnetic field strength, thermal radiation, Joule heating, and viscous heating on a forced convective flow of a non-Newtonian, incompressible power law fluid in an axisymmetric stretching sheet with variable temperature wall is accomplished. The power law shear thinning viscosity-shear rate model for the anisotropic solutions and the Rosseland approximation for the thermal radiation through a highly absorbing medium are considered. The temperature dependent heat sources, Joule heating, and viscous heating are considered as the source terms in the energy balance. The non-dimensional boundary layer equations are solved numerically in terms of similarity variable. A parameter study on the Nusselt number, viscous components of entropy generation, and thermal components of entropy generation in fluid is performed as a function of thermal radiation parameter (0 to 2, Brinkman number (0 to 10, Prandtl number (0 to 10, Hartmann number (0 to 1, power law index (0 to 1, and heat source coefficient (0 to 0.1.

  10. The relationship between randomness and power-law distributed move lengths in random walk algorithms

    Science.gov (United States)

    Sakiyama, Tomoko; Gunji, Yukio-Pegio

    2014-05-01

    Recently, we proposed a new random walk algorithm, termed the REV algorithm, in which the agent alters the directional rule that governs it using the most recent four random numbers. Here, we examined how a non-bounded number, i.e., "randomness" regarding move direction, was important for optimal searching and power-law distributed step lengths in rule change. We proposed two algorithms: the REV and REV-bounded algorithms. In the REV algorithm, one of the four random numbers used to change the rule is non-bounded. In contrast, all four random numbers in the REV-bounded algorithm are bounded. We showed that the REV algorithm exhibited more consistent power-law distributed step lengths and flexible searching behavior.

  11. Consistency relation in power law G-inflation

    International Nuclear Information System (INIS)

    Unnikrishnan, Sanil; Shankaranarayanan, S.

    2014-01-01

    In the standard inflationary scenario based on a minimally coupled scalar field, canonical or non-canonical, the subluminal propagation of speed of scalar perturbations ensures the following consistency relation: r ≤ −8n T , where r is the tensor-to-scalar-ratio and n T is the spectral index for tensor perturbations. However, recently, it has been demonstrated that this consistency relation could be violated in Galilean inflation models even in the absence of superluminal propagation of scalar perturbations. It is therefore interesting to investigate whether the subluminal propagation of scalar field perturbations impose any bound on the ratio r/|n T | in G-inflation models. In this paper, we derive the consistency relation for a class of G-inflation models that lead to power law inflation. Within these class of models, it turns out that one can have r > −8n T or r ≤ −8n T depending on the model parameters. However, the subluminal propagation of speed of scalar field perturbations, as required by causality, restricts r ≤ −(32/3) n T

  12. Proposed law concerning the phase-out of nuclear power

    International Nuclear Information System (INIS)

    1997-01-01

    This Government bill that will be presented to the Swedish Parliament, gives the Government the right to revoke the licence of operating a nuclear power plant at a certain time. The operator is given the right to a financial compensation when the licence is revoked, in line with the rules in the expropriation laws. Safety aspects of operation of nuclear installations are not regulated in this law, i.e. the law can not be used when the operating licence is revoked due to safety reasons

  13. Focus-based filtering + clustering technique for power-law networks with small world phenomenon

    Science.gov (United States)

    Boutin, François; Thièvre, Jérôme; Hascoët, Mountaz

    2006-01-01

    Realistic interaction networks usually present two main properties: a power-law degree distribution and a small world behavior. Few nodes are linked to many nodes and adjacent nodes are likely to share common neighbors. Moreover, graph structure usually presents a dense core that is difficult to explore with classical filtering and clustering techniques. In this paper, we propose a new filtering technique accounting for a user-focus. This technique extracts a tree-like graph with also power-law degree distribution and small world behavior. Resulting structure is easily drawn with classical force-directed drawing algorithms. It is also quickly clustered and displayed into a multi-level silhouette tree (MuSi-Tree) from any user-focus. We built a new graph filtering + clustering + drawing API and report a case study.

  14. Poissonian renormalizations, exponentials, and power laws.

    Science.gov (United States)

    Eliazar, Iddo

    2013-05-01

    This paper presents a comprehensive "renormalization study" of Poisson processes governed by exponential and power-law intensities. These Poisson processes are of fundamental importance, as they constitute the very bedrock of the universal extreme-value laws of Gumbel, Fréchet, and Weibull. Applying the method of Poissonian renormalization we analyze the emergence of these Poisson processes, unveil their intrinsic dynamical structures, determine their domains of attraction, and characterize their structural phase transitions. These structural phase transitions are shown to be governed by uniform and harmonic intensities, to have universal domains of attraction, to uniquely display intrinsic invariance, and to be intimately connected to "white noise" and to "1/f noise." Thus, we establish a Poissonian explanation to the omnipresence of white and 1/f noises.

  15. Resurrecting the Power-law, Intermediate, and Logamediate Inflations in the DBI Scenario with Constant Sound Speed

    Science.gov (United States)

    Amani, Roonak; Rezazadeh, Kazem; Abdolmaleki, Asrin; Karami, Kayoomars

    2018-02-01

    We investigate the power-law, intermediate, and logamediate inflationary models in the framework of DBI non-canonical scalar field with constant sound speed. In the DBI setting, we first represent the power spectrum of both scalar density and tensor gravitational perturbations. Then, we derive different inflationary observables including the scalar spectral index n s , the running of the scalar spectral index {{dn}}s/d{ln}k, and the tensor-to-scalar ratio r. We show that the 95% CL constraint of the Planck 2015 T + E data on the non-Gaussianity parameter {f}{NL}{DBI} leads to the sound speed bound {c}s≥slant 0.087 in the DBI inflation. Moreover, our results imply that, although the predictions of the power-law, intermediate, and logamediate inflations in the standard canonical framework (c s = 1) are not consistent with the Planck 2015 data, in the DBI scenario with constant sound speed {c}srunning of the scalar spectral index and find that it is compatible with the 95% CL constraint from the Planck 2015 TT,TE,EE+lowP data.

  16. Evaluation of 'period-generated' control laws for the time-optimal control of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1988-01-01

    Time-Optimal control of neutronic power has recently been achieved by developing control laws that determine the actuator mechanism velocity necessary to produce a specified reactor period. These laws are designated as the 'MIT-SNL Period-Generated Minimum Time Control Laws'. Relative to time-optimal response, they function by altering the rate of change of reactivity so that the instantaneous period is stepped from infinity to its minimum allowed value, held at that value until the desired power level is attained, and then stepped back to infinity. The results of a systematic evaluation of these laws are presented. The behavior of each term in the control laws is shown and the capability of these laws to control properly the reactor power is demonstrated. Factors affecting the implementation of these laws, such as the prompt neutron lifetime and the differential reactivity worth of the actuators, are discussed. Finally, the results of an experimental study in which these laws were used to adjust the power of the 5 MWt MIT Research Reactor are shown. The information presented should be of interest to those designing high performance control systems for test, spacecraft, or, in certain instances, commercial reactors

  17. Mathematical modeling for laminar flow of power law fluid in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Renato A.; Mesquita, Maximilian S. [Universidade Federal do Espirito Santo (UFES), Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Dept. de Engenharias e Computacao

    2010-07-01

    In this paper, the macroscopic equations for laminar power-law fluid flow is obtained for a porous medium starting from traditional equations (Navier-Stokes). Then, the volume averaging is applied in traditional transport equations with the power-law fluid model. This procedure leads to macroscopic transport equations set for non-Newtonian fluid. (author)

  18. Data adaptive control parameter estimation for scaling laws

    Energy Technology Data Exchange (ETDEWEB)

    Dinklage, Andreas [Max-Planck-Institut fuer Plasmaphysik, Teilinstitut Greifswald, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Dose, Volker [Max-Planck- Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2007-07-01

    Bayesian experimental design quantifies the utility of data expressed by the information gain. Data adaptive exploration determines the expected utility of a single new measurement using existing data and a data descriptive model. In other words, the method can be used for experimental planning. As an example for a multivariate linear case, we apply this method for constituting scaling laws of fusion devices. In detail, the scaling of the stellarator W7-AS is examined for a subset of {iota}=1/3 data. The impact of the existing data on the scaling exponents is presented. Furthermore, in control parameter space regions of high utility are identified which improve the accuracy of the scaling law. This approach is not restricted to the presented example only, but can also be extended to non-linear models.

  19. Power law behavior of RR-interval variability in healthy middle-aged persons, patients with recent acute myocardial infarction, and patients with heart transplants

    Science.gov (United States)

    Bigger, J. T. Jr; Steinman, R. C.; Rolnitzky, L. M.; Fleiss, J. L.; Albrecht, P.; Cohen, R. J.

    1996-01-01

    BACKGROUND. The purposes of the present study were (1) to establish normal values for the regression of log(power) on log(frequency) for, RR-interval fluctuations in healthy middle-aged persons, (2) to determine the effects of myocardial infarction on the regression of log(power) on log(frequency), (3) to determine the effect of cardiac denervation on the regression of log(power) on log(frequency), and (4) to assess the ability of power law regression parameters to predict death after myocardial infarction. METHODS AND RESULTS. We studied three groups: (1) 715 patients with recent myocardial infarction; (2) 274 healthy persons age and sex matched to the infarct sample; and (3) 19 patients with heart transplants. Twenty-four-hour RR-interval power spectra were computed using fast Fourier transforms and log(power) was regressed on log(frequency) between 10(-4) and 10(-2) Hz. There was a power law relation between log(power) and log(frequency). That is, the function described a descending straight line that had a slope of approximately -1 in healthy subjects. For the myocardial infarction group, the regression line for log(power) on log(frequency) was shifted downward and had a steeper negative slope (-1.15). The transplant (denervated) group showed a larger downward shift in the regression line and a much steeper negative slope (-2.08). The correlation between traditional power spectral bands and slope was weak, and that with log(power) at 10(-4) Hz was only moderate. Slope and log(power) at 10(-4) Hz were used to predict mortality and were compared with the predictive value of traditional power spectral bands. Slope and log(power) at 10(-4) Hz were excellent predictors of all-cause mortality or arrhythmic death. To optimize the prediction of death, we calculated a log(power) intercept that was uncorrelated with the slope of the power law regression line. We found that the combination of slope and zero-correlation log(power) was an outstanding predictor, with a

  20. Classical orbits in power-law potentials

    International Nuclear Information System (INIS)

    Grant, A.K.; Rosner, J.L.

    1994-01-01

    The motion of bodies in power-law potentials of the form V(r)=λr α has been of interest ever since the time of Newton and Hooke. Aspects of the relation between powers α and bar α, where (α+2)(bar α+2)=4, are derived for classical motion and the relation to the quantum-mechanical problem is given. An improvement on a previous expression for the WKB quantization condition for nonzero orbital angular momenta is obtained. Relations with previous treatments, such as those of Newton, Bertrand, Bohlin, Faure, and Arnold, are noted, and a brief survey of the literature on the problem over more than three centuries is given

  1. Universal Expression of Efficiency at Maximum Power: A Quantum-Mechanical Brayton Engine Working with a Single Particle Confined in a Power-Law Trap

    International Nuclear Information System (INIS)

    Ye Zhuo-Lin; Li Wei-Sheng; Lai Yi-Ming; He Ji-Zhou; Wang Jian-Hui

    2015-01-01

    We propose a quantum-mechanical Brayton engine model that works between two superposed states, employing a single particle confined in an arbitrary power-law trap as the working substance. Applying the superposition principle, we obtain the explicit expressions of the power and efficiency, and find that the efficiency at maximum power is bounded from above by the function: η_+ = θ/(θ + 1), with θ being a potential-dependent exponent. (paper)

  2. Characterizing biogenous sediments using multibeam echosounder backscatter data - Estimating power law parameter utilizing various models

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Kodagali, V.N.

    parameters. However, computed using two-layer H-K theory, does not show any similarity with the multiscale based composite roughness theory (3.06) [7]. Estimated parameter of the entire bottom is found to be equivalent to the value of the subsurface...

  3. Power-law versus exponential relaxation of {sup 29}Si nucleus spins in Si:B crystals

    Energy Technology Data Exchange (ETDEWEB)

    Koplak, O.V. [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Taras Shevchenko Kiev National University and National Academy of Sciences, 01033 Kiev (Ukraine); Talantsev, A.D., E-mail: adt@icp.ac.ru [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Morgunov, R.B. [Institute of Problems of Chemical Physics, 142432 Chernogolovka, Moscow (Russian Federation); Sholokhov Moscow State University for the Humanities, 109240 Moscow (Russian Federation)

    2016-02-15

    The Si:B micro-crystals enriched with {sup 29}Si isotope have been studied by high resolution nuclear magnetic resonance (NMR) in the 300–800 K temperature range. The recovery of nuclear magnetization saturated by radiofrequency impulses follows pure power-law kinetics at 300 K, while admixture of exponential relaxation takes place at 500 K. The power-law relaxation corresponds to direct electron–nuclear relaxation due to the inhomogeneous distribution of paramagnetic centers, while exponential kinetics corresponds to the nuclear spin diffusion mechanism. The inhomogeneous distribution of deformation defects is a most probable reason of the power-law kinetics of nuclear spin relaxation. - Highlights: • {sup 29}Si nuclear magnetization relaxation follows mixed power-exponential law. • Power-law corresponds to direct electron–nuclear relaxation. • Admixture of exponential relaxation corresponds to the nuclear spin diffusion. • Inhomogeneously distributed deformation defects are responsible for power low. • Homogeneously distributed Boron acceptors are responsible for exponential part.

  4. Poissonian renormalizations, exponentials, and power laws

    Science.gov (United States)

    Eliazar, Iddo

    2013-05-01

    This paper presents a comprehensive “renormalization study” of Poisson processes governed by exponential and power-law intensities. These Poisson processes are of fundamental importance, as they constitute the very bedrock of the universal extreme-value laws of Gumbel, Fréchet, and Weibull. Applying the method of Poissonian renormalization we analyze the emergence of these Poisson processes, unveil their intrinsic dynamical structures, determine their domains of attraction, and characterize their structural phase transitions. These structural phase transitions are shown to be governed by uniform and harmonic intensities, to have universal domains of attraction, to uniquely display intrinsic invariance, and to be intimately connected to “white noise” and to “1/f noise.” Thus, we establish a Poissonian explanation to the omnipresence of white and 1/f noises.

  5. Optimal Parameter Selection of Power System Stabilizer using Genetic Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hyeng Hwan; Chung, Dong Il; Chung, Mun Kyu [Dong-AUniversity (Korea); Wang, Yong Peel [Canterbury Univeristy (New Zealand)

    1999-06-01

    In this paper, it is suggested that the selection method of optimal parameter of power system stabilizer (PSS) with robustness in low frequency oscillation for power system using real variable elitism genetic algorithm (RVEGA). The optimal parameters were selected in the case of power system stabilizer with one lead compensator, and two lead compensator. Also, the frequency responses characteristics of PSS, the system eigenvalues criterion and the dynamic characteristics were considered in the normal load and the heavy load, which proved usefulness of RVEGA compare with Yu's compensator design theory. (author). 20 refs., 15 figs., 8 tabs.

  6. Power and Law in Enlightened Absolutism – Carl Gottlieb Svarez’ Theoretical and Practical Approach

    Directory of Open Access Journals (Sweden)

    Milan Kuhli

    2013-01-01

    Full Text Available The term Enlightened Absolutism reflects a certain tension between its two components. This tension is in a way a continuation of the dichotomy between power on one hand and law on the other. The present paper shall provide an analysis of these two concepts from the perspective of Carl Gottlieb Svarez, who, in his position as a high-ranking Prussian civil servant and legal reformist, had unparalleled influence on the legislative history of the Prussian states towards the end of the 18th century. Working side-by-side with Johann Heinrich Casimir von Carmer, who held the post of Prussian minister of justice from 1779 to 1798, Svarez was able to make use of his talent for reforming and legislating. From 1780 to 1794 he was primarily responsible for the elaboration of the codification of the Prussian private law – the »Allgemeines Landrecht für die Preußischen Staaten« in 1794. In the present paper, Svarez’ approach to the relation between law and power shall be analysed on two different levels. Firstly, on a theoretical level, the reformist’s thoughts and reflections as laid down in his numerous works, papers and memorandums, shall be discussed. Secondly, on a practical level, the question of the extent to which he implemented his ideas in Prussian legal reality shall be explored.

  7. Critical review of the first-law efficiency in different power combined cycle architectures

    International Nuclear Information System (INIS)

    Iglesias Garcia, Steven; Ferreiro Garcia, Ramon; Carbia Carril, Jose; Iglesias Garcia, Denis

    2017-01-01

    Highlights: • The adiabatic expansion based TC can improve the energy efficiency of CCs. • A revolutionary TC can be a starting point to develop high-performance CCs. • A theoretical thermal efficiency of 83.7% was reached in a Nuclear Power Plant using a TC as bottoming cycle. - Abstract: This critical review explores the potential of an innovative trilateral thermodynamic cycle used to transform low-grade heat into mechanical work and compares its performance with relevant traditional thermodynamic cycles in combined cycles. The aim of this work is to show that combined cycles use traditional low efficiency power cycles in their bottoming cycle, and to evaluate theoretically the implementation of alternative power bottoming cycles. Different types of combined cycles have been reviewed, highlighting their relevant characteristics. The efficiencies of power plants using combined cycles are reviewed and compared. The relevance of researching thermodynamic cycles for combined cycle applications is that a vast amount of heat energy is available at negligible cost in the bottoming cycle of a combined cycle, with the drawback that existing thermal cycles cannot make efficient use of such available low temperature heat due to their low efficiency. The first-law efficiency is used as a parameter to compare and suggest improvements in the combined cycles (CCs) reviewed. The analysis shows that trilateral cycles using closed processes are by far the most efficient published thermal cycles for combined cycles to transform low-grade heat into mechanical work. An innovative trilateral bottoming cycle is proposed to show that the application of non-traditional power cycles can increase significantly the first-law efficiency of CCs. The highest first-law efficiencies achieved are: 85.55% in a CC using LNG cool, 73.82% for a transport vehicle CC, 74.40% in a marine CC, 83.07% in a CC for nuclear power plants, 73.82% in a CC using Brayton and Rankine cycles, 78.31% in a CC

  8. Validation of a power-law noise model for simulating small-scale breast tissue

    International Nuclear Information System (INIS)

    Reiser, I; Edwards, A; Nishikawa, R M

    2013-01-01

    We have validated a small-scale breast tissue model based on power-law noise. A set of 110 patient images served as truth. The statistical model parameters were determined by matching the radially averaged power-spectrum of the projected simulated tissue with that of the central tomosynthesis patient breast projections. Observer performance in a signal-known exactly detection task in simulated and actual breast backgrounds was compared. Observers included human readers, a pre-whitening observer model and a channelized Hotelling observer model. For all observers, good agreement between performance in the simulated and actual backgrounds was found, both in the tomosynthesis central projections and the reconstructed images. This tissue model can be used for breast x-ray imaging system optimization. The complete statistical description of the model is provided. (paper)

  9. Characterizing and predicting the robustness of power-law networks

    International Nuclear Information System (INIS)

    LaRocca, Sarah; Guikema, Seth D.

    2015-01-01

    Power-law networks such as the Internet, terrorist cells, species relationships, and cellular metabolic interactions are susceptible to node failures, yet maintaining network connectivity is essential for network functionality. Disconnection of the network leads to fragmentation and, in some cases, collapse of the underlying system. However, the influences of the topology of networks on their ability to withstand node failures are poorly understood. Based on a study of the response of 2000 randomly-generated power-law networks to node failures, we find that networks with higher nodal degree and clustering coefficient, lower betweenness centrality, and lower variability in path length and clustering coefficient maintain their cohesion better during such events. We also find that network robustness, i.e., the ability to withstand node failures, can be accurately predicted a priori for power-law networks across many fields. These results provide a basis for designing new, more robust networks, improving the robustness of existing networks such as the Internet and cellular metabolic pathways, and efficiently degrading networks such as terrorist cells. - Highlights: • Examine relationship between network topology and robustness to failures. • Relationship is statistically significant for scale-free networks. • Use statistical models to estimate robustness to failures for real-world networks

  10. The field-induced laws of thermodynamic properties in the two-dimensional spin-1 ferromagnetic Heisenberg model with the exchange and single-ion anisotropies

    International Nuclear Information System (INIS)

    Pu Qiurong; Chen Yuan

    2013-01-01

    Green's function method is applied to investigate the two-dimensional spin-1 ferromagnetic Heisenberg model with the exchange and single-ion anisotropies. In the presence of the magnetic field, the effects of the anisotropies and field on the thermodynamic properties are obtained within the random phase approximation combining with Anderson-Callen approximation. The field-induced laws are found for the thermodynamic properties. Field dependences of heights of the susceptibility maximum and specific heat maximum fit well to power laws. The linear increase at high fields is shown for positions of the susceptibility maximum and specific heat maximum. A power law at low fields occurs for the position of the susceptibility maximum. At the positions of the maxima, the magnetization and internal energy display the power-law increase and linear decrease with the field, respectively. The exponents of the power laws are dependent of the anisotropies, as well as the slopes of the linear laws. Our results do not support the 2/3 power law which was obtained by the Landau theory.

  11. Precision of quantization of the hall conductivity in a finite-size sample: Power law

    International Nuclear Information System (INIS)

    Greshnov, A. A.; Kolesnikova, E. N.; Zegrya, G. G.

    2006-01-01

    A microscopic calculation of the conductivity in the integer quantum Hall effect (IQHE) mode is carried out. The precision of quantization is analyzed for finite-size samples. The precision of quantization shows a power-law dependence on the sample size. A new scaling parameter describing this dependence is introduced. It is also demonstrated that the precision of quantization linearly depends on the ratio between the amplitude of the disorder potential and the cyclotron energy. The data obtained are compared with the results of magnetotransport measurements in mesoscopic samples

  12. Why Does Not the Leaf Weight-Area Allometry of Bamboos Follow the 3/2-Power Law?

    Directory of Open Access Journals (Sweden)

    Shuyan Lin

    2018-05-01

    Full Text Available The principle of similarity (Thompson, 1917 states that the weight of an organism follows the 3/2-power law of its surface area and is proportional to its volume on the condition that the density is constant. However, the allometric relationship between leaf weight and leaf area has been reported to greatly deviate from the 3/2-power law, with the irregularity of leaf density largely ignored for explaining this deviation. Here, we choose 11 bamboo species to explore the allometric relationships among leaf area (A, density (ρ, length (L, thickness (T, and weight (W. Because the edge of a bamboo leaf follows a simplified two-parameter Gielis equation, we could show that A ∝ L2 and that A ∝ T2. This then allowed us to derive the density-thickness allometry ρ ∝ Tb and the weight-area allometry W ∝ A(b+3/2 ≈ A9/8, where b approximates −3/4. Leaf density is strikingly negatively associated with leaf thickness, and it is this inverse relationship that results in the weight-area allometry to deviate from the 3/2-power law. In conclusion, although plants are prone to invest less dry mass and thus produce thinner leaves when the leaf area is sufficient for photosynthesis, such leaf thinning needs to be accompanied with elevated density to ensure structural stability. The findings provide the insights on the evolutionary clue about the biomass investment and output of photosynthetic organs of plants. Because of the importance of leaves, plants could have enhanced the ratio of dry material per unit area of leaf in order to increase the efficiency of photosynthesis, relative the other parts of plants. Although the conclusion is drawn only based on 11 bamboo species, it should also be applicable to the other plants, especially considering previous works on the exponent of the weight-area relationship being less than 3/2 in plants.

  13. The power of law : Spinoza’s contribution to legal theory

    NARCIS (Netherlands)

    Gribnau, J.L.M.

    1995-01-01

    Spinoza’s legal theoretical ideas are based on psychological and sociological regularities in human behaviour of knowledge. His naturalistic and descriptive approach of the relationship between law and power shows that the exercise of state power on that basis - within the constitutional constraints

  14. Power-law Growth and Punctuated Equilibrium Dynamics in Water Resources Systems

    Science.gov (United States)

    Parolari, A.; Katul, G. G.; Porporato, A. M.

    2015-12-01

    The global rise in population-driven water scarcity and recent appreciation of strong dynamic coupling between human and natural systems has called for new approaches to predict the future sustainability of regional and global water resources systems. The dynamics of coupled human-water systems are driven by a complex set of social, environmental, and technological factors. Present projections of water resources systems range from a finite carrying capacity regulated by accessible freshwater, or `peak renewable water,' to punctuated evolution with new supplied and improved efficiency gained from technological and social innovation. However, these projections have yet to be quantified from observations or in a comprehensive theoretical framework. Using data on global water withdrawals and storage capacity of regional water supply systems, non-trivial dynamics are identified in water resources systems development over time, including power-law growth and punctuated equilibria. Two models are introduced to explain this behavior: (1) a delay differential equation and (2) a power-law with log-periodic oscillations, both of which rely on past conditions (or system memory) to describe the present rate of growth in the system. In addition, extension of the first model demonstrates how system delays and punctuated equilibria can emerge from coupling between human population growth and associated resource demands. Lastly, anecdotal evidence is used to demonstrate the likelihood of power-law growth in global water use from the agricultural revolution 3000 BC to the present. In a practical sense, the presence of these patterns in models with delayed oscillations suggests that current decision-making related to water resources development results from the historical accumulation of resource use decisions, technological and social changes, and their consequences.

  15. Experimental investigation on the spray characteristics of power-law fluid in a swirl injector

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Fuqiang; Chen, Shixing; Guo, Jinpeng; Jiao, Kui; Du, Qing [State Key Laboratory of Engines, Tianjin University, Tianjin, 300072 (China); Chang, Qing, E-mail: duqing@tju.edu.cn [Wuxi Fuel Injection Equipment Research Institute, China FAW CO., Wuxi, 214063 (China)

    2017-06-15

    High-speed photography and 3D phase Doppler methods are used to obtain the swirl jet images, 3D velocities and size distribution of different droplets (including deionized water and two kinds of power-law fluid). For the power-law fluids, a short circular jet is formed after the nozzle exit at low pressure. Along the X direction, the distributions of axial velocity w and Sauter mean diameter (SMD) are symmetrical and increase from the center to both sides. The effect of injection pressure on the radial velocity u is not obvious. Along the Z axis, the absolute value of 3D velocities decreases to some extent with droplets moving downstream. The SMD decreases apparently with the increment of the distance along the Z axis at 1.0 MPa. (paper)

  16. Homotopy Perturbation Method for Creeping Flow of Non-Newtonian Power-Law Nanofluid in a Nonuniform Inclined Channel with Peristalsis

    Science.gov (United States)

    Abou-zeid, Mohamed Y.; Mohamed, Mona A. A.

    2017-09-01

    This article is an analytic discussion for the motion of power-law nanofluid with heat transfer under the effect of viscous dissipation, radiation, and internal heat generation. The governing equations are discussed under the assumptions of long wavelength and low Reynolds number. The solutions for temperature and nanoparticle profiles are obtained by using homotopy perturbation method. Results for the behaviours of the axial velocity, temperature, and nanoparticles as well as the skin friction coefficient, reduced Nusselt number, and Sherwood number with other physical parameters are obtained graphically and analytically. It is found that as the power-law exponent increases, both the axial velocity and temperature increase, whereas nanoparticles decreases. These results may have applicable importance in the research discussions of nanofluid flow in channels with small diameters under the effect of different temperature distributions.

  17. Power Laws, Scale-Free Networks and Genome Biology

    CERN Document Server

    Koonin, Eugene V; Karev, Georgy P

    2006-01-01

    Power Laws, Scale-free Networks and Genome Biology deals with crucial aspects of the theoretical foundations of systems biology, namely power law distributions and scale-free networks which have emerged as the hallmarks of biological organization in the post-genomic era. The chapters in the book not only describe the interesting mathematical properties of biological networks but moves beyond phenomenology, toward models of evolution capable of explaining the emergence of these features. The collection of chapters, contributed by both physicists and biologists, strives to address the problems in this field in a rigorous but not excessively mathematical manner and to represent different viewpoints, which is crucial in this emerging discipline. Each chapter includes, in addition to technical descriptions of properties of biological networks and evolutionary models, a more general and accessible introduction to the respective problems. Most chapters emphasize the potential of theoretical systems biology for disco...

  18. Evidence for intermittency and a truncated power law from highly resolved aphid movement data.

    Science.gov (United States)

    Mashanova, Alla; Oliver, Tom H; Jansen, Vincent A A

    2010-01-06

    Power laws are increasingly used to describe animal movement. Despite this, the use of power laws has been criticized on both empirical and theoretical grounds, and alternative models based on extensions of conventional random walk theory (Brownian motion) have been suggested. In this paper, we analyse a large volume of data of aphid walking behaviour (65,068 data points), which provides a highly resolved dataset to investigate the pattern of movement. We show that aphid movement is intermittent--with alternations of a slow movement with frequent change of direction and a fast, relatively directed movement--and that the fast movement consists of two phases--a strongly directed phase that gradually changes into an uncorrelated random walk. By measuring the mean-squared displacement and the duration of non-stop movement episodes we found that both spatial and temporal aspects of aphid movement are best described using a truncated power law approach. We suggest that the observed spatial pattern arises from the duration of non-stop movement phases rather than from correlations in turning angles. We discuss the implications of these findings for interpreting movement data, such as distinguishing between movement and non-movement, and the effect of the range of data used in the analysis on the conclusions.

  19. Judicial law-making: Unlocking the creative powers of judges in ...

    African Journals Online (AJOL)

    ... the creative powers of judges in terms of Section 39(2) of the constitution. ... that judges do indeed have a law-making function in the process of interpretation. ... The article examines the extent to which the judiciary can use this power in a ...

  20. Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sibatov, R T, E-mail: ren_sib@bk.ru [Ulyanovsk State University, 432000, 42 Leo Tolstoy Street, Ulyanovsk (Russian Federation)

    2011-08-01

    A new statistical model of the charge transport in colloidal quantum dot arrays is proposed. It takes into account Coulomb blockade forbidding multiple occupancy of nanocrystals and the influence of energetic disorder of interdot space. The model explains power-law current transients and the presence of the memory effect. The fractional differential analogue of the Ohm law is found phenomenologically for nanocrystal arrays. The model combines ideas that were considered as conflicting by other authors: the Scher-Montroll idea about the power-law distribution of waiting times in localized states for disordered semiconductors is applied taking into account Coulomb blockade; Novikov's condition about the asymptotic power-law distribution of time intervals between successful current pulses in conduction channels is fulfilled; and the carrier injection blocking predicted by Ginger and Greenham (2000 J. Appl. Phys. 87 1361) takes place.

  1. Statistical interpretation of transient current power-law decay in colloidal quantum dot arrays

    International Nuclear Information System (INIS)

    Sibatov, R T

    2011-01-01

    A new statistical model of the charge transport in colloidal quantum dot arrays is proposed. It takes into account Coulomb blockade forbidding multiple occupancy of nanocrystals and the influence of energetic disorder of interdot space. The model explains power-law current transients and the presence of the memory effect. The fractional differential analogue of the Ohm law is found phenomenologically for nanocrystal arrays. The model combines ideas that were considered as conflicting by other authors: the Scher-Montroll idea about the power-law distribution of waiting times in localized states for disordered semiconductors is applied taking into account Coulomb blockade; Novikov's condition about the asymptotic power-law distribution of time intervals between successful current pulses in conduction channels is fulfilled; and the carrier injection blocking predicted by Ginger and Greenham (2000 J. Appl. Phys. 87 1361) takes place.

  2. Indian English Evolution and Focusing Visible Through Power Laws

    Directory of Open Access Journals (Sweden)

    Vineeta Chand

    2017-11-01

    Full Text Available New dialect emergence and focusing in language contact settings is difficult to capture and date in terms of global structural dialect stabilization. This paper explores whether diachronic power law frequency distributions can provide evidence of dialect evolution and new dialect focusing, by considering the quantitative frequency characteristics of three diachronic Indian English (IE corpora (1970s–2008. The results demonstrate that IE consistently follows power law frequency distributions and the corpora are each best fit by Mandelbrot’s Law. Diachronic changes in the constants are interpreted as evidence of lexical and syntactic collocational focusing within the process of new dialect formation. Evidence of new dialect focusing is also visible through apparent time comparison of spoken and written data. Age and gender-separated sub-corpora of the most recent corpus show minimal deviation, providing apparent time evidence for emerging IE dialect stability. From these findings, we extend the interpretation of diachronic changes in the β coefficient—as indicative of changes in the degree of synthetic/analytic structure—so that β is also sensitive to grammaticalization and changes in collocational patterns.

  3. Blinking in quantum dots: The origin of the grey state and power law statistics

    Science.gov (United States)

    Ye, Mao; Searson, Peter C.

    2011-09-01

    Quantum dot (QD) blinking is characterized by switching between an “on” state and an “off” state, and a power-law distribution of on and off times with exponents from 1.0 to 2.0. The origin of blinking behavior in QDs, however, has remained a mystery. Here we describe an energy-band model for QDs that captures the full range of blinking behavior reported in the literature and provides new insight into features such as the gray state, the power-law distribution of on and off times, and the power-law exponents.

  4. On the dynamics of the power law inflation due to an exponential potential

    International Nuclear Information System (INIS)

    Yokohama, Jun'ichi; Maeda, Kei-ichi; Tokyo Univ.

    1988-01-01

    The power law inflationary universe model induced by a scalar field with an exponential potential is studied. A dissipation term due to particle creation is introduced in the inflation's classical equation of motion. It is shown that the power index of the inflation increases prominently with an adequate viscosity. Consequently, even in theories with a rather steep exponential such as some supergravity or superstring models, it turns out that a 'realistic' power law inflation (with a power index p> or approx.10) is possible. (orig.)

  5. Chaos anti-synchronization of two non-identical chaotic systems with known or fully unknown parameters

    International Nuclear Information System (INIS)

    Al-Sawalha, Ayman

    2009-01-01

    This work is devoted to investigating the anti-synchronization between two novel different chaotic systems. Two different anti-synchronization methods are proposed. Active control is applied when system parameters are known and adaptive control is employed when system parameters are uncertain or unknown. Controllers and update laws of parameters are designed based on Lyapunov stability theory. In both cases, sufficient conditions for the anti-synchronization are obtained analytically. Finally, a numerical simulations is presented to show the effectiveness of the proposed chaos anti-synchronization schemes.

  6. Limit theorems for power variations of ambit field driven by white noise

    DEFF Research Database (Denmark)

    Pakkanen, Mikko S.

    2014-01-01

    We study the asymptotics of lattice power variations of two-parameter ambit fields driven by white noise. Our first result is a law of large numbers for power variations. Under a constraint on the memory of the ambit field, normalized power variations converge to certain integral functionals...

  7. Problems of cartel law in license contracts within the power economy

    International Nuclear Information System (INIS)

    Hueffer, U.

    1992-01-01

    First the licence contract is presented as a particularly important instrument of the power economy. In a second step a link is established with cartel law; that is, the special status of the power economy under cartel law and the significance of the licence contract within this context are illuminated. On this basis then, a very controversial complex of problems is entered into: the assessment of so-called expiration clauses in licence contracts, i.e. the legal situation upon expiration of a licence contract. It turns out that qualms about the time value being the takeover price have no legal basis. The fact that they were expressed at all is due to the lack of a synopsis of the relevant subareas of commercial law. Scientific purposes require a synopsis of the commercial law concerned rather than an argument in which each party splits off single aspects of the issue. (orig./HSCH) [de

  8. Preinflationary dynamics in loop quantum cosmology: Power-law potentials

    Science.gov (United States)

    Shahalam, M.; Sharma, Manabendra; Wu, Qiang; Wang, Anzhong

    2017-12-01

    In this paper, we study the preinflationary dynamics for the power-law potential [V (ϕ )∝ϕn] with n consideration and compare our results with the ones obtained previously for different potentials.

  9. Energy law. The legal boundary conditions of power supply. 2. rev. ed.

    International Nuclear Information System (INIS)

    Stuhlmacher, Gerd; Stappert, Holger; Jansen, Guido

    2015-01-01

    Now appearing in its second edition, this book presents a comprehensive overview of the legal framework governing the energy sector. It provides readily understandable coverage, across the relevant subfields of law, of the legal regulations applicable to any manner of activity in the energy sector along with a wealth of practical advice on the interpretation and application of legal provisions. The content has been thoroughly revised, updated to reflect the current status of legislation and supplemented with numerous chapters. The 2014 amendment of the Renewable Energy Law (EEG) and its practical impact have also been taken into account. The following topics are covered amongst others: unbundling of network operation; connection and access to networks and metering; network charges and incentive regulation; easement contracts; energy supply and basic services; energy and electricity taxes; cartel law, law on operating aids, procurement law; energy trade OTC and at exchanges; energy trade surveillance law; fuel production and fracking; conventional and nuclear power production; renewable energy production (including offshore production); energy storage and power-to-gas; transmission line construction; climate protection (including the 2014 EEG, emission trade and the Law on the Promotion of Renewable Energy in the Heat Sector); cogeneration law, district heating and contracting; and investment protection.

  10. A Dual Power Law Distribution for the Stellar Initial Mass Function

    Science.gov (United States)

    Hoffmann, Karl Heinz; Essex, Christopher; Basu, Shantanu; Prehl, Janett

    2018-05-01

    We introduce a new dual power law (DPL) probability distribution function for the mass distribution of stellar and substellar objects at birth, otherwise known as the initial mass function (IMF). The model contains both deterministic and stochastic elements, and provides a unified framework within which to view the formation of brown dwarfs and stars resulting from an accretion process that starts from extremely low mass seeds. It does not depend upon a top down scenario of collapsing (Jeans) masses or an initial lognormal or otherwise IMF-like distribution of seed masses. Like the modified lognormal power law (MLP) distribution, the DPL distribution has a power law at the high mass end, as a result of exponential growth of mass coupled with equally likely stopping of accretion at any time interval. Unlike the MLP, a power law decay also appears at the low mass end of the IMF. This feature is closely connected to the accretion stopping probability rising from an initially low value up to a high value. This might be associated with physical effects of ejections sometimes (i.e., rarely) stopping accretion at early times followed by outflow driven accretion stopping at later times, with the transition happening at a critical time (therefore mass). Comparing the DPL to empirical data, the critical mass is close to the substellar mass limit, suggesting that the onset of nuclear fusion plays an important role in the subsequent accretion history of a young stellar object.

  11. Revision of by-laws about effluents of EdF's nuclear power plants

    International Nuclear Information System (INIS)

    2002-01-01

    In France, in application of the clean water law from January 3, 1992 and since the decree 95-540 from May 4, 1995, each basic nuclear facility receives a single permission which covers both its water takes and its radioactive and non-radioactive effluents. This decree, initially dedicated to new facilities has been enlarged to all existing installations for which the prefectorial by-laws have reached their date-line. Thus, up to now, five inter-ministerial by-laws have renewed the permissions of water takes and effluents evacuation of the power plants of Saint-Laurent-des-Eaux (Loir-et-Cher), Flamanville (Manche), Paluel (Seine-Maritime), Belleville (Cher) and Saint-Alban (Isere). These by-laws foresee an important abatement of the effluents and concern more particularly the tritium, 14 C, the iodine isotopes and also some other non-radioactive chemical compounds. This document is a compilation of all revised by-laws about effluents and concerning the nuclear power plants listed above. (J.S.)

  12. Power-law forgetting in synapses with metaplasticity

    International Nuclear Information System (INIS)

    Mehta, A; Luck, J M

    2011-01-01

    The idea of using metaplastic synapses to incorporate the separate storage of long- and short-term memories via an array of hidden states was put forward in the cascade model of Fusi et al. In this paper, we devise and investigate two models of a metaplastic synapse based on these general principles. The main difference between the two models lies in their available mechanisms of decay, when a contrarian event occurs after the build-up of a long-term memory. In one case, this leads to the conversion of the long-term memory to a short-term memory of the opposite kind, while in the other, a long-term memory of the opposite kind may be generated as a result. Appropriately enough, the response of both models to short-term events is not affected by this difference in architecture. On the contrary, the transient response of both models, after long-term memories have been created by the passage of sustained signals, is rather different. The asymptotic behaviour of both models is, however, characterised by power-law forgetting with the same universal exponent

  13. Two-parameter asymptotics in magnetic Weyl calculus

    International Nuclear Information System (INIS)

    Lein, Max

    2010-01-01

    This paper is concerned with small parameter asymptotics of magnetic quantum systems. In addition to a semiclassical parameter ε, the case of small coupling λ to the magnetic vector potential naturally occurs in this context. Magnetic Weyl calculus is adapted to incorporate both parameters, at least one of which needs to be small. Of particular interest is the expansion of the Weyl product which can be used to expand the product of operators in a small parameter, a technique which is prominent to obtain perturbation expansions. Three asymptotic expansions for the magnetic Weyl product of two Hoermander class symbols are proven as (i) ε<< 1 and λ<< 1, (ii) ε<< 1 and λ= 1, as well as (iii) ε= 1 and λ<< 1. Expansions (i) and (iii) are impossible to obtain with ordinary Weyl calculus. Furthermore, I relate the results derived by ordinary Weyl calculus with those obtained with magnetic Weyl calculus by one- and two-parameter expansions. To show the power and versatility of magnetic Weyl calculus, I derive the semirelativistic Pauli equation as a scaling limit from the Dirac equation up to errors of fourth order in 1/c.

  14. Using Power-Law Degree Distribution to Accelerate PageRank

    Directory of Open Access Journals (Sweden)

    Zhaoyan Jin

    2012-12-01

    Full Text Available The PageRank vector of a network is very important, for it can reflect the importance of a Web page in the World Wide Web, or of a people in a social network. However, with the growth of the World Wide Web and social networks, it needs more and more time to compute the PageRank vector of a network. In many real-world applications, the degree and PageRank distributions of these complex networks conform to the Power-Law distribution. This paper utilizes the degree distribution of a network to initialize its PageRank vector, and presents a Power-Law degree distribution accelerating algorithm of PageRank computation. Experiments on four real-world datasets show that the proposed algorithm converges more quickly than the original PageRank algorithm.

  15. Modeling the complexity of acoustic emission during intermittent plastic deformation: Power laws and multifractal spectra.

    Science.gov (United States)

    Kumar, Jagadish; Ananthakrishna, G

    2018-01-01

    Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum

  16. Extended power-law scaling of air permeabilities measured on a block of tuff

    Directory of Open Access Journals (Sweden)

    M. Siena

    2012-01-01

    Full Text Available We use three methods to identify power-law scaling of multi-scale log air permeability data collected by Tidwell and Wilson on the faces of a laboratory-scale block of Topopah Spring tuff: method of moments (M, Extended Self-Similarity (ESS and a generalized version thereof (G-ESS. All three methods focus on q-th-order sample structure functions of absolute increments. Most such functions exhibit power-law scaling at best over a limited midrange of experimental separation scales, or lags, which are sometimes difficult to identify unambiguously by means of M. ESS and G-ESS extend this range in a way that renders power-law scaling easier to characterize. Our analysis confirms the superiority of ESS and G-ESS over M in identifying the scaling exponents, ξ(q, of corresponding structure functions of orders q, suggesting further that ESS is more reliable than G-ESS. The exponents vary in a nonlinear fashion with q as is typical of real or apparent multifractals. Our estimates of the Hurst scaling coefficient increase with support scale, implying a reduction in roughness (anti-persistence of the log permeability field with measurement volume. The finding by Tidwell and Wilson that log permeabilities associated with all tip sizes can be characterized by stationary variogram models, coupled with our findings that log permeability increments associated with the smallest tip size are approximately Gaussian and those associated with all tip sizes scale show nonlinear variations in ξ(q with q, are consistent with a view of these data as a sample from a truncated version (tfBm of self-affine fractional Brownian motion (fBm. Since in theory the scaling exponents, ξ(q, of tfBm vary linearly with q we conclude that nonlinear scaling in our case is not an indication of multifractality but an artifact of sampling from tfBm. This allows us to explain theoretically how power-law scaling of our data, as well

  17. Allometric scaling of population variance with mean body size is predicted from Taylor's law and density-mass allometry.

    Science.gov (United States)

    Cohen, Joel E; Xu, Meng; Schuster, William S F

    2012-09-25

    Two widely tested empirical patterns in ecology are combined here to predict how the variation of population density relates to the average body size of organisms. Taylor's law (TL) asserts that the variance of the population density of a set of populations is a power-law function of the mean population density. Density-mass allometry (DMA) asserts that the mean population density of a set of populations is a power-law function of the mean individual body mass. Combined, DMA and TL predict that the variance of the population density is a power-law function of mean individual body mass. We call this relationship "variance-mass allometry" (VMA). We confirmed the theoretically predicted power-law form and the theoretically predicted parameters of VMA, using detailed data on individual oak trees (Quercus spp.) of Black Rock Forest, Cornwall, New York. These results connect the variability of population density to the mean body mass of individuals.

  18. One loop back reaction on power law inflation

    International Nuclear Information System (INIS)

    Abramo, L.R.; Woodard, R.P.

    1999-01-01

    We consider quantum-mechanical corrections to a homogeneous, isotropic, and spatially flat geometry whose scale factor expands classically as a general power of the comoving time. The effects of both gravitons and the scalar inflaton are computed at one loop using the manifestly causal formalism of Schwinger [J. Math. Phys. 2, 407 (1961); Particles, Sources and Fields (Addison, Wesley, Reading, MA, 1970)] with the Feynman rules recently developed by Iliopoulos et al. [Nucl. Phys. B 534, 419 (1998)]. We find no significant effect, in marked contrast to the result obtained by Mukhanov and co-workers [Phys. Rev. Lett. 78, 1624 (1998); Phys. Rev. D 56, 3248 (1997)] for chaotic inflation based on a quadratic potential. By applying the canonical technique of Mukhanov and co-workers to the exponential potentials of power law inflation, we show that the two methods produce the same results, within the approximations employed, for these backgrounds. We therefore conclude that the shape of the inflaton potential can have an enormous impact on the one loop back reaction. copyright 1999 The American Physical Society

  19. Spreading law of non-Newtonian power-law liquids on a spherical substrate by an energy-balance approach.

    Science.gov (United States)

    Iwamatsu, Masao

    2017-07-01

    The spreading of a cap-shaped spherical droplet of non-Newtonian power-law liquids, both shear-thickening and shear-thinning liquids, that completely wet a spherical substrate is theoretically investigated in the capillary-controlled spreading regime. The crater-shaped droplet model with the wedge-shaped meniscus near the three-phase contact line is used to calculate the viscous dissipation near the contact line. Then the energy balance approach is adopted to derive the equation that governs the evolution of the contact line. The time evolution of the dynamic contact angle θ of a droplet obeys a power law θ∼t^{-α} with the spreading exponent α, which is different from Tanner's law for Newtonian liquids and those for non-Newtonian liquids on a flat substrate. Furthermore, the line-tension dominated spreading, which could be realized on a spherical substrate for late-stage of spreading when the contact angle becomes low and the curvature of the contact line becomes large, is also investigated.

  20. Geomorphological and hydrological implications of a given hydraulic geometry relationship, beyond the power-law

    Science.gov (United States)

    Kim, JongChun; Paik, Kyungrock

    2015-04-01

    Channel geometry and hydraulic characteristics of a given river network, i.e., spatio-temporal variability of width, depth, and velocity, can be described as power functional relationships of flow discharge, named 'hydraulic geometry' (Leopold and Maddock, 1953). Many studies have focused on the implication of this power-law itself, i.e., self-similarity, and accordingly its exponents. Coefficients of the power functional relationships, on the contrary, have received little attention. They are often regarded as empirical constants, determined by 'best fitting' to the power-law without significant scientific implications. Here, we investigate and claim that power-law coefficients of hydraulic geometry relationships carry vital information of a given river system. We approach the given problem on the basis of 'basin hydraulic geometry' formulation (Stall and Fok, 1968) which decomposes power-law coefficients into more elementary constants. The linkage between classical power-law relationship (Leopold and Maddock, 1953) and the basin hydraulic geometry is provided by Paik and Kumar (2004). On the basis of this earlier study, it can be shown that coefficients and exponents of power-law hydraulic geometry are interrelated. In this sense, we argue that more elementary constants that constitute both exponents and coefficients carry important messages. In this presentation, we will demonstrate how these elementary constants vary over a wide range of catchments provided from Stall and Fok (1968) and Stall and Yang (1970). Findings of this study can provide new insights on fundamental understanding about hydraulic geometry relationships. Further, we expect that this understanding can help interpretation of hydraulic geometry relationship in the context of flood propagation through a river system as well. Keywords: Hydraulic geometry; Power-law; River network References Leopold, L. B., & Maddock, T. J. (1953). The hydraulic geometry of stream channels and some physiographic

  1. Fractal approach towards power-law coherency to measure cross-correlations between time series

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2017-01-01

    Roč. 50, č. 1 (2017), s. 193-200 ISSN 1007-5704 R&D Projects: GA ČR(CZ) GP14-11402P Institutional support: RVO:67985556 Keywords : power- law coherency * power- law cross-correlations * correlations Subject RIV: AH - Economics OBOR OECD: Applied Economics, Econometrics Impact factor: 2.784, year: 2016 http://library.utia.cas.cz/separaty/2017/E/kristoufek-0473066.pdf

  2. A geometric formulation of the law of Aboav–Weaire in two and three dimensions

    International Nuclear Information System (INIS)

    Mason, J K; Ehrenborg, R; Lazar, E A

    2012-01-01

    The law of Aboav–Weaire is a simple mathematical expression deriving from empirical observations that the number of sides of a grain is related to the average number of sides of the neighboring grains, and is usually restricted to natural two-dimensional microstructures. Numerous attempts have been made to justify this relationship theoretically, or to derive an analogous relation in three dimensions. This paper provides several exact geometric results with expressions similar to that of the usual law of Aboav–Weaire, though with additional terms that may be used to establish when the law of Abaov–Weaire is a suitable approximation. Specifically, we derive several local relations that apply to individual grain clusters, and a corresponding global relation that is identical in two and three dimensions except for a single parameter ζ. The derivation requires the definition and investigation of the average excess curvature, a previously unconsidered physical quantity. An approximation to our exact result is compared to the results of extensive simulations in two and three dimensions, and we provide a compact expression that strikes a balance between complexity and accuracy. (paper)

  3. Simple inflationary quintessential model. II. Power law potentials

    Science.gov (United States)

    de Haro, Jaume; Amorós, Jaume; Pan, Supriya

    2016-09-01

    The present work is a sequel of our previous work [Phys. Rev. D 93, 084018 (2016)] which depicted a simple version of an inflationary quintessential model whose inflationary stage was described by a Higgs-type potential and the quintessential phase was responsible due to an exponential potential. Additionally, the model predicted a nonsingular universe in past which was geodesically past incomplete. Further, it was also found that the model is in agreement with the Planck 2013 data when running is allowed. But, this model provides a theoretical value of the running which is far smaller than the central value of the best fit in ns , r , αs≡d ns/d l n k parameter space where ns, r , αs respectively denote the spectral index, tensor-to-scalar ratio and the running of the spectral index associated with any inflationary model, and consequently to analyze the viability of the model one has to focus in the two-dimensional marginalized confidence level in the allowed domain of the plane (ns,r ) without taking into account the running. Unfortunately, such analysis shows that this model does not pass this test. However, in this sequel we propose a family of models runs by a single parameter α ∈[0 ,1 ] which proposes another "inflationary quintessential model" where the inflation and the quintessence regimes are respectively described by a power law potential and a cosmological constant. The model is also nonsingular although geodesically past incomplete as in the cited model. Moreover, the present one is found to be more simple compared to the previous model and it is in excellent agreement with the observational data. In fact, we note that, unlike the previous model, a large number of the models of this family with α ∈[0 ,1/2 ) match with both Planck 2013 and Planck 2015 data without allowing the running. Thus, the properties in the current family of models compared to its past companion justify its need for a better cosmological model with the successive

  4. Power-law connections: From Zipf to Heaps and beyond

    International Nuclear Information System (INIS)

    Eliazar, Iddo I.; Cohen, Morrel H.

    2013-01-01

    In this paper we explore the asymptotic statistics of a general model of rank distributions in the large-ensemble limit; the construction of the general model is motivated by recent empirical studies of rank distributions. Applying Lorenzian, oligarchic, and Heapsian asymptotic analyses we establish a comprehensive set of closed-form results linking together rank distributions, probability distributions, oligarchy sizes, and innovation rates. In particular, the general results reveal the fundamental underlying connections between Zipf’s law, Pareto’s law, and Heaps’ law—three elemental empirical power-laws that are ubiquitously observed in the sciences. -- Highlights: ► The large-ensemble asymptotic statistics of rank distributions are explored. ► Lorenzian, oligarchic, and Heapsian asymptotic analyses are applied. ► Associated oligarchy sizes and induced innovation rates are analyzed. ► General elemental statistical connections are established. ► The underlying connections between Zipf’s, Pareto’s and Heaps’ laws are unveiled

  5. Power laws and elastic nonlinearity in materials with complex microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Scalerandi, M., E-mail: marco.scalerandi@infm.polito.it

    2016-01-28

    Nonlinear ultrasonic methods have been widely used to characterize the microstructure of damaged solids and consolidated granular media. Besides distinguishing between materials exhibiting classical nonlinear behaviors from those exhibiting hysteresis, it could be of importance the discrimination between ultrasonic indications from different physical sources (scatterers). Elastic hysteresis could indeed be due to dislocations, grain boundaries, stick-slip at interfaces, etc. Analyzing data obtained on various concrete samples, we show that the power law behavior of the nonlinear indicator vs. the energy of excitation could be used to classify different microscopic features. In particular, the power law exponent ranges between 1 and 3, depending on the nature of nonlinearity. We also provide a theoretical interpretation of the collected data using models for clapping and hysteretic nonlinearities. - Highlights: • Several materials exhibit a nontrivial nonlinear elastic behavior which can be ascribed to different physical sources. • The quantitative nonlinear response is dependent on the type of microstructure present in the material. • A nonlinear indicator could be defined which depends on the excitation energy of the sample. • Assuming a power law dependence, the exponent depends on the microstructure of the material and could evolve in time. • Experimental results on concrete are discussed and a theoretical description is proposed.

  6. Limit theorems for power variations of ambit fields driven by white noise

    DEFF Research Database (Denmark)

    Pakkanen, Mikko

    We study the asymptotic behavior of lattice power variations of two-parameter ambit fields that are driven by white noise. Our first result is a law of large numbers for such power variations. Under a constraint on the memory of the ambit field, normalized power variations are shown to converge...

  7. Limits of Kirchhoff's Laws in Plasmonics.

    Science.gov (United States)

    Razinskas, Gary; Biagioni, Paolo; Hecht, Bert

    2018-01-30

    The validity of Kirchhoff's laws in plasmonic nanocircuitry is investigated by studying a junction of plasmonic two-wire transmission lines. We find that Kirchhoff's laws are valid for sufficiently small values of a phenomenological parameter κ relating the geometrical parameters of the transmission line with the effective wavelength of the guided mode. Beyond such regime, for large values of the phenomenological parameter, increasing deviations occur and the equivalent impedance description (Kirchhoff's laws) can only provide rough, but nevertheless useful, guidelines for the design of more complex plasmonic circuitry. As an example we investigate a system composed of a two-wire transmission line and a nanoantenna as the load. By addition of a parallel stub designed according to Kirchhoff's laws we achieve maximum signal transfer to the nanoantenna.

  8. Isomorphs in the phase diagram of a model liquid without inverse power law repulsion

    DEFF Research Database (Denmark)

    Veldhorst, Arnold Adriaan; Bøhling, Lasse; Dyre, J. C.

    2012-01-01

    scattering function are calculated. The results are shown to reflect a hidden scale invariance; despite its exponential repulsion the Buckingham potential is well approximated by an inverse power-law plus a linear term in the region of the first peak of the radial distribution function. As a consequence...... the dynamics of the viscous Buckingham liquid is mimicked by a corresponding model with purely repulsive inverse-power-law interactions. The results presented here closely resemble earlier results for Lennard-Jones type liquids, demonstrating that the existence of strong correlations and isomorphs does...... not depend critically on the mathematical form of the repulsion being an inverse power law....

  9. Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential

    Science.gov (United States)

    Huang, Qing-Guo; Pi, Shi

    2018-04-01

    The effects of heavy fields modulate the scalar power spectrum during inflation. We analytically calculate the modulations of the scalar power spectrum from a heavy field with a separable monomial potential, i.e. V(phi)~ phin. In general the modulation is characterized by a power-law oscillation which is reduced to the logarithmic oscillation in the case of n=2.

  10. Effective Power-Law Dependence of Lyapunov Exponents on the Central Mass in Galaxies

    Science.gov (United States)

    Delis, N.; Efthymiopoulos, C.; Kalapotharakos, C.

    2015-01-01

    Using both numerical and analytical approaches, we demonstrate the existence of an effective power-law relation L alpha m(sup p) between themean Lyapunov exponent L of stellar orbits chaotically scattered by a supermassive black hole (BH) in the centre of a galaxy and the mass parameter m, i.e. ratio of the mass of the BH over the mass of the galaxy. The exponent p is found numerically to obtain values in the range p approximately equals 0.3-0.5. We propose a theoretical interpretation of these exponents, based on estimates of local 'stretching numbers', i.e. local Lyapunov exponents at successive transits of the orbits through the BH's sphere of influence. We thus predict p = 2/3 - q with q approximately equaling 0.1-0.2. Our basic model refers to elliptical galaxy models with a central core. However, we find numerically that an effective power-law scaling of L with m holds also in models with central cusp, beyond a mass scale up to which chaos is dominated by the influence of the cusp itself. We finally show numerically that an analogous law exists also in disc galaxies with rotating bars. In the latter case, chaotic scattering by the BH affects mainly populations of thick tube-like orbits surrounding some low-order branches of the x(sub 1) family of periodic orbits, as well as its bifurcations at low-order resonances, mainly the inner Lindblad resonance and the 4/1 resonance. Implications of the correlations between L and m to determining the rate of secular evolution of galaxies are discussed.

  11. The enforcement order for the law for arrangement of surrounding areas of power generating facilities

    International Nuclear Information System (INIS)

    1980-01-01

    This rule is established under the provisions of the law for the redevelopment of the surrounding areas of power generating facilities. Persons who install power generating facilities under the law include general electric power enterprises and wholesale electric power enterprises defined under the electric enterprises act and the Power Reactor and Nuclear Fuel Development Corporation. The scale of these facilities defined under the law is 350,000 kilo-watts output for atomic and thermal power generating facilities, 10,000 kilo-watts output for the facilities utilizing geothermal energy, 100,000 kilo-watts output for facilities whose main fuel is coal, and 1,000 kilo-watts output for hydraulic power generating facilities, etc. The facilities closely related to atomic power generation include the reprocessing and examination facilities of fuel materials spent in atomic power reactors, the reactors installed by the Japan Atomic Energy Research Institute for studying on the safety of atomic power reactors, the experimental fast reactors and the uranium enrichment facilities established by the Power Reactor and Nuclear Fuel Development Corporation. The public facilities in this rule are those for communication, sport and recreation, environment hygiene, education and culture, medicine, social welfare, fire fighting, etc. Governors of prefectures who intend to get approval under the law shall file redevelopment plans to the competent minister through the Minister of the International Trade and Industry. (Okada, K.)

  12. STUDY OF IDENTIFICATION OF TWO-PHASE FLOW PARAMETERS BY PRESSURE FLUCTUATION ANALYSIS

    Directory of Open Access Journals (Sweden)

    Ondrej Burian

    2016-12-01

    Full Text Available This paper deals with identification of parameters of simple pool boiling in a vertical rectangular channel by analysis of pressure fluctuation. In this work is introduced a small experimental facility about 9 kW power, which was used for simulation of pool boiling phenomena and creation of steam-water volume. Several pressure fluctuations measurements and differential pressure fluctuations measurements at warious were carried out. Main changed parameters were power of heaters and hydraulics resistance of channel internals. Measured pressure data was statistically analysed and compared with goal to find dependencies between parameters of two-phase flow and statistical properties of pressure fluctuation. At the end of this paper are summarized final results and applicability of this method for parameters determination of two phase flow for pool boiling conditions at ambient pressure.

  13. Definition of parameters for a test section for the analysis of natural convection and coolant loss in the AP1000 nuclear reactor by similarity laws and fractional scaling analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cadiz, Luis Felipe S.; Bezerra, Mario Augusto [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear; Lima, Fernando Roberto A., E-mail: falima@cnen.gov.br [Centro Regional de Ciências Nucleares do Nordeste (CRCN-NE/CNEN-PB), Recife, PB (Brazil)

    2017-07-01

    The present work develops and analyzes the main parameters of a test section for natural convection in case of a failure of the pumping system as much as the loss of coolant in refrigeration accidents. For this realization, a combination of laws of basic similarity and an innovative scale methodology, known as Fractional Scaling Analysis (FSA), was developed. The depressurizing is analyzed when a rupture occurs in one of the primary system piping of the AP1000 nuclear reactor. This reactor is developed by Westinghouse Electric Co., which is a PWR (Pressurized Water Reactor) with an electric power equal to 1000MW. Such a reactor is provided with a passive safety system that promotes considerable improvements in the safety, reliability, protection and reduction of costs of a nuclear power plant. The FSA is based on two concepts: fractional scale and hierarchy. It is used to provide experimental data that generate quantitative evaluation criteria as well as operational parameters in thermal and hydraulic processes of nuclear power plants. The results were analyzed with the use of computational codes. (author)

  14. Macro impact of the law on prevention and control of atmospheric pollution on power industry development

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z. [State Power Corporation (China). Dept. of Science, Technology and Environment

    2001-07-01

    The newly revised and enlarged main contents of China's Law of Prevention and Control of Atmospheric Pollution, which came into force on 1 September 2000, are described. The macro impacts of the law on the power industry development are analyzed mainly in respect to power demand and readjustment of power structure and layout, clean production and pollution control level, scientific management of environmental protection, in accordance with law as well as changes of construction and operation costs. Several questions worthy to be noted in course of implementation of the new law are enumerated. 1 tab.

  15. AN ANALYSIS OF THE SHAPES OF INTERSTELLAR EXTINCTION CURVES. VI. THE NEAR-IR EXTINCTION LAW

    International Nuclear Information System (INIS)

    Fitzpatrick, E. L.; Massa, D.

    2009-01-01

    We combine new observations from the Hubble Space Telescope's Advanced Camera of Survey with existing data to investigate the wavelength dependence of near-IR (NIR) extinction. Previous studies suggest a power law form for NIR extinction, with a 'universal' value of the exponent, although some recent observations indicate that significant sight line-to-sight line variability may exist. We show that a power-law model for the NIR extinction provides an excellent fit to most extinction curves, but that the value of the power, β, varies significantly from sight line to sight line. Therefore, it seems that a 'universal NIR extinction law' is not possible. Instead, we find that as β decreases, R(V) ≡ A(V)/E(B - V) tends to increase, suggesting that NIR extinction curves which have been considered 'peculiar' may, in fact, be typical for different R(V) values. We show that the power-law parameters can depend on the wavelength interval used to derive them, with the β increasing as longer wavelengths are included. This result implies that extrapolating power-law fits to determine R(V) is unreliable. To avoid this problem, we adopt a different functional form for NIR extinction. This new form mimics a power law whose exponent increases with wavelength, has only two free parameters, can fit all of our curves over a longer wavelength baseline and to higher precision, and produces R(V) values which are consistent with independent estimates and commonly used methods for estimating R(V). Furthermore, unlike the power-law model, it gives R(V)s that are independent of the wavelength interval used to derive them. It also suggests that the relation R(V) = -1.36 E(K-V)/(E(B-V)) - 0.79 can estimate R(V) to ±0.12. Finally, we use model extinction curves to show that our extinction curves are in accord with theoretical expectations, and demonstrate how large samples of observational quantities can provide useful constraints on the grain properties.

  16. Impact of major design parameters on the economics of Tokamak power plants

    International Nuclear Information System (INIS)

    Abdou, M.A.; Ehst, D.; Maroni, V.; Stacey, W.M. Jr.

    1977-11-01

    A parametric systems studies program is now in an active stage at Argonne National Laboratory. This paper presents a summary of results from this systems analysis effort. The impact of major design parameters on the economics of tokamak power plants is examined. The major parameters considered are: (1) the plant power rating; (2) toroidal-field strength; (3) plasma β/sub t/; (4) aspect ratio; (5) plasma elongation; (6) inner blanket/shield thickness; and (7) neutron wall load. The performance characteristics and economics of tokamak power plants are also compared for two structural materials

  17. Effect of the length of inflation on angular TT and TE power spectra in power-law inflation

    International Nuclear Information System (INIS)

    Hirai, Shiro; Takami, Tomoyuki

    2006-01-01

    The effect of the length of inflation on the power spectra of scalar and tensor perturbations is estimated using the power-law inflation model with a scale factor of a(η) = (-η) p = t q . Considering various pre-inflation models with radiation-dominated or scalar matter-dominated periods before inflation in combination with two matching conditions, the temperature angular power spectrum (TT) and temperature-polarization cross-power spectrum (TE) are calculated and a likelihood analysis is performed. It is shown that the discrepancies between the Wilkinson microwave anisotropy probe (WMAP) data and the ΛCDM model, such as suppression of the spectrum at l = 2, 3 and oscillatory behaviour, may be explained by the finite length of inflation model if the length of inflation is near 60 e-folds and q ≥ 300. The proposed models retain similar values of χ 2 to that achieved by the ΛCDM model with respect to fit to the WMAP data, but display different characteristics of the angular TE power spectra at l ≤ 20

  18. A study on the sensitivity depletion laws for rhodium self-powered neutron detectors

    International Nuclear Information System (INIS)

    Kim, Gil Gon

    1999-02-01

    The rhodium self-powered neutron detectors (SPND) in a reactor core provide the operator with the on-line 3-dimensional nuclear power distribution. The signal produced by rhodium SPND is interpreted into the local neutron flux by using a sensitivity depletion law and the local neutron flux is interpreted into the local power by using a power conversion factor. This work on the sensitivity depletion laws for rhodium self-powered neutron detectors (SPND) is performed to improve the uncertainty of the sensitivity depletion law used in ABB-CE reactors employing a rhodium SPND and to develop a calculational tool for providing the sensitivity depletion laws to interpret the signal of the newly designed rhodium SPND into the local neutron flux. The calculational tools for a time dependent neutron flux distribution in the rhodium emitter during depletion and for a time dependent beta escape probability that a beta generated in the emitter is escaped into the collector were developed. Due to the cost, the exposure to the radiation, and the longer fuel cycle, there is a strong incentive that the loading density of an in-core instrumentation is reduced and the lifetime of the detector is lengthened. These objectives can be achieved by reducing the uncertainty which is amplified as it depletes. The calculational tools above provide the sensitivity depletion law and show the reduction of the uncertainty to about 1 % in interpreting the signal into the local neutron flux compared to the method employed by ABB-CE. The reduction in the uncertainty of 1 % in interpreting the signal into the local neutron flux is equivalent to the reduction in the uncertainty of 1 % or more in interpreting the signal into the local power and to the extension of the lifetime of rhodium SPND to about 10 % as reported by ABB-CE

  19. Non-power law behavior of the radial profile of phase-space density of halos

    International Nuclear Information System (INIS)

    Popolo, A. Del

    2011-01-01

    We study the pseudo phase-space density, ρ(r)/σ 3 (r), of ΛCDM dark matter halos with and without baryons (baryons+DM, and pure DM), by using the model introduced in Del Popolo (2009), which takes into account the effect of dynamical friction, ordered and random angular momentum, baryons adiabatic contraction and dark matter baryons interplay. We examine the radial dependence of ρ(r)/σ 3 (r) over 9 orders of magnitude in radius for structures on galactic and cluster of galaxies scales. We find that ρ(r)/σ 3 (r) is approximately a power-law only in the range of halo radius resolved by current simulations (down to 0.1% of the virial radius) while it has a non-power law behavior below the quoted scale, with inner profiles changing with mass. The non-power-law behavior is more evident for halos constituted both of dark matter and baryons while halos constituted just of dark matter and with angular momentum chosen to reproduce a Navarro-Frenk-White (NFW) density profile, are characterized by an approximately power-law behavior. The results of the present paper lead to conclude that density profiles of the NFW type are compatible with a power-law behavior of ρ(r)/σ 3 (r), while those flattening to the halo center, like those found in Del Popolo (2009) or the Einasto profile, or the Burkert profile, cannot produce radial profile of the pseudo-phase-space density that are power-laws at all radii. The results argue against universality of the pseudo phase-space density and as a consequence argue against universality of density profiles constituted by dark matter and baryons as also discussed in Del Popolo (2009)

  20. A two-parameter nondiffusive heat conduction model for data analysis in pump-probe experiments

    Science.gov (United States)

    Ma, Yanbao

    2014-12-01

    Nondiffusive heat transfer has attracted intensive research interests in last 50 years because of its importance in fundamental physics and engineering applications. It has unique features that cannot be described by the Fourier law. However, current studies of nondiffusive heat transfer still focus on studying the effective thermal conductivity within the framework of the Fourier law due to a lack of a well-accepted replacement. Here, we show that nondiffusive heat conduction can be characterized by two inherent material properties: a diffusive thermal conductivity and a ballistic transport length. We also present a two-parameter heat conduction model and demonstrate its validity in different pump-probe experiments. This model not only offers new insights of nondiffusive heat conduction but also opens up new avenues for the studies of nondiffusive heat transfer outside the framework of the Fourier law.

  1. Advanteges of using Two-Switch Forward in Single-Stage Power Factor Corrected Power Supplies

    DEFF Research Database (Denmark)

    Petersen, Lars

    2000-01-01

    A single-Stage power factor corrected power supply using a two-switch forward is proposed to increase efficiency. The converter is operated in the DCM (Discontinues Conduction Mode). This will insure the intermediate DC-bus to be controlled only by means of circuit parameters and therefore...... power supply has been implemented. The measured efficiency and power factor are about 87% and 0.96 respectively....

  2. Optimizing Parameters of Axial Pressure-Compounded Ultra-Low Power Impulse Turbines at Preliminary Design

    Science.gov (United States)

    Kalabukhov, D. S.; Radko, V. M.; Grigoriev, V. A.

    2018-01-01

    Ultra-low power turbine drives are used as energy sources in auxiliary power systems, energy units, terrestrial, marine, air and space transport within the confines of shaft power N td = 0.01…10 kW. In this paper we propose a new approach to the development of surrogate models for evaluating the integrated efficiency of multistage ultra-low power impulse turbine with pressure stages. This method is based on the use of existing mathematical models of ultra-low power turbine stage efficiency and mass. It has been used in a method for selecting the rational parameters of two-stage axial ultra-low power turbine. The article describes the basic features of an algorithm for two-stage turbine parameters optimization and for efficiency criteria evaluating. Pledged mathematical models are intended for use at the preliminary design of turbine drive. The optimization method was tested at preliminary design of an air starter turbine. Validation was carried out by comparing the results of optimization calculations and numerical gas-dynamic simulation in the Ansys CFX package. The results indicate a sufficient accuracy of used surrogate models for axial two-stage turbine parameters selection

  3. Fall Velocities of Hydrometeors in the Atmosphere: Refinements to a Continuous Analytical Power Law.

    Science.gov (United States)

    Khvorostyanov, Vitaly I.; Curry, Judith A.

    2005-12-01

    This paper extends the previous research of the authors on the unified representation of fall velocities for both liquid and crystalline particles as a power law over the entire size range of hydrometeors observed in the atmosphere. The power-law coefficients are determined as continuous analytical functions of the Best or Reynolds number or of the particle size. Here, analytical expressions are formulated for the turbulent corrections to the Reynolds number and to the power-law coefficients that describe the continuous transition from the laminar to the turbulent flow around a falling particle. A simple analytical expression is found for the correction of fall velocities for temperature and pressure. These expressions and the resulting fall velocities are compared with observations and other calculations for a range of ice crystal habits and sizes. This approach provides a continuous analytical power-law description of the terminal velocities of liquid and crystalline hydrometeors with sufficiently high accuracy and can be directly used in bin-resolving models or incorporated into parameterizations for cloud- and large-scale models and remote sensing techniques.

  4. A Note on the Invariance Properties and Conservation Laws of the Kadomstev—Petviashvili Equation with Power Law Nonlinearity

    International Nuclear Information System (INIS)

    Bokhari A H; Zaman F D; Fakhar K; Kara A H

    2011-01-01

    First, we studied the invariance properties of the Kadomstev—Petviashvili equation with power law nonlinearity. Then, we determined the complete class of conservation laws and stated the corresponding conserved densities which are useful in finding the conserved quantities of the equation. The point symmetry generators were also used to reduce the equation to an exact solution and to verify the invariance properties of the conserved flows. (general)

  5. Power-law cross-correlations estimation under heavy tails

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2016-01-01

    Roč. 40, č. 1 (2016), s. 163-172 ISSN 1007-5704 R&D Projects: GA ČR(CZ) GP14-11402P Institutional support: RVO:67985556 Keywords : Power-law cross-correlations * Heavy tails * Monte Carlo study Subject RIV: AH - Economics Impact factor: 2.784, year: 2016 http://library.utia.cas.cz/separaty/2016/E/kristoufek-0472030.pdf

  6. High energy power-law tail in X-ray binaries and bulk Comptonization due to an outflow from a disk

    Science.gov (United States)

    Kumar, Nagendra

    2018-02-01

    We study the high energy power-law tail emission of X-ray binaries (XRBs) by a bulk Comptonization process which is usually observed in the very high soft (VHS) state of black hole (BH) XRBs and the high soft (HS) state of the neutron star (NS) and BH XRBs. Earlier, to generate the power-law tail in bulk Comptonization framework, a free-fall converging flow into BH or NS had been considered as a bulk region. In this work, for a bulk region we consider mainly an outflow geometry from the accretion disk which is bounded by a torus surrounding the compact object. We have two choices for an outflow geometry: (i) collimated flow and (ii) conical flow of opening angle θ _b and the axis is perpendicular to the disk. We also consider an azimuthal velocity of the torus fluids as a bulk motion where the fluids are rotating around the compact object (a torus flow). We find that the power-law tail can be generated in a torus flow having large optical depth and bulk speed (>0.75 c), and in conical flow with θ _b > ˜ 30° for a low value of Comptonizing medium temperature. Particularly, in conical flow the low opening angle is more favourable to generate the power-law tail in both the HS state and the VHS state. We notice that when the outflow is collimated, then the emergent spectrum does not have power-law component for a low Comptonizing medium temperature.

  7. Power laws and inverse motion modelling: application to turbulence measurements from satellite images

    Directory of Open Access Journals (Sweden)

    Pablo D. Mininni

    2012-01-01

    Full Text Available In the context of tackling the ill-posed inverse problem of motion estimation from image sequences, we propose to introduce prior knowledge on flow regularity given by turbulence statistical models. Prior regularity is formalised using turbulence power laws describing statistically self-similar structure of motion increments across scales. The motion estimation method minimises the error of an image observation model while constraining second-order structure function to behave as a power law within a prescribed range. Thanks to a Bayesian modelling framework, the motion estimation method is able to jointly infer the most likely power law directly from image data. The method is assessed on velocity fields of 2-D or quasi-2-D flows. Estimation accuracy is first evaluated on a synthetic image sequence of homogeneous and isotropic 2-D turbulence. Results obtained with the approach based on physics of fluids outperform state-of-the-art. Then, the method analyses atmospheric turbulence using a real meteorological image sequence. Selecting the most likely power law model enables the recovery of physical quantities, which are of major interest for turbulence atmospheric characterisation. In particular, from meteorological images we are able to estimate energy and enstrophy fluxes of turbulent cascades, which are in agreement with previous in situ measurements.

  8. Extremal dependencies and rank correlations in power law networks

    NARCIS (Netherlands)

    Volkovich, Y.; Litvak, Nelli; Zwart, B.; Jie, Z.

    2009-01-01

    We analyze dependencies in complex networks characterized by power laws (Web sample, Wikipedia sample and a preferential attachment graph) using statistical techniques from the extreme value theory and the theory of multivariate regular variation. To the best of our knowledge, this is the first

  9. Sharing Powers Within Exclusive Competences: Rethinking EU Antitrust Law Enforcement

    OpenAIRE

    Van Cleynenbreugel, Pieter

    2016-01-01

    Although the establishment of competition rules forms part of the EU’s exclusive competences, the application and enforcement of those rules has always been shared consistently between the EU and its Member States.The sharing of enforcement powers is conceptualised traditionally as a delegation of the exercise of exclusively conferred competences. The Court of Justice of the European Union’s case law in the context of EU antitrust law enforcement nevertheless raises profound questions as to t...

  10. Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique

    Science.gov (United States)

    Mercan, Kadir; Demir, Çiǧdem; Civalek, Ömer

    2016-01-01

    In the present manuscript, free vibration response of circular cylindrical shells with functionally graded material (FGM) is investigated. The method of discrete singular convolution (DSC) is used for numerical solution of the related governing equation of motion of FGM cylindrical shell. The constitutive relations are based on the Love's first approximation shell theory. The material properties are graded in the thickness direction according to a volume fraction power law indexes. Frequency values are calculated for different types of boundary conditions, material and geometric parameters. In general, close agreement between the obtained results and those of other researchers has been found.

  11. Cusp-latitude Pc3 spectra: band-limited and power-law components

    Directory of Open Access Journals (Sweden)

    P. V. Ponomarenko

    Full Text Available This work attempts to fill a gap in comparative studies of upstream-generated Pc3–4 waves and broad band ULF noise observed at cusp latitudes. We performed a statistical analysis of the spectral properties of three years of cusp-latitude ground magnetometer data, finding that the average daytime Pc3–4 spectra are characterized by two principal components: an upstream-related band-limited enhancement (‘signal’ and a power-law background (‘noise’ with S(f a  f -4 . Based on this information we developed an algorithm allowing for the deconvolution of these two components in the spectral domain. The frequency of the signal enhancement increases linearly with IMF magnitude as f [mHz] ~ 4.4 | BIMF | [nT], and its power maximizes around IMF cone angles qxB ~ 20 and 160° and at 10:30–11:00 MLT. Both spectral components exhibit similar semiannual variations with equinoctial maxima. The back-ground noise power grows with increasing southward Bz and remains nearly constant for northward Bz . Its diurnal variation resembles that of Pc5 field-line resonance power, with a maximum near 09:00 MLT. Both the band-limited signal and broad band noise components show power-law growth with solar wind velocity a V 5.71sw and a V 4.12sw, respectively. Thus, the effective signal-to-noise ratio increases with in-creasing Vsw. The observations suggest that the noise generation is associated with reconnection processes.

    Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers; MHD waves and instabilities; solar wind magnetosphere interactions

  12. Modeling metabolic networks in C. glutamicum: a comparison of rate laws in combination with various parameter optimization strategies

    Directory of Open Access Journals (Sweden)

    Oldiges Marco

    2009-01-01

    Full Text Available Abstract Background To understand the dynamic behavior of cellular systems, mathematical modeling is often necessary and comprises three steps: (1 experimental measurement of participating molecules, (2 assignment of rate laws to each reaction, and (3 parameter calibration with respect to the measurements. In each of these steps the modeler is confronted with a plethora of alternative approaches, e. g., the selection of approximative rate laws in step two as specific equations are often unknown, or the choice of an estimation procedure with its specific settings in step three. This overall process with its numerous choices and the mutual influence between them makes it hard to single out the best modeling approach for a given problem. Results We investigate the modeling process using multiple kinetic equations together with various parameter optimization methods for a well-characterized example network, the biosynthesis of valine and leucine in C. glutamicum. For this purpose, we derive seven dynamic models based on generalized mass action, Michaelis-Menten and convenience kinetics as well as the stochastic Langevin equation. In addition, we introduce two modeling approaches for feedback inhibition to the mass action kinetics. The parameters of each model are estimated using eight optimization strategies. To determine the most promising modeling approaches together with the best optimization algorithms, we carry out a two-step benchmark: (1 coarse-grained comparison of the algorithms on all models and (2 fine-grained tuning of the best optimization algorithms and models. To analyze the space of the best parameters found for each model, we apply clustering, variance, and correlation analysis. Conclusion A mixed model based on the convenience rate law and the Michaelis-Menten equation, in which all reactions are assumed to be reversible, is the most suitable deterministic modeling approach followed by a reversible generalized mass action kinetics

  13. Coupling analysis on the soft ground settlement laws in Qinshan nuclear power phase I sea wall project

    International Nuclear Information System (INIS)

    Sun Feng; Pan Rong; Zhu Xiuyun; Zhang Dingli

    2011-01-01

    Qinshan Nuclear Power Phase I sea wall project is a barrier engineering in defending the design basis flooding, which is of importance to the safety of NPP. The geological condition has the feature of high compressibility and low penetration, such as the soft ground of 1 + 450 section of Qinshan Nuclear Power Phase I sea wall. Based on parameters acquired from the site experiment, 3-D finite difference analysis is put forward to study the feature of consolidation settlement laws, which can embody the fluid-solid coupling interaction. The conclusions of numerical analysis agree well with the in-site measured data, and it, can contribute to the design and construction of raising sea wall project. (authors)

  14. Legal basis of energy economy. Collection of important laws and regulations of the amended power economy law. 7. ed.; Rechtsgrundlagen der Energiewirtschaft. Sammlung wichtiger Gesetze und Vorschriften zum novellierten Energiewirtschaftsrecht

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, B.J.; Schweers, E.

    2007-07-01

    The book under consideration is an actual collection of important laws and regulations according to the amended power economy law. It is the 7th edition and contains components of the European and national cartel law. Furthermore, the power economy law, the regulations of mains access, and the regulations of mains fee are revised editorial. The book consist of four main chapters: (a) General energy law; (b) Bylaws to energy economical laws; (c) Law of privileged energy supports; (d) cartel law.

  15. Power-law cosmic expansion in f(R) gravity models

    International Nuclear Information System (INIS)

    Goheer, Naureen; Larena, Julien; Dunsby, Peter K. S.

    2009-01-01

    We show that within the class of f(R) gravity theories, Friedmann-Lemaitre-Robertson-Walker power-law perfect fluid solutions only exist for R n gravity. This significantly restricts the set of exact cosmological solutions which have similar properties to what is found in standard general relativity.

  16. Time-domain simulation of constitutive relations for nonlinear acoustics including relaxation for frequency power law attenuation media modeling

    Science.gov (United States)

    Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.

    2015-10-01

    We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.

  17. Nuclear law and law of the sea - a synthesis

    International Nuclear Information System (INIS)

    Courteix, S.

    1976-01-01

    The general idea behind the work of the Paris Colloqium on Nuclear Law and Law of the Sea was that of an agreement and sometimes opposition between two specificities, that of the law of the maritime and, in particular, ocean environment, and that of the law of nuclear techniques. These relationships were studied notably in the perspective of the problems of transport of nuclear materials and their liability insurance, as well as from the viewpoint of the operation of nuclear powered ships. Another problem studied in this context is that of radioactive marine pollution. (N.E.A.) [fr

  18. Low-ℓ power suppression in punctuated inflation

    International Nuclear Information System (INIS)

    Qureshi, Mussadiq H.; Iqbal, Asif; Malik, Manzoor A.; Souradeep, Tarun

    2017-01-01

    Motivated by Planck confirmation of an anomalously low value of the CMB temperature fluctuations up to multipole ℓ < 40, we in this paper try to explain such feature by investigating case of punctuated inflation scenario. This form of inflation potential is inspired by Minimal Super-symmetric Standard Model (MSSM) wherein suppression of curvature perturbation power at large scales is produced by introducing period of fast-roll phase of the inflation sandwiched between two stages of slow-roll phase. We apply Markov Chain Monte Carlo analysis to determine posterior distribution and the best fit values of the model parameters using recent WMAP9 and Planck data. We show that WMAP9 and Planck results are consistent with each other and that with Planck data we obtain tighter constraints for punctuated inflation parameters. We find that punctuated inflation leads to better fit in CMB data compared to simple power law model. The improvement in the fit to the WMAP9 data is Δ χ 2 ∼ 3.6 and for Planck the improvement is Δ χ 2 ∼ 5.4. We find that AIC does not discriminate between punctuated inflation and simple power law model for WMAP9 data. However, for Planck data we find that punctuated inflation is moderately preferred over a simple power law model.

  19. Discovery of Power-Law Growth in the Self-Renewal of Heterogeneous Glioma Stem Cell Populations.

    Directory of Open Access Journals (Sweden)

    Michiya Sugimori

    Full Text Available Accumulating evidence indicates that cancer stem cells (CSCs drive tumorigenesis. This suggests that CSCs should make ideal therapeutic targets. However, because CSC populations in tumors appear heterogeneous, it remains unclear how CSCs might be effectively targeted. To investigate the mechanisms by which CSC populations maintain heterogeneity during self-renewal, we established a glioma sphere (GS forming model, to generate a population in which glioma stem cells (GSCs become enriched. We hypothesized, based on the clonal evolution concept, that with each passage in culture, heterogeneous clonal sublines of GSs are generated that progressively show increased proliferative ability.To test this hypothesis, we determined whether, with each passage, glioma neurosphere culture generated from four different glioma cell lines become progressively proliferative (i.e., enriched in large spheres. Rather than monitoring self-renewal, we measured heterogeneity based on neurosphere clone sizes (#cells/clone. Log-log plots of distributions of clone sizes yielded a good fit (r>0.90 to a straight line (log(% total clones = k*log(#cells/clone indicating that the system follows a power-law (y = xk with a specific degree exponent (k = -1.42. Repeated passaging of the total GS population showed that the same power-law was maintained over six passages (CV = -1.01 to -1.17. Surprisingly, passage of either isolated small or large subclones generated fully heterogeneous populations that retained the original power-law-dependent heterogeneity. The anti-GSC agent Temozolomide, which is well known as a standard therapy for glioblastoma multiforme (GBM, suppressed the self-renewal of clones, but it never disrupted the power-law behavior of a GS population.Although the data above did not support the stated hypothesis, they did strongly suggest a novel mechanism that underlies CSC heterogeneity. They indicate that power-law growth governs the self-renewal of heterogeneous

  20. The Power Laws of Violence against Women: Rescaling Research and Policies

    Science.gov (United States)

    Kappler, Karolin E.; Kaltenbrunner, Andreas

    2012-01-01

    Background Violence against Women –despite its perpetuation over centuries and its omnipresence at all social levels– entered into social consciousness and the general agenda of Social Sciences only recently, mainly thanks to feminist research, campaigns, and general social awareness. The present article analyzes in a secondary analysis of German prevalence data on Violence against Women, whether the frequency and severity of Violence against Women can be described with power laws. Principal Findings Although the investigated distributions all resemble power-law distributions, a rigorous statistical analysis accepts this hypothesis at a significance level of 0.1 only for 1 of 5 cases of the tested frequency distributions and with some restrictions for the severity of physical violence. Lowering the significance level to 0.01 leads to the acceptance of the power-law hypothesis in 2 of the 5 tested frequency distributions and as well for the severity of domestic violence. The rejections might be mainly due to the noise in the data, with biases caused by self-reporting, errors through rounding, desirability response bias, and selection bias. Conclusion Future victimological surveys should be designed explicitly to avoid these deficiencies in the data to be able to clearly answer the question whether Violence against Women follows a power-law pattern. This finding would not only have statistical implications for the processing and presentation of the data, but also groundbreaking consequences on the general understanding of Violence against Women and policy modeling, as the skewed nature of the underlying distributions makes evident that Violence against Women is a highly disparate and unequal social problem. This opens new questions for interdisciplinary research, regarding the interplay between environmental, experimental, and social factors on victimization. PMID:22768348

  1. A Hard X-Ray Power-Law Spectral Cutoff in Centaurus X-4

    DEFF Research Database (Denmark)

    Chakrabarty, Deepto; Tomsick, John A.; Grefenstette, Brian W.

    2015-01-01

    The low-mass X-ray binary Cen X-4 is the brightest and closest (<1.2 kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unkno...... behavior with PSR J1023+0038, IGR J18245-2452, and XSS J12270-4859, which have shown transitions between LMXB and radio pulsar modes at a similar X-ray luminosity....

  2. Around power law for PageRank components in Buckley-Osthus model of web graph

    OpenAIRE

    Gasnikov, Alexander; Zhukovskii, Maxim; Kim, Sergey; Noskov, Fedor; Plaunov, Stepan; Smirnov, Daniil

    2017-01-01

    In the paper we investigate power law for PageRank components for the Buckley-Osthus model for web graph. We compare different numerical methods for PageRank calculation. With the best method we do a lot of numerical experiments. These experiments confirm the hypothesis about power law. At the end we discuss real model of web-ranking based on the classical PageRank approach.

  3. A simplified method for power-law modelling of metabolic pathways from time-course data and steady-state flux profiles

    OpenAIRE

    Kitayama, Tomoya; Kinoshita, Ayako; Sugimoto, Masahiro; Nakayama, Yoichi; Tomita, Masaru

    2006-01-01

    Abstract Background In order to improve understanding of metabolic systems there have been attempts to construct S-system models from time courses. Conventionally, non-linear curve-fitting algorithms have been used for modelling, because of the non-linear properties of parameter estimation from time series. However, the huge iterative calculations required have hindered the development of large-scale metabolic pathway models. To solve this problem we propose a novel method involving power-law...

  4. Two Universality Properties Associated with the Monkey Model of Zipf's Law

    Science.gov (United States)

    Perline, Richard; Perline, Ron

    2016-03-01

    The distribution of word probabilities in the monkey model of Zipf's law is associated with two universality properties: (1) the power law exponent converges strongly to $-1$ as the alphabet size increases and the letter probabilities are specified as the spacings from a random division of the unit interval for any distribution with a bounded density function on $[0,1]$; and (2), on a logarithmic scale the version of the model with a finite word length cutoff and unequal letter probabilities is approximately normally distributed in the part of the distribution away from the tails. The first property is proved using a remarkably general limit theorem for the logarithm of sample spacings from Shao and Hahn, and the second property follows from Anscombe's central limit theorem for a random number of i.i.d. random variables. The finite word length model leads to a hybrid Zipf-lognormal mixture distribution closely related to work in other areas.

  5. Learning curves in highly skilled chess players: a test of the generality of the power law of practice.

    Science.gov (United States)

    Howard, Robert W

    2014-09-01

    The power law of practice holds that a power function best interrelates skill performance and amount of practice. However, the law's validity and generality are moot. Some researchers argue that it is an artifact of averaging individual exponential curves while others question whether the law generalizes to complex skills and to performance measures other than response time. The present study tested the power law's generality to development over many years of a very complex cognitive skill, chess playing, with 387 skilled participants, most of whom were grandmasters. A power or logarithmic function best fit grouped data but individuals showed much variability. An exponential function usually was the worst fit to individual data. Groups differing in chess talent were compared and a power function best fit the group curve for the more talented players while a quadratic function best fit that for the less talented. After extreme amounts of practice, a logarithmic function best fit grouped data but a quadratic function best fit most individual curves. Individual variability is great and the power law or an exponential law are not the best descriptions of individual chess skill development. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Instabilities in power law gradient hardening materials

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2005-01-01

    Tension and compression instabilities are investigated for specimens with dimensions in the micron range. A finite strain generalization of a higher order strain gradient plasticity theory is implemented in a finite element scheme capable of modeling power law hardening materials. Effects...... of gradient hardening are found to delay the onset of localization under plane strain tension, and significantly reduce strain gradients in the localized zone. For plane strain compression gradient hardening is found to increase the load-carrying capacity significantly....

  7. THE FUNDAMENTAL SOLUTIONS FOR MULTI-TERM MODIFIED POWER LAW WAVE EQUATIONS IN A FINITE DOMAIN.

    Science.gov (United States)

    Jiang, H; Liu, F; Meerschaert, M M; McGough, R J

    2013-01-01

    Fractional partial differential equations with more than one fractional derivative term in time, such as the Szabo wave equation, or the power law wave equation, describe important physical phenomena. However, studies of these multi-term time-space or time fractional wave equations are still under development. In this paper, multi-term modified power law wave equations in a finite domain are considered. The multi-term time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals (1, 2], [2, 3), [2, 4) or (0, n ) ( n > 2), respectively. Analytical solutions of the multi-term modified power law wave equations are derived. These new techniques are based on Luchko's Theorem, a spectral representation of the Laplacian operator, a method of separating variables and fractional derivative techniques. Then these general methods are applied to the special cases of the Szabo wave equation and the power law wave equation. These methods and techniques can also be extended to other kinds of the multi-term time-space fractional models including fractional Laplacian.

  8. DEM modeling of ball mills with experimental validation: influence of contact parameters on charge motion and power draw

    Science.gov (United States)

    Boemer, Dominik; Ponthot, Jean-Philippe

    2017-01-01

    Discrete element method simulations of a 1:5-scale laboratory ball mill are presented in this paper to study the influence of the contact parameters on the charge motion and the power draw. The position density limit is introduced as an efficient mathematical tool to describe and to compare the macroscopic charge motion in different scenarios, i.a. with different values of the contact parameters. While the charge motion and the power draw are relatively insensitive to the stiffness and the damping coefficient of the linear spring-slider-damper contact law, the coefficient of friction has a strong influence since it controls the sliding propensity of the charge. Based on the experimental calibration and validation by charge motion photographs and power draw measurements, the descriptive and predictive capabilities of the position density limit and the discrete element method are demonstrated, i.e. the real position of the charge is precisely delimited by the respective position density limit and the power draw can be predicted with an accuracy of about 5 %.

  9. Finite sample properties of power-law cross-correlations estimators

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav

    2015-01-01

    Roč. 419, č. 1 (2015), s. 513-525 ISSN 0378-4371 R&D Projects: GA ČR(CZ) GP14-11402P Keywords : power-law cross-correlations * long - term memory * econophysics Subject RIV: AH - Economics Impact factor: 1.785, year: 2015 http://library.utia.cas.cz/separaty/2014/E/kristoufek-0433530.pdf

  10. Taylor's law and body size in exploited marine ecosystems.

    Science.gov (United States)

    Cohen, Joel E; Plank, Michael J; Law, Richard

    2012-12-01

    Taylor's law (TL), which states that variance in population density is related to mean density via a power law, and density-mass allometry, which states that mean density is related to body mass via a power law, are two of the most widely observed patterns in ecology. Combining these two laws predicts that the variance in density is related to body mass via a power law (variance-mass allometry). Marine size spectra are known to exhibit density-mass allometry, but variance-mass allometry has not been investigated. We show that variance and body mass in unexploited size spectrum models are related by a power law, and that this leads to TL with an exponent slightly <2. These simulated relationships are disrupted less by balanced harvesting, in which fishing effort is spread across a wide range of body sizes, than by size-at-entry fishing, in which only fish above a certain size may legally be caught.

  11. Power laws and fragility in flow networks.

    Science.gov (United States)

    Shore, Jesse; Chu, Catherine J; Bianchi, Matt T

    2013-01-01

    What makes economic and ecological networks so unlike other highly skewed networks in their tendency toward turbulence and collapse? Here, we explore the consequences of a defining feature of these networks: their nodes are tied together by flow. We show that flow networks tend to the power law degree distribution (PLDD) due to a self-reinforcing process involving position within the global network structure, and thus present the first random graph model for PLDDs that does not depend on a rich-get-richer function of nodal degree. We also show that in contrast to non-flow networks, PLDD flow networks are dramatically more vulnerable to catastrophic failure than non-PLDD flow networks, a finding with potential explanatory power in our age of resource- and financial-interdependence and turbulence.

  12. Bubble parameters analysis of gas-liquid two-phase sparse bubbly flow based on image method

    International Nuclear Information System (INIS)

    Zhou Yunlong; Zhou Hongjuan; Song Lianzhuang; Liu Qian

    2012-01-01

    The sparse rising bubbles of gas-liquid two-phase flow in vertical pipe were measured and studied based on image method. The bubble images were acquired by high-speed video camera systems, the characteristic parameters of bubbles were extracted by using image processing techniques. Then velocity variation of rising bubbles were drawn. Area and centroid variation of single bubble were also drawn. And then parameters and movement law of bubbles were analyzed and studied. The test results showed that parameters of bubbles had been analyzed well by using image method. (authors)

  13. On Origin of Power-Law Distributions in Self-Organized Criticality from Random Walk Treatment

    International Nuclear Information System (INIS)

    Cao Xiaofeng; Deng Zongwei; Yang Chunbin

    2008-01-01

    The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is then regarded as a first-return random walk process in a one-dimensional lattice. We assume that the variation of the number of active sites has three possibilities in each update: to increase by 1 with probability f 1 , to decrease by 1 with probability f 2 , or remain unchanged with probability 1-f 1 -f 2 . This mimics the dynamics in the system. Power-law distributions of the lifetime are found when the random walk is unbiased with equal probability to move in opposite directions. This shows that power-law distributions in self-organized criticality may be caused by the balance of competitive interactions.

  14. Power law load dependence of atomic friction

    OpenAIRE

    Fusco, C.; Fasolino, A.

    2004-01-01

    We present a theoretical study of the dynamics of a tip scanning a graphite surface as a function of the applied load. From the analysis of the lateral forces, we extract the friction force and the corrugation of the effective tip-surface interaction potential. We find both the friction force and potential amplitude to have a power-law dependence on applied load with exponent similar to1.6. We interpret these results as characteristic of sharp undeformable tips in contrast to the case of macr...

  15. Mutually cooperative epidemics on power-law networks

    Science.gov (United States)

    Cui, Peng-Bi; Colaiori, Francesca; Castellano, Claudio

    2017-08-01

    The spread of an infectious disease can, in some cases, promote the propagation of other pathogens favoring violent outbreaks, which cause a discontinuous transition to an endemic state. The topology of the contact network plays a crucial role in these cooperative dynamics. We consider a susceptible-infected-removed-type model with two mutually cooperative pathogens: An individual already infected with one disease has an increased probability of getting infected by the other. We present a heterogeneous mean-field theoretical approach to the coinfection dynamics on generic uncorrelated power-law degree-distributed networks and validate its results by means of numerical simulations. We show that, when the second moment of the degree distribution is finite, the epidemic transition is continuous for low cooperativity, while it is discontinuous when cooperativity is sufficiently high. For scale-free networks, i.e., topologies with diverging second moment, the transition is instead always continuous. In this way we clarify the effect of heterogeneity and system size on the nature of the transition, and we validate the physical interpretation about the origin of the discontinuity.

  16. New power economy law for electricity and gas

    International Nuclear Information System (INIS)

    Heller, W.

    2004-01-01

    Since August 4, 2003, the so-called Directives on Speeding up Common Regulations for the Single Market for Electricity and Common Regulations for the Single Market for Gas have been in force (Official Journal of the European Communities L 176/37). These Directives must be translated into national law by July 1, 2004. The national legislative process in Germany for a Power Economy Act adapted accordingly is presented and evaluated. (orig.)

  17. Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method

    Science.gov (United States)

    Wei, H. L.; Billings, S. A.

    2009-09-01

    Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.

  18. Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method

    Energy Technology Data Exchange (ETDEWEB)

    Wei, H.L., E-mail: w.hualiang@sheffield.ac.u [Department of Automatic Control and Systems Engineering, the University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Billings, S.A., E-mail: s.billings@sheffield.ac.u [Department of Automatic Control and Systems Engineering, the University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2009-09-07

    Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.

  19. Power-law behaviour evaluation from foreign exchange market data using a wavelet transform method

    International Nuclear Information System (INIS)

    Wei, H.L.; Billings, S.A.

    2009-01-01

    Numerous studies in the literature have shown that the dynamics of many time series including observations in foreign exchange markets exhibit scaling behaviours. A simple new statistical approach, derived from the concept of the continuous wavelet transform correlation function (WTCF), is proposed for the evaluation of power-law properties from observed data. The new method reveals that foreign exchange rates obey power-laws and thus belong to the class of self-similarity processes.

  20. The Dynamics of Power laws: Fitness and Aging in Preferential Attachment Trees

    Science.gov (United States)

    Garavaglia, Alessandro; van der Hofstad, Remco; Woeginger, Gerhard

    2017-09-01

    Continuous-time branching processes describe the evolution of a population whose individuals generate a random number of children according to a birth process. Such branching processes can be used to understand preferential attachment models in which the birth rates are linear functions. We are motivated by citation networks, where power-law citation counts are observed as well as aging in the citation patterns. To model this, we introduce fitness and age-dependence in these birth processes. The multiplicative fitness moderates the rate at which children are born, while the aging is integrable, so that individuals receives a finite number of children in their lifetime. We show the existence of a limiting degree distribution for such processes. In the preferential attachment case, where fitness and aging are absent, this limiting degree distribution is known to have power-law tails. We show that the limiting degree distribution has exponential tails for bounded fitnesses in the presence of integrable aging, while the power-law tail is restored when integrable aging is combined with fitness with unbounded support with at most exponential tails. In the absence of integrable aging, such processes are explosive.

  1. Air-chemistry "turbulence": power-law scaling and statistical regularity

    Directory of Open Access Journals (Sweden)

    H.-m. Hsu

    2011-08-01

    Full Text Available With the intent to gain further knowledge on the spectral structures and statistical regularities of surface atmospheric chemistry, the chemical gases (NO, NO2, NOx, CO, SO2, and O3 and aerosol (PM10 measured at 74 air quality monitoring stations over the island of Taiwan are analyzed for the year of 2004 at hourly resolution. They represent a range of surface air quality with a mixed combination of geographic settings, and include urban/rural, coastal/inland, plain/hill, and industrial/agricultural locations. In addition to the well-known semi-diurnal and diurnal oscillations, weekly, and intermediate (20 ~ 30 days peaks are also identified with the continuous wavelet transform (CWT. The spectra indicate power-law scaling regions for the frequencies higher than the diurnal and those lower than the diurnal with the average exponents of −5/3 and −1, respectively. These dual-exponents are corroborated with those with the detrended fluctuation analysis in the corresponding time-lag regions. These exponents are mostly independent of the averages and standard deviations of time series measured at various geographic settings, i.e., the spatial inhomogeneities. In other words, they possess dominant universal structures. After spectral coefficients from the CWT decomposition are grouped according to the spectral bands, and inverted separately, the PDFs of the reconstructed time series for the high-frequency band demonstrate the interesting statistical regularity, −3 power-law scaling for the heavy tails, consistently. Such spectral peaks, dual-exponent structures, and power-law scaling in heavy tails are important structural information, but their relations to turbulence and mesoscale variability require further investigations. This could lead to a better understanding of the processes controlling air quality.

  2. Cluster tails for critical power-law inhomogeneous random graphs

    NARCIS (Netherlands)

    van der Hofstad, R.; Kliem, S.; van Leeuwaarden, J.S.H.

    2018-01-01

    Recently, the scaling limit of cluster sizes for critical inhomogeneous random graphs of rank-1 type having finite variance but infinite third moment degrees was obtained in Bhamidi et al. (Ann Probab 40:2299–2361, 2012). It was proved that when the degrees obey a power law with exponent τ∈ (3 , 4)

  3. Hypersonic aerodynamic characteristics of a family of power-law, wing body configurations

    Science.gov (United States)

    Townsend, J. C.

    1973-01-01

    The configurations analyzed are half-axisymmetric, power-law bodies surmounted by thin, flat wings. The wing planform matches the body shock-wave shape. Analytic solutions of the hypersonic small disturbance equations form a basis for calculating the longitudinal aerodynamic characteristics. Boundary-layer displacement effects on the body and the wing upper surface are approximated. Skin friction is estimated by using compressible, laminar boundary-layer solutions. Good agreement was obtained with available experimental data for which the basic theoretical assumptions were satisfied. The method is used to estimate the effects of power-law, fineness ratio, and Mach number variations at full-scale conditions. The computer program is included.

  4. “Slimming” of power-law tails by increasing market returns

    Science.gov (United States)

    Sornette, D.

    2002-06-01

    We introduce a simple generalization of rational bubble models which removes the fundamental problem discovered by Lux and Sornette (J. Money, Credit and Banking, preprint at http://xxx.lanl.gov/abs/cond-mat/9910141) that the distribution of returns is a power law with exponent discount rate rδ, the distribution of returns of the observable price, sum of the bubble component and of the fundamental price, exhibits an intermediate tail with an exponent which can be larger than 1. This regime r> rδ corresponds to a generalization of the rational bubble model in which the fundamental price is no more given by the discounted value of future dividends. We explain how this is possible. Our model predicts that, the higher is the market remuneration r above the discount rate, the larger is the power-law exponent and thus the thinner is the tail of the distribution of price returns.

  5. Deviations of Lambert-Beer???s law affect corneal refractive parameters after refractive surgery

    OpenAIRE

    Jim??nez Cuesta, Jos?? Ram??n; Rodr??guez-Mar??n, Francisco; Gonz??lez Anera, Rosario; Jim??nez del Barco Jaldo, Luis Miguel

    2006-01-01

    We calculate whether deviations of Lambert-Beer???s law, which regulates depth ablation during corneal ablation, significantly influence corneal refractive parameters after refractive surgery and whether they influence visual performance. For this, we compute a point-to-point correction on the cornea while assuming a non-linear (including a quadratic term) fit for depth ablation. Post-surgical equations for refractive parameters using a non-linear fit show significant differences with respect...

  6. Dynamical nature of inviscid power law for two dimensional turbulences and self-consistent spectrum and transport of plasma filaments

    International Nuclear Information System (INIS)

    Zhnag, Y.Z.; Mahajan, S.M.

    1994-01-01

    On basis of equal-time correlation theory (a non-perturbative approach) inviscid power laws of 2D isotropic plasma turbulences with one Lagrangian inviscid constant of motion are unambiguously solved by determining the dynamical characteristics. Two distinct types of induced transport according to the divergence of the inverse correlation length in the inviscid limit are revealed. This analysis also suggests a physically reasonable closure. The self-consistent system (a set of integral equations) for plasma filaments is investigated in detail, and is found to be a nonlinear differential eigenvalue problem for diffusion coefficient D, whereon the Dyson-like (integral) equation plays a role of boundary condition. This new type of transport is non-Bohm-like, and is very much like the quasilinear formula even in the strong turbulence regime. Physically, it arises from synchronization of shrinking squared correlation length with decorrelation time, for which the ''mixing-length'' breaks down. The shrinkage of correlation length is a characteristic pertaining to the new type of turbulence; its relationship with the turbulence observed in supershot regime on TFTR is commented on. (author). 12 refs, 2 figs

  7. Mapping the Power of Law Professors: The Role of Scientific and Social Capital

    Science.gov (United States)

    Bühlmann, Felix; Benz, Pierre; Mach, André; Rossier, Thierry

    2017-01-01

    As a scientific discipline and profession, law has been for centuries at the heart of social and political power of many Western societies. Professors of law, as influential representatives of the profession, are important powerbrokers between academia, politics and the corporate world. Their influence is based on scientific reputation,…

  8. IMPLEMENTATION OF ENERGY LAW OF HYBRID POWER STATION FOR SOCIAL WELFARE

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Widowati

    2014-11-01

    Full Text Available This study was aimed to investigate the Implementation of Energy Law of Hybrid Power Station for Social Welfare in Pantai Baru. The problem formulations are the management and utilization of hybrid power station in Pantai Baru and implementation of energy law of hybrid power station for social welfare in the fields of economy and information in Pantai Baru. Based on data analysis it is concluded that the management of hybrid power station in Pantai Baru is performed collaboratively between government and the society. The existence of hybrid power station in pantai baru has positive impacts in economy and information. Penelitian ini meneliti Pelaksanaan Hukum Energi Pembangkit Listrik Tenaga Hibrid untuk Kesejahteraan Rakyat di Bidang Ekonomi dan Informasi di Pantai Baru. Masalah yang diteliti adalah bentuk pengelolaan dan pemanfaatan pembangkit listrik tenaga hibrid di Pantai Baru dan pelaksanaan hukum energi pembangkit listrik tenaga hibrid untuk kesejahteraan rakyat di bidang ekonomi dan informasi di Pantai Baru. Berdasarkan analisis data dapat disimpulkan bahwa pengelolaan pembangkit listrik tenaga hibrid yang ada di pantai baru dilakukan secara kolaboratif, antara pemerintah dengan masyarakat. Kehadiran pembangkit listrik tenaga hibrid yang ada di pantai baru telah memberikan dampak positif di bidang ekonomi dan informasi.

  9. Practical experience with second law power plant monitoring

    International Nuclear Information System (INIS)

    Lang, F.D.; Horn, K.F.

    1992-01-01

    This article discusses the use of an ultimate performance monitoring technique derived from Second Law concepts. Other techniques and their methods have been reported. If electricity is to be produced with the minimum of unproductive consumption of fuel - then fundamental thermodynamic losses must be understood on a system bases. Such understanding cuts across vendor curves, plant design, fuels, etc. Thermal losses in a nuclear unit are comparable at a prime facia level to losses at any other thermal system. They are what we must minimize in the production of electricity, no manner the method of that production. The Second Law offers the only foundation for the study of such losses, and thus affords the bases for a true and ultimate indicator of system performance. From such a foundation, a parameter is needed to tell us specifically what components are thermodynamically responsible for fuel consumption given either their direct creation of electricity or their contribution to thermodynamic losses. The Fuel Consumption Index, discussed in this article, is this parameter. It can be used for thermodynamic system design, monitoring, diagnosing problems, and economic dispatching. It tells us why fuel is being consumed; consumed by a nuclear plant, trash burner, a 40 year-old fossil plant, etc

  10. ANALYSIS OF MARANGONI CONVECTION OF NON-NEWTONIAN POWER LAW FLUIDS WITH LINEAR TEMPERATURE DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2011-01-01

    Full Text Available The problem of steady, laminar, thermal Marangoni convection flow of non-Newtonian power law fluid along a horizontal surface with variable surface temperature is studied. The partial differential equations are transformed into ordinary differential equations by using a suitable similarity transformation and analytical approximate solutions are obtained by an efficient transformation, asymptotic expansion and Padé approximants technique. The effects of power law index and Marangoni number on velocity and temperature profiles are examined and discussed.

  11. Law concerning water and nuclear power station licensing

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The competent water authority, within the purview of the legal provisions concerning water is entitled to define a maximum of radioactive contamination of cooling water taken from and re-fed into the Rhine river, and is entitled to make such limit form part of the permit granted to a nuclear power station (here: Biblis B reactor). This right is not overruled by sections 45, 46 of the Rad. Protection Ordinance which determine dose limits (among others also for radioactivity released through waste water), and which state the competent licensing authority under atomic energy law to be entitled to set higher or lower limits by discretion. The provisions of sections 45 ff Rad. Prot. Ordinance are to be interpreted to mean that since the competent authority in accordance with section 46, sub-sections (2) and (5) Rad. Prot. Ordinance is given the right to define maximum acceptable radioactivity release through water discharge, it many also define the lowest limit of contamination and is hence entitled to declare discharged cooling water not to fall under atomic energy law, but rather under the law relating to water management. (orig.) [de

  12. Low-ℓ power suppression in punctuated inflation

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Mussadiq H.; Iqbal, Asif; Malik, Manzoor A. [Department of Physics, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006 (India); Souradeep, Tarun, E-mail: mussadiqqureshi111@gmail.com, E-mail: asifiqbal@kashmiruniversity.net, E-mail: mmalik@kashmiruniversity.ac.in, E-mail: tarun@iucaa.in [Inter-University Center for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007 (India)

    2017-04-01

    Motivated by Planck confirmation of an anomalously low value of the CMB temperature fluctuations up to multipole ℓ < 40, we in this paper try to explain such feature by investigating case of punctuated inflation scenario. This form of inflation potential is inspired by Minimal Super-symmetric Standard Model (MSSM) wherein suppression of curvature perturbation power at large scales is produced by introducing period of fast-roll phase of the inflation sandwiched between two stages of slow-roll phase. We apply Markov Chain Monte Carlo analysis to determine posterior distribution and the best fit values of the model parameters using recent WMAP9 and Planck data. We show that WMAP9 and Planck results are consistent with each other and that with Planck data we obtain tighter constraints for punctuated inflation parameters. We find that punctuated inflation leads to better fit in CMB data compared to simple power law model. The improvement in the fit to the WMAP9 data is Δ χ{sup 2} ∼ 3.6 and for Planck the improvement is Δ χ{sup 2} ∼ 5.4. We find that AIC does not discriminate between punctuated inflation and simple power law model for WMAP9 data. However, for Planck data we find that punctuated inflation is moderately preferred over a simple power law model.

  13. Novel algorithm and MATLAB-based program for automated power law analysis of single particle, time-dependent mean-square displacement

    Science.gov (United States)

    Umansky, Moti; Weihs, Daphne

    2012-08-01

    parameters and quality of fit are provided. After all single trajectory time-averaged MSDs are fit, we obtain cutoffs from the user to categorize and segment the power laws into groups; cutoff are either in exponents of the power laws, time of appearance of the fits, or both together. The trajectories are sorted according to the cutoffs and the time- and ensemble-averaged MSD of each group is provided, with histograms of the distributions of the exponents in each group. The program then allows the user to generate new trajectory files with trajectories segmented according to the determined groups, for any further required analysis. Additional comments: README file giving the names and a brief description of all the files that make-up the package and clear instructions on the installation and execution of the program is included in the distribution package. Running time: On an i5 Windows 7 machine with 4 GB RAM the automated parts of the run (excluding data loading and user input) take less than 45 minutes to analyze and save all stages for an 844 trajectory file, including optional PDF save. Trajectory length did not affect run time (tested up to 3600 frames/trajectory), which was on average 3.2±0.4 seconds per trajectory.

  14. Mapping Power Law Distributions in Digital Health Social Networks: Methods, Interpretations, and Practical Implications.

    Science.gov (United States)

    van Mierlo, Trevor; Hyatt, Douglas; Ching, Andrew T

    2015-06-25

    Social networks are common in digital health. A new stream of research is beginning to investigate the mechanisms of digital health social networks (DHSNs), how they are structured, how they function, and how their growth can be nurtured and managed. DHSNs increase in value when additional content is added, and the structure of networks may resemble the characteristics of power laws. Power laws are contrary to traditional Gaussian averages in that they demonstrate correlated phenomena. The objective of this study is to investigate whether the distribution frequency in four DHSNs can be characterized as following a power law. A second objective is to describe the method used to determine the comparison. Data from four DHSNs—Alcohol Help Center (AHC), Depression Center (DC), Panic Center (PC), and Stop Smoking Center (SSC)—were compared to power law distributions. To assist future researchers and managers, the 5-step methodology used to analyze and compare datasets is described. All four DHSNs were found to have right-skewed distributions, indicating the data were not normally distributed. When power trend lines were added to each frequency distribution, R(2) values indicated that, to a very high degree, the variance in post frequencies can be explained by actor rank (AHC .962, DC .975, PC .969, SSC .95). Spearman correlations provided further indication of the strength and statistical significance of the relationship (AHC .987. DC .967, PC .983, SSC .993, Ppower distributions across multiple DHSNs, each addressing a unique condition. Results indicate that despite vast differences in theme, content, and length of existence, DHSNs follow properties of power laws. The structure of DHSNs is important as it gives insight to researchers and managers into the nature and mechanisms of network functionality. The 5-step process undertaken to compare actor contribution patterns can be replicated in networks that are managed by other organizations, and we conjecture that

  15. Mixing two sets of noisy measurements changes the N-dependence of resolution to a fourth-root power law

    International Nuclear Information System (INIS)

    Mahani, Alireza S; Carlsson, A E; Wessel, R

    2004-01-01

    If noise is uncorrelated during repeated measurements of the same physical variable, averaging these measurements improves the accuracy of estimating the variable. When two values of a variable are measured separately, the smallest separation of these two values that can be discriminated with a certain reliability (resolution) is inversely proportional to the square root of the number of measurements employed. However, if measurements for these two values are mixed together, they need to be clustered before being averaged. Distinguishing mixed clusters with small separations can be thought of as a problem of deciding the number of components in a finite mixture model. Using the likelihood ratio, the second-moment estimator, and the k-means clustering methods, we will show that a similarly defined resolution for the mixed scenario is, approximately, inversely proportional to the fourth-root of the number of measurements. The observed fourth-root law is explained in terms of some more intuitive properties of the problem. We also conclude that, assuming that the fourth-root law is universal, the methods reported here are near-optimal

  16. Power Law Distributions in the Experiment for Adjustment of the Ion Source of the NBI System

    International Nuclear Information System (INIS)

    Han Xiaopu; Hu Chundong

    2005-01-01

    The experiential adjustment process in an experiment on the ion source of the neutral beam injector system for the HT-7 Tokamak is reported in this paper. With regard to the data obtained in the same condition, in arranging the arc current intensities of every shot with a decay rank, the distributions of the arc current intensity correspond to the power laws, and the distribution obtained in the condition with the cryo-pump corresponds to the double Pareto distribution. Using the similar study method, the distributions of the arc duration are close to the power laws too. These power law distributions are formed rather naturally instead of being the results of purposeful seeking

  17. The Law of Element Abundance Relationships in Igneous Rocks Petrogenetically Associated with Fractional Crystallization

    Institute of Scientific and Technical Information of China (English)

    汪云亮; 王旺章

    1991-01-01

    Reported in this paper are:1)the law of element abundance relationships:element abun-dances are of power function with each other in an igneous rock petrogenetically associated with fractional crystallization,2)deduction of the law and relevant parameters:abundance relationship constant(a°) and phase constant? from Henry's law and the law of mass conservation,3)the data basis and evidence of the law of element abundance relationships,4)establishment of the equa-bions for element abundance relationships in igneous rocks formed from the same parental magma during the same fractional crystallization stage ,and all measurable parameters involved in the equations.

  18. Prevention of damage and 'residual risk' in nuclear power laws

    International Nuclear Information System (INIS)

    Greipl, C.

    1992-01-01

    The concept of prevention of damage within the framework of nuclear power laws includes averting danger for the protection of third parties and preventing risks for the partial protection of third parties with the proviso that still a desire to use the concept 'residual risk' in addition, it should be limited, on the grounds of what can be reasonably expected, to those risks which cannot be reduced any further by the government, i.e. to risks which the public in general and third parties ('actually') must accept. In the future, questions regarding safety systems should be taken into account exclusively withing the context of 'what is necessary for protection against damage in keeping with the latest developments in science and technology' and not at the discretion of the law in denying permission according to Article 7 Paragraph 2 Atomic Energy Law. (orig.) [de

  19. The effect of multi-directional nanocomposite materials on the vibrational response of thick shell panels with finite length and rested on two-parameter elastic foundations

    Science.gov (United States)

    Tahouneh, Vahid; Naei, Mohammad Hasan

    2016-03-01

    The main purpose of this paper is to investigate the effect of bidirectional continuously graded nanocomposite materials on free vibration of thick shell panels rested on elastic foundations. The elastic foundation is considered as a Pasternak model after adding a shear layer to the Winkler model. The panels reinforced by randomly oriented straight single-walled carbon nanotubes are considered. The volume fractions of SWCNTs are assumed to be graded not only in the radial direction, but also in axial direction of the curved panel. This study presents a 2-D six-parameter power-law distribution for CNTs volume fraction of 2-D continuously graded nanocomposite that gives designers a powerful tool for flexible designing of structures under multi-functional requirements. The benefit of using generalized power-law distribution is to illustrate and present useful results arising from symmetric, asymmetric and classic profiles. The material properties are determined in terms of local volume fractions and material properties by Mori-Tanaka scheme. The 2-D differential quadrature method as an efficient numerical tool is used to discretize governing equations and to implement boundary conditions. The fast rate of convergence of the method is shown and results are compared against existing results in literature. Some new results for natural frequencies of the shell are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The interesting results indicate that a graded nanocomposite volume fraction in two directions has a higher capability to reduce the natural frequency than conventional 1-D functionally graded nanocomposite materials.

  20. The first experimental confirmation of the fractional kinetics containing the complex-power-law exponents: Dielectric measurements of polymerization reactions

    Science.gov (United States)

    Nigmatullin, R. R.; Arbuzov, A. A.; Salehli, F.; Giz, A.; Bayrak, I.; Catalgil-Giz, H.

    2007-01-01

    For the first time we achieved incontestable evidence that the real process of dielectric relaxation during the polymerization reaction of polyvinylpyrrolidone (PVP) is described in terms of the fractional kinetic equations containing complex-power-law exponents. The possibility of the existence of the fractional kinetics containing non-integer complex-power-law exponents follows from the general theory of dielectric relaxation that has been suggested recently by one of the authors (R.R.N). Based on the physical/geometrical meaning of the fractional integral with complex exponents there is a possibility to develop a general theory of dielectric relaxation based on the self-similar (fractal) character of the reduced (averaged) microprocesses that take place in the mesoscale region. This theory contains some essential predictions related to existence of the non-integer power-law kinetics and the results of this paper can be considered as the first confirmation of existence of the kinetic phenomena that are described by fractional derivatives with complex-power-law exponents. We want to stress here that with the help of a new complex fitting function for the complex permittivity it becomes possible to describe the whole process for real and imaginary parts simultaneously throughout the admissible frequency range (30 Hz-13 MHz). The fitting parameters obtained for the complex permittivity function for three temperatures (70, 90 and 110 °C) confirm in general the picture of reaction that was known qualitatively before. They also reveal some new features, which improve the interpretation of the whole polymerization process. We hope that these first results obtained in the paper will serve as a good stimulus for other researches to find the traces of the existence of new fractional kinetics in other relaxation processes unrelated to the dielectric relaxation. These results should lead to the reconsideration and generalization of irreversibility and kinetic phenomena that

  1. Non-coulombic effective power-law potential for the heavy quarkoniums

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N; Jena, S N [Utkal Univ., Bhubaneswar (India). Dept. of Physics

    1980-12-01

    An effective power-law potential of the form V(r) = 6.08 r/sup 0/sup(.)/sup 106/ - 6.41 is found to describe satisfactorily the gross features of the mass spectra and the leptonic width ratios of the cc and bb systems in a flavour-independent manner.

  2. Networks of power in digital copyright law and policy political salience, expertise and the legislative process

    CERN Document Server

    Farrand, Benjamin

    2014-01-01

    In this book, Benjamin Farrand employs an interdisciplinary approach that combines legal analysis with political theory to explore the development of copyright law in the EU. Farrand utilises Foucault's concept of Networks of Power and Culpepper's Quiet Politics to assess the adoption and enforcement of copyright law in the EU, including the role of industry representative, cross-border licensing, and judicial approaches to territorial restrictions. Focusing in particular on legislative initiatives concerning copyright, digital music and the internet, Networks of Power in Digital Copyright Law and Policy: Political Salience, Expertise and the Legislative Process demonstrates the connection between copyright law and complex network relationships. This book presents an original socio-political theoretical framework for assessing developments in copyright law that will interest researchers and post-graduate students of law and politics, as well as those more particularly concerned with political theory, EU and c...

  3. Influence of Norton's law parameters in the determination of stresses and deformation in materials undergo creep phenomenon

    International Nuclear Information System (INIS)

    Bevilacqua, L.; Freire, J.L.; Monteiro, E.; Miranda, P.E.V. de

    1980-01-01

    Experimental results obtained from creep essays for AISI 316 stainless-steel in different temperatures are presented. These results are rounded off by Norton's law for which parameters A e n are determined. It is studied how variations of Norton's law parameters affect the state of stresses and deformation in thin and thick pipes subjected, to internal pressure and constant temperature. It is concluded that for the cases studied the stresses are little affected by the variations of the parameter n and it is difficult too anticipate degrees of the accumulated deformation since the uncertainties or variations in A and n introduce serious errors in the calculation of the deformation velocity [pt

  4. The United Kingdom Law on the authorisation of nuclear power stations

    International Nuclear Information System (INIS)

    Savinson, R.

    1977-01-01

    This paper explains the requirements of the law of the United Kingdom as to the authorisations needed to construct and operate nuclear power plants in Great Britain. For simplicity, the texts referred to apply to England and Wales, Scottish law differing in detail but not in principle. Implementation of this legal system is studied in particular from the viewpoint of the Central Electricity Generating Board (CEGB) which is at present the body exclusively responsible for generating and supplying electricity in England and Wales. (NEA) [fr

  5. Sinusoidal Parameter Estimation Using Quadratic Interpolation around Power-Scaled Magnitude Spectrum Peaks

    Directory of Open Access Journals (Sweden)

    Kurt James Werner

    2016-10-01

    Full Text Available The magnitude of the Discrete Fourier Transform (DFT of a discrete-time signal has a limited frequency definition. Quadratic interpolation over the three DFT samples surrounding magnitude peaks improves the estimation of parameters (frequency and amplitude of resolved sinusoids beyond that limit. Interpolating on a rescaled magnitude spectrum using a logarithmic scale has been shown to improve those estimates. In this article, we show how to heuristically tune a power scaling parameter to outperform linear and logarithmic scaling at an equivalent computational cost. Although this power scaling factor is computed heuristically rather than analytically, it is shown to depend in a structured way on window parameters. Invariance properties of this family of estimators are studied and the existence of a bias due to noise is shown. Comparing to two state-of-the-art estimators, we show that an optimized power scaling has a lower systematic bias and lower mean-squared-error in noisy conditions for ten out of twelve common windowing functions.

  6. Effect of economic parameters on power generation expansion planning

    International Nuclear Information System (INIS)

    Sevilgen, Sueleyman Hakan; Hueseyin Erdem, Hasan; Cetin, Burhanettin; Volkan Akkaya, Ali; Dagdas, Ahmet

    2005-01-01

    The increasing consumption of electricity within time forces countries to build additional power plants. Because of technical and economic differences of the additional power plants, economic methodologies are used to determine the best technology for the additional capacity. The annual levelized cost method is used for this purpose, and the technology giving the minimum value for the additional load range is chosen. However, the economic parameters such as interest rate, construction escalation, fuel escalation, maintenance escalation and discount factor can affect the annual levelized cost considerably and change the economic range of the plants. Determining the values of the economical parameters in the future is very difficult, especially in developing countries. For this reason, the analysis of the changing rates of the mentioned values is of great importance for the planners of the additional capacity. In this study, the changing rates of the economic parameters that influence the annual levelized cost of the alternative power plant types are discussed. The alternative power plants considered for the electricity generation sector of Turkey and the economic parameters dominating each plant type are determined. It is clearly seen that the annual levelized cost for additional power plants varies with the economic parameters. The results show that the economic parameters variation has to be taken into consideration in electricity generation planning

  7. Power law distributions of patents as indicators of innovation.

    Directory of Open Access Journals (Sweden)

    Dion R J O'Neale

    Full Text Available The total number of patents produced by a country (or the number of patents produced per capita is often used as an indicator for innovation. Here we present evidence that the distribution of patents amongst applicants within many countries is well-described by power laws with exponents that vary between 1.66 (Japan and 2.37 (Poland. We suggest that this exponent is a useful new metric for studying innovation. Using simulations based on simple preferential attachment-type rules that generate power laws, we find we can explain some of the variation in exponents between countries, with countries that have larger numbers of patents per applicant generally exhibiting smaller exponents in both the simulated and actual data. Similarly we find that the exponents for most countries are inversely correlated with other indicators of innovation, such as research and development intensity or the ubiquity of export baskets. This suggests that in more advanced economies, which tend to have smaller values of the exponent, a greater proportion of the total number of patents are filed by large companies than in less advanced countries.

  8. Influence of power-law index on an unsteady exothermic reaction ...

    African Journals Online (AJOL)

    This study presents the solution of an unsteady Arrhenius exothermic reaction where we reduced the exponential term to a power-law approximation. A numerical solution of the problem is obtained using shooting technique with second order Runge-Kuta scheme. It is shown that the temperature of the reactant depends on ...

  9. Nonlinear quenches of power-law confining traps in quantum critical systems

    International Nuclear Information System (INIS)

    Collura, Mario; Karevski, Dragi

    2011-01-01

    We describe the coherent quantum evolution of a quantum many-body system with a time-dependent power-law confining potential. The amplitude of the inhomogeneous potential is driven in time along a nonlinear ramp which crosses a critical point. Using Kibble-Zurek-like scaling arguments we derive general scaling laws for the density of excitations and energy excess generated during the nonlinear sweep of the confining potential. It is shown that, with respect to the sweeping rate, the densities follow algebraic laws with exponents that depend on the space-time properties of the potential and on the scaling dimensions of the densities. We support our scaling predictions with both analytical and numerical results on the Ising quantum chain with an inhomogeneous transverse field varying in time.

  10. Thermoelectric generator performance analysis: Influence of pin tapering on the first and second law efficiencies

    International Nuclear Information System (INIS)

    Yilbas, B.S.; Ali, H.

    2015-01-01

    Highlights: • Double tapering of thermoelectric elements improves first and second law efficiency. • Pin geometric feature maximizing device output work does not maximize thermal efficiency. • Pin geometric feature maximizing first law efficiency slight alters for maximum second law efficiency. • External resistance and operating temperature ratios influence design configuration of thermoelectric generator. - Abstract: Thermoelectric generators are the important candidates for clean energy conversion from the waste heat; however, their low efficiency limits the practical applications of the devices. Tailoring the geometric configuration of the device in line with the operating conditions can improve the device performance. Consequently; in the present study, the influence of the pin geometric configuration on the thermoelectric generator performance is investigated. The dimensionless tapering parameter is introduced and its effect on the first and second law efficiencies is examined for various operating conditions including the external load resistance and the temperature ratio. It is found that the first and second law efficiencies are significantly influenced by the pin geometry. The dimensionless tapering parameter (a), increasing tapering of the thermoelectric pins, within the range of 2 ⩽ a ⩽ 4 results in improved first and second law efficiencies. However, the dimensionless tapering parameter maximizing the first and second law efficiencies does not maximize the device output power. This behavior is associated with the external load resistance which has a considerable influence on the device output power such that increasing external load resistance lowers the device output power

  11. Advantages of using a two-switch forward in single-stage power factor corrected power supplies

    DEFF Research Database (Denmark)

    Petersen, Lars

    2000-01-01

    A single-stage power factor corrected power supply using a two-switch forward is proposed to increase efficiency. The converter is operated in the DCM (discontinues conduction mode) and it is shown that this operation mode ensures the intermediate DC-bus to be controlled only by means of circuit...... supply has been implemented. The measured efficiency is between 85% and 88.5% in the range 30 W-500 W and the measured power factor at full load is 0.95....... parameters and therefore independent of load variations. The DCM operation often has a diminishing effect on the efficiency but by use of the two-switch topology high efficiency with minimum circuit complexity can be achieved in this mode. A 500 W 70 V prototype of the two-switch boost-forward PFC power...

  12. Predicted and verified deviations from Zipf's law in ecology of competing products.

    Science.gov (United States)

    Hisano, Ryohei; Sornette, Didier; Mizuno, Takayuki

    2011-08-01

    Zipf's power-law distribution is a generic empirical statistical regularity found in many complex systems. However, rather than universality with a single power-law exponent (equal to 1 for Zipf's law), there are many reported deviations that remain unexplained. A recently developed theory finds that the interplay between (i) one of the most universal ingredients, namely stochastic proportional growth, and (ii) birth and death processes, leads to a generic power-law distribution with an exponent that depends on the characteristics of each ingredient. Here, we report the first complete empirical test of the theory and its application, based on the empirical analysis of the dynamics of market shares in the product market. We estimate directly the average growth rate of market shares and its standard deviation, the birth rates and the "death" (hazard) rate of products. We find that temporal variations and product differences of the observed power-law exponents can be fully captured by the theory with no adjustable parameters. Our results can be generalized to many systems for which the statistical properties revealed by power-law exponents are directly linked to the underlying generating mechanism.

  13. Band head spin assignment of superdeformed bands in 133Pr using two-parameter formulae

    Science.gov (United States)

    Sharma, Honey; Mittal, H. M.

    2018-03-01

    The two-parameter formulae viz. the power index formula, the nuclear softness formula and the VMI model are adopted to accredit the band head spin (I0) of four superdeformed rotational bands in 133Pr. The technique of least square fitting is used to accredit the band head spin for four superdeformed rotational bands in 133Pr. The root mean deviation among the computed transition energies and well-known experimental transition energies are attained by extracting the model parameters from the two-parameter formulae. The determined transition energies are in excellent agreement with the experimental transition energies, whenever exact spins are accredited. The power index formula coincides well with the experimental data and provides minimum root mean deviation. So, the power index formula is more efficient tool than the nuclear softness formula and the VMI model. The deviation of dynamic moment of inertia J(2) against the rotational frequency is also examined.

  14. Black swans, power laws, and dragon-kings: Earthquakes, volcanic eruptions, landslides, wildfires, floods, and SOC models

    Science.gov (United States)

    Sachs, M. K.; Yoder, M. R.; Turcotte, D. L.; Rundle, J. B.; Malamud, B. D.

    2012-05-01

    Extreme events that change global society have been characterized as black swans. The frequency-size distributions of many natural phenomena are often well approximated by power-law (fractal) distributions. An important question is whether the probability of extreme events can be estimated by extrapolating the power-law distributions. Events that exceed these extrapolations have been characterized as dragon-kings. In this paper we consider extreme events for earthquakes, volcanic eruptions, wildfires, landslides and floods. We also consider the extreme event behavior of three models that exhibit self-organized criticality (SOC): the slider-block, forest-fire, and sand-pile models. Since extrapolations using power-laws are widely used in probabilistic hazard assessment, the occurrence of dragon-king events have important practical implications.

  15. Power laws and self-organized criticality in theory and nature

    International Nuclear Information System (INIS)

    Marković, Dimitrije; Gros, Claudius

    2014-01-01

    Power laws and distributions with heavy tails are common features of many complex systems. Examples are the distribution of earthquake magnitudes, solar flare intensities and the sizes of neuronal avalanches. Previously, researchers surmised that a single general concept may act as an underlying generative mechanism, with the theory of self organized criticality being a weighty contender. The power-law scaling observed in the primary statistical analysis is an important, but by far not the only feature characterizing experimental data. The scaling function, the distribution of energy fluctuations, the distribution of inter-event waiting times, and other higher order spatial and temporal correlations, have seen increased consideration over the last years. Leading to realization that basic models, like the original sandpile model, are often insufficient to adequately describe the complexity of real-world systems with power-law distribution. Consequently, a substantial amount of effort has gone into developing new and extended models and, hitherto, three classes of models have emerged. The first line of models is based on a separation between the time scales of an external drive and an internal dissipation, and includes the original sandpile model and its extensions, like the dissipative earthquake model. Within this approach the steady state is close to criticality in terms of an absorbing phase transition. The second line of models is based on external drives and internal dynamics competing on similar time scales and includes the coherent noise model, which has a non-critical steady state characterized by heavy-tailed distributions. The third line of models proposes a non-critical self-organizing state, being guided by an optimization principle, such as the concept of highly optimized tolerance. We present a comparative overview regarding distinct modeling approaches together with a discussion of their potential relevance as underlying generative models for real

  16. Power laws and self-organized criticality in theory and nature

    Energy Technology Data Exchange (ETDEWEB)

    Marković, Dimitrije, E-mail: markovic@cbs.mpg.de [Institute for Theoretical Physics, Goethe University Frankfurt (Germany); Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig (Germany); Biomagnetic Center, Hans Berger Clinic for Neurology, University Hospital Jena, Jena (Germany); Gros, Claudius, E-mail: gros@itp.uni-frankfurt.de [Institute for Theoretical Physics, Goethe University Frankfurt (Germany)

    2014-03-01

    Power laws and distributions with heavy tails are common features of many complex systems. Examples are the distribution of earthquake magnitudes, solar flare intensities and the sizes of neuronal avalanches. Previously, researchers surmised that a single general concept may act as an underlying generative mechanism, with the theory of self organized criticality being a weighty contender. The power-law scaling observed in the primary statistical analysis is an important, but by far not the only feature characterizing experimental data. The scaling function, the distribution of energy fluctuations, the distribution of inter-event waiting times, and other higher order spatial and temporal correlations, have seen increased consideration over the last years. Leading to realization that basic models, like the original sandpile model, are often insufficient to adequately describe the complexity of real-world systems with power-law distribution. Consequently, a substantial amount of effort has gone into developing new and extended models and, hitherto, three classes of models have emerged. The first line of models is based on a separation between the time scales of an external drive and an internal dissipation, and includes the original sandpile model and its extensions, like the dissipative earthquake model. Within this approach the steady state is close to criticality in terms of an absorbing phase transition. The second line of models is based on external drives and internal dynamics competing on similar time scales and includes the coherent noise model, which has a non-critical steady state characterized by heavy-tailed distributions. The third line of models proposes a non-critical self-organizing state, being guided by an optimization principle, such as the concept of highly optimized tolerance. We present a comparative overview regarding distinct modeling approaches together with a discussion of their potential relevance as underlying generative models for real

  17. Archie's law - a reappraisal

    Science.gov (United States)

    Glover, Paul W. J.

    2016-07-01

    When scientists apply Archie's first law they often include an extra parameter a, which was introduced about 10 years after the equation's first publication by Winsauer et al. (1952), and which is sometimes called the "tortuosity" or "lithology" parameter. This parameter is not, however, theoretically justified. Paradoxically, the Winsauer et al. (1952) form of Archie's law often performs better than the original, more theoretically correct version. The difference in the cementation exponent calculated from these two forms of Archie's law is important, and can lead to a misestimation of reserves by at least 20 % for typical reservoir parameter values. We have examined the apparent paradox, and conclude that while the theoretical form of the law is correct, the data that we have been analysing with Archie's law have been in error. There are at least three types of systematic error that are present in most measurements: (i) a porosity error, (ii) a pore fluid salinity error, and (iii) a temperature error. Each of these systematic errors is sufficient to ensure that a non-unity value of the parameter a is required in order to fit the electrical data well. Fortunately, the inclusion of this parameter in the fit has compensated for the presence of the systematic errors in the electrical and porosity data, leading to a value of cementation exponent that is correct. The exceptions are those cementation exponents that have been calculated for individual core plugs. We make a number of recommendations for reducing the systematic errors that contribute to the problem and suggest that the value of the parameter a may now be used as an indication of data quality.

  18. Selection and verification of safety parameters in safety parameter display system for nuclear power plants

    International Nuclear Information System (INIS)

    Zhang Yuangfang

    1992-02-01

    The method and results for safety parameter selection and its verification in safety parameter display system of nuclear power plants are introduced. According to safety analysis, the overall safety is divided into six critical safety functions, and a certain amount of safety parameters which can represent the integrity degree of each function and the causes of change are strictly selected. The verification of safety parameter selection is carried out from the view of applying the plant emergency procedures and in the accident man oeuvres on a full scale nuclear power plant simulator

  19. The US business cycle: power law scaling for interacting units with complex internal structure

    Science.gov (United States)

    Ormerod, Paul

    2002-11-01

    In the social sciences, there is increasing evidence of the existence of power law distributions. The distribution of recessions in capitalist economies has recently been shown to follow such a distribution. The preferred explanation for this is self-organised criticality. Gene Stanley and colleagues propose an alternative, namely that power law scaling can arise from the interplay between random multiplicative growth and the complex structure of the units composing the system. This paper offers a parsimonious model of the US business cycle based on similar principles. The business cycle, along with long-term growth, is one of the two features which distinguishes capitalism from all previously existing societies. Yet, economics lacks a satisfactory theory of the cycle. The source of cycles is posited in economic theory to be a series of random shocks which are external to the system. In this model, the cycle is an internal feature of the system, arising from the level of industrial concentration of the agents and the interactions between them. The model-in contrast to existing economic theories of the cycle-accounts for the key features of output growth in the US business cycle in the 20th century.

  20. Quantum dots with indirect band gap: power-law photoluminescence decay

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav

    2014-01-01

    Roč. 11, č. 5 (2014), s. 507-512 ISSN 1708-5284 R&D Projects: GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : photoluminescence * quantum dots * electron-phonon interaction * inter-valley deformation potential interaction * power-law decay Subject RIV: BM - Solid Matter Physics ; Magnetism

  1. An explanation for the universal 3.5 power-law observed in currency markets

    Directory of Open Access Journals (Sweden)

    Nicholas A. Johnson

    Full Text Available We present a mathematical theory to explain a recent empirical finding in the Physics literature (Zhao et al., 2013 in which the distributions of waiting-times between discrete events were found to exhibit power-law tails with an apparent universal exponent: α∼3.5. This new theory provides the first ever qualitative and quantitative explanation of Zhao et al.’s surprising finding. It also provides a mechanistic description of the origin of the observed universality, assigning its cause to the emergence of dynamical feedback processes between evolving clusters of like-minded agents. Keywords: Complex systems, Econophysics, Collective, Power law

  2. A simplified method for power-law modelling of metabolic pathways from time-course data and steady-state flux profiles.

    Science.gov (United States)

    Kitayama, Tomoya; Kinoshita, Ayako; Sugimoto, Masahiro; Nakayama, Yoichi; Tomita, Masaru

    2006-07-17

    In order to improve understanding of metabolic systems there have been attempts to construct S-system models from time courses. Conventionally, non-linear curve-fitting algorithms have been used for modelling, because of the non-linear properties of parameter estimation from time series. However, the huge iterative calculations required have hindered the development of large-scale metabolic pathway models. To solve this problem we propose a novel method involving power-law modelling of metabolic pathways from the Jacobian of the targeted system and the steady-state flux profiles by linearization of S-systems. The results of two case studies modelling a straight and a branched pathway, respectively, showed that our method reduced the number of unknown parameters needing to be estimated. The time-courses simulated by conventional kinetic models and those described by our method behaved similarly under a wide range of perturbations of metabolite concentrations. The proposed method reduces calculation complexity and facilitates the construction of large-scale S-system models of metabolic pathways, realizing a practical application of reverse engineering of dynamic simulation models from the Jacobian of the targeted system and steady-state flux profiles.

  3. A simplified method for power-law modelling of metabolic pathways from time-course data and steady-state flux profiles

    Directory of Open Access Journals (Sweden)

    Sugimoto Masahiro

    2006-07-01

    Full Text Available Abstract Background In order to improve understanding of metabolic systems there have been attempts to construct S-system models from time courses. Conventionally, non-linear curve-fitting algorithms have been used for modelling, because of the non-linear properties of parameter estimation from time series. However, the huge iterative calculations required have hindered the development of large-scale metabolic pathway models. To solve this problem we propose a novel method involving power-law modelling of metabolic pathways from the Jacobian of the targeted system and the steady-state flux profiles by linearization of S-systems. Results The results of two case studies modelling a straight and a branched pathway, respectively, showed that our method reduced the number of unknown parameters needing to be estimated. The time-courses simulated by conventional kinetic models and those described by our method behaved similarly under a wide range of perturbations of metabolite concentrations. Conclusion The proposed method reduces calculation complexity and facilitates the construction of large-scale S-system models of metabolic pathways, realizing a practical application of reverse engineering of dynamic simulation models from the Jacobian of the targeted system and steady-state flux profiles.

  4. Association between power law coefficients of the anatomical noise power spectrum and lesion detectability in breast imaging modalities

    Science.gov (United States)

    Chen, Lin; Abbey, Craig K.; Boone, John M.

    2013-03-01

    Previous research has demonstrated that a parameter extracted from a power function fit to the anatomical noise power spectrum, β, may be predictive of breast mass lesion detectability in x-ray based medical images of the breast. In this investigation, the value of β was compared with a number of other more widely used parameters, in order to determine the relationship between β and these other parameters. This study made use of breast CT data sets, acquired on two breast CT systems developed in our laboratory. A total of 185 breast data sets in 183 women were used, and only the unaffected breast was used (where no lesion was suspected). The anatomical noise power spectrum computed from two-dimensional region of interests (ROIs), was fit to a power function (NPS(f) = α f-β), and the exponent parameter (β) was determined using log/log linear regression. Breast density for each of the volume data sets was characterized in previous work. The breast CT data sets analyzed in this study were part of a previous study which evaluated the receiver operating characteristic (ROC) curve performance using simulated spherical lesions and a pre-whitened matched filter computer observer. This ROC information was used to compute the detectability index as well as the sensitivity at 95% specificity. The fractal dimension was computed from the same ROIs which were used for the assessment of β. The value of β was compared to breast density, detectability index, sensitivity, and fractal dimension, and the slope of these relationships was investigated to assess statistical significance from zero slope. A statistically significant non-zero slope was considered to be a positive association in this investigation. All comparisons between β and breast density, detectability index, sensitivity at 95% specificity, and fractal dimension demonstrated statistically significant association with p performance. Specifically, lower values of β were associated with lower breast density

  5. Parameters optimization for magnetic resonance coupling wireless power transmission.

    Science.gov (United States)

    Li, Changsheng; Zhang, He; Jiang, Xiaohua

    2014-01-01

    Taking maximum power transmission and power stable transmission as research objectives, optimal design for the wireless power transmission system based on magnetic resonance coupling is carried out in this paper. Firstly, based on the mutual coupling model, mathematical expressions of optimal coupling coefficients for the maximum power transmission target are deduced. Whereafter, methods of enhancing power transmission stability based on parameters optimal design are investigated. It is found that the sensitivity of the load power to the transmission parameters can be reduced and the power transmission stability can be enhanced by improving the system resonance frequency or coupling coefficient between the driving/pick-up coil and the transmission/receiving coil. Experiment results are well conformed to the theoretical analysis conclusions.

  6. The end of nuclear power? The conflict of politics, ecology and law

    International Nuclear Information System (INIS)

    Strassburg, W.

    1999-01-01

    The German federal government's demand to opt out of the peaceful use of nuclear power is examined under aspects of constitutional law. Constitutional barriers allow the peaceful use of nuclear power to be discontinued without any compensation only in the distant future. A general restriction of the useful life of plants does not constitute a modification of ownership rights but deprivation, i.e., expropriation. In this politically desired opt-out, the government also must bear in mind that the constitution protects not only the property but also the freedom to exercise their profession (Article 12, para. 1, German Basic Law) of all those who have been committed to this industry for decades. Also a national ban on reprocessing with transborder effects violates existing law, counteracting the requirement of a free exchange of goods and services within the single European market. Moreover, the existing reprocessing contracts with foreign companies may be terminated unilaterally only subject to indemnification, as they constitute obligations under international law, unless German customers were to exercise their contractual right to cancel. In addition, it is to be feared that discontinuation of the peaceful uses of nuclear power manifests itself in the absence of provisions for the back end of the fuel cycle. Prolonging the exploration of repositories and, consequently, relying more and more heavily on interim stores, is bound to raise the question of the evidence of spent fuel and waste management in these latter facilities. In the absence of sufficient proof of waste management provisions in interim stores, the accusation could be leveled that it was not certain whether these interim stores were not turning into final stores. (orig.) [de

  7. Efimov Physics and the Three-Body Parameter within a Two-Channel Framework

    DEFF Research Database (Denmark)

    Sørensen, Peder Klokmose; V. Fedorov, D.; S. Jensen, A.

    2012-01-01

    scaling laws. We recover known results for broad Feshbach resonances with small effective range, whereas in the case of narrow resonances we find a distinct non-monotonic behavior of the threshold at which the lowest Efimov trimer merges with the three-body continuum. To address the issue of the physical...... origin of the three-body parameter we provide a physically clear model for the relation between three-body physics and typical two-body atom-atom interactions. Our results demonstrate that experimental information from narrow Feshbach resonances and/or mixed systems are of vital importance to pin down...... the relation of two- and three-body physics in atomic systems....

  8. QUALITATIVE ANALYSIS OF DEPENDENCE OF DRIVE POWER HORIZONTAL-INCLINED BELT CONVEYOR ON ITS INITIAL PARAMETERS

    Directory of Open Access Journals (Sweden)

    V. M. Bohomaz

    2017-02-01

    Full Text Available Purpose.One of the main elements of band conveyors is a drive. To analyze the effect of design parameters on the drive power it is necessary to carry out the calculations according to standard procedures outlined in the current technical literature. The main design parameters of the band conveyor are: the type of cargo, project performance, the geometric dimensions of sections and track configuration as a whole. The feature of band conveyor calculation as compared to the elevators is the dependence of the band width on its performance, the inclination angle and the type of cargo. In the article for the account of this fact during calculations it is necessary to construct the dependence of the band width on the generalized parameter, which takes into account change in the design parameters. To determine the general pattern of changing the value of band conveyor drive power when varying its design parameters in the article it is necessary to construct the corresponding graphic dependences taking into account the standard sizes and bands parameters. Methodology. We consider the band conveyor with two sections: the inclined and horizontal one. It is conducted a detailed analysis of dependence of the conveyor band width and its drive power on the type of cargo, project performance, geometric dimensions and configuration of the conveyor track, using the appropriate parameter dependences constructed by the authors in previous papers. Findings. For band conveyors of this type there were constructed the graphics dependences of the band width on the parameter characterizing the project performance and the inclination angle of the track section, and on the performance at a fixed angle of inclination. Taking into account the changes in the band width with an increase in the value of project performance the graph dependences of drive power on the productivity and the inclination angle of the inclined section were built. Originality. For the first time there

  9. Universal correlations and power-law tails in financial covariance matrices

    Science.gov (United States)

    Akemann, G.; Fischmann, J.; Vivo, P.

    2010-07-01

    We investigate whether quantities such as the global spectral density or individual eigenvalues of financial covariance matrices can be best modelled by standard random matrix theory or rather by its generalisations displaying power-law tails. In order to generate individual eigenvalue distributions a chopping procedure is devised, which produces a statistical ensemble of asset-price covariances from a single instance of financial data sets. Local results for the smallest eigenvalue and individual spacings are very stable upon reshuffling the time windows and assets. They are in good agreement with the universal Tracy-Widom distribution and Wigner surmise, respectively. This suggests a strong degree of robustness especially in the low-lying sector of the spectra, most relevant for portfolio selections. Conversely, the global spectral density of a single covariance matrix as well as the average over all unfolded nearest-neighbour spacing distributions deviate from standard Gaussian random matrix predictions. The data are in fair agreement with a recently introduced generalised random matrix model, with correlations showing a power-law decay.

  10. Statistical tests for power-law cross-correlated processes

    Science.gov (United States)

    Podobnik, Boris; Jiang, Zhi-Qiang; Zhou, Wei-Xing; Stanley, H. Eugene

    2011-12-01

    For stationary time series, the cross-covariance and the cross-correlation as functions of time lag n serve to quantify the similarity of two time series. The latter measure is also used to assess whether the cross-correlations are statistically significant. For nonstationary time series, the analogous measures are detrended cross-correlations analysis (DCCA) and the recently proposed detrended cross-correlation coefficient, ρDCCA(T,n), where T is the total length of the time series and n the window size. For ρDCCA(T,n), we numerically calculated the Cauchy inequality -1≤ρDCCA(T,n)≤1. Here we derive -1≤ρDCCA(T,n)≤1 for a standard variance-covariance approach and for a detrending approach. For overlapping windows, we find the range of ρDCCA within which the cross-correlations become statistically significant. For overlapping windows we numerically determine—and for nonoverlapping windows we derive—that the standard deviation of ρDCCA(T,n) tends with increasing T to 1/T. Using ρDCCA(T,n) we show that the Chinese financial market's tendency to follow the U.S. market is extremely weak. We also propose an additional statistical test that can be used to quantify the existence of cross-correlations between two power-law correlated time series.

  11. At the Intersection between Expropriation Law and Administrative Law: Two Critical Views on the Constitutional Court's Arun Judgment

    Directory of Open Access Journals (Sweden)

    Ernst Jacobus Marais

    2016-08-01

    and may have negative repercussions for both expropriation law and administrative law, especially in view of the single-system-of-law principle. From an administrative law perspective the authors identify four considerations that could assist courts in determining whether administrative law should be considered, if not applied, in a given case. The first is the internal coherency of the law in view of the subsidiarity principles. The subsidiarity principles provide guidelines for courts to decide cases where two fundamental rights might be applicable. A principled approach is necessary in this context to ensure that the law operates as a single system and displays the positive characteristics of such a system. The fact that Moseneke DCJ preferred to award compensation to Arun instead of reviewing the expropriation under PAJA runs contrary to these principles and seems to result in an outcome which endorses – instead of prevents – administrative injustice. Secondly, the Constitutional Court's refusal to follow PAJA by reason of its being onerous on the appellant contradicts earlier case law where the Court held that time-periods under the Act cannot be circumvented by reason of their being burdensome. The rationale behind these time-periods is integral to securing administrative justice, since time-periods are not merely formalistic technicalities. Thirdly, the authors argue that a green-light approach to internal remedies could have resulted in the broadening of the interpretative context and recognition of the legitimate role of the public administration in the state. Finally, deference as understood by Dyzenhaus also exemplifies why administrative law should not be ignored in cases which concern the exercise of public power. According to Dyzenhaus, deference requires courts to actively participate in the justification of administrative decisions by asking whether the administration's "reasoning did in fact and also could in principle justify the conclusion

  12. The Effect of Surface Tension on the Gravity-driven Thin Film Flow of Newtonian and Power-law Fluids

    Science.gov (United States)

    Hu, Bin; Kieweg, Sarah L.

    2012-01-01

    Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability. PMID:23687391

  13. The Inverse System Method Applied to the Derivation of Power System Non—linear Control Laws

    Institute of Scientific and Technical Information of China (English)

    DonghaiLI; XuezhiJIANG; 等

    1997-01-01

    The differential geometric method has been applied to a series of power system non-linear control problems effectively.However a set of differential equations must be solved for obtaining the required diffeomorphic transformation.Therefore the derivation of control laws is very complicated.In fact because of the specificity of power system models the required diffeomorphic transformation may be obtained directly,so it is unnecessary to solve a set of differential equations.In addition inverse system method is equivalent to differential geometric method in reality and not limited to affine nonlinear systems,Its physical meaning is able to be viewed directly and its deduction needs only algebraic operation and derivation,so control laws can be obtained easily and the application to engineering is very convenient.Authors of this paper take steam valving control of power system as a typical case to be studied.It is demonstrated that the control law deduced by inverse system method is just the same as one by differential geometric method.The conclusion will simplify the control law derivations of steam valving,excitation,converter and static var compensator by differential geometric method and may be suited to similar control problems in other areas.

  14. The Causal Connection Between Disc and Power-Law Variability in Hard State Black Hole X-Ray Binaries

    Science.gov (United States)

    Uttley, P.; Wilkinson, T.; Cassatella, P.; Wilms, J.; Pottschimdt, K.; Hanke, M.; Boeck, M.

    2010-01-01

    We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. \\Ve show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.

  15. The impact law of confining pressure and plastic parameter on Dilatancy of rock

    Science.gov (United States)

    Wang, Bin; Zhang, Zhenjie; Zhu, Jiebing

    2017-08-01

    Based on cyclic loading-unloading triaxle test of marble, the double parameter dilation angle model is established considering confining pressure effect and plastic parameter. Research shows that not only the strength but also the militancy behavior is highly depended on its confining pressure and plastic parameter during process of failure. Dilation angle evolution law shows obvious nonlinear characteristic almost with a rapid increase to the peak and then decrease gradually with plastic increasing, and the peak dilation angle value is inversely proportional with confining pressure. The proposed double parameter nonlinear dilation angle model can be used to well describe the Dilatancy of rock, which helps to understand the failure mechanism of surrounding rock mass and predict the range of plastic zone.

  16. Theories of Power, Poverty, and Law: In Commemoration of the Contributions of Peter Bachrach--Power, Law, and Final Thoughts: The Contributions of Peter Bachrach

    Science.gov (United States)

    Schneider, Elizabeth M.

    2010-01-01

    I am pleased to be part of this symposium to celebrate the life and work of Peter Bachrach. Although my focus is the relevance of Peter's ideas of power to law, I want to begin with some personal comments as well as raise some final thoughts, drawing on others' contributions. Like so many of Peter's other students, I adored him. Peter's joy in…

  17. Power law of distribution of emergency situations on main gas pipeline

    Science.gov (United States)

    Voronin, K. S.; Akulov, K. A.

    2018-05-01

    The article presents the results of the analysis of emergency situations on a main gas pipeline. A power law of distribution of emergency situations is revealed. The possibility of conducting further scientific research to ensure the predictability of emergency situations on pipelines is justified.

  18. Amendment of the atomic energy basic law and other related laws and establishment of the nuclear safety commission

    International Nuclear Information System (INIS)

    Ochi, Kenji

    1978-01-01

    The Atomic Energy Basic Law and related several laws were amended in the recent diet session. The amendment of the laws was requested after the radiation leakage from nuclear-powered ship ''Mutsu''. The reform of administrative system of atomic energy development and utilization are consisted of two important points: one is to establish the Nuclear Safety Commission for strengthening nuclear safety administration, and the other is to give an authority to each ministry or agency to regulate nuclear power reactor from the establishment to operation according to its original mission. (author)

  19. Development of a digital image correlation procedure adapted for kinematic measurements in polycrystals: application to the identification of crystal plasticity laws parameters

    International Nuclear Information System (INIS)

    Guery, Adrien

    2014-01-01

    A digital image correlation procedure adapted to kinematic measurements in polycrystals has been developed in this work to identify parameters of crystal plasticity laws. 2D kinematic measurements are performed on the surface of 316LN austenitic steel polycrystals from a sequence of images acquired using a Scanning Electron Microscope (SEM) during in-situ tensile tests for various mean grain sizes. To enable digital image correlation, a speckle adapted to the microscopic scale is deposited onto the specimen surface by a microlithography process. Spatial distortions resulting from both patterning and SEM imaging techniques are quantified. The knowledge of the microstructure at the surface by electron backscattered diffraction allows for kinematic measurements to be performed using an unstructured finite element mesh taking as support the grain or twin boundaries. This same mesh is then used for the simulation of each tensile test on the experimental microstructure with the measured nodal displacements prescribed as boundary conditions with their time evolution. Two local crystal plasticity laws are considered to simulate the observed strain heterogeneities, namely, the Meric-Cailletaud model and the DD-CFC law developed at EDF R and D. Comparisons between measurements and simulations are performed in terms of displacements, strains but also activated slip systems. Last, an inverse identification method is proposed for the identification of the sought constitutive parameters based on both the local displacement fields and the material homogenized behavior. The parameters associated with isotropic hardening of Meric-Cailletaud law are thus identified for various mean grain sizes. It is also shown that some of the interaction parameters of slip systems can be estimated. (author)

  20. Second Law Of Thermodynamics Analysis Of Triple Cycle Power Plant

    Directory of Open Access Journals (Sweden)

    Matheus M. Dwinanto

    2012-11-01

    Full Text Available Triple cycle power plant with methane as a fuel has been analyzed on the basis of second law of thermodynamics.In this model, ideal Brayton cycle is selected as a topping cycle as it gives higher efficiency at lower pressure ratio comparedintercooler and reheat cycle. In trilple cycle the bottoming cycles are steam Rankine and organic Rankine cycle. Ammoniahas suitable working properties like critical temperature, boiling temperature, etc. Steam cycle consists of a deaerator andreheater. The bottoming ammonia cycle is a ideal Rankine cycle. Single pressure heat recovery steam and ammoniagenerators are selected for simplification of the analysis. The effects of pressure ratio and maximum temperature which aretaken as important parameters regarding the triple cycle are discussed on performance and exergetic losses. On the otherhand, the efficiency of the triple cycle can be raised, especially in the application of recovering low enthalpy content wasteheat. Therefore, by properly combining with a steam Rankine cycle, the ammonia Rankine cycle is expected to efficientlyutilize residual yet available energy to an optimal extent. The arrangement of multiple cycles is compared with combinedcycle having the same sink conditions. The parallel type of arrangement of bottoming cycle is selected due to increasedperformance.

  1. Sliding friction in the hydrodynamic lubrication regime for a power-law fluid

    International Nuclear Information System (INIS)

    Warren, P B

    2017-01-01

    A scaling analysis is undertaken for the load balance in sliding friction in the hydrodynamic lubrication regime, with a particular emphasis on power-law shear-thinning typical of a structured liquid. It is argued that the shear-thinning regime is mechanically unstable if the power-law index n   <  1/2, where n is the exponent that relates the shear stress to the shear rate. Consequently the Stribeck (friction) curve should be discontinuous, with possible hysteresis. Further analysis suggests that normal stress and flow transience (stress overshoot) do not destroy this basic picture, although they may provide stabilising mechanisms at higher shear rates. Extensional viscosity is also expected to be insignificant unless the Trouton ratio is large. A possible application to shear thickening in non-Brownian particulate suspensions is indicated. (paper)

  2. The influence of intrafamilial power on maternal health care in Mali: perspectives of women, men and mothers-in-law.

    Science.gov (United States)

    White, Darcy; Dynes, Michelle; Rubardt, Marcie; Sissoko, Koman; Stephenson, Rob

    2013-06-01

    Evidence from diverse settings suggests that women often have limited control over their own reproductive health decisions. To increase uptake of preventive services and behaviors, it is important to understand how intrafamilial power dynamics and the attitudes of women, their husband and their mother-in-law are associated with maternal health practices. In 317 households in two rural districts of central Mali, women who had given birth in the previous year, their husband and their mother-in-law each completed a survey gauging their attitudes toward constructs of gender, power and health. Bivariate and multivariable logistic regression analyses were conducted to identify associations with four maternal health outcomes: antenatal care frequency, antenatal care timing, institutional delivery and postnatal care. In multivariable analyses, the preferences and opinions of mothers-in-law were associated with the maternal health behaviors of their daughters-in-law. Women's own perceptions of their self-efficacy, the value of women in society and the quality of services at the local health facility were also independently associated with their preventive and health-seeking practices. Husbands' preferences and opinions were not associated with any outcome. Interventions focusing on women or couples may be insufficient to advance women's reproductive health in patriarchal societies such as Mali. Future research and programmatic efforts need to address gender norms and consider the influence of other family members, such as mothers-in-law.

  3. Adaptive estimation of a time-varying phase with a power-law spectrum via continuous squeezed states

    Science.gov (United States)

    Dinani, Hossein T.; Berry, Dominic W.

    2017-06-01

    When measuring a time-varying phase, the standard quantum limit and Heisenberg limit as usually defined, for a constant phase, do not apply. If the phase has Gaussian statistics and a power-law spectrum 1 /|ω| p with p >1 , then the generalized standard quantum limit and Heisenberg limit have recently been found to have scalings of 1 /N(p -1 )/p and 1 /N2 (p -1 )/(p +1 ) , respectively, where N is the mean photon flux. We show that this Heisenberg scaling can be achieved via adaptive measurements on squeezed states. We predict the experimental parameters analytically, and test them with numerical simulations. Previous work had considered the special case of p =2 .

  4. Nuclear structure of Uranium isotopes in the frame work of two parameter formula

    International Nuclear Information System (INIS)

    Vidya Devi; Gupta, J.B.

    2017-01-01

    We studied the power law, ab formula and SRF which are applicable for both deformed and soft nuclei. The formula is particularly successful in soft rotor and deformed nuclei with 2:8≤ R 4/2 3:3. The power law gives good fit of the data for b and a derived either from 2 + , 4 + or 6 + , 8 + energy levels. This study help to understand the structure of isotopes of Uranium and useful to find some new energy level of these isotopes theoretically

  5. Switched generalized function projective synchronization of two identical/different hyperchaotic systems with uncertain parameters

    International Nuclear Information System (INIS)

    Li Hongmin; Li Chunlai

    2012-01-01

    In this paper, we investigate two switched synchronization schemes, namely partial and complete switched generalized function projective synchronization, by using the adaptive control method. Partial switched synchronization of chaotic systems means that the state variables of the drive system synchronize with partial different state variables of the response system, whereas complete switched synchronization of chaotic systems means that all the state variables of the drive system synchronize with complete different state variables of the response system. Because the switched synchronization scheme exists in many combinations, it is a promising type of synchronization as it provides greater security in secure communications. Based on the Lyapunov stability theory, the adaptive control laws and the parameter update laws are derived to make the states of two identical/different hyperchaotic systems asymptotically synchronized up to a desired scaling function. Finally, numerical simulations are performed to verify and illustrate the analytical results.

  6. A non-coulombic effective power-law potential for the heavy quarkoniums

    International Nuclear Information System (INIS)

    Barik, N.; Jena, S.N.

    1980-01-01

    An effective power-law potential of the form V(r) = 6.08 r 0 sup(.) 106 - 6.41 is found to describe satisfactorily the gross features of the mass spectra and the leptonic width ratios of the cc and bb systems in a flavour-independent manner. (orig.)

  7. Civil law and common law : Two different paths leading to the same goal

    Directory of Open Access Journals (Sweden)

    Časlav Pejović

    2001-07-01

    Full Text Available The aim of this paper was not to judge which legal system is better: civil law or common law. The task of lawyers should not be to defend their legal systems/ but to improve them. Each legal system may have some advantages and deficiencies. If a foreign legal system has some advantages, why not incorporate them in our domestic legal system? In that way the resulting convergence of the two legal systems can only contribute to their common goal of creating a fair and just legal system which can provide legal certainty and protection to all citizens and legal persons.

  8. On different types of adjustment usable to calculate the parameters of the stream power law

    Science.gov (United States)

    Demoulin, Alain; Beckers, Arnaud; Bovy, Benoît

    2012-02-01

    Model parameterization through adjustment to field data is a crucial step in the modeling and the understanding of the drainage network response to tectonic or climatic perturbations. Using as a test case a data set of 18 knickpoints that materialize the migration of a 0.7-Ma-old erosion wave in the Ourthe catchment of northern Ardennes (western Europe), we explore the impact of various data fitting on the calibration of the stream power model of river incision, from which a simple knickpoint celerity equation is derived. Our results show that statistical least squares adjustments (or misfit functions) based either on the stream-wise distances between observed and modeled knickpoint positions at time t or on differences between observed and modeled time at the actual knickpoint locations yield significantly different values for the m and K parameters of the model. As there is no physical reason to prefer one of these approaches, an intermediate least-rectangles adjustment might at first glance appear as the best compromise. However, the statistics of the analysis of 200 sets of synthetic knickpoints generated in the Ourthe catchment indicate that the time-based adjustment is the most capable of getting close to the true parameter values. Moreover, this fitting method leads in all cases to an m value lower than that obtained from the classical distance adjustment (for example, 0.75 against 0.86 for the real case of the Ourthe catchment), corresponding to an increase in the non-linear character of the dependence of knickpoint celerity on discharge.

  9. Power-law photoluminescence decay in indirect gap quantum dots

    Czech Academy of Sciences Publication Activity Database

    Menšík, Miroslav; Král, Karel

    2013-01-01

    Roč. 111, November (2013), s. 170-174 ISSN 0167-9317 R&D Projects: GA MŠk(CZ) OC10007; GA MŠk LH12186; GA MŠk LH12236; GA ČR(CZ) GAP205/10/2280 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : quantum dots * indirect gap transition * power-law photoluminescence decay Subject RIV: BM - Solid Matter Physics ; Magnetism; BE - Theoretical Physics (FZU-D) Impact factor: 1.338, year: 2013

  10. Dynamics of warm power-law plateau inflation with a generalized inflaton decay rate: predictions and constraints after Planck 2015

    Energy Technology Data Exchange (ETDEWEB)

    Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Videla, Nelson [FCFM, Universidad de Chile, Departamento de Fisica, Santiago (Chile); Gulshan, Faiza [Lahore Leads University, Department of Mathematics, Lahore (Pakistan)

    2017-05-15

    In the present work, we study the consequences of considering a new family of single-field inflation models, called power-law plateau inflation, in the warm inflation framework. We consider the inflationary expansion is driven by a standard scalar field with a decay ratio Γ having a generic power-law dependence with the scalar field φ and the temperature of the thermal bath T given by Γ(φ,T) = C{sub φ}(T{sup a})/(φ{sup a-1}). Assuming that our model evolves according to the strong dissipative regime, we study the background and perturbative dynamics, obtaining the most relevant inflationary observable as the scalar power spectrum, the scalar spectral index and its running and the tensor-to-scalar ratio. The free parameters characterizing our model are constrained by considering the essential condition for warm inflation, the conditions for the model evolves according to the strong dissipative regime and the 2015 Planck results through the n{sub s}-r plane. For completeness, we study the predictions in the n{sub s}-dn{sub s}/d ln k plane. The model is consistent with a strong dissipative dynamics and predicts values for the tensor-to-scalar ratio and for the running of the scalar spectral index consistent with current bounds imposed by Planck and we conclude that the model is viable. (orig.)

  11. Dynamics of warm power-law plateau inflation with a generalized inflaton decay rate: predictions and constraints after Planck 2015

    International Nuclear Information System (INIS)

    Jawad, Abdul; Videla, Nelson; Gulshan, Faiza

    2017-01-01

    In the present work, we study the consequences of considering a new family of single-field inflation models, called power-law plateau inflation, in the warm inflation framework. We consider the inflationary expansion is driven by a standard scalar field with a decay ratio Γ having a generic power-law dependence with the scalar field φ and the temperature of the thermal bath T given by Γ(φ,T) = C_φ(T"a)/(φ"a"-"1). Assuming that our model evolves according to the strong dissipative regime, we study the background and perturbative dynamics, obtaining the most relevant inflationary observable as the scalar power spectrum, the scalar spectral index and its running and the tensor-to-scalar ratio. The free parameters characterizing our model are constrained by considering the essential condition for warm inflation, the conditions for the model evolves according to the strong dissipative regime and the 2015 Planck results through the n_s-r plane. For completeness, we study the predictions in the n_s-dn_s/d ln k plane. The model is consistent with a strong dissipative dynamics and predicts values for the tensor-to-scalar ratio and for the running of the scalar spectral index consistent with current bounds imposed by Planck and we conclude that the model is viable. (orig.)

  12. Experimental evaluation of the MIT-SNL period-generated minimum time control laws for the rapid adjustment of reactor power

    International Nuclear Information System (INIS)

    Bernard, J.A.; Kwok, K.S.; Menadier, P.T.; Thome, F.V.; Wyant, F.J.

    1987-01-01

    The rapid adjustment of reactor neutronic power has recently been achieved by developing control laws that determine the actuator mechanism velocity necessary to produce a specified reactor period. Designated as the 'MIT-SNL Period-Generated Minimum Time Control Laws,' these relations are closed-form expressions of general applicability. In particular, if there is no limitation on the available rate of change of reactivity, these laws can be used to achieve virtually any desired power profile including time optimal ones. The innovative aspect of these laws is that the rate of change of reactivity rather than the reactivity itself is used as the control signal. For example, relative to a time-optimal response, these laws function by altering the rate of change of reactivity so that the instantaneous period is stepped from infinity to its minimum allowed value, held at that value until the desired power level is attained, and then stepped back to infinity. The response is time-optimal because the power adjustment is continuously made at the maximum allowed rate

  13. Two-detector cross-correlation noise technique and its application in measuring reactor kinetic parameters

    International Nuclear Information System (INIS)

    Lu Guiping; Peng Feng; Yi Jieyi

    1988-01-01

    The two-detector cross-correlation noise technique is a new method of measuring reactor kinetic parameters developed in the sixties. It has the advantages of non-perturbation in core, high signal to noise ratio, low space dependent effect, and simple and reliable in measurement. A special set of cross-correlation analyzer has been prepared for measuring kinetic parameters of several reactor assemblies, such as the High Flux Engineering Test Reactor, its zero power mock up facility and a low enriched uranium light water lattice zero power facility

  14. Convective hydromagnetic instabilities of a power-law liquid saturating a porous medium: Flux conditions

    Science.gov (United States)

    Chahtour, C.; Ben Hamed, H.; Beji, H.; Guizani, A.; Alimi, W.

    2018-01-01

    We investigate how an external imposed magnetic field affects thermal instability in a horizontal shallow porous cavity saturated by a non-Newtonian power-law liquid. The magnetic field is assumed to be constant and parallel to the gravity. A uniform heat flux is applied to the horizontal walls of the layer while the vertical walls are adiabatic. We use linear stability analysis to find expressions for the critical Rayleigh number as a function of the power-law index and the intensity of the magnetic field. We use nonlinear parallel flow theory to find some explicit solutions of the problem, and we use finite difference numerical simulations to solve the full nonlinear equations. We show how the presence of magnetic field alters the known hydrodynamical result of Newtonian flows and power-law flows and how it causes the presence of subcritical finite amplitude convection for both pseudoplastic and dilatant fluids. We also show that in the limit of very strong magnetic field, the dissipation of energy by Joule effect dominates the dissipation of energy by shear stress and gives to the liquid an inviscid character.

  15. Numerical simulation of heat transfer in power law fluid flow through a stenosed artery

    Science.gov (United States)

    Talib, Amira Husni; Abdullah, Ilyani

    2017-11-01

    A numerical study of heat transfer in a power law fluid is investigated in this paper. The blood flow is treated as power law fluid with a presence of cosine shaped stenosis. This study reveals the effect of stenosis on the heat transfer and velocity of blood flowing in the constricted artery. The governing and energy equations are formulated in a cylindrical coordinate system. Hence, the set of equations and boundary conditions are solved numerically by Marker and Cell (MAC) method. The graphical result shows the profile of blood temperature is increased while the blood velocity is decreased at the critical height of stenosis.

  16. The Transient Elliptic Flow of Power-Law Fluid in Fractal Porous Media

    Institute of Scientific and Technical Information of China (English)

    宋付权; 刘慈群

    2002-01-01

    The steady oil production and pressure distribution formulae of vertically fractured well for power-law non-Newtonian fluid were derived on the basis of the elliptic flow model in fractal reservoirs. The corresponding transient flow in fractal reservoirs was studied by numerical differentiation method: the influence of fractal index to transient pressure of vertically fractured well was analyzed. Finally the approximate analytical solution of transient flow was given by average mass conservation law. The study shows that using elliptic flow method to analyze the flow of vertically fractured well is a simple method.

  17. Powerful subjects of tax law enforcement

    Directory of Open Access Journals (Sweden)

    Igor Dementyev

    2017-01-01

    Full Text Available УДК 342.6The subject. Competence of government bodies and their officials in the sphere of application of the tax law is considered in the article.The purpose of research is to determine the ratio of tax enforcement and application of the tax law, as well as the relationship between the concepts “party of tax enforcement” and “participant of tax legal relations”.Main results and scope of their application. The circle of participants of tax legal relations is broader than the circle of parties of tax law enforcement. The participants of tax legal relations are simultaneously the subjects of tax law, because they realize their tax status when enter into the tax relationships. The tax and customs authorities are the undoubted parties of the tax law enforcement.Although the financial authorities at all levels of government are not mentioned by article 9 of the Tax Code of the Russian Federation as participants of tax relations, they are parties of tax enforcement, because they make the agreement for deferment or installment payment of regional and local taxes.Scope of application. Clarification of participants of tax legal relations and determination of their mutual responsibility is essential to effective law enforcement.Conclusion. It was concluded that the scope tax law enforcement is tax proceedings, not administrative proceedings, civil (arbitration proceedings or enforcement proceedings.The application of the tax law is carried out not only in the form of tax relations, but also in relations of other branches of law.

  18. Graph Structure in Three National Academic Webs: Power Laws with Anomalies.

    Science.gov (United States)

    Thelwall, Mike; Wilkinson, David

    2003-01-01

    Explains how the Web can be modeled as a mathematical graph and analyzes the graph structures of three national university publicly indexable Web sites from Australia, New Zealand, and the United Kingdom. Topics include commercial search engines and academic Web link research; method-analysis environment and data sets; and power laws. (LRW)

  19. Mathematical analysis of the global dynamics of a power law model ...

    African Journals Online (AJOL)

    We analyze a mathematical power law model that describes HIV infection of CD4+ T cells. We report that the number of critical points depends on , where is a positive integer. We show that for any positive integer the infection – free equilibrium is asymptotically stable if the reproduction number R0 1.

  20. Analytical Solution of Unsteady Gravity Flows of A Power-Law Fluid ...

    African Journals Online (AJOL)

    We present an analytical study of unsteady non-linear rheological effects of a power-law fluid under gravity. The fluid flows through a porous medium. The governing equations are derived and similarity solutions are determined. The results show the existence of traveling waves. It is assumed that the viscosity is temperature ...

  1. Correction to the Beer-Lambert-Bouguer law for optical absorption.

    Science.gov (United States)

    Abitan, Haim; Bohr, Henrik; Buchhave, Preben

    2008-10-10

    The Beer-Lambert-Bouguer absorption law, known as Beer's law for absorption in an optical medium, is precise only at power densities lower than a few kW. At higher power densities this law fails because it neglects the processes of stimulated emission and spontaneous emission. In previous models that considered those processes, an analytical expression for the absorption law could not be obtained. We show here that by utilizing the Lambert W-function, the two-level energy rate equation model is solved analytically, and this leads into a general absorption law that is exact because it accounts for absorption as well as stimulated and spontaneous emission. The general absorption law reduces to Beer's law at low power densities. A criterion for its application is given along with experimental examples. (c) 2008 Optical Society of America

  2. Universal power-law diet partitioning by marine fish and squid with surprising stability–diversity implications

    Science.gov (United States)

    Rossberg, Axel G.; Farnsworth, Keith D.; Satoh, Keisuke; Pinnegar, John K.

    2011-01-01

    A central question in community ecology is how the number of trophic links relates to community species richness. For simple dynamical food-web models, link density (the ratio of links to species) is bounded from above as the number of species increases; but empirical data suggest that it increases without bounds. We found a new empirical upper bound on link density in large marine communities with emphasis on fish and squid, using novel methods that avoid known sources of bias in traditional approaches. Bounds are expressed in terms of the diet-partitioning function (DPF): the average number of resources contributing more than a fraction f to a consumer's diet, as a function of f. All observed DPF follow a functional form closely related to a power law, with power-law exponents independent of species richness at the measurement accuracy. Results imply universal upper bounds on link density across the oceans. However, the inherently scale-free nature of power-law diet partitioning suggests that the DPF itself is a better defined characterization of network structure than link density. PMID:21068048

  3. The law governing power generation and the atomic energy law in Japan, with special regard to the current situation in the energy sector

    International Nuclear Information System (INIS)

    Fujiwara, J.

    1984-01-01

    This contribution characterises Japanese legislation on power generation and supply, goes into detail with regard to the current Atomic Energy Law within the framework of the overall legal concept governing power supply, and presents an outlook on future developments. A table summarizes the main problems in this field. (orig./HSCH) [de

  4. Determination of the Real Loss of Power for a Condensing and a Backpressure Turbine by Means of Second Law Analysis

    Directory of Open Access Journals (Sweden)

    Henrik Holmberg

    2009-10-01

    Full Text Available All real processes generate entropy and the power/exergy loss is usually determined by means of the Gouy-Stodola law. If the system only exchanges heat at the environmental temperature, the Gouy-Stodola law gives the correct loss of power. However, most industrial processes exchange heat at higher or lower temperatures than the actual environmental temperature. When calculating the real loss of power in these cases, the Gouy-Stodola law does not give the correct loss if the actual environmental temperature is used. The first aim of this paper is to show through simple steam turbine examples that the previous statement is true. The second aim of the paper is to define the effective temperature to calculate the real power loss of the system with the Gouy-Stodola law, and to apply it to turbine examples. Example calculations also show that the correct power loss can be defined if the effective temperature is used instead of the real environmental temperature.

  5. Power-law tails and non-Markovian dynamics in open quantum systems: An exact solution from Keldysh field theory

    Science.gov (United States)

    Chakraborty, Ahana; Sensarma, Rajdeep

    2018-03-01

    The Born-Markov approximation is widely used to study the dynamics of open quantum systems coupled to external baths. Using Keldysh formalism, we show that the dynamics of a system of bosons (fermions) linearly coupled to a noninteracting bosonic (fermionic) bath falls outside this paradigm if the bath spectral function has nonanalyticities as a function of frequency. In this case, we show that the dissipative and noise kernels governing the dynamics have distinct power-law tails. The Green's functions show a short-time "quasi"-Markovian exponential decay before crossing over to a power-law tail governed by the nonanalyticity of the spectral function. We study a system of bosons (fermions) hopping on a one-dimensional lattice, where each site is coupled linearly to an independent bath of noninteracting bosons (fermions). We obtain exact expressions for the Green's functions of this system, which show power-law decay ˜|t - t'|-3 /2 . We use these to calculate the density and current profile, as well as unequal-time current-current correlators. While the density and current profiles show interesting quantitative deviations from Markovian results, the current-current correlators show qualitatively distinct long-time power-law tails |t - t'|-3 characteristic of non-Markovian dynamics. We show that the power-law decays survive in the presence of interparticle interaction in the system, but the crossover time scale is shifted to larger values with increasing interaction strength.

  6. SUBSTANTIAL EXCEPTIONS AND (DELIMITATIONS OF THE POWERS OF THE JUDGES ON CIVIL PROCEDURAL LAW

    Directory of Open Access Journals (Sweden)

    Igor Raatz

    2017-08-01

    Full Text Available This essay aims to unveil the role of the substantial exceptions on delimiting the powers of the judges on civil procedural law, especially regarding the ex officio judicial activity. This way, under a phenomenological method and based on a vision of guarantee of rights on procedural law, the article offers a brief explanation of the question concerning the content of the object under litigation and its role of (delimiting the powers of the judges. The work hypothesis is the addition of the substantial exceptions among the content of the object under litigation, along with the claim itself and the cause of action. The results lie on the premise that, by the substantial exceptions, the defendant extends the object under litigation – which is formed dynamically on civil procedure. The conclusion points towards the idea that the substantial exceptions act in a way of limiting the ex officio judicial activity on civil procedural law

  7. Estimation of power feedback parameters of pulse reactor IBR-2M on transients

    International Nuclear Information System (INIS)

    Pepyolyshev, Yu.N.; Popov, A.K.

    2013-01-01

    Parameters of the IBR-2M reactor power feedback (PFB) on a model of the reactor dynamics by mathematical treatment of two registered transients are estimated. Frequency characteristics and the pulse transient characteristics corresponding to these PFB parameters are calculated. PFB parameters received thus can be considered as their express tentative estimation as real measurements in this case occupy no more than 30 minutes. Total PFB is negative at 1 and 2 MW. At the received estimations of PFB parameters in a self-regulation mode it is possible to consider the stability margins of the IBR-2M reactor satisfactory

  8. Asymptotic expansion of unsteady gravity flow of a power-law fluid ...

    African Journals Online (AJOL)

    We present a paper on the asymptotic expansion of unsteady non-linear rheological effects of a power-law fluid under gravity. The fluid flows through a porous medium. The asymptotic expansion is employed to obtain solution of the nonlinear problem. The results show the existence of traveling waves. It is assumed that the ...

  9. Hysteresis and creep: Comparison between a power-law model and Kuhnen's model

    Energy Technology Data Exchange (ETDEWEB)

    Oliveri, Alberto; Stellino, Flavio; Parodi, Mauro; Storace, Marco, E-mail: marco.storace@unige.it

    2016-04-01

    In this paper we analyze some properties of a recently proposed model of hysteresis and creep (related to a circuit model, whose only nonlinear element is based on a power law) and compare it with the well-known Kuhnen's model. A first qualitative comparison relies on the analysis of the behavior of the elementary cell of each model. Their responses to step inputs (which allow to better evidence the creep effect) are analyzed and compared. Then, a quantitative comparison is proposed, based on the fitting performances of the two models on experimental data measured from a commercial piezoelectric actuator.

  10. Nonperturbative effects on Tc of interacting Bose gases in power-law traps

    International Nuclear Information System (INIS)

    Zobay, O.; Metikas, G.; Kleinert, H.

    2005-01-01

    The critical temperature T c of an interacting Bose gas trapped in a general power-law potential V(x)=Σ i U i vertical bar x i vertical bar p i is calculated with the help of variational perturbation theory. It is shown that the interaction-induced shift in T c fulfills the relation (T c -T c 0 )/T c 0 =D 1 (η)a+D ' (η)a 2η +O(a 2 ) with T c 0 the critical temperature of the trapped ideal gas, a the s-wave scattering length divided by the thermal wavelength at T c , and η=1/2+Σ i p i -1 the potential-shape parameter. The terms D 1 (η)a and D ' (η)a 2η describe the leading-order perturbative and nonperturbative contributions to the critical temperature, respectively. This result quantitatively shows how an increasingly inhomogeneous potential suppresses the influence of critical fluctuations. The appearance of the a 2η contribution is qualitatively explained in terms of the Ginzburg criterion

  11. Formulation and experimental evaluation of closed-form control laws for the rapid maneuvering of reactor neutronic power

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1989-09-01

    This report describes both the theoretical development and the experimental evaluation of a novel, robust methodology for the time-optimal adjustment of a reactor's neutronic power under conditions of closed-loop digital control. Central to the approach are the 'MIT-SNL Period-Generated Minimum Time Control Laws' which determine the rate at which reactivity should be changed in order to cause a reactor's neutronic power to conform to a specified trajectory. Using these laws, reactor power can be safely raised by five to seven orders of magnitude in a few seconds. The MIT-SNL laws were developed to facilitate rapid increases of neutronic power on spacecraft reactors operating in an SDI environment. However, these laws are generic and have other applications including the rapid recovery of research and test reactors subsequent to an unanticipated shutdown, power increases following the achievement of criticality on commercial reactors, power adjustments on commercial reactors so as to minimize thermal stress, and automated startups. The work reported here was performed by the Massachusetts Institute of Technology under contract to the Sandia National Laboratories. Support was also provided by the US Department of Energy's Division of University and Industry Programs. The work described in this report is significant in that a novel solution to the problem of time-optimal control of neutronic power was identified, in that a rigorous description of a reactor's dynamics was derived in that the rate of change of reactivity was recognized as the proper control signal, and in that extensive experimental trials were conducted of these newly developed concepts on actual nuclear reactors. 43 refs., 118 figs., 11 tabs

  12. A scaling law beyond Zipf's law and its relation to Heaps' law

    International Nuclear Information System (INIS)

    Font-Clos, Francesc; Corral, Álvaro; Boleda, Gemma

    2013-01-01

    The dependence on text length of the statistical properties of word occurrences has long been considered a severe limitation on the usefulness of quantitative linguistics. We propose a simple scaling form for the distribution of absolute word frequencies that brings to light the robustness of this distribution as text grows. In this way, the shape of the distribution is always the same, and it is only a scale parameter that increases (linearly) with text length. By analyzing very long novels we show that this behavior holds both for raw, unlemmatized texts and for lemmatized texts. In the latter case, the distribution of frequencies is well approximated by a double power law, maintaining the Zipf's exponent value γ ≃ 2 for large frequencies but yielding a smaller exponent in the low-frequency regime. The growth of the distribution with text length allows us to estimate the size of the vocabulary at each step and to propose a generic alternative to Heaps' law, which turns out to be intimately connected to the distribution of frequencies, thanks to its scaling behavior. (paper)

  13. Multiple-scattering corrections to the Beer-Lambert law

    International Nuclear Information System (INIS)

    Zardecki, A.

    1983-01-01

    The effect of multiple scattering on the validity of the Beer-Lambert law is discussed for a wide range of particle-size parameters and optical depths. To predict the amount of received radiant power, appropriate correction terms are introduced. For particles larger than or comparable to the wavelength of radiation, the small-angle approximation is adequate; whereas for small densely packed particles, the diffusion theory is advantageously employed. These two approaches are used in the context of the problem of laser-beam propagation in a dense aerosol medium. In addition, preliminary results obtained by using a two-dimensional finite-element discrete-ordinates transport code are described. Multiple-scattering effects for laser propagation in fog, cloud, rain, and aerosol cloud are modeled

  14. Power law and exponential ejecta size distributions from the dynamic fragmentation of shock-loaded Cu and Sn metals under melt conditions

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O.; Soulard, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2013-11-21

    Large scale molecular dynamics (MD) simulations are performed to study and to model the ejecta production from the dynamic fragmentation of shock-loaded metals under melt conditions. A generic 3D crystal in contact with vacuum containing about 10{sup 8} atoms and with a sinusoidal free surface roughness is shock loaded so as to undergo a solid-liquid phase change on shock. The reflection of the shock wave at the interface metal/vacuum gives rise to the ejection of 2D jets/sheets of atoms (Richtmyer-Meshkov instabilities in the continuum limit), which develop and break up, forming ejecta (fragments) of different volumes (or mass). The fragmentation process is investigated by analyzing the evolution of the resulting volume distribution of the ejecta as a function of time. Two metals are studied (Cu and Sn) and the amplitude of the roughness is varied. The simulations show that the associated distributions exhibit a generic behavior with the sum of two distinct terms of varying weight, following the expansion rate of the jets: in the small size limit, the distribution obeys a power law dependence with an exponent equal to 1.15 ± 0.08; and in the large size limit, it obeys an exponential form. These two components are interpreted, with the help of additional simple simulations, as the signature of two different basic mechanisms of fragmentation. The power law dependence results from the fragmentation of a 2D network of ligaments arranged following a fractal (scale free) geometry and generated when the sheets of liquid metal expand and tear. The exponential distribution results from a 1D Poisson fragmentation process of the largest ligaments previously generated. Unlike the power law distribution, it is governed by a characteristic length scale, which may be provided by energy balance principle.

  15. Power law and exponential ejecta size distributions from the dynamic fragmentation of shock-loaded Cu and Sn metals under melt conditions

    International Nuclear Information System (INIS)

    Durand, O.; Soulard, L.

    2013-01-01

    Large scale molecular dynamics (MD) simulations are performed to study and to model the ejecta production from the dynamic fragmentation of shock-loaded metals under melt conditions. A generic 3D crystal in contact with vacuum containing about 10 8 atoms and with a sinusoidal free surface roughness is shock loaded so as to undergo a solid-liquid phase change on shock. The reflection of the shock wave at the interface metal/vacuum gives rise to the ejection of 2D jets/sheets of atoms (Richtmyer-Meshkov instabilities in the continuum limit), which develop and break up, forming ejecta (fragments) of different volumes (or mass). The fragmentation process is investigated by analyzing the evolution of the resulting volume distribution of the ejecta as a function of time. Two metals are studied (Cu and Sn) and the amplitude of the roughness is varied. The simulations show that the associated distributions exhibit a generic behavior with the sum of two distinct terms of varying weight, following the expansion rate of the jets: in the small size limit, the distribution obeys a power law dependence with an exponent equal to 1.15 ± 0.08; and in the large size limit, it obeys an exponential form. These two components are interpreted, with the help of additional simple simulations, as the signature of two different basic mechanisms of fragmentation. The power law dependence results from the fragmentation of a 2D network of ligaments arranged following a fractal (scale free) geometry and generated when the sheets of liquid metal expand and tear. The exponential distribution results from a 1D Poisson fragmentation process of the largest ligaments previously generated. Unlike the power law distribution, it is governed by a characteristic length scale, which may be provided by energy balance principle

  16. Power-Law Template for IR Point Source Clustering

    Science.gov (United States)

    Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark; Halpern, Mark; Hincks, Adam; Hlozek, Renee; hide

    2011-01-01

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217,353,545 and 857 GHz, over angular scales 100 clustered power over the range of angular scales and frequencies considered is well fit by a simple power law of the form C_l\\propto I(sup -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, nu(sup beta) B(nu,T_eff), with a single emissivity index beta = 2.20 +/- 0.07 and effective temperature T_eff= 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha_150-220 = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in Cosmic Microwave Background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  17. Power-Law Template for Infrared Point-Source Clustering

    Science.gov (United States)

    Addison, Graeme E; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Halpern, Mark; Hincks, Adam D; Hlozek, Renee; hide

    2012-01-01

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545, and 857 GHz, over angular scales 100 approx clustered power over the range of angular scales and frequencies considered is well fitted by a simple power law of the form C(sup clust)(sub l) varies as l (sub -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, ?(sup Beta)B(?, T(sub eff) ), with a single emissivity index Beta = 2.20 +/- 0.07 and effective temperature T(sub eff) = 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha(sub 150-220) = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in cosmic microwave background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  18. Application of viscoelastic, viscoplastic, and rate-and-state friction constitutive laws to the deformation of unconsolidated sands

    Science.gov (United States)

    Hagin, Paul N.

    Laboratory experiments on dry, unconsolidated sands from the Wilmington field, CA, reveal significant viscous creep strain under a variety of loading conditions. In hydrostatic compression tests between 10 and 50 MPa of pressure, the creep strain exceeds the magnitude of the instantaneous strain and follows a power law function of time. Interestingly, the viscous effects only appear when loading a sample beyond its preconsolidation pressure. Cyclic loading tests (at quasi-static frequencies of 10-6 to 10 -2 Hz) show that the bulk modulus increases by a factor of two with increasing frequency while attenuation remains constant. I attempt to fit these observations using three classes of models: linear viscoelastic, viscoplastic, and rate-and-state friction models. For the linear viscoelastic modeling, I investigated two types of models; spring-dashpot (exponential) and power law models. I find that a combined power law-Maxwell solid creep model adequately fits all of the data. Extrapolating the power law-Maxwell creep model out to 30 years (to simulate the lifetime of a reservoir) predicts that the static bulk modulus is 25% of the dynamic modulus, in good agreement with field observations. Laboratory studies also reveal that a large portion of the deformation is permanent, suggesting that an elastic-plastic model is appropriate. However, because the viscous component of deformation is significant, an elastic-viscoplastic model is necessary. An appropriate model for unconsolidated sands is developed by incorporating Perzyna (power law) viscoplasticity theory into the modified Cambridge clay cap model. Hydrostatic compression tests conducted as a function of volumetric strain rate produced values for the required model parameters. As a result, by using an end cap model combined with power law viscoplasticity theory, changes in porosity in both the elastic and viscoplastic regimes can be predicted as a function of both stress path and strain rate. To test whether rate

  19. Lifetime modelling with a Weibull law: comparison of three Bayesian Methods

    International Nuclear Information System (INIS)

    Billy, F.; Remy, E.; Bousquet, N.; Celeux, G.

    2006-01-01

    For a nuclear power plant, being able to estimate the lifetime of important components is strategic. But data is usually insufficient to do so. Thus, it is relevant to use expertise, together with data, in order to assess the value of lifetime on the grounds of both sources. The Bayesian frame and the choice of a Weibull law to model the random time for replacement are relevant. They have been chosen for this article. Two indicators are computed : the mean lifetime of any component and the mean residual lifetime of a given component, after it has been controlled. Three different Bayesian methods are compared on three sets of data. The article shows that the three methods lead to coherent results and that uncertainties are strongly reduced. The method developed around PMC has two main advantages: it models a conditional dependence of the two parameters of the Weibull law, which enables more coherent results on the prior; it has a parameter that weights the strength of the expertise. This last point is very important to do lifetime assessments, because then, expertise is not used to increase too small samples as much as to do a real extrapolation, far beyond what data itself say. (authors)

  20. Sliding Mode Tracking Control of Manipulator Based on the Improved Reaching Law

    Directory of Open Access Journals (Sweden)

    Wei-Na ZHAI

    2013-04-01

    Full Text Available Due to the mechanical hand often have serious uncertainty, as the state in which the different and external changes, also its parameters are changing, this is very adverse to achieve precise control. In this paper, the traditional sliding mode variable structure was improved, the sign function is replaced by saturated function based on the double power reaching law, by adjusting the values of e1, e2, a, b, g and k to effectively improve the manipulator joint reaching speed, track expected trajectory fast and shorten the system response time. Finally, the method is used for simulation of manipulator trajectory tracking, compared to two reaching law control algorithms. The simulation results show that the control algorithm has good dynamic performance, which can effectively restrain the chattering and quickly track the desired trajectory. Therefore, the improved reaching law can effectively improve the performance of robotic manipulator.

  1. Generalized irreversible heat-engine experiencing a complex heat-transfer law

    International Nuclear Information System (INIS)

    Chen Lingen; Li Jun; Sun Fengrui

    2008-01-01

    The fundamental optimal relation between optimal power-output and efficiency of a generalized irreversible Carnot heat-engine is derived based on a generalized heat-transfer law, including a generalized convective heat-transfer law and a generalized radiative heat-transfer law, q ∝ (ΔT n ) m . The generalized irreversible Carnot-engine model incorporates several internal and external irreversibilities, such as heat resistance, bypass heat-leak, friction, turbulence and other undesirable irreversibility factors. The added irreversibilities, besides heat resistance, are characterized by a constant parameter and a constant coefficient. The effects of heat-transfer laws and various loss terms are analyzed. The results obtained corroborate those in the literature

  2. Parameter studies for a two-component fusion experiment

    International Nuclear Information System (INIS)

    Towner, H.H.

    1975-01-01

    The sensitivity of the energy multiplication of a two-component fusion experiment is examined relative to the following parameters: energy confinement time (tau/sub E/), particle confinement time (tau/sub p/), effective Z of the plasma (Z/sub eff/), injection rate (j/sub I/) and injection energy (E/sub I/). The Energy Research and Development Administration recently approved funding for such a fusion device (the Toroidal Fusion Test Reactor or TFTR) which will be built at the Princeton Plasma Physics Laboratory. Hence, such a parameter study seems both timely and necessary. This work also serves as an independent check on the design values proposed for the TFTR to enable it to achieve energy breakeven (F = 1). Using the nominal TFTR design parameters and a self-consistent ion-electron power balance, the maximum F-value is found to be approximately 1.2 which occurs at an injection energy of approximately 210 KeV. The injector operation, i.e. its current and energy capability are shown to be a very critical factor in the TFTR performance. However, if the injectors meet the design objectives, there appears to be sufficient latitude in the other parameters to offer reasonable assurance that energy breakeven can be achieved. (U.S.)

  3. Power-law neuronal fluctuations in a recurrent network model of parametric working memory.

    Science.gov (United States)

    Miller, Paul; Wang, Xiao-Jing

    2006-02-01

    In a working memory system, persistent activity maintains information in the absence of external stimulation, therefore the time scale and structure of correlated neural fluctuations reflect the intrinsic microcircuit dynamics rather than direct responses to sensory inputs. Here we show that a parametric working memory model capable of graded persistent activity is characterized by arbitrarily long correlation times, with Fano factors and power spectra of neural activity described by the power laws of a random walk. Collective drifts of the mnemonic firing pattern induce long-term noise correlations between pairs of cells, with the sign (positive or negative) and amplitude proportional to the product of the gradients of their tuning curves. None of the power-law behavior was observed in a variant of the model endowed with discrete bistable neural groups, where noise fluctuations were unable to cause long-term changes in rate. Therefore such behavior can serve as a probe for a quasi-continuous attractor. We propose that the unusual correlated fluctuations have important implications for neural coding in parametric working memory circuits.

  4. Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current

    KAUST Repository

    Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.

    2016-01-01

    We investigate the convergence behaviour of a cylindrical, fast magnetohydrodynamic (MHD) shock wave in a neutrally ionized gas collapsing onto an axial line current that generates a power law in time, azimuthal magnetic field. The analysis is done

  5. Floquet states of a kicked particle in a singular potential: Exponential and power-law profiles

    Science.gov (United States)

    Paul, Sanku; Santhanam, M. S.

    2018-03-01

    It is well known that, in the chaotic regime, all the Floquet states of kicked rotor system display an exponential profile resulting from dynamical localization. If the kicked rotor is placed in an additional stationary infinite potential well, its Floquet states display power-law profile. It has also been suggested in general that the Floquet states of periodically kicked systems with singularities in the potential would have power-law profile. In this work, we study the Floquet states of a kicked particle in finite potential barrier. By varying the height of finite potential barrier, the nature of transition in the Floquet state from exponential to power-law decay profile is studied. We map this system to a tight-binding model and show that the nature of decay profile depends on energy band spanned by the Floquet states (in unperturbed basis) relative to the potential height. This property can also be inferred from the statistics of Floquet eigenvalues and eigenvectors. This leads to an unusual scenario in which the level spacing distribution, as a window in to the spectral correlations, is not a unique characteristic for the entire system.

  6. Axial annular flow of power-law fluids - applicability of the limiting cases

    Czech Academy of Sciences Publication Activity Database

    Filip, Petr; David, Jiří

    2007-01-01

    Roč. 52, č. 4 (2007), s. 365-371 ISSN 0001-7043 R&D Projects: GA ČR GA103/06/1033 Institutional research plan: CEZ:AV0Z20600510 Keywords : Concentric annuli * Poiseuile flow * annular flow * power- law fluids * flow rate * pressure drop Subject RIV: BK - Fluid Dynamics

  7. The Forbes 400, the Pareto power-law and efficient markets

    Science.gov (United States)

    Klass, O. S.; Biham, O.; Levy, M.; Malcai, O.; Solomon, S.

    2007-01-01

    Statistical regularities at the top end of the wealth distribution in the United States are examined using the Forbes 400 lists of richest Americans, published between 1988 and 2003. It is found that the wealths are distributed according to a power-law (Pareto) distribution. This result is explained using a simple stochastic model of multiple investors that incorporates the efficient market hypothesis as well as the multiplicative nature of financial market fluctuations.

  8. Energy law '90

    International Nuclear Information System (INIS)

    1990-01-01

    The International Bar Association's Section on Energy and Natural Resources Law selected eight key topics for discussion at their ninth seminar in the Netherlands in 1990. Only two papers specifically related to nuclear power and these were within the topic of environmental issues facing the energy industries. Both papers dealt with the legal aspects of nuclear plants sited near national borders and covered international law and the need for standardized regulations and agreements on issues such as environmental impacts, safety, radiological protection, public information and emergency plans in case of accidents. (UK)

  9. Analysis of diodes used as precision power detectors above the square law region

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom

    1990-01-01

    The deviation from square law found in diode power detectors at moderate power levels has been modeled for a general system consisting of a number of diode detectors connected to a common arbitrary linear passive network, containing an approximately sinusoidal source. This situation covers the case...... if an extra-set of measurements is made in situ. For precision measurements the maximum power level can be increased by about 10 dB. The dynamic range can thus be increased sufficiently to enable fast measurements to be made with an accuracy of 10-3 dB...

  10. Thomas Aquinas: On Law, Tyranny and Resistance | Swartz | Acta ...

    African Journals Online (AJOL)

    Thomas Aquinas's notion on law, tyranny and resistance served as a limitation on governmental powers. When those who bear the law command things which exceed the competence of such authority, the subject is free to obey or disobey. The function of the law culminates in two maxims: quantum ad vim coactivam legis ...

  11. Case law

    International Nuclear Information System (INIS)

    2015-01-01

    This section treats of the two following case laws: Slovak Republic: Further developments in cases related to the challenge by Greenpeace Slovakia to the Mochovce nuclear power plant; United States: Judgment of the Nuclear Regulatory Commission denying requests from petitioners to suspend final reactor licensing decisions pending the issuance of a final determination of reasonable assurance of permanent disposal of spent fuel

  12. Comment on "Time needed to board an airplane: a power law and the structure behind it".

    Science.gov (United States)

    Bernstein, Noam

    2012-08-01

    Frette and Hemmer [Phys. Rev. E 85, 011130 (2012)] recently showed that for a simple model for the boarding of an airplane, the mean time to board scales as a power law with the number of passengers N and the exponent is less than 1. They note that this scaling leads to the prediction that the "back-to-front" strategy, where passengers are divided into groups from contiguous ranges of rows and each group is allowed to board in turn from back to front once the previous group has found their seats, has a longer boarding time than would a single group. Here I extend their results to a larger number of passengers using a sampling approach and explore a scenario where the queue is presorted into groups from back to front, but allowed to enter the plane as soon as they can. I show that the power law dependence on passenger numbers is different for large N and that there is a boarding time reduction for presorted groups, with a power law dependence on the number of presorted groups.

  13. On the classical theory of ordinary linear differential equations of the second order and the Schroedinger equation for power law potentials

    International Nuclear Information System (INIS)

    Lima, M.L.; Mignaco, J.A.

    1983-01-01

    The power law potentials in the Schroedinger equation solved recently are shown to come from the classical treatment of the singularities of a linear, second order differential equation. This allows to enlarge the class of solvable power law potentials. (Author) [pt

  14. Numerical evidence for two types of localized states in a two-dimensional disordered lattice

    International Nuclear Information System (INIS)

    Tit, N.; Kumar, N.

    1992-06-01

    We report results of our numerical calculations, based on the equation of motion method, of dc-electrical conductivity and of density of states up to 40x40 two-dimensional square lattices modelling a right-binding Hamiltonian for a binary (AB) compound, disordered by randomly distributed B vacancies up to 10%. Our results indicate strongly localized states away from band centers separated from the relatively weakly localized states toward midband. This is in qualitative agreement with the idea of a ''mobility edge'' separating exponentially localized states from the power-law localized states as suggested by the two-parameter scaling theory of Kaevh in two dimensions. (author). 7 refs, 4 figs

  15. Tokamak power reactor ignition and time dependent fractional power operation

    International Nuclear Information System (INIS)

    Vold, E.L.; Mau, T.K.; Conn, R.W.

    1986-06-01

    A flexible time-dependent and zero-dimensional plasma burn code with radial profiles was developed and employed to study the fractional power operation and the thermal burn control options for an INTOR-sized tokamak reactor. The code includes alpha thermalization and a time-dependent transport loss which can be represented by any one of several currently popular scaling laws for energy confinement time. Ignition parameters were found to vary widely in density-temperature (n-T) space for the range of scaling laws examined. Critical ignition issues were found to include the extent of confinement time degradation by alpha heating, the ratio of ion to electron transport power loss, and effect of auxiliary heating on confinement. Feedback control of the auxiliary power and ion fuel sources are shown to provide thermal stability near the ignition curve

  16. The enforcement order for the law for arrangement of surrounding areas of power generating facilities

    International Nuclear Information System (INIS)

    1979-01-01

    The order is defined under the law for arrangement of surrounding areas of power generating facilities. Establishers of power generating facilities shall be hereunder general electric enterprisers, wholesale electric enterprisers and the Power Reactor and Nuclear Fuel Development Corporation. The scale of power generating facilities provided by the order is 350,000 kilo-watts for atomic and steam power generation and 5,000 kilo-watts for hydroelectric power. Equipment closely related to atomic power generation shall include facilities for reprocessing and examination of nuclear fuel materials spent for power generating reactors, reactors used for research of the safety of power generating reactors, experimental fast breeding reactors and experimental uranium enrichment facilities. Requisites for the extent of industrial accumulation are that the area belongs to those self-governing bodies whose industrial accumulation is more than the 8th degree. Public facilities specified are those for communication, sports or recreation, environmental hygiene, education and culture, medicine, social welfare, fire fighting and heat supplying, etc. Governors of the prefectures shall file arrangement programs to the Minister in charge through the Minister of International Trade and Industry to get the permission stipulated by the law. Subsidies shall not be paid to those enterprises which are executed by the government or a part of the expenses is born or supported by it. (Okada, K.)

  17. New Positive and Negative Hierarchies of Integrable Differential-Difference Equations and Conservation Laws

    International Nuclear Information System (INIS)

    Li Xinyue; Zhao Qiulan

    2009-01-01

    Two hierarchies of nonlinear integrable positive and negative lattice equations are derived from a discrete spectral problem. The two lattice hierarchies are proved to have discrete zero curvature representations associated with a discrete spectral problem, which also shows that the positive and negative hierarchies correspond to positive and negative power expansions of Lax operators with respect to the spectral parameter, respectively. Moreover, the integrable lattice models in the positive hierarchy are of polynomial type, and the integrable lattice models in the negative hierarchy are of rational type. Further, we construct infinite conservation laws about the positive hierarchy.

  18. Laboratory constraints on chameleon dark energy and power-law fields

    OpenAIRE

    Steffen, Jason H.; Upadhye, Amol; Baumbaugh, Al; Chou, Aaron S.; Mazur, Peter O.; Tomlin, Ray; Weltman, Amanda; Wester, William

    2010-01-01

    We report results from the GammeV Chameleon Afterglow Search---a search for chameleon particles created via photon/chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of chameleon power-law models and dark energy models not previously explored. These results exclude five orders of magnitude in the coupling of chameleons to photons covering a range of four orders of magnitude in chameleon effective mass and, for individual chameleon models, exclude betw...

  19. Laboratory Constraints on Chameleon Dark Energy and Power-Law Fields

    International Nuclear Information System (INIS)

    Steffen, J. H.; Baumbaugh, A.; Chou, A. S.; Mazur, P. O.; Tomlin, R.; Wester, W.; Upadhye, A.; Weltman, A.

    2010-01-01

    We report results from a search for chameleon particles created via photon-chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of unexplored chameleon power-law and dark energy models. These results exclude 5 orders of magnitude in the coupling of chameleons to photons covering a range of 4 orders of magnitude in chameleon effective mass and, for individual models, exclude between 4 and 12 orders of magnitude in chameleon couplings to matter.

  20. The rule of law

    Directory of Open Access Journals (Sweden)

    Besnik Murati

    2015-07-01

    Full Text Available The state as an international entity and its impact on the individual’s right has been and still continues to be a crucial factor in the relationship between private and public persons. States vary in terms of their political system, however, democratic states are based on the separation of powers and human rights within the state. Rule of law is the product of many actors in a state, including laws, individuals, society, political system, separation of powers, human rights, the establishment of civil society, the relationship between law and the individual, as well as, individual-state relations. Purpose and focus of this study is the importance of a functioning state based on law, characteristics of the rule of law, separation of powers and the basic concepts of the rule of law.

  1. Concretization of rules of law in the field of environmental law

    International Nuclear Information System (INIS)

    Kunert, F.J.

    1989-01-01

    The article deals with the relation between administrative standardization and decisions on a particular case. The author discusses the question whether the legislator may assign the task of concretizing rules of law exclusively to the top executive powers who are entitled to issue administrative regulations, or whether this task may in certain cases be achieved by way of decisions on a particular case. The question is discussed against the background of the principles of exercise of discretion, and the character and functions of administrative regulations. The article is arranged in two parts, entitled as follows: Impulses given by the environmental law, and should standardization prevail over individual decisions in administrative law matters? The author explains the development of the practice of the courts referring to the Voerde judgment of the Federal Administrative Court, the Wyhl judgment of the Federal Constitutional Court, (1982), another judgment in the Wyhl case given by the Fed. Administrative Court in 1985, and the decision of the Lueneburg Higher Administrative Court in the case of the Buschhaus power plant. (RST) [de

  2. Law, Contestation, and Power in the Global Political Economy: An Introduction.

    Directory of Open Access Journals (Sweden)

    Edward S. Cohen

    2013-10-01

    Full Text Available The papers included in this collection are part of concerted project to develop a political economy of law in the contemporary global system. Over the past two decades, scholars have noted the expanding role of law, legal institutions, and legal agents that have been part of the process of “globalization,” and have employed a number of frameworks to make sense of this process of legalization. A central theme of our project is that none of these frameworks has provided an adequate political economic analysis of the creation, diffusion, and use of law, and we present an alternative approach to advance the understanding of the turn to law across the many dimensions and sectors of the global system. The papers advance the analysis behind this approach and explore the various ways in which law matters in a variety of areas, including global finance, corporate governance, copyright, diplomacy, and the provision of security. Their goal is to advance our understanding of how law intersects with the mobilization of power in the construction of the contemporary political economy. Los trabajos incluidos en esta colección son parte de un proyecto conjunto para desarrollar una economía política de la ley en el sistema mundial contemporáneo. En las últimas dos décadas, los expertos han señalado el creciente papel de la ley, las instituciones legales, y los agentes judiciales que han sido parte del proceso de "globalización", y han empleado una serie de marcos para dar sentido a este proceso de legalización. Un tema central de nuestro proyecto es que ninguno de estos marcos ha proporcionado un adecuado análisis económico político de la creación, difusión y uso de la ley, y se presenta un enfoque alternativo para avanzar en la comprensión de la vuelta a la ley a través de las muchas dimensiones y sectores del sistema global. Los trabajos avanzan el análisis de este enfoque y exploran las diversas formas en que la ley importa en una variedad

  3. Flow of power-law fluids in fixed beds of cylinders or spheres

    KAUST Repository

    Singh, John P.; Padhy, Sourav; Shaqfeh, Eric S. G.; Koch, Donald L.

    2012-01-01

    is influenced by the Newtonian fluid stress and a body force representing the linear drag on the surrounding particles. We consider a similar analysis for a power-law fluid where the stress τ is related to the rate of strain e by τ = 2m en-1e, where m and n

  4. The effects of operation parameter on the performance of a solar-powered adsorption chiller

    International Nuclear Information System (INIS)

    Luo, Huilong; Wang, Ruzhu; Dai, Yanjun

    2010-01-01

    A solar-powered adsorption chiller with heat and mass recovery cycle was designed and constructed. It consists of a solar water heating unit, a silica gel-water adsorption chiller, a cooling tower and a fan coil unit. The adsorption chiller includes two identical adsorption units and a second stage evaporator with methanol working fluid. The effects of operation parameter on system performance were tested successfully. Test results indicated that the COP (coefficient of performance) and cooling power of the solar-powered adsorption chiller could be improved greatly by optimizing the key operation parameters, such as solar hot water temperature, heating/cooling time, mass recovery time, and chilled water temperature. Under the climatic conditions of daily solar radiation being about 16-21 MJ/m 2 , this solar-powered adsorption chiller can produce a cooling capacity about 66-90 W per m 2 collector area, its daily solar cooling COP is about 0.1-0.13.

  5. Large signal S-parameters: modeling and radiation effects in microwave power transistors

    International Nuclear Information System (INIS)

    Graham, E.D. Jr.; Chaffin, R.J.; Gwyn, C.W.

    1973-01-01

    Microwave power transistors are usually characterized by measuring the source and load impedances, efficiency, and power output at a specified frequency and bias condition in a tuned circuit. These measurements provide limited data for circuit design and yield essentially no information concerning broadbanding possibilities. Recently, a method using large signal S-parameters has been developed which provides a rapid and repeatable means for measuring microwave power transistor parameters. These large signal S-parameters have been successfully used to design rf power amplifiers. Attempts at modeling rf power transistors have in the past been restricted to a modified Ebers-Moll procedure with numerous adjustable model parameters. The modified Ebers-Moll model is further complicated by inclusion of package parasitics. In the present paper an exact one-dimensional device analysis code has been used to model the performance of the transistor chip. This code has been integrated into the SCEPTRE circuit analysis code such that chip, package and circuit performance can be coupled together in the analysis. Using []his computational tool, rf transistor performance has been examined with particular attention given to the theoretical validity of large-signal S-parameters and the effects of nuclear radiation on device parameters. (auth)

  6. Possibilities of sanction of the improper behaviour of a power network operator. Instruments of energy economy act, public order law, and criminal law; Sanktionsmoeglichkeiten bei missbraeuchlichem Verhalten eines Energienetzbetreibers. Energiewirtschaftsrechtliche, ordnungsrechtliche und strafrechtliche Instrumentarien

    Energy Technology Data Exchange (ETDEWEB)

    Mitto, L.

    2007-07-01

    The liberalization of the electric power market and gas market has released a comprehensive reorganisation of the energy branch. Under this aspect, the author of the book under consideration reports on power network operators, their improper behaviour as well as the use of the instruments of energy economy act, public order law, and criminal law in order to sanction power network operators.

  7. Optimal control systems in hydro power plants

    International Nuclear Information System (INIS)

    Babunski, Darko L.

    2012-01-01

    The aim of the research done in this work is focused on obtaining the optimal models of hydro turbine including auxiliary equipment, analysis of governors for hydro power plants and analysis and design of optimal control laws that can be easily applicable in real hydro power plants. The methodology of the research and realization of the set goals consist of the following steps: scope of the models of hydro turbine, and their modification using experimental data; verification of analyzed models and comparison of advantages and disadvantages of analyzed models, with proposal of turbine model for design of control low; analysis of proportional-integral-derivative control with fixed parameters and gain scheduling and nonlinear control; analysis of dynamic characteristics of turbine model including control and comparison of parameters of simulated system with experimental data; design of optimal control of hydro power plant considering proposed cost function and verification of optimal control law with load rejection measured data. The hydro power plant models, including model of power grid are simulated in case of island ing and restoration after breakup and load rejection with consideration of real loading and unloading of hydro power plant. Finally, simulations provide optimal values of control parameters, stability boundaries and results easily applicable to real hydro power plants. (author)

  8. Pulsed Power Generators For Two-section Lia Relativistic Magnetron Driver

    CERN Document Server

    Agafonov, A V; Pevchev, V P

    2004-01-01

    Two prototypes of pulsed power generators for a two-sectional LIA - specialized driver of a relativistic magnetron were constructed and tested. The driver for the double-sided powering of a relativistic magnetron consists of two identical sets of induction modules (two sections of LIA) with inner electrodes - vacuum adders connected to both sides of a coaxial magnetron. It provides the symmetric power flowing in a magnetron and a possibility of localising of the electron flow in magnetron interaction region. The first generator designed for a small-scale laboratory installation provides the output pulses of 100 ns in duration with voltage amplitude of 50 kV at repetition rate of 1 pps. The construction of the generator is based on the application of experimental capacitor banks designed as a pulse forming line with the next parameters: charging voltage - 80 kV, impedance - 1,7 Ohm, pulse duration - 80 ns at a matched load. The second generator was designed for 1 MV integrated LIA - magnetron system. It cons...

  9. KiDS-450: the tomographic weak lensing power spectrum and constraints on cosmological parameters

    Science.gov (United States)

    Köhlinger, F.; Viola, M.; Joachimi, B.; Hoekstra, H.; van Uitert, E.; Hildebrandt, H.; Choi, A.; Erben, T.; Heymans, C.; Joudaki, S.; Klaes, D.; Kuijken, K.; Merten, J.; Miller, L.; Schneider, P.; Valentijn, E. A.

    2017-11-01

    We present measurements of the weak gravitational lensing shear power spectrum based on 450 ° ^2 of imaging data from the Kilo Degree Survey. We employ a quadratic estimator in two and three redshift bins and extract band powers of redshift autocorrelation and cross-correlation spectra in the multipole range 76 ≤ ℓ ≤ 1310. The cosmological interpretation of the measured shear power spectra is performed in a Bayesian framework assuming a ΛCDM model with spatially flat geometry, while accounting for small residual uncertainties in the shear calibration and redshift distributions as well as marginalizing over intrinsic alignments, baryon feedback and an excess-noise power model. Moreover, massive neutrinos are included in the modelling. The cosmological main result is expressed in terms of the parameter combination S_8 ≡ σ _8 √{Ω_m/0.3} yielding S8 = 0.651 ± 0.058 (three z-bins), confirming the recently reported tension in this parameter with constraints from Planck at 3.2σ (three z-bins). We cross-check the results of the three z-bin analysis with the weaker constraints from the two z-bin analysis and find them to be consistent. The high-level data products of this analysis, such as the band power measurements, covariance matrices, redshift distributions and likelihood evaluation chains are available at http://kids.strw.leidenuniv.nl.

  10. Numerical simulation of nanofluids based on power-law fluids with flow and heat transfer

    Science.gov (United States)

    Li, Lin; Jiang, Yongyue; Chen, Aixin

    2017-04-01

    In this paper, we investigate the heat transfer of nanofluids based on power-law fluids and movement of nanoparticles with the effect of thermophoresis in a rotating circular groove. The velocity of circular groove rotating is a constant and the temperature on the wall is kept to be zero all the time which is different from the temperature of nanofluids in the initial time. The effects of thermophoresis and Brownian diffusion are considered in temperature and concentration equations, and it is assumed that the thermal conductivity of nanofluids is a function of concentration of nanoparticles. Based on numerical results, it can be found that nanofluids improve the process of heat transfer than base fluids in a rotating circular groove. The enhancement of heat transfer increases as the power law index of base fluids decreases.

  11. The enforcement order for the law for arrangement of surrounding areas of power generating facilities

    International Nuclear Information System (INIS)

    1977-01-01

    The Order is based on the prescriptions of the Law for the Arrangement of Surrounding Areas of Power Generating Facilities. Those establishing power generating facilities are general and wholesale electric enterprisers provided for by the Electricity Enterprises Act as well as the Power Reactor and Nuclear Fuel Development Corporation. The generating capacity is specified as 350,000 kilowatts for nuclear and steam power generating facilities, 150,000 kilowatts for those set up by the Corporation, 100,000 kilowatts for those using coal as main fuel, and 10,000 kilowatts for water power generation and geothermal plants. The facilities closely connected to nuclear power generation include the reprocessing facilities and test and examination facilities for nuclear fuel materials used for power-generating nuclear reactors, reactors used for the research on the safety of power generating reactors, and experimental reactors for fast breeder reactors. The public facilities consist of communication facilities, and the facilities for sports and recreations, environmental hygiene, education and culture, medicine, social welfare, fire fighting, etc. Prefectural governors ought to file the arrangement plans to the competent minister through the Minister of International Trade and Industry to get the permission prescribed by the Law. The subsidy is not granted to the expenses of the enterprises undertaken by the nation or those enterprises, a part of the expenses of which is borne or subsidized by the nation. (Okada, K.)

  12. Τhe observational and empirical thermospheric CO2 and NO power do not exhibit power-law behavior; an indication of their reliability

    Science.gov (United States)

    Varotsos, C. A.; Efstathiou, M. N.

    2018-03-01

    In this paper we investigate the evolution of the energy emitted by CO2 and NO from the Earth's thermosphere on a global scale using both observational and empirically derived data. In the beginning, we analyze the daily power observations of CO2 and NO received from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) equipment on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite for the entire period 2002-2016. We then perform the same analysis on the empirical daily power emitted by CO2 and NO that were derived recently from the infrared energy budget of the thermosphere during 1947-2016. The tool used for the analysis of the observational and empirical datasets is the detrended fluctuation analysis, in order to investigate whether the power emitted by CO2 and by NO from the thermosphere exhibits power-law behavior. The results obtained from both observational and empirical data do not support the establishment of the power-law behavior. This conclusion reveals that the empirically derived data are characterized by the same intrinsic properties as those of the observational ones, thus enhancing the validity of their reliability.

  13. Hot plasma parameters in Neptune's magnetosphere

    International Nuclear Information System (INIS)

    Krimigis, S.M.; Mauk, B.H.; Cheng, A.F.; Keath, E.P.; Kane, M.; Armstrong, T.P.; Gloeckler, G.; Lanzerotti, L.J.

    1990-01-01

    Energy spectra of energetic protons and electrons (E p approx-gt 28 keV, E e approx-gt 22 keV, respectively) obtained with the Low Energy Charged Particle (LECP) instrument during the Voyager 2 encounter with Neptune on August 24-25, 1989 are presented. The proton spectral form was a power law (dj/dE = KE -γ ), outside the orbit of Triton (∼14.3 R N ); inside that distance, it was found to be a hot (kT ≅ 60 keV) Maxwellian distribution. Such distributions, observed in other planets as well, have yet to be explained theoretically. Similarly, the electron spectral form changed from a simple power law outside Triton to a two-slope power law with a high energy tail inside. Intensity and spectral features in both proton and electron fluxes were identified in association with the crossings of the Triton and 1989 N1 L-shells, but these features do not occur simultaneously in both species. Such signatures were manifested by relative peaks in both kT and γ spectral indices. Peak proton pressures of ∼2x10 -9 dynes cm -2 , and β ∼ 0.2 were measured at successive magnetic equatorial crossings, both inbound and outbound. These parameters show Neptune's magnetosphere to be relatively undistorted by hot plasma loading, similar to that of Uranus and unlike those of Saturn and Jupiter. Trapped electron fluxes at Neptune, as at Uranus, exceed the whistler mode stably trapped flux limit. Whistler-induced pitch angle scattering of energetic electrons in the radiation belts can yield a precipitating energy flux sufficient to drive Neptune's aurora

  14. Application of extreme value distribution function in the determination of standard meteorological parameters for nuclear power plants

    International Nuclear Information System (INIS)

    Jiang Haimei; Liu Xinjian; Qiu Lin; Li Fengju

    2014-01-01

    Based on the meteorological data from weather stations around several domestic nuclear power plants, the statistical results of extreme minimum temperatures, minimum. central pressures of tropical cyclones and some other parameters are calculated using extreme value I distribution function (EV- I), generalized extreme value distribution function (GEV) and generalized Pareto distribution function (GP), respectively. The influence of different distribution functions and parameter solution methods on the statistical results of extreme values is investigated. Results indicate that generalized extreme value function has better applicability than the other two distribution functions in the determination of standard meteorological parameters for nuclear power plants. (authors)

  15. Verification of frequency scaling laws for capacitive radio-frequency discharges using two-dimensional simulations

    International Nuclear Information System (INIS)

    Vahedi, V.; Birdsall, C.K.; Lieberman, M.A.; DiPeso, G.; Rognlien, T.D.

    1993-01-01

    Weakly ionized processing plasmas are studied in two dimensions using a bounded particle-in-cell (PIC) simulation code with a Monte Carlo collision (MCC) package. The MCC package models the collisions between charged and neutral particles, which are needed to obtain a self-sustained plasma and the proper electron and ion energy loss mechanisms. A two-dimensional capacitive radio-frequency (rf) discharge is investigated in detail. Simple frequency scaling laws for predicting the behavior of some plasma parameters are derived and then compared with simulation results, finding good agreements. It is found that as the drive frequency increases, the sheath width decreases, and the bulk plasma becomes more uniform, leading to a reduction of the ion angular spread at the target and an improvement of ion dose uniformity at the driven electrode

  16. Stochastic models and reliability parameter estimation applicable to nuclear power plant safety

    International Nuclear Information System (INIS)

    Mitra, S.P.

    1979-01-01

    A set of stochastic models and related estimation schemes for reliability parameters are developed. The models are applicable for evaluating reliability of nuclear power plant systems. Reliability information is extracted from model parameters which are estimated from the type and nature of failure data that is generally available or could be compiled in nuclear power plants. Principally, two aspects of nuclear power plant reliability have been investigated: (1) The statistical treatment of inplant component and system failure data; (2) The analysis and evaluation of common mode failures. The model inputs are failure data which have been classified as either the time type of failure data or the demand type of failure data. Failures of components and systems in nuclear power plant are, in general, rare events.This gives rise to sparse failure data. Estimation schemes for treating sparse data, whenever necessary, have been considered. The following five problems have been studied: 1) Distribution of sparse failure rate component data. 2) Failure rate inference and reliability prediction from time type of failure data. 3) Analyses of demand type of failure data. 4) Common mode failure model applicable to time type of failure data. 5) Estimation of common mode failures from 'near-miss' demand type of failure data

  17. Understanding scaling laws

    International Nuclear Information System (INIS)

    Lysenko, W.P.

    1986-01-01

    Accelerator scaling laws how they can be generated, and how they are used are discussed. A scaling law is a relation between machine parameters and beam parameters. An alternative point of view is that a scaling law is an imposed relation between the equations of motion and the initial conditions. The relation between the parameters is obtained by requiring the beam to be matched. (A beam is said to be matched if the phase-space distribution function is a function of single-particle invariants of the motion.) Because of this restriction, the number of independent parameters describing the system is reduced. Using simple models for bunched- and unbunched-beam situations. Scaling laws are shown to determine the general behavior of beams in accelerators. Such knowledge is useful in design studies for new machines such as high-brightness linacs. The simple model presented shows much of the same behavior as a more detailed RFQ model

  18. Strong Presidents, Robust Democracies? Separation of Powers and Rule of Law in Latin America

    Directory of Open Access Journals (Sweden)

    Marcus Melo

    2009-06-01

    Full Text Available The received wisdom on Latin America in the 1980s and 1990s was that countries where presidents enjoyed strong constitutional powers and where multiparty coalitions prevailed would be doomed to instability and institutional crises, while countries boasting weak presidents and strong parties were expected to consolidate democratic rule. After almost two decades, it is now widely acknowledged that this prediction failed. Recent re-conceptualizations of presidentalism have partly corrected the flaws in the established diagnosis but left unexplained the role of checks and balances and of the rule of law in containing presidential abuse and guaranteeing governability. The paper argues that the key to solving the paradox of strong presidents and robust democracies is that democratic stability in Latin American countries is a function of an extended system of checks and balances. These are ultimately generated by power fragmentation at the time of the constitutional choices over their institutional design and political competition sustaining their effective functioning.

  19. Closing responsibilities: decommissioning and the law

    International Nuclear Information System (INIS)

    Macrory, R.

    1990-01-01

    Laws change over time, with the times. Interpretations of old laws shift and the need for new laws emerges. There are endless reasons for these necessary changes, but the basic impetus is the changing nature of societal circumstance. Fifty years ago there were no laws directly governing nuclear power in any way. Today we know that nuclear power touches people from their wallets to their descendants. Currently, many laws related to nuclear power are in place, laws which protect all sectors of society from electricity generating bodies to a newborn child, and the Chernobyl accident has broadened the legal ramifications of nuclear power even more. This expanding body of nuclear law reflects our expanding understanding of nuclear power from its technical beginnings to its societal consequences and implications. The law is now beginning to reflect the growing significance of decommissioning. What are the relationships between decommissioning and the existing laws, government agencies, and policies? Ironically, although the UK will lead the world in addressing decommissioning responsibilities, there are no explicit laws in place to govern the process. In the absence of specific legislation governing decommissioning, the primary responsibilities fall to the operators of the power plants, a circumstance not lost on those involved in privatization. In this chapter, the wide and varied legal ramifications of decommissioning are examined. (author)

  20. Conservation laws for two (2 + 1)-dimensional differential-difference systems

    International Nuclear Information System (INIS)

    Yu Guofu; Tam, H.-W.

    2006-01-01

    Two integrable differential-difference equations are considered. One is derived from the discrete BKP equation and the other is a symmetric (2 + 1)-dimensional Lotka-Volterra equation. An infinite number of conservation laws for the two differential-difference equations are deduced

  1. A HARD X-RAY POWER-LAW SPECTRAL CUTOFF IN CENTAURUS X-4

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Deepto; Nowak, Michael A. [MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Tomsick, John A.; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Grefenstette, Brian W.; Fürst, Felix; Harrison, Fiona A.; Rana, Vikram [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Psaltis, Dimitrios [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Bachetti, Matteo; Barret, Didier [Observatoire Midi-Pyrénées, Université de Toulouse III - Paul Sabatier, F-31400 Toulouse (France); Christensen, Finn E. [Division of Astrophysics, National Space Institute, Technical University of Denmark, DK-2800 Lyngby (Denmark); Hailey, Charles J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Kaspi, Victoria M. [Department of Physics, McGill University, Montreal, PQ H3A 2T8 (Canada); Miller, Jon M. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Wik, Daniel R.; Zhang, William W. [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Wilms, Jörn, E-mail: deepto@mit.edu [Dr. Karl-Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Universität Erlangen-Nürnberg, D-96049 Bamberg (Germany)

    2014-12-20

    The low-mass X-ray binary (LMXB) Cen X-4 is the brightest and closest (<1.2 kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unknown origin. We report here on a simultaneous observation of Cen X-4 with NuSTAR (3-79 keV) and XMM-Newton (0.3-10 keV) in 2013 January, providing the first sensitive hard X-ray spectrum of a quiescent neutron star transient. The 0.3-79 keV luminosity was 1.1×10{sup 33} D{sub kpc}{sup 2} erg s{sup –1}, with ≅60% in the thermal component. We clearly detect a cutoff of the hard spectral tail above 10 keV, the first time such a feature has been detected in this source class. We show that thermal Comptonization and synchrotron shock origins for the hard X-ray emission are ruled out on physical grounds. However, the hard X-ray spectrum is well fit by a thermal bremsstrahlung model with kT{sub e} = 18 keV, which can be understood as arising either in a hot layer above the neutron star atmosphere or in a radiatively inefficient accretion flow. The power-law cutoff energy may be set by the degree of Compton cooling of the bremsstrahlung electrons by thermal seed photons from the neutron star surface. Lower thermal luminosities should lead to higher (possibly undetectable) cutoff energies. We compare Cen X-4's behavior with PSR J1023+0038, IGR J18245–2452, and XSS J12270–4859, which have shown transitions between LMXB and radio pulsar modes at a similar X-ray luminosity.

  2. Study of parameters of simultaneous lasing on two lines sharing an upper level

    International Nuclear Information System (INIS)

    Pikulev, A A

    2002-01-01

    Stationary lasing at two competing lines sharing an upper level is studied. Based on the expressions for the gain obtained earlier, the possible lasing regimes are considered (at one or two lines) and approximate formulas are derived for determining the output power in each line. These formulas are shown to be the generalisation of the Rigrod formula to the case of simultaneous lasing at several lines. (control of laser radiation parameters)

  3. Modified Moment, Maximum Likelihood and Percentile Estimators for the Parameters of the Power Function Distribution

    Directory of Open Access Journals (Sweden)

    Azam Zaka

    2014-10-01

    Full Text Available This paper is concerned with the modifications of maximum likelihood, moments and percentile estimators of the two parameter Power function distribution. Sampling behavior of the estimators is indicated by Monte Carlo simulation. For some combinations of parameter values, some of the modified estimators appear better than the traditional maximum likelihood, moments and percentile estimators with respect to bias, mean square error and total deviation.

  4. Power law-based local search in spider monkey optimisation for lower order system modelling

    Science.gov (United States)

    Sharma, Ajay; Sharma, Harish; Bhargava, Annapurna; Sharma, Nirmala

    2017-01-01

    The nature-inspired algorithms (NIAs) have shown efficiency to solve many complex real-world optimisation problems. The efficiency of NIAs is measured by their ability to find adequate results within a reasonable amount of time, rather than an ability to guarantee the optimal solution. This paper presents a solution for lower order system modelling using spider monkey optimisation (SMO) algorithm to obtain a better approximation for lower order systems and reflects almost original higher order system's characteristics. Further, a local search strategy, namely, power law-based local search is incorporated with SMO. The proposed strategy is named as power law-based local search in SMO (PLSMO). The efficiency, accuracy and reliability of the proposed algorithm is tested over 20 well-known benchmark functions. Then, the PLSMO algorithm is applied to solve the lower order system modelling problem.

  5. Equilibrium measures and Cramer asymptotics in a non-invertible dynamical system with power-law mixing

    International Nuclear Information System (INIS)

    Sarazhinskii, D S

    2004-01-01

    We consider a dynamical system generated by a shift in the space of finite-valued one-sided sequences. We study spectral properties of Perron-Frobenius operators associated with this system, whose potentials on the number of the term of the sequence have power-law dependence. Using these operators, we construct a family of equilibrium probability measures in the phase space having the property of power-law mixing. For these measures we prove a central limit theorem for functions in phase space and a Cramer-type theorem for the probabilities of large deviations. Similar results for the significantly simpler case of exponential decay in the dependence of the potentials on the number of the term of the sequence were previously obtained by the author.

  6. The Atacama Cosmology Telescope: two-season ACTPol spectra and parameters

    Energy Technology Data Exchange (ETDEWEB)

    Louis, Thibaut [UPMC Univ Paris 06, UMR7095, Institut d' Astrophysique de Paris, F-75014, Paris (France); Grace, Emily; Aiola, Simone; Choi, Steve K. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Hasselfield, Matthew [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Lungu, Marius; Angile, Elio [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Maurin, Loïc [Instituto de Astrofísica and Centro de Astro-Ingeniería, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago (Chile); Addison, Graeme E. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Ade, Peter A. R. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, Wales, CF24 3AA (United Kingdom); Allison, Rupert; Calabrese, Erminia [Sub-Department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Amiri, Mandana [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada); Battaglia, Nicholas [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Beall, James A.; Britton, Joe; Cho, Hsiao-mei [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); De Bernardis, Francesco [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Bond, J Richard, E-mail: louis@iap.fr [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, M5S 3H8 (Canada); and others

    2017-06-01

    We present the temperature and polarization angular power spectra measured by the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time data collected during 2013–14 using two detector arrays at 149 GHz, from 548 deg{sup 2} of sky on the celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008–10, in combination with planck and wmap data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the ΛCDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature spectrum, including the baryon density, the acoustic peak angular scale, and the derived Hubble constant. The new ACTPol data provide information on damping tail parameters. The joint uncertainty on the number of neutrino species and the primordial helium fraction is reduced by 20% when adding ACTPol to Planck temperature data alone.

  7. The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters

    Science.gov (United States)

    Louis, Thibaut; Grace, Emily; Hasselfield, Matthew; Lungu, Marius; Maurin, Loic; Addison, Graeme E.; Adem Peter A. R.; Aiola, Simone; Allison, Rupert; Amiri, Mandana; hide

    2017-01-01

    We present the temperature and polarization angular power spectra measuredby the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time datacollected during 2013-14 using two detector arrays at 149 GHz, from 548 deg(exp. 2) of sky onthe celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the CDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature spectrum, including the baryon density, the acoustic peak angular scale, and the derived Hubble constant. The new ACTPol dataprovide information on damping tail parameters. The joint uncertainty on the number of neutrino species and the primordial helium fraction is reduced by 20% when adding ACTPol to Planck temperature data alone.

  8. Parameter optimization of thermal-model-oriented control law for PEM fuel cell stack via novel genetic algorithm

    International Nuclear Information System (INIS)

    Li Xi; Deng Zhonghua; Wei Dong; Xu Chunshan; Cao Guangyi

    2011-01-01

    Highlights: →We build up the thermal expressions of PEMFC stack. → The expressions are converted into the affine state space control-oriented model for the VSC strategy. → The NGA is developed to optimize the parameter of thermal-model-oriented control law. → Numerical results demonstrate the effectiveness and rationality of the method proposed. - Abstract: It is critical to understand and manage the thermal effects in optimizing the performance and durability of proton exchange membrane fuel cell (PEMFC) stack. And building up the control-oriented thermal model of PEMFC stack is necessary. The thermal model, a set of differential equations, is established according to the conservation equations of mass and energy, which can be used to reflect truly the actual temperature response of PEMFC stack, however, the expressions of the model are too complicated to be used in the design of control. For this reason, the expressions are converted into the affine state space control-oriented model in detail for the variable structure control (VSC) strategy. Meanwhile, the accurate model must be established for the VSC and the parameters of VSC laws should be optimized. Consequently, a novel genetic algorithm (NGA) is developed to optimize the parameter of thermal-model-oriented control law for PEMFC stack. Finally, numerical test results demonstrate the effectiveness and rationality of the method proposed in this paper. It lays the foundation for the realization of online thermal management of PEMFC stack based on VSC.

  9. Mining law and energy law in the context of today's most urgent problems

    International Nuclear Information System (INIS)

    Hueffer, U.; Ipsen, K.; Tettinger, P.J.

    1989-01-01

    Present mining law and energy law is discussed in 29 papers. Fundamental aspects of legal policy are discussed from the view of the Federal Government and of the Land of Nordrhein-Westfalen. Among the subjects discussed are: Property rights and mining; brown coal projecting; instruments for the promotion of power generation from coal; law on mining damage, industrial safety, and social security. There are several papers on legal problems of power supply, e.g. the autonomy of public utilities, the construction of power supply networks, the utilisation of renewable energy sources, waste incineration, and court decisions in the nuclear licensing procedure. There is a section on international law and a comparison of legal regulations, comprising: legal measures and standards within the IAEA; organisation and tasks of the IEA, energy law and energy policy of the USA, Japan, Great Britain, France, and the COMECON states (the latter referred to the production of energy sources and the electric power generation capacity). (orig./HP) [de

  10. Disobeying Power Laws: Perils for Theory and Method

    Directory of Open Access Journals (Sweden)

    G. Christopher Crawford

    2012-08-01

    Full Text Available The “norm of normality” is a myth that organization design scholars should believe only at their peril. In contrast to the normal (bell-shaped distribution with independent observations and linear relationships assumed by Gaussian statistics, research shows that nearly every input and outcome in organizational domains is power-law (Pareto distributed. These highly skewed distributions exhibit unstable means, unlimited variance, underlying interdependence, and extreme outcomes that disproportionally influence the entire system, making Gaussian methods and assumptions largely invalid. By developing more focused research designs and using methods that assume interdependence and potentially nonlinear relationships, organization design scholars can develop theories that more closely depict empirical reality and provide more useful insights to practitioners and other stakeholders.

  11. Backreaction of Cosmological Fluctuations during Power-Law Inflation

    International Nuclear Information System (INIS)

    Marozzi, G.

    2007-01-01

    We study the renormalized energy-momentum tensor of cosmological scalar fluctuations during the slow-rollover regime for power-law inflation and find that it is characterized by a negative energy density at the leading order, with the same time behavior as the background energy. The average expansion rate appears decreased by the backreaction of the effective energy of cosmological fluctuations, but this value is comparable with the energy of the background only if inflation starts at a Planckian energy. We also find that, for this particular model, the first- and second-order inflaton fluctuations are decoupled and satisfy the same equation of motion. To conclude, the fourth-order adiabatic expansion for the inflaton scalar field is evaluated for a general potential V(φ)

  12. Scaling laws for TEXT plasma profiles

    International Nuclear Information System (INIS)

    McCool, S.C.; Bravenec, R.V.; Chen, J.Y.; Foster, M.S.; Li, W.L.; Ouroura, A.; Phillips, P.E.; Richards, B.; Wenzel, K.W.; Zhang, Z.M.

    1994-01-01

    Regression analysis has been performed on a number of measured profiles including temperature and density vs. nominal macroscopic operating parameters for TEXT tokamak (pre-upgrade) ohmic plasmas. The resulting simple empirical model has enabled the authors to quickly approximate profiles of electron temperature and density, ion temperature, and soft x-ray brightness, as well as the scalar quantities: total radiated power, q=1 radius, sawtooth period and amplitude, and energy confinement time as a power law of toroidal field, plasma current, chord average density, and fueling gas atomic weight. The model profiles are only applicable to the plasma interior, i.e. within the limiter radius. In most cases the predicted model profiles are within the experimental error bars of measured profiles and are more accurate at predicting profile variation for small operating parameter changes than the measured profiles

  13. PLNoise: a package for exact numerical simulation of power-law noises

    Science.gov (United States)

    Milotti, Edoardo

    2006-08-01

    Many simulations of stochastic processes require colored noises: here I describe a small program library that generates samples with a tunable power-law spectral density: the algorithm can be modified to generate more general colored noises, and is exact for all time steps, even when they are unevenly spaced (as may often happen in the case of astronomical data, see e.g. [N.R. Lomb, Astrophys. Space Sci. 39 (1976) 447]. The method is exact in the sense that it reproduces a process that is theoretically guaranteed to produce a range-limited power-law spectrum 1/f with -1uk/summaries/ADXV_v1_0.html Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Programming language used: ANSI C Computer: Any computer with an ANSI C compiler: the package has been tested with gcc version 3.2.3 on Red Hat Linux 3.2.3-52 and gcc version 4.0.0 and 4.0.1 on Apple Mac OS X-10.4 Operating system: All operating systems capable of running an ANSI C compiler No. of lines in distributed program, including test data, etc.:6238 No. of bytes in distributed program, including test data, etc.:52 387 Distribution format:tar.gz RAM: The code of the test program is very compact (about 50 Kbytes), but the program works with list management and allocates memory dynamically; in a typical run (like the one discussed in Section 4 in the long write-up) with average list length 2ṡ10, the RAM taken by the list is 200 Kbytes. External routines: The package needs external routines to generate uniform and exponential deviates. The implementation described here uses the random number generation library ranlib freely available from Netlib [B.W. Brown, J. Lovato, K. Russell, ranlib, available from Netlib, http://www.netlib.org/random/index.html, select the C version ranlib.c], but it has also been successfully tested with the random number routines in Numerical Recipes [W.H. Press, S.A. Teulkolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes

  14. An Economics-Based Second Law Efficiency

    Directory of Open Access Journals (Sweden)

    John H. Lienhard

    2013-07-01

    Full Text Available Second Law efficiency is a useful parameter for characterizing the energy requirements of a system in relation to the limits of performance prescribed by the Laws of Thermodynamics. However, since energy costs typically represent less than 50% of the overall cost of product for many large-scale plants (and, in particular, for desalination plants, it is useful to have a parameter that can characterize both energetic and economic effects. In this paper, an economics-based Second Law efficiency is defined by analogy to the exergetic Second Law efficiency and is applied to several desalination systems. It is defined as the ratio of the minimum cost of producing a product divided by the actual cost of production. The minimum cost of producing the product is equal to the cost of the primary source of energy times the minimum amount of energy required, as governed by the Second Law. The analogy is used to show that thermodynamic irreversibilities can be assigned costs and compared directly to non-energetic costs, such as capital expenses, labor and other operating costs. The economics-based Second Law efficiency identifies costly sources of irreversibility and places these irreversibilities in context with the overall system costs. These principles are illustrated through three case studies. First, a simple analysis of multistage flash and multiple effect distillation systems is performed using available data. Second, a complete energetic and economic model of a reverse osmosis plant is developed to show how economic costs are influenced by energetics. Third, a complete energetic and economic model of a solar powered direct contact membrane distillation system is developed to illustrate the true costs associated with so-called free energy sources.

  15. Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Freltoft, T.; Kjems, Jørgen; Sinha, S. K.

    1986-01-01

    Small-angle neutron scattering from normal, compressed, and water-suspended powders of aggregates of fine silica particles has been studied. The samples possessed average densities ranging from 0.008 to 0.45 g/cm3. Assuming power-law correlations between particles and a finite correlation length ξ......, the authors derive the scattering function S(q) from specific models for particle-particle correlation in these systems. S(q) was found to provide a satisfactory fit to the data for all samples studied. The fractal dimension df corresponding to the power-law correlation was 2.61±0.1 for all dry samples, and 2...

  16. China's renewables law

    International Nuclear Information System (INIS)

    Zhu Li

    2005-01-01

    The paper discusses China's Renewable Energy Promotion Law which will come into force in January 2006. The law shows China's commitment to renewable energy sources. The target is to raise the country's energy consumption from renewables to 10% by 2020. Data for current capacity, and expected capacity by 2020, are given for wind power, solar power, biomass and hydroelectric power. The financial and technological hurdles which China must overcome are mentioned briefly

  17. Measures of the zero power nuclear reactor's kinetic parameters with application of noise analysis

    International Nuclear Information System (INIS)

    Martins, F.R.

    1992-01-01

    The purpose of this work was to establish an experimental technique based on noise analysis for measuring the ratio of kinetic parameters β/ Λ and the power of the Zero Power Nuclear Reactor IPEN-MB 01. A through study of the microscopic and macroscopic noise analysis techniques has been carried out. The Langevin technique and the point kinetic model were chosen to describe the stochastic phenomena that occur in the zero power reactor. Measurements have been made using two compensated ionization chambers localized in the water reflector at symmetric positions in order to minimize spatial effects on the neutron flux fluctuation. Power calibrations based on the low frequency plateau of the cross-power spectral density has also been carried out. (author)

  18. Thermoeconomic Analysis of Hybrid Power Plant Concepts for Geothermal Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2014-07-01

    Full Text Available We present a thermo-economic analysis for a low-temperature Organic Rankine Cycle (ORC in a combined heat and power generation (CHP case. For the hybrid power plant, thermal energy input is provided by a geothermal resource coupled with the exhaust gases of a biogas engine. A comparison to alternative geothermal CHP concepts is performed by considering variable parameters like ORC working fluid, supply temperature of the heating network or geothermal water temperature. Second law efficiency as well as economic parameters show that hybrid power plants are more efficient compared to conventional CHP concepts or separate use of the energy sources.

  19. The power of law versus the law of power - Interview with Stanislav Markelov, Lawyer, Moscow, 3 June 2008

    Directory of Open Access Journals (Sweden)

    Aude Merlin

    2009-03-01

    Full Text Available PIPSS.ORG – You worked as a lawyer on the Budanov case, and you created the Rule of Law Institute. How long since this institute was created?Stanislav Markelov: About two years.PIPSS.ORG – Who is the founder of the institute?Stanislav Markelov: I am.PIPSS.ORG – In which regions of Russia is this institute active? How many regions have branches? Stanislav Markelov: If I’m not mistaken, there are branches in 22 regions of Russia, and in other CIS countries: Belarus and Ukraine.PIPSS.ORG – What ...

  20. Laboratory constraints on chameleon dark energy and power-law fields

    International Nuclear Information System (INIS)

    Steffen, Jason H.; Upadhye, Amol; Baumbaugh, Al; Chou, Aaron S.; Mazur, Peter O.; Tomlin, Ray; Weltman, Amanda; Wester, William

    2010-01-01

    We report results from the GammeV Chameleon Afterglow Search - a search for chameleon particles created via photon/chameleon oscillations within a magnetic field. This experiment is sensitive to a wide class of chameleon power-law models and dark energy models not previously explored. These results exclude five orders of magnitude in the coupling of chameleons to photons covering a range of four orders of magnitude in chameleon effective mass and, for individual chameleon models, exclude between 4 and 12 orders of magnitude in chameleon couplings to matter.

  1. Jell-O Optics: Edibly Exploring Snell's Law and Optical Power

    Science.gov (United States)

    Hendryx, Jennifer; Reynolds, Mathias

    2012-03-01

    This presentation details a laboratory exercise and/or demonstration of refraction with an inexpensive, simple set-up: a pan of Jell-O, protractors, and laser pointers. This activity is presented from the perspective of an optical sciences graduate student who has spent the school year team-teaching high school math and physics (through Academic Decathlon). The goal is to present some of the fundamentals of optics with an enjoyable and affordable approach. The concepts include Snell's law, index of refraction, and optical power/focal length as they relate to the curvature of a lens.

  2. The Evolution of the Exponent of Zipf's Law in Language Ontogeny

    Science.gov (United States)

    Baixeries, Jaume; Elvevåg, Brita; Ferrer-i-Cancho, Ramon

    2013-01-01

    It is well-known that word frequencies arrange themselves according to Zipf's law. However, little is known about the dependency of the parameters of the law and the complexity of a communication system. Many models of the evolution of language assume that the exponent of the law remains constant as the complexity of a communication systems increases. Using longitudinal studies of child language, we analysed the word rank distribution for the speech of children and adults participating in conversations. The adults typically included family members (e.g., parents) or the investigators conducting the research. Our analysis of the evolution of Zipf's law yields two main unexpected results. First, in children the exponent of the law tends to decrease over time while this tendency is weaker in adults, thus suggesting this is not a mere mirror effect of adult speech. Second, although the exponent of the law is more stable in adults, their exponents fall below 1 which is the typical value of the exponent assumed in both children and adults. Our analysis also shows a tendency of the mean length of utterances (MLU), a simple estimate of syntactic complexity, to increase as the exponent decreases. The parallel evolution of the exponent and a simple indicator of syntactic complexity (MLU) supports the hypothesis that the exponent of Zipf's law and linguistic complexity are inter-related. The assumption that Zipf's law for word ranks is a power-law with a constant exponent of one in both adults and children needs to be revised. PMID:23516390

  3. Characterization of fish sauce aroma-impact compounds using GC-MS, SPME-Osme-GCO, and Stevens' power law exponents.

    Science.gov (United States)

    Pham, A J; Schilling, M W; Yoon, Y; Kamadia, V V; Marshall, D L

    2008-05-01

    The objectives of this study were to characterize volatile compounds and to determine the characteristic aromas associated with impact compounds in 4 fish sauces using solid-phase micro-extraction, gas chromatography-mass spectrometry, Osme, and gas chromatography olfactometry (SPME-Osme-GCO) coupled with Stevens' Power Law. Compounds were separated using GCMS and GCO and were identified with the mass spectral database, aroma perceived at the sniffing port, retention indices, and verification of compounds by authentic standards in the GCMS and GCO. Aromas that were isolated and present in all 4 fish sauce samples at all concentrations included fishy (trimethylamine), pungent and dirty socks (combination of butanoic, pentanoic, hexanoic, and heptanoic acids), cooked rice and buttery popcorn (2,6-dimethyl pyrazine), and sweet and cotton candy (benzaldehyde). All fish sauces contained the same aromas as determined by GCO and GCMS (verified using authentic standard compounds), but the odor intensity associated with each compound or group of compounds was variable for different fish sauce samples. Stevens' Power Law exponents were also determined using this analytical technique, but exponents were not consistent for the same compounds that were found in all fish sauces. Stevens' Power Law exponents ranged from 0.14 to 0.37, 0.24 to 0.34, 0.09 to 0.21, and 0.10 to 0.35 for dirty socks, fishy, buttery popcorn, and sweet aromas, respectively. This demonstrates that there is variability in Stevens' Power Law exponents for odorants within fish sauce samples.

  4. Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Cappilary Fissures and Tubes

    Science.gov (United States)

    Walicka, A.

    2018-02-01

    In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.

  5. Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Cappilary Fissures and Tubes

    Directory of Open Access Journals (Sweden)

    Walicka A.

    2018-02-01

    Full Text Available In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.

  6. POWER-LAW TEMPLATE FOR INFRARED POINT-SOURCE CLUSTERING

    Energy Technology Data Exchange (ETDEWEB)

    Addison, Graeme E.; Dunkley, Joanna [Sub-department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Hajian, Amir; Das, Sudeep; Hincks, Adam D.; Page, Lyman A.; Staggs, Suzanne T. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Viero, Marco [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Bond, J. Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Devlin, Mark J.; Reese, Erik D. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Halpern, Mark; Scott, Douglas [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hlozek, Renee; Marriage, Tobias A.; Spergel, David N. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Moodley, Kavilan [Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041 (South Africa); Wollack, Edward [NASA/Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States)

    2012-06-20

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545, and 857 GHz, over angular scales 100 {approx}< l {approx}< 2200), the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST; 250, 350, and 500 {mu}m; 1000 {approx}< l {approx}< 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fitted by a simple power law of the form C{sup clust}{sub l}{proportional_to}l{sup -n} with n = 1.25 {+-} 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, {nu}{sup {beta}} B({nu}, T{sub eff}), with a single emissivity index {beta} = 2.20 {+-} 0.07 and effective temperature T{sub eff} = 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be {alpha}{sub 150-220} = 3.68 {+-} 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in cosmic microwave background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  7. Fine-hyperfine splittings of quarkonium levels in an effective power-law potential

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N; Jena, S N [Utkal Univ., Bhubaneswar (India). Dept. of Physics

    1980-12-01

    We have shown that an effective non-coulombic power-law potential generating spin dependence through scalar and vector exchanges in almost equal proportions along with a very small or zero quark anomalous moment can describe very satisfactorily the up-to-date data on the fine-hyperfine levels and the leptonic width ratios of the vector mesons in the cc and bb families in a flavour independent manner.

  8. X-Parameter Based Modelling of Polar Modulated Power Amplifiers

    DEFF Research Database (Denmark)

    Wang, Yelin; Nielsen, Troels Studsgaard; Sira, Daniel

    2013-01-01

    X-parameters are developed as an extension of S-parameters capable of modelling non-linear devices driven by large signals. They are suitable for devices having only radio frequency (RF) and DC ports. In a polar power amplifier (PA), phase and envelope of the input modulated signal are applied...... at separate ports and the envelope port is neither an RF nor a DC port. As a result, X-parameters may fail to characterise the effect of the envelope port excitation and consequently the polar PA. This study introduces a solution to the problem for a commercial polar PA. In this solution, the RF-phase path...... PA for simulations. The simulated error vector magnitude (EVM) and adjacent channel power ratio (ACPR) were compared with the measured data to validate the model. The maximum differences between the simulated and measured EVM and ACPR are less than 2% point and 3 dB, respectively....

  9. Determination of technical and economic parameters of an ionic transport membrane air separation unit working in a supercritical power plant

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2016-09-01

    Full Text Available In this paper an air separation unit was analyzed. The unit consisted of: an ionic transport membrane contained in a four-end type module, an air compressor, an expander fed by gas that remains after oxygen separation and heat exchangers which heat the air and recirculated flue gas to the membrane operating temperature (850 °C. The air separation unit works in a power plant with electrical power equal to 600 MW. This power plant additionally consists of: an oxy-type pulverized-fuel boiler, a steam turbine unit and a carbon dioxide capture unit. Life steam parameters are 30 MPa/650 °C and reheated steam parameters are 6 MPa/670 °C. The listed units were analyzed. For constant electrical power of the power plant technical parameters of the air separation unit for two oxygen recovery rate (65% and 95% were determined. One of such parameters is ionic membrane surface area. In this paper the formulated equation is presented. The remaining technical parameters of the air separation unit are, among others: heat exchange surface area, power of the air compressor, power of the expander and auxiliary power. Using the listed quantities, the economic parameters, such as costs of air separation unit and of individual components were determined. These quantities allowed to determine investment costs of construction of the air separation unit. In addition, they were compared with investment costs for the entire oxy-type power plant.

  10. Towards a seascape typology. I. Zipf versus Pareto laws

    Science.gov (United States)

    Seuront, Laurent; Mitchell, James G.

    Two data analysis methods, referred to as the Zipf and Pareto methods, initially introduced in economics and linguistics two centuries ago and subsequently used in a wide range of fields (word frequency in languages and literature, human demographics, finance, city formation, genomics and physics), are described and proposed here as a potential tool to classify space-time patterns in marine ecology. The aim of this paper is, first, to present the theoretical bases of Zipf and Pareto laws, and to demonstrate that they are strictly equivalent. In that way, we provide a one-to-one correspondence between their characteristic exponents and argue that the choice of technique is a matter of convenience. Second, we argue that the appeal of this technique is that it is assumption-free for the distribution of the data and regularity of sampling interval, as well as being extremely easy to implement. Finally, in order to allow marine ecologists to identify and classify any structure in their data sets, we provide a step by step overview of the characteristic shapes expected for Zipf's law for the cases of randomness, power law behavior, power law behavior contaminated by internal and external noise, and competing power laws illustrated on the basis of typical ecological situations such as mixing processes involving non-interacting and interacting species, phytoplankton growth processes and differential grazing by zooplankton.

  11. Nonlinear and linear wave equations for propagation in media with frequency power law losses

    Science.gov (United States)

    Szabo, Thomas L.

    2003-10-01

    The Burgers, KZK, and Westervelt wave equations used for simulating wave propagation in nonlinear media are based on absorption that has a quadratic dependence on frequency. Unfortunately, most lossy media, such as tissue, follow a more general frequency power law. The authors first research involved measurements of loss and dispersion associated with a modification to Blackstock's solution to the linear thermoviscous wave equation [J. Acoust. Soc. Am. 41, 1312 (1967)]. A second paper by Blackstock [J. Acoust. Soc. Am. 77, 2050 (1985)] showed the loss term in the Burgers equation for plane waves could be modified for other known instances of loss. The authors' work eventually led to comprehensive time-domain convolutional operators that accounted for both dispersion and general frequency power law absorption [Szabo, J. Acoust. Soc. Am. 96, 491 (1994)]. Versions of appropriate loss terms were developed to extend the standard three nonlinear wave equations to these more general losses. Extensive experimental data has verified the predicted phase velocity dispersion for different power exponents for the linear case. Other groups are now working on methods suitable for solving wave equations numerically for these types of loss directly in the time domain for both linear and nonlinear media.

  12. Power-law inter-spike interval distributions infer a conditional maximization of entropy in cortical neurons.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Tsubo

    Full Text Available The brain is considered to use a relatively small amount of energy for its efficient information processing. Under a severe restriction on the energy consumption, the maximization of mutual information (MMI, which is adequate for designing artificial processing machines, may not suit for the brain. The MMI attempts to send information as accurate as possible and this usually requires a sufficient energy supply for establishing clearly discretized communication bands. Here, we derive an alternative hypothesis for neural code from the neuronal activities recorded juxtacellularly in the sensorimotor cortex of behaving rats. Our hypothesis states that in vivo cortical neurons maximize the entropy of neuronal firing under two constraints, one limiting the energy consumption (as assumed previously and one restricting the uncertainty in output spike sequences at given firing rate. Thus, the conditional maximization of firing-rate entropy (CMFE solves a tradeoff between the energy cost and noise in neuronal response. In short, the CMFE sends a rich variety of information through broader communication bands (i.e., widely distributed firing rates at the cost of accuracy. We demonstrate that the CMFE is reflected in the long-tailed, typically power law, distributions of inter-spike intervals obtained for the majority of recorded neurons. In other words, the power-law tails are more consistent with the CMFE rather than the MMI. Thus, we propose the mathematical principle by which cortical neurons may represent information about synaptic input into their output spike trains.

  13. Two-Way Multi-Antenna Relaying with Simultaneous Wireless Information and Power Transfer

    Directory of Open Access Journals (Sweden)

    Thanaphat Srivantana

    2017-03-01

    Full Text Available In this paper, we propose various kinds of two-way multi-antenna relaying with simultaneous wireless information and power transfer (SWIPT and investigate their performance. Specifically, we first consider a two-way relay network where two single-antenna end nodes communicate with each other through a multi-antenna relay node that is energy constrained. This relay node harvests energy from the two end nodes and use the harvested energy for forwarding their information. Six relaying schemes that support the considered network then build on the power splitting-based relaying and time switching-based relaying protocols. The average bit error rates of these schemes are evaluated and compared by computer simulations considering several network parameters, including the number of relay antennas, power splitting ratio, and energy harvesting time. Such evaluation and comparison provide useful insights into the performance of SWIPT-based two-way multi-antenna relaying.

  14. Internationalization of law globalization, international law and complexity

    CERN Document Server

    Dias Varella, Marcelo

    2014-01-01

    The book provides an overview of how international law is today constructed through diverse macro and microprocesses that expand its traditional subjects and sources, with the attribution of sovereign capacity and power to the international plane (moving the international toward the national). Simultaneously, national laws approximate laws of other nations (moving among nations or moving the national toward the international) and new sources of legal norms emerge, independent of states and international organisations. This expansion occurs in many subject areas, with specific structures: commercial, environmental, human rights, humanitarian, financial, criminal and labor law contribute to the formation of post national law with different modes of functioning, different actors and different sources of law that should be understood as a new complexity of law.

  15. Comparison of two optical biometers in intraocular lens power calculation

    Directory of Open Access Journals (Sweden)

    Sheng Hui

    2014-01-01

    Full Text Available Aims: To compare the consistency and accuracy in ocular biometric measurements and intraocular lens (IOL power calculations using the new optical low-coherence reflectometry and partial coherence interferometry. Subjects and Methods: The clinical data of 122 eyes of 72 cataract patients were analyzed retrospectively. All patients were measured with a new optical low-coherence reflectometry system, using the LENSTAR LS 900 (Haag Streit AG/ALLEGRO BioGraph biometer (Wavelight., AG, and partial coherence interferometry (IOLMaster V.5.4 [Carl Zeiss., Meditec, AG] before phacoemulsification and IOL implantation. Repeated measurements, as recommended by the manufacturers, were performed by the same examiner with both devices. Using the parameters of axial length (AL, corneal refractive power (K1 and K2, and anterior chamber depth (ACD, power calculations for AcrySof SA60AT IOL were compared between the two devices using five formulas. The target was emmetropia. Statistical analysis was performed using Statistical Package for the Social Sciences software (SPSS 13.0 with t-test as well as linear regression. A P value < 0.05 was considered to be statistically significant. Results: The mean age of 72 cataract patients was 64.6 years ± 13.4 [standard deviation]. Of the biometry parameters, K1, K2 and [K1 + K2]/2 values were significantly different between the two devices (mean difference, K1: −0.05 ± 0.21 D; K2: −0.12 ± 0.20 D; [K1 + K2]/2: −0.08 ± 0.14 D. P <0.05. There was no statistically significant difference in AL and ACD between the two devices. The correlations of AL, K1, K2, and ACD between the two devices were high. The mean differences in IOL power calculations using the five formulas were not statistically significant between the two devices. Conclusions: New optical low-coherence reflectometry provides measurements that correlate well to those of partial coherence interferometry, thus it is a precise device that can be used for the

  16. Viscous-elastic dynamics of power-law fluids within an elastic cylinder

    Science.gov (United States)

    Boyko, Evgeniy; Bercovici, Moran; Gat, Amir D.

    2017-07-01

    In a wide range of applications, microfluidic channels are implemented in soft substrates. In such configurations, where fluidic inertia and compressibility are negligible, the propagation of fluids in channels is governed by a balance between fluid viscosity and elasticity of the surrounding solid. The viscous-elastic interactions between elastic substrates and non-Newtonian fluids are particularly of interest due to the dependence of viscosity on the state of the system. In this work, we study the fluid-structure interaction dynamics between an incompressible non-Newtonian fluid and a slender linearly elastic cylinder under the creeping flow regime. Considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a nonhomogeneous p-Laplacian equation governing the viscous-elastic dynamics. We present exact solutions for the pressure and deformation fields for various initial and boundary conditions for both shear-thinning and shear-thickening fluids. We show that in contrast to Stokes' problem where a compactly supported front is obtained for shear-thickening fluids, here the role of viscosity is inversed and such fronts are obtained for shear-thinning fluids. Furthermore, we demonstrate that for the case of a step in inlet pressure, the propagation rate of the front has a tn/n +1 dependence on time (t ), suggesting the ability to indirectly measure the power-law index (n ) of shear-thinning liquids through measurements of elastic deformation.

  17. The Schroedinger equation for central power law potentials and the classical theory of ordinary linear differential equations of the second order

    International Nuclear Information System (INIS)

    Lima, M.L.; Mignaco, J.A.

    1985-01-01

    It is shown that the rational power law potentials in the two-body radial Schoedinger equation admit a systematic treatment available from the classical theory of ordinary linear differential equations of the second order. The admissible potentials come into families evolved from equations having a fixed number of elementary singularities. As a consequence, relations are found and discussed among the several potentials in a family. (Author) [pt

  18. On the choice of minimization parameters using 4 momentum conservation law for particle momenta improvement

    International Nuclear Information System (INIS)

    Anykeyev, V.B.; Zhigunov, V.P.; Spiridonov, A.A.

    1981-01-01

    Special choice of parameters for minimization is offered in the problem of improving estimates for particle momenta in the vertex of the event with the use of 4-momentum conservation law. This choice permits to use any unconditional minimization method instead of that of Lagrange multipliers. The above method is used when analysing the data on the K - +p→n + anti k 0 +π 0 reaction [ru

  19. Light Fragment Production and Power Law Behavior in Au + Au Collisions

    International Nuclear Information System (INIS)

    Wang, S.; Albergo, S.; Bieser, F.; Brady, F.P.; Caccia, Z.; Cebra, D.A.; Chacon, A.D.; Chance, J.L.; Choi, Y.; Costa, S.; Elliott, J.B.; Gilkes, M.L.; Hauger, J.A.; Hirsch, A.S.; Hjort, E.L.; Insolia, A.; Justice, M.; Keane, D.; Kintner, J.; Lisa, M.A.; Matis, H.S.; McMahan, M.; McParland, C.; Olson, D.L.; Partlan, M.D.; Porile, N.T.; Potenza, R.; Rai, G.; Rasmussen, J.; Ritter, H.G.; Romanski, J.; Romero, J.L.; Russo, G.V.; Scharenberg, R.P.; Scott, A.; Shao, Y.; Srivastava, B.K.; Symons, T.J.M.; Tincknell, M.L.; Tuve, C.; Warren, P.G.; Weerasundara, D.; Wieman, H.H.; Wolf, K.L.

    1995-01-01

    Using charged-particle-exclusive measurements of Au+Au collisions in the LBL Bevalac's EOS time projection chamber, we investigate momentum-space densities of fragments up to 4 He as a function of fragment transverse momentum, azimuth relative to the reaction plane, rapidity, multiplicity, and beam energy. Most features of these densities above a transverse momentum threshold are consistent with momentum-space coalescence, and, in particular, the increase in sideward flow with fragment mass is generally well described by a momentum-space power law

  20. Fine-hyperfine splittings of quarkonium levels in an effective power-law potential

    International Nuclear Information System (INIS)

    Barik, N.; Jena, S.N.

    1980-01-01

    We have shown that an effective non-coulombic power-law potential generating spin dependence through scalar and vector exchanges in almost equal proportions along with a very small or zero quark anomalous moment can describe very satisfactorily the up-to-date data on the fine-hyperfine levels and the leptonic width ratios of the vector mesons in the cc and bb families in a flavour independent manner. (orig.)

  1. Do we have an acceptable model of power-law creep?

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2004-12-15

    Full Text Available 387–389 (2004) 659–664 Do we have an acceptable model of power-law creep? F.R.N. Nabarro a,b,∗ a Condensed Matter Physics Research Group, School of Physics, University of the Witwatersrand, Private Bag 3, Johannesburg WITS 2050, South Africa b... an exponential function 0921-5093/$ – see front matter © 2004 Published by Elsevier B.V. doi:10.1016/j.msea.2003.09.118 660 F.R.N. Nabarro / Materials Science and Engineering A 387–389 (2004) 659–664 of the stress. There is little evidence whether the physical...

  2. Recent publications on environmental law

    International Nuclear Information System (INIS)

    Lohse, S.

    1991-01-01

    The bibliography contains references to publications covering the following subject fields: General environmental law; environmental law in relation to constitutional law, administrative law, procedural law, revenue law, criminal law, private law, industrial law; law of regional development; nature conservation law; law on water protection; waste management law; law on protection against harmful effects on the environment; atomic energy law and radiation protection law; law of the power industry and the mining industry; laws and regulations on hazardous material and environmental hygiene. (orig.) [de

  3. Two Examples of Exergy Optimization Regarding the “Thermo-Frigopump” and Combined Heat and Power Systems

    Directory of Open Access Journals (Sweden)

    Michel Feidt

    2013-02-01

    Full Text Available In a recent review an optimal thermodynamics and associated new upper bounds have been proposed, but it was only relative to power delivered by engines. In fact, it appears that for systems and processes with more than one utility (mainly mechanical or electrical power, energy conservation (First Law is limited for representing their efficiency. Consequently, exergy analysis combining the First and Second Law seems essential for optimization of systems or processes situated in their environment. For thermomechanical systems recent papers report on comparisons between energy and exergy analysis and corresponding optimization, but the proposed models mainly use heat transfer conductance modelling, except for internal combustion engine. Here we propose to reconsider direct and inverse configurations of Carnot machines, with two examples. The first example is concerned with “thermofrigo-pump” where the two utilities are hot and cold thermal exergies due to the difference in the temperature level compared to the ambient one. The second one is relative to a “combined heat and power” (CHP system. In the two cases, the model is developed based on the Carnot approach, and use of the efficiency-NTU method to characterize the heat exchangers. Obtained results are original thermodynamics optima, that represent exergy upper bounds for these two cases. Extension of the proposed method to other systems and processes is examined, with added technical constraints or not.

  4. Estimation of power feedback parameters of the IBR-2M reactor by square wave reactivity

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.; Popov, A.K.; Sumkhuu, D.

    2016-01-01

    Parameters of the IBR-2M reactor power feedback (PFB) are estimated based on the analysis of power transients caused by deliberate square wave reactivity when the pulsed reactor operates in the self-regulation mode. The PFB of the IBR-2M is described by three linear first-order differential equations. Two components of the PFB are responsible for the negative feedback and one, for the positive. The overall feedback is negative, i.e., it has a stabilizing effect for the operation of the reactor. The slowest negative component of the PFB is probably caused by heating of the fuel. Periodically repeated in the process of exploitation, estimation of the PFB parameters is one of the methods to ensure safety operation of the reactor. [ru

  5. Transition from Exponential to Power Law Income Distributions in a Chaotic Market

    Science.gov (United States)

    Pellicer-Lostao, Carmen; Lopez-Ruiz, Ricardo

    Economy is demanding new models, able to understand and predict the evolution of markets. To this respect, Econophysics offers models of markets as complex systems, that try to comprehend macro-, system-wide states of the economy from the interaction of many agents at micro-level. One of these models is the gas-like model for trading markets. This tries to predict money distributions in closed economies and quite simply, obtains the ones observed in real economies. However, it reveals technical hitches to explain the power law distribution, observed in individuals with high incomes. In this work, nonlinear dynamics is introduced in the gas-like model in an effort to overcomes these flaws. A particular chaotic dynamics is used to break the pairing symmetry of agents (i, j) ⇔ (j, i). The results demonstrate that a "chaotic gas-like model" can reproduce the Exponential and Power law distributions observed in real economies. Moreover, it controls the transition between them. This may give some insight of the micro-level causes that originate unfair distributions of money in a global society. Ultimately, the chaotic model makes obvious the inherent instability of asymmetric scenarios, where sinks of wealth appear and doom the market to extreme inequality.

  6. Solving the dynamic rupture problem with different numerical approaches and constitutive laws

    Science.gov (United States)

    Bizzarri, A.; Cocco, M.; Andrews, D.J.; Boschi, Enzo

    2001-01-01

    We study the dynamic initiation, propagation and arrest of a 2-D in-plane shear rupture by solving the elastodynamic equation by using both a boundary integral equation method and a finite difference approach. For both methods we adopt different constitutive laws: a slip-weakening (SW) law, with constant weakening rate, and rate- and state-dependent friction laws (Dieterich-Ruina). Our numerical procedures allow the use of heterogeneous distributions of constitutive parameters along the fault for both formulations. We first compare the two solution methods with an SW law, emphasizing the required stability conditions to achieve a good resolution of the cohesive zone and to avoid artificial complexity in the solutions. Our modelling results show that the two methods provide very similar time histories of dynamic source parameters. We point out that, if a careful control of resolution and stability is performed, the two methods yield identical solutions. We have also compared the rupture evolution resulting from an SW and a rate- and state-dependent friction law. This comparison shows that despite the different constitutive formulations, a similar behaviour is simulated during the rupture propagation and arrest. We also observe a crack tip bifurcation and a jump in rupture velocity (approaching the P-wave speed) with the Dieterich-Ruina (DR) law. The rupture arrest at a barrier (high strength zone) and the barrier-healing mechanism are also reproduced by this law. However, this constitutive formulation allows the simulation of a more general and complex variety of rupture behaviours. By assuming different heterogeneous distributions of the initial constitutive parameters, we are able to model a barrier-healing as well as a self-healing process. This result suggests that if the heterogeneity of the constitutive parameters is taken into account, the different healing mechanisms can be simulated. We also study the nucleation phase duration Tn, defined as the time

  7. Featuring Control Power: Corporate Law and Economics Revisited

    NARCIS (Netherlands)

    A.M. Pacces (Alessio)

    2008-01-01

    textabstractThis dissertation reappraises the existing framework for economic analysis of corporate law. The standard approach to the legal foundations of corporate governance is based on the ‘law matters’ thesis, according to which corporate law promotes separation of ownership and control by

  8. Limitation of Power of the Counsel to Review the File in the Criminal Procedure: Law No. 6572 And It’s Consequences

    Directory of Open Access Journals (Sweden)

    Coşkun Koç

    2016-06-01

    Full Text Available The Article No. 153 of the Law of Criminal Procedure, which regulates the power of the counsel to examine the file, has been amended by the Law No. 6572, the Article No. 44, dated 02.12.2014. According to the amendment, if the power of the counsel to examine the content of the file or taking copies of the documents jeopardizes the purpose of the investigation, it can be limited by the judge upon request of the prosecutor. However, limiting the power of the counsel to examine the investigation file is against the European Convention on Human Rights and the Constitution. Indeed, the European Convention on Human Rights gives a ruling of violation of right in cases where it determines such a limitation of power. The power of the counsel to examine the content of the file is the sine qua non of a fair trial. It also serves the purpose of revealing the truth. In this study, we will try to examine the effect of the amendment made with the Article 44 of the Law No. 6572 about power of the counsel to examine the file on the fair trial principle.

  9. Computing an operating parameter of a unified power flow controller

    Science.gov (United States)

    Wilson, David G.; Robinett, III, Rush D.

    2017-12-26

    A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.

  10. Computing an operating parameter of a unified power flow controller

    Science.gov (United States)

    Wilson, David G; Robinett, III, Rush D

    2015-01-06

    A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.

  11. Complex motion of a vehicle through a series of signals controlled by power-law phase

    Science.gov (United States)

    Nagatani, Takashi

    2017-07-01

    We study the dynamic motion of a vehicle moving through the series of traffic signals controlled by the position-dependent phase of power law. All signals are controlled by both cycle time and position-dependent phase. The dynamic model of the vehicular motion is described in terms of the nonlinear map. The vehicular motion varies in a complex manner by varying cycle time for various values of the power of the position-dependent phase. The vehicle displays the periodic motion with a long cycle for the integer power of the phase, while the vehicular motion exhibits the very complex behavior for the non-integer power of the phase.

  12. Recent publications on environmental law

    International Nuclear Information System (INIS)

    Lohse, S.

    1988-01-01

    The bibliography contains 1235 references to publications covering the following subject fields: general environmental law; environmental law in relation to constitutional law, administrative law, procedural law, revenue law, criminal law, private law, industrial law; law of regional development; nature conservation law; law on water protection; waste management law; law on protection against harmful effects on the environment; atomic energy law and radiation protection law; law of the power industry and the mining industry; laws and regulations on hazardous material and environmental hygiene. (HP) [de

  13. Recent publications on environmental law

    International Nuclear Information System (INIS)

    Lohse, S.

    1989-01-01

    The bibliography contains 1160 references to publications covering the following subject fields: General environmental law; environmental law in relation to constitutional law, administrative law, procedural law, revenue law, criminal law, private law, industrial law; law of regional development; nature conservation law; law on water protection; waste management law; law on protection against harmful effects on the environment; atomic energy law and radiation protection law; law of the power industry and the mining industry; laws and regulations on hazardous material and environmental hygiene. (orig./HP) [de

  14. Applications of wind generation for power system frequency control, inter-area oscillations damping and parameter identification

    Science.gov (United States)

    Wilches-Bernal, Felipe

    Power systems around the world are experiencing a continued increase in wind generation as part of their energy mix. Because of its power electronics interface, wind energy conversion systems interact differently with the grid than conventional generation. These facts are changing the traditional dynamics that regulate power system behavior and call for a re-examination of traditional problems encountered in power systems like frequency response, inter-area oscillations and parameter identification. To address this need, realistic models for wind generation are necessary. The dissertation implements such models in a MATLAB-based flexible environment suited for power system research. The dissertation continues with an analysis of the frequency response of a test power system dependent mainly on a mode referred to as the frequency regulation mode. Using this test system it is shown that its frequency regulation capability is reduced with wind penetration levels of 25% and above. A controller for wind generation to restore the frequency response of the system is then presented. The proposed controller requires the WTG to operate in a deloaded mode, a condition that is obtained through pitching the wind turbine blades. Time simulations at wind penetration levels of 25% and 50% are performed to demonstrate the effectiveness of the proposed controller. Next, the dissertation evaluates how the inter-area oscillation of a two-machine power system is affected by wind integration. The assessment is performed based on the positioning of the WTG, the level of wind penetration, and the loading condition of the system. It is determined that integrating wind reduces the damping of the inter-area mode of the system when performed in an area that imports power. For this worst-case scenario, the dissertation proposes two controllers for wind generation to improve the damping of the inter-area mode. The first controller uses frequency as feedback signal for the active power control

  15. The Schroedinger equation for central power law potentials and the classical theory of ordinary linear differential equations of the second order

    International Nuclear Information System (INIS)

    Lima, M.L.; Mignaco, J.A.

    1985-01-01

    It is shown that the rational power law potentials in the two-body radial Schrodinger equations admit a systematic treatment available from the classical theory of ordinary linear differential equations of the second order. The resulting potentials come into families evolved from equations having a fixed number of elementary regular singularities. As a consequence, relations are found and discussed among the several potentials in a family. (Author) [pt

  16. Strange, charmed and b-flavoured mesons in an effective power-law potential

    International Nuclear Information System (INIS)

    Barik, N.; Jena, S.N.

    1981-01-01

    We have shown that an effective non-coulombic power-law potenial, generating spin-dependence through scaler and vector exchanges in almost equal proportions along with zero quark-anomalous moment, which was found successful in earlier works for the fine-hyperfine splittings of heavy mesons like psi and T, can also describe very satisfactorily the S-wave hyperfine levels, M1-transition rates and electromagnetic mass difference of the strange, charmed and b-flavoured mesons. (orig.)

  17. Strange, charmed and b-flavoured mesons in an effective power-law potential

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N; Jena, S N [Utkal Univ., Bhubaneswar (India). Dept. of Physics

    1981-05-14

    We have shown that an effective non-coulombic power-law potenial, generating spin-dependence through scaler and vector exchanges in almost equal proportions along with zero quark-anomalous moment, which was found successful in earlier works for the fine-hyperfine splittings of heavy mesons like psi and T, can also describe very satisfactorily the S-wave hyperfine levels, M1-transition rates and electromagnetic mass difference of the strange, charmed and b-flavoured mesons.

  18. Power-Law Kinetics and Determinant Criteria for the Preclusion of Multistationarity in Networks of Interacting Species

    DEFF Research Database (Denmark)

    Wiuf, Carsten Henrik; Feliu, Elisenda

    2013-01-01

    is derived from the determinant of the Jacobian of the species formation rate function. Using this characterization, we further derive similar determinant criteria applicable to general sets of kinetics. The criteria are conceptually simple, computationally tractable, and easily implemented. Our approach...... embraces and extends previous work on multistationarity, such as work in relation to chemical reaction networks with dynamics defined by mass-action or noncatalytic kinetics, and also work based on graphical analysis of the interaction graph associated with the system. Further, we interpret the criteria...... and how the species influence each reaction. We characterize families of so-called power-law kinetics for which the associated species formation rate function is injective within each stoichiometric class and thus the network cannot exhibit multistationarity. The criterion for power-law kinetics...

  19. Bias-corrected Pearson estimating functions for Taylor's power law applied to benthic macrofauna data

    DEFF Research Database (Denmark)

    Jørgensen, Bent; Demétrio, Clarice G. B.; Kristensen, Erik

    2011-01-01

    Estimation of Taylor’s power law for species abundance data may be performed by linear regression of the log empirical variances on the log means, but this method suffers from a problem of bias for sparse data. We show that the bias may be reduced by using a bias-corrected Pearson estimating...

  20. Energy law. The legal boundary conditions of power supply. 2. rev. ed.; Grundriss zum Energierecht. Der rechtliche Rahmen fuer die Energiewirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Stuhlmacher, Gerd [E.ON Global Commodities SE, Duesseldorf (Germany); Stappert, Holger; Jansen, Guido (eds.) [Luther Rechtsanwaltsgesellschaft mbH, Duesseldorf (Germany); Schoon, Heike [BDEW Bundesverband der Energie- und Wasserwirtschaft e.V., Berlin (Germany)

    2015-11-01

    Now appearing in its second edition, this book presents a comprehensive overview of the legal framework governing the energy sector. It provides readily understandable coverage, across the relevant subfields of law, of the legal regulations applicable to any manner of activity in the energy sector along with a wealth of practical advice on the interpretation and application of legal provisions. The content has been thoroughly revised, updated to reflect the current status of legislation and supplemented with numerous chapters. The 2014 amendment of the Renewable Energy Law (EEG) and its practical impact have also been taken into account. The following topics are covered amongst others: unbundling of network operation; connection and access to networks and metering; network charges and incentive regulation; easement contracts; energy supply and basic services; energy and electricity taxes; cartel law, law on operating aids, procurement law; energy trade OTC and at exchanges; energy trade surveillance law; fuel production and fracking; conventional and nuclear power production; renewable energy production (including offshore production); energy storage and power-to-gas; transmission line construction; climate protection (including the 2014 EEG, emission trade and the Law on the Promotion of Renewable Energy in the Heat Sector); cogeneration law, district heating and contracting; and investment protection.