Two-Mode Excited Entangled Coherent State: Nonclassicality and Entanglement
Zhang, Hao-Liang; Wu, Jia-Ni; Liu, Cun-Jin; Hu, Yin-Quan; Hu, Li-Yun
2017-03-01
Two-mode excited entangled coherent states (TME-ECSs) are introduced by operating repeatedly the photon-excited operator on the ECSs. It is shown that the normalization constant is related to the product of two Laguerre polynomials. The influence of the operation on nonclassical behaviour of the ECSs is investigated in terms of cross-correlation function, anti-bunching effect and the negativity of Wigner function, which show that nonclassical properties can be enhanced. In addition, inseparability properties of the TME-ECSs are discussed by using Bell inequality and concurrence. It is found that the degree of quantum entanglement of even ECSs increases with the increase of the total excited photon number, and the violation of Bell inequality can be present for both even and odd case only when the total excited photon numbers are even and odd, respectively.
Wang, Zhen; Li, Heng-Mei; Yuan, Hong-Chun
2016-10-01
We theoretically introduce a kind of non-Gaussian entangled states, i.e., photon-subtracted two-mode squeezed coherent states (PSTMSCS), by successively subtracting photons from each mode of the two-mode squeezed coherent states. The normalization factor which is related to bivariate Hermite polynomials is obtained by virtue of the two-mode squeezing operator in entangled-states representation. The sub-Poissonian photon statistics, antibunching effects, and partial negative Wigner function, respectively, are observed numerically, which fully reflect the nonclassicality of the resultant states. Finally, employing the SV criteria and the EPR correlation, respectively, the entangled property of PSTMSCS is analyzed. It is shown that the photon subtraction operation can effectively enhance the inseparability between the two modes.
Arkhipov, Ievgen I.; Peřina, Jan; Peřina, Jan; Miranowicz, Adam
2016-07-01
The behavior of general nonclassical two-mode Gaussian states at a beam splitter is investigated. Single-mode nonclassicality as well as two-mode entanglement of both input and output states are analyzed suggesting their suitable quantifiers. These quantifiers are derived from local and global invariants of linear unitary two-mode transformations such that the sum of input (or output) local nonclassicality measures and entanglement measure gives a global invariant. This invariant quantifies the global nonclassicality resource. Mutual transformations of local nonclassicalities and entanglement induced by the beam splitter are analyzed considering incident noisy twin beams, single-mode noisy squeezed vacuum states, and states encompassing both squeezed states and twin beams. A rich tapestry of interesting nonclassical output states is predicted.
Institute of Scientific and Technical Information of China (English)
YANG Wen-Xing; ZHAN Zhi-Ming; LI Jia-Hua
2004-01-01
@@ We propose a simple method to generate a practical SU(2)-Schrodinger-cat state of a single trapped-ion vibration mode and the light field state, using the method based on a quantum system, which is composed of the onedimensional trapped-ion motion and a single cavity field mode. Moreover, the method proposed can be used for the generation two-mode maximal quantum entangled state. The detection of such a state is also briefly discussed.
Tomography of nonclassical states
Bazrafkan, MR; Man'ko, [No Value
2003-01-01
A review of the symplectic tomography method is presented. Superpositions of different types of photon states are considered within the framework of the tomography approach. Such nonclassical photon states as even and odd coherent states, crystallized Schrodinger cat states, and other superposition
Tomography of nonclassical states
Bazrafkan, MR; Man'ko, [No Value
2003-01-01
A review of the symplectic tomography method is presented. Superpositions of different types of photon states are considered within the framework of the tomography approach. Such nonclassical photon states as even and odd coherent states, crystallized Schrodinger cat states, and other superposition
Nonclassicality of noisy quantum states
Semenov, A A; Vasylyev, D Y
2005-01-01
Nonclassicality conditions for an oscillator-like system interacting with a hot thermal bath are considered. Nonclassical properties of quantum states can be conserved up to a certain temperature threshold only. In this case affection of the thermal noise can be compensated via transformation of an observable, which tests the nonclassicality (witness function). Possibilities for experimental implementations based on unbalanced homodyning are discussed. At the same time we demonstrate that the scheme based on balanced homodyning cannot be improved for noisy states with proposed technique and should be applied directly.
Statistical Properties of Photon-Added Two-Mode Squeezed Coherent States
Wang, Zhen; Li, Heng-Mei; Yuan, Hong-Chun; Wan, Zhi-Long; Meng, Xiang-Guo
2016-12-01
The nonclassical and non-Gaussian quantum states—photon-added two-mode squeezed coherent states have been theoretically introduced by adding multiple photons to each mode of the two-mode squeezed coherent states. Starting from the new expression of two-mode squeezing operator in entangled states representation, the normalization factor is obtained, which is directly related to bivariate Hermite polynomials. The sub-Poissonian photon statistics, cross-correlation between two modes, partial negative Wigner function are observed, which fully reflect the nonclassicality of the target states. The negative Wigner function often display non-Gaussian distribution meanwhile. The investigations may provide experimentalists with some better references in quantum engineering.
Conservation relation of nonclassicality and entanglement for Gaussian states in a beam splitter
Ge, Wenchao; Tasgin, Mehmet Emre; Zubairy, M. Suhail
2015-11-01
We study the relation between single-mode nonclassicality and two-mode entanglement in a beam splitter. We show that single-mode nonclassicality (the entanglement potential) of incident light cannot be transformed into two-mode entanglement completely after a single beam splitter. Some of the entanglement potential remains as single-mode nonclassicality in the two entangled output modes. Two-mode entanglement generated in the process can be equivalently quantified as an increase in the minimum uncertainty widths (or decrease in the squeezing) of the output states compared to the input states. We use the nonclassical depth and logarithmic negativity as single-mode nonclassicality and entanglement measures, respectively. We realize that a conservation relation between the two quantities can be adopted for Gaussian states, if one works in terms of uncertainty width. This conservation relation is extended to many sets of beam splitters.
The q-analogues of two-mode squeezed states constructed by virtue of the IWOP technique
Institute of Scientific and Technical Information of China (English)
Meng Xiang-Guo; Wang Ji-Suo; Li Hong-Qi
2008-01-01
The q-analogues of two-mode squeezed states are introduced by virtue of deformation quantization methods and the technique of integration within an ordered product (IWOP) of operators. Some new completeness relations about these squeezed states composed of the bra and ket which are not mutually Hermitian conjugates are obtained. Furthermore,the antibunching effects of the two-mode squeezed vacuum state S'2(r) |00> are investigated. It is found that, in different ranges of the squeezed parameter r, both modes of the state exhibit the antibunching effects and the two modes of the state are always nonclassical correlation.
Institute of Scientific and Technical Information of China (English)
HU Li-Yun; FAN Hong-Yi
2008-01-01
We find that the squeezed two-mode number state is just a two-variable Hermite polynomial excitation of the two-mode squeezed vacuum state (THPES). We find that the Wigner function of THPES and its marginal distributions are just related to two-variable Hermite polynomials (or Laguerre polynomials) and that the tomogram of THPES can be expressed by one-mode Hermite polynomial.
Distillation of the two-mode squeezed state.
Kurochkin, Yury; Prasad, Adarsh S; Lvovsky, A I
2014-02-21
We experimentally demonstrate entanglement distillation of the two-mode squeezed state obtained by parametric down-conversion. Applying the photon annihilation operator to both modes, we raise the fraction of the photon-pair component in the state, resulting in the increase of both squeezing and entanglement by about 50%. Because of the low amount of initial squeezing, the distilled state does not experience significant loss of Gaussian character.
Grinberg, Horacio
2008-12-18
The interaction of a two-level cyclic XY n-spin model with a two-mode cavity field involving two-photon transitions is investigated through a generalized Jaynes-Cummings model in the rotating-wave approximation. The two-photon interacting Hamiltonian becomes from the replacement of each single-mode field in the one-photon interacting Hamiltonian with the second-harmonic generation. It was assumed that initially the correlated field modes are in disentangled coherent states having the same photon distribution and that the spin system is in an excited state. At any time t > 0, the spin system and the field are in an entangled state, in this case, via a unitary time evolution operator. Thus, the spontaneous decay of a spin level was treated by considering the interaction of the two-level spin system with the modes of the universe in the vacuum state. The different cases of interest, characterized in terms of a detuning parameter for each mode, which emerge from nonvanishing commutation relations, were analytically implemented and numerically discussed for various values of the initial mean photon number and spin-photon coupling constants. Photon distribution, time evolution of the spin population inversion, as well as the statistical properties of the field leading to the possible production of nonclassical states, such as antibunched light, violations of the Cauchy-Schwartz inequality, and second- and fourth-order squeezing, are examined. The case of zero detuning of both modes was treated in terms of a linearization of the expansion of the time evolution operator, while in other three cases, the computations were conducted via second- and third-order Dyson perturbation expansion of the time evolution operator matrix elements for the excited and ground states of the spin system, respectively.
Semiclassical Wigner distribution for two-mode entangled state
Dechoum, K; Vallejos, R O; Khoury, A Z; 10.1103/PhysRevA.81.043834
2011-01-01
We derive the steady state solution of the Fokker-Planck equation that describes the dynamics of the nondegenerate optical parametric oscillator in the truncated Wigner representation of the density operator. We assume that the pump mode is strongly damped, which permits its adiabatic elimination. When the elimination is correctly executed, the resulting stochastic equations contain multiplicative noise terms, and do not admit a potential solution. However, we develop an heuristic scheme leading to a satisfactory steady-state solution. This provides a clear view of the intracavity two-mode entangled state valid in all operating regimes of the OPO. A nongaussian distribution is obtained for the above threshold solution.
Quantum memory for entangled two-mode squeezed states
Jensen, K; Krauter, H; Fernholz, T; Nielsen, B M; Serafini, A; Owari, M; Plenio, M B; Wolf, M M; Polzik, E S
2010-01-01
A quantum memory for light is a key element for the realization of future quantum information networks. Requirements for a good quantum memory are (i) versatility (allowing a wide range of inputs) and (ii) true quantum coherence (preserving quantum information). Here we demonstrate such a quantum memory for states possessing Einstein-Podolsky-Rosen (EPR) entanglement. These multi-photon states are two-mode squeezed by 6.0 dB with a variable orientation of squeezing and displaced by a few vacuum units. This range encompasses typical input alphabets for a continuous variable quantum information protocol. The memory consists of two cells, one for each mode, filled with cesium atoms at room temperature with a memory time of about 1msec. The preservation of quantum coherence is rigorously proven by showing that the experimental memory fidelity 0.52(2) significantly exceeds the benchmark of 0.45 for the best possible classical memory for a range of displacements.
Nonclassical and semiclassical para-Bose states
Huerta Alderete, C.; Villanueva Vergara, Liliana; Rodríguez-Lara, B. M.
2017-04-01
Motivated by the proposal to simulate para-Bose oscillators in a trapped-ion setup [C. Huerta Alderete and B. M. Rodríguez-Lara, Phys. Rev. A 95, 013820 (2017), 10.1103/PhysRevA.95.013820], we introduce an overcomplete, nonorthogonal basis for para-Bose Hilbert spaces. The states spanning these bases can be experimentally realized in the trapped-ion simulation via time evolution. The para-Bose states show both nonclassical and semiclassical statistics on their Fock state distribution, asymmetric field quadrature variances, and do not minimize the uncertainty relation for the field quadratures. These properties are analytically controlled by the para-Bose order and the evolution time; both parameters might be feasible for fine tuning in the trapped-ion quantum simulation.
Effect of relativistic motion on witnessing nonclassicality of quantum states
Checińska, Agata; Lorek, Krzysztof; Dragan, Andrzej
2017-01-01
We show that the operational definition of nonclassicality of a quantum state depends on the motion of the observer. We use the relativistic Unruh-DeWitt detector model to witness nonclassicality of the probed field state. It turns out that the witness based on the properties of the P representation of the quantum state depends on the trajectory of the detector. Inertial and noninertial motion of the device have qualitatively different impact on the performance of the witness.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We introduce the coordinate-dependent one- and two-mode squeezing transformations and discuss the properties of the corresponding one-and two-mode squeezed states. We show that the coordinate-dependent one-and two-mode squeezing transformations can be constructed by the combination of two transformations, a coordinate-dependent displacement followed by the standard squeezed transformation. Such a decomposition turns a nonlinear problem into a linear one because all the calculations involving the nonlinear one- and two-mode squeezed transformation have been shown to be able to reduce to those only concerning the standard one- and two-mode squeezed states.
Optical Generation of Single- or Two-Mode Excited Entangled Coherent States
Institute of Scientific and Technical Information of China (English)
REN Zhen-Zhong; JING Hui; ZHANG Xian-Zhou
2008-01-01
With nonlinear Mach-Zehnder interferometer (NLMZI) and a type-Ⅰ beta-barium borate (BBO) crystal, we optically generate single-mode excited entangled coherent states. This scheme can be easily generalized to generate two-mode excited entangled coherent states. We simply analyse different influences of single- and two-mode photon excitations on entangled coherent states.
Symplectic Group Representation of the Two-Mode Squeezing Operator in the Coherent State Basis
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi; CHEN Jun-Hua
2003-01-01
We find that the coherent state projection operator representation of the two-mode squeezing operator constitutes a loyal group representation of symplectic group, which is a remarkable property of the coherent state. As a consequence, the resultant effect of successively applying two-mode squeezing operators are equivalent to a single squeezing in the two-mode Fock space. Generalization of this property to the 2n-mode case is also discussed.
Engineering of Two Quantum States via Conditional Measurement on Two-Mode Squeezed State
Institute of Scientific and Technical Information of China (English)
LIAN Yi-Min; ZHANG Jun-Xiang; XIE Chang-De; PENG Kun-Chi
2008-01-01
@@ We propose a scheme for the simultaneously preparation radiation-field modes of a single photon and a superposition of zero-and one-photon states,based on the coherent quantum state displacement and photon subtraction from two-mode squeezed state.It is shown that the single-photon and the superposition states can be obtained by only choosing the suitable parameter of displacements.The experimental feasibility to accomplish this scheme is also discussed.
Multiphoton catalysis with coherent state input: nonclassicality and decoherence
Hu, Li-Yun; Wu, Jia-Ni; Liao, Zeyang; Zubairy, M. Suhail
2016-09-01
We propose a scheme to generate a new kind of non-Gaussian state—the Laguerre polynomial excited coherent state (LPECS)—by using multiphoton catalysis with coherent state input. The nonclassical properties of the LPECS are studied in terms of nonclassical depth, Mandel’s parameter, second-order correlation, quadrature squeezing, and the negativity of the Wigner function (WF). It is found that the LPECS is highly nonclassical and its nonclassicality depends on the amplitude of the coherent state, the catalysis photon number, and the parameters of the unbalanced beam splitter (BS). In particular, the maximum degree of squeezing can be enhanced by increasing the catalysis photon number. In addition, we examine the effect of decoherence using the WF, which shows that the negative region, the characteristic time of decoherence, and the structure of the WF are affected by catalysis photon number and the parameters of the unbalanced BS. Our work provides general analysis on how to prepare polynomial quantum states, which may be useful in the fields of quantum information and quantum computation.
Advantages of nonclassical pointer states in postselected weak measurements
Turek, Yusuf; Shikano, Yutaka; Sun, Chang-Pu; Al-Amri, M
2015-01-01
We investigate, within the weak measurement theory, the advantages of non-classical pointer states over semi-classical ones for coherent, squeezed vacuum, and Schr\\"{o}inger cat states. These states are utilized as pointer state for the system operator $\\hat{A}$ with property $\\hat{A}^{2}=\\hat{I}$, where $\\hat{I}$ represents the identity operator. We calculate the ratio between the signal-to-noise ratio (SNR) of non-postselected and postselected weak measurements. The latter is used to find the quantum Fisher information for the above pointer states. The average shifts for those pointer states with arbitrary interaction strength are investigated in detail. One key result is that we find the postselected weak measurement scheme for non-classical pointer states to be superior to semi-classical ones. This can improve the precision of measurement process.
Institute of Scientific and Technical Information of China (English)
He Guang-Qiang; Zhu Si-Wei; Guo Hong-Bin; Zeng Gui-Hua
2008-01-01
For the beam splitter attack strategy against quantum key distribution using two-mode squeezed states, the analytical expression of the optimal beam splitter parameter is provided in this paper by applying the Shannon information theory. The theoretical secret information rate after error correction and privacy amplification is given in terms of the squeezed parameter and channel parameters. The results show that the two-mode squeezed state quantum key distribution is secure against an optimal beam splitter attack.
Probabilistic teleportation scheme of two-mode entangled photon states by using linear optic element
Institute of Scientific and Technical Information of China (English)
XIANG Shao-hua
2003-01-01
A scheme for teleporting two-mode entangled photon states with the successful probability 33.3% is proposed. In the scheme, the teleporte d qubit is two-mode photon entangled states, and two pairs of EPR pair are used as quantum channel between a sender and a receiver. This procedure is achieved by using two 50/50 symmetric beam splitters and four photon number detectors wit h the help of classical information.
An Extra Phase for Two-Mode Coherent States Displaced in Noncommutative Phase Space
Institute of Scientific and Technical Information of China (English)
YAN Long; FENG Xun-Li; ZHANG Zhi-Ming; LIU Song-Hao
2012-01-01
Using deformed boson algebra,we study the property of two-mode coherent states in noncommutative phase space.When a two-mode field evolves in the noncommutative phase space,it can acquire an extra θ-dependent phase compared to the case of commutative space.This phase is detectable and may be used to test noncommutativity.%Using deformed boson algebra, we study the property of two-mode coherent states in noncommutative phase space. When a two-mode field evolves in the noncommutative phase space, it can acquire an extra 9-dependent phase compared to the case of commutative space. This phase is detectable and may be used to test noncommutativity.
Gaussian measures of entanglement versus negativities and the ordering of two-mode Gaussian states
Adesso, G; Adesso, Gerardo; Illuminati, Fabrizio
2005-01-01
In this work we focus on entanglement of two--mode Gaussian states of continuous variable systems. We introduce the formalism of Gaussian entanglement measures, adopting the framework developed in [M. M. Wolf {\\em et al.}, Phys. Rev. A {\\bf 69}, 052320 (2004)], where the Gaussian entanglement of formation was defined. We compute Gaussian measures explicitely for two important families of nonsymmetric two--mode Gaussian states, namely the states of extremal (maximal and minimal) negativities at fixed global and local purities, introduced in [G. Adesso {\\em et al.}, Phys. Rev. Lett. {\\bf 92}, 087901 (2004)]. This allows us to compare the {\\em orderings} induced on the set of entangled two--mode Gaussian states by the negativities and by the Gaussian entanglement measures. We find that in a certain range of global and local purities (characterizing the covariance matrix of the corresponding extremal states), states of minimum negativity can have more Gaussian entanglement than states of maximum negativity. Thus ...
SU(2) Coherent State Description of Two-Mode Bose-Einstein Condensates
Institute of Scientific and Technical Information of China (English)
WU Ying; YANG Xiao-Xue
2002-01-01
We show that the evolution equations for mean quantities such as atom numbers and the inter-modecorrelation for two-mode Bose-Einstein condensates form a closed set of equations in the SU(2) coherent state description,and they are identical in form to the two-mode mean-field model with only a slightly reduced two-body interactionstrength. The exact analytical solutions to the evolution equations are also presented.
Reconstruction of the joint state of a two-mode Bose-Einstein condensate
Bolda, E L; Walls, D F; Bolda, Eric L.; Tan, Sze M.; Walls, Dan F.
1997-01-01
We propose a scheme to reconstruct the state of a two-mode Bose-Einstein condensate, with a given total number of atoms, using an atom interferometer that requires beam splitter, phase shift and non-ideal atom counting operations. The density matrix in the number-state basis can be computed directly from the probabilities of different counts for various phase shifts between the original modes, unless the beamsplitter is exactly balanced. Simulated noisy data from a two-mode coherent state is produced and the state is reconstructed, for 49 atoms. The error can be estimated from the singular values of the transformation matrix between state and probability data.
Measurement-induced disturbances and nonclassical correlations of Gaussian states
Mišta, Ladislav; Tatham, Richard; Girolami, Davide; Korolkova, Natalia; Adesso, Gerardo
2010-01-01
We study quantum correlations beyond entanglement in two--mode Gaussian states of continuous variable systems, by means of the measurement-induced disturbance (MID) and its ameliorated version (AMID). In analogy with the recent studies of the Gaussian quantum discord, we define a Gaussian AMID by constraining the optimization to all bi-local Gaussian positive operator valued measurements. We solve the optimization explicitly for relevant families of states, including squeezed thermal states. Remarkably, we find that there is a finite subset of two--mode Gaussian states, comprising pure states, where non-Gaussian measurements such as photon counting are globally optimal for the AMID and realize a strictly smaller state disturbance compared to the best Gaussian measurements. However, for the majority of two--mode Gaussian states the unoptimized MID provides a loose overestimation of the actual content of quantum correlations, as evidenced by its comparison with Gaussian discord. This feature displays strong sim...
Generating nonclassical quantum input field states with modulating filters
Energy Technology Data Exchange (ETDEWEB)
Gough, John E. [Aberystwyth University, Department of Physics, Aberystwyth, Wales (United Kingdom); Zhang, Guofeng [The Hong Kong Polytechnic University, Department of Applied Mathematics, Hong Kong (China)
2015-12-15
We give explicit constructions of quantum dynamical filters which generate nonclassical states (coherent states, cat states, shaped single and multi-photon states) of quantum optical fields as inputs to general quantum Markov systems. The filters will be quantum harmonic oscillators damped by the input fields, and we exploit the fact that the cascaded filter and system will have a Lindbladian that is naturally Wick-ordered in the filter modes. In particular the initialization of the modulating filter will determine the signal state generated. (orig.)
Ge, Wenchao; Bhattacharya, M.
2016-10-01
Nonclassical states of macroscopic objects are promising for ultrasensitive metrology as well as testing quantum mechanics. In this work, we investigate dissipative mechanical quantum state engineering in an optically levitated nanodiamond. First, we study single-mode mechanical squeezed states by magnetically coupling the mechanical motion to a dressed three-level system provided by a nitrogen-vacancy center in the nanoparticle. Quantum coherence between the dressed levels is created via microwave fields to induce a two-phonon transition, which results in mechanical squeezing. Remarkably, we find that in ultrahigh vacuum quantum squeezing is achievable at room temperature with feedback cooling. For moderate vacuum, quantum squeezing is possible with cryogenic temperature. Second, we present a setup for two mechanical modes coupled to the dressed three levels, which results in two-mode squeezing analogous to the mechanism of the single-mode case. In contrast to previous works, our study provides a deterministic method for engineering macroscopic squeezed states without the requirement for a cavity.
Engineering three-dimensional maximally entangled states for two modes in a bimodal cavity
Institute of Scientific and Technical Information of China (English)
Yang Zhen-Biao; Su Wan-Jun
2007-01-01
An alternative scheme is proposed for engineering three-dimensional maximally entangled states for two modes of a superconducting microwave cavity. In this scheme, an appropriately prepared four-level atom is sent through a bimodal cavity. During its passing through the cavity, the atom is coupled resonantly with two cavity modes simultaneously and addressed by a classical microwave pulse tuned to the required transition. Then the atomic states are detected to collapse two modes onto a three-dimensional maximally entangled state. The scheme is different from the previous one in which two nonlocal cavities are used. A comparison between them is also made.
Bounds for entanglement of formation of two mode squeezed thermal states
Chen, X Y; Chen, Xiao-Yu; Qiu, Pei-liang
2003-01-01
The upper and lower bounds of entanglement of formation are given for two mode squeezed thermal state. The bounds are compared with other entanglement measure or bounds. The entanglement distillation and the relative entropy of entanglement of infinitive squeezed state are obtained at the postulation of hashing inequality.
q -deformed noncommutative cat states and their nonclassical properties
Dey, Sanjib
2015-02-01
We study several classical-like properties of q -deformed nonlinear coherent states as well as nonclassical behaviors of q -deformed version of the Schrödinger cat states in noncommutative space. Coherent states in q -deformed space are found to be minimum uncertainty states together with the squeezed photon distributions unlike the ordinary systems, where the photon distributions are always Poissonian. Several advantages of utilizing cat states in noncommutative space over the standard quantum mechanical spaces have been reported here. For instance, the q -deformed parameter has been utilized to improve the squeezing of the quadrature beyond the ordinary case. Most importantly, the parameter provides an extra degree of freedom by which we achieve both quadrature squeezed and number squeezed cat states at the same time in a single system, which is impossible to achieve from ordinary cat states.
q-deformed noncommutative cat states and their nonclassical properties
Dey, Sanjib
2015-01-01
We study several classical like properties of q-deformed nonlinear coherent states as well as nonclassical behaviours of q-deformed version of the Schrodinger cat states in noncommutative space. Coherent states in q-deformed space are found to be minimum uncertainty states together with the squeezed photon distributions unlike the ordinary systems, where the photon distributions are always Poissonian. Several advantages of utilising cat states in noncommutative space over the standard quantum mechanical spaces have been reported here. For instance, the q-deformed parameter has been utilised to improve the squeezing of the quadrature beyond the ordinary case. Most importantly, the parameter provides an extra degree of freedom by which we achieve both quadrature squeezed and number squeezed cat states at the same time in a single system, which is impossible to achieve from ordinary cat states.
Analytical Study of Two-Mode Thermal Squeezed States and Black Holes
Venkataratnam, K. K.
2017-02-01
We study the two-mode thermal squeezed states formalism to examine the particle creation by black holes.We also study the entropy generation and derive an equation for Hawking temperature in terms of squeezed parameter and an associated temperature dependent parameters.
Two-mode excited entangled coherent states and their entanglement properties
Institute of Scientific and Technical Information of China (English)
Zhou Dong-Lin; Kuang Le-Man
2009-01-01
This paper introduces two types of two-mode excited entangled coherent states(TMEECSs)|Ψ±(α,m,n)>,studies their entanglement characteristics,and investigates the influence of photon excitations on quantum entanglement.It shows that for the state|Ψ+(α,m,m)>the two-mode photon excitations affect seriously entanglement character while the state |Ψ-(α,m,m)>is always a maximally entangled state,and shows how such states can be produced by using cavity quantum electrodynamics and quantum measurements.It finds that the entanglement amount of the TMEECSs is larger than that of the single-mode excited entangled coherent states with the same photon excitation number.
Superposition states for quantum nanoelectronic circuits and their nonclassical properties
Choi, Jeong Ryeol
2016-09-01
Quantum properties of a superposition state for a series RLC nanoelectronic circuit are investigated. Two displaced number states of the same amplitude but with opposite phases are considered as components of the superposition state. We have assumed that the capacitance of the system varies with time and a time-dependent power source is exerted on the system. The effects of displacement and a sinusoidal power source on the characteristics of the state are addressed in detail. Depending on the magnitude of the sinusoidal power source, the wave packets that propagate in charge(q)-space are more or less distorted. Provided that the displacement is sufficiently high, distinct interference structures appear in the plot of the time behavior of the probability density whenever the two components of the wave packet meet together. This is strong evidence for the advent of nonclassical properties in the system, that cannot be interpretable by the classical theory. Nonclassicality of a quantum system is not only a beneficial topic for academic interest in itself, but its results can be useful resources for quantum information and computation as well.
Nonclassical properties and quantum resources of hierarchical photonic superposition states
Energy Technology Data Exchange (ETDEWEB)
Volkoff, T. J., E-mail: adidasty@gmail.com [University of California, Department of Chemistry (United States)
2015-11-15
We motivate and introduce a class of “hierarchical” quantum superposition states of N coupled quantum oscillators. Unlike other well-known multimode photonic Schrödinger-cat states such as entangled coherent states, the hierarchical superposition states are characterized as two-branch superpositions of tensor products of single-mode Schrödinger-cat states. In addition to analyzing the photon statistics and quasiprobability distributions of prominent examples of these nonclassical states, we consider their usefulness for highprecision quantum metrology of nonlinear optical Hamiltonians and quantify their mode entanglement. We propose two methods for generating hierarchical superpositions in N = 2 coupled microwave cavities, exploiting currently existing quantum optical technology for generating entanglement between spatially separated electromagnetic field modes.
Nonclassical mechanical states in an optomechanical micromaser analog
Nation, P. D.
2013-11-01
Here we show that quantum states of a mechanical oscillator can be generated in an optomechanical analog of the micromaser in the absence of any atomlike subsystem, thus exhibiting single-atom masing effects in a system composed solely of oscillator components. In the regime where the single-photon coupling strength is on the order of the cavity decay rate, a cavity mode with at most a single-excitation present gives rise to sub-Poissonian oscillator limit-cycles that generate quantum features in the steady state just above the renormalized cavity resonance frequency and mechanical sidebands. The merger of multiple stable limit-cycles markedly reduces these nonclassical signatures. Varying the cavity-resonator coupling strength, corresponding to the micromaser pump parameter, reveals transitions for the oscillator phonon number that are the hallmark of a micromaser. The connection to the micromaser allows for a physical understanding of how nonclassical states arise in this system and how best to maximize these signatures for experimental observation.
Entanglement concentration for two-mode Gaussian states in non-inertial frames
Di Noia, Maurizio; Giraldi, Filippo; Petruccione, Francesco
2017-04-01
Entanglement creation and concentration by means of a beam splitter (BS) is analysed for a generic two-mode bipartite Gaussian state in a relativistic framework. The total correlations, the purity and the entanglement in terms of logarithmic negativity are analytically studied for observers in an inertial state and in a non-inertial state of uniform acceleration. The dependence of entanglement on the BS transmissivity due to the Unruh effect is analysed in the case when one or both observers undergo uniform acceleration. Due to the Unruh effect, depending on the initial Gaussian state parameters and observed accelerations, the best condition for entanglement generation limited to the two modes of the observers in their regions is not always a balanced beam splitter, as it is for the inertial case.
Comment on ''Teleportation of two-mode squeezed states''
Energy Technology Data Exchange (ETDEWEB)
He Guangqiang; Zhang Jingtao [State Key Lab of Advanced Optical Communication Systems and Networks Department of Electronic Engineering, Shanghai Jiaotong University, Shanghai 200030 (China)
2011-10-15
We investigate the teleportation scheme of two-mode squeezed states proposed by Adhikari et al.[S. Adhikari et al., Phys. Rev. A 77, 012337 (2008)]. It uses four-mode entangled states to teleport two-mode squeezed states. The fidelity between the original two-mode squeezed states and teleported ones is calculated. The maximal fidelity value of Adhikari's protocol is 0.38, which is incompatible with the fidelity definition with the maximal value 1. In our opinion, one reason is that they calculate the fidelity for multimodes Gaussian states using the fidelity formula for single-mode ones. Another reason is that the covariance matrix of output states should be what is obtained after applying the linear unitary Bogoliubov operations (two cascaded Fourier transformations) on the covariance matrix given in Eq. (12) in their paper. These two reasons result in the incomparable results. In addition, Adhikari's protocol can be simplified to be easily implemented.
Generalized two-mode coherent-entangled state with real parameters
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The coherent-entangled state |α, x; λ> with real parameters λ is proposed in the two-mode Fock space, which exhibits the properties of both the coherent and entangled states. The completeness relation of |α, x; λ> is proved by virtue of the technique of integral within an ordered product of operators. The corresponding squeezing operator is derived, with its own squeezing properties. Furthermore, generalized P-representation in the coherent-entangled state is constructed. Finally, it is revealed that superposition of the coherent-entangled states may produce the EPR entangled state.
Energy Technology Data Exchange (ETDEWEB)
Laurat, Julien [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Keller, Gaelle [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Oliveira-Huguenin, Jose Augusto [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Fabre, Claude [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Coudreau, Thomas [Laboratoire Kastler Brossel, Case 74, Universite Pierre et Marie curie, 4 Place Jussieu, 75252 Paris cedex 05 (France); Laboratoire Materiaux et Phenomenes Quantiques, Case 7021, Universite Denis Diderot, 2 Place Jussieu, 75251 Paris cedex 05 (France); Serafini, Alessio [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno (Italy); CNR-Coherentia, Gruppo di Salerno (Italy); and INFN Sezione di Napoli-Gruppo Collegato di Salerno, Via S Allende, 84081 Baronissi (Saudi Arabia) (Italy); Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Adesso, Gerardo [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno (Italy); CNR-Coherentia, Gruppo di Salerno (Italy); and INFN Sezione di Napoli-Gruppo Collegato di Salerno, Via S Allende, 84081 Baronissi (Saudi Arabia) (Italy); Illuminati, Fabrizio [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno (Italy) and CNR-Coherentia, Gruppo di Salerno (Italy) and INFN Sezione di Napoli-Gruppo Collegato di Salerno, Via S Allende, 84081 Baronissi (SA) (Italy)
2005-12-01
A powerful theoretical structure has emerged in recent years on the characterization and quantification of entanglement in continuous-variable systems. After reviewing this framework, we will illustrate it with an original set-up based on a type-II OPO (optical parametric oscillator) with adjustable mode coupling. Experimental results allow a direct verification of many theoretical predictions and provide a sharp insight into the general properties of two-mode Gaussian states and entanglement resource manipulation.
Laurat, J; Oliveira-Huguenin, J A; Fabre, C; Coudreau, T; Serafini, A; Adesso, G; Illuminati, F; Laurat, Julien; Keller, Ga\\"{e}lle; Oliveira-Huguenin, Jose-Augusto; Fabre, Claude; Coudreau, Thomas; Serafini, Alessio; Adesso, Gerardo; Illuminati, Fabrizio
2005-01-01
A powerful theoretical structure has emerged in recent years on the characterization and quantification of entanglement in continuous-variable systems. After reviewing this framework, we will illustrate it with an original set-up based on a type-II OPO with adjustable mode coupling. Experimental results allow a direct verification of many theoretical predictions and provide a sharp insight into the general properties of two-mode Gaussian states and entanglement resource manipulation.
Entanglement and purity of two-mode Gaussian states in noisy channels
Serafini, A; Paris, M G A; De Siena, S; Serafini, Alessio; Illuminati, Fabrizio; Paris, Matteo G. A.; Siena, Silvio De
2004-01-01
We study the evolution of purity, entanglement and total correlations of general two--mode Gaussian states of continuous variable systems in arbitrary uncorrelated Gaussian environments. The time evolution of purity, Von Neumann entropy, logarithmic negativity and mutual information is analyzed for a wide range of initial conditions. In general, we find that a local squeezing of the bath leads to a faster degradation of purity and entanglement, while it can help to preserve the mutual information between the modes.
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi; LI Chao
2004-01-01
We extend the approach of solving master equations for density matrices by projecting it onto the thermal entangled state representation (Hong-Yi Fan and Jun-Hua Chen, J. Phys. A35 (2002) 6873) to two-mode case. In this approach the two-photon master equations can be directly and conveniently converted into c-number partial differential equations. As an example, we solve the typical master equation for two-photon process in some limiting cases.
Non-classical state engineering for quantum networks
Energy Technology Data Exchange (ETDEWEB)
Vollmer, Christina E.
2014-01-24
The wide field of quantum information processing and quantum networks has developed very fast in the last two decades. Besides the regime of discrete variables, which was developed first, the regime of continuous variables represents an alternative approach to realize many quantum applications. Non-classical states of light, like squeezed or entangled states, are a fundamental resource for quantum applications like quantum repeaters, quantum memories, quantum key distribution, quantum spectroscopy, and quantum metrology. These states can be generated successfully in the infrared wavelength regime. However, for some tasks other wavelengths, especially in the visible wavelength regime, are desirable. To generate non-classical states of light in this wavelength regime frequency up-conversion can be used, since all quantum properties are maintained in this process. The first part of this thesis deals with the experimental frequency up-conversion of quantum states. Squeezed vacuum states of light at 1550 nm were up-converted to 532 nm and a noise reduction of -1.5 dB at 532 nm was achieved. These states can be used for increasing the sensitivity of gravitational wave detectors or spectroscopic measurements. Furthermore, one part of an entangled state at 1550 nm was up-converted to 532 nm and, thus, entanglement between these two wavelengths was generated and characterized to -1.4 dB following Duan et al. With such a quantum link it is possible to establish a quantum network, which takes advantage of the low optical loss at 1550 nm for information transmission and of atomic transitions around 532 nm for a quantum memory in a quantum repeater. For quantum networks the distribution of entanglement and especially of a quantum key is essential. In the second part of this thesis the experimental distribution of entanglement by separable states is demonstrated. The underlying protocol requires a special three-mode state, which is separable in two of the three splittings. With
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The generalized continuous variable two-mode entangled state |〉 is proposed by using the tech-nique of integration within an ordered product (IWOP) of operators. The characteristics of this new entangled representation and its application in quantum teleportation are analyzed in detail. These results indicate that such real parameters |〉 indeed make up a new entangled representation owing to its completeness and orthogonal relation. By employing the |〉 as quantum transmission channel,the teleportation of any single-mode quantum state |ψ〉 3 can be realized by a unitary transformation.
EPR-Steering measure for two-mode continuous variable states
Kogias, Ioannis
2014-01-01
Steering is a manifestation of quantum correlations that embodies the Einstein-Podolsky-Rosen (EPR) paradox. While there have been recent attempts to quantify steering, continuous variable systems remained elusive. We introduce a steering measure for two-mode continuous variable systems that is valid for arbitrary states. The measure is based on the violation of an optimized variance test for the EPR paradox, and admits a computable and experimentally friendly lower bound only depending on the second moments of the state, which reduces to a recently proposed quantifier of steerability by Gaussian measurements. We further show that Gaussian states are extremal with respect to our measure, minimizing it among all continuous variable states with fixed second moments. As a byproduct of our analysis, we generalize and relate well-known EPR-steering criteria. Finally an operational interpretation is provided, as the proposed measure is shown to quantify the optimal guaranteed key rate in semi-device independent qua...
Quantum metrology with two-mode squeezed thermal state: Parity detection and phase sensitivity
Li, Heng-Mei; Xu, Xue-Xiang; Yuan, Hong-Chun; Wang, Zhen
2016-10-01
Based on the Wigner-function method, we investigate the parity detection and phase sensitivity in a Mach-Zehnder interferometer (MZI) with two-mode squeezed thermal state (TMSTS). Using the classical transformation relation of the MZI, we derive the input-output Wigner functions and then obtain the explicit expressions of parity and phase sensitivity. The results from the numerical calculation show that supersensitivity can be reached only if the input TMSTS have a large number photons. Project supported by the National Natural Science Foundation of China (Grant No. 11447002), the Research Foundation of the Education Department of Jiangxi Province of China (Grant No. GJJ150338), and the Research Foundation for Changzhou Institute of Modern Optoelectronic Technology (Grant No. CZGY15).
Institute of Scientific and Technical Information of China (English)
XIANG Shao-Hua; SONG Ke-Hui; WEN Wei; SHI Zhen-Gang
2011-01-01
We study a system consisting of two identical non-interacting single-mode cavity fields coupled to a common vacuum environment and provide general, explicit, and exact solutions to its master equation by means of the characteristic function method. We analyze the entanglement dynamics of two-mode squeezed thermal state in this model and show that its entanglement dynamics is strongly determined by the two-mode squeezing parameter and the purity. In particular, we find that two-mode squeezed thermal state with the squeezing parameter r ≤ -(1/2) In (V)u is extremely fragile and almost does not survive in a common vacuum environment. We investigate the time evolution of nonlocality for two-mode squeezed thermal state in such an environment. It is found that the evolved state loses its nonlocality in the beginning of the evolution, but after a time, the revival of nonlocality can occur.
Institute of Scientific and Technical Information of China (English)
HOU Bang-Pin; WANG Shun-Jin; YU Wan-Lun; SUN Wei-Li; WANG Gang
2004-01-01
@@ We obtain the analytical solution to the master equation in the photon number representation by using algebraic dynamical method in the nonautonomous case. Based on the solution we find that a two-mode coherent sate can be produced within dissipative background, and the averaged photon number for each mode is related to the damping constant, external field amplitude and coupling constant between two modes.
Disjoint nonclassical hydrocarbons have very unstable lowest-lying singlet states: a PM3 study
Directory of Open Access Journals (Sweden)
Richard Francis Langler
2001-12-01
Full Text Available Earlier workers have suggested that disjoint hydrocarbons have nearly-degenerate lowest-lying singlet and triplet states while non-disjoint (or joint hydrocarbons should be ground-state triplets. PM3 results for an appropriate selection of alternant hydrocarbons are inconsistent with that generalization: disjoint, nonclassical, alternant hydrocarbons show the strongest predilection for triplet ground states.
Li, Xi-Zeng; Su, Bao-Xia
1994-01-01
It is found that two-mode output quantum electromagnetic field in two-mode squeezed states exhibits higher-order squeezing to all even orders. And the generalized uncertainty relations are also presented for the first time. The concept of higher-order squeezing of the single-mode quantum electromagnetic field was first introduced and applied to several processes by Hong and Mandel in 1985. Lately Li Xizeng and Shan Ying have calculated the higher-order squeezing in the process of degenerate four-wave mixing and presented the higher-order uncertainty relations of the fields in single-mode squeezed states. In this paper we generalize the above work to the higher-order squeezing in two-mode squeezed states. The generalized uncertainty relations are also presented for the first time.
Miranowicz, A; Miranowicz, Adam; Leonski, Wieslaw
2006-01-01
Schemes for optical-state truncation of two cavity modes are analysed. The systems, referred to as the nonlinear quantum scissors devices, comprise two coupled nonlinear oscillators (Kerr nonlinear coupler) with one or two of them pumped by external classical fields. It is shown that the quantum evolution of the pumped couplers can be closed in a two-qubit Hilbert space spanned by vacuum and single-photon states only. Thus, the pumped couplers can behave as a two-qubit system. Analysis of time evolution of the quantum entanglement shows that Bell states can be generated. A possible implementation of the couplers is suggested in a pumped double-ring cavity with resonantly enhanced Kerr nonlinearities in an electromagnetically-induced transparency scheme. The fragility of the generated states and their entanglement due to the standard dissipation and phase damping are discussed by numerically solving two types of master equations.
Quantification of nonclassicality
Energy Technology Data Exchange (ETDEWEB)
Mraz, Melanie; Sperling, Jan; Vogel, Werner; Hage, Boris [Universitaet Rostock, Institut fuer Physik, Rostock (Germany)
2013-07-01
At the beginning of the 20th century the discussion on physics beyond the classical regime started. This was the hour of birth of quantum physics and, with Einstein's description of the photoelectric effect, of quantum optics. Even the physicists had problems to understand nonclassical quantum phenomena, because of its non-intuitive properties. So, why further struggling? Nonclassical states have an advantage over classical states for various applications. Only one example is the quantum teleportation which would be unthinkable without nonclassical states. Hence, it is of a fundamental interest to study properties of nonclassical quantum states. It is already possible to say if a state is nonclassical or not, but how can we decide how much nonclassicality is in our system? We propose a degree of nonclassicality being a nonclassicality measure. It is determined by the decomposition of a quantum state into superpositions of coherent states. On the one hand, coherent states resembles the behavior of a classical harmonic oscillator most closely. On the other hand, the more quantum superpositions of coherent states are needed, the more quantum interferences arise. A method for such a decomposition of quantum states is presented and the degree of nonclassicality is determined for different states. We apply our method to typical nonclassical states, such as the compass state and the squeezed vacuum state.
Einstein-Podolsky-Rosen Entanglement in a Vacuum-Class Two-Mode Squeezed State
Eberle, Tobias; Duhme, Jörg; Franz, Torsten; Werner, Reinhard F; Schnabel, Roman
2011-01-01
Einstein-Podolsky-Rosen (EPR) entanglement is a criterion that is more demanding than just certifying entanglement. We theoretically and experimentally analyze the low resource generation of bi-partite continuous variable entanglement, as realized by mixing a squeezed mode with a vacuum mode at a balanced beam splitter, i.e. the generation of so-called vacuum-class entanglement. We find that in order to observe EPR entanglement the total optical loss must be smaller than 33.3 %. However, arbitrary strong EPR entanglement is generally possible with this scheme. We realize continuous wave squeezed light at 1550 nm with up to 9.9 dB of non-classical noise reduction, which is the highest value at a telecom wavelength so far. Using two phase controlled balanced homodyne detectors we observe an EPR co-variance product of 0.502 \\pm 0.006 < 1, where 1 is the critical value. We discuss the feasibility of strong Gaussian entanglement and its application for quantum key distribution in a short-distance fiber network.
Nonclassical properties of electronic states of aperiodic chains in a homogeneous electric field
Spisak, B. J.; Wołoszyn, M.
2009-07-01
The electronic energy levels of one-dimensional aperiodic systems driven by a homogeneous electric field are studied by means of a phase-space description based on the Wigner distribution function. The formulation provides physical insight into the quantum nature of the electronic states for the aperiodic systems generated by the Fibonacci and Thue-Morse sequences. The nonclassical parameter for electronic states is studied as a function of the magnitude of homogeneous electric field to achieve the main result of this work, which is to prove that the nonclassical properties of the electronic states in the aperiodic systems determine the transition probability between electronic states in the region of anticrossings. The localization properties of electronic states and the uncertainty product of momentum and position variables are also calculated as functions of the electric field.
The nonlinear squeezed one-photon states and their nonclassical properties
Institute of Scientific and Technical Information of China (English)
Wang Ji-Suo; Meng Xiang-Guo
2007-01-01
By virtue of the technique of integration within an ordered product (IWOP) of operators and the properties of the inverses of annihilation and creation operators of f-oscillator, this paper obtains two new types of squeezed operators and f-analogues of squeezed one-photon states, which are quite different from ones constructed by Song and Fan (Phys. Lett. A 294 (2002) 66). Subsequently, some nonclassical properties of the states are investigated in detail.
Experimental detection of non-classical correlations in mixed state quantum computation
Passante, G; Trottier, D A; Laflamme, R
2011-01-01
We report on an experiment to detect non-classical correlations in a highly mixed state. The correlations are characterized by the quantum discord and are observed using four qubits in a liquid state nuclear magnetic resonance quantum information processor. The state analyzed is the output of a DQC1 computation, whose input is a single quantum bit accompanied by n maximally mixed qubits. This model of computation outperforms the best known classical algorithms, and although it contains vanishing entanglement it is known to have quantum correlations characterized by the quantum discord. This experiment detects non-vanishing quantum discord, ensuring the existence of non-classical correlations as measured by the quantum discord.
Deterministic generation of non-classical states of light using photon blockade
Faraon, Andrei; Vuckovic, Jelena
2009-01-01
The generation of non-classical states of light via photon blockade with time-modulated input is analyzed. We show that improved single photon statistics can be obtained by adequately choosing the parameters of the driving laser pulses. An alternative method, where the system is driven via a continuous wave laser and the frequency of the dipole is controlled (e.g. electrically) at very fast timescales is presented.
The Multiphoton Interaction of Lambda Model Atom and Two-Mode Fields
Liu, Tang-Kun
1996-01-01
The system of two-mode fields interacting with atom by means of multiphotons is addressed, and the non-classical statistic quality of two-mode fields with interaction is discussed. Through mathematical calculation, some new rules of non-classical effects of two-mode fields which evolue with time, are established.
Generation of nonclassical states in a large detuning cavity
Institute of Scientific and Technical Information of China (English)
Zhang Ying-Jie; Ren Ting-Qi; Xia Yun-Jie
2008-01-01
By using the theory of cavity QED, we study the system in which a two-level atom interacts with a cavity in the case of large detuning. Through the selective detecting of atomic state, SchrSdinger cat states and entangled coherent states are easily generated. When the atom is driven by a weak classical field and the cavity field is in the Schr(o)dinger cat state, we study the conditions of generating the Fock states and the maximal success probability. The maximal success probability in our scheme is larger than the previous one.
Conditional Hybrid Nonclassicality
Agudelo, E.; Sperling, J.; Costanzo, L. S.; Bellini, M.; Zavatta, A.; Vogel, W.
2017-09-01
We derive and implement a general method to characterize the nonclassicality in compound discrete- and continuous-variable systems. For this purpose, we introduce the operational notion of conditional hybrid nonclassicality which relates to the ability to produce a nonclassical continuous-variable state by projecting onto a general superposition of discrete-variable subsystem. We discuss the importance of this form of quantumness in connection with interfaces for quantum communication. To verify the conditional hybrid nonclassicality, a matrix version of a nonclassicality quasiprobability is derived and its sampling approach is formulated. We experimentally generate an entangled, hybrid Schrödinger cat state, using a coherent photon-addition process acting on two temporal modes, and we directly sample its nonclassicality quasiprobability matrix. The introduced conditional quantum effects are certified with high statistical significance.
Stabilization of nonclassical states of the radiation field in a cavity by reservoir engineering.
Sarlette, A; Raimond, J M; Brune, M; Rouchon, P
2011-07-01
We propose an engineered reservoir inducing the relaxation of a cavity field towards nonclassical states. It is made up of two-level atoms crossing the cavity one at a time. Each atom-cavity interaction is first dispersive, then resonant, then dispersive again. The reservoir pointer states are those produced by an effective Kerr Hamiltonian acting on a coherent field. We thereby stabilize squeezed states and quantum superpositions of multiple coherent components in a cavity having a finite damping time. This robust decoherence protection method could be implemented in state-of-the-art experiments.
Continuous variable quantum key distribution with two-mode squeezed states
Madsen, Lars S; Lassen, Mikael; Filip, Radim; Andersen, Ulrik L
2011-01-01
Quantum key distribution (QKD) enables two remote parties to grow a shared key which they can use for unconditionally secure communication [1]. The applicable distance of a QKD protocol depends on the loss and the excess noise of the connecting quantum channel [2-10]. Several QKD schemes based on coherent states and continuous variable (CV) measurements are resilient to high loss in the channel, but strongly affected by small amounts of channel excess noise [2-6]. Here we propose and experimentally address a CV QKD protocol which uses fragile squeezed states combined with a large coherent modulation to greatly enhance the robustness to channel noise. As a proof of principle we experimentally demonstrate that the resulting QKD protocol can tolerate more noise than the benchmark set by the ideal CV coherent state protocol. Our scheme represents a very promising avenue for extending the distance for which secure communication is possible.
Effect of dielectric medium on the nonclassical properties of nonlinear sphere coherent states
Directory of Open Access Journals (Sweden)
E Amooghorban
2014-04-01
Full Text Available In order to investigate the effect of a medium with dissipation and dispersion and also the curvature of the physical space on the properties of the incident quantum states, we use the quantization of electromagnetic field based on phenomenological approach to obtain input-output relations between radiations on both sides of dielectric slab. By using these relations the fidelity, the Wigner function, and also the quantum correlation of the outgoing state through dielectric slab are obtained for a situation in which the rightward incident state is a nonlinear coherent state on a sphere and the leftward incident state is a vacuum state. Here, the incident states are considered monochromatic and the modeling of the medium is given by the Lorentz' model. Accordingly, we study nonclassical properties of the output states such as the quantum entanglement. It will be observed that the nonclassical properties of the outgoing states depend strongly on the optical property of the medium and also on the curvature of the physical state.
Non-classical Gaussian states in noisy environments
Scheel, S; Scheel, Stefan; Welsch, Dirk-Gunnar
2002-01-01
In this article we review properties of Gaussian states and describe operations on them. The interaction of the electromagnetic field with an absorbing dielectric as a special type of environmental interaction will serve as the basis for the understanding of decoherence and entanglement degradation of Gaussian states of light propagating through fibers. The main part of the article is devoted to the study of quantum teleportation in noisy environments. Special emphasis is put onto the question of choosing the correct displacement on the receiver's side.
Role of Optical Density of States in Two-mode Optomechanical Cooling
Kim, Seunghwi
2016-01-01
Dynamical back-action cooling of phonons in optomechanical systems having one optical mode is well studied. Systems with two optical modes have the potential to reach significantly higher cooling rate through resonant enhancement of both pump and scattered light. Here we experimentally investigate the role of dual optical densities of states on optomechanical cooling, and the deviation from theory caused by thermal locking to the pump laser. Using this, we demonstrate a room temperature system operating very close to the strong coupling regime, where saturation of cooling is anticipated.
Linear Quantum Systems: Non-Classical States and Robust Stability
2016-06-29
terms of transfer functions which describe the memory behaviour for arbitrary inputs and operating regimes. This allows us to go beyond previous works...characterize the condition required on the pulse shape achieving the perfect state transfer from the light field to the memory subsystem. The key idea to...illustrate the efficacy of this idea . Ian R. Petersen, Notes on coherent feedback control for linear quantum systems. In Australian Control
Nonclassical mechanical states in an optomechanical micromaser analogue
Nation, P. D.
2013-01-01
Here we show that quantum states of a mechanical oscillator can be generated in an optomechanical analogue of the micromaser, in absence of any atom-like subsystem, thus exhibiting single-atom masing effects in a system composed solely of oscillator components. In the regime where the single-photon coupling strength is on the order of the cavity decay rate, a cavity mode with at most a single-excitation present gives rise to sub-Poissonian oscillator limit-cycles that generate quantum feature...
Trapped ions in the strong-excitation regime: Ion interferometry and nonclassical states
Energy Technology Data Exchange (ETDEWEB)
Poyatos, J.F.; Cirac, J.I. [Departamento de Fisica Aplicada, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Blatt, R. [Institut fuer Experimental Physik, Universitaet Goettingen, 37073 Goettingen (Germany); Zoller, P. [Institut fuer Theoretische Physik, Universitaet Innsbruck, 6020 Innsbruck (Austria)
1996-08-01
The interaction of a trapped ion with a laser beam in the strong-excitation regime is analyzed. In this regime, a variety of nonclassical states of motion can be prepared either by using laser pulses of well defined area, or by an adiabatic passage scheme based on the variation of the laser frequency. We show how these states can be used to investigate fundamental properties of quantum mechanics. We also study possible applications of this system to build an ion interferometer. {copyright} {ital 1996 The American Physical Society.}
Institute of Scientific and Technical Information of China (English)
Meng Xiang-Guo; Wang Ji-Suo; Liu Tang-Kun
2008-01-01
In this paper a new class of finite-dimensional even and odd nonlinear pair coherent states(EONLPCSs),which can be realized via operating the superposed evolution operators D±(τ)on the state |q,0),is constructed,then their orthonormalized property,completeness relations and some nonclassical properties are discussed.It is shown that the finite-dimensional EONLPCSs possess normalization and completeness relations.Moreover,the finite-dimensional EONLPCSs exhibit remarkably different sub-Poissonian distributions and phase probability distributions for different values of parameters q,η and ξ.
Ran, Du; Hu, Chang-Sheng; Yang, Zhen-Biao
2016-08-24
We study the entanglement transfer from a two-mode continuous variable system (initially in the two-mode SU(2) cat states) to a couple of discrete two-state systems (initially in an arbitrary mixed state), by use of the resonant Jaynes-Cummings (JC) interaction. We first quantitatively connect the entanglement transfer to non-Gaussianity of the two-mode SU(2) cat states and find a positive correlation between them. We then investigate the behaviors of the entanglement transfer and find that it is dependent on the initial state of the discrete systems. We also find that the largest possible value of the transferred entanglement exhibits a variety of behaviors for different photon number as well as for the phase angle of the two-mode SU(2) cat states. We finally consider the influences of the noise on the transferred entanglement.
Pathak, A
2006-01-01
Interaction of intense laser beam with an inversion symmetric third order nonlinear medium is modeled as a quartic anharmonic oscillator. A first order operator solution of the model Hamiltonian is used to study the possibilities of generation of higher order nonclassical states. It is found that the higher order squeezed and higher order antibunched states can be produced by this interaction. It is also shown that the higher order nonclassical states may appear separately, i.e. a higher order antibunched state is not essentially higher order squeezed state and vice versa.
Nonclassical properties and decoherence of fields in photon-added squeezing-enhanced thermal states
Wang, Zhen; Meng, Xiang-Guo; Li, Heng-Mei; Yuan, Hong-Chun
2014-04-01
We put forward the photon-added squeezing-enhanced thermal states (PASETS) theoretically by adding photon to the squeezed enhancing thermal states (SETS) repeatedly. Based on the normally ordered density operator of PASETS, we investigate the nonclassical behavior of the PASETS by evaluating, both analytically and numerically, Mandel's Q-parameter, photon-number distribution (PND), and Wigner function (WF). It is found that smaller squeezing parameter r and thermal photon number nc can lead to more chance of the appearance of sub-Poissonian statistics. And it is shown that the PND of PASETS exhibit more remarkable oscillations than that of SETS in stronger squeezing case. The WF exhibit partial negativity in phase space and the squeezing parameter r can result in both squeezing and rotating effect. By investigating the fidelity between PASETS and SETS shows that the fidelity tender to steady values in the high value of squeezing parameter or thermal photon number. In addition, the decoherence effect on the PASETS is examined by the time-evolution of the analytical WF in thermal channel. The results show that the PASETS shall lose nonclassicality and non-Gaussianity and reduce to classical states with Gaussian distribution after sufficient time interaction with the thermal noise. And larger photon-added number or thermal photon number shall render shorter decoherence time.
Driving linear systems towards non-classical states with the help of noise
Genoni, Marco G; Serafini, Alessio
2012-01-01
We study the possibility of taking bosonic systems subject to quadratic Hamiltonians and a noisy thermal environment to non-classical stationary states by weak Gaussian measurements and conditioned linear driving. We derive general analytical upper bounds for the single mode squeezing and multimode entanglement at steady state, depending only on the Hamiltonian parameters and on the number of thermal excitations of the bath. Our findings show that, rather surprisingly, larger number of thermal excitations in the bath allow for larger steady-state squeezing and entanglement if the efficiency of the Gaussian measurements conditioning the feedback loop is high enough. Such efficiencies are included in our exact treatment, which allows us to determine efficiency thresholds for the noise-enhancement of quantum resources to take place.
Converting Nonclassicality into Entanglement
Killoran, N.; Steinhoff, F. E. S.; Plenio, M. B.
2016-02-01
Quantum mechanics exhibits a wide range of nonclassical features, of which entanglement in multipartite systems takes a central place. In several specific settings, it is well known that nonclassicality (e.g., squeezing, spin squeezing, coherence) can be converted into entanglement. In this work, we present a general framework, based on superposition, for structurally connecting and converting nonclassicality to entanglement. In addition to capturing the previously known results, this framework also allows us to uncover new entanglement convertibility theorems in two broad scenarios, one which is discrete and one which is continuous. In the discrete setting, the classical states can be any finite linearly independent set. For the continuous setting, the pertinent classical states are "symmetric coherent states," connected with symmetric representations of the group S U (K ). These results generalize and link convertibility properties from the resource theory of coherence, spin coherent states, and optical coherent states, while also revealing important connections between local and nonlocal pictures of nonclassicality.
Converting Nonclassicality into Entanglement.
Killoran, N; Steinhoff, F E S; Plenio, M B
2016-02-26
Quantum mechanics exhibits a wide range of nonclassical features, of which entanglement in multipartite systems takes a central place. In several specific settings, it is well known that nonclassicality (e.g., squeezing, spin squeezing, coherence) can be converted into entanglement. In this work, we present a general framework, based on superposition, for structurally connecting and converting nonclassicality to entanglement. In addition to capturing the previously known results, this framework also allows us to uncover new entanglement convertibility theorems in two broad scenarios, one which is discrete and one which is continuous. In the discrete setting, the classical states can be any finite linearly independent set. For the continuous setting, the pertinent classical states are "symmetric coherent states," connected with symmetric representations of the group SU(K). These results generalize and link convertibility properties from the resource theory of coherence, spin coherent states, and optical coherent states, while also revealing important connections between local and nonlocal pictures of nonclassicality.
Interferometry with non-classical motional states of a Bose-Einstein condensate
van Frank, S.; Negretti, A.; Berrada, T.; Bücker, R.; Montangero, S.; Schaff, J.-F.; Schumm, T.; Calarco, T.; Schmiedmayer, J.
2014-05-01
The Ramsey interferometer is a prime example of precise control at the quantum level. It is usually implemented using internal states of atoms, molecules or ions, for which powerful manipulation procedures are now available. Whether it is possible to control external degrees of freedom of more complex, interacting many-body systems at this level remained an open question. Here we demonstrate a two-pulse Ramsey-type interferometer for non-classical motional states of a Bose-Einstein condensate in an anharmonic trap. The control sequences used to manipulate the condensate wavefunction are obtained from optimal control theory and are directly optimized to maximize the interferometric contrast. They permit a fast manipulation of the atomic ensemble compared to the intrinsic decay processes and many-body dephasing effects. This allows us to reach an interferometric contrast of 92% in the experimental implementation.
Single-mode nonclassicality criteria via Holstein-Primakoff transformation
Tasgin, Mehmet Emre
2015-01-01
Recently, two quantifications for nonclassicality of a single-mode field are shown to be equivalent; (i) the rank of entanglement it can generate by a beam-splitter and (ii) the number of terms needed to expand it as superposition of coherent states. We show that nonclassicality criteria can be obtained with an alternative approach. The rank of two-mode entanglement among 2-level identical particles converges to the rank of single-mode nonclassicality within the Holstein-Primakoff transformation, at the large particle number limit. In particular, we show that the entanglement criterion of Hillery & Zubairy converges to the Mandel's $Q$-parameter which is used to reveal nonclassicality, and spin-squeezing criterion of S{\\o}rensen et al. converges to single-mode squeezing condition. We obtain additional nonclassicality criteria not existing in the literature. We also discuss if single-mode nonclassicality can be visualized as the entanglement of space generating the photons. Moreover, in a forthcoming study...
Nori, Franco; Ashhab, Sahel
2011-03-01
We consider a system composed of a two-level system (i.e. a qubit) and a harmonic oscillator in the ultrastrong-coupling regime, where the coupling strength is comparable to the qubit and oscillator energy scales. We explore the possibility of preparing nonclassical states in this system, especially in the ground state of the combined system. The nonclassical states that we consider include squeezed states, Schrodinger-cat states and entangled states. We also analyze the nature of the change in the ground state as the coupling strength is increased, going from a separable ground state in the absence of coupling to a highly entangled ground state in the case of very strong coupling. Reference: S. Ashhab and F. Nori, Phys. Rev. A 81, 042311 (2010). We thank support from DARPA, AFOSR, NSA, LPS, ARO, NSF, MEXT, JSPS, FIRST, and JST.
Signatures of nonlinear optomechanics and engineering of nonclassical mechanical steady states
Borkje, Kjetil
2013-03-01
Motivated by recent improvements in coupling strength between light and mechanical motion, we study the strong coupling regime of cavity optomechanics theoretically. We focus on the regime where the optomechanical coupling rate is still small compared to the mechanical resonance frequency, but where the mechanically induced Kerr nonlinearity is significant. The response of the system to an optical drive is characterized. The average photon number in the cavity as a function of drive detuning can feature several peaks due to multi-photon transitions. Furthermore, we show that by optically driving the system at multiple frequencies, multi-photon transitions can facilitate the engineering of nonclassical steady states of the mechanical oscillator. The author acknowledges financial support from The Danish Council for Independent Research under the Sapere Aude program.
Non-classical neutron beams for fundamental and solid state research
Indian Academy of Sciences (India)
H Rauch
2008-10-01
The curious dual nature of the neutron, sometimes a particle, sometimes a wave, is wonderfully manifested in the various non-local interference and quantum contextuality effects observed in neutron interferometry. Non-classical states may become useful for novel fundamental and solid state research. Here we discuss unavoidable quantum losses as they appear in neutron phase-echo and spin rotation experiments and we show how entanglement effects in a single particle system demonstrate quantum contextuality. In all cases of interactions, parasitic beams are produced which cannot be recombined completely with the original beam. This means that a complete reconstruction of the original state would, in principle, be impossible which causes a kind of intrinsic irreversibility. Even small interaction potentials can have huge effects when they are applied in quantum Zeno-like experiments. Recently, it has been shown that an entanglement between external and internal degrees of freedom exists even in single particle systems. This contextuality phenomenon also shows that a quantum system carries much more information than usually extracted. The path towards advanced neutron quantum optics will be discussed.
Huo, Meiru; Qin, Jiliang; Yan, Zhihui; Jia, Xiaojun; Peng, Kunchi
2016-11-01
As important members of nonclassical states of light, squeezed states and entangled states are basic resources for realizing quantum measurements and constructing quantum information networks. We experimentally demonstrate that the two types of nonclassical optical states can be generated from an optical parametric oscillator (OPO) involving a periodically poled KTiOPO4 crystal with a domain-inversion period of 51.7 μm, by changing the polarization of the pump laser. When a vertically polarized 671 nm laser is used to pump the OPO, the intra-cavity frequency-down-conversion with type-0 quasi-phase matching is realized and the output optical beam is a quadrature amplitude squeezed state of light at the wavelength of 1342 nm with the fluctuation of quadrature component of 3.17 dB below the quantum noise limit (QNL). If the pump laser is horizontally polarized, the condition of the type-II quasi-phase matching is satisfied and the output optical beam becomes Einstein-Podolsky-Rosen entangled state of light with correlation variances of both quadrature amplitude-sum and quadrature phase-difference of 2.2 dB below the corresponding QNL.
Arkhipov, Ievgen I.; Peřina, Jan, Jr.; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria
2016-09-01
Multipartite entanglement and nonclassicality of four-mode Gaussian states generated in two simultaneous nonlinear processes involving parametric down-conversion and frequency up-conversion are analyzed assuming the vacuum as the initial state. Suitable conditions for the generation of highly entangled states are found. Transfer of the entanglement from the down-converted modes into the up-converted ones is also suggested. The analysis of the whole set of states reveals that sub-shot-noise intensity correlations between the equally-populated down-converted modes, as well as the equally-populated up-converted modes, uniquely identify entangled states. They represent a powerful entanglement identifier also in other cases with arbitrarily populated modes.
Arkhipov, Ievgen I.; Peřina Jr., Jan; Haderka, Ondřej; Allevi, Alessia; Bondani, Maria
2016-01-01
Multipartite entanglement and nonclassicality of four-mode Gaussian states generated in two simultaneous nonlinear processes involving parametric down-conversion and frequency up-conversion are analyzed assuming the vacuum as the initial state. Suitable conditions for the generation of highly entangled states are found. Transfer of the entanglement from the down-converted modes into the up-converted ones is also suggested. The analysis of the whole set of states reveals that sub-shot-noise intensity correlations between the equally-populated down-converted modes, as well as the equally-populated up-converted modes, uniquely identify entangled states. They represent a powerful entanglement identifier also in other cases with arbitrarily populated modes. PMID:27658508
Nonlinearity and nonclassicality in a nanomechanical resonator
Energy Technology Data Exchange (ETDEWEB)
Teklu, Berihu [Clermont Universite, Blaise Pascal University, CNRS, PHOTON-N2, Institut Pascal, Aubiere Cedex (France); Universita degli Studi di Milano, Dipartimento di Fisica, Milano (Italy); Ferraro, Alessandro; Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Paris, Matteo G.A. [Universita degli Studi di Milano, Dipartimento di Fisica, Milano (Italy)
2015-12-15
We address quantitatively the relationship between the nonlinearity of a mechanical resonator and the nonclassicality of its ground state. In particular, we analyze the nonclassical properties of the nonlinear Duffing oscillator (being driven or not) as a paradigmatic example of a nonlinear nanomechanical resonator. We first discuss how to quantify the nonlinearity of this system and then show that the nonclassicality of the ground state, as measured by the volume occupied by the negative part of the Wigner function, monotonically increases with the nonlinearity in all the working regimes addressed in our study. Our results show quantitatively that nonlinearity is a resource to create nonclassical states in mechanical systems. (orig.)
Institute of Scientific and Technical Information of China (English)
M K Tavassoly; H R Jalali
2013-01-01
In this paper we try to introduce the ladder operators associated with the pseudoharmonic oscillator,after solving the corresponding Schr(o)dinger equation by using the factorization method.The obtained generalized raising and lowering operators naturally lead us to the Dirac representation space of the system which is much easier to work with,in comparison to the functional Hilbert space.The SU (1,1) dynamical symmetry group associated with the considered system is exactly established through investigating the fact that the deduced operators satisfy appropriate commutation relations.This result enables us to construct two important and distinct classes of Barut-Girardello and Gilmore-Perelomov coherent states associated with the system.Finally,their identities as the most important task are exactly resolved and some of their nonclassical properties are illustrated,numerically.
New theorem relating two-mode entangled tomography to two-mode Fresnel operator
Institute of Scientific and Technical Information of China (English)
Xie Chuan-Mei; Fan Hong-Yi
2012-01-01
Based on the Fan-Hu's formalism,i.e.,the tomogram of two-mode quantum states can be considered as the module square of the states' wave function in the intermediate representation,which is just the eigenvector of the Fresnel quadrature phase,we derive a new theorem for calculating the quantum tomogram of two-mode density operators,i.e.,the tomogram of a two-mode density operator is equal to the marginal integration of the classical Weyl correspondence function of F+2pF2,where F2 is the two-mode Fresnel operator. An application of the theorem in evaluating the tomogram of an optical chaotic field is also presented.
Continuous Pump Assisted Conditional Synthesis of Nonclassical States in a Dispersive Cavity QED
Institute of Scientific and Technical Information of China (English)
GUOJian-Hong
2003-01-01
The interaction of N identical atoms with both a quantized cavity field and an external classical pumping field with the fields being degenerate in frequency, is studied in the regime where the atoms and fields are highly detuned. This dispersive interaction can be used to generate coherent states for the cavity field. By preparing the injected atoms in a superposition of the bare atomic states, various types of Schroedinger-cat-like states may be generated.
DEFF Research Database (Denmark)
Wu, Shengjun; Poulsen, Uffe Vestergaard; Mølmer, Klaus
2009-01-01
We consider the classical correlations that two observers can extract by measurements on a bipartite quantum state and we discuss how they are related to the quantum mutual information of the state. We show with several examples how complementarity gives rise to a gap between the quantum and the ...... in the deterministic quantum computation with one quantum bit....
Solid-State Source of Nonclassical Photon Pairs with Embedded Multimode Quantum Memory
Kutluer, Kutlu; Mazzera, Margherita; de Riedmatten, Hugues
2017-05-01
The generation and distribution of quantum correlations between photonic qubits is a key resource in quantum information science. For applications in quantum networks and quantum repeaters, it is required that these quantum correlations be stored in a quantum memory. In 2001, Duan, Lukin, Cirac, and Zoller (DLCZ) proposed a scheme combining a correlated photon-pair source and a quantum memory in atomic gases, which has enabled fast progress towards elementary quantum networks. In this Letter, we demonstrate a solid-state source of correlated photon pairs with embedded spin-wave quantum memory, using a rare-earth-ion-doped crystal. We show strong quantum correlations between the photons, high enough for performing quantum communication. Unlike the original DLCZ proposal, our scheme is inherently multimode thanks to a built-in rephasing mechanism, allowing us to demonstrate storage of 11 temporal modes. These results represent an important step towards the realization of complex quantum networks architectures using solid-state resources.
Optomechanical self-oscillations in an anharmonic potential: engineering a nonclassical steady state
Grimm, Manuel; Bruder, Christoph; Lörch, Niels
2016-09-01
We study self-oscillations of an optomechanical system, where coherent mechanical oscillations are induced by a driven optical or microwave cavity, for the case of an anharmonic mechanical oscillator potential. A semiclassical analytical model is developed to characterize the limit cycle for large mechanical amplitudes corresponding to a weak nonlinearity. As a result, we predict conditions to achieve subpoissonian phonon statistics in the steady state, indicating classically forbidden behavior. We compare with numerical simulations and find very good agreement. Our model is quite general and can be applied to other physical systems such as trapped ions or superconducting circuits.
Teleportation of Nonclassical Wave Packets of light
Lee, Noriyuki; Takeno, Yuishi; Takeda, Shuntaro; Webb, James; Huntington, Elanor; Furusawa, Akira
2012-01-01
We report on the experimental quantum teleportation of strongly nonclassical wave packets of light. To perform this full quantum operation while preserving and retrieving the fragile non-classicality of the input state, we have developed a broadband, zero-dispersion teleportation apparatus that works in conjunction with time-resolved state preparation equipment. Our approach brings within experimental reach a whole new set of hybrid protocols involving discrete- and continuous-variable techniques in quantum information processing for optical sciences.
Nonclassicality of local bipartite correlations
Jebaratnam, C.; Aravinda, S.; Srikanth, R.
2017-03-01
Simulating quantum nonlocality and steering requires augmenting preshared randomness with nonvanishing communication cost. This prompts the question of how one may provide such an operational characterization for the quantumness of correlations due to even unentangled states. Here we show that for a certain class of states, such quantumness can be pointed out by superlocality, the requirement for a larger dimension of the preshared randomness to simulate the correlations than that of the quantum state that generates them. This provides an approach to define the nonclassicality of local multipartite correlations in convex operational theories.
Nonclassicality in phase-number uncertainty relations
Energy Technology Data Exchange (ETDEWEB)
Matia-Hernando, Paloma; Luis, Alfredo [Departamento de Optica, Facultad de Ciencias Fisicas, Universidad Complutense, 28040 Madrid (Spain)
2011-12-15
We show that there are nonclassical states with lesser joint fluctuations of phase and number than any classical state. This is rather paradoxical since one would expect classical coherent states to be always of minimum uncertainty. The same result is obtained when we replace phase by a phase-dependent field quadrature. Number and phase uncertainties are assessed using variance and Holevo relation.
Entanglement and nonclassicality: A mutual impression
Gholipour, H.; Shahandeh, F.
2016-06-01
We find a sufficient condition to imprint the single-mode bosonic phase-space nonclassicality onto a bipartite state as modal entanglement and vice versa using an arbitrary beam splitter. Surprisingly, the entanglement produced or detected in this way depends only on the nonclassicality of the marginal input or output states, regardless of their purity and separability. In this way, our result provides a sufficient condition for generating entangled states of arbitrary high temperature and arbitrary large number of particles. We also study the evolution of the entanglement within a lossy Mach-Zehnder interferometer and show that unless both modes are totally lost, the entanglement does not diminish.
Exact Solution of the Milburn Equation for the Two-Mode Two-Photon Jaynes-Cummings Model
Institute of Scientific and Technical Information of China (English)
ZOU Xu-Bo; YU Ji-Hua; XU Jing-Bo
2001-01-01
We adopt an algebraic method to study the two-mode two-photon Jaynes Cummings model governed by the Milburn equation and find an exact solution of Milburn equation of the system. The influence of the intrinsic decoherence on the nonclassical effects of the system is also discussed.``
Nonclassical gasdynamic region of selected fluorocarbons
Guardone, A.; Argrow, B. M.
2005-11-01
The nonclassical gasdynamic region of fluorinated substances belonging to the PP, FC, and E series is investigated using different thermodynamic models of increasing complexity. Thermodynamic models range from the simple van der Waals equation of state to the more complex Martin-Hou model and include the Redlich-Kwong, Clausius-II, Soave-Redlich-Kwong, and Peng-Robinson equations, under both the polytropic (constant isochoric specific heat in the dilute gas limit) and nonpolytropic approximations. The possibility of observing nonclassical gasdynamic behavior for a given fluid is confirmed to increase with the molecular weight of the substance times the specific heat at constant volume in the dilute gas limit and at the critical temperature, but to be almost insensitive to the nonpolytropic behavior of the fluid; the dependence on the compressibility at the critical point is also weak. A strong dependence on the acentric factor of the substance is revealed, which points to fluids made of nonpolar molecules with nearly spheroidal shapes as the most favorable to exhibit nonclassical gasdynamic behavior. In this respect, the fluorinated cyclic compounds of the PP series are singled out as the most promising candidates for the experimental verification of the existence of nonclassical phenomena in the vapor phase and for nonclassical gasdynamic applications.
Evolution of a two-mode squeezed vacuum in the amplitude dissipative channel
Institute of Scientific and Technical Information of China (English)
Jiang Nian-Quan; Fan Hong-Yi; Xi Liu-Sheng; Tang Long-Ying; Yuan Xian-Zhang
2011-01-01
For the first time we derive the dissipating result of an initial two-mode squeezed pure vacuum state passing through a two-mode amplitude dissipative channel described by the direct product of two independent single-mode master equations.Although these two master equations do not mix the two modes (there is no coupling between them),since the two-mode squeezed state is simultaneously an entangled state,the final state which emerges from passing this channel is a two-mode mixed density operator.The compact expression of the outcoming state is obtained,which manifestly shows that as time evolves,the squeezing effect decreases.
Nonclassical characteristic functions for highly sensitive measurements
Richter, T; Richter, Th.
2007-01-01
Characteristic functions are shown to be useful for highly sensitive measurements. Redistributions of motional Fock states of a trapped atom can be directly monitored via the most fragile nonclassical part of the characteristic function. The method can also be used for decoherence measurements in optical quantum-information systems.
Nonclassical correlations in superconducting circuits
Energy Technology Data Exchange (ETDEWEB)
Migliore, Rosanna [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo (Italy); CNR-INFM, UdR CNISM di Palermo, Palermo (Italy); Scala, Matteo [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo (Italy); Departamento de Optica, Facultad de Fisica, Universidad Complutense, Madrid (Spain); Guccione, Marina; Sanchez-Soto, Luis L. [Dipartimento di Scienze Fisiche ed Astronomiche, Universita di Palermo (Italy); Messina, Antonino [Departamento de Optica, Facultad de Fisica, Universidad Complutense, Madrid (Spain)
2009-05-15
A key step on the road map to solid-state quantum information processing (and to a deeper understanding of many counterintuitive aspects of quantum mechanics) is the generation and manipulation of nonclassical correlations between different quantum systems. Within this framework, we analyze the possibility of generating maximally entangled states in a system of two superconducting flux qubits, as well as the effectof their own environments on the entanglement dynamics. The analysis reported here confirms that the phenomena of sudden birth and sudden death of the entanglement do not depend on the particular measure of the entanglement adopted (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Unconditional two-mode squeezing of separated atomic ensembles
Parkins, A S; Solano, E
2005-01-01
We propose schemes for the unconditional preparation of a two-mode squeezed state of effective bosonic modes realized in a pair of atomic ensembles interacting collectively with optical cavity and laser fields. The scheme uses Raman transitions between stable atomic ground states and under ideal conditions produces pure entangled states in the steady state. The scheme works both for ensembles confined within a single cavity and for ensembles confined in separate, cascaded cavities.
Nonclassic Congenital Adrenal Hyperplasia
Directory of Open Access Journals (Sweden)
Selma Feldman Witchel
2010-01-01
Full Text Available Nonclassic congenital adrenal hyperplasia (NCAH due to P450c21 (21-hydroxylase deficiency is a common autosomal recessive disorder. This disorder is due to mutations in the CYP21A2 gene which is located at chromosome 6p21. The clinical features predominantly reflect androgen excess rather than adrenal insufficiency leading to an ascertainment bias favoring diagnosis in females. Treatment goals include normal linear growth velocity and “on-time” puberty in affected children. For adolescent and adult women, treatment goals include regularization of menses, prevention of progression of hirsutism, and fertility. This paper will review key aspects regarding pathophysiology, diagnosis, and treatment of NCAH.
Quantum optical ABCD theorem in two-mode case
Institute of Scientific and Technical Information of China (English)
Fan Hong-Yi; Hu Li-Yun
2008-01-01
By introducing the entangled Fresnel operator (EFO) this paper demonstrates that there exists ABCD theorem for two-mode entangled case in quantum optics.The canonical operator method as mapping of ray-transfer ABCD matrix is explicitly shown by EFO's normally ordered expansion through the coherent state representation and the technique of integration within an ordered product of operators.
The Nonclassical Diffusion Approximation to the Nonclassical Linear Boltzmann Equation
Vasques, Richard
2015-01-01
We show that, by correctly selecting the probability distribution function $p(s)$ for a particle's distance-to-collision, the nonclassical diffusion equation can be represented exactly by the nonclassical linear Boltzmann equation for an infinite homogeneous medium. This choice of $p(s)$ preserves the $true$ mean-squared free path of the system, which sheds new light on the results obtained in previous work.
Solutions of two-mode Jaynes-Cummings models
Indian Academy of Sciences (India)
Sudha Singh; Ashalata Sinha
2008-05-01
A simple procedure to solve two fully quantized non-linear Jaynes-Cummings models is presented, one in which an atom interacts with a two-mode radiation field in a Raman-type process and the other involving multiphoton interaction between the two-mode field and the atom. Effect of intensity-dependent coupling between the field and the atom in both the above-mentioned cases has also been investigated. The unitary transformation method presented here not only solves the time-dependent problem but also permits a determination of the eigensolutions of the interacting Hamiltonian at the same time. Graphical features of the time dependence of the population inversion have been analysed when one of the field modes is prepared initially in a coherent state while the other one in a vacuum state.
Negativity of the Wigner function as an indicator of nonclassicality
Kenfack, A; Kenfack, Anatole; Zyczkowski, Karol
2004-01-01
A measure of nonclassicality of quantum states based on the volume of the negative part of the Wigner function is proposed. We analyze this quantity for Fock states, squeezed displaced Fock states and cat-like states defined as coherent superposition of two Gaussian wave packets.
Dynamics of Nonclassical Correlation in Interacting Qubits under Correlated Dissipative Environments
Institute of Scientific and Technical Information of China (English)
QIU Liang
2011-01-01
The dynamical evolution of nonclassical correlation in interacting qubits is investigated under the correlated dissipative environments for two classes of initial states.If the correlated decay rate equals the independent decay rate,there will be stationary nonclassical correlation between the qubits prepared initially in some separable states.When the correlated decay rate is different from the independent decay rate,the nonclassical correlation between the qubits eventually decays to zero for a certain class of initial states.Quantum entanglement is one of the most remarkable features of quantum mechanics and it plays a central role in quantum information and communication theory.There exists,however,nonclassical correlation,which is more general and more fundamental than entanglement in the sense that separable mixed states can have nonclassical correlation.Moreover,nonclassical correlation other than entanglement can be responsible for the quantum computational efficiency of deterministic quantum computation with one pure qubit.[1,2] Nonclassical correlation has also been used in other physical contexts,such as improving the efficiency of quantum Carnot engines,[3] quantum phase transition and Grover search processes.[4-6]In these contexts,nonclassical correlation could be a new resource for quantum computation.Quantum discord,the most popular measure of such correlations,was introduced by Olliver and Zurek.[7]%The dynamical evolution of nonclassical correlation in interacting qubits is investigated under the correlated dissipative environments for two classes of initial states. If the correlated decay rate equals the independent decay rate, there will be stationary nonclassical correlation between the qubits prepared initially in some separable states. When the correlated decay rate is different from the independent decay rate, the nonclassical correlation between the qubits eventually decays to zero for a certain class of initial states.
Measuring the Wigner Functions of Two-Mode Cavity Fields and Testing the Bell's Inequalities
Institute of Scientific and Technical Information of China (English)
张智明
2004-01-01
We propose a scheme for measuring the Wigner function of a two-mode cavity field. The scheme bases on the interaction between the two-mode cavity field and three-level atoms. We find a simple relation between the Wigner function and the atomic population. One can obtain the Wigner function by measuring the atomic population with a micromaser-like experiment and doing a numerical integral. By using the two-mode Wigner function one can obtain the Clauser-Horne combination and test the Bell's inequalities. We test our equations with a two-mode entanglement state and the results are rather good.
Atomic Dipole Squeezing in the Correlated Two-Mode Two-Photon Jaynes-Cummings Model
Dong, Zhengchao; Zhao, Yonglin
1996-01-01
In this paper, we study the atomic dipole squeezing in the correlated two-mode two-photon JC model with the field initially in the correlated two-mode SU(1,1) coherent state. The effects of detuning, field intensity and number difference between the two field modes are investigated through numerical calculation.
Phase Properties of Two-Mode Squeezing-Rotating Entangled Representation
Institute of Scientific and Technical Information of China (English)
YUAN Hong-Chun; LI Heng-Mei; QI Kai-Guo
2006-01-01
By virtue of the squeezing-rotating entangled representation, we mainly establish thc new two-mode phase operator and phase angle operator, which is a general form including the foregoing formalist in two-mode Fock space.In addition, the corresponding phase distribution function is given in the entangled representation. In terms of this definition, we also analyze the phase behavior of some simple two-mode states such as squeezing-rotating coherent state,squeezing-rotating vacuum state, and so on. It is found that the results exactly agree with the foregoing phase theory.
On the observation of nonclassical excitations in Bose-Einstein condensates
Finke, Andreas; Weinfurtner, Silke
2016-01-01
In the recent experimental and theoretical literature well-established nonclassicality criteria from the field of quantum optics have been directly applied to the case of excitations in matter-waves. Among these are violations of Cauchy-Schwarz inequalities, Glauber-Sudarshan P-nonclassicality, sub-Poissonian number-difference squeezing (also known as the two-mode variance) and the criterion of nonseparability. We review the strong connection of these criteria and their meaning in quantum optics, and point out differences in the interpretation between light and matter waves. We then calculate observables for a homogenous Bose-Einstein condensate undergoing an arbitrary modulation in the interaction parameter at finite initial temperature, within both the quantum theory as well as a classical reference. We conclude that to date in experiments relevant for analogue gravity, nonclassical effects have not conclusively been observed and conjecture that additional, noncommuting, observables have to be measured to t...
Keiderling, Michael C.; Kojima, Harry
2009-03-01
We have extended our studies on the non-classical behavior of solid ^4He contained in compound torsional oscillator (TO) cell below 1 K. Our unique TO design allows observations on the identical sample at two distinct frequencies(f1=493 and f2=1165 Hz). The sample was grown by blocked capillary method in an annular cell(id = 8.0 mm, od = 10.0 mm, height = 9.0 mm). We focus here on experiments in which the two modes are excited simultaneously. While keeping the drive of f2 mode at a very low level, the drive of f1 mode was varied from high to low levels to produce substantial variations in the non-classical rotation inertia fraction (NCRIf). When the NCRIf seen by f1 mode is reduced by 89, 91 and 94 % at 9.7, 23.5 and 56.5 mK, respectively, the NCRIf seen by f2 mode (driven at low level) is reduced by 62, 68 and 80 %. The discrepancies and their temperature dependence in the observed reductions in NCRIf are not yet understood. Similar Measurements with the roles of the drive levels of the modes reversed as well as the changes in the dissipation of the torsional oscillator during the simultaneous drive will be reported.
Influence of Kerr-like medium on the dynamics of a two-mode Raman coupled model
Singh, Sudha; Gilhare, Karuna
2016-08-01
We study the quantum dynamics of an effective two-level atom interacting with two modes via Raman process inside an ideal cavity in the presence of Kerr non-linearity. The cavity modes interact both with the atom as well as the Kerr-like medium. The unitary transformation method presented here, not only solves the time-dependent problem, but also provides the eigensolutions of the interacting Hamiltonian at the same time. We study the atomic-population dynamics and the dynamics of the photon statistics in the two cavity modes. The influence of the Kerr-like medium on the statistics of the field is explored and it is observed that Kerr medium introduces antibunching in mode 1 and this effect is enhanced by a stronger interaction with the non-linear medium. In the high non-linear coupling regime anticorrelated beam become correlated. Kerr medium also introduces non-classical correlation between the two modes.
Nonclassical light sources for silicon photonics
Bajoni, Daniele; Galli, Matteo
2017-09-01
Quantum photonics has recently attracted a lot of attention for its disruptive potential in emerging technologies like quantum cryptography, quantum communication and quantum computing. Driven by the impressive development in nanofabrication technologies and nanoscale engineering, silicon photonics has rapidly become the platform of choice for on-chip integration of high performing photonic devices, now extending their functionalities towards quantum-based applications. Focusing on quantum Information Technology (qIT) as a key application area, we review recent progress in integrated silicon-based sources of nonclassical states of light. We assess the state of the art in this growing field and highlight the challenges that need to be overcome to make quantum photonics a reliable and widespread technology.
Nonclassical effects in plasmonics: an energy perspective to quantify nonclassical effects
DEFF Research Database (Denmark)
Yan, Wei; Mortensen, N. Asger
2016-01-01
propose a nonclassical-impact parameter (NCI) to characterize the degree of nonclassical effects from an energy perspective, i.e., which fraction of the total electromagnetic energy is attributed to classical electrodynamic terms and which fraction is correspondingly to be assigned to nonclassical degrees...... of an infinite work function....
Non-Classicality Criteria in Multi-port Interferometry
Rigovacca, Luca; Metcalf, Benjamin J; Walmsley, Ian A; Kim, M S
2016-01-01
Quantum interference lies at the basis of fundamental differences between quantum and classical behaviors. It is thus crucial to understand the boundaries between what interference patterns can be described by classical wave mechanics and what, on the other hand, can only be understood with a proper quantum mechanical description. While a lot of work has already been done for the simple case of two-mode interference, the multi-mode case has not been fully explored yet. Here we derive bounds for classical models of light fields in a general scenario of intensity interferometry, and we show how they can be violated in a quantum framework. As a consequence, this violation acts as a non-classicality witness, able to detect the presence of sources with sub-Poissonian photon-number statistics. We also derive a criterion for certifying the indivisibility of a quantum interferometer and obtain a method to simultaneously measure the average pairwise distinguishability of the input sources.
Entanglement dynamics in two-mode Gaussian systems
Jami, S.; Labbafi, Z.
2017-04-01
The current study investigated the time evolution of entanglement in an open quantum system. This system includes two independent harmonic oscillators interacting with a general environment. This study reports the solution of the time evolution of the covariance matrix by using the Markovian master equation. It was found that the entanglement for a preferred Gaussian state, is a continuous variable system. This study examined the time evolution of the entanglement by using Simon's separability criterion for continuous variable systems and computing covariance matrix with considering environmental factors such as temperature for two initial state of system (separable and entangled) with drawing Simon's criterion and logarithmic negativity. The results demonstrated that for a certain value of dispersion and dissipation coefficient, the initial state of the system is saved over the time. But for other amounts of the above factors, entanglement birth, entanglement death and repeated entanglement birth and entanglement death happen in the system. Furthermore, the present study investigated the behavior of system's purity under the effects of environmental factors, such as temperature and environment parameter with regard to the relation between purity and covariance matrix for two-mode Gaussian state.
Global Optimization strategies for two-mode clustering
J.M. van Rosmalen (Joost); P.J.F. Groenen (Patrick); J. Trejos (Javier); W. Castilli
2005-01-01
textabstractTwo-mode clustering is a relatively new form of clustering that clusters both rows and columns of a data matrix. To do so, a criterion similar to k-means is optimized. However, it is still unclear which optimization method should be used to perform two-mode clustering, as various meth
Genetic algorithm based two-mode clustering of metabolomics data
Hageman, J.A.; Berg, R.A. van den; Westerhuis, J.A.; Werf, M.J. van der; Smilde, A.K.
2008-01-01
Metabolomics and other omics tools are generally characterized by large data sets with many variables obtained under different environmental conditions. Clustering methods and more specifically two-mode clustering methods are excellent tools for analyzing this type of data. Two-mode clustering metho
Modular interference characteristic of two-mode fiber
Institute of Scientific and Technical Information of China (English)
Helin Wang; Weihong Bi; Aijun Yang; Feng Liu
2006-01-01
The modular interference characteristics of circular-core and elliptical-core two-mode fibers are investigated in theory. The intensity distribution and figure of two-lobe mode patterns are evaluated and simulated quantitatively for different phase difference change between LP01 and LPeven11 mode. The interference mode patters of elliptical-core and circular-core two-mode fibers are compared, the result shows that the two-lobe interference patters of the two-mode fibers generate energy exchange and oscillation, and thedifference is that the interference mode patterns of circular-core two-mode fiber are almost elliptical, while the interference mode pattern of elliptical-core two-mode fiber is approximately circular on condition that proper selection of the ellipticity. Their two-dimensional (2D) profile determines the choice of the core shape of the information pick-up fiber.
Institute of Scientific and Technical Information of China (English)
邓宏贵; 朱从旭
2001-01-01
该文运用数值计算方法研究了有限维希尔伯特空间谐振子偶相干态的非经典特性.研究表明.在有限维情景，偶相干态不仅出现振幅正交分量压缩，而且出现振幅平方压缩和反聚束效应.随着维数s减少，出现两种压缩的区域均缩小且压缩强度减弱；而出现反聚束效应的区域却变大且反聚束程度加强.%The nonclassical properties of even coherent states in a finite-dimensional Hilbert spaces (FDHS) case are studied by numerical method . It is found that, not only quadrature squeezing but also amplitude-squeezing and antibunching effects exist in the states. With the number of dimension reducing, both quadrate squeezing and amplitudesqueezing effects are weakened,but the antibunching effect is Enhanced.
Directory of Open Access Journals (Sweden)
D.V. Slobodianiuk
2014-03-01
Full Text Available Two-mode model of spin-torque nano-oscillator (STNO under the action of thermal noise is considered. Langevin equations for mode amplitudes were derived starting from general nonlinear oscillator model. Stationary probability distribution function describing mean mode generation powers was obtained using Fokker-Planck equation. It was shown that thermal noise can lead to two-mode generation in STNO. An increase of thermal noise power leads to excitation of the second mode in a system and to a two-mode generation regime through intermediate state when two modes coexist only in some range of the applied currents.
Quantum teleportation of one- and two-photon superposition states
Institute of Scientific and Technical Information of China (English)
李英; 张天才; 张俊香; 谢常德
2003-01-01
Quantum teleportation of one- and two-photon superposition states based on EPR entanglement of continuouswave two-mode squeezed state is discussed. The fidelities of teleportation are deduced for two different input quantum states. The dependence of the fidelity on the parameters of EPR entanglement and the gain of the classical channels are shown numerically. Comparing with the teleportation of Fock state and coherent state, it is pointed out that for given EPR entanglement and classical gain, the higher the nonclassicality of the input state, the lower the accessible fidelity of teleportation.
Generation of Hidden Optical-Polarization: Squeezing and Non-Classicality
Gupta, Gyaneshwar K.; Kumar, Akhilesh; Singh, Ravi S
2010-01-01
A monochromatic double-mode coherent light endowed with orthogonally polarized photons propagating collinearly is studied in Degenerate Parametric Amplification. Generation of Hidden Optical- Polarized States is shown by non-zero values of Index of Hidden Optical-Polarization. Squeezing in HOPS is demonstrated by recognizing a Squeezing function. The Non-Classical feature of HOPS is observed by 'degree of Hidden Optical-Polarization' which attains non-classical value 'greater than unity'. The...
Non-classical Measurement Theory: a Framework for Behavioral Sciences
Danilov, V I
2006-01-01
Instances of non-commutativity are pervasive in human behavior. In this paper, we suggest that psychological properties such as attitudes, values, preferences and beliefs may be suitably described in terms of the mathematical formalism of quantum mechanics. We expose the foundations of non-classical measurement theory building on a simple notion of orthospace and ortholattice (logic). Two axioms are formulated and the characteristic state-property duality is derived. A last axiom concerned with the impact of measurements on the state takes us with a leap toward the Hilbert space model of Quantum Mechanics. An application to behavioral sciences is proposed. First, we suggest an interpretation of the axioms and basic properties for human behavior. Then we explore an application to decision theory in an example of preference reversal. We conclude by formulating basic ingredients of a theory of actualized preferences based in non-classical measurement theory.
Time-multiplexed measurements of nonclassical light at telecom wavelengths
Harder, G.; Silberhorn, C.; Rehacek, J.; Hradil, Z.; Motka, L.; Stoklasa, B.; Sánchez-Soto, L. L.
2014-10-01
We report the experimental reconstruction of the statistical properties of an ultrafast pulsed type II parametric down-conversion source in a periodically poled potassium titanyl phosphate waveguide at telecom wavelengths, with almost perfect photon-number correlations. We use a photon-number-resolving time-multiplexed detector based on a fiber-optical setup and a pair of avalanche photodiodes. By resorting to a germane data-pattern tomography, we assess the properties of the nonclassical light states with unprecedented precision.
Two-mode mazer injected with V-type three-level atoms
Institute of Scientific and Technical Information of China (English)
梁文青; 张智明; 谢绳武
2003-01-01
The properties of the two-mode mazer operating on V-type three-level atoms are studied. The effect of the oneatom pumping on the two modes of the cavity field in number-state is asymmetric, that is, the atom emits a photon into one mode with some probability and absorbs a photon from the other mode with some other probability. This effect makes the steady-state photon distribution and the steady-state photon statistics asymmetric for the two modes. The diagram of the probability currents for the photon distribution, given by the analysis of the master equation, reveals that there is no detailed balance solution for the master equation. The computations show that the photon statistics of one mode or both modes can be sub-Poissonian, that the two modes can have anticorrelation or correlation, that the photon statistics increases with the increase of thermal photons, and that the resonant position and strength of the photon statistics are influenced by the ratio of the two coupling strengths of the two modes. These properties are also discussed physically.
Two-mode polarized traveling wave deflecting structure
Institute of Scientific and Technical Information of China (English)
谭建豪; 顾强; 方文程; 童德春; 赵振堂
2015-01-01
In this paper, we propose a two-mode polarizable deflecting structure, as a new concept for bunch measure-ment and beam control. With two modes of HEM11 and HEM12 operating in the same structure on horizontal and vertical directions, respectively, the operation status can be switched between the two polarization modes. They can be operated simultaneously with two independent input power sources. With two-mode deflecting structure, the bunch distortion caused by the geometric wake-fields in the accelerating structure can be mea-sured by one structure.
Institute of Scientific and Technical Information of China (English)
胡明亮; 田东平; 柳海
2007-01-01
提出了一种利用V-型三能级原子与双模腔场的共振相互作用制备多原子及多腔场纠缠W态的新方案,并用共生纠缠度研究了该模型中的纠缠演化和热纠缠现象.%A new scheme for the preparation of multi-atom and nulti-cavity entangled W state via resonant interaction of V-type three-level atoms and two-mode cavity- field is proposed. Also the time evolution and the thermal entanglement of this model will be studied by the concept of concurrence in this paper.
Fisher information, nonclassicality and quantum revivals
Romera, Elvira; de los Santos, Francisco
2013-11-01
Wave packet revivals and fractional revivals are studied by means of a measure of nonclassicality based on the Fisher information. In particular, we show that the spreading and the regeneration of initially Gaussian wave packets in a quantum bouncer and in the infinite square-well correspond, respectively, to high and low nonclassicality values. This result is in accordance with the physical expectations that at a quantum revival wave packets almost recover their initial shape and the classical motion revives temporarily afterward.
Fisher information, nonclassicality and quantum revivals
Energy Technology Data Exchange (ETDEWEB)
Romera, Elvira [Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Santos, Francisco de los, E-mail: dlsantos@onsager.ugr.es [Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)
2013-11-08
Wave packet revivals and fractional revivals are studied by means of a measure of nonclassicality based on the Fisher information. In particular, we show that the spreading and the regeneration of initially Gaussian wave packets in a quantum bouncer and in the infinite square-well correspond, respectively, to high and low nonclassicality values. This result is in accordance with the physical expectations that at a quantum revival wave packets almost recover their initial shape and the classical motion revives temporarily afterward.
Negativity of the Wigner function as an indicator of non-classicality
Energy Technology Data Exchange (ETDEWEB)
Kenfack, Anatole [Max Planck Institute for the Physics of Complex Systems, Noethnitzerstrasse 38, 01187 Dresden (Germany); Zyczkowski, Karol [Instytut Fizyki imienia Mariana Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Cracow (Poland)
2004-10-01
A measure of non-classicality of quantum states based on the volume of the negative part of the Wigner function is proposed. We analyse this quantity for Fock states, squeezed displaced Fock states and cat-like states defined as coherent superposition of two Gaussian wavepackets.
Signatures of nonclassical effects in optical tomograms
Sharmila, B.; Saumitran, K.; Lakshmibala, S.; Balakrishnan, V.
2017-02-01
Several nonclassical effects displayed by wave packets governed by nonlinear Hamiltonians can be identified and assessed directly from tomograms without attempting to reconstruct the Wigner function or the density matrix explicitly. We have demonstrated this for both single-mode and bipartite systems. We have shown that a wide spectrum of effects such as the revival phenomena, quadrature squeezing, and Hong-Mandel and Hillery type higher-order squeezing in a generic single-mode system and the double-well Bose-Einstein condensate (BEC) can be obtained from appropriate tomograms in a straightforward manner. We have examined the manner in which decoherence affects the nature of the state of a generic single-mode system at specific instants during temporal evolution. We have investigated entropic squeezing of the subsystem state of a bipartite system as it evolves in time, solely from tomograms. The procedures that we have demonstrated can be readily adapted to multimode systems. Further, for the double-well BEC we have identified an indicator of entanglement between subsystems that can be obtained directly from the tomogram. This mirrors the qualitative behavior of the subsystem von Neumann entropy and the subsystem linear entropy.
Quantum teleportation of nonclassical wave packets: An effective multimode theory
Energy Technology Data Exchange (ETDEWEB)
Benichi, Hugo; Takeda, Shuntaro; Lee, Noriyuki; Furusawa, Akira [Department of Applied Physics, University of Tokyo, Tokyo (Japan)
2011-07-15
We develop a simple and efficient theoretical model to understand the quantum properties of broadband continuous variable quantum teleportation. We show that, if stated properly, the problem of multimode teleportation can be simplified to teleportation of a single effective mode that describes the input state temporal characteristic. Using that model, we show how the finite bandwidth of squeezing and external noise in the classical channel affect the output teleported quantum field. We choose an approach that is especially relevant for the case of non-Gaussian nonclassical quantum states and we finally back-test our model with recent experimental results.
Modulation instabilities in randomly birefringent two-mode optical fibers
Li, Jin-Hua; Ren, Hai-Dong; Pei, Shi-Xin; Cao, Zhao-Lou; Xian, Feng-Lin
2016-12-01
Modulation instabilities in the randomly birefringent two-mode optical fibers (RB-TMFs) are analyzed in detail by accounting the effects of the differential mode group delay (DMGD) and group velocity dispersion (GVD) ratio between the two modes, both of which are absent in the randomly birefringent single-mode optical fibers (RB-SMFs). New MI characteristics are found in both normal and anomalous dispersion regimes. For the normal dispersion, without DMGD, no MI exists. With DMGD, a completely new MI band is generated as long as the total power is smaller than a critical total power value, named by Pcr, which increases significantly with the increment of DMGD, and reduces dramatically as GVD ratio and power ratio between the two modes increases. For the anomalous dispersion, there is one MI band without DMGD. In the presence of DMGD, the MI gain is reduced generally. On the other hand, there also exists a critical total power (Pcr), which increases (decreases) distinctly with the increment of DMGD (GVD ratio of the two modes) but varies complicatedly with the power ratio between the two modes. Two MI bands are present for total power smaller than Pcr, and the dominant band can be switched between the low and high frequency bands by adjusting the power ratio between the two modes. The MI analysis in this paper is verified by numerical simulation. Project supported by the Natural Science Foundation of Jiangsu Provincial Universities (Grant No. 14KJB140009), the National Natural Science Foundation of China (Grant No. 11447113), and the Startup Foundation for Introducing Talent of NUIST (Grant No. 2241131301064).
Non-classical protein secretion in bacteria
Directory of Open Access Journals (Sweden)
Fausbøll Anders
2005-10-01
Full Text Available Abstract Background We present an overview of bacterial non-classical secretion and a prediction method for identification of proteins following signal peptide independent secretion pathways. We have compiled a list of proteins found extracellularly despite the absence of a signal peptide. Some of these proteins also have known roles in the cytoplasm, which means they could be so-called "moon-lightning" proteins having more than one function. Results A thorough literature search was conducted to compile a list of currently known bacterial non-classically secreted proteins. Pattern finding methods were applied to the sequences in order to identify putative signal sequences or motifs responsible for their secretion. We have found no signal or motif characteristic to any majority of the proteins in the compiled list of non-classically secreted proteins, and conclude that these proteins, indeed, seem to be secreted in a novel fashion. However, we also show that the apparently non-classically secreted proteins are still distinguished from cellular proteins by properties such as amino acid composition, secondary structure and disordered regions. Specifically, prediction of disorder reveals that bacterial secretory proteins are more structurally disordered than their cytoplasmic counterparts. Finally, artificial neural networks were used to construct protein feature based methods for identification of non-classically secreted proteins in both Gram-positive and Gram-negative bacteria. Conclusion We present a publicly available prediction method capable of discriminating between this group of proteins and other proteins, thus allowing for the identification of novel non-classically secreted proteins. We suggest candidates for non-classically secreted proteins in Escherichia coli and Bacillus subtilis. The prediction method is available online.
Institute of Scientific and Technical Information of China (English)
Gao Yun-Feng; Feng Jian; Wang Ji-Suo
2005-01-01
The evolution of the entanglement degree of two-mode fields and atom with the intensity-dependent coupling is investigated using von Neumann entropy. The results for the initial fields in both coherent states and two-mode squeezed vacuum state are calculated. The influence of the field.intensity on the entropy is discussed. It is found that the field and atom are generally in maximum entanglement but subject to periodic pulsed disentanglement completely under the condition of strong initial field.
Nonclassical degrees of freedom in the Riemann Hamiltonian.
Srednicki, Mark
2011-09-02
The Hilbert-Pólya conjecture states that the imaginary parts of the zeros of the Riemann zeta function are eigenvalues of a quantum Hamiltonian. If so, conjectures by Katz and Sarnak put this Hamiltonian in the Altland-Zirnbauer universality class C. This implies that the system must have a nonclassical two-valued degree of freedom. In such a system, the dominant primitive periodic orbits contribute to the density of states with a phase factor of -1. This resolves a previously mysterious sign problem with the oscillatory contributions to the density of the Riemann zeros.
q-Deformed Entangled States Representations and Some Applications
Institute of Scientific and Technical Information of China (English)
XU Ye-Jun; SONG Jun; YUAN Hong-Chun; LIU Qiu-Yu
2011-01-01
The q-deformed entangled states are introduced by using deformation quantization methods and new normal ordering of the vacuum projection operator for q-deformed boson oscillator.In similar way, by virtue of the technique of integration within an ordered product (IWOP) of operators, the new completeness and orthogonality relations composed of the bra and ket, which are not mutually Hermitian conjugates are obtained.Furthermore, the property of squeezing operator represented by the q-deformed entangled states is exhibited.Lastly, the nonclassical properties of the q-deformed two-mode squeezed vacuum state are studied.
Chrapkiewicz, Radosław
2015-01-01
Photon number resolving detectors can be highly useful for studying the statistics of multi-photon quantum states of light. In this work we study the counts statistics of different states of light measured on multiplexed on-off detectors. We put special emphasis on artificial nonclassical features of the statistics obtained. We show new ways to derive analytical formulas for counts statistics and their moments. Using our approach we are the first to derive statistics moments for multi-mode thermal states measured on multiplexed on-off detectors. We use them to determine empirical Mandel parameters and recently proposed subbinomial parameters suitable for tests of nonclassicality of the measured states. Additionally, we investigate subpoissonian and superbunching properties of the two-mode squeezed state measured on a pair of multiplexed detectors and we present results of the Fano factor and second-order correlation function for these states.
Dynamics of Non-Classical Interval Exchanges
Gadre, Vaibhav S
2009-01-01
Train tracks with a single vertex are a generalization of interval exchange maps. Here, we consider non-classical interval exchanges: complete train tracks with a single vertex. These can be studied as a dynamical system by considering Rauzy induction in this context. This gives a refinement process on the parameter space similar to Kerckhoff's simplicial systems. We show that the refinement process gives an expansion that has a key dynamical property called uniform distortion. We use uniform distortion to prove normality of the expansion. Consequently we prove an analog of Keane's conjecture: almost every non-classical interval exchange is uniquely ergodic.
Strictly nonclassical behavior of a mesoscopic system
Hu, Jiazhong; Vendeiro, Zachary; Chen, Wenlan; Zhang, Hao; McConnell, Robert; Sørensen, Anders S.; Vuletić, Vladan
2017-03-01
We experimentally demonstrate the strictly nonclassical behavior in a many-atom system using a recently derived criterion [E. Kot et al., Phys. Rev. Lett. 108, 233601 (2012), 10.1103/PhysRevLett.108.233601] that explicitly does not make use of quantum mechanics. We thereby show that the magnetic-moment distribution measured by McConnell et al. [Nature (London) 519, 439 (2015), 10.1038/nature14293] in a system with a total mass of 2.6 ×105 atomic mass units is inconsistent with classical physics. Notably, the strictly nonclassical behavior affects an area in phase space 103 times larger than the Planck quantum ℏ .
A two-mode planetary nebula luminosity function
Rodríguez-González, A; Esquivel, A; Raga, A C; Stasińska, G; Peña, M; Mayya, D
2014-01-01
We propose a new Planetary Nebula Luminosity Function (PNLF) that includes two populations in the distribution. Our PNLF is a direct extension of the canonical function proposed by Jacoby et al. (1987), in order to avoid problems related with the histogram construction, it is cast in terms of cumulative functions. We are interested in recovering the shape of the faint part of the PNLF in a consistent manner, for galaxies with and without a dip in their PN luminosity functions. The parameters for the two mode PNLF are obtained with a genetic algorithm, which obtains a best fit to the PNLF varying all of the parameters simultaneously in a broad parameter space. We explore a sample of 9 galaxies with various Hubble types and construct their PNLF. All of the irregular galaxies, except one, are found to be consistent with a two-mode population, while the situation is less clear for ellipticals and spirals.For the case of NGC\\, 6822, we show that the two-mode PNLF is consistent with previous studies of the star for...
Divergence en Route to Nonclassical Annonaceous Acetogenins
DEFF Research Database (Denmark)
Strand, Daniel; Norrby, Per-Ola; Rein, Tobias
2006-01-01
Syntheses of the nonclassical annonaceous acetogenins, pyranicin, and pyragonicin from common latestage intermediates are presented. The construction of key elements relies on asymmetric HWE reactions, including the desymmetrization of a meso-dialdehyde and a parallel kinetic resolution of a race...
Nonclassical evolution of a free particle
Johansen, Lars M.
1998-01-01
A conditional kinetic energy is defined in terms of the Wigner distribution. It is shown that this kinetic energy may become negative for negative Wigner distributions. A free particle wave packet with negative kinetic energy will spread in a nonclassical manner.
On nonclassical symmetries of generalized Huxley equations
Ivanova, Nataliya M
2010-01-01
Nonclassical symmetries of a class of generalized Huxley equations of form $u_t=u_{xx}+k(x)u^2(1-u)$ are found. More precisely, for the class under consideration we completely classify reduction operators with $\\tau=1$ and give a wide number of examples of equations admitting reduction operators with $\\tau=0$.
On precise time integration method for non-classically damped MDOF systems
Institute of Scientific and Technical Information of China (English)
Wang Mengfu; Zhou Xiyuan
2006-01-01
In the complex mode superposition method, the equations of motion for non-classically damped multipledegree-of-freedom (MDOF) discrete systems can be transferred into a combination of some generalized SDOF complex oscillators. Based on the state space theory, a precise recurrence relationship for these complex oscillators is set up; then a delicate general solution of non-classically damped MDOF systems, completely in real value form, is presented in this paper.In the proposed method, no calculation of the matrix exponential function is needed and the algorithm is unconditionally stable. A numerical example is given to demonstrate the validity and efficiency of the proposed method.
Information Entropy Squeezing of a Two-Level Atom Interacting with Two-Mode Coherent Fields
Institute of Scientific and Technical Information of China (English)
LIU Xiao-Juan; FANG Mao-Fa
2004-01-01
From a quantum information point of view we investigate the entropy squeezing properties for a two-level atom interacting with the two-mode coherent fields via the two-photon transition. We discuss the influences of the initial state of the system on the atomic information entropy squeezing. Our results show that the squeezed component number,squeezed direction, and time of the information entropy squeezing can be controlled by choosing atomic distribution angle,the relative phase between the atom and the two-mode field, and the difference of the average photon number of the two field modes, respectively. Quantum information entropy is a remarkable precision measure for the atomic squeezing.
Advancements in nonclassical gas dynamics
Nannan , N. R.
2009-01-01
Shock waves can be formed in all states of matter, be it in the single- or multi-phase condition, when the substance is subjected to a rapid change of state, e.g., a sudden pressure variation. In the case of shock waves in vapors and gases, because of the fact that the developed theory is often
Non-classical paths in interference experiments
Sawant, Rahul; Sinha, Aninda; Sinha, Supurna; Sinha, Urbasi
2014-01-01
In a double slit interference experiment, the wave function at the screen with both slits open is not exactly equal to the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well known text books in quantum mechanics implicitly and/or explicitly use this assumption which is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from non-classical paths in quantum interference experiments which provide a measurable deviation from a naive application of the superposition principle. A direct experimental demonstration for the existence of these non-classical paths is hard. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence.
Nonclassical Paths in Quantum Interference Experiments
Sawant, Rahul; Samuel, Joseph; Sinha, Aninda; Sinha, Supurna; Sinha, Urbasi
2014-09-01
In a double slit interference experiment, the wave function at the screen with both slits open is not exactly equal to the sum of the wave functions with the slits individually open one at a time. The three scenarios represent three different boundary conditions and as such, the superposition principle should not be applicable. However, most well-known text books in quantum mechanics implicitly and/or explicitly use this assumption that is only approximately true. In our present study, we have used the Feynman path integral formalism to quantify contributions from nonclassical paths in quantum interference experiments that provide a measurable deviation from a naive application of the superposition principle. A direct experimental demonstration for the existence of these nonclassical paths is difficult to present. We find that contributions from such paths can be significant and we propose simple three-slit interference experiments to directly confirm their existence.
Non-Classical Inhibition of Carbonic Anhydrase
Lomelino, Carrie L.; Supuran, Claudiu T.; McKenna, Robert
2016-01-01
Specific isoforms from the carbonic anhydrase (CA) family of zinc metalloenzymes have been associated with a variety of diseases. Isoform-specific carbonic anhydrase inhibitors (CAIs) are therefore a major focus of attention for specific disease treatments. Classical CAIs, primarily sulfonamide-based compounds and their bioisosteres, are examined as antiglaucoma, antiepileptic, antiobesity, antineuropathic pain and anticancer compounds. However, many sulfonamide compounds inhibit all CA isoforms nonspecifically, diluting drug effectiveness and causing undesired side effects due to off-target inhibition. In addition, a small but significant percentage of the general population cannot be treated with sulfonamide-based compounds due to a sulfa allergy. Therefore, CAIs must be developed that are not only isoform specific, but also non-classical, i.e. not based on sulfonamides, sulfamates, or sulfamides. This review covers the classes of non-classical CAIs and the recent advances in the development of isoform-specific inhibitors based on phenols, polyamines, coumarins and their derivatives. PMID:27438828
Nonclassical energy transfer in photosynthetic FMO complex
Directory of Open Access Journals (Sweden)
Abramavicius Vytautas
2013-03-01
Full Text Available Excitation energy transfer in a photosynthetic FMO complex has been simulated using the stochastic Schrödinger equation. Fluctuating chromophore transition energies are simulated from the quantum correlation function which allows to properly include the finite temperature. The resulting excitation dynamics shows fast thermalization of chromophore occupations into proper thermal equilibrium. The relaxation process is characterized by entropy dynamics, which shows nonclassical behavior.
Dynamic Behavior of Lambda-Type Three-Level Atoms and Two-Mode Cavity Field
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A system comprising of Lambda-type three-level atoms and the two-mode cavity field is considered in this paper. Under the adiabatical approximation and the large detuning condition, the effective Hamiltonian of the system in the interaction picture can be given out. If the two identical three-level atoms pass through the cavity in turn, the entangled state atoms can be generated. When the interaction time is taken to an appropriate value, the maximally entangled states are created. At the same time, the dynamic behaviors of the system are studied in detail.
Two modes of dipole events in tropical Indian Ocean
Institute of Scientific and Technical Information of China (English)
ZHAO YongPing; CHEN YongLi; WANG Fan; BAI XueZhi; WU AiMing
2009-01-01
By analyzing the distributions of subsurface temperature and the surface wind stress anomalies in the tropical Pacific and Indian Oceans during the Indian Ocean Dipole (IOD) events,two major modes of the IOD and their formation mechanisms are revealed.(1) The subsurface temperature anomaly (STA) in the tropical Indian Ocean during the IOD events can be described as a "＜" -shaped and west-east-oriented dipole pattern;in the east side of the "＜" pattern,a notable tongue-like STA extends westward along the equator in the tropical eastern Indian Ocean;while in the west side of the "＜" pattern,the STA has opposite sign with two centers (the southern one is stronger than the northern one in intensity) being of rough symmetry about the equator in the tropical mid-western Indian Ocean.(2) The IOD events are composed of two modes,which have similar spatial pattern but different temporal variabilities due to the large scale air-sea interactions within two independent systems.The first mode of the IOD event originates from the air-sea interaction on a scale of the tropical Pacific-Indian Ocean and coexists with ENSO.The second mode originates from the air-sea interaction on a scale of the tropical Indian Ocean and is closely associated with changes in the position and intensity of the Mascarene high pressure.The strong IOD event occurs when the two modes are in phase,and the IOD event weakens or disappears when the two modes are out of phase.Besides,the IOD events are normally strong when either of the two modes is strong.(3) The IOD event is caused by the abnormal wind stress forcing over the tropical Indian Ocean,which results in vertical transports,leading to the upwelling and pileup of seawater.This is the main dynamic processes resulting in the STA.When the anomalous easterly exists over the equatorial Indian Ocean,the cold waters upwell in the tropical eastern Indian Ocean while the warm waters pileup in the tropical western Indian Ocean,hence the thermocline in
Two-Mode Operation Engine Mount Design for Automotive Applications
Directory of Open Access Journals (Sweden)
Reza Tikani
2012-01-01
Full Text Available Hydraulic engine mounts are applied to the automotive applications to isolate the chassis from the high frequency noise and vibration generated by the engine as well as to limit the engine shake motions resulting at low frequencies. In this paper, a new hydraulic engine mount with a controllable inertia track profile is proposed and its dynamic behavior is investigated. The profile of the inertia track is varied by applying a controlled force to a cylindrical rubber disk, placed in the inertia track. This design provides a hydraulic engine mount design with an adjustable notch frequency location and also damping characteristics in shake motions. By using a simple control strategy, the efficiency of the proposed hydraulic engine mount in two-mode operation meaning isolating mode in the highway driving condition and damping mode in the shock motions, is investigated.
Two modes of dipole events in tropical Indian Ocean
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
By analyzing the distributions of subsurface temperature and the surface wind stress anomalies in the tropical Pacific and Indian Oceans during the Indian Ocean Dipole (IOD) events, two major modes of the IOD and their formation mechanisms are revealed. (1) The subsurface temperature anomaly (STA) in the tropical Indian Ocean during the IOD events can be described as a "<" -shaped and west-east-oriented dipole pattern; in the east side of the "<" pattern, a notable tongue-like STA extends westward along the equator in the tropical eastern Indian Ocean; while in the west side of the "<" pattern, the STA has op- posite sign with two centers (the southern one is stronger than the northern one in intensity) being of rough symmetry about the equator in the tropical mid-western Indian Ocean. (2) The IOD events are composed of two modes, which have similar spatial pattern but different temporal variabilities due to the large scale air-sea interactions within two independent systems. The first mode of the IOD event originates from the air-sea interaction on a scale of the tropical Pacific-Indian Ocean and coexists with ENSO. The second mode originates from the air-sea interaction on a scale of the tropical Indian Ocean and is closely associated with changes in the position and intensity of the Mascarene high pressure. The strong IOD event occurs when the two modes are in phase, and the IOD event weakens or disap- pears when the two modes are out of phase. Besides, the IOD events are normally strong when either of the two modes is strong. (3) The IOD event is caused by the abnormal wind stress forcing over the tropical Indian Ocean, which results in vertical transports, leading to the upwelling and pileup of sea- water. This is the main dynamic processes resulting in the STA. When the anomalous easterly exists over the equatorial Indian Ocean, the cold waters upwell in the tropical eastern Indian Ocean while the warm waters pileup in the tropical western Indian Ocean, hence
Treatment of Nonclassic 11-Hydroxylase Deficiency with Ashwagandha Root
Directory of Open Access Journals (Sweden)
Daniel Powell
2017-01-01
Full Text Available An elderly woman presented with acne and male pattern alopecia, which upon diagnostic evaluation was found to be due to nonclassic 11-hydroxylase deficiency. We previously reported that Ashwagandha root ameliorates nonclassic 3-β-ol dehydrogenase and aldosterone synthase deficiencies. This is the first report of its use being associated with amelioration of nonclassic 11-hydroxylase deficiency, where its apparent effects appear to be dose-related.
Nonclassical correlations between single photons and phonons from a mechanical oscillator
Riedinger, Ralf; Norte, Richard A; Slater, Joshua A; Shang, Juying; Krause, Alexander G; Anant, Vikas; Aspelmeyer, Markus; Gröblacher, S
2015-01-01
Interfacing a single photon with another quantum system is a key capability in modern quantum information science. It allows quantum states of matter, such as spin states of atoms, atomic ensembles or solids, to be prepared and manipulated by photon counting and, in particular, to be distributed over long distances. Such light-matter interfaces have become crucial for fundamental tests of quantum physics as well as for realizations of quantum networks. Here we report nonclassical correlations between single photons and phonons -- the quanta of mechanical motion -- from a nanomechanical resonator. We implement a full quantum protocol involving initialization of the resonator in its quantum ground state of motion and subsequent generation and readout of correlated photon-phonon pairs. The observed violation of a Cauchy-Schwarz inequality is clear evidence for the nonclassical nature of the generated mechanical state. Our results show the availability of on-chip solid-state mechanical resonators as light-matter ...
Modeling the interdependent network based on two-mode networks
An, Feng; Gao, Xiangyun; Guan, Jianhe; Huang, Shupei; Liu, Qian
2017-10-01
Among heterogeneous networks, there exist obviously and closely interdependent linkages. Unlike existing research primarily focus on the theoretical research of physical interdependent network model. We propose a two-layer interdependent network model based on two-mode networks to explore the interdependent features in the reality. Specifically, we construct a two-layer interdependent loan network and develop several dependent features indices. The model is verified to enable us to capture the loan dependent features of listed companies based on loan behaviors and shared shareholders. Taking Chinese debit and credit market as case study, the main conclusions are: (1) only few listed companies shoulder the main capital transmission (20% listed companies occupy almost 70% dependent degree). (2) The control of these key listed companies will be more effective of avoiding the spreading of financial risks. (3) Identifying the companies with high betweenness centrality and controlling them could be helpful to monitor the financial risk spreading. (4) The capital transmission channel among Chinese financial listed companies and Chinese non-financial listed companies are relatively strong. However, under greater pressure of demand of capital transmission (70% edges failed), the transmission channel, which constructed by debit and credit behavior, will eventually collapse.
NonClassic Congenital Adrenal Hyperplasia
Directory of Open Access Journals (Sweden)
Azziz Ricardo
2010-05-01
Full Text Available Nonclassic congenital adrenal hyperplasia (NCAH due to P450c21 (21-hydroxylase deficiency is a common autosomal recessive disorder. This disorder is due to mutations in the CYP21A2 gene which is located at chromosome 6p21. The clinical features predominantly reflect androgen excess rather than adrenal insufficiency leading to an ascertainment bias favoring diagnosis in females. Treatment goals include normal linear growth velocity and "on-time" puberty in affected children. For adolescent and adult women, treatment goals include regularization of menses, prevention of progression of hirsutism, and fertility. This paper will review key aspects regarding pathophysiology, diagnosis, and treatment of NCAH.
Non-classical continuum mechanics a dictionary
Maugin, Gérard A
2017-01-01
This dictionary offers clear and reliable explanations of over 100 keywords covering the entire field of non-classical continuum mechanics and generalized mechanics, including the theory of elasticity, heat conduction, thermodynamic and electromagnetic continua, as well as applied mathematics. Every entry includes the historical background and the underlying theory, basic equations and typical applications. The reference list for each entry provides a link to the original articles and the most important in-depth theoretical works. Last but not least, every entry is followed by a cross-reference to other related subject entries in the dictionary.
A non-classical class of variational problems
Cruz, Pedro A F; Zinober, Alan S I
2009-01-01
We study a new non-classical class of variational problems that is motivated by some recent research on the non-linear revenue problem in the field of economics. This class of problem can be set up as a maximising problem in the Calculus of Variations (CoV) or Optimal Control. However, the state value at the final fixed time, y(T), is a priori unknown and the integrand is a function of the unknown y(T). This is a non-standard CoV problem. In this paper we apply the new costate boundary conditions p(T) in the formulation of the CoV problem. We solve some sample examples in this problem class using the numerical shooting method to solve the resulting TPBVP, and incorporate the free y(T) as an additional unknown. Essentially the same results are obtained using symbolic algebra software.
Inducing nonclassical lasing via periodic drivings in circuit quantum electrodynamics.
Navarrete-Benlloch, Carlos; García-Ripoll, Juan José; Porras, Diego
2014-11-01
We show how a pair of superconducting qubits coupled to a microwave cavity mode can be used to engineer a single-atom laser that emits light into a nonclassical state. Our scheme relies on the dressing of the qubit-field coupling by periodic modulations of the qubit energy. In the dressed basis, the radiative decay of the first qubit becomes an effective incoherent pumping mechanism that injects energy into the system, hence turning dissipation to our advantage. A second, auxiliary qubit is used to shape the decay within the cavity, in such a way that lasing occurs in a squeezed basis of the cavity mode. We characterize the system both by mean-field theory and exact calculations. Our work may find applications in the generation of squeezing and entanglement in circuit QED, as well as in the study of dissipative few- and many-body phase transitions.
Institute of Scientific and Technical Information of China (English)
PING Yun-Xia; LIU Lie; ZHANG Chao-Min; CHENG Ze
2011-01-01
Violations of Bell inequality, Cauchy-Schwarz inequality and entanglement in a two-mode three-level atomic system are investigated. It is shown that there are some states, which are entangled but do not violate Bell inequality in this system. Moreover, the relations of violations of Bell inequality, Cauchy-Schwarz inequality, and entanglement are discussed in detail.
Nonclassical Particle Transport in the 1-D Diffusive Limit
Vasques, Richard; Krycki, Kai
2016-01-01
This paper provides numerical results that demonstrate the validity of the nonclassical diffusion approximation to the nonclassical transport equation in certain 1-D diffusive systems. This result provides a more solid foundation in which to improve this theory for relevant nuclear applications.
Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding.
Mustaev, Arkady; Malik, Muhammad; Zhao, Xilin; Kurepina, Natalia; Luan, Gan; Oppegard, Lisa M; Hiasa, Hiroshi; Marks, Kevin R; Kerns, Robert J; Berger, James M; Drlica, Karl
2014-05-02
DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys(466) gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly(81) and GyrB-Glu(466) residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases.
Energy Technology Data Exchange (ETDEWEB)
XU,J.; DEGRASSI,G.
2000-04-02
A comprehensive benchmark program was developed by Brookhaven National Laboratory (BNL) to perform an evaluation of state-of-the-art methods and computer programs for performing seismic analyses of coupled systems with non-classical damping. The program, which was sponsored by the US Nuclear Regulatory Commission (NRC), was designed to address various aspects of application and limitations of these state-of-the-art analysis methods to typical coupled nuclear power plant (NPP) structures with non-classical damping, and was carried out through analyses of a set of representative benchmark problems. One objective was to examine the applicability of various analysis methods to problems with different dynamic characteristics unique to coupled systems. The examination was performed using parametric variations for three simple benchmark models. This paper presents the comparisons and evaluation of the program participants' results to the BNL exact solutions for the applicable ranges of modeling dynamic characteristic parameters.
Cognition from life: the two modes of cognition that underlie moral behavior
Directory of Open Access Journals (Sweden)
Tjeerd C Andringa
2015-04-01
Full Text Available We argue that the capacity to live life to the benefit of self and others originates in the defining properties of life. These lead to two modes of cognition; the coping mode that is preoccupied with the satisfaction of pressing needs and the co-creation mode that aims at the realization of a world where pressing needs occur less frequently. We have used the Rule of Conservative Changes – stating that new functions can only scaffold on evolutionary older, yet highly stable functions – to predict that the interplay of these two modes define a number of core functions in psychology associated with moral behavior. We explore this prediction with five examples reflecting different theoretical approaches to human cognition and action selection. We conclude the paper with the observation that science is currently dominated by the coping mode and that the benefits of the co-creation mode may be necessary to generate realistic prospects for a modern synthesis in the sciences of the mind.
Nonclasssical Properties in Two-Mode Fields Resonantly Interacting with a Three-Level [Ⅰ]-Type Atom
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Some noclassical properties in electromagnetic Reid are investigated for the interaction of two-modes initially taken in coherent-state representation with the three-level [Ⅰ]-type atom, such as squeezing properties and violation of the Cauchy-Schwartz inequality. The enhancement of Geld squeezing is found by selective atomic measurement. The Cauchy-Schwartz inequality is violated by the application of the classical Geld followed by detection in excited state.
Nonclassical Symmetry Analysis of Heated Two-Dimensional Flow Problems
Naeem, Imran; Naz, Rehana; Khan, Muhammad Danish
2015-12-01
This article analyses the nonclassical symmetries and group invariant solution of boundary layer equations for two-dimensional heated flows. First, we derive the nonclassical symmetry determining equations with the aid of the computer package SADE. We solve these equations directly to obtain nonclassical symmetries. We follow standard procedure of computing nonclassical symmetries and consider two different scenarios, ξ1≠0 and ξ1=0, ξ2≠0. Several nonclassical symmetries are reported for both scenarios. Furthermore, numerous group invariant solutions for nonclassical symmetries are derived. The similarity variables associated with each nonclassical symmetry are computed. The similarity variables reduce the system of partial differential equations (PDEs) to a system of ordinary differential equations (ODEs) in terms of similarity variables. The reduced system of ODEs are solved to obtain group invariant solution for governing boundary layer equations for two-dimensional heated flow problems. We successfully formulate a physical problem of heat transfer analysis for fluid flow over a linearly stretching porous plat and, with suitable boundary conditions, we solve this problem.
[Taxonomic theory for non-classical systematics].
Pavlinov, I Ia
2012-01-01
Outlined briefly are basic principles of construing general taxonomic theory for biological systematics considered in the context of non-classical scientific paradigm. The necessity of such kind of theory is substantiated, and some key points of its elaboration are exposed: its interpretation as a framework concept for the partial taxonomic theories in various schools of systematics; elaboration of idea of cognitive situation including three interrelated components, namely subject, object, and epistemic ones; its construing as a content-wisely interpreted quasi-axiomatics, with strong structuring of its conceptual space including demarcation between axioms and inferring rules; its construing as a "conceptual pyramid" of concepts of various levels of generality; inclusion of a basic model into definition of the taxonomic system (classification) regulating its content. Two problems are indicated as fundamental: definition of taxonomic diversity as a subject domain for the systematics as a whole; definition of onto-epistemological status of taxonomic system (classification) in general and of taxa in particular.
Phonon-Mediated Nonclassical Interference in Diamond
England, Duncan G.; Fisher, Kent A. G.; MacLean, Jean-Philippe W.; Bustard, Philip J.; Heshami, Khabat; Resch, Kevin J.; Sussman, Benjamin J.
2016-08-01
Quantum interference of single photons is a fundamental aspect of many photonic quantum processing and communication protocols. Interference requires that the multiple pathways through an interferometer be temporally indistinguishable to within the coherence time of the photon. In this Letter, we use a diamond quantum memory to demonstrate interference between quantum pathways, initially temporally separated by many multiples of the optical coherence time. The quantum memory can be viewed as a light-matter beam splitter, mapping a THz-bandwidth single photon to a variable superposition of the output optical mode and stored phononic mode. Because the memory acts both as a beam splitter and as a buffer, the relevant coherence time for interference is not that of the photon, but rather that of the memory. We use this mechanism to demonstrate nonclassical single-photon and two-photon interference between quantum pathways initially separated by several picoseconds, even though the duration of the photons themselves is just ˜250 fs .
Multitime correlation functions in nonclassical stochastic processes
Krumm, F.; Sperling, J.; Vogel, W.
2016-06-01
A general method is introduced for verifying multitime quantum correlations through the characteristic function of the time-dependent P functional that generalizes the Glauber-Sudarshan P function. Quantum correlation criteria are derived which identify quantum effects for an arbitrary number of points in time. The Magnus expansion is used to visualize the impact of the required time ordering, which becomes crucial in situations when the interaction problem is explicitly time dependent. We show that the latter affects the multi-time-characteristic function and, therefore, the temporal evolution of the nonclassicality. As an example, we apply our technique to an optical parametric process with a frequency mismatch. The resulting two-time-characteristic function yields full insight into the two-time quantum correlation properties of such a system.
Nonlinear Quantum Optical Springs and Their Nonclassical Properties
Institute of Scientific and Technical Information of China (English)
M.J. Faghihi; M.K. Tavassoly
2011-01-01
The original idea of quantum optical spring arises from the requirement of quantization of the frequency of oscillations in the Hamiltonian of harmonic oscillator. This purpose is achieved by considering a spring whose constant （and so its frequency） depends on the quantum states ofanother system. Recently, it is realized that by the assumption of frequency modulation of ω to ω √1＋ μα＋α the mentioned idea can be established. In the present paper, we generalize the approach of quantum optical spring with particular attention to the dependence or trequency to the intensity of radiation field that naturally observes in the nonlinear coherent states, from which we arrive at a physical system has been called by us as nonlinear quantum optical spring. Then, after the introduction of the generalized tlamiltonian of nonlinear quantum optical spring and it＇s solution, we will investigate the nonclassical properties of the obtained states. Specially, typical collapse and revival in the distribution functions and squeezing parameters, as particular quantum features, will be revealed.
Sampling of quasidistributions, nonclassical behavior and negative probabilities
Energy Technology Data Exchange (ETDEWEB)
Peřina, J. [Department of Optics and Joint Laboratory of Optics of Palacký University and Institute of Physics of AS CR, Faculty of Science, Palacký University, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Křepelka, J., E-mail: jaromir.krepelka@upol.cz [Joint Laboratory of Optics of Palacký University and Institute of Physics of AS CR, 17. listopadu 50a, 771 46 Olomouc (Czech Republic)
2016-05-20
Highlights: • Joint quasidistributions for parametric down conversion in nonclassical region are derived. • These quasidistributions are sampled with the use of the Shannon–Kotelnikov theorem. • The sampling is used for interpretation of negative probabilities in nonclassical region. - Abstract: We perform a sampling of the quasidistribution for the process of optical down-conversion in nonclassical regime, in which negative values of the quasidistribution are exhibited, using the Shannon–Kotelnikov sampling formula. We show that negative values of the quasidistribution do not directly represent probabilities, however, negative terms in the sampling formula related to the nonclassical behavior can be interpreted as positive probabilities in the negative orthogonal sinc-basis, whereas positive probabilities in the positive sinc-basis describe classical cases.
Two mode coupling in a single ion oscillator via parametric resonance
Gorman, Dylan J; Selvarajan, Sankaranarayanan; Daniilidis, Nikos; Häffner, Hartmut
2014-01-01
Atomic ions, confined in radio-frequency Paul ion traps, are a promising candidate to host a future quantum information processor. In this letter, we demonstrate a method to couple two motional modes of a single trapped ion, where the coupling mechanism is based on applying electric fields rather than coupling the ion's motion to a light field. This reduces the design constraints on the experimental apparatus considerably. As an application of this mechanism, we cool a motional mode close to its ground state without accessing it optically. As a next step, we apply this technique to measure the mode's heating rate, a crucial parameter determining the trap quality. In principle, this method can be used to realize a two-mode quantum parametric amplifier.
Nonclassical Symmetries for Nonlinear Partial Differential Equations via Compatibility
Institute of Scientific and Technical Information of China (English)
Mostafa F. El-Sabbagh; Ahmad T. Ali
2011-01-01
The determining equations for the nonclassical symmetry reductions of nonlinear partial differential equations with arbitrary order can be obtained by requiring the compatibility between the original equations and the invariant surface conditions. The （2＋1）-dimensional shallow water wave equation, Boussinesq equation, and the dispersive wave equations in shallow water serve as examples i11ustrating how compatibility leads quickly and easily to the determining equations for their nonclassical symmetries.
Mouse Spermatogenesis Requires Classical and Nonclassical Testosterone Signaling.
Toocheck, Corey; Clister, Terri; Shupe, John; Crum, Chelsea; Ravindranathan, Preethi; Lee, Tae-Kyung; Ahn, Jung-Mo; Raj, Ganesh V; Sukhwani, Meena; Orwig, Kyle E; Walker, William H
2016-01-01
Testosterone acts though the androgen receptor in Sertoli cells to support germ cell development (spermatogenesis) and male fertility, but the molecular and cellular mechanisms by which testosterone acts are not well understood. Previously, we found that in addition to acting through androgen receptor to directly regulate gene expression (classical testosterone signaling pathway), testosterone acts through a nonclassical pathway via the androgen receptor to rapidly activate kinases that are known to regulate spermatogenesis. In this study, we provide the first evidence that nonclassical testosterone signaling occurs in vivo as the MAP kinase cascade is rapidly activated in Sertoli cells within the testis by increasing testosterone levels in the rat. We find that either classical or nonclassical signaling regulates testosterone-mediated Rhox5 gene expression in Sertoli cells within testis explants. The selective activation of classical or nonclassical signaling pathways in Sertoli cells within testis explants also resulted in the differential activation of the Zbtb16 and c-Kit genes in adjacent spermatogonia germ cells. Delivery of an inhibitor of either pathway to Sertoli cells of mouse testes disrupted the blood-testis barrier that is essential for spermatogenesis. Furthermore, an inhibitor of nonclassical testosterone signaling blocked meiosis in pubertal mice and caused the loss of meiotic and postmeiotic germ cells in adult mouse testes. An inhibitor of the classical pathway caused the premature release of immature germ cells. Collectively, these observations indicate that classical and nonclassical testosterone signaling regulate overlapping and distinct functions that are required for the maintenance of spermatogenesis and male fertility.
dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio
2004-03-01
Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell’Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined as the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.
Institute of Scientific and Technical Information of China (English)
PING Yun-Xia; CHENG Ze
2007-01-01
Continuous variable entanglement and violation of Bell inequality for two modes are investigated in a three-level cascade atomic system. Entanglement of the system is demonstrated according to the entanglement criterion [Phys. Rev. Lett. 84 (2000) 2722]. Violation of Bell inequality is studied within the framework of a quantum theory of multiwave mixing. It is shown that there are some states that are entangled but do not violate the Bell inequality.
Nonclassical Congenital Adrenal Hyperplasia and Pregnancy
Directory of Open Access Journals (Sweden)
Neslihan Cuhaci
2015-01-01
Full Text Available Objective. The most common form of congenital adrenal hyperplasia (CAH is 21-hydroxylase (21-OH deficiency due to mutation of the CYP21A2 gene. Patients with nonclassical CAH (NC-CAH are usually asymptomatic at birth and typically present in late childhood, adolescence, or adulthood with symptoms of excessive androgen secretion. Subfertility is relative in NC-CAH, but the incidence of spontaneous miscarriage is higher. Here, we report a previously undiagnosed female who gave birth to a normal male child and is planning to become pregnant again. Case Report. A 32-year-old female was referred to our clinic for obesity. Her medical history revealed that she had had three pregnancies. She was planning to become pregnant again. Her laboratory results revealed that she had NC-CAH. Since her husband is the son of her aunt and she had miscarriages and intrauterin exitus in her history, their genetic analyses were performed. Conclusion. Since most patients with NC-CAH have a severe mutation, these patients may give birth to a child with the classical CAH (C-CAH if their partner is also carrying a severe mutation. Females with NC-CAH who desire pregnancy must be aware of the risk of having an infant with C-CAH.
Nonclassical nucleation and growth of inorganic nanoparticles
Lee, Jisoo; Yang, Jiwoong; Kwon, Soon Gu; Hyeon, Taeghwan
2016-08-01
The synthesis of nanoparticles with particular compositions and structures can lead to nanoparticles with notable physicochemical properties, thus promoting their use in various applications. In this area of nanoscience, the focus is shifting from size- and shape-uniform single-component nanoparticles to multicomponent nanoparticles with enhanced performance and/or multifunctionality. With the increasing complexity of synthetic reactions, an understanding of the formation mechanisms of the nanoparticles is needed to enable a systematic synthetic approach. This Review highlights mechanistic studies underlying the synthesis of nanoparticles, with an emphasis on nucleation and growth behaviours that are not expected from classical theories. We discuss the structural properties of nanoclusters that are of a size that bridges molecules and solids. We then describe the role of nanoclusters in the prenucleation process as well as in nonclassical nucleation models. The growth of nanoparticles via the assembly and merging of primary particles is also overviewed. Finally, we present the heterogeneous nucleation mechanisms behind the synthesis of multicomponent nanoparticles.
Two-mode clustering of genotype by trait and genotype by environment data
Hageman, J.A.; Malosetti, M.; Eeuwijk, van F.A.
2012-01-01
In this paper, we demonstrate the use of two-mode clustering for genotype by trait and genotype by environment data. In contrast to two separate (one mode) clusterings on genotypes or traits/environments, two-mode clustering simultaneously produces homogeneous groups of genotypes and traits/environm
Nonclassic congenital adrenal hyperplasia misdiagnosed as Turner syndrome.
Mishra, Vineet V; Pritti, Kumari; Aggarwal, Rohina; Choudhary, Sumesh
2015-01-01
We present a patient with nonclassic congenital adrenal hyperplasia (NCAH) misdiagnosed as mosaic Turner syndrome. She presented with complaints of primary infertility. Short stature, the presence of facial hair and hoarse voice was also noted. She had primary amenorrhea and was advised for karyotype at 16 years of age, which was reported as 45, X[20]/46, XX[80], stating her as a case of mosaic Turner syndrome. Clitoroplasty was done at 21 years of age for clitoromegaly, which was noticed during puberty. The diagnosis of mosaic Turner could not explain the virilization. Therefore, we repeated the karyotype, which revealed 46, XX in more than 100 metaphases and was sufficient to exclude mosaicism. Furthermore, the endocrinological evaluation revealed high testosterone level with a normal 17 alpha-hydroxyprogesterone (17-OHP). The presence of pubertal onset virilization with a karyotype of 46, XX and raised testosterone level with normal 17-OHP level, raised the suspicion of NCAH for which adrenocorticotropic hormone stimulation test was done which confirmed the diagnosis of NCAH.
Nonclassic congenital adrenal hyperplasia misdiagnosed as Turner syndrome
Directory of Open Access Journals (Sweden)
Vineet V Mishra
2015-01-01
Full Text Available We present a patient with nonclassic congenital adrenal hyperplasia (NCAH misdiagnosed as mosaic Turner syndrome. She presented with complaints of primary infertility. Short stature, the presence of facial hair and hoarse voice was also noted. She had primary amenorrhea and was advised for karyotype at 16 years of age, which was reported as 45, X[20]/46, XX[80], stating her as a case of mosaic Turner syndrome. Clitoroplasty was done at 21 years of age for clitoromegaly, which was noticed during puberty. The diagnosis of mosaic Turner could not explain the virilization. Therefore, we repeated the karyotype, which revealed 46, XX in more than 100 metaphases and was sufficient to exclude mosaicism. Furthermore, the endocrinological evaluation revealed high testosterone level with a normal 17 alpha-hydroxyprogesterone (17-OHP. The presence of pubertal onset virilization with a karyotype of 46, XX and raised testosterone level with normal 17-OHP level, raised the suspicion of NCAH for which adrenocorticotropic hormone stimulation test was done which confirmed the diagnosis of NCAH.
Quantum State Engineering of Light with Continuous-wave Optical Parametric Oscillators
Morin, Olivier; Liu, Jianli; Huang, Kun; Barbosa, Felippe; Fabre, Claude; Laurat, Julien
2014-01-01
Engineering non-classical states of the electromagnetic field is a central quest for quantum optics1,2. Beyond their fundamental significance, such states are indeed the resources for implementing various protocols, ranging from enhanced metrology to quantum communication and computing. A variety of devices can be used to generate non-classical states, such as single emitters, light-matter interfaces or non-linear systems3. We focus here on the use of a continuous-wave optical parametric oscillator3,4. This system is based on a non-linear χ2 crystal inserted inside an optical cavity and it is now well-known as a very efficient source of non-classical light, such as single-mode or two-mode squeezed vacuum depending on the crystal phase matching. Squeezed vacuum is a Gaussian state as its quadrature distributions follow a Gaussian statistics. However, it has been shown that number of protocols require non-Gaussian states5. Generating directly such states is a difficult task and would require strong χ3 non-linearities. Another procedure, probabilistic but heralded, consists in using a measurement-induced non-linearity via a conditional preparation technique operated on Gaussian states. Here, we detail this generation protocol for two non-Gaussian states, the single-photon state and a superposition of coherent states, using two differently phase-matched parametric oscillators as primary resources. This technique enables achievement of a high fidelity with the targeted state and generation of the state in a well-controlled spatiotemporal mode. PMID:24961685
Two-mode elliptical-core weighted fiber sensors for vibration analysis
Vengsarkar, Ashish M.; Murphy, Kent A.; Fogg, Brian R.; Miller, William V.; Greene, Jonathan A.; Claus, Richard O.
1992-01-01
Two-mode, elliptical-core optical fibers are demonstrated in weighted, distributed and selective vibration-mode-filtering applications. We show how appropriate placement of optical fibers on a vibrating structure can lead to vibration mode filtering. Selective vibration-mode suppression on the order of 10 dB has been obtained using tapered two-mode, circular-core fibers with tapering functions that match the second derivatives of the modes of vibration to be enhanced. We also demonstrate the use of chirped, two-mode gratings in fibers as spatial modal sensors that are equivalents of shaped piezoelectric sensors.
Two-Mode Wave Solutions to the Degasperis-Procesi Equation
Institute of Scientific and Technical Information of China (English)
ZHANG Zheng-Di; BI Qin-Sheng
2008-01-01
@@ By introducing a new type of solutions, called the multiple-mode wave solutions which can be expressed in nonlinear superposition of single-mode waves with different speeds, we investigate the two-mode wave solutions in Degasperis-Procesi equation and two cases are derived.The explicit expressions for the two-mode waves as well as the existence conditions are presented.It is shown that the two-mode waves may be the nonlinear combinations of many types of single-mode waves, such as periodic waves, solitons, compactons, etc., and more complicated multiple-mode waves can be obtained if higher order or more single-mode waves are taken into consideration.It is pointed out that the two-mode wave solutions can be employed to display the typical mechanism of the interactions between different single-mode waves.
Analysis of MPN, MHN and Phase Noise of a Two-Mode Semiconductor Laser
Institute of Scientific and Technical Information of China (English)
Ebrahim Mortazy; Vahid Ahmadi; Mohammad Kazem Moravvej-Farshi; Abbas Zarifkar
2003-01-01
Intensity noise including Mode Partition Noise (MPN) and Mode Hopping Noise (MHN), and Phase/Frequency Noise Spectrum (FNS) are calculated for a two-mode semiconductor laser. RIN is derived considering of MPN and MHN effect.
Simplified P$_N$ Equations for Nonclassical Transport with Isotropic Scattering
Vasques, R
2016-01-01
A nonclassical diffusion approximation has been previously derived for the the one-speed nonclassical transport equation with isotropic scattering. In this paper we use an asymptotic analysis to derive more accurate diffusion approximations to the nonclassical transport equation. If the free-path distribution is given by an exponential (classical transport), these approximations reduce to the simplified P$_N$ (SP$_N$) equations; therefore, they are labeled nonclassical SP$_N$ equations.
Non-classical correlations between single photons and phonons from a mechanical oscillator
Riedinger, Ralf; Hong, Sungkun; Norte, Richard A.; Slater, Joshua A.; Shang, Juying; Krause, Alexander G.; Anant, Vikas; Aspelmeyer, Markus; Gröblacher, Simon
2016-02-01
Interfacing a single photon with another quantum system is a key capability in modern quantum information science. It allows quantum states of matter, such as spin states of atoms, atomic ensembles or solids, to be prepared and manipulated by photon counting and, in particular, to be distributed over long distances. Such light-matter interfaces have become crucial to fundamental tests of quantum physics and realizations of quantum networks. Here we report non-classical correlations between single photons and phonons—the quanta of mechanical motion—from a nanomechanical resonator. We implement a full quantum protocol involving initialization of the resonator in its quantum ground state of motion and subsequent generation and read-out of correlated photon-phonon pairs. The observed violation of a Cauchy-Schwarz inequality is clear evidence for the non-classical nature of the mechanical state generated. Our results demonstrate the availability of on-chip solid-state mechanical resonators as light-matter quantum interfaces. The performance we achieved will enable studies of macroscopic quantum phenomena as well as applications in quantum communication, as quantum memories and as quantum transducers.
Partial-measurement backaction and nonclassical weak values in a superconducting circuit.
Groen, J P; Ristè, D; Tornberg, L; Cramer, J; de Groot, P C; Picot, T; Johansson, G; DiCarlo, L
2013-08-30
We realize indirect partial measurement of a transmon qubit in circuit quantum electrodynamics by interaction with an ancilla qubit and projective ancilla measurement with a dedicated readout resonator. Accurate control of the interaction and ancilla measurement basis allows tailoring the measurement strength and operator. The tradeoff between measurement strength and qubit backaction is characterized through the distortion of a qubit Rabi oscillation imposed by ancilla measurement in different bases. Combining partial and projective qubit measurements, we provide the solid-state demonstration of the correspondence between a nonclassical weak value and the violation of a Leggett-Garg inequality.
TRAJECTORY ATTRACTORS FOR NONCLASSICAL DIFFUSION EQUATIONS WITH FADING MEMORY
Institute of Scientific and Technical Information of China (English)
Yonghai WANG; Lingzhi WANG
2013-01-01
In this article,we consider the existence of trajectory and global attractors for nonclassical diffusion equations with linear fading memory.For this purpose,we will apply the method presented by Chepyzhov and Miranville [7,8],in which the authors provide some new ideas in describing the trajectory attractors for evolution equations with memory.
Mistaken gender identity in non-classical congenital adrenal hyperplasia
Kukreti, Prerna; Kandpal, Manish; Jiloha, R C
2014-01-01
Gender identity is the sense of belonging that one feels for a particular sex psychologically and socially, independent of one's biological sex. There is much less systematic data on gender identity in females with congenital adrenal hyperplasia (CAH). We report a case of non-classical CAH presenting as a case of gender identity disorder.
Mistaken gender identity in non-classical congenital adrenal hyperplasia.
Kukreti, Prerna; Kandpal, Manish; Jiloha, R C
2014-04-01
Gender identity is the sense of belonging that one feels for a particular sex psychologically and socially, independent of one's biological sex. There is much less systematic data on gender identity in females with congenital adrenal hyperplasia (CAH). We report a case of non-classical CAH presenting as a case of gender identity disorder.
Classical Stückelberg interferometry of a nanomechanical two-mode system
Seitner, Maximilian J.; Ribeiro, Hugo; Kölbl, Johannes; Faust, Thomas; Kotthaus, Jörg P.; Weig, Eva M.
2016-12-01
Stückelberg interferometry is a phenomenon that has been well established for quantum-mechanical two-level systems. Here, we present classical two-mode interference of a nanomechanical two-mode system, realizing a classical analog of Stückelberg interferometry. Our experiment relies on the coherent energy exchange between two strongly coupled, high-quality factor nanomechanical resonator modes. Furthermore, we discuss an exact theoretical solution for the double-passage Stückelberg problem by expanding the established finite-time Landau-Zener single-passage solution. For the parameter regime explored in the experiment, we find that the Stückelberg return probability in the classical version of the problem formally coincides with the quantum case, which reveals the analogy of the return probabilities in the quantum-mechanical and the classical version of the problem. This result qualifies classical two-mode systems at large to simulate quantum-mechanical interferometry.
Degeneration of Four Wave Mixing in 500 m Step Index Two Mode Fiber
Directory of Open Access Journals (Sweden)
J. Jamaludin
2016-12-01
Full Text Available Four wave mixing (FWM in two-mode fiber was experimentally demonstrated at 24.7 dBm of output Erbium doped fiber amplifier (EDFA. The 0.5 km two mode fiber in laser cavity enhances the performance of four wave mixing by suppressing the homogenous broadening effect in erbium-doped fiber and perform a stable oscillation. At output EDFA approaches to 24.7 dBm, FWM is generated and the increasing of output EDFA induced the optical signal to noise ratio (OSNR of all laser peaks.
Nonlinear Bethe-Heitler Pair Creation in an Intense Two-Mode Laser Field
Augustin, Sven
2013-01-01
We investigate electron-positron pair creation in the interaction of a nuclear Coulomb field and a highly intense two-mode laser field. For bichromatic laser fields, we examine the differences arising for commensurable and incommensurable frequencies in a continuous variation of the laser frequency ratio and the quantum interference effects, which may occur in the commensurable case. We show that the interference manifests in the angular distributions and the total pair-production rates of the created particles. Additionally, by varying the amplitudes of the two modes we study pair creation in a monochromatic laser wave of arbitrarily elliptical polarization.
Terahertz beat freuquency generation from two-mode lasing operation of coupled microdisk laser
Ryu, Jung-Wan; Kim, Chil-Min; Shinohara, Susumu; Kim, Sang Wook
2012-01-01
We propose a coupled microdisk laser as a compact and tunable laser source for the generation of a coherent continuous wave THz radiation by photomixing. Using the Schr\\"odinger-Bloch model including the nonlinear effect of active medium, we find single mode and two mode lasings depending on the pumping strength. We explain the transitions of lasing modes in terms of resonant modes which are the solutions of the Schr\\"odinger-Bloch model without active medium and nonlinear interaction. In particular, a two mode lasing is shown to generate THz oscillating frequency originating from the light beating of two nearly degenerated resonant modes with different symmetries.
A Two-Mode Mean-Field Optimal Switching Problem for the Full Balance Sheet
Directory of Open Access Journals (Sweden)
Boualem Djehiche
2014-01-01
a two-mode optimal switching problem of mean-field type, which can be described by a system of Snell envelopes where the obstacles are interconnected and nonlinear. The main result of the paper is a proof of a continuous minimal solution to the system of Snell envelopes, as well as the full characterization of the optimal switching strategy.
Computation of expectation values from vibrational coupled-cluster at the two-mode coupling level
DEFF Research Database (Denmark)
Zoccante, Alberto; Seidler, Peter; Christiansen, Ove
2011-01-01
In this work we show how the vibrational coupled-cluster method at the two-mode coupling level can be used to calculate zero-point vibrational averages of properties. A technique is presented, where any expectation value can be calculated using a single set of Lagrangian multipliers computed...
Computation of expectation values from vibrational coupled-cluster at the two-mode coupling level
DEFF Research Database (Denmark)
Zoccante, Alberto; Seidler, Peter; Christiansen, Ove
2011-01-01
In this work we show how the vibrational coupled-cluster method at the two-mode coupling level can be used to calculate zero-point vibrational averages of properties. A technique is presented, where any expectation value can be calculated using a single set of Lagrangian multipliers computed...
An Exact Solution and the Pancharatnam Phase for the Generalized Two-Mode Optical System
Institute of Scientific and Technical Information of China (English)
侯邦品; 王顺金; 余万伦
2002-01-01
Using the algebraic dynamical method, we obtain the exact solution for the generalized two-mode optical system. From the solution, the Pancharatnam phase and the mean values of the number operators of the system are calculated. It is emphasized that the system can be used as a quantum memory.
Cognition from life: the two modes of cognition that underlie moral behavior
Andringa, Tjeerd; van den Bosch, Kirsten; Wijermans, Nanda
2015-01-01
We argue that the capacity to live life to the benefit of self and others originates in the defining properties of life. These lead to two modes of cognition; the coping mode that is preoccupied with the satisfaction of pressing needs and the co-creation mode that aims at the realization of a world
Nonclassical Problem for Ultraparabolic Equation in Abstract Spaces
Directory of Open Access Journals (Sweden)
Gia Avalishvili
2016-01-01
Full Text Available Nonclassical problem for ultraparabolic equation with nonlocal initial condition with respect to one time variable is studied in abstract Hilbert spaces. We define the space of square integrable vector-functions with values in Hilbert spaces corresponding to the variational formulation of the nonlocal problem for ultraparabolic equation and prove trace theorem, which allows one to interpret initial conditions of the nonlocal problem. We obtain suitable a priori estimates and prove the existence and uniqueness of solution of the nonclassical problem and continuous dependence upon the data of the solution to the nonlocal problem. We consider an application of the obtained abstract results to nonlocal problem for ultraparabolic partial differential equation with second-order elliptic operator and obtain well-posedness result in Sobolev spaces.
Algorithms for the nonclassical method of symmetry reductions
Clarkson, P A; Peter A Clarkson; Elizabeth L Mansfield
1994-01-01
In this article we present first an algorithm for calculating the determining equations associated with so-called "nonclassical method" of symmetry reductions (a la Bluman and Cole) for systems of partial differentail equations. This algorithm requires significantly less computation time than that standardly used, and avoids many of the difficulties commonly encountered. The proof of correctness of the algorithm is a simple application of the theory of Grobner bases. In the second part we demonstrate some algorithms which may be used to analyse, and often to solve, the resulting systems of overdetermined nonlinear PDEs. We take as our principal example a generalised Boussinesq equation, which arises in shallow water theory. Although the equation appears to be non-integrable, we obtain an exact "two-soliton" solution from a nonclassical reduction.
Controversies about the Introduction of Non-Classical Logics
Directory of Open Access Journals (Sweden)
Angel Garrido
2015-07-01
Full Text Available Logic is a set of well-formed formulae, along with an inference relation. But the Classical Logic is bivalent; for this reason, very limited to solve problems with uncertainty on the data. It is well-known that Artificial Intelligence requires Logic. Because its Classical version shows too many insufficiencies, it is very necessary to introduce more sophisticated tools, as may be Non-Classical Logics; amongst them, Fuzzy Logic, Modal Logic, Non-Monotonic Logic, Para-consistent Logic, and so on. All them in the same line: against the dogmatism and the dualistic vision of the world: absolutely true vs. absolutely false, black vs. white, good or bad by nature, Yes vs. No, 0 vs.1, Full vs. Empty, etc. We attempt to analyze here some of these very interesting Classical andmodern Non-Classical Logics.
Evolution of nonclassical MHC-dependent invariant T cells.
Edholm, Eva-Stina; Grayfer, Leon; Robert, Jacques
2014-12-01
TCR-mediated specific recognition of antigenic peptides in the context of classical MHC molecules is a cornerstone of adaptive immunity of jawed vertebrate. Ancillary to these interactions, the T cell repertoire also includes unconventional T cells that recognize endogenous and/or exogenous antigens in a classical MHC-unrestricted manner. Among these, the mammalian nonclassical MHC class I-restricted invariant T cell (iT) subsets, such as iNKT and MAIT cells, are now believed to be integral to immune response initiation as well as in orchestrating subsequent adaptive immunity. Until recently the evolutionary origins of these cells were unknown. Here we review our current understanding of a nonclassical MHC class I-restricted iT cell population in the amphibian Xenopus laevis. Parallels with the mammalian iNKT and MAIT cells underline the crucial biological roles of these evolutionarily ancient immune subsets.
The Inverse Method Application for Non-Classical Logics
Pavlov, V.; Paky, V.
2015-01-01
Maslov’s inverse method is an automated theorem proving method: it can be used to develop computer programs that prove theorems automatically (such programs are called theorem provers). The inverse method can be applied to a wide range of logical calculi: propositional logic, ﬁrst-order logic, intuitionistic logic, modal logics etc. We give a brief historical background of the inverse method, then discuss existing modiﬁcations and implementations of the inverse method for non-classical logics...
Nonclassical interactions portrait in a macroscopic pedestrian flow model
Rosini, Massimiliano D.
In this paper we describe the main characteristics of the macroscopic model for pedestrian flows introduced in [R.M. Colombo, M.D. Rosini, Pedestrian flows and non-classical shocks, Math. Methods Appl. Sci. 28 (13) (2005) 1553-1567] and recently sperimentally verified in [D. Helbing, A. Johansson, H.Z. Al-Abideen, Dynamics of crowd disasters: An empirical study, Phys. Rev. E (Statistical, Nonlinear, and Soft Matter Physics) 75 (4) (2007) 046109]. After a detailed study of all the possible wave interactions, we prove the existence of a weighted total variation that does not increase after any interaction. This is the main ingredient used in [R.M. Colombo, M.D. Rosini, Existence of nonclassical Cauchy problem modeling pedestrian flows, technical report, Brescia Department of Mathematics, 2008] to tackle the Cauchy problem through wave front tracking, see [A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, Oxford Lecture Ser. Math. Appl., vol. 20, Oxford Univ. Press, Oxford, 2000, The one-dimensional Cauchy problem; A. Bressan, The front tracking method for systems of conservation laws, in: C.M. Dafermos, E. Feireisl (Eds.), Handbook of Differential Equations; Evolutionary Equations, vol. 1, Elsevier, 2004, pp. 87-168; R.M. Colombo, Wave front tracking in systems of conservation laws, Appl. Math. 49 (6) (2004) 501-537]. From the mathematical point of view, this model is one of the few examples of conservation laws in which nonclassical solutions have a physical motivation, see [P.G. Lefloch, Hyperbolic Systems of Conservation Laws, Lectures Math. ETH Zürich, Birkhäuser, Basel, 2002, The theory of classical and nonclassical shock waves], and an existence result is available.
Truong, Cao Dung; Trinh, M. Tuan; Dang, Hoai Bac; Nguyen, Van Tho
2017-02-01
We propose a polarization insensitive two-mode division (de)multiplexer based on a silicon-on-insulator platform operating with a broadband, low insertion and scattering loss, and small crosstalk. By using an asymmetric directional coupler, two-mode (de)multiplexing functions for both polarization TE and TM states can be realized by the numerical simulation. Simulated results using a three dimensional beam propagation method (3D-BPM) incorporated with an effective index method (EIM) show high performance of the device with an operation efficiency above 81.2% (i.e., insertion loss is less than 0.9 dB) in the range of ±5 nm around the central wavelength of 1550 nm. Fabrication tolerances also have proved suitability to current manufacture technologies for the planar waveguides. Besides a low scattering loss of the sidewall roughness and a little influence of dispersion, a small footprint can bring the device to applications of high bitrate and compact on-chip silicon photonic integrated circuits.
Transcriptional regulation by nonclassical action of thyroid hormone
Directory of Open Access Journals (Sweden)
Moeller Lars C
2011-08-01
Full Text Available Abstract Thyroid hormone (TH is essential for normal development, growth and metabolism. Its effects were thought to be principally mediated through triiodothyronine (T3, acting as a ligand for the nuclear TH receptors (TRs α and β residing on thyroid hormone response elements (TREs in the promoter of TH target genes. In this classical model of TH action, T3 binding to TRs leads to recruitment of basal transcription factors and increased transcription of TH responsive genes. Recently, the concept of TH action on gene expression has become more diverse and now includes nonclassical actions of T3 and T4: T3 has been shown to activate PI3K via the TRs, which ultimately increases transcription of certain genes, e.g. HIF-1α. Additionally, both T3 and thyroxine (T4 can bind to a membrane integrin, αvβ3, which leads to activation of the PI3K and MAPK signal transduction pathways and finally also increases gene transcription, e.g. of the FGF2 gene. Therefore, these initially nongenomic, nonclassical actions seem to serve as additional interfaces for transcriptional regulation by TH. Aim of this perspective is to summarize the genes that are currently known to be induced by nonclassical TH action and the mechanisms involved.
Nonclassical Particle Transport in 1-D Random Periodic Media
Vasques, Richard; Slaybaugh, Rachel N
2016-01-01
We investigate the accuracy of the recently proposed nonclassical transport equation. This equation contains an extra independent variable compared to the classical transport equation (the path-length $s$), and models particle transport taking place in homogenized random media in which a particle's distance-to-collision is not exponentially distributed. To solve the nonclassical equation one needs to know the $s$-dependent ensemble-averaged total cross section, $\\Sigma_t(\\mu,s)$, or its corresponding path-length distribution function, $p(\\mu,s)$. We consider a 1-D spatially periodic system consisting of alternating solid and void layers, randomly placed in the $x$-axis. We obtain an analytical expression for $p(\\mu,s)$ and use this result to compute the corresponding $\\Sigma_t(\\mu,s)$. Then, we proceed to numerically solve the nonclassical equation for different test problems in rod geometry; that is, particles can move only in the directions $\\mu=\\pm 1$. To assess the accuracy of these solutions, we produce ...
Multiphoton quantum optics and quantum state engineering
Energy Technology Data Exchange (ETDEWEB)
Dell' Anno, Fabio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (Saudi Arabia) (Italy)]. E-mail: dellanno@sa.infn.it; De Siena, Silvio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: desiena@sa.infn.it; Illuminati, Fabrizio [Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, CNISM and CNR-INFM Coherentia, and INFN Sezione di Napoli, Gruppo Collegato di Salerno, Via S. Allende, I-84081 Baronissi (SA) (Italy)]. E-mail: illuminati@sa.infn.it
2006-05-15
We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms that are relevant for the conceptual investigations as well as for the practical applications of forefront aspects of modern quantum mechanics. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states, macroscopic superposition states, and multiphoton generalized coherent states. We introduce and discuss the structure of canonical multiphoton quantum optics and the associated one- and two-mode canonical multiphoton squeezed states. This framework provides a consistent multiphoton generalization of two-photon quantum optics and a consistent Hamiltonian description of multiphoton processes associated to higher-order nonlinearities. Finally, we discuss very recent advances that by combining linear and nonlinear optical devices allow to realize multiphoton entangled states of the electromagnetic field, either in discrete or in continuous variables, that are relevant for applications to efficient quantum computation, quantum teleportation, and related problems in quantum communication and information.
Linear Quantum Systems: Non-Classical States and Robust Stability
2016-06-29
linear models, and (v) physical realizability results for finite level quantum systems. Introduction : Classical linear systems theory has a...PAGE Unclassified REPORT DOCUMENTATION PAGE Form ApprovedOMB No. 0704-0188 The public reporting burden for this collection of information is estimated to...needed, and completing and reviewing the collection of information . Send comments regarding this burden estimate or any other aspect of this
Sala, Matthieu; Egorova, Dassia
2016-12-01
The multi-dimensional electronic spectroscopy of ultrafast nuclear dynamics at conical intersections (CI) is an emerging field of investigation, which profits also from the recent extension of the techniques to the UV domain. We present a detailed computational study of oscillatory signatures in two-dimensional (2D) photon-echo spectroscopy (also known as 2D electronic spectroscopy, 2DES) for the two-mode pyrazine model with dissipation. Conventional 2D signals as well as the resulting beating maps are considered. Although of a reduced character, the model captures quite well all the main signatures of the excited-state dynamics of the molecule. Due to the ultrafast relaxation via the CI and no excited-state absorption from the low-lying dark state, the oscillatory components of the signal are found to be predominantly determined by the ground state bleach contribution. They reflect, therefore, the ground-state vibrational coherence induced in the Raman active mode. Beating maps provide a way to experimentally differentiate between ground state bleach and stimulated emission oscillatory components. The ultrafast decay of the latter constitutes a clear indirect signature of the CI. In the considered model, because of the sign properties of the involved transition dipole moments, the dominance of the ground-state coherence leads to anti-correlated oscillations of cross peaks located at symmetric positions with respect to the main diagonal.
Electro-mechanical engineering of non-classical photon emissions from single quantum dots
Energy Technology Data Exchange (ETDEWEB)
Hoefer, Bianca; Zallo, Eugenio; Zhang, Jiaxiang; Ding, Fei; Schmidt, Oliver G. [Institute for Integrative Nanosciences, IFW-Dresden, Helmholtzstrasse 20, D-01069 Dresden (Germany); Trotta, Rinaldo; Rastelli, Armando [Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz (Austria)
2014-07-01
Indistinguishable photons and entangled photon pairs are the key elements for quantum information applications, for example, building a quantum repeater. Self-assembled semiconductor quantum dots (QDs) are promising candidates for the creation of such non-classical photon emissions, and offer the possibility to be integrated into solid state devices. However, due to the random nature of the self-assembled growth process, post-growth treatments are required to engineer the exciton state in the QDs (e.g. energies, exciton lifetimes, and fine structure splittings). In this work, we study the electro-mechanical engineering of the exciton lifetime, emission energy in the QDs, with the aim to produce single photons with higher indistinguishability. Also we present a recent experimental study on the statistical properties of fine structure splittings in the QD ensemble, in order to gain a deeper understanding of how to generate entangled photon pairs using semiconductor QDs.
El-Ganainy, Ramy; Christodoulides, Demetrios N
2013-01-01
We investigate the dynamics of nonclassical states of light in coupled optical structures and we demonstrate a number of intriguing features associated with such arrangements. By diagonalizing the system's Hamiltonian, we show that these geometries can support eigenstates having anomalous optical intensity distribution with no classical counterpart. These features may provide new avenues towards manipulating light flow at the quantum level. By projecting the Hamiltonian operator on Hilbert subspaces spanning different numbers of photon excitations, we demonstrate that processes such as coherent transport, state localization and surface Bloch oscillations can take place in Fock space. Furthermore, we show that Hamiltonian representations of Fock space manifolds differing by one photon obey a discrete supersymmetry relation
Nonclassical light from a large number of independent single-photon emitters
Lachman, Lukáš; Filip, Radim
2016-01-01
Nonclassical quantum effects gradually reach domains of physics of large systems previously considered as purely classical. We derive a hierarchy of operational criteria suitable for a reliable detection of nonclassicality of light from an arbitrarily large ensemble of independent single-photon emitters. We show, that such large ensemble can always emit nonclassical light without any phase reference and under realistic experimental conditions including incoherent background noise. The nonclassical light from the large ensemble of the emitters can be witnessed much better than light coming from a single or a few emitters.
TWO-MODE GALERKIN APPROACH IN DYNAMIC STABILITY ANALYSIS OF VISCOELASTIC PLATES
Institute of Scientific and Technical Information of China (English)
张能辉; 程昌钧
2003-01-01
The dynamic stability of viscoelastic thin plates with large deflections was investigated by using the largest Liapunov exponent analysis and other numerical and analytical dynamic methods. The material behavior was described in terms of the Boltzmann superposition principle. The Galerkin method was used to simplify the original integropartial-differential model into a two-mode approximate integral model, which further reduced to an ordinary differential model by introducing new variables. The dynamic properties of one-mode and two-mode truncated systems were numerically compared. The influence of viscoelastic properties of the material, the loading amplitude and the initial values on the dynamic behavior of the plate under in-plane periodic excitations was discussed.
Diamantopoulos, N. P.; Nakazawa, M.; Yoshida, Y.; Maruta, A.; Maruyama, R.; Kuwaki, N.; Matsuo, S.; Kitayama, K.
2015-11-01
Mode-division multiplexing (MDM) over wavelength division multiplexed (WDM) networks is studied, particularly for the deployment of metro area networks (MAN) using two-mode fibers (TMF). Full C-band differential mode group delay (DMGD)-compensated TMF links are adopted for decreasing the computational complexity of real-time multiple-input multiple-output (MIMO) signal processing. The effect of modal crosstalk to the maximum delay spread of the channel is validated through numerical simulations. Finally, the 2×2 MIMO channel state information (CSI) of a 102.6-km DMGD-compensated TMF link is experimentally estimated for mode path provisioning based upon routing and mode assignment (RMA) in MDM networks. The results confirm close-to-zero total DMGD value over the entire C-band.
Institute of Scientific and Technical Information of China (English)
Liu Xiao-Juan; Zhou Yuan-Jun; Fang Mao-Fa
2009-01-01
From the viewpoint of quantum information, this paper proposes a concept and a definition of the atomic optimal entropy squeezing sudden generation (AOESSG) for the system of an effective two-level moving atom which entangles with the two-mode coherent fields. It also researches the relationship between the AOESSG and entanglement sudden death of the atom-fields, and discusses the influences of atomic initial state on the AOESSG and obtains the system parameter which controls the AOESSG.
Vibration of Timoshenko Beams Using Non-classical Elasticity Theories
Directory of Open Access Journals (Sweden)
J.V. Araújo dos Santos
2012-01-01
Full Text Available This paper presents a comparison among classical elasticity, nonlocal elasticity, and modified couple stress theories for free vibration analysis of Timoshenko beams. A study of the influence of rotary inertia and nonlocal parameters on fundamental and higher natural frequencies is carried out. The nonlocal natural frequencies are found to be lower than the classical ones, while the natural frequencies estimated by the modified couple stress theory are higher. The modified couple stress theory results depend on the beam cross-sectional size while those of the nonlocal theory do not. Convergence of both non-classical theories to the classical theory is observed as the beam global dimension increases.
Continuous-wave non-classical light with GHz squeezing bandwidth
Ast, Stefan; Mehmet, Moritz; Steinlechner, Sebastian; Eberle, Tobias; Schnabel, Roman
2012-01-01
Squeezed states can be employed for entanglement-based continuous-variable quantum key distribution, where the secure key rate is proportional to the bandwidth of the squeezing. We produced a non-classical continuous-wave laser field at the telecommunication wavelength of 1550 nm, which showed squeezing over a bandwidth of more than 2 GHz. The experimental setup used parametric down-conversion via a periodically poled potassium titanyl phosphate crystal (PPKTP). We did not use any resonant enhancement for the funda- mental wavelength, which should in principle allow a production of squeezed light over the full phase-matching bandwidth of several nanometers. We measured the squeezing to be up to 0.3 dB below the vacuum noise from 50 MHz to 2 GHz limited by the measuring bandwidth of the homodyne detector. The squeezing strength was possibly limited by thermal lensing inside the non-linear crystal.
A nonclassical symbolic theory of working memory, mental computations, and mental set
Eliashberg, Victor
2009-01-01
The paper tackles four basic questions associated with human brain as a learning system. How can the brain learn to (1) mentally simulate different external memory aids, (2) perform, in principle, any mental computations using imaginary memory aids, (3) recall the real sensory and motor events and synthesize a combinatorial number of imaginary events, (4) dynamically change its mental set to match a combinatorial number of contexts? We propose a uniform answer to (1)-(4) based on the general postulate that the human neocortex processes symbolic information in a "nonclassical" way. Instead of manipulating symbols in a read/write memory, as the classical symbolic systems do, it manipulates the states of dynamical memory representing different temporary attributes of immovable symbolic structures stored in a long-term memory. The approach is formalized as the concept of E-machine. Intuitively, an E-machine is a system that deals mainly with characteristic functions representing subsets of memory pointers rather ...
Quantum nondemolition measurement with a nonclassical meter input and an electro-optic enhancement
DEFF Research Database (Denmark)
Andersen, Ulrik Lund; Buchler, B.C.; Bachor, H.A.
2002-01-01
Optical quantum nondemolition measurements are performed using a beamsplitter with a nonclassical meter input and a electro-optic feedforward loop. The nonclassical meter input is provided by a stable 4.5 dB amplitude squeezed source generated by an optical parametric amplifier. We show...
Transmission probability of the two-mode mazer with injected atomic coherence
Institute of Scientific and Technical Information of China (English)
袁春华; 张智明
2005-01-01
The transmission probability of the two-mode mazer injected with V-type three-level atoms is studied, and the effects of the atomic coherence on it are examined. It is shown that the atomic coherence can affect the transmission probability. In the plots of the atomic transmission probability versus the dimensionless centre-of-mass momentum, there are resonance peaks and non-resonance platforms. The heights of these resonance peaks and non-resonance platforms can be adjusted by the atomic coherence parameter and by the relative coupling strength of the two transition channels.
Heisenberg-Limited Qubit Read-Out with Two-Mode Squeezed Light.
Didier, Nicolas; Kamal, Archana; Oliver, William D; Blais, Alexandre; Clerk, Aashish A
2015-08-28
We show how to use two-mode squeezed light to exponentially enhance cavity-based dispersive qubit measurement. Our scheme enables true Heisenberg-limited scaling of the measurement, and crucially, it is not restricted to small dispersive couplings or unrealistically long measurement times. It involves coupling a qubit dispersively to two cavities and making use of a symmetry in the dynamics of joint cavity quadratures (a so-called quantum-mechanics-free subsystem). We discuss the basic scaling of the scheme and its robustness against imperfections, as well as a realistic implementation in circuit quantum electrodynamics.
Characterization of Rayleigh backscattering arising in various two-mode fibers.
Yu, Dawei; Fu, Songnian; Cao, Zizheng; Tang, Ming; Deng, Lei; Liu, Deming; Giles, Ian; Koonen, Ton; Okonkwo, Chigo
2016-05-30
We experimentally characterize the mode dependent characteristics of Rayleigh backscattering (RB) arising in various two-mode fibers (TMFs). With the help of an all-fiber photonic lantern, we are able to measure the RB power at individual modes. Consequently, mode dependent power distribution of RB light caused by arbitrary forward propagation mode superposition can be obtained. The total RB power of the TMFs under test is higher than that of single mode fiber by at least 2 dB over the C band. Meanwhile, the RB light occurs among all guided modes in the TMFs with specific power ratios. The experimental characterization agrees well with the theoretical calculations.
Assessing Two-Mode Semantic Network Story Representations Using a False Memory Paradigm
Corman, Steven R.; Ball, B. Hunter; Talboom, Kimberly M.; GENE A. BREWER
2013-01-01
This paper describes a novel method of representing semantic networks of stories (and other text) as a two-mode graph. This method has some advantages over traditional one-mode semantic networks, but has the potential drawback (shared with n-gram text networks) that it contains paths that are not present in the text. An empirical study was devised using a false memory paradigm to determine whether these induced paths are remembered as being true of a set of stories. Results indicate that part...
EFFECTS OF COLOURED NOISE IN A TWO-MODE LASER SYSTEM
Institute of Scientific and Technical Information of China (English)
罗晓琴; 朱士群; 高伟建
2001-01-01
A homogeneously broadened two-mode laser system with multiplicative coloured noise is investigated when the mode coupling constant ξ=2. An analytical result is obtained when two-dimensional decoupling theory is applied to the system. The intensity auto-correlation function and effective eigenvalue of the laser system are calculated when the difference of pump parameters, multiplicative noise strength and noise correlation time are varied. It is shown that the multiplicative noise can enhance the fluctuations while the noise colour can reduce the fluctuations in the laser system.
A robust and simple two-mode digital calibration technique for pipelined ADC
Institute of Scientific and Technical Information of China (English)
Yin Xiumei; Zhao Nan; Sekedi Bomeh Kobenge; Yang Huazhong
2011-01-01
This paper presents a two-mode digital calibration technique for pipelined analog-to-digital converters (ADC).The proposed calibration eliminates the errors of residual difference voltage induced by capacitor mismatch of pseudorandom (PN) sequence injection capacitors at the ADC initialization,while applies digital background calibration to continuously compensate the interstage gain errors in ADC normal operation.The presented technique not only reduces the complexity of analog circuit by eliminating the implementation of PN sequence with accurate amplitude in analog domain,but also improves the performance of digital background calibration by minimizing the sensitivity of calibration accuracy to sub-ADC errors.The use ofopamps with low DC gains in normal operation makes the proposed design more compatible with future nanometer CMOS technology.The prototype of a 12-bit 40-MS/s pipelined ADC with the two-mode digital calibration is implemented in 0.18-μm CMOS process.Adopting a simple telescopic opamp with a DC gain of 58-dB in the first stage,the measured SFDR and SNDR within the first Nyquist zone reach 80-dB and 66-dB,respectively.With the calibration,the maximum integral nonlinearity (INL) of the ADC reduces from 4.75-LSB to 0.65-LSB,while the ADC core consumes 82-mW at 3.3-V power supply.
A robust and simple two-mode digital calibration technique for pipelined ADC
Energy Technology Data Exchange (ETDEWEB)
Yin Xiumei; Zhao Nan; Sekedi Bomeh Kobenge; Yang Huazhong, E-mail: yxm@mails.tsinghua.edu.cn [Department of Electronic Engineering, Tsinghua University, Beijing 100084 (China)
2011-03-15
This paper presents a two-mode digital calibration technique for pipelined analog-to-digital converters (ADC). The proposed calibration eliminates the errors of residual difference voltage induced by capacitor mismatch of pseudorandom (PN) sequence injection capacitors at the ADC initialization, while applies digital background calibration to continuously compensate the interstage gain errors in ADC normal operation. The presented technique not only reduces the complexity of analog circuit by eliminating the implementation of PN sequence with accurate amplitude in analog domain, but also improves the performance of digital background calibration by minimizing the sensitivity of calibration accuracy to sub-ADC errors. The use of opamps with low DC gains in normal operation makes the proposed design more compatible with future nanometer CMOS technology. The prototype of a 12-bit 40-MS/s pipelined ADC with the two-mode digital calibration is implemented in 0.18-{mu}m CMOS process. Adopting a simple telescopic opamp with a DC gain of 58-dB in the first stage, the measured SFDR and SNDR within the first Nyquist zone reach 80-dB and 66-dB, respectively. With the calibration, the maximum integral nonlinearity (INL) of the ADC reduces from 4.75-LSB to 0.65-LSB, while the ADC core consumes 82-mW at 3.3-V power supply. (semiconductor integrated circuits)
A robust and simple two-mode digital calibration technique for pipelined ADC
Xiumei, Yin; Nan, Zhao; Bomeh Kobenge, Sekedi; Huazhong, Yang
2011-03-01
This paper presents a two-mode digital calibration technique for pipelined analog-to-digital converters (ADC). The proposed calibration eliminates the errors of residual difference voltage induced by capacitor mismatch of pseudorandom (PN) sequence injection capacitors at the ADC initialization, while applies digital background calibration to continuously compensate the interstage gain errors in ADC normal operation. The presented technique not only reduces the complexity of analog circuit by eliminating the implementation of PN sequence with accurate amplitude in analog domain, but also improves the performance of digital background calibration by minimizing the sensitivity of calibration accuracy to sub-ADC errors. The use of opamps with low DC gains in normal operation makes the proposed design more compatible with future nanometer CMOS technology. The prototype of a 12-bit 40-MS/s pipelined ADC with the two-mode digital calibration is implemented in 0.18-μm CMOS process. Adopting a simple telescopic opamp with a DC gain of 58-dB in the first stage, the measured SFDR and SNDR within the first Nyquist zone reach 80-dB and 66-dB, respectively. With the calibration, the maximum integral nonlinearity (INL) of the ADC reduces from 4.75-LSB to 0.65-LSB, while the ADC core consumes 82-mW at 3.3-V power supply.
Haghshenasfard, Zahra; Cottam, Michael G
2017-03-20
A microscopic (Hamiltonian-based) method for the quantum statistics of bosonic excitations in a two-mode magnon system is developed. Both the exchange and the dipole-dipole interactions, as well as the Zeeman term for an external applied field, are included in the spin Hamiltonian, and the model also contains the nonlinear effects due to parallel pumping and four-magnon interactions. The quantization of spin operators is achieved through the Holstein-Primakoff formalism, and then a coherent magnon state representation is used to study the occupation magnon number and the quantum statistical behaviour of the system. Particular attention is given to the cross correlation between the two coupled magnon modes in a ferromagnetic nanowire geometry formed by two lines of spins. Manipulation of the collapse-and-revival phenomena for the temporal evolution of the magnon number as well as the control of the cross correlation between the two magnon modes is demonstrated by tuning the parallel pumping field amplitude. The role of the four-magnon interactions is particularly interesting and leads to anti-correlation in some cases with coherent states.
Electromagnetically induced transparency and slow light in two-mode optomechanics
Jiang, Cheng; Cui, Yuanshun; Li, Xiaowei
2013-01-01
We theoretically demonstrate the mechanically mediated electromagnetically induced transparency in a two-mode cavity optomechanical system, where two cavity modes are coupled to a common mechanical resonator. When the two cavity modes are driven on their respective red sidebands by two pump beams, a transparency window appears in the probe transmission spectrum due to destructive interference. Under this situation the transmitted probe beam can be delayed as much as 4 us, which can be easily controlled by the power of the pump beams. In addition, we also investigate the amplification of the transmitted probe beam owing to constructive interference when one cavity is driven on its blue sideband while another one is driven on its red sideband.
Two modes of change in Southern Ocean productivity over the past million years.
Jaccard, S L; Hayes, C T; Martínez-García, A; Hodell, D A; Anderson, R F; Sigman, D M; Haug, G H
2013-03-22
Export of organic carbon from surface waters of the Antarctic Zone of the Southern Ocean decreased during the last ice age, coinciding with declining atmospheric carbon dioxide (CO(2)) concentrations, signaling reduced exchange of CO(2) between the ocean interior and the atmosphere. In contrast, in the Subantarctic Zone, export production increased into ice ages coinciding with rising dust fluxes, thus suggesting iron fertilization of subantarctic phytoplankton. Here, a new high-resolution productivity record from the Antarctic Zone is compiled with parallel subantarctic data over the past million years. Together, they fit the view that the combination of these two modes of Southern Ocean change determines the temporal structure of the glacial-interglacial atmospheric CO(2) record, including during the interval of "lukewarm" interglacials between 450 and 800 thousand years ago.
Sensor applications of two-mode fiber in the Michelson interferometer configuration
Hlubina, Petr; Prochazka, Pavel
1994-11-01
The classical coherence formalism and guided-mode field representation is used to discuss the operation of few-mode fiber waveguide excited by a low-coherence, cross-spectrally pure, spatially coherent source in Michelson interferometer configuration as a sensor, even if a suppressed interference pattern at its exit face exists. In the case of a low- coherence excitation of few-mode fiber waveguide the principle of coherence modulation can be used, that is, the optical path difference between guided modes that exceeds the source coherence length can be compensated in Michelson interferometer configuration. The analysis of temporal coherence in a particular case of two-mode, weakly-guiding, step-index fiber waveguide takes also into consideration the effect of second-order modal dispersion; the potential applications to low- coherence source based interferometric sensors are discussed.
Inter-modal four-wave mixing study in a two-mode fiber.
Friis, S M M; Begleris, I; Jung, Y; Rottwitt, K; Petropoulos, P; Richardson, D J; Horak, P; Parmigiani, F
2016-12-26
We demonstrate efficient four-wave mixing among different spatial modes in a 1-km long two-mode fiber at telecommunication wavelengths. Two pumps excite the LP01 and LP11 modes, respectively, while the probe signal excites the LP01 mode, and the phase conjugation (PC) and Bragg scattering (BS) idlers are generated in the LP11 mode. For these processes we experimentally characterize their phase matching efficiency and bandwidth and find that they depend critically on the wavelength separation of the two pumps, in good agreement with the numerical study we carried out. We also confirm experimentally that BS has a larger bandwidth than PC for the optimum choice of the pump wavelength separation.
Wavelength Dependence of the Polarization Singularities in a Two-Mode Optical Fiber
Directory of Open Access Journals (Sweden)
V. V. G. Krishna Inavalli
2012-01-01
Full Text Available We present here an experimental demonstration of the wavelength dependence of the polarization singularities due to linear combination of the vector modes excited directly in a two-mode optical fiber. The coherent superposition of the vector modes excited by linearly polarized Gaussian beam as offset skew rays propagated in a helical path inside the fiber results in the generation of phase singular beams with edge dislocation in the fiber output. The polarization character of these beams is found to change dramatically with wavelength—from left-handed elliptically polarized edge dislocation to right-handed elliptically polarized edge-dislocation through disclinations. The measured behaviour is understood as being due to intermodal dispersion of the polarization corrections to the propagating vector modes, as the wavelength of the input beam is scanned.
Two-mode model for metal-dielectric guided-mode resonance filters.
Tuambilangana, Christelle; Pardo, Fabrice; Sakat, Emilie; Bouchon, Patrick; Pelouard, Jean-Luc; Haïdar, Riad
2015-12-14
Symmetric metal-dielectric guided-mode resonators (GMR) can operate as infrared band-pass filters, thanks to high-transmission resonant peaks and good rejection ratio. Starting from matrix formalism, we show that the behavior of the system can be described by a two-mode model. This model reduces to a scalar formula and the GMR is described as the combination of two independent Fabry-Perot resonators. The formalism has then been applied to the case of asymmetric GMR, in order to restore the properties of the symmetric system. This result allows designing GMR-on-substrate as efficient as free-standing systems, the same high transmission maximum value and high quality factor being conserved.
Relaxation Process of Interacting Two-mode System Influenced by Markovian Thermal Reservoirs
Ban, Masashi
2016-11-01
Two different models of a relaxation process are considered for a linearly interacting two-mode system under the influence of independent Markovian thermal reservoirs. One is to describe the relaxation process of bare particles and the other is to describe the one of quasi particles which are derived from bare particles by the Bogoliubov transformation. The difference is that the former does not includes the effect of the inter-mode interaction on the damping operator while the latter does. The equations of motion are solved algebraically by making use of non-equilibrium thermo field dynamics. The relaxation processes in the two models are investigated in detail. The results are applied for investigating a non-ideal beam splitter with photon loss and noise addition.
Crosstalk analysis in homogeneous multi-core two-mode fiber under bent condition.
Chang, J H; Choi, H G; Bae, S H; Sim, D H; Kim, Hoon; Chung, Y C
2015-04-20
We analyze the inter-core crosstalk in homogeneous multi-core two-mode fibers (MC-TMFs) under bent condition by using the coupled-mode equations. In particular, we investigate the effects of the intra-core mode coupling on the inter-core crosstalk for two different types of MC-TMFs at various bending radii. The results show that the inter-core homo-mode crosstalk of LP(11) mode is dominant under the gentle fiber bending condition due to its large effective area. However, as the fiber bending becomes tight, the intra-core mode coupling is significantly enhanced and consequently makes all the inter-core crosstalk levels comparable to each other regardless of the mode. A similar tendency is observed at a reduced bending radius when the difference in the propagation constants between modes is large and core pitch is small.
Non-classical radiation emission by a coherent conductor
Forgues, Jean-Charles; Gasse, Gabriel; Lupien, Christian; Reulet, Bertrand
2016-08-01
We report experimental evidence that the microwave electromagnetic field generated by a normal conductor, here a tunnel junction placed at ultra-low temperature, can be non-classical. By measuring the quadratures of the electromagnetic field at one or two frequencies in the GHz range, we demonstrate the existence of squeezing as well as entanglement in such radiation. In one experiment, we observe that the variance of one quadrature of the photo-assisted noise generated by the junction goes below its vacuum level. In the second experiment, we demonstrate the existence of correlations between the quadratures taken at two frequencies, which can be stronger than allowed by classical mechanics, proving that the radiation at those two frequencies are entangled. xml:lang="fr"
Nonclassical congenital adrenal hyperplasia: targets of treatment and transition.
McCann-Crosby, Bonnie; Chen, Min-Jye; Lyons, Sarah K; Lin, Yuezhen; Axelrad, Marni; Dietrich, Jennifer E; Sutton, V Reid; Macias, Charles G; Gunn, Sheila; Karaviti, Lefkothea
2014-12-01
Nonclassical congenital adrenal hyperplasia (NCCAH) caused by 21-hydroxylase deficiency is a common autosomal recessive condition that can present with a wide range of hyperandrogenemic signs in childhood or adulthood. The management of children with NCCAH can be challenging, as no universally accepted guidelines have been established. Our goal was to evaluate the literature and develop an evidence-based guideline for the medical management of children and adolescents with NCCAH. We reviewed the published literature and used the Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) system when appropriate to grade the evidence and provide recommendations for the medical management of children and adolescents with NCCAH, appropriate transition practices from pediatric to adult endocrine care, and psychological issues that should be addressed in parents and patients with NCCAH. We offer recommendations, based on the available evidence, for the management of NCCAH at the different developmental stages from diagnosis through transition to adulthood.
Dynamics of stochastic nonclassical diffusion equations on unbounded domains
Directory of Open Access Journals (Sweden)
Wenqiang Zhao
2015-11-01
Full Text Available This article concerns the dynamics of stochastic nonclassical diffusion equation on $\\mathbb{R}^N$ perturbed by a $\\epsilon$-random term, where $\\epsilon\\in(0,1]$ is the intension of noise. By using an energy approach, we prove the asymptotic compactness of the associated random dynamical system, and then the existence of random attractors in $H^1(\\mathbb{R}^N$. Finally, we show the upper semi-continuity of random attractors at $\\epsilon=0$ in the sense of Hausdorff semi-metric in $H^1(\\mathbb{R}^N$, which implies that the obtained family of random attractors indexed by $\\epsilon$ converge to a deterministic attractor as $\\epsilon$ vanishes.
Observations on non-classical behavior of solid 4He with compound torsional oscillator
Keiderling, M. C.; Aoki, Y.; Kojima, H.
2009-02-01
The response of oscillating hcp solid 4He samples was studied with a unique compound torsional oscillator a dummy mass and a sample (cylindrical or annular) container connected by two torsion rods. Identical solid sample could be probed within the same apparatus at two different frequencies (~ 0.5 and 1.2 kHz) separately or simultaneously. The apparent onset of the non-classical rotational inertia (NCRI) occurred at a higher temperature in the higher frequency mode. The peak in dissipation of the higher mode also occurred at higher temperature. Surprisingly, the mechanical dissipation was significantly greater in the lower mode. When the lower mode was driven at high levels to induce "critical state" in the sample and the higher mode was simultaneously driven at a low level for probing, the critical state seen in the lower mode did not entirely appear. Conversely, if a critical state was induced by the higher mode, it also did not appear in the lower mode. These preliminary results are contrary to the simple expectation from identifying the critical state as indication of suppressed superfluid density.
Abdel-Khalek, S.; Berrada, K.; Alkhateeb, Sadah A.
2016-09-01
In this paper, we propose a useful quantum system to perform different tasks of quantum information and computational technologies. We explore the required optimal conditions for this system that are feasible with real experimental realization. We present an active way to control the variation of some measures of nonclassicality considering the time-dependent coupling and photon transition effects under a model that closely describes a realistic experimental scenario. We investigate qualitatively the quantum measures for a two-level atom system interacting with a quantum field initially defined in a coherent state in the framework of power-law potentials (PLPCSs). We study the nonlocal correlation in the whole system state using the negativity as a measure of entanglement in terms of the exponent parameter, number of photon transition, and phase damping effect. The influences of the different physical parameters on the statistical properties and purity of the field are also demonstrated during the time evolution. The results indicate that the preservation and enhancement of entanglement greatly benefit from the combination of the choice of the physical parameters. Finally, we explore an interesting relationship between the different quantum measures of non-classicality during the time evolution in the absence and presence of time-dependent coupling effect.
Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence
Institute of Scientific and Technical Information of China (English)
Zhang Jian; Shao Bin; Zou Jian
2009-01-01
In this paper,we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling.We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially.The effects of the field squeezing factor,the two-level atomic transition frequency,the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed.Without intrinsic decoherence,the increase of field squeezing factor can break the entropy squeezing.The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing.The influence of the second field frequency is complicated.With the intrinsic decoherence taken into consideration,the results show that the stronger the intrinsic decoherence is,the more quickly the entropy squeezing will disappear.The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing.
Exact diagonalization of non-Hermitian so(3,2) models: Generalized two-mode boson systems
Zhang, Hong-Biao; Wang, Gangcheng
2016-12-01
We propose a unified approach to exactly diagonalize generalized non-Hermitian so(3,2) models. This approach is a series of similarity transformations, which is constructed by some similarity transformation operators associated with su(1,1) and su(2) subalgebras of so(3,2) Lie algebra. During this diagonalization, it is worth noting that a key step is to get rid of the terms E ˆ ± and F ˆ ± together via the proper similarity transformations first. In this way, exact solutions of the non-Hermitian so(3,2) models are obtained. Meanwhile we give the corresponding eigenstates, which are regarded as Lie algebra so(3,2) coherent-like number states. The results can cover the generic form of the eigenvalues and eigenstates to the generalized non-Hermitian two-mode boson systems with the discrete spectrum, including 2D PT-symmetric and non-PT-symmetric oscillators as the special cases. Also they are true for the Hermitian case.
Institute of Scientific and Technical Information of China (English)
YUAN Qing-Hui; ZHOU Li-Xin
2007-01-01
In the present work, the hydrolysis process of non-classical transplatin(Ⅱ) with two same planar heterocycle amines has been studied using hybrid density functional theory (B3LYP) and IEF-PCM solvation models. Optimizations were performed at the B3LYP level using a combined basis set of (LanL2DZ+6-31+G(d,p)) with single-point energy evaluations using the B3LYP/6-31++G(3df,2pd) approach in vacuo and in aqueous solution. For the obtained structures of reactants, intermediates, transition states, and products, both thermodynamic (reaction energies and Gibbs energies) and kinetic (reaction barriers) characteristics were estimated. In comparison with cisplatin, decreased activation energies were obtained. The result implies that the non-classical transplatin with two same planar heterocycle amines increases the equatorial steric effect and lowers reaction barriers, which may assist in designing novel Pt-based anticancer drugs.
Materials with complex behaviour II properties, non-classical materials and new technologies
Oechsner, Andreas
2012-01-01
This book reviews developments and trends in advanced materials and their properties; modeling and simulation of non-classical materials and new technologies for joining materials. Offers tools for characterizing and predicting properties and behavior.
Directory of Open Access Journals (Sweden)
Abdelfatah Bouziani
2010-01-01
the weak solvability of parabolic integrodifferential equations with a nonclassical boundary conditions. The investigation is made by means of approximation by the Rothes method which is based on a semidiscretization of the given problem with respect to the time variable.
Protein-Phospholipid Interactions in Nonclassical Protein Secretion: Problem and Methods of Study
Directory of Open Access Journals (Sweden)
David Neivandt
2013-02-01
Full Text Available Extracellular proteins devoid of signal peptides use nonclassical secretion mechanisms for their export. These mechanisms are independent of the endoplasmic reticulum and Golgi. Some nonclassically released proteins, particularly fibroblast growth factors (FGF 1 and 2, are exported as a result of their direct translocation through the cell membrane. This process requires specific interactions of released proteins with membrane phospholipids. In this review written by a cell biologist, a structural biologist and two membrane engineers, we discuss the following subjects: (i Phenomenon of nonclassical protein release and its biological significance; (ii Composition of the FGF1 multiprotein release complex (MRC; (iii The relationship between FGF1 export and acidic phospholipid externalization; (iv Interactions of FGF1 MRC components with acidic phospholipids; (v Methods to study the transmembrane translocation of proteins; (vi Membrane models to study nonclassical protein release.
Tomography of binomial states of the radiation field
Bazrafkan, MR; Man'ko, [No Value
2004-01-01
The symplectic, optical, and photon-number tomographic symbols of binomial states of the radiation field are studied. Explicit relations for all tomograms of the binomial states are obtained. Two measures for nonclassical properties of these states are discussed.
Tomography of binomial states of the radiation field
Bazrafkan, MR; Man'ko, [No Value
2004-01-01
The symplectic, optical, and photon-number tomographic symbols of binomial states of the radiation field are studied. Explicit relations for all tomograms of the binomial states are obtained. Two measures for nonclassical properties of these states are discussed.
Nonclassical Photon Pairs Generated from a Room-temperature Atomic Ensemble
Institute of Scientific and Technical Information of China (English)
JIANG Wei; HAN Chao; XUE Peng; DUAN L M; GUO G C
2004-01-01
@@ We report experimental generation of non-classically correlated photon pairs from collective emission in a room temperature atomic vapor cell.The nonclassical feature of the emission is demonstrated by observing a violation of the Cauchy-Schwarz inequality.Each pair of correlated photons are separated by a controllable time delay up to 2 microseconds.This experiment demonstrates an important step towards the realization of the Duan-Lukin-Cirac-Zoller scheme for scalable long-distance quantum communication.
Feasibility of two modes of treatment delivery for child anxiety in primary care.
Chavira, Denise A; Drahota, Amy; Garland, Ann F; Roesch, Scott; Garcia, Maritza; Stein, Murray B
2014-09-01
In this study, we examine the feasibility of cognitive behavior therapy (CBT) for children with anxiety in primary care, using two modes of treatment delivery. A total of 48 parents and youth (8-13) with anxiety disorders were randomly assigned to receive 10-sessions of CBT either delivered by a child anxiety specialist in the primary care clinic or implemented by the parent with therapist support by telephone (i.e., face-to-face or therapist-supported bibliotherapy). Feasibility outcomes including satisfaction, barriers to treatment participation, safety, and dropout were assessed. Independent evaluators, blind to treatment condition, administered the Anxiety Disorders Interview Schedule for Children (ADIS) and the Clinical Global Impression of Improvement (CGI-I) at baseline, post-treatment and 3-month follow-up; clinical self-report questionnaires were also administered. Findings revealed high satisfaction, low endorsement of barriers, low drop out rates, and no adverse events across the two modalities. According to the CGI-I, 58.3%-75% of participants were considered responders (i.e., much or very much improved) at the various time points. Similar patterns were found for remission from "primary anxiety disorder" and "all anxiety disorders" as defined by the ADIS. Clinically significant improvement was seen on the various parent and child self-report measures of anxiety. Findings suggest that both therapy modalities are feasible and associated with significant treatment gains in the primary care setting. (clinicaltrials.gov unique identifier: NCT00769925).
Postprandial lipoprotein profile in two modes of high-intensity intermittent exercise
Panissa, Valéria Leme Gonçalves; Julio, Ursula Ferreira; Diniz, Tiego Aparecido; de Moura Mello Antunes, Barbara; Lira, Fabio Santos; Takito, Monica Yuri; Franchini, Emerson
2016-01-01
The aim of present study was to compare blood lipid postprandial profile response in two modes of high-intensity intermittent exercise. Twelve individuals (6 men and 6 women) were submitted to a maximal incremental test (to determine maximal aerobic power [MAP] and V. O2peak [peak oxygen uptake]), high-intensity intermittent all-out exercise (60×8-sec bouts interspersed by 12-sec passive recovery) and fixed high-intensity intermittent exercise (100% maximal aerobic speed, consisted of 1-min repetitions at MAP [70 rpm] separated by 1-min of passive recovery). Blood samples were collected pre, immediately, 45 and 90-min postexercise. Serum was analyzed for total cholesterol and its ratio, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), very low-density lipoprotein (VLDL) cholesterol, and triacylglycerol (TAG). For TAG there was a main effect of moment with higher values immediately postexercise compared to 45-min postexercise. For VLDL there was a main effect to moment with higher values immediately post exercise than pre and 45-min postexercise; higher values 90-min postexercise than 45-min postexercise. There was no effect for HDL-c, LDL-c, and cholesterol. For area under the curve there was no difference for any variable. Our results indicated that both kinds of acute exercise session lead to no improvement in the acute response of serum lipid profile of healthy young. PMID:27807528
Chen, Tsun-Hsu; Wang, Hsin-Hu; Hsu, Yu-Hsiang; Lee, Chih-Kung
2016-03-01
In comparison to more developed optical method for microparticle manipulation like optical tweezers, an optopiezoelectric actuating system could provide force output that is several orders higher. Taking advantages of photoconductive materials, the concept of integrating a virtual electrode in a distributed opto-piezoelectric actuators was developed for real-time in-situ spatial tailoring for vast varieties of applications in biochips, smart structures, etc. In this study, photoconductive material titanium oxide phthalocyanine (TiOPc) was used as the active ingredient to enable the virtual electrode in an opto-piezoelectric material based distributed actuator. By illuminating light of proper wavelength and enough intensity onto TiOPc photoconductive material, the effective impedance of the illuminated portion of TiOPc could drop significantly. The contributions of using additives in the TiOPc photoconductive electrode to adjust the electrical properties was investigated for optimization. Further, the two-mode excited linear ultrasonic motor was also studied and the feasibility to integrate the TiOPc photoconductive electrode was discussed. The flexibility provided by this newly developed system could potential deliver versatile performance in biochip applications.
Two modes of release shape the postsynaptic response at the inner hair cell ribbon synapse.
Grant, Lisa; Yi, Eunyoung; Glowatzki, Elisabeth
2010-03-24
Cochlear inner hair cells (IHCs) convert sounds into receptor potentials and via their ribbon synapses into firing rates in auditory nerve fibers. Multivesicular release at individual IHC ribbon synapses activates AMPA-mediated EPSCs with widely ranging amplitudes. The underlying mechanisms and specific role for multivesicular release in encoding sound are not well understood. Here we characterize the waveforms of individual EPSCs recorded from afferent boutons contacting IHCs and compare their characteristics in immature rats (postnatal days 8-11) and hearing rats (postnatal days 19-21). Two types of EPSC waveforms were found in every recording: monophasic EPSCs, with sharp rising phases and monoexponential decays, and multiphasic EPSCs, exhibiting inflections on rising and decaying phases. Multiphasic EPSCs exhibited slower rise times and smaller amplitudes than monophasic EPSCs. Both types of EPSCs had comparable charge transfers, suggesting that they were activated by the release of similar numbers of vesicles, which for multiphasic EPSCs occurred in a less coordinated manner. On average, a higher proportion of larger, monophasic EPSCs was found in hearing compared to immature rats. In addition, EPSCs became significantly faster with age. The developmental increase in size and speed could improve auditory signaling acuity. Multiphasic EPSCs persisted in hearing animals, in some fibers constituting half of the EPSCs. The proportion of monophasic versus multiphasic EPSCs varied widely across fibers, resulting in marked heterogeneity of amplitude distributions. We propose that the relative contribution of two modes of multivesicular release, generating monophasic and multiphasic EPSCs, may underlie fundamental characteristics of auditory nerve fibers.
Quantitative characterization of non-classic polarization of cations on clay aggregate stability.
Directory of Open Access Journals (Sweden)
Feinan Hu
Full Text Available Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+ at concentrations from10-5 to 10-1 mol L-1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation-surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability.
Forneris, Jacopo; Traina, Paolo; Monticone, Daniele Gatto; Amato, Giampiero; Boarino, Luca; Brida, Giorgio; Degiovanni, Ivo P; Enrico, Emanuele; Moreva, Ekaterina; Grilj, Veljko; Skukan, Natko; Jakšić, Milko; Genovese, Marco; Olivero, Paolo
2015-10-29
Focused MeV ion beams with micrometric resolution are suitable tools for the direct writing of conductive graphitic channels buried in an insulating diamond bulk, as already demonstrated for different device applications. In this work we apply this fabrication method to the electrical excitation of color centers in diamond, demonstrating the potential of electrical stimulation in diamond-based single-photon sources. Differently from optically-stimulated light emission from color centers in diamond, electroluminescence (EL) requires a high current flowing in the diamond subgap states between the electrodes. With this purpose, buried graphitic electrode pairs, 10 μm spaced, were fabricated in the bulk of a single-crystal diamond sample using a 6 MeV C microbeam. The electrical characterization of the structure showed a significant current injection above an effective voltage threshold of 150 V, which enabled the stimulation of a stable EL emission. The EL imaging allowed to identify the electroluminescent regions and the residual vacancy distribution associated with the fabrication technique. Measurements evidenced isolated electroluminescent spots where non-classical light emission in the 560-700 nm spectral range was observed. The spectral and auto-correlation features of the EL emission were investigated to qualify the non-classical properties of the color centers.
A non-classical assembly pathway of Escherichia coli pore-forming toxin cytolysin A.
Fahie, Monifa; Romano, Fabian B; Chisholm, Christina; Heuck, Alejandro P; Zbinden, Mark; Chen, Min
2013-10-25
Cytolysin A (ClyA) is an α-pore forming toxin from pathogenic Escherichia coli (E. coli) and Salmonella enterica. Here, we report that E. coli ClyA assembles into an oligomeric structure in solution in the absence of either bilayer membranes or detergents at physiological temperature. These oligomers can rearrange to create transmembrane pores when in contact with detergents or biological membranes. Intrinsic fluorescence measurements revealed that oligomers adopted an intermediate state found during the transition between monomer and transmembrane pore. These results indicate that the water-soluble oligomer represents a prepore intermediate state. Furthermore, we show that ClyA does not form transmembrane pores on E. coli lipid membranes. Because ClyA is delivered to the target host cell in an oligomeric conformation within outer membrane vesicles (OMVs), our findings suggest ClyA forms a prepore oligomeric structure independently of the lipid membrane within the OMV. The proposed model for ClyA represents a non-classical pathway to attack eukaryotic host cells.
非经典Ekman方程的解和演化条件%The Developing Conditions and Solutions of Non-classical Ekman's Equation
Institute of Scientific and Technical Information of China (English)
林振山
2003-01-01
An approximate equation of non-classical Ekman's flow and stochastic equations about Ekman's flow are set up in this paper.The developing conditions,solutions and the frequency response of the non-classical Ekman's flow are studied.The results show that the non-classicalEkman's flow will develop when the classical Ekman's flow shear is large enough and the non-classical Ekman's flow will tend to the most probable state (Us,Vs) or to (-fVe,fUe),respectively,in a similar condition or in a general condition.%建立了一个Ekman边界层的随机方程和非经典Ekman方程,研究了非经典Ekman流的频率响应、解和演化条件.有关研究结果表明,当经典Ekman流的切变足够大时,非经典Ekman流将发展起来,而且在相似条件和普适条件下,非经典Ekman流将分别朝最可几态(Us,Vs)或(-fVe,fU2)演化.
Multi-crack imaging using nonclassical nonlinear acoustic method
Zhang, Lue; Zhang, Ying; Liu, Xiao-Zhou; Gong, Xiu-Fen
2014-10-01
Solid materials with cracks exhibit the nonclassical nonlinear acoustical behavior. The micro-defects in solid materials can be detected by nonlinear elastic wave spectroscopy (NEWS) method with a time-reversal (TR) mirror. While defects lie in viscoelastic solid material with different distances from one another, the nonlinear and hysteretic stress—strain relation is established with Preisach—Mayergoyz (PM) model in crack zone. Pulse inversion (PI) and TR methods are used in numerical simulation and defect locations can be determined from images obtained by the maximum value. Since false-positive defects might appear and degrade the imaging when the defects are located quite closely, the maximum value imaging with a time window is introduced to analyze how defects affect each other and how the fake one occurs. Furthermore, NEWS-TR-NEWS method is put forward to improve NEWS-TR scheme, with another forward propagation (NEWS) added to the existing phases (NEWS and TR). In the added phase, scanner locations are determined by locations of all defects imaged in previous phases, so that whether an imaged defect is real can be deduced. NEWS-TR-NEWS method is proved to be effective to distinguish real defects from the false-positive ones. Moreover, it is also helpful to detect the crack that is weaker than others during imaging procedure.
Rodent Models of Non-classical Progesterone Action Regulating Ovulation
Directory of Open Access Journals (Sweden)
Melinda A. Mittelman-Smith
2017-07-01
Full Text Available It is becoming clear that steroid hormones act not only by binding to nuclear receptors that associate with specific response elements in the nucleus but also by binding to receptors on the cell membrane. In this newly discovered manner, steroid hormones can initiate intracellular signaling cascades which elicit rapid effects such as release of internal calcium stores and activation of kinases. We have learned much about the translocation and signaling of steroid hormone receptors from investigations into estrogen receptor α, which can be trafficked to, and signal from, the cell membrane. It is now clear that progesterone (P4 can also elicit effects that cannot be exclusively explained by transcriptional changes. Similar to E2 and its receptors, P4 can initiate signaling at the cell membrane, both through progesterone receptor and via a host of newly discovered membrane receptors (e.g., membrane progesterone receptors, progesterone receptor membrane components. This review discusses the parallels between neurotransmitter-like E2 action and the more recently investigated non-classical P4 signaling, in the context of reproductive behaviors in the rodent.
Non-classical export of an adenovirus structural protein.
Trotman, Lloyd C; Achermann, Dominik P; Keller, Stephan; Straub, Monika; Greber, Urs F
2003-06-01
The icosahedral capsids of Adenoviruses (Ads) consist of the hexon and stabilizing proteins building the facettes, and of the vertex protein penton base (Pb) anchoring the protruding fibers. The fibers bind to the Coxsackie virus B Ad cell surface receptor (CAR) and Pb to integrins. Here we describe a novel property of the Ad2 Pb. Pb was found to leave the infected cell and, upon exit, it attached to the surrounding noninfected cells forming a radial gradient with highest Pb levels on cells adjacent to the infected cell. The producer cells remained intact until at least 30 h post infection. At this point, Pb was not recovered from the extracellular medium, suggesting that its cell-cell spread might not involve free Pb. When viral particles were released at late stages of infection, soluble Pb was found in the extracellular medium and it randomly bound to noninfected cells. Nonlytic export of Pb occurred upon transient transfection with plasmid DNA, but plasmid-encoded fiber was not exported, indicating that cell-cell spread of Pb is autonomous of infection. Pb export was not affected by Brefeldin A-induced disruption of the Golgi apparatus, suggesting that it occurred via a nonclassical mechanism. Interestingly, the coexpression of Pb and fiber leads to both Pb and fiber export, termed 'protein abduction'. We suggest that fiber abduction might support viral dissemination in infected tissues by interfering with tissue integrity.
Non-classical method of modelling of vibrating mechatronic systems
Białas, K.; Buchacz, A.
2016-08-01
This work presents non-classical method of modelling of mechatronic systems by using polar graphs. The use of such a method enables the analysis and synthesis of mechatronic systems irrespective of the type and number of the elements of such a system. The method id connected with algebra of structural numbers. The purpose of this paper is also introduces synthesis of mechatronic system which is the reverse task of dynamics. The result of synthesis is obtaining system meeting the defined requirements. This approach is understood as design of mechatronic systems. The synthesis may also be applied to modify the already existing systems in order to achieve a desired result. The system was consisted from mechanical and electrical elements. Electrical elements were used as subsystem reducing unwanted vibration of mechanical system. The majority of vibration occurring in devices and machines is harmful and has a disadvantageous effect on their condition. Harmful impact of vibration is caused by the occurrence of increased stresses and the loss of energy, which results in faster wear machinery. Vibration, particularly low-frequency vibration, also has a negative influence on the human organism. For this reason many scientists in various research centres conduct research aimed at the reduction or total elimination of vibration.
Two modes of cell death caused by exposure to nanosecond pulsed electric field.
Directory of Open Access Journals (Sweden)
Olga N Pakhomova
Full Text Available High-amplitude electric pulses of nanosecond duration, also known as nanosecond pulsed electric field (nsPEF, are a novel modality with promising applications for cell stimulation and tissue ablation. However, key mechanisms responsible for the cytotoxicity of nsPEF have not been established. We show that the principal cause of cell death induced by 60- or 300-ns pulses in U937 cells is the loss of the plasma membrane integrity ("nanoelectroporation", leading to water uptake, cell swelling, and eventual membrane rupture. Most of this early necrotic death occurs within 1-2 hr after nsPEF exposure. The uptake of water is driven by the presence of pore-impermeable solutes inside the cell, and can be counterbalanced by the presence of a pore-impermeable solute such as sucrose in the medium. Sucrose blocks swelling and prevents the early necrotic death; however the long-term cell survival (24 and 48 hr does not significantly change. Cells protected with sucrose demonstrate higher incidence of the delayed death (6-24 hr post nsPEF. These cells are more often positive for the uptake of an early apoptotic marker dye YO-PRO-1 while remaining impermeable to propidium iodide. Instead of swelling, these cells often develop apoptotic fragmentation of the cytoplasm. Caspase 3/7 activity increases already in 1 hr after nsPEF and poly-ADP ribose polymerase (PARP cleavage is detected in 2 hr. Staurosporin-treated positive control cells develop these apoptotic signs only in 3 and 4 hr, respectively. We conclude that nsPEF exposure triggers both necrotic and apoptotic pathways. The early necrotic death prevails under standard cell culture conditions, but cells rescued from the necrosis nonetheless die later on by apoptosis. The balance between the two modes of cell death can be controlled by enabling or blocking cell swelling.
Two modes of cell death caused by exposure to nanosecond pulsed electric field.
Pakhomova, Olga N; Gregory, Betsy W; Semenov, Iurii; Pakhomov, Andrei G
2013-01-01
High-amplitude electric pulses of nanosecond duration, also known as nanosecond pulsed electric field (nsPEF), are a novel modality with promising applications for cell stimulation and tissue ablation. However, key mechanisms responsible for the cytotoxicity of nsPEF have not been established. We show that the principal cause of cell death induced by 60- or 300-ns pulses in U937 cells is the loss of the plasma membrane integrity ("nanoelectroporation"), leading to water uptake, cell swelling, and eventual membrane rupture. Most of this early necrotic death occurs within 1-2 hr after nsPEF exposure. The uptake of water is driven by the presence of pore-impermeable solutes inside the cell, and can be counterbalanced by the presence of a pore-impermeable solute such as sucrose in the medium. Sucrose blocks swelling and prevents the early necrotic death; however the long-term cell survival (24 and 48 hr) does not significantly change. Cells protected with sucrose demonstrate higher incidence of the delayed death (6-24 hr post nsPEF). These cells are more often positive for the uptake of an early apoptotic marker dye YO-PRO-1 while remaining impermeable to propidium iodide. Instead of swelling, these cells often develop apoptotic fragmentation of the cytoplasm. Caspase 3/7 activity increases already in 1 hr after nsPEF and poly-ADP ribose polymerase (PARP) cleavage is detected in 2 hr. Staurosporin-treated positive control cells develop these apoptotic signs only in 3 and 4 hr, respectively. We conclude that nsPEF exposure triggers both necrotic and apoptotic pathways. The early necrotic death prevails under standard cell culture conditions, but cells rescued from the necrosis nonetheless die later on by apoptosis. The balance between the two modes of cell death can be controlled by enabling or blocking cell swelling.
Teacher argumentation in the secondary science classroom: Images of two modes of scientific inquiry
Gray, Ron E.
The purpose of this exploratory study was to examine scientific arguments constructed by secondary science teachers during instruction. The analysis focused on how arguments constructed by teachers differed based on the mode of inquiry underlying the topic. Specifically, how did the structure and content of arguments differ between experimentally and historically based topics? In addition, what factors mediate these differences? Four highly experienced high school science teachers were observed daily during instructional units for both experimental and historical science topics. Data sources include classroom observations, field notes, reflective memos, classroom artifacts, a nature of science survey, and teacher interviews. The arguments were analyzed for structure and content using Toulmin's argumentation pattern and Walton's schemes for presumptive reasoning revealing specific patterns of use between the two modes of inquiry. Interview data was analyzed to determine possible factors mediating these patterns. The results of this study reveal that highly experienced teachers present arguments to their students that, while simple in structure, reveal authentic images of science based on experimental and historical modes of inquiry. Structural analysis of the data revealed a common trend toward a greater amount of scientific data used to evidence knowledge claims in the historical science units. The presumptive reasoning analysis revealed that, while some presumptive reasoning schemes remained stable across the two units (e.g. 'causal inferences' and 'sign' schemes), others revealed different patterns of use including the 'analogy', 'evidence to hypothesis', 'example', and 'expert opinion' schemes. Finally, examination of the interview and survey data revealed five specific factors mediating the arguments constructed by the teachers: view of the nature of science, nature of the topic, teacher personal factors, view of students, and pedagogical decisions. These
Hassani Nadiki, M.; Tavassoly, M. K.
2016-12-01
In this paper the interaction of a three-level atom in V-configuration with a two-mode quantized field in cavity optomechanics is studied. To achieve the purpose, we first deduce the effective Hamiltonian and evaluate the explicit time-dependent form of the state vector of the whole system by choosing special initial conditions for atom, field and the oscillatory mirror. Interestingly, we can obtain the time evolution of atomic linear entropy, population inversion, quantum statistics and squeezing, both analytically and numerically. The results show that the entanglement between the atom and the subsystem of field and mirror, and all above-mentioned physical quantities can be appropriately controlled by the initial atom-field state condition, the parameters of cavity optomechanics as well as atom-field coupling strengths. In particular, the appearance of collapse-revival phenomenon in the entanglement and quantum photon statistics, also the full sub-Poissonian statistics in the two modes of field as well as in the mechanical mode of optomechanical system are noticeable features of the work.
Two-Mode Multiplexing at 2×10.7 Gbps over 7-Cell Hollow- Core Photonic Band Gap Fiber
DEFF Research Database (Denmark)
Xu, Jing; Peucheret, Christophe
2011-01-01
We demonstrate two-mode multiplexing at 2×10.7 Gbps over 7-cell hollow-core photonic band gap fiber. BER performances below FEC threshold limit (3.3×10-3) are shown for both data channels.......We demonstrate two-mode multiplexing at 2×10.7 Gbps over 7-cell hollow-core photonic band gap fiber. BER performances below FEC threshold limit (3.3×10-3) are shown for both data channels....
NATO Advanced Research Workshop on Squeezed and Non-classical Light
Pike, E; Squeezed and Non-classical Light
1988-01-01
The recent generation in the laboratory of phase squeezed and intensity squeezed light beams has brought to fruition the theoretical predictions of such non-classical phenomena which have been made and developed in recent years by a number of workers in the field of quantum optics. A vigorous development is now underway of both theory and experiment and the first measurements have been coi:Jfirmed and extended already in some half dozen laboratories. Although the fields of application of these novellight sources are as yet somewhat hazy in our minds and some inspired thinking is required along these lines, the pace and excitement of the research is very clear. It is to he hoped that the new possibilities of: making measurements below the quantum shot noise lirnit which is made possible by these squeezed states of light willlead to further fundamental advances in the near future. In this NATO ARW a number of the leaders in the field met in the extremely pleasant surroundings of Cortina d'Ampezzo and th...
A tale of two modes: neutrino free-streaming in the early universe
Lancaster, Lachlan; Cyr-Racine, Francis-Yan; Knox, Lloyd; Pan, Zhen
2017-07-01
We present updated constraints on the free-streaming nature of cosmological neutrinos from cosmic microwave background (CMB) temperature and polarization power spectra, baryonic acoustic oscillation data, and distance ladder measurements of the Hubble constant. Specifically, we consider a Fermi-like four-fermion interaction between massless neutrinos, characterized by an effective coupling constant Geff, and resulting in a neutrino opacity dot tauνpropto Geff2 Tν5. Using a conservative flat prior on the parameter log10( Geff MeV2), we find a bimodal posterior distribution with two clearly separated regions of high probability. The first of these modes is consistent with the standard ΛCDM cosmology and corresponds to neutrinos decoupling at redshift zν,dec > 1.3×105, that is before the Fourier modes probed by the CMB damping tail enter the causal horizon. The other mode of the posterior, dubbed the "interacting neutrino mode", corresponds to neutrino decoupling occurring within a narrow redshift window centered around zν,dec~8300. This mode is characterized by a high value of the effective neutrino coupling constant, log10( Geff MeV2) = -1.72 ± 0.10 (68% C.L.), together with a lower value of the scalar spectral index and amplitude of fluctuations, and a higher value of the Hubble parameter. Using both a maximum likelihood analysis and the ratio of the two mode's Bayesian evidence, we find the interacting neutrino mode to be statistically disfavored compared to the standard ΛCDM cosmology, and determine this result to be largely driven by the low-l CMB temperature data. Interestingly, the addition of CMB polarization and direct Hubble constant measurements significantly raises the statistical significance of this secondary mode, indicating that new physics in the neutrino sector could help explain the difference between local measurements of H0, and those inferred from CMB data. A robust consequence of our results is that neutrinos must be free streaming long
Hlubina, Petr
1999-12-01
Intermodal dispersion in a two-mode optical fiber can be measured in the spectral domain when the spectral interference between modes at the output of the optical fiber shows up as a periodic modulation of the source spectrum that can be processed. However, this technique cannot be used to measure intermodal dispersion in the two- mode optical fiber when the period of modulation is too small to be resolved by a spectrometer. Consequently, we proposed a new measuring technique utilizing a tandem configuration of a dispersive Michelson interferometer and the two-mode optical fiber in which the spectral interference can be resolved even if a low-resolution spectrometer is used. In the tandem configuration of the Michelson interferometer and the two-mode optical fiber, the optical path difference (OPD) in the Michelson interferometer is adjusted close to the group OPD between modes of the optical fiber so that the low-frequency spectral modulation that can be processed is produced. Using the Fourier transform method in processing the measured spectral modulations and subtracting the effect of the dispersive Michelson interferometer, the feasibility of this technique has successfully been demonstrated in obtaining the intermodal dispersion in the two-model optical fiber.
A Simple Method on Generating any Bi-Photon Superposition State with Linear Optics
Zhang, Ting-Ting; Wei, Jie; Wang, Qin
2017-04-01
We present a simple method on the generation of any bi-photon superposition state using only linear optics. In this scheme, the input states, a two-mode squeezed state and a bi-photon state, meet on a beam-splitter and the output states are post-selected with two threshold single-photon detectors. We carry out corresponding numerical simulations by accounting for practical experimental conditions, calculating both the Wigner function and the state fidelity of those generated bi-photon superposition states. Our simulation results demonstrate that not only distinct nonclassical characteristics but also very high state fidelities can be achieved even under imperfect experimental conditions. Supported by the National Natural Science Foundation of China under Grant Nos. 61475197, 61590932, 11274178, the Natural Science Foundation of the Jiangsu Higher Education Institutions under Grant No. 15KJA120002, the Outstanding Youth Project of Jiangsu Province under Grant No. BK20150039, and the Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No. YX002001
Banerjee, Subhashish; Alok, Ashutosh Kumar; Srikanth, R.; Hiesmayr, Beatrix C.
2015-10-01
Correlations exhibited by neutrino oscillations are studied via quantum-information theoretic quantities. We show that the strongest type of entanglement, genuine multipartite entanglement, is persistent in the flavor changing states. We prove the existence of Bell-type nonlocal features, in both its absolute and genuine avatars. Finally, we show that a measure of nonclassicality, dissension, which is a generalization of quantum discord to the tripartite case, is nonzero for almost the entire range of time in the evolution of an initial electron-neutrino. Via these quantum-information theoretic quantities, capturing different aspects of quantum correlations, we elucidate the differences between the flavor types, shedding light on the quantum-information theoretic aspects of the weak force.
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Subhashish; Alok, Ashutosh Kumar [Indian Institute of Technology Jodhpur, Jodhpur (India); Srikanth, R. [Poornaprajna Institute of Scientific Research, Banglore (India); Hiesmayr, Beatrix C. [University of Vienna, Vienna (Austria)
2015-10-15
Correlations exhibited by neutrino oscillations are studied via quantum-information theoretic quantities. We show that the strongest type of entanglement, genuine multipartite entanglement, is persistent in the flavor changing states. We prove the existence of Bell-type nonlocal features, in both its absolute and genuine avatars. Finally, we show that a measure of nonclassicality, dissension, which is a generalization of quantum discord to the tripartite case, is nonzero for almost the entire range of time in the evolution of an initial electron-neutrino. Via these quantum-information theoretic quantities, capturing different aspects of quantum correlations, we elucidate the differences between the flavor types, shedding light on the quantum-information theoretic aspects of the weak force. (orig.)
Entanglement evolution of a two-mode Gaussian system in various thermal environments
Energy Technology Data Exchange (ETDEWEB)
Mihaescu, Tatiana, E-mail: mihaescu92tatiana@gmail.com; Isar, Aurelian [National Institute of Physics and Nuclear Engineering, P.O.Box MG-6, Bucharest-Magurele (Romania)
2015-12-07
We describe the evolution of the quantum entanglement of an open system consisting of two bosonic modes interacting with a common thermal environment, described by two different models. The initial state of the system is taken of Gaussian form. In the case of a thermal bath, characterized by temperature and dissipation constant which correspond to an asymptotic Gibbs state of the system, we show that for a zero temperature of the thermal bath an initial entangled Gaussian state remains entangled for all finite times. For an entangled initial squeezed thermal state, the phenomenon of entanglement sudden death takes place and we calculate the survival time of entanglement. For the second model of the environment, corresponding to a non-Gibbs asymptotic state, we study the possibility of generating entanglement. We show that the generation of the entanglement between two uncoupled bosonic modes is possible only for definite values of the temperature and dissipation constant, which characterize the thermal environment.
Directory of Open Access Journals (Sweden)
Zinchenko Y.P.
2013-01-01
Full Text Available The work presents historiographic and theoretical methodological study of establishment of fundamental theses of L.S. Vygotsky’s cultural-historical concept within the field of clinical psychology.We prove potency in application of contemporary philosophical concepts, which help distinguish between the types of scientific rationality (classical, nonclassical, and postnonclassical, for scientific reflection over the development of psychology and designation of paradigmatic status of cultural-historic concept suggested by L.S. Vygotsky and Vygotsky-Luria syndrome approach at the contemporary stage of science.Present study of scientific works of L.S. Vygotsky and his followers demonstrated that fundamentals of cultural-historic conception suggested by L.S. Vygotsky and further developed in methodology of Vygotsky-Luria syndrome approach, these fundamentals presented the origins of not only non-classical, but as well post-nonclassical model of scientific rationality. They are characterized by post-nonclassical understanding of the object and method of psychological study and post-nonclassical mode of thinking of the scientists.As it was showed, in works of L.S. Vygotsky there formulated general methodological requirements to organization of mental studies, which, on the whole, go in tune with the requirements introduced for study of complex self-developing systems. There were produced arguments to prove that the concept of Vygotsky-Luria syndrome approach describes mental syndromes as dynamic structures, which display the features of self-organization, self-determination and adaptive rationality. Hence, they can be regarded as open self-developing systems.We assume and verify the hypothesis that the syndrome analysis, due to the features of post-nonclassic modeling of scientific rationality it reveals, may be regarded as theoretically productive methodological approach at the modern stage of science.
Common Vocal Effects and Partial Glottal Vibration in Professional Nonclassical Singers.
Caffier, Philipp P; Ibrahim Nasr, Ahmed; Ropero Rendon, Maria Del Mar; Wienhausen, Sascha; Forbes, Eleanor; Seidner, Wolfram; Nawka, Tadeus
2017-07-12
To multidimensionally investigate common vocal effects in experienced professional nonclassical singers, to examine their mechanism of production and reproducibility, to demonstrate the existence of partial glottal vibration, and to assess the potential of damage to the voice from nonclassical singing. Individual cohort study. Ten male singers aged between 25 and 46 years (34 ± 7 years [mean ± SD]) with different stylistic backgrounds were recruited (five pop/rock/metal, five musical theater). Participants repeatedly presented the usual nonclassical vocal effects and techniques in their repertoire. All performances were documented and analyzed using established instruments (eg, auditory-perceptual assessment, videolaryngostroboscopy, electroglottography, voice function diagnostics). The vocal apparatus of all singers was healthy and capable of high performance. Typical nonclassical vocal effects were breathy voice, creaky voice, vocal fry, grunting, distortion, rattle, belt, and twang. All effects could be easily differentiated from each other. They were intraindividually consistently repeatable and also interindividually produced in a similar manner. A special feature in one singer was the first evidence of partial glottal vibration when belting in the high register. The unintended transition to this reduced voice quality was accompanied by physical fatigue and inflexible respiratory support. The long-lasting use of the investigated nonclassical vocal effects had no negative impact on trained singers. The possibility of long-term damage depends on the individual constitution, specific use, duration, and extent of the hyperfunction. The incidence of partial glottal vibration and its consequences require continuing research to learn more about efficient and healthy vocal function in nonclassical singing. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Higher-Order Squeezing in a Boson Coupled Two-Mode System
Chizhov, A. V.; Haus, J. W.; Yeong, K. C.
1996-01-01
We consider a model for nondegenerate cavity fields interacting through an intervening Boson field. The quantum correlations introduced in this manner are manifest through their higher-order correlation functions where a type of squeezed state is identified.
Entanglement of formation in two-mode Gaussian systems in a thermal environment
Energy Technology Data Exchange (ETDEWEB)
Dumitru, Irina, E-mail: aniri-dum@yahoo.com; Isar, Aurelian [National Institute of Physics and Nuclear Engineering, P.O.Box MG-6, Bucharest-Magurele (Romania)
2015-12-07
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous variable entanglement for a system consisting of two non-interacting bosonic modes embedded in a thermal environment. The calculated measure of entanglement is entanglement of formation. We describe the evolution of entanglement in terms of the covariance matrix for symmetric Gaussian input states. In the case of an entangled initial squeezed thermal state, entanglement suppression (entanglement sudden death) takes place, for all non-zero temperatures of the thermal bath. After that, the system remains for all times in a separable state. For a zero temperature of the thermal bath, the system remains entangled for all finite times, but in the limit of asymptotic large times the state becomes separable.
Infrared spectroscopy of nonclassical ions and their complexes
Energy Technology Data Exchange (ETDEWEB)
Boo, Doo Wan [Univ. of California, Berkeley, CA (United States)
1995-01-01
This thesis describes an infrared spectroscopic study on the structures and dynamics of the nonclassical ions and their complexes, using ion trap vibrational predissociation spectroscopy. Chapter One provides an introduction to the experimental apparatus used in this work. Chapter Two describes the previous theoretical and experimental works on the carbonium ion CH_{5}^{+} and infrared spectroscopic and theoretical works on CH_{5}^{+}. CH_{5}^{+} was predicted to scramble constantly without possessing a stable structure. In Chapter Three, the infrared spectroscopy for the molecular hydrogen solvated carbonium ions CH_{5}^{+}(H_{2})_{n} (n=1-6) in the frequency region of 2700-4200 cm^{-1} are presented and compared with the results of ab initio molecular dynamics simulation on CH_{5}^{+}(H_{2})_{n} (n=0-3). The results suggested that the scrambling of CH_{5}^{+} slowed down considerably by the stabilization effects of the solvent H_{2} molecules, and it was completely frozen out when the first three H_{2} molecules were bound to the core CH_{5}^{+}. Chapter Four presents the complete infrared spectra for the solvated carbonium ions, CH_{5}^{+}(A)_{x}(B)_{y} (A,B=H_{2}, Ar, N_{2}, CH_{4};x,y=0-5) in the frequency region of 2500-3200 cm^{-1}. As the binding affinities of the solvent molecules and the number of the solvent molecules in the clusters increased, the scrambling of CH_{5}^{+} slowed down substantially. The structures of the solvated carbonium ions and the evidence for rapid proton transfer in CH_{5}^{+}(CH_{4}) were also presented. Chapter Five presents the vib-rotational spectrum for the H-H stretching mode of the silanium ion SiH_{5}^{+}. The results suggested that Si
Generation and storage of quantum states using cold atoms
DEFF Research Database (Denmark)
Dantan, Aurelien Romain; Josse, Vincent; Cviklinski, Jean
2006-01-01
Cold cesium or rubidium atomic samples have a good potential both for generation and storage of nonclassical states of light. Generation of nonclassical states of light is possible through the high non-linearity of cold atomic samples excited close to a resonance line. Quadrature squeezing, polar......, polarization squeezing and entanglement have been demonstrated. Quantum state storage is made possible by the presence of long-lived angular momentum in the ground state. Cold atoms are thus a promising resource in quantum information.......Cold cesium or rubidium atomic samples have a good potential both for generation and storage of nonclassical states of light. Generation of nonclassical states of light is possible through the high non-linearity of cold atomic samples excited close to a resonance line. Quadrature squeezing...
蔵谷, 樹; 高須, 晃; カビール, エムデイ ファズレー
2015-01-01
Garnet epidote amphibolite from the central part of the Tonaru metagabbro mass consists mainly of garnet, epidote and amphibole (ferro-hornblende), with small amounts of quartz, plagioclase (albite and oligoclase) and paragonite. Rutile, apatite, hematite, calcite and chlorite occur occasionally. Garnets in the garnet epidote amphibolites exhibit two modes of occurrence. Garnet 1 (Grt 1) occurs as porphyroblast, and garnet 2 (Grt 2) is found as fine grain in the matrix. Porphyroblastic garnet...
Armstrong, Cameron R; David, John A; Thompson, John R
2015-07-13
We present a simple numerical model that is used in conjunction with a systematic algorithm for parameter optimization to understand the three-dimensional stochastic intensity dynamics of stimulated Brillouin scattering in a two-mode optical fiber. The primary factors driving the complex dynamics appear to be thermal density fluctuations, transverse pump fluctuations, and asymmetric transverse mode fractions over the beam cross-section.
Gan, Gui-Lian; Chao, Hui; Ji, Shi-Bo; Chen, Lin-Lin; Li, Hong
2012-11-01
An imidazophenanthroline-containing ruthenium(II) complex [Ru(bpy)2(mbpibH2)]2+ (bpy = 2,2'-bipyridine, mbpibH2 = 1,3-bis([1,10]phenanthroline[5,6-d]imidazol-2-yl)benzene) can bind DNA through groove-binding and/or non-classical intercalation modes, revealed by spectrophotometric methods, viscosity measurements and variable ionic strength experiments. On the basis of binding interactions between cationic [Ru(bpy)2(mbpibH2)]2+ and anionic DNA at a molar ratio of 1:1, a yellow transparent cast film has been assembled on an indium-tin oxide (ITO) surface using a solution-based self-standing method. The prepared DNA-[Ru(bpy)2(mbpibH2)]2+ film shows a bi-exponential luminescence decay with τ1 = 62.1 ns (8.0%) and τ2 = 594.5 ns (92.0%), whose lifetimes become much shorter than those of DNA-bound [Ru(bpy)2(mbpibH2)]2+ in buffer solutions. The Ru(II) complex with a free bi-dentate coordination site in the DNA cast film shows tunable luminescence, quenched dynamically by Cu2+ and restored by using EDTA to eliminate two modes of Cu2+-binding. The results from this study provide a significant foundation for better understanding the fabrication and modulation of a DNA-based solid luminescence device using the Ru(II) complexes as DNA-concentrating and signal-sensing agents.
"Nonclassical" secretion of annexin A2 to the lumenal side of the enterocyte brush border membrane
DEFF Research Database (Denmark)
Danielsen, E Michael; van Deurs, Bo; Hansen, Gert H
2003-01-01
side of the microvilli, showing an apical secretion by a "nonclassical" mechanism. In addition, annexin A2 was associated with surface-connected, deep apical tubules in the apical terminal web region and with an underlying pleiomorphic, tubulo-vesicular compartment (subapical compartment...
Gundersen, Craig; Kreider, Brent
2008-01-01
Policymakers have been puzzled to observe that food stamp households appear more likely to be food insecure than observationally similar eligible nonparticipating households. We reexamine this issue allowing for nonclassical reporting errors in food stamp participation and food insecurity. Extending the literature on partially identified…
Kamin, Sara; Richards, Hugh; Collins, Dave
2007-01-01
Twelve professional, non-classical musicians were interviewed about the impact of internal and external factors on their development as musicians. The data were qualitatively analyzed, and observations concerning psychological characteristics of developing excellence (PCDEs), social and environmental influences are reported. The insights of the…
Generation of non-classical optical fields by a beam splitter with second-order nonlinearity
Prakash, Hari
2016-01-01
We propose quantum-mechanical model of a beam splitter with second-order nonlinearity and show that non-classical features such as squeezing and sub-Poissonian photon statistics of optical fields can be generated in output fundamental and second harmonic modes when we mix coherent light beams via such a nonlinear beam splitter.
Molecular interpretation of nonclassical gas dynamics of dense vapors under the van der Waals model
Colonna, P.; Guardone, A.
2006-01-01
The van der Waals polytropic gas model is used to investigate the role of attractive and repulsive intermolecular forces and the influence of molecular complexity on the possible nonclassical gas dynamic behavior of vapors near the liquid-vapor saturation curve. The decrease of the sound speed upon
A NONCLASSICAL LAW OF ITERATED LOGARITHM FOR NEGATIVELY ASSOCIATED RANDOM VARIABLES
Institute of Scientific and Technical Information of China (English)
JiangYe
2003-01-01
A nonclassical law of iterated logarithm that holds for a stationary negatively associated sequence of random variables with finite variance is proved in this paper.The proof is based on a Rosenthal type maximal inequality and the subsequence method.This result extends the work of Klesov,Rosalsky(2001)and Shao.Su(1999).
Investigating the non-classical boundary conditions relevant to strain gradient theories
Jafari, Akbar; Ezzati, Meysam
2017-02-01
In the present study, two classes of non-classical constitutive equations consisting of the first and the second order strain gradients theories (FSG and SSG) were applied in order to develop the governing equations of static and free vibrational behavior of beam structures. The governing equations in orders of six and eight were constructed for FSG and SSG theories, respectively. Therefore, higher order or in other words non-classical boundary conditions (HOBCs or NCBCs) came into play in addition to the classical ones (CBCs). Some explanations were presented about the concept of the non-classical boundary conditions. Analytical and finite element (FE) approaches were employed to solve the governing equations. The analytical solutions were utilized in validation and convergence study of FE results. Comparisons were made with the relevant data reported in the open literature; however, to the best of the authors' knowledge, few references have been published on SSG theory and HOBCs. In the numerical studies, the effects of applying different combinations of CBCs and HOBCs to the static and free vibration behaviors of the beam were investigated. Moreover, the impacts of non-classical elastic constants and the beam size on its behavior were also studied.
Beating the Abbe diffraction limit in confocal microscopy via nonclassical photon statistics.
Gatto Monticone, D; Katamadze, K; Traina, P; Moreva, E; Forneris, J; Ruo-Berchera, I; Olivero, P; Degiovanni, I P; Brida, G; Genovese, M
2014-10-03
We experimentally demonstrate quantum enhanced resolution in confocal fluorescence microscopy exploiting the nonclassical photon statistics of single nitrogen-vacancy color centers in diamond. By developing a general model of superresolution based on the direct sampling of the kth-order autocorrelation function of the photoluminescence signal, we show the possibility to resolve, in principle, arbitrarily close emitting centers.
Molecular interpretation of nonclassical gas dynamics of dense vapors under the van der Waals model
Colonna, P.; Guardone, A.
2006-01-01
The van der Waals polytropic gas model is used to investigate the role of attractive and repulsive intermolecular forces and the influence of molecular complexity on the possible nonclassical gas dynamic behavior of vapors near the liquid-vapor saturation curve. The decrease of the sound speed upon
Nanoparticle-mediated nonclassical crystal growth of sodium fluorosilicate nanowires and nanoplates
Directory of Open Access Journals (Sweden)
Hongxia Li
2011-12-01
Full Text Available We observed nonclassical crystal growth of the sodium fluorosilicate nanowires, nanoplates, and hierarchical structures through self-assembly and aggregation of primary intermediate nanoparticles. Unlike traditional ion-by-ion crystallization, the primary nanoparticles formed first and their subsequent self-assembly, fusion, and crystallization generated various final crystals. These findings offer direct evidences for the aggregation-based crystallization mechanism.
Nonclassical Effects of a Four-Level Excited-Doublet Atom Model
Institute of Scientific and Technical Information of China (English)
ZHANG Jian-Song; XU Jing-Bo
2006-01-01
We adopt a dynamical algebraic method to study a four-level excited-doublet atom model and obtain the explicit expressions of the time-evolution operator and the density operator for the system. The nonclassical effects of the system, such as collapses and revivals of the atomic inversion and squeezing of the radiation field, are also discussed.
Pijnenburg-Kleizen, K.J.; Borm, G.F.; Otten, B.J.; Schott, D.A.; Akker, E.L. van den; Stokvis-Brantsma, W.H.; Voorhoeve, P.G.; Bakker, B.; Claahsen-van der Grinten, H.L.
2012-01-01
BACKGROUND/AIMS: In classical congenital adrenal hyperplasia (CAH), elevation of adrenal androgens leads to accelerated growth and bone maturation with compromised adult height. In untreated children with non-classical CAH (NC-CAH), in which adrenal androgens are generally only slightly increased, g
Graefe, Eva-Maria; Korsch, Hans Jürgen; Rush, Alexander
2016-04-01
Bosonic quantum conversion systems can be modeled by many-particle single-mode Hamiltonians describing a conversion of m molecules of type A into n molecules of type B and vice versa. These Hamiltonians are analyzed in terms of generators of a polynomially deformed su(2) algebra. In the mean-field limit of large particle numbers, these systems become classical and their Hamiltonian dynamics can again be described by polynomial deformations of a Lie algebra, where quantum commutators are replaced by Poisson brackets. The Casimir operator restricts the motion to Kummer shapes, deformed Bloch spheres with cusp singularities depending on m and n . It is demonstrated that the many-particle eigenvalues can be recovered from the mean-field dynamics using a WKB-type quantization condition. The many-particle state densities can be semiclassically approximated by the time periods of periodic orbits, which show characteristic steps and singularities related to the fixed points, whose bifurcation properties are analyzed.
Snijders, Tom A. B.; Lomi, Alessandro; Torlo, Vanina Jasmine
2013-01-01
We propose a new stochastic actor-oriented model for the co-evolution of two-mode and one-mode networks. The model posits that activities of a set of actors, represented in the two-mode network, co-evolve with exchanges and interactions between the actors, as represented in the one-mode network. The
Institute of Scientific and Technical Information of China (English)
WU Ying; YANG Xiao-Xue
2002-01-01
We present the analytical solutions to the two-mode mean-field model for a split Bose Einstein condensate.These explicit solutions completely determine the system's dynamics under the two-mode mean-field approximation for all possible initial conditions.
Poizat, J. Ph.; Collett, M. J.; Walls, D. F.
1992-04-01
We consider two modes of the electromagnetic field interacting via a three-level atom in a ladder configuration. We calculate the squeezing spectra of the sum and difference of the two output beams. The usefulness of this system as a quantum-nondemolition-measurement scheme is analyzed and a prediction is made using the parameters of a recent experiment by Grangier et al. [Phys. Rev. Lett. 66, 1418 (1991)]. We use a full three-level model in the most general case and in particular the influence of both the one-photon and the two-photon detunings are investigated.
Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States
Institute of Scientific and Technical Information of China (English)
HOU Shen-Yong; YANG Kuo
2011-01-01
@@ A class of measurement phase operators of dual-mode is defined and their properties in a class of entangle coherent states are investigated.Numerical results indicate that the entangle coherent states display some non-classical squeezed effects.%A class of measurement phase operators of dual-mode is defined and their properties in a class of entangle coherent states are investigated. Numerical results indicate that the entangle coherent states display some non-classical squeezed effects.
D.C.M. van der Kaay (Danielle); E.L.T. van den Akker (Erica)
2014-01-01
textabstractIntroduction: Nonclassical congenital adrenal hyperplasia (CAH) is characterized by sufficient cortisol and aldosterone production at the cost of androgen overproduction. Hydrocortisone or dexamethasone in supraphysiological doses are current treatment; however, their downside is suppres
Reproducibility of Psychological Experiments as a Problem of Post-Nonclassical Science
Directory of Open Access Journals (Sweden)
Vachkov I.V.,
2016-04-01
Full Text Available A fundamental project on reproducibility carried out in the USA by Brian Nosek in 2015 (the Reproducibility Project revealed a serious methodological problem in psychology: the issue of replication of psycho- logical experiments. Reproducibility has been traditionally perceived as one of the basic principles of the scientific method. However, methodological analysis of the modern post-nonclassical stage in the development of science suggests that this might be a bit too uncompromising as applied to psychology. It seems that the very criteria of scientific research need to be reconsidered with regard to the specifics of post-nonclassical science, and, as the authors put it, as a result, reproducibility might lose its key status or even be excluded at all. The reviewed problem and the proposed ways of coping with it are of high importance to research and practice in psychology as they define the strategies for organizing, conducting and evaluating experimental research.
Non-classical Signature of Parametric Fluorescence and its Application in Metrology
Directory of Open Access Journals (Sweden)
Hamar M.
2014-08-01
Full Text Available The article provides a short theoretical background of what the non-classical light means. We applied the criterion for the existence of non-classical effects derived by C.T. Lee on parametric fluorescence. The criterion was originally derived for the study of two light beams with one mode per beam. We checked if the criterion is still working for two multimode beams of parametric down-conversion through numerical simulations. The theoretical results were tested by measurement of photon number statistics of twin beams emitted by nonlinear BBO crystal pumped by intense femtoseconds UV pulse. We used ICCD camera as the detector of photons in both beams. It appears that the criterion can be used for the measurement of the quantum efficiencies of the ICCD cameras.
Institute of Scientific and Technical Information of China (English)
Bao-Lin Wang
2013-01-01
This paper studies the fracture behavior of a thermoelastic cylinder subjected to a sudden temperature change on its outer surface within the framework of non-classical heat conduction.The heat conduction equation is solved by separation of variable technique.Closed form solution for the temperature field and the associated thermal stress are established.The critical parameter governing the level of the transient thermal stress is identified.Exact expression for the transient stress intensity factor is obtained for a crack in the cylinder.The difference between the non-classical solutions and the classical solution are discussed.It is found that the traditional classical heat conduction considerably underestimates the transient thermal stress and thermal stress intensity factor.
Role of non-classical MHC class I molecules in cancer immunosuppression
Kochan, Grazyna; Escors, David; Breckpot, Karine; Guerrero-Setas, David
2013-01-01
Growing neoplasms employ various mechanisms to evade immunosurveillance. The expression of non-classical MHC class I molecules by both immune and malignant cells in the tumor microenvironment constitute of the strategies used by tumors to circumvent the cytotoxic activity of effector cells of the immune system. The overexpression of HLA-G, -E, and -F is a common finding across a variety of malignancies. However, while the presence of HLA-G and HLA-E has been recently correlated with poor clinical outcome, information on the clinicopathological significance of HLA-F is limited. In the present review, we summarize studies on non-classical MHC class I molecules with special emphasis on their role in the modulation of anticancer immune responses. PMID:24482746
Nonclassical phase-space trajectories for the damped harmonic quantum oscillator
Energy Technology Data Exchange (ETDEWEB)
Pachon, L.A. [Departamento de Fisica, Universidad Nacional de Colombia, Bogota D.C. (Colombia); Institut fuer Physik, Universitaet Augsburg, Universitaetsstrasse 1, D-86135 Augsburg (Germany); CeiBA - Complejidad, Bogota D.C. (Colombia); Ingold, G.-L., E-mail: gert.ingold@physik.uni-augsburg.de [Institut fuer Physik, Universitaet Augsburg, Universitaetsstrasse 1, D-86135 Augsburg (Germany); Dittrich, T. [Departamento de Fisica, Universidad Nacional de Colombia, Bogota D.C. (Colombia); CeiBA - Complejidad, Bogota D.C. (Colombia)
2010-10-05
Graphical abstract: The phase-space path-integral approach to the damped harmonic oscillator is analyzed beyond the Markovian approximation and the appearance of nonclassical trajectories is discussed. - Abstract: The phase-space path-integral approach to the damped harmonic oscillator is analyzed beyond the Markovian approximation. It is found that pairs of nonclassical trajectories contribute to the path-integral representation of the Wigner propagating function. Due to the linearity of the problem, the sum coordinate of a pair still satisfies the classical equation of motion. Furthermore, it is shown that the broadening of the Wigner propagating function of the damped oscillator arises due to the time-nonlocal interaction mediated by the heat bath.
Xie, Hong; Chen, Xiang; Lin, Gongwei; Lin, Xiumin
2016-10-01
A scheme to correlate optical and microwave photons is proposed in a hybrid electro-optomechanical system, where mechanical resonator is coupled to both optical and microwave fields. Analytical and numerical simulation results show that the cross-correlation function between Stokes and anti-Stokes photons strongly violates the Cauchy-Schwarz inequality, which confirms the nonclassical correlation between the optical and microwave photons. It is worth noting that the nonclassical photon pairs with vast different wavelengths, which may be useful for quantum communication, are generated under the experimentally accessible weak coupling limit rather than single-photon strong coupling regime. In addition, the protocol provides a possible route to combine the respective advantages of optical photons, microwave photons, and phonons in a hybrid electro-optomechanical system.
Directory of Open Access Journals (Sweden)
Philippe G. LeFloch
2000-12-01
Full Text Available This paper deals with the so-called p-system describing the dynamics of isothermal and compressible fluids. The constitutive equation is assumed to have the typical convexity/concavity properties of the van der Waals equation. We search for discontinuous solutions constrained by the associated mathematical entropy inequality. First, following a strategy proposed by Abeyaratne and Knowles and by Hayes and LeFloch, we describe here the whole family of nonclassical Riemann solutions for this model. Second, we supplement the set of equations with a kinetic relation for the propagation of nonclassical undercompressive shocks, and we arrive at a uniquely defined solution of the Riemann problem. We also prove that the solutions depend $L^1$-continuously upon their data. The main novelty of the present paper is the presence of two inflection points in the constitutive equation. The Riemann solver constructed here is relevant for fluids in which viscosity and capillarity effects are kept in balance.
Zinchenko Y.P.; Pervichko E.I.
2013-01-01
The work presents historiographic and theoretical methodological study of establishment of fundamental theses of L.S. Vygotsky’s cultural-historical concept within the field of clinical psychology.We prove potency in application of contemporary philosophical concepts, which help distinguish between the types of scientific rationality (classical, nonclassical, and postnonclassical), for scientific reflection over the development of psychology and designation of paradigmatic status of cultural-...
Analytical Study of Nonclassical Behaviour for a Disturbed Non-Degenerated Parameter Amplifier
Institute of Scientific and Technical Information of China (English)
PANG Qian-Jun
2007-01-01
We analytically discuss the nonclassical behaviour for a disturbed non-degenerated parameter amplifier.The thermal Glauber-Sudarshan diagonal presentation (GSP)function for the system is derived.The detailed analysis on the threshold temperatures of both the individual photon subsystem and the complete photon-photon complex is presented.The offect of the photon-photon interaction on the threshold temperature is observed.
The Non-Classical Boltzmann Equation, and Diffusion-Based Approximations to the Boltzmann Equation
Frank, Martin; Larsen, Edward W; Vasques, Richard
2014-01-01
We show that several diffusion-based approximations (classical diffusion or SP1, SP2, SP3) to the linear Boltzmann equation can (for an infinite, homogeneous medium) be represented exactly by a non-classical transport equation. As a consequence, we indicate a method to solve diffusion-based approximations to the Boltzmann equation via Monte Carlo, with only statistical errors - no truncation errors.
NClassG+: A classifier for non-classically secreted Gram-positive bacterial proteins
Directory of Open Access Journals (Sweden)
Pino Camilo
2011-01-01
Full Text Available Abstract Background Most predictive methods currently available for the identification of protein secretion mechanisms have focused on classically secreted proteins. In fact, only two methods have been reported for predicting non-classically secreted proteins of Gram-positive bacteria. This study describes the implementation of a sequence-based classifier, denoted as NClassG+, for identifying non-classically secreted Gram-positive bacterial proteins. Results Several feature-based classifiers were trained using different sequence transformation vectors (frequencies, dipeptides, physicochemical factors and PSSM and Support Vector Machines (SVMs with Linear, Polynomial and Gaussian kernel functions. Nested k-fold cross-validation (CV was applied to select the best models, using the inner CV loop to tune the model parameters and the outer CV group to compute the error. The parameters and Kernel functions and the combinations between all possible feature vectors were optimized using grid search. Conclusions The final model was tested against an independent set not previously seen by the model, obtaining better predictive performance compared to SecretomeP V2.0 and SecretPV2.0 for the identification of non-classically secreted proteins. NClassG+ is freely available on the web at http://www.biolisi.unal.edu.co/web-servers/nclassgpositive/
[A non-classical approach to medical practices: Michel Foucault and Actor-Network Theory].
Bińczyk, E
2001-01-01
The text presents an analysis of medical practices stemming from two sources: Michel Foucault's conception and the research of Annemarie Mol and John Law, representatives of a trend known as Actor-Network Theory. Both approaches reveal significant theoretical kinship: they can be successfully consigned to the framework of non-classical sociology of science. I initially refer to the cited conceptions as a version of non-classical sociology of medicine. The identity of non-classical sociology of medicine hinges on the fact that it undermines the possibility of objective definitions of disease, health and body. These are rather approached as variable social and historical phenomena, co-constituted by medical practices. To both Foucault and Mol the main object of interest was not medicine as such, but rather the network of medical practices. Mol and Law sketch a new theoretical perspective for the analysis of medical practices. They attempt to go beyond the dichotomous scheme of thinking about the human body as an object of medical research and the subject of private experience. Research on patients suffering blood-sugar deficiency provide the empirical background for the thesis of Actor-Network Theory representatives. Michel Foucault's conceptions are extremely critical of medical practices. The French researcher describes the processes of 'medicalising' Western society as the emergence of a new type of power. He attempts to sensitise the reader to the ethical dimension of the processes of medicalising society.
Energy Technology Data Exchange (ETDEWEB)
Vatankhah, Ramin; Salarieh, Hassan; Alasty, Aria [Sharif University of Technology, Tehran (Iran, Islamic Republic of); Najafi, Ali [Shiraz Branch, Islamic Azad University, Shiraz (Iran, Islamic Republic of)
2014-02-15
In non-classical micro-beams, the strain energy of the system is obtained based on the non-classical continuum mechanics. This paper presents the problem of boundary control of a vibrating non-classical micro-cantilever Timoshenko beam to achieve the asymptotic decay rate of the closed loop system. For this aim, we need to establish the well- posedness of the governing partial differential equations (PDEs) of motion in presence of boundary feedbacks. A linear control law is constructed to suppress the system vibration. The control forces and moments consist of feedbacks of the velocities and spatial derivatives of them at tip of the micro-beam. To verify the effectiveness of the proposed boundary controllers, numerical simulations of the open loop and closed loop PDE models of the system are worked out using finite element method (FEM). New Timoshenko beam element stiffness and mass matrices are derived based on the strain gradient theory and verification of this new beam element is accomplished.
High-power free-electron maser operated in a two-mode frequency-multiplying regime
Directory of Open Access Journals (Sweden)
N. Yu. Peskov
2016-06-01
Full Text Available The frequency multiplication effects in high-power free-electron masers (FEM with Bragg cavities were studied to provide the advance of the oscillators into short-wavelength bands. Theoretical analysis of frequency-multiplying FEMs was carried out within the framework of the averaged coupled-wave approach. Proof-of-principle experiments were performed based on a moderately relativistic induction linac LIU-3000 (JINR. As a result, an FEM multiplier operated with a megawatt power level in the 6-mm and 4-mm wavelength bands at the second and third harmonics, respectively, was realized. The possibility of using two-mode bichromatic FEMs for powering a double-frequency accelerating structure was discussed.
An ultra-low crosstalk and broadband two-mode (de)multiplexer based on adiabatic couplers
Sun, Chunlei; Yu, Yu; Ye, Mengyuan; Chen, Guanyu; Zhang, Xinliang
2016-12-01
A novel adiabatic couplers (ACs) based broadband and fabrication-tolerant two-mode multiplexer (MUX) is designed using silicon-on-insulator (SOI) platform. Being different from the previously reported ACs-based scheme, the converted and multiplexed signals are on conventional modes, rather than supermodes. The experimental results are in good agreement with the simulations. Over a wavelength range of 75 nm measured, the crosstalk is lower than ‑20 dB, and the insertion loss is ~1 dB. The eye diagram and bit error rate measurements validate the good performance of the proposed mode MUX. The investigation on fabrication tolerance indicates reasonable performance degradation for a large gap deviation from ‑30 to 30 nm and etching depth deviation from ‑50 to 50 nm.
Directory of Open Access Journals (Sweden)
Hui Peng
Full Text Available BACKGROUND: Multidrug resistance (MDR is a major problem in successful treatment of cancers. Human ABCG2, a member of the ATP-binding cassette transporter superfamily, plays a key role in MDR and an important role in protecting cancer stem cells. Knockout of ABCG2 had no apparent adverse effect on the mice. Thus, ABCG2 is an ideal target for development of chemo-sensitizing agents for better treatment of drug resistant cancers and helping eradicate cancer stem cells. METHODS/PRELIMINARY FINDINGS: Using rational screening of representatives from a chemical compound library, we found a novel inhibitor of ABCG2, PZ-39 (N-(4-chlorophenyl-2-[(6-{[4,6-di(4-morpholinyl-1,3,5-triazin-2-yl]amino}-1,3-benzothiazol-2-ylsulfanyl]acetamide, that has two modes of actions by inhibiting ABCG2 activity and by accelerating its lysosome-dependent degradation. PZ-39 has no effect on ABCB1 and ABCC1-mediated drug efflux, resistance, and their expression, indicating that it may be specific to ABCG2. Analyses of its analogue compounds showed that the pharmacophore of PZ-39 is benzothiazole linked to a triazine ring backbone. CONCLUSION/SIGNIFICANCE: Unlike any previously known ABCG2 transporter inhibitors, PZ-39 has a novel two-mode action by inhibiting ABCG2 activity, an acute effect, and by accelerating lysosome-dependent degradation, a chronic effect. PZ-39 is potentially a valuable probe for structure-function studies of ABCG2 and a lead compound for developing therapeutics targeting ABCG2-mediated MDR in combinational cancer chemotherapy.
Snijders, Tom A. B.; Lomi, Alessandro; Torló, Vanina Jasmine
2013-01-01
We propose a new stochastic actor-oriented model for the co-evolution of two-mode and one-mode networks. The model posits that activities of a set of actors, represented in the two-mode network, co-evolve with exchanges and interactions between the actors, as represented in the one-mode network. The model assumes that the actors, not the activities, have agency.
Zhang, Yichen; Li, Zhengyu; Zhao, Yijia; Yu, Song; Guo, Hong
2017-02-01
We analyze the security of the two-way continuous-variable quantum key distribution protocol in reverse reconciliation against general two-mode attacks, which represent all accessible attacks at fixed channel parameters. Rather than against one specific attack model, the expression of secret key rates of the two-way protocol are derived against all accessible attack models. It is found that there is an optimal two-mode attack to minimize the performance of the protocol in terms of both secret key rates and maximal transmission distances. We identify the optimal two-mode attack, give the specific attack model of the optimal two-mode attack and show the performance of the two-way protocol against the optimal two-mode attack. Even under the optimal two-mode attack, the performances of two-way protocol are still better than the corresponding one-way protocol, which shows the advantage of making double use of the quantum channel and the potential of long-distance secure communication using a two-way protocol.
Indian Academy of Sciences (India)
M Mohjoei; M M Golshan; H Safari
2013-05-01
In this paper the time evolution of von Neumann entropy, as a measure of entanglement between V-type three-level atoms and the union of a two-mode field, is studied. The atom–field interaction is assumed to occur in a Kerr-type medium with an intensity-dependent coupling. Introducing a Casmir operator whose eigenvalues, , give total excitations in the system and commutes with the governing Hamiltonian, it is concluded that the latter is block-diagonal with ever growing dimensions. As we shall show, however, each block consists of two 2 × 2 blocks while all the others, ( −1) in number, are 3 × 3. We then proceed to analytically calculate the time-evolution operator which is also block-diagonal, each block with the same properties as that of the Hamiltonian. Our calculations show that, as expected, the atom–field entanglement oscillates which, depending upon the initial state, exhibits the phenomenon of collapse revivals. It is further shown that collapse revivals occur whenever both 2 × 2 blocks are involved in the time evolution of the system. Properties of such behaviour in the entanglement are also discussed in detail.
Optical BLOCH oscillations and Zener tunneling with nonclassical light.
Longhi, Stefano
2008-11-01
A quantum theory of optical Bloch oscillations and Zener tunneling (ZT) in arrays of coupled waveguides is theoretically presented, and the particlelike behavior of photons undergoing ZT is highlighted. In singly-periodic arrays excited by a photon-number-state input beam, each photon behaves as a classical particle which independently undergoes a coin-toss ZT event with a probability described by classical Zener theory. In binary arrays, excitation with two tilted beams enables us to observe the Hong-Ou-Mandel interference for two photons undergoing Bloch-Zener oscillations.
Experimental non-classicality of an indivisible quantum system
Lapkiewicz, Radek; Schaeff, Christoph; Langford, Nathan K; Ramelow, Sven; Wiesniak, Marcin; Zeilinger, Anton; 10.1038/nature10119
2011-01-01
Quantum theory demands that, in contrast to classical physics, not all properties can be simultaneously well defined. The Heisenberg Uncertainty Principle is a manifestation of this fact. Another important corollary arises that there can be no joint probability distribution describing the outcomes of all possible measurements, allowing a quantum system to be classically understood. We provide the first experimental evidence that even for a single three-state system, a qutrit, no such classical model can exist that correctly describes the results of a simple set of pairwise compatible measurements. Not only is a single qutrit the simplest system in which such a contradiction is possible, but, even more importantly, the contradiction cannot result from entanglement, because such a system is indivisible, and it does not even allow the concept of entanglement between subsystems.
Yoshioka, T.; Bensamaïa, S. J.; Craig, J. C.; Hsiao, S. S.
2007-01-01
Considerable information about the texture of objects can be perceived remotely through a probe. It is not clear, however, how texture perception with a probe compares with texture perception with the bare finger. Here we investigate the perception of a variety of textured surfaces encountered daily (e.g., corduroy, paper, and rubber) using the two scanning modes—direct touch through the finger and indirect touch through a probe held in the hand—in two tasks. In the first task, subjects rated the overall pair-wise dissimilarity of the textures. In the second task, subjects rated each texture along three continua, namely, perceived roughness, hardness, and stickiness of the surfaces, shown previously as the primary dimensions of texture perception in direct touch. From the dissimilarity judgment experiment, we found that the texture percept is similar though not identical in the two scanning modes. From the adjective rating experiments, we found that while roughness ratings are similar, hardness and stickiness ratings tend to differ between scanning conditions. These differences between the two modes of scanning are apparent in perceptual space for tactile textures based on multidimensional scaling (MDS) analysis. Finally, we demonstrate that three physical quantities, vibratory power, compliance, and friction carry roughness, hardness, and stickiness information, predicting perceived dissimilarity of texture pairs with indirect touch. Given that different types of texture information are processed by separate groups of neurons across direct and indirect touch, we propose that the neural mechanisms underlying texture perception differ between scanning modes. PMID:17558923
Dynamical properties of total intensity fluctuation spectrum in two-mode Nd:YVO4 microchip laser
Zhang, Shao-Hui; Shu-Lian, Zhang; Tan, Yi-Dong; Sun, Li-Qun
2015-12-01
We investigate the total intensity fluctuation spectrum of the two-longitudinal- mode Nd:YVO4 microchip laser (ML). We find that low-frequency relaxation oscillation (RO) peaks still appear in the total intensity fluctuation spectrum, which is different from a previous research result that the low-frequency RO peaks exist in the spectrum of the individual mode but compensate for each other totally in the total intensity fluctuation spectrum. Taking the spatial hole-burning effect into account, one and two-mode rate equations for Nd:YVO4 ML laser are established and studied. Based on the theoretical model, we find that when the gains and losses for two longitudinal models are different, a low-frequency RO peak will appear in the total intensity fluctuation spectrum, while when they share the same gain and loss, the total spectrum will behave like that of a single mode laser. Theoretical simulation results coincide with experimental results very well. Project supported by the Beijing Higher Education Young Elite Teacher Project, China (Grant No. YETP0086), the Tsinghua University Initiative Scientific Research Programme, China (Grant No. 2012Z02166), and the Special-funded Programme on National Key Scientific Instruments and Equipment Development of China (Grant No. 2011YQ04013603).
Lutz, D; Rafferty, D; Shao, L; Hasinger, G; Weiss, A; Walter, F; Smail, I; Alexander, D M; Brandt, W N; Chapman, S; Coppin, K; Schreiber, N M Forster; Gawiser, E; Genzel, R; Greve, T R; Ivison, R J; Koekemoer, A M; Kurczynski, P; Menten, K M; Nordon, R; Popesso, P; Schinnerer, E; Silverman, J D; Wardlow, J; Xue, Y Q
2010-01-01
We study the co-existence of star formation and AGN activity in X-ray selected AGN by analyzing stacked 870um submm emission from a deep and wide map of the Extended Chandra Deep Field South, obtained with LABOCA at the APEX telescope. The total X-ray sample of 895 sources with median redshift z~1 is detected at a mean submm flux of 0.49+-0.04mJy, corresponding to a typical star formation rate around 30Msun/yr for a T=35K, beta=1.5 greybody far-infrared SED. The good S/N permits stacking analyses for subgroups. We observe a trend of star formation rate increasing with redshift. An increase of star formation rate with AGN luminosity is indicated at the highest L_2-10>~1E44erg/s luminosities only. Increasing trends with X-ray obscuration as expected in some AGN evolutionary scenarios are not observed for the bulk of the X-ray AGN sample but may be present for the highest intrinsic luminosity objects. This suggests a transition between two modes in the coexistence of AGN activity and star formation. For the bulk...
Blue Sky Catastrophe in Systems with Non-classical Relaxation Oscillations
Directory of Open Access Journals (Sweden)
S. D. Glyzin
2015-01-01
Full Text Available The feasibility of a known blue-sky bifurcation in a class of three-dimensional singularly perturbed systems of ordinary differential equations with one fast and two slow variables is studied. A characteristic property of the considered systems is that they permit so-called nonclassic relaxation oscillations, that is, oscillations with slow components asymptotically close to time-discontinuous functions and a δ-like fast component. Cases when blue-sky bifurcation leads to a relaxation cycle or stable two-dimensional torus are analyzed. Also the question of homoclinic structure emergence is considered.
Non-classical solutions of a continuum model for rock descriptions
Institute of Scientific and Technical Information of China (English)
Mikhail A.Guzev
2014-01-01
The strain-gradient and non-Euclidean continuum theories are employed for construction of non-classical solutions of continuum models. The linear approximation of both models’ results in identical structures in terms of their kinematic and stress characteristics. The solutions obtained in this study exhibit a critical behaviour with respect to the external loading parameter. The conclusions are obtained based on an investigation of the solution for the scalar curvature in the non-Euclidean continuum theory. The proposed analysis enables us to use different theoretical approaches for description of rock critical behaviour under different loading conditions.
An analysis of non-classical austenite-martensite interfaces in CuAlNi
Ball, J M; Seiner, H
2011-01-01
Ball and Carstensen theoretically investigated the possibility of the occurrence of non-classical austenite-martensite interfaces and studied the cubic-to-tetragonal case extensively. Here, we aim to present an analysis of such interfaces recently observed by Seiner et al. in CuAlNi single crystals, undergoing a cubic-to-orthorhombic transition. We show that they can be described by the non-linear elasticity model for martensitic transformations and we make some predictions regarding the volume fractions of the martensitic variants involved, as well as the habit plane normals.
Tajik, Mohammad; Yamini, Yadollah; Esrafili, Ali; Ebrahimpour, Behnam
2015-02-01
Two different modes of three-phase hollow fiber liquid-phase microextraction were studied for the extraction of two herbicides, bensulfuron-methyl and linuron. In these two modes, the acceptor phases in the lumen of the hollow fiber were aqueous and organic solvents. The extraction and determination were performed using an automated hollow fiber microextraction instrument followed by high-performance liquid chromatography. For both three-phase hollow fiber liquid-phase microextraction modes, the effect of the main parameters on the extraction efficiency were investigated and optimized by central composite design. Under optimal conditions, both modes showed good linearity and repeatability, but the three-phase hollow fiber liquid-phase microextraction based on two immiscible organic solvents has a better extraction efficiency and figures of merit. The calibration curves for three-phase hollow fiber liquid-phase microextraction with an organic acceptor phase were linear in the range of 0.3-200 and 0.1-150 μg/L and the limits of detection were 0.1 and 0.06 μg/L for bensulfuron-methyl and linuron, respectively. For the conventional three-phase hollow fiber liquid-phase microextraction, the calibration curves were linear in the range of 3.0-250 and 15-400 μg/L and LODs were 1.0 and 5.0 μg/L for bensulfuron-methyl and linuron, respectively. The real sample analysis was carried out by three-phase hollow fiber liquid phase microextraction based on two immiscible organic solvents because of its more favorable characteristics.
Energy Technology Data Exchange (ETDEWEB)
Kandaswamy, Krishna Kumar [Institute for Neuro- and Bioinformatics, University of Luebeck, 23538 Luebeck (Germany); Graduate School for Computing in Medicine and Life Sciences, University of Luebeck, 23538 Luebeck (Germany); Pugalenthi, Ganesan [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hartmann, Enno; Kalies, Kai-Uwe [Centre for Structural and Cell Biology in Medicine, Institute of Biology, University of Luebeck, 23538 Luebeck (Germany); Moeller, Steffen [Institute for Neuro- and Bioinformatics, University of Luebeck, 23538 Luebeck (Germany); Suganthan, P.N. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Martinetz, Thomas, E-mail: martinetz@inb.uni-luebeck.de [Institute for Neuro- and Bioinformatics, University of Luebeck, 23538 Luebeck (Germany)
2010-01-15
Eukaryotic protein secretion generally occurs via the classical secretory pathway that traverses the ER and Golgi apparatus. Secreted proteins usually contain a signal sequence with all the essential information required to target them for secretion. However, some proteins like fibroblast growth factors (FGF-1, FGF-2), interleukins (IL-1 alpha, IL-1 beta), galectins and thioredoxin are exported by an alternative pathway. This is known as leaderless or non-classical secretion and works without a signal sequence. Most computational methods for the identification of secretory proteins use the signal peptide as indicator and are therefore not able to identify substrates of non-classical secretion. In this work, we report a random forest method, SPRED, to identify secretory proteins from protein sequences irrespective of N-terminal signal peptides, thus allowing also correct classification of non-classical secretory proteins. Training was performed on a dataset containing 600 extracellular proteins and 600 cytoplasmic and/or nuclear proteins. The algorithm was tested on 180 extracellular proteins and 1380 cytoplasmic and/or nuclear proteins. We obtained 85.92% accuracy from training and 82.18% accuracy from testing. Since SPRED does not use N-terminal signals, it can detect non-classical secreted proteins by filtering those secreted proteins with an N-terminal signal by using SignalP. SPRED predicted 15 out of 19 experimentally verified non-classical secretory proteins. By scanning the entire human proteome we identified 566 protein sequences potentially undergoing non-classical secretion. The dataset and standalone version of the SPRED software is available at (http://www.inb.uni-luebeck.de/tools-demos/spred/spred).
Ding, Dong-Sheng; Zhou, Zhi-Yuan; Shi, Bao-Sen; Zou, Xu-Bo; Guo, Guang-Can
2012-05-07
We experimentally generate a non-classical correlated two-color photon pair at 780 and 1529.4 nm in a ladder-type configuration using a hot 85Rb atomic vapor with the production rate of ~10(7)/s. The non-classical correlation between these two photons is demonstrated by strong violation of Cauchy-Schwarz inequality by the factor R = 48 ± 12. Besides, we experimentally investigate the relations between the correlation and some important experimental parameters such as the single-photon detuning, the powers of pumps. We also make a theoretical analysis in detail and the theoretical predictions are in reasonable agreement with our experimental results.
Institute of Scientific and Technical Information of China (English)
许雪芬
2006-01-01
We find that there exist dual eigenvectors ｜(S), q〉* of the phase state-vectors ｜(S), q〉of the two-mode Susskind-Glogower phase operator eiφ. By contour integration we show that ｜(S), q〉* is the common eigenvector of e-iφ and the photon number difference operator. The properties of ｜(S),q〉* are studied, it turns out that ｜(S),q〉* and ｜(S),q〉 can compose a completeness relation in contour integration form. A phase state representation for two-mode field is thus presented.%找到了双模场中Susskind-Glogower相算符eiφ态矢|(S),q〉的对偶本征矢|(S),q〉*,运用围道积分证明了|(S),q〉*是e-iφ和光子数差算符的共同本征矢.研究了|(S),q〉*的性质,结果是|(S),q〉*及其对偶〈(S),q |构成围道积分形式的完备性,给出了双模场的相态表象.
ON THE POLARIZATION OF CREATIVE CONSCIOUSNESS IN NON-CLASSICAL ERA OF RUSSIAN LITERATURE
Directory of Open Access Journals (Sweden)
Oleg Nikolaevich Sklyarov
2014-10-01
Full Text Available The article deals with the phenomenon of "branch" of the total flow of philosophical and aesthetic quest in Russian postsimbolism in the early 20th century and the implications of this polarization in the literary process in the following decades. Special attention is paid to the specifics of the non-classical consciousness, an important feature of which is the intention of the "targeting" of artistic expression. The main lines of development of Russian literature in the 20th century are briefly described. The subject of primary attention of the author are mental peculiarities, features of creative thinking inherited in individuals of every from ideological and artistic "vectors", forming a common paradigm of national literature in the non-classical era. The understanding the specifics of the "middle" line of creative research, defined by the concept of "neotraditionalism" becomes the center of the problem field in the article. In understanding and presentation of the essence of the neotraditional type of creative consciousness author moves into the mainstream, a paved by work of V.I. Tyupa, who proposed in the early 90s as the term itself, taken now adopted by many scientists and methodological principles of neotraditionalism identification as a special type of mental orientation in art.
Nonclassical Ly6C− Monocytes Drive the Development of Inflammatory Arthritis in Mice
Directory of Open Access Journals (Sweden)
Alexander V. Misharin
2014-10-01
Full Text Available Different subsets and/or polarized phenotypes of monocytes and macrophages may play distinct roles during the development and resolution of inflammation. Here, we demonstrate in a murine model of rheumatoid arthritis that nonclassical Ly6C− monocytes are required for the initiation and progression of sterile joint inflammation. Moreover, nonclassical Ly6C− monocytes differentiate into inflammatory macrophages (M1, which drive disease pathogenesis and display plasticity during the resolution phase. During the development of arthritis, these cells polarize toward an alternatively activated phenotype (M2, promoting the resolution of joint inflammation. The influx of Ly6C− monocytes and their subsequent classical and then alternative activation occurs without changes in synovial tissue-resident macrophages, which express markers of M2 polarization throughout the course of the arthritis and attenuate joint inflammation during the initiation phase. These data suggest that circulating Ly6C− monocytes recruited to the joint upon injury orchestrate the development and resolution of autoimmune joint inflammation.
Gao, X.-L.; Zhang, G. Y.
2016-07-01
A non-classical model for a Mindlin plate resting on an elastic foundation is developed in a general form using a modified couple stress theory, a surface elasticity theory and a two-parameter Winkler-Pasternak foundation model. It includes all five kinematic variables possible for a Mindlin plate. The equations of motion and the complete boundary conditions are obtained simultaneously through a variational formulation based on Hamilton's principle, and the microstructure, surface energy and foundation effects are treated in a unified manner. The newly developed model contains one material length-scale parameter to describe the microstructure effect, three surface elastic constants to account for the surface energy effect, and two foundation parameters to capture the foundation effect. The current non-classical plate model reduces to its classical elasticity-based counterpart when the microstructure, surface energy and foundation effects are all suppressed. In addition, the new model includes the Mindlin plate models considering the microstructure dependence or the surface energy effect or the foundation influence alone as special cases, recovers the Kirchhoff plate model incorporating the microstructure, surface energy and foundation effects, and degenerates to the Timoshenko beam model including the microstructure effect. To illustrate the new Mindlin plate model, the static bending and free vibration problems of a simply supported rectangular plate are analytically solved by directly applying the general formulae derived.
Directory of Open Access Journals (Sweden)
Karen de la Vega-Hernández
2016-01-01
Full Text Available It is usually accepted that most 2D-NMR experiments cannot be approached using classical models. Instructors argue that Product Operators (PO or density matrix formalisms are the only alternative to get insights into complex spin evolution for experiments involving Multiple-Quantum Coherence, such as the Heteronuclear Multiple-Quantum Correlation (HMQC technique. Nevertheless, in recent years, several contributions have been published to provide vectorial descriptions for the HMQC taking PO formalism as the starting point. In this work we provide a graphical representation of the HMQC experiment, taking the basic elements of Bloch’s vector model as building blocks. This description bears an intuitive and comfortable understanding of spin evolution during the pulse sequence, for those who are novice in 2D-NMR. Finally, this classical vectorial depiction is tested against the PO formalism and nonclassical vectors, conveying the didactic advantage of shedding light on a single phenomenon from different perspectives. This comparative approach could be useful to introduce PO and nonclassical vectors for advanced upper-division undergraduate and graduate education.
Concrete damage diagnosed using the non-classical nonlinear acoustic method
Institute of Scientific and Technical Information of China (English)
Zhou Dao; Liu Xiao-Zhou; Gong Xiu-Fen; Nazarov V E; Ma Li
2009-01-01
It is known that the strength of concrete is seriously affected by damage and cracking. In this paper, six concrete samples under different damage levels are studied. The experimental results show a linear dependence of the resonance frequency shift on strain amplitude at the fundamental frequency, and approximate quadratic dependence of the am-plitudes of the second and third harmonics on strain amplitude at the fundamental frequency as well. In addition, the amplitude of the third harmonics is shown to increase with the increase of damage level, which is even higher than that of the second harmonics in samples with higher damage levels. These are three properties of non-classical nonlinear acoustics. The nonlinear parameters increase from 106 to 108 with damage level, and are more sensitive to the damage level of the concrete than the linear parameters obtained by using traditional acoustics methods. So, this method based on non-classical nonlinear acoustics may provide a better means of non-destructive testing (NDT) of concrete and other porous materials.
Inability of the entropy vector method to certify nonclassicality in linelike causal structures
Weilenmann, Mirjam; Colbeck, Roger
2016-10-01
Bell's theorem shows that our intuitive understanding of causation must be overturned in light of quantum correlations. Nevertheless, quantum mechanics does not permit signaling and hence a notion of cause remains. Understanding this notion is not only important at a fundamental level, but also for technological applications such as key distribution and randomness expansion. It has recently been shown that a useful way to decide which classical causal structures could give rise to a given set of correlations is to use entropy vectors. These are vectors whose components are the entropies of all subsets of the observed variables in the causal structure. The entropy vector method employs causal relationships among the variables to restrict the set of possible entropy vectors. Here, we consider whether the same approach can lead to useful certificates of nonclassicality within a given causal structure. Surprisingly, we find that for a family of causal structures that includes the usual bipartite Bell structure they do not. For all members of this family, no function of the entropies of the observed variables gives such a certificate, in spite of the existence of nonclassical correlations. It is therefore necessary to look beyond entropy vectors to understand cause from a quantum perspective.
A method for stochastic seismic response analysis of non-classically damped structures
Institute of Scientific and Technical Information of China (English)
徐清; 高存臣; 王君杰
2004-01-01
A method to calculate the stationary random response of a non-classically damped structure is proposed that features clearly-defined physical meaning and simple expression. The method is developed in the trequency domain. The expression of the proposed method consists of three terms, i.e., modal velocity response, modal displacement response, and coupled (between modal velocity and modal displacement response). Numerical results from the parametric study and three example structures reveal that the modal velocity response term and the coupled term are important to structural response estimates only for a dynamic system with a tuned mass damper. In typical cases, the modal displacement term can provide response estimates with satisfactory accuracy by itself, so that the modal velocity term and coupled term may be ignored without loss of accuracy. This is used to simplifv the response computation of non-classically damped structures. For the white noise excitation, three modal correlation coefficients m closed form are derived. To consider the modal velocity response term and the coupled term, a simplified approximation based on white noise excitation is developed for the case when the modal velocity response is important to the structural responses. Numerical results show that the approximate expression based on white noise excitation can provide structural responses with satisfactory accuracy.
Scalerandi, Marco; Agostini, Valentina; Delsanto, Pier Paolo; Van Den Abeele, Koen; Johnson, Paul A
2003-06-01
Recent studies show that a broad category of materials share "nonclassical" nonlinear elastic behavior much different from "classical" (Landau-type) nonlinearity. Manifestations of "nonclassical" nonlinearity include stress-strain hysteresis and discrete memory in quasistatic experiments, and specific dependencies of the harmonic amplitudes with respect to the drive amplitude in dynamic wave experiments, which are remarkably different from those predicted by the classical theory. These materials have in common soft "bond" elements, where the elastic nonlinearity originates, contained in hard matter (e.g., a rock sample). The bond system normally comprises a small fraction of the total material volume, and can be localized (e.g., a crack in a solid) or distributed, as in a rock. In this paper a model is presented in which the soft elements are treated as hysteretic or reversible elastic units connected in a one-dimensional lattice to elastic elements (grains), which make up the hard matrix. Calculations are performed in the framework of the local interaction simulation approach (LISA). Experimental observations are well predicted by the model, which is now ready both for basic investigations about the physical origins of nonlinear elasticity and for applications to material damage diagnostics.
An Approach to Some Non-Classical Eigenvalue Problems of Structural Dynamics
Directory of Open Access Journals (Sweden)
Sandi Horea
2015-12-01
Full Text Available Two main shortcomings of common formulations, encountered in the literature concerning the linear problems of structural dynamics are revealed: the implicit, not discussed, postulation, of the use of Kelvin – Voigt constitutive laws (which is often infirmed by experience and the calculation difficulties involved by the attempts to use other constitutive laws. In order to overcome these two categories of shortcomings, the use of the bilateral Laplace – Carson transformation is adopted. Instead of the dependence on time, t, of a certain function f (t, the dependence of its image f# (p on the complex parameter p = χ + iω (ω: circular frequency will occur. This leads to the formulation of associated non-classical eigenvalue problems. The basic relations satisfied by the eigenvalues λr#(p and the eigenvectors vr#(p of dynamic systems are examined (among other, the property of orthogonality of eigenvectors is replaced by the property of pseudo-orthogonality. The case of points p = p’, where multiple eigenvalues occur and where, as a rule, chains of principal vectors are to be considered, is discussed. An illustrative case, concerning a non-classical eigenvalue problem, is presented. Plots of variation along the ω axis, for the real and imaginary components of eigenvalues and eigenvectors, are presented. A brief final discussion closes the paper.
High-accuracy acoustic detection of nonclassical component of material nonlinearity.
Haupert, Sylvain; Renaud, Guillaume; Rivière, Jacques; Talmant, Maryline; Johnson, Paul A; Laugier, Pascal
2011-11-01
The aim is to assess the nonclassical component of material nonlinearity in several classes of materials with weak, intermediate, and high nonlinear properties. In this contribution, an optimized nonlinear resonant ultrasound spectroscopy (NRUS) measuring and data processing protocol applied to small samples is described. The protocol is used to overcome the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic nonlinearity. External temperature fluctuation is identified as a primary source of measurement contamination. For instance, a variation of 0.1 °C produced a frequency variation of 0.01%, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to overcome environmental effects, the reference frequency measurements are repeated before each excitation level and then used to compute nonlinear parameters. Using this approach, relative resonant frequency shifts of 10(-5) can be measured, which is below the limit of 10(-4) often considered as the limit of NRUS sensitivity under common experimental conditions. Due to enhanced sensitivity resulting from the correction procedure applied in this work, nonclassical nonlinearity in materials that before have been assumed to only be classically nonlinear in past work (steel, brass, and aluminum) is reported.
Human yeast-specific CD8 T lymphocytes show a nonclassical effector molecule profile.
Breinig, Tanja; Scheller, Nicoletta; Glombitza, Birgit; Breinig, Frank; Meyerhans, Andreas
2012-05-01
Pathogenic yeast and fungi represent a major group of human pathogens. The consequences of infections are diverse and range from local, clinically uncomplicated mycosis of the skin to systemic, life-threatening sepsis. Despite extensive MHC class I-restricted frequencies of yeast-specific CD8 T lymphocytes in healthy individuals and the essential role of the cell-mediated immunity in controlling infections, the characteristics and defense mechanisms of antifungal effector cells are still unclear. Here, we describe the direct analysis of yeast-specific CD8 T lymphocytes in whole blood from healthy individuals. They show a unique, nonclassical phenotype expressing granulysin and granzyme K in lytic granules instead of the major effector molecules perforin and granzyme B. After stimulation in whole blood, yeast-specific CD8 T cells degranulated and, upon cultivation in the presence of IL-2, their granula were refilled with granulysin rather than with perforin and granzyme B. Moreover, yeast-specific stimulation through dendritic cells but not by yeast cells alone led to degranulation of the effector cells. As granulysin is the only effector molecule in lytic granules known to have antifungal properties, our data suggest yeast-specific CD8 T cells to be a nonclassical effector population whose antimicrobial effector machinery seems to be tailor-made for the efficient elimination of fungi as pathogens.
Non-classical phenotypes of autoimmune hepatitis and advances in diagnosis and treatment
Institute of Scientific and Technical Information of China (English)
Albert J Czaja; Yusuf Bayraktar
2009-01-01
Non-classical manifestations of autoimmune hepatitis can delay diagnosis and treatment. Our aims were to describe the clinical phenotypes that can confound the diagnosis, detail scoring systems that can ensure their recognition, and outline advances in treatment that can improve their outcome. Prime source and review articles in English were selected through Medline from 1970-2008 and assimilated into personal libraries spanning 32 years. Acute severe or asymptomatic presentations and atypical histological findings,including centrilobular zone 3 necrosis and concurrent bile duct changes, are compatible with the diagnosis.Cholangiographic abnormalities may be present in children and adults with the disease, and autoimmune hepatitis must be considered in patients without autoantibodies or with antimitochondrial antibodies and no other cholestatic features. Asymptomatic patients frequently become symptomatic; mild disease can progress; and there are no confident indices that justify withholding treatment. Two diagnostic scoring systems with complementary virtues have been developed to evaluate patients with confusing features. Normal liver tests and tissue constitute the optimal end point of treatment, and the first relapse is an indication for longterm azathioprine therapy. Cyclosporine, tacrolimus and mycophenolate mofetil are promising salvage therapies, and budesonide with azathioprine may be a superior frontline treatment. We conclude that the non-classical phenotypes of autoimmune hepatitis can be recognized promptly, diagnosed accurately, and treated effectively.
New fundamental evidence of non-classical structure in the combination of natural concepts.
Aerts, D; Sozzo, S; Veloz, T
2016-01-13
We recently performed cognitive experiments on conjunctions and negations of two concepts with the aim of investigating the combination problem of concepts. Our experiments confirmed the deviations (conceptual vagueness, underextension, overextension etc.) from the rules of classical (fuzzy) logic and probability theory observed by several scholars in concept theory, while our data were successfully modelled in a quantum-theoretic framework developed by ourselves. In this paper, we isolate a new, very stable and systematic pattern of violation of classicality that occurs in concept combinations. In addition, the strength and regularity of this non-classical effect leads us to believe that it occurs at a more fundamental level than the deviations observed up to now. It is our opinion that we have identified a deep non-classical mechanism determining not only how concepts are combined but, rather, how they are formed. We show that this effect can be faithfully modelled in a two-sector Fock space structure, and that it can be exactly explained by assuming that human thought is the superposition of two processes, a 'logical reasoning', guided by 'logic', and a 'conceptual reasoning', guided by 'emergence', and that the latter generally prevails over the former. All these findings provide new fundamental support to our quantum-theoretic approach to human cognition.
Carver, Charles S.; Johnson, Sheri L.; Joormann, Jutta
2008-01-01
Evidence from diverse literatures supports the viewpoint that two modes of self-regulation exist, a lower-order system that responds quickly to associative cues of the moment and a higher-order system that responds more reflectively and planfully; that low serotonergic function is linked to relative dominance of the lower-order system; that how…
Two-mode multiplexing at 2 × 10.7 Gbps over a 7-cell hollow-core photonic bandgap fiber
DEFF Research Database (Denmark)
Xu, Jing; Peucheret, Christophe; Lyngsø, Jens Kristian
2012-01-01
mode division multiplexing (MDM). In this work, we demonstrate MDM over a HC-PBGF for the first time. Two 10.7 Gbps channels are simultaneously transmitted over two modes of a 30-m long 7-cell HC-PBGF. Bit error ratio (BER) performances below the FEC threshold limit (3.3 × 10−3) are shown for both data...
Akker, E. van den; Stikkelbroeck, M.M.L.; Menheere, P.P.C.A.; Roumen, F.J.M.E.; Otten, B.J.
2002-01-01
In an 18-year-old woman non-classic 21-hydroxylase deficiency was diagnosed and dexamethasone treatment was instituted. Ten years later, she became pregnant for the first time; at 37 weeks unexpected intrauterine foetal death was found to have occurred. A second pregnancy ended with a spontaneous
Non-classical diffusion model for heat and mass transfer in laser drying
Institute of Scientific and Technical Information of China (English)
Xiulan Huai; Guoxiang Wang; Renqiu Jiang; Bin Li
2004-01-01
A numerical analysis of the laser drying process by employing a generalized, Maxwell-Cattaneo equation to treat both heat and mass transfer was presented. Calculations were performed to illustrate the non-classical transport of heat and moisture. The effect of the heat flux density and the initial moisture content on water removal was also investigated. The results indicate that the nonequilibrium mass diffusion plays an important role during the very early stages of moisture removal, especially at the surface of the medium. Away from the surface, the non-Fickian model shows a delay in the reduction of the moisture content. The calculation resuits also show that the initial moisture content of the medium has a considerable effect on water removal.
Non-classical crystallization of thin films and nanostructures in CVD and PVD processes
Hwang, Nong Moon
2016-01-01
This book provides a comprehensive introduction to a recently-developed approach to the growth mechanism of thin films and nanostructures via chemical vapour deposition (CVD). Starting from the underlying principles of the low pressure synthesis of diamond films, it is shown that diamond growth occurs not by individual atoms but by charged nanoparticles. This newly-discovered growth mechanism turns out to be general to many CVD and some physical vapor deposition (PVD) processes. This non-classical crystallization is a new paradigm of crystal growth, with active research taking place on growth in solution, especially in biomineralization processes. Established understanding of the growth of thin films and nanostructures is based around processes involving individual atoms or molecules. According to the author’s research over the last two decades, however, the generation of charged gas phase nuclei is shown to be the rule rather than the exception in the CVD process, and charged gas phase nuclei are actively ...
Role of Nonclassical Renin-angiotensin system Axis In Renal Fibrosis
Directory of Open Access Journals (Sweden)
Linli eLv
2015-04-01
Full Text Available The renin–angiotensin system (RAS is a major regulator of renal fibrosis. Besides the classical renin/Angiotensin-converting enzyme 2 (ACE2/angiotensin II (Ang II/AT1 and AT2 axis, multiple new axes have been recently described. The new members have added new dimensions to RAS, including the ACE2/ANG (1–7/Mas receptor axis, the prorenin/(prorenin receptor(PRR/intracelluar pathway axis, and the Angiotensin A (Ang A, alamandine-Mas-related G protein coupled receptor D(MrgD axis. This review summarized recent studies regarding role of the non-classical RAS axis in renal fibrosis, and its possible implications to the intervention of progression of chronic kidney disease.
Non-classical photon correlation in a two-dimensional photonic lattice
Gao, Jun; Lin, Xiao-Feng; Jiao, Zhi-Qiang; Feng, Zhen; Zhou, Zheng; Gao, Zhen-Wei; Xu, Xiao-Yun; Chen, Yuan; Tang, Hao; Jin, Xian-Min
2016-01-01
Quantum interference and quantum correlation, as two main features of quantum optics, play an essential role in quantum information applications, such as multi-particle quantum walk and boson sampling. While many experimental demonstrations have been done in one-dimensional waveguide arrays, it remains unexplored in higher dimensions due to tight requirement of manipulating and detecting photons in large-scale. Here, we experimentally observe non-classical correlation of two identical photons in a fully coupled two-dimensional structure, i.e. photonic lattice manufactured by three-dimensional femtosecond laser writing. Photon interference consists of 36 Hong-Ou-Mandel interference and 9 bunching. The overlap between measured and simulated distribution is up to $0.890\\pm0.001$. Clear photon correlation is observed in the two-dimensional photonic lattice. Combining with controllably engineered disorder, our results open new perspectives towards large-scale implementation of quantum simulation on integrated phot...
Universality of Nonclassical Nonlinearity Applications to Non-Destructive Evaluations and Ultrasonic
Delsanto, Pier Paolo
2006-01-01
This book comes as a result of the research work developed in the framework of two international projects: the European Science Foundation supported program NATEMIS (Nonlinear Acoustic Techniques for Micro-Scale Damage Diagnostics) and a Los Alamos-based international network. The main topics of both the programs and the book cover the phenomenology, theory and applications of Nonclassical Nonlinearity (NCNL). NCNL techniques have been found in recent years to be extremely powerful (up to 1000 times more than the corresponding linear techniques) in a wide range of applications, including Material Characterization, Ultrasonics, Geophysics and Maintenance and Restoration of artifacts. These techniques are being adopted as the main inspection and research tool in another European program: AERONEWS (Health monitoring of aircraft by nonlinear elastic wave propagation). In the future, the proposed Universality of NCNL is expected to extend the range of applications to numerous other fields and scientific discipline...
A case of androgen-secreting adrenal carcinoma with non-classical congenital adrenal hyperplasia
Directory of Open Access Journals (Sweden)
Tarun Varma
2013-01-01
Full Text Available Androgen excess is one of the most common and disturbing endocrine disorder of reproductive-aged women, affecting approximately 7% of this population Androgen excess results in the development of androgenic features in the women affected, with the development of hirsutism, androgenic alopecia, ovulatory dysfunction, and, if extreme, even virilization and masculinization. Adrenocortical carcinoma (ACC is a rare malignancy accounting for 0.02% of all annual cancers reported. About 60% are functional tumors secreting hormones, with its consequent clinical manifestations, the Cushing′s syndrome due to cortisone, virilization due to androgens, feminization due to estrogens, or hypertension due to aldosterone. Adrenal tumors that secrete androgens exclusively are extremely rare. Here, we present a rare case of androgen-secreting adrenocortical carcinoma with non-classical congenital adrenal hyperplasia.
Genotype, phenotype and hormonal levels correlation in non-classical congenital adrenal hyperplasia.
Einaudi, S; Napolitano, E; Restivo, F; Motta, G; Baldi, M; Tuli, G; Grosso, E; Migone, N; Menegatti, E; Manieri, C
2011-10-01
Non-classical congenital adrenal hyperplasia (NCAH) is a morbid condition sustained by the reduced function of one of the enzymes involved in the adrenal steroid biosynthesis pathway, mainly the 21-hydroxylase. Different degrees of enzyme activity impairment determine different clinical pictures, with childhood or post-pubertal onset. The aim of this study was to evaluate the relationship between genotype, phenotype, and adrenal hormonal levels in a group of 66 patients affected by NCAH attending outpatient pediatric or endocrinological Clinics. Our findings show that age at pubarche/menarche was significantly younger, height SD score) and Δ bone age-chronological age were significantly higher in patients with a more severe enzyme activity impairment, while cutaneous androgenization and menstrual irregularities in post-pubertal girls were not related to the grading of genotype.
Non-classical crystallization of silicon thin films during hot wire chemical vapor deposition
Jung, Jae-Soo; Lee, Sang-Hoon; Kim, Da-Seul; Kim, Kun-Su; Park, Soon-Won; Hwang, Nong-Moon
2017-01-01
The deposition behavior of silicon films by hot wire chemical vapor deposition (HWCVD) was approached by non-classical crystallization, where the building block of deposition is a nanoparticle generated in the gas phase of the reactor. The puzzling phenomenon of the formation of an amorphous incubation layer on glass could be explained by the liquid-like property of small charged nanoparticles (CNPs), which are generated in the initial stage of the HWCVD process. Using the liquid-like property of small CNPs, homo-epitaxial growth as thick as 150 nm could be successfully grown on a silicon wafer at 600 °C under the processing condition where CNPs as small as possible could be supplied steadily by a cyclic process which periodically resets the process. The size of CNPs turned out to be an important parameter in the microstructure evolution of thin films.
Wigner Function of Thermo-Invariant Coherent State
Institute of Scientific and Technical Information of China (English)
XU Xue-Fen; ZHU Shi-Qun
2008-01-01
@@ By using the thermal Winger operator of thermo-field dynamics in the coherent thermal state |ξ> representation and the technique of integration within an ordered product of operators, the Wigner function of the thermo-invariant coherent state |z, n> is derived. The nonclassical properties of state |z, n> is discussed based on the negativity of the Wigner function.
Quezada, L. F.; Nahmad-Achar, E.
2017-01-01
We show how the use of variational states to approximate the ground state of a system can be employed to study a multimode Dicke model. One of the main contributions of this work is the introduction of a not very commonly used quantity, the cooperation number, and the study of its influence on the behavior of the system, paying particular attention to the quantum phase transitions and the accuracy of the used approximations. We also show how these phase transitions affect the dependence of the expectation values of some of the observables relevant to the system and the entropy of entanglement with respect to the energy difference between atomic states and the coupling strength between matter and radiation, thus characterizing the transitions in different ways.
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi; LU Hai-Liang
2006-01-01
We show that the time-dependent two-mode Fresnel operator is just the time-evolutional unitary operator governed by the Hamiltonian composed of quadratic combination of canonical operators in the way of exhibiting SU(1,1)algebra. This is an approach for obtaining the time-dependent Hamiltonian from the preassigned time evolution in classical phase space, an approach which is in contrast to Lewis-Riesenfeld's invariant operator theory of treating time-dependent harmonic oscillators.
Directory of Open Access Journals (Sweden)
Boucher Yann G.
2017-01-01
Full Text Available In terms of Linear Algebra, a directional coupler between a single-mode waveguide and a two-mode waveguide can be thought of as formally equivalent to a set of three mutually coupled single-mode waveguides. Its responses, easily derived in the frame of ternary Coupled-Mode Theory, are used to establish analytically the scattering parameters of a hybrid ring-based modal multiplexer.
Boucher, Yann G.; Parini, Alberto; Féron, Patrice
2017-03-01
In terms of Linear Algebra, a directional coupler between a single-mode waveguide and a two-mode waveguide can be thought of as formally equivalent to a set of three mutually coupled single-mode waveguides. Its responses, easily derived in the frame of ternary Coupled-Mode Theory, are used to establish analytically the scattering parameters of a hybrid ring-based modal multiplexer.
Snijders, Tom A B; Lomi, Alessandro; Torló, Vanina Jasmine
2013-05-01
We propose a new stochastic actor-oriented model for the co-evolution of two-mode and one-mode networks. The model posits that activities of a set of actors, represented in the two-mode network, co-evolve with exchanges and interactions between the actors, as represented in the one-mode network. The model assumes that the actors, not the activities, have agency. The empirical value of the model is demonstrated by examining how employment preferences co-evolve with friendship and advice relations in a group of seventy-five MBA students. The analysis shows that activity in the two-mode network, as expressed by number of employment preferences, is related to activity in the friendship network, as expressed by outdegrees. Further, advice ties between students lead to agreement with respect to employment preferences. In addition, considering the multiplexity of advice and friendship ties yields a better understanding of the dynamics of the advice relation: tendencies to reciprocation and homophily in advice relations are mediated to an important extent by friendship relations. The discussion pays attention to the implications of this study in the broader context of current efforts to model the co-evolutionary dynamics of social networks and individual behavior.
Frequency Up- and Down-conversions in Two-mode Cavity%两模腔中的参量上转换和下转换
Institute of Scientific and Technical Information of China (English)
李斌; 冯勋立; 张智明
2011-01-01
提出了一种通过建立双线性二次哈密顿量在量子腔中实现参量上转换和下转换的方案.通常在非线性过程中,介质本身不参与能量的净交换,但光波频率可以发生转换的作用称为参量转换作用.此方案建立在一个四能级原子同时与两经典场和两量子场相互作用的基础上,理论属于非线性光学四波混频范畴.将原子制备在合适的能级上,经典光场与相应的能级发生共振,而同时量子光场与相应的能级产生大失谐相互作用,在强相互作用区域内,原子和腔场失耦合,进而实现腔模的参量转换.根据所制备初始能级的不同以及光场激发能级的差异,分别实现了参量上转换和参量下转换.在利用参量下转换制备压缩算符后,对实验的可行性进行了讨论,并且给出了理论值.结果表明:在级联三能原子中采用一个级联双光子过程代替了原来的两个偶极禁戒跃迁间的经典驱动,可以保证高的不同频率之间的转换效率,并且用于光的量子操控和量子信息处理.%A scheme was proposed to construct bilinear and quadratic Hamiltonians for frequency up-and down-conversions in cavity quantum electrodynamics (QED).Generally,in nonlinear optics,the interaction that the energe swaps between different optic modes without atomic transition is named frequency conversion.The proposed scheme was based on the interactions of a single four-level atom simultaneously with two classical driving fields and a two-mode cavity field,which is in the domain of four-wave mixing.By initially preparing the atom in a suitable state,each pump light was resonant with its transition,and two quantum modes were large tune to the other two transition,respectively,In the strong laser regime,the atomic degrees of freedom could be decoupled from the cavity degrees of freedom and the frequency conversion could be realized for the cavity modes.Due to the different initial states and
Surana, K. S.; Joy, A. D.; Reddy, J. N.
2017-03-01
This paper presents a non-classical continuum theory in Lagrangian description for solids in which the conservation and the balance laws are derived by incorporating both the internal rotations arising from the Jacobian of deformation and the rotations of Cosserat theories at a material point. In particular, in this non-classical continuum theory, we have (i) the usual displacements ( ±b \\varvec{u}) and (ii) three internal rotations ({}_i ±b \\varvec{Θ}) about the axes of a triad whose axes are parallel to the x-frame arising from the Jacobian of deformation (which are completely defined by the skew-symmetric part of the Jacobian of deformation), and (iii) three additional rotations ({}_e ±b \\varvec{Θ}) about the axes of the same triad located at each material point as additional three degrees of freedom referred to as Cosserat rotations. This gives rise to ±b \\varvec{u} and {}_e ±b \\varvec{{Θ} as six degrees of freedom at a material point. The internal rotations ({}_i ±b \\varvec{Θ}), often neglected in classical continuum mechanics, exist in all deforming solid continua as these are due to Jacobian of deformation. When the internal rotations {}_i ±b \\varvec{Θ} are resisted by the deforming matter, conjugate moment tensor arises that together with {}_i ±b \\varvec{Θ} may result in energy storage and/or dissipation, which must be accounted for in the conservation and the balance laws. The Cosserat rotations {}_e ±b \\varvec{Θ} also result in conjugate moment tensor which, together with {}_e ±b \\varvec{Θ}, may also result in energy storage and/or dissipation. The main focus of the paper is a consistent derivation of conservation and balance laws that incorporate aforementioned physics and associated constitutive theories for thermoelastic solids. The mathematical model derived here has closure, and the constitutive theories derived using two alternate approaches are in agreement with each other as well as with the condition resulting from the
Detection of non-classical space-time correlations with a novel type of single-photon camera
Just, Felix; Cavanna, Andrea; Michel, Thilo; Gleixner, Thomas; Taheri, Michael; Vallerga, John; Campbell, Michael; Tick, Timo; Anton, Gisela; Chekhova, Maria V; Leuchs, Gerd
2014-01-01
During the last decades, multi-pixel detectors have been developed capable of registering single photons. The newly developed Hybrid Photon Detector camera has a remarkable property that it has not only spatial but also temporal resolution. In this work, we use this device for the detection of non-classical light from spontaneous parametric down-conversion and use two-photon correlations for the absolute calibration of its quantum efficiency.
Institute of Scientific and Technical Information of China (English)
XU Jing-Bo; ZOU Xu-Bo; GAO Xiao-Chun; FU Jian
2004-01-01
With the help of an SU(3) dynamical algebraic structure, we find an exact solution of the Milburn equation for the system of a three-level atom in the Ξ configuration interacting with one quantized field mode with arbitrary detuning. The exact solution is then used to discuss the influence of the intrinsic decoherence on the nonclassical properties of the system, such as collapes and revivals of the atomic populations, oscillations of the photon number distribution, and squeezing of the radiation field.
Institute of Scientific and Technical Information of China (English)
XUJing-Bo; ZOUXu-Bo; GAOXiao-Chun; FUJian
2004-01-01
With the help of an SU(3) dynamicalalgebraic structure, we ~nd an exact solutionof the Milburn equationfor the system of a three-levelatom in the [1] configuration interacting with one quantized field mode with arbitrary detuning ,The exact solution is then used to discuss the influence of the intrinsic decoherence on the nonclassical properties of the system,such as collapes and revivals of the atomic populations,oscillations of the photon number distribution,and squeezing of the radiation field.
Koszegi, Zsombor; Szego, Éva M; Cheong, Rachel Y; Tolod-Kemp, Emeline; Ábrahám, István M
2011-09-01
17β-Estradiol (E2) treatment exerts rapid, nonclassical actions via intracellular signal transduction system in basal forebrain cholinergic (BFC) neurons in vivo. Here we examined the effect of E2 treatment on lesioned BFC neurons in ovariectomized mice and the role of E2-induced nonclassical action in this treatment. Mice given an N-methyl-d-aspartic acid (NMDA) injection into the substantia innominata-nucleus basalis magnocellularis complex (SI-NBM) exhibited cholinergic cell loss in the SI-NBM and ipsilateral cholinergic fiber loss in the cortex. A single injection of E2 after NMDA lesion did not have an effect on cholinergic cell loss in the SI-NBM, but it restored the ipsilateral cholinergic fiber density in the cortex in a time- and dose-dependent manner. The most effective cholinergic fiber restoration was observed with 33 ng/g E2 treatment at 1 h after NMDA lesion. The E2-induced cholinergic fiber restoration was absent in neuron-specific estrogen receptor-α knockout mice in vivo. Selective activation of nonclassical estrogen signaling in vivo by estren induced E2-like restorative actions. Selective blockade of the MAPK or protein kinase A pathway in vivo prevented E2's ability to restore cholinergic fiber loss. Finally, studies in intact female mice revealed an E2-induced restorative effect that was similar to that of E2-treated ovariectomized mice. These observations demonstrate that a single E2 treatment restores the BFC fiber loss in the cortex, regardless of endogenous E2 levels. They also reveal the critical role of nonclassical estrogen signaling via estrogen receptor-α and protein kinase A-MAPK pathways in E2-induced restorative action in the cholinergic system in vivo.
Non-Classical C–H···X Hydrogen Bonding and Its Role in Asymmetric Organocatalysis
Ajitha, Manjaly John
2016-08-17
Non-classical hydrogen bonds (NCHBs) have attracted significant interest in the past decade particularly because of their important role in asymmetric catalytic systems. These weak interactions (< 4 kcal/mol) offer much flexibility in the preorganization of molecular entities required to achieve high enantioselectivity. Herein, we review some recent important organocatalytic asymmetric reactions where a NCHB serves as a critical factor in determining the stereoselectivity.
Four modes of optical parametric operation for squeezed state generation
DEFF Research Database (Denmark)
Andersen, Ulrik Lund; Buchler, B.C.; Lam, P.K.;
2003-01-01
of this light, including a full quantum state tomography. In addition we demonstrate the direct detection of the squeezed state statistics without the aid of a spectrum analyser. This technique makes the nonclassical properties directly visible and allows complete measurement of the statistical moments...
Linear problem of the shock wave disturbance in a non-classical case
Semenko, Evgeny V.
2017-06-01
A linear problem of the shock wave disturbance for a special (non-classical) case, where both pre-shock and post-shock flows are subsonic, is considered. The phase transition for the van der Waals gas is an example of this problem. Isentropic solutions are constructed. In addition, the stability of the problem is investigated and the known result is approved: the only neutral stability case occurs here. A strictly algebraic representation of the solution in the plane of the Fourier transform is obtained. This representation allows the solution to be studied both analytically and numerically. In this way, any solution can be decomposed into a sum of acoustic and vorticity waves and into a sum of initial (generated by initial perturbations), transmitted (through the shock) and reflected (from the shock) waves. Thus, the wave incidence/refraction/reflection is investigated. A principal difference of the refraction/reflection from the classical case is found, namely, the waves generated by initial pre-shock perturbations not only pass through the shock (i.e., generate post-shock transmitted waves) but also are reflected from it (i.e., generate pre-shock reflected waves). In turn, the waves generated by the initial post-shock perturbation are not only reflected from the shock (generate post-shock reflected waves) but also pass through it (generate pre-shock transmitted waves).
Paolo Delsanto, Pier; Hirsekorn, Sigrun
2004-04-01
Recent experiments on rocks and other materials, such as soil, cement, concrete and damaged elastic materials, have led to the discovery of nonlinear (NL) hysteretic effects in their elastic behaviour. These observations suggest the existence of a NL mesoscopic elasticity universality class, to which all the aforementioned materials belong. The purpose of the present contribution is to search for the basic mathematical roots for nonclassical nonlinearity, in order to explain its universality, classify it and correlate it with the underlying meso- or microscopic interaction mechanisms. In our discussions we explicitly consider two quite different kinds of specimens: a two-bonded-elements structure and a thin multigrained bar. It is remarkable that, although the former includes only one interface and the latter very many interstices, the same "interaction box" formalism can be applied to both. Another important result of the proposed formalism is that the spectral contents of an arbitrary system for any input amplitude may be predicted, under certain assumptions, from the result of a single experiment at a higher amplitude.
Does Wearing Textured Insoles during Non-class Time Improve Proprioception in Professional Dancers?
Steinberg, N; Tirosh, O; Adams, R; Karin, J; Waddington, G
2015-11-01
This study sought to determine whether textured insoles inserted in the sports shoes of young dancers improved their inversion and eversion ankle movement discrimination. 26 ballet dancers (14 female, 12 male) from the Australian Ballet School, ages 14-19 years, were divided into 2 groups according to sex and class levels. During the first 4 weeks, the first intervention group (GRP1) was asked to wear textured insoles in their sports shoes during non-class periods, and the second intervention group (GRP2) followed standard practice. In the next 4 weeks, GRP2 was asked to wear the textured insoles and GRP1 did not wear the textured insoles. Participants were tested pre-intervention, after 4 weeks, and at 8 weeks for both inversion and eversion ankle discrimination. In both inversion and eversion testing positions, interaction was found between the 2 groups and the 3 testing times (pproprioceptive system arising from textured insoles worn for 4 weeks was sufficient to improve the ankle proprioception of ballet dancers, in both inversion and eversion movements.
Language proficiency modulates the recruitment of non-classical language areas in bilinguals.
Directory of Open Access Journals (Sweden)
Matthew K Leonard
Full Text Available Bilingualism provides a unique opportunity for understanding the relative roles of proficiency and order of acquisition in determining how the brain represents language. In a previous study, we combined magnetoencephalography (MEG and magnetic resonance imaging (MRI to examine the spatiotemporal dynamics of word processing in a group of Spanish-English bilinguals who were more proficient in their native language. We found that from the earliest stages of lexical processing, words in the second language evoke greater activity in bilateral posterior visual regions, while activity to the native language is largely confined to classical left hemisphere fronto-temporal areas. In the present study, we sought to examine whether these effects relate to language proficiency or order of language acquisition by testing Spanish-English bilingual subjects who had become dominant in their second language. Additionally, we wanted to determine whether activity in bilateral visual regions was related to the presentation of written words in our previous study, so we presented subjects with both written and auditory words. We found greater activity for the less proficient native language in bilateral posterior visual regions for both the visual and auditory modalities, which started during the earliest word encoding stages and continued through lexico-semantic processing. In classical left fronto-temporal regions, the two languages evoked similar activity. Therefore, it is the lack of proficiency rather than secondary acquisition order that determines the recruitment of non-classical areas for word processing.
The natural course of non-classic Pompe's disease; a review of 225 published cases.
Winkel, Léon P F; Hagemans, Marloes L C; van Doorn, Pieter A; Loonen, M Christa B; Hop, Wim J C; Reuser, Arnold J J; van der Ploeg, Ans T
2005-08-01
Pompe's disease is a neuromuscular disorder caused by deficiency of lysosomal acid alpha-glucosidase. Recombinant human alpha- glucosidase is under evaluation as therapeutic drug. In light of this development we studied the natural course of cases not fitting the definition of classic infantile Pompe's disease. Our review of 109 reports including 225 cases shows a continuous spectrum of phenotypes. The onset of symptoms ranged from 0 to 71 years. Based on the available literature, no criteria to delineate clinical sub-types could be established.A common denominator of these cases is that first symptoms were related to or caused by muscle weakness. In general, patients with a later onset of symptoms seemed to have a better prognosis. Respiratory failure was the most frequent cause of death. CK, LDH, ASAT, ALAT and muscle glycogen levels were frequently but not always elevated. In most cases a muscle biopsy revealed lysosomal pathology, but normal muscle morphology does not exclude Pompe's disease. In 10% of the cases in which the enzyme assay on leukocytes was used, a normal alpha-glucosidase activity was reported. Data on skeletal muscle strength and function, pulmonary function, disability, handicap and quality of life were insufficiently reported in the literature. Studies of non-classic Pompe's disease should focus on these aspects, before enzyme replacement therapy becomes generally available.
Language proficiency modulates the recruitment of non-classical language areas in bilinguals.
Leonard, Matthew K; Torres, Christina; Travis, Katherine E; Brown, Timothy T; Hagler, Donald J; Dale, Anders M; Elman, Jeffrey L; Halgren, Eric
2011-03-24
Bilingualism provides a unique opportunity for understanding the relative roles of proficiency and order of acquisition in determining how the brain represents language. In a previous study, we combined magnetoencephalography (MEG) and magnetic resonance imaging (MRI) to examine the spatiotemporal dynamics of word processing in a group of Spanish-English bilinguals who were more proficient in their native language. We found that from the earliest stages of lexical processing, words in the second language evoke greater activity in bilateral posterior visual regions, while activity to the native language is largely confined to classical left hemisphere fronto-temporal areas. In the present study, we sought to examine whether these effects relate to language proficiency or order of language acquisition by testing Spanish-English bilingual subjects who had become dominant in their second language. Additionally, we wanted to determine whether activity in bilateral visual regions was related to the presentation of written words in our previous study, so we presented subjects with both written and auditory words. We found greater activity for the less proficient native language in bilateral posterior visual regions for both the visual and auditory modalities, which started during the earliest word encoding stages and continued through lexico-semantic processing. In classical left fronto-temporal regions, the two languages evoked similar activity. Therefore, it is the lack of proficiency rather than secondary acquisition order that determines the recruitment of non-classical areas for word processing.
Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway.
Cohen, Lyora A; Gutierrez, Lucia; Weiss, Avital; Leichtmann-Bardoogo, Yael; Zhang, De-liang; Crooks, Daniel R; Sougrat, Rachid; Morgenstern, Avigail; Galy, Bruno; Hentze, Matthias W; Lazaro, Francisco J; Rouault, Tracey A; Meyron-Holtz, Esther G
2010-09-02
The serum ferritin concentration is a clinical parameter measured widely for the differential diagnosis of anemia. Its levels increase with elevations of tissue iron stores and with inflammation, but studies on cellular sources of serum ferritin as well as its subunit composition, degree of iron loading and glycosylation have given rise to conflicting results. To gain further understanding of serum ferritin, we have used traditional and modern methodologies to characterize mouse serum ferritin. We find that both splenic macrophages and proximal tubule cells of the kidney are possible cellular sources for serum ferritin and that serum ferritin is secreted by cells rather than being the product of a cytosolic leak from damaged cells. Mouse serum ferritin is composed mostly of L-subunits, whereas it contains few H-subunits and iron content is low. L-subunits of serum ferritin are frequently truncated at the C-terminus, giving rise to a characteristic 17-kD band that has been previously observed in lysosomal ferritin. Taken together with the fact that mouse serum ferritin is not detectably glycosylated, we propose that mouse serum ferritin is secreted through the nonclassical lysosomal secretory pathway.
Carroll, Raymond J.
2010-05-01
This paper considers identification and estimation of a general nonlinear Errors-in-Variables (EIV) model using two samples. Both samples consist of a dependent variable, some error-free covariates, and an error-prone covariate, for which the measurement error has unknown distribution and could be arbitrarily correlated with the latent true values; and neither sample contains an accurate measurement of the corresponding true variable. We assume that the regression model of interest - the conditional distribution of the dependent variable given the latent true covariate and the error-free covariates - is the same in both samples, but the distributions of the latent true covariates vary with observed error-free discrete covariates. We first show that the general latent nonlinear model is nonparametrically identified using the two samples when both could have nonclassical errors, without either instrumental variables or independence between the two samples. When the two samples are independent and the nonlinear regression model is parameterized, we propose sieve Quasi Maximum Likelihood Estimation (Q-MLE) for the parameter of interest, and establish its root-n consistency and asymptotic normality under possible misspecification, and its semiparametric efficiency under correct specification, with easily estimated standard errors. A Monte Carlo simulation and a data application are presented to show the power of the approach.
Multi-agent fare optimization model of two modes problem and its analysis based on edge of chaos
Li, Xue-yan; Li, Xue-mei; Li, Xue-wei; Qiu, He-ting
2017-03-01
This paper proposes a new framework of fare optimization & game model for studying the competition between two travel modes (high speed railway and civil aviation) in which passengers' group behavior is taken into consideration. The small-world network is introduced to construct the multi-agent model of passengers' travel mode choice. The cumulative prospect theory is adopted to depict passengers' bounded rationality, the heterogeneity of passengers' reference point is depicted using the idea of group emotion computing. The conceptions of "Langton parameter" and "evolution entropy" in the theory of "edge of chaos" are introduced to create passengers' "decision coefficient" and "evolution entropy of travel mode choice" which are used to quantify passengers' group behavior. The numerical simulation and the analysis of passengers' behavior show that (1) the new model inherits the features of traditional model well and the idea of self-organizing traffic flow evolution fully embodies passengers' bounded rationality, (2) compared with the traditional model (logit model), when passengers are in the "edge of chaos" state, the total profit of the transportation system is higher.
Toward quantum state tomography of a single polariton state of an atomic ensemble
DEFF Research Database (Denmark)
Christensen, S.L.; Béguin, J.B.; Sørensen, H.L.
2013-01-01
We present a proposal and a feasibility study for the creation and quantum state tomography of a single polariton state of an atomic ensemble. The collective non-classical and non-Gaussian state of the ensemble is generated by detection of a single forward-scattered photon. The state...... the feasibility of the proposed method for the detection of a non-classical and non-Gaussian state of the mesoscopic atomic ensemble. This work represents the first attempt at hybrid discrete-continuous variable quantum state processing with atomic memories....... is subsequently characterized by atomic state tomography performed using strong dispersive light-atom interaction followed by a homodyne measurement on the transmitted light. The proposal is backed by preliminary experimental results showing projection noise limited sensitivity and a simulation demonstrating...
Li, Huajiao; Fang, Wei; An, Haizhong; Gao, Xiangyun; Yan, Lili
2016-05-01
Economic networks in the real world are not homogeneous; therefore, it is important to study economic networks with heterogeneous nodes and edges to simulate a real network more precisely. In this paper, we present an empirical study of the one-mode derivative holding-based network constructed by the two-mode affiliation network of two sets of actors using the data of worldwide listed energy companies and their shareholders. First, we identify the primitive relationship in the two-mode affiliation network of the two sets of actors. Then, we present the method used to construct the derivative network based on the shareholding relationship between two sets of actors and the affiliation relationship between actors and events. After constructing the derivative network, we analyze different topological features on the node level, edge level and entire network level and explain the meanings of the different values of the topological features combining the empirical data. This study is helpful for expanding the usage of complex networks to heterogeneous economic networks. For empirical research on the worldwide listed energy stock market, this study is useful for discovering the inner relationships between the nations and regions from a new perspective.
Controllable gaussian-qubit interface for extremal quantum state engineering.
Adesso, Gerardo; Campbell, Steve; Illuminati, Fabrizio; Paternostro, Mauro
2010-06-18
We study state engineering through bilinear interactions between two remote qubits and two-mode gaussian light fields. The attainable two-qubit states span the entire physically allowed region in the entanglement-versus-global-purity plane. Two-mode gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. We show that a small set of parameters characterizing extremally entangled two-mode gaussian states is sufficient to control the engineering of extremally entangled two-qubit states, which can be realized in realistic matter-light scenarios.
A non-classical view of the modulation of mineral precipitation by organic additives
Ruiz-Agudo, Encarnacion; Ruiz-Agudo, Cristina; Burgos-Cara, Alejandro; Putnis, Christine; Rodriguez-Navarro, Carlos; Putnis, Andrew
2016-04-01
Questions persist on the mechanisms of crystallization of sparingly soluble minerals such as calcium carbonate, calcium oxalate or barium sulphate. Compared to CaCO3, the mechanisms of nucleation and growth in the CaC2O4-H2O or BaSO4-H2O systems have received less attention. These phases are important due to their relevance as biominerals and/or unwanted mineral deposits in technological applications. Growing evidence suggests that sparingly soluble salts form by non-classical nucleation and growth pathways, where pre-nucleation ion associates and amorphous (solid or liquid) precursor phase(s) play a critical role (e.g. Rodríguez-Navarro et al. (2015), Ruiz-Agudo et al. (2015)). Indeed the identification of pre-nucleation species in these systems and their strong interactions with organic compounds (Verch et al. 2011) raises the possibility that the control of organics on biomineralization may begin even earlier than previously thought. A sound knowledge of the physical mechanisms by which acidic macromolecules affect nucleation and early growth may offer general insights concerning the molecular control of biomineralization, as well as being critical for improving strategies to control unwanted mineral deposition or for the synthesis of biomimetic materials. Here we present investigations on the initial stages of the precipitation of these relevant minerals in organic-free solutions to identify the precipitation pathway and to look for any potential precursor phase(s) to the final, crystalline polymorph. As well, we explore the effects that several acidic organic compounds have on the different precipitation stages identified. We find that organic additives such as citric acid, polyacrilic acid or a commercial copolymer of maleic acid/allyl sulfonic acid with phosphonate groups can be active at modifying pre-nucleation stages (destabilizing of pre-nucleation species or hampering the aggregation and growth of pre-nucleation associates) and subsequently strongly
Ko, William L.; Lung, Shun-Fat
2017-01-01
Non-classical stress concentration behavior in a stretched circular hyperelastic sheet (outer radius b = 10 in., thickness t = 0.0625 in.) containing a central hole (radius a = 0.5 in.) was analyzed. The hyperelastic sheet was subjected to different levels of remote radial stretchings. Nastran large-strain large-deformation analysis and the Blatz-Ko large deformation theory were used to calculate the equal-biaxial stress concentration factors K. The results show that the values of K calculated from the Blatz-Ko theory and Nastran are extremely close. Unlike the classical linear elasticity theory, which gives the constant K = 2 for the equal-biaxial stress field, the hyperelastic K values were found to increase with increased stretching and can exceed the value K = 6 at a remote radial extension ratio of 2.35. The present K-values compare fairly well with the K-values obtained by previous works. The effect of the hole-size on K-values was investigated. The values of K start to decrease from a hole radius a = 0.125 in. down to K = 1 (no stress concentration) as a shrinks to a = 0 in. (no hole). Also, the newly introduced stretch and strain magnification factors {K(sub ?),K(sub e) } are also material- and deformation-dependent, and can increase from linear levels of {1.0, 4.0} and reaching {3.07, 4.61}, respectively at a remote radial extension ratio of 2.35.
Studying thin film damping in a micro-beam resonator based on non-classical theories
Ghanbari, Mina; Hossainpour, Siamak; Rezazadeh, Ghader
2016-06-01
In this paper, a mathematical model is presented for studying thin film damping of the surrounding fluid in an in-plane oscillating micro-beam resonator. The proposed model for this study is made up of a clamped-clamped micro-beam bound between two fixed layers. The micro-gap between the micro-beam and fixed layers is filled with air. As classical theories are not properly capable of predicting the size dependence behaviors of the micro-beam, and also behavior of micro-scale fluid media, hence in the presented model, equation of motion governing longitudinal displacement of the micro-beam has been extracted based on non-local elasticity theory. Furthermore, the fluid field has been modeled based on micro-polar theory. These coupled equations have been simplified using Newton-Laplace and continuity equations. After transforming to non-dimensional form and linearizing, the equations have been discretized and solved simultaneously using a Galerkin-based reduced order model. Considering slip boundary conditions and applying a complex frequency approach, the equivalent damping ratio and quality factor of the micro-beam resonator have been obtained. The obtained values for the quality factor have been compared to those based on classical theories. We have shown that applying non-classical theories underestimate the values of the quality factor obtained based on classical theories. The effects of geometrical parameters of the micro-beam and micro-scale fluid field on the quality factor of the resonator have also been investigated.
Recommendations for treatment of nonclassic congenital adrenal hyperplasia (NCCAH): an update.
Trapp, Christine M; Oberfield, Sharon E
2012-03-10
Congenital adrenal hyperplasia (CAH) is a family of autosomal recessive disorders. 21-Hydroxylase deficiency, in which there are mutations in CYP21A2 (the gene encoding the adrenal 21-hydroxylase enzyme), is the most common form (90%) of CAH. In classic CAH there is impaired cortisol production with diagnostic increased levels of 17-OH progesterone. Excess androgen production results in virilization and in the newborn female may cause development of ambiguous external genitalia. Three-fourths of patients with classic CAH also have aldosterone insufficiency, which can result in salt-wasting; in infancy this manifests as shock, hyponatremia and hyperkalemia. CAH has a reported incidence of 1:10,000-1:20,000 births although there is an increased prevalence in certain ethnic groups. Nonclassic CAH (NCCAH) is a less severe form of the disorder, in which there is 20-50% of 21-hydroxylase enzyme activity (vs. 0-5% in classic CAH) and no salt wasting. The degree of symptoms related to androgen excess is variable and may be progressive with age, although some individuals are asymptomatic. NCCAH has an incidence of 1:1000-1:2000 births (0.1-0.2% prevalence) in the White population; an even higher prevalence is noted in certain ethnic groups such as Ashkenazi Jews (1-2%). As many as two-thirds of persons with NCCAH are compound heterozygotes and carry a severe and mild mutation on different alleles. This paper discusses the genetics of NCCAH, along with its variable phenotypic expression, and reviews the clinical course in untreated patients, which includes rapid early childhood growth, advanced skeletal age, premature adrenarche, acne, impaired reproductive function in both sexes and hirsutism as well as menstrual disorders in females. Finally, it addresses treatment with glucocorticoids vs. non treatment and other therapies, particularly with respect to long term issues such as adult metabolic disease including insulin resistance, cardiovascular disease, metabolic syndrome
Studying thin film damping in a micro-beam resonator based on non-classical theories
Institute of Scientific and Technical Information of China (English)
Mina Ghanbari; Siamak Hossainpour; Ghader Rezazadeh
2016-01-01
In this paper, a mathematical model is presented for studying thin film damping of the surrounding fluid in an in-plane oscillating micro-beam resonator. The proposed model for this study is made up of a clamped-clamped micro-beam bound between two fixed layers. The micro-gap between the micro-beam and fixed layers is filled with air. As classical theories are not properly capable of pre-dicting the size dependence behaviors of the micro-beam, and also behavior of micro-scale fluid media, hence in the presented model, equation of motion governing longitudinal displacement of the micro-beam has been extracted based on non-local elasticity theory. Furthermore, the fluid field has been modeled based on micro-polar theory. These coupled equations have been simplified using Newton-Laplace and continuity equations. After transforming to non-dimensional form and linearizing, the equations have been discretized and solved simultaneously using a Galerkin-based reduced order model. Considering slip boundary conditions and applying a complex frequency approach, the equivalent damping ratio and quality factor of the micro-beam resonator have been obtained. The obtained values for the quality factor have been compared to those based on classical theories. We have shown that applying non-classical theories underestimate the values of the quality factor obtained based on classical theo-ries. The effects of geometrical parameters of the micro-beam and micro-scale fluid field on the quality factor of the res-onator have also been investigated.
Generating non-Gaussian states using collisions between Rydberg polaritons
Stanojevic, Jovica; Bimbard, Erwan; Ourjoumtsev, Alexei; Pillet, Pierre; Grangier, Philippe
2012-01-01
We investigate theoretically the deterministic generation of quantum states with negative Wigner functions, by using giant non-linearities due to collisional interactions between Rydberg polaritons. The state resulting from the polariton interactions may be transferred with high fidelity into a photonic state, which can be analyzed using homodyne detection followed by quantum tomography. Besides generating highly non-classical states of the light, this method can also provide a very sensitive probe for the physics of the collisions involving Rydberg states.
Two modes for dune orientation
Courrech Du Pont, Sylvain; Narteau, Clément; Gao, Xin
2015-11-01
Earth sand seas experience winds that blow with different strengths and from different directions in line with the seasons. In response, dune fields show a rich variety of shapes from small crescentic barchans to big star and linear dunes. Linear dunes often exhibit complex and compound patterns with different length scales and orientations, which seem difficult to relate to a single wind cycle. We present results of underwater experiments and numerical simulations where a single wind regime can lead to two different dunes orientation depending on sediment availability. Sediment availability selects the overriding mechanism for the formation of dunes: increasing in height from the destabilization of a sand bed or elongating in a finger on a non-erodible ground from a localized sand source. These mechanisms drive the dunes orientation. Therefore, dunes alignment maximizes dunes orthogonality to sand fluxes in the bed instability mode, while dunes are aligned with the sand transport direction in the fingering mode. Then, we derive a model for dunes orientation, which explains the coexistence of bedforms with different alignments and quantitatively predicts the orientation of dunes in Earth deserts. Finally, we explore the phase diagram and the stability of the fingering mode.
Agarwal, G S; Rai, Amit
2009-01-01
We examine the behavior of a Non Gaussian state like NOON state under phase insensitive amplification. We derive analytical result for the density matrix of the NOON state for arbitrary gain of the amplifier. We consider cases of both symmetric and antisymmetric amplification of the two modes of the NOON state. We quantitatively evaluate the loss of entanglement by the amplifier in terms of the logarithmic negativity parameter. We find that NOON states are more robust than their Gaussian counterparts.
2009-01-01
We examine the behavior of a Non Gaussian state like NOON state under phase insensitive amplification. We derive analytical result for the density matrix of the NOON state for arbitrary gain of the amplifier. We consider cases of both symmetric and antisymmetric amplification of the two modes of the NOON state. We quantitatively evaluate the loss of entanglement by the amplifier in terms of the logarithmic negativity parameter. We find that NOON states are more robust than their Gaussian coun...
DEFF Research Database (Denmark)
Hesselbo, Stephen P.; Korte, Christoph
2010-01-01
-isotope signature), but also some significant contrasts (oxygen-isotope based paleotemperatures which provide no evidence for warming). Significant contrast in oxygen- and carbon-isotope co-variation also occurs on a long timescale. There appear to be two modes in the co-variation of carbon and oxygen isotopes...... environmental changes were global has been strongly debated. Nevertheless, partly as a result of the international effort to define Global Stratotype Sections and Points (GSSPs), much more is now being discovered about environmental changes taking place at and around the other Jurassic Age (Stage) boundaries...... that both long-term and short-term carbon-isotope shifts from the UK Early Jurassic represent global changes in carbon cycle balances. The Sinemurian-Pliensbachian boundary event is an event of global significance and shows several similarities to the Toarcian OAE (relative sea-level change, carbon...
Joshi, Nidhi; Mathew, Sylvia; George, John V.; Hegde, Swaroop; Bhandi, Shilpa; Madhu, K. S.
2016-01-01
Background: Alleviating pain is of utmost importance when treating patients with endodontic pain. Aim: To compare and evaluate the efficacy of two modes of delivery of pretreatment Piroxicam (Dolonex®, Pfizer) for the management of postendodontic pain. Materials and Methods: Sixty-six patients with symptomatic irreversible pulpitis were randomly divided into three groups of 22 subjects Group I - control group, no pharmacological intervention, Group II - patients received pretreatment oral Piroxicam (40 mg), Group III - patients received pretreatment intraligamentary injections totaling 0.4 mL of Piroxicam. Single visit endodontic therapy was performed by a single endodontist. Visual analogue scale was used to record pain before treatment and 4, 8, 12, 24, and 48 h postoperatively. Mann–Whitney U-test and Kruskal–Wallis tests were used to analyze the data. Results: The patients in Groups II and III perceived less postendodontic pain as compared to Group I (P Piroxicam was more efficacious. PMID:27563175
An, Pengli; Li, Huajiao; Zhou, Jinsheng; Chen, Fan
2017-10-01
Complex network theory is a widely used tool in the empirical research of financial markets. Two-mode and multi-mode networks are new trends and represent new directions in that they can more accurately simulate relationships between entities. In this paper, we use data for Chinese listed companies holding non-listed financial companies over a ten-year period to construct two networks: a two-mode primitive network in which listed companies and non-listed financial companies are considered actors and events, respectively, and a one-mode network that is constructed based on the decreasing-mode method in which listed companies are considered nodes. We analyze the evolution of the listed company co-holding network from several perspectives, including that of the whole network, of information control ability, of implicit relationships, of community division and of small-world characteristics. The results of the analysis indicate that (1) China's developing stock market affects the share-holding condition of listed companies holding non-listed financial companies; (2) the information control ability of co-holding networks is focused on a few listed companies and the implicit relationship of investment preference between listed companies is determined by the co-holding behavior; (3) the community division of the co-holding network is increasingly obvious, as determined by the investment preferences among listed companies; and (4) the small-world characteristics of the co-holding network are increasingly obvious, resulting in reduced communication costs. In this paper, we conduct an evolution analysis and develop an understanding of the factors that influence the listed companies co-holding network. This study will help illuminate research on evolution analysis.
Tirani, M. D.; Maleki, M.; Kajani, M. T.
2014-11-01
A numerical method for solving the Lane-Emden equations of the polytropic index α when 4.75 ≤ α ≤ 5 is introduced. The method is based upon nonclassical Gauss-Radau collocation points and Freud type weights. Nonclassical orthogonal polynomials, nonclassical Radau points and weighted interpolation are introduced and are utilized in the interval [0,1]. A smooth, strictly monotonic transformation is used to map the infinite domain x ∈ [0,∞) onto a half-open interval t ∈ [0,1). The resulting problem on the finite interval is then transcribed to a system of nonlinear algebraic equations using collocation. The method is easy to implement and yields very accurate results.
Directory of Open Access Journals (Sweden)
Tychkin Pavel
2016-01-01
Full Text Available The paper considers ‘time’, a fundamental category of human existence, in the context of cognitive processes research in modern culture. Main methodological approaches to determining temporality in myth have been outlined. The authors validate a thesis that methods of understanding time in science and myth at the current development stage of research of the specified worldview forms as cognitive practices correlate. Main features of a ‘time’ concept and its function in mythological thinking, such as unity, interpenetrability, verticality, have been formulated. Myth creates senses, forms a steady ontological picture of the world, makes a human an active source in “constructing the reality”. In this connection, myth mostly plays the role of one of the algorithms of cognitive activity in the context of modern cognitive science. A “temporality” concept realized in myth forms conditions to use it as one of ontological foundations in the modern research of cognitive processes. Main types of temporality in classical and nonclassical science have been described. The specificity of time concept transformation in non-classical science and actualization of relativity and probability of processes and their complementary nature have been revealed. D.Chou’s bootstrap theory of particles has been studied. There has been shown that temporary processes of the micro-world are discrete, diverse and do not exist within the framework of universal integrity which to a great extent correlates with the modern scientific worldview and principles of cognitive practices.
Shizgal, Bernie D.
2016-08-01
Nonclassical quadratures based on a new set of half-range polynomials, Tn(x) , orthogonal with respect to w(x) =e - x - b /√{ x } for x ∈ [ 0 , ∞) are employed in the efficient calculation of the nuclear fusion reaction rate coefficients from cross section data. The parameter b = B /√{kB T } in the weight function is temperature dependent and B is the Gamow factor. The polynomials Tn(x) satisfy a three term recurrence relation defined by two sets of recurrence coefficients, αn and βn. These recurrence coefficients define in turn the tridiagonal Jacobi matrix whose eigenvalues are the quadrature points and the weights are calculated from the first components of the eigenfunctions. For nonresonant nuclear reactions for which the astrophysical function can be expressed as a lower order polynomial in the relative energy, the convergence of the thermal average of the reactive cross section with this nonclassical quadrature is extremely rapid requiring in many cases 2-4 quadrature points. The results are compared with other libraries of nuclear reaction rate coefficient data reported in the literature.
Siljamäki, Pia; Varmanen, Pekka; Kankainen, Matti; Sukura, Antti; Savijoki, Kirsi; Nyman, Tuula A
2014-07-03
Staphylococcus epidermidis (SE) includes commensal and pathogenic strains capable of infecting humans and animals. This study reports global exoproteome profiling of bovine mastitis strain PM221 and two human strains, commensal-type ATCC12228 and sepsis-associated RP62A. We identified 451, 395, and 518 proteins from culture supernatants of PM221, ATCC12228, and RP62A, respectively. Comparison of the identified exoproteomes revealed several strain-specific differences related to secreted antigens and adhesins, higher virulence capability for RP62A, and similarities between the PM221 and RP62A exoproteomes. The majority of the identified proteins (∼80%) were predicted to be cytoplasmic, including proteins known to be associated in membrane vesicles (MVs) in Staphylococcus aureus and immunogenic/adhesive moonlighting proteins. Enrichment of MV fractions from culture supernatants and analysis of their protein composition indicated that this nonclassical protein secretion pathway was being exploited under the conditions used and that there are strain-specific differences in nonclassical protein export. In addition, several predicted cell-surface proteins were identified in the culture media. In summary, the present study is the first in-depth exoproteome analysis of SE highlighting strain-specific factors able to contribute to virulence and adaptation.
Zhou, Yu-Bo; Cao, Jia-Bing; Wan, Bing-Bing; Wang, Xin-Rong; Ding, Guo-Hui; Zhu, Hong; Yang, Hong-Meng; Wang, Ke-Sheng; Zhang, Xin; Han, Ze-Guang
2008-10-01
This study reported that all three human BolA proteins (hBolA1, hBolA2, and hBolA3) are novel non-classical secreted proteins identified with bioinformatics and molecular biology experiments. The three BolA fusion proteins with c-Myc tag could be secreted into the culture medium of the transfected Cos-7 cells, although they could not be colocalized with Golgi apparatus. And the secretion of three BolA proteins could not be inhibited after BFA treatment. Furthermore, the secretion was not dependent on its predicted signal peptide. All the experiment results suggested that the secretion was a non-classical export. Phylogenetic analysis showed that the human BolAs belong to three different groups with functional divergence of BolA subfamily, where the different helix-turn-helix motif among hBolA1, hBolA2, and hBolA3 could be responsible for their functional divergence. Our data provided a basis for functional studies of BolA protein family.
Christakos, Sylvia; Dhawan, Puneet; Ajibade, Dare; Benn, Bryan S; Feng, Jingjing; Joshi, Sneha S
2010-07-01
Recent studies in our laboratory using calbindin-D9k null mutant mice as well as mice lacking the 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) inducible epithelial calcium channel TRPV6 provide evidence for calbindin-D9k and TRPV6 independent regulation of active intestinal calcium absorption. These findings suggest that in the knock out (KO) mice there is compensation by another calcium channel or protein and that other novel factors are involved in 1,25(OH)2D3 mediated active intestinal calcium absorption. In addition, 1,25(OH)2D3 mediated paracellular transport of calcium may have contributed to the normalization of serum calcium in the null mutant mice. 1,25(OH)2D3 downregulates cadherin-17 and upregulates claudin-2 and claudin-12 in the intestine, suggesting that 1,25(OH)2D3, by regulating these epithelial cell junction proteins, can route calcium through the paracellular path. With regard to non-classical actions, 1,25(OH)2D3 has been reported to inhibit the proliferation of a number of malignant cells and to regulate adaptive as well as innate immunity. This article will review new developments related to the function and regulation of vitamin D target proteins in classical and non-classical vitamin D target tissues that have provided novel insight into mechanisms of vitamin D action.
Tan, Y. C.; Abu Bakar, N. H. H.; Tan, W. L.; Abu Bakar, M.
2016-06-01
Almina supported Ni catalysts (Ni/Al2O3) with different Ni weight percentages (wt%) were prepared via classical and non-classical methods. All samples were prepared via impregnation technique. The samples prepared via non-classical methods were reduced using KBH4 as the reducing agent. The catalysts were tested for the hydrogenation of styrene in liquid phase. Optimum activation conditions for the hydrogenation reaction were found to be 633 K for 2 hours. Comparison of the catalytic reactivity for all catalysts at these activation conditions showed that catalysts prepared via classical methods exhibited better activity. Furthermore the 7.6wt% Ni-Al2O3/C showed enhanced activity when compared to the 5.9wt% and 13.8wt% Ni-Al2O3/C catalyst. This phenomenon is mainly attributed to the type of Ni active sites available on the catalyst. The surface properties of the catalysts investigated via H2- temperature programmed reduction (H2-TPR), H2-chemisorption and H2-temperature programmed desorption (H2-TPD) confirm this.
Multiphoton Quantum Optics and Quantum State Engineering
Dell'Anno, F; Illuminati, F; 10.1016/j.physrep.2006.01.004
2009-01-01
We present a review of theoretical and experimental aspects of multiphoton quantum optics. Multiphoton processes occur and are important for many aspects of matter-radiation interactions that include the efficient ionization of atoms and molecules, and, more generally, atomic transition mechanisms; system-environment couplings and dissipative quantum dynamics; laser physics, optical parametric processes, and interferometry. A single review cannot account for all aspects of such an enormously vast subject. Here we choose to concentrate our attention on parametric processes in nonlinear media, with special emphasis on the engineering of nonclassical states of photons and atoms. We present a detailed analysis of the methods and techniques for the production of genuinely quantum multiphoton processes in nonlinear media, and the corresponding models of multiphoton effective interactions. We review existing proposals for the classification, engineering, and manipulation of nonclassical states, including Fock states...
Nonclassical cross-correlations of transmitted and fluorescent fields in cavity QED systems
Energy Technology Data Exchange (ETDEWEB)
Leach, J [Department of Physics, Miami University, Oxford, OH 45013 (United States); Strimbu, C Elliot [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Rice, P R [Department of Physics, Miami University, Oxford, OH 45013 (United States)
2004-08-01
We investigate intensity cross-correlation functions for two cavity QED systems. These are a driven optical cavity containing a single two-level atom interacting with a single mode of the cavity field with quantized centre of mass motion, and a two-level atom in an optical parametric oscillator. We find analytic results in the weak driving field limit using quantum trajectory theory. We find large violations of inequalities that must be satisfied by classical fields. One of these inequalities is well known, g{sup 2}{sub ij}({tau}) {<=} {radical}g{sup 2}{sub ii}(0)g{sup 2}{sub jj}(0), where i and j denote two modes of the field. We also derive a new inequality that cross-correlations must satisfy, vertical bar g{sup 2}{sub ij}({tau})-1 vertical bar{sup 2} {<=} vertical bar (g{sup 2}{sub ii}(0)-1)(g{sup 2}{sub jj}(0)-1) vertical bar. Large violations of classical inequalities and asymmetrical behaviour in delay time {tau} are found in complimentary regimes for the cavity QED system with quantized centre of mass motion. They always exist for the two-level atom inside an optical parametric oscillator.
Asjad, Muhammad; Vitali, David
2014-02-01
A deterministic scheme for generating a macroscopic superposition state of a nanomechanical resonator is proposed. The nonclassical state is generated through a suitably engineered dissipative dynamics exploiting the optomechanical quadratic interaction with a bichromatically driven optical cavity mode. The resulting driven dissipative dynamics can be employed for monitoring and testing the decoherence processes affecting the nanomechanical resonator under controlled conditions.
Cooper, Merlin; Slade, Eirion; Karpinski, Michal; Smith, Brian J.
2014-01-01
Conditional quantum optical processes enable a wide range of technologies from generation of highly non-classical states to implementation of quantum logic operations. The process fidelity that can be achieved in a realistic implementation depends on a number of system parameters. Here we experimentally examine Fock-state filtration, a canonical example of a broad class of conditional quantum operations acting on a single optical field mode. This operation is based upon interference of the mo...
Liu, Lei; Tian, Bo; Xie, Xi-Yang; Guan, Yue-Yang
2017-01-01
Studied in this paper are the vector bright solitons of the coupled higher-order nonlinear Schrödinger system, which describes the simultaneous propagation of two ultrashort pulses in the birefringent or two-mode fiber. With the help of auxiliary functions, we obtain the bilinear forms and construct the vector bright one- and two-soliton solutions via the Hirota method and symbolic computation. Two types of vector solitons are derived. Single-hump, double-hump, and flat-top solitons are displayed. Elastic and inelastic interactions between the Type-I solitons, between the Type-II solitons, and between the two combined types of the solitons are revealed, respectively. Especially, from the interaction between a Type-I soliton and a Type-II soliton, we see that the Type-II soliton exhibits the oscillation periodically before such an interaction and becomes the double-hump soliton after the interaction, which is different from the previously reported.
负相伴随机变量的非经典重对数律%A NONCLASSICAL LAW OF ITERATED LOGARITHM FOR NEGATIVELY ASSOCIATED RANDOM VARIABLES
Institute of Scientific and Technical Information of China (English)
蒋烨
2003-01-01
A nonclassical law of iterated logarithm that holds for a stationary negativelyassociated sequence of random variables with finite variance is proved in this paperThe proof isbased on a Rosenthal type maximal inequality and the subsequence metlodThis result extendsthe work of Klesov,Rosalsky (2001) and Shao,Su (1999).
Noncommutative $q$-photon added coherent states
Dey, Sanjib
2016-01-01
We construct the photon added coherent states of a noncommutative harmonic oscillator associated to a $q$-deformed oscillator algebra. Various nonclassical properties of the corresponding system are explored, first, by studying two different types of higher order quadrature squeezing, namely the Hillery-type and the Hong--Mandel-type and, second, by testing the sub-Poissonian nature of photon statistics in higher order with the help of the correlation function and the Mandel parameter. By comparing our results with those of the usual harmonic oscillator, we notice that the quadratures and photon number distributions in noncommutative case are more squeezed for the same values of the parameters and, thus, the photon added coherent states of noncommutative harmonic oscillator may be more nonclassical in comparison to the ordinary harmonic oscillator.
Aragone, C.
1993-01-01
We introduce a new set of squeezed states through the coupled two-mode squeezed operator. It is shown that their behavior is simpler than the correlated coherent states introduced by Dodonov, Kurmyshev, and Man'ko in order to quantum mechanically describe the Landau system, i.e., a planar charged particle in a uniform magnetic field. We compare results for both sets of squeezed states.
Myong, R. S.; Park, J. H.
2012-11-01
The constitutive laws, which describe the material's inherent properties, play a special role in the study of materials such as gases. In this study, the validity of non-classical constitutive laws in rarefied and micro gases is first considered. In particular, non-Navier and non-Fourier laws in algebraic forms identified in the velocity shear gas flows are investigated using DSMC. In addition, a new method based on the conservation laws is applied to the Couette flow and shock structure problems for the verification study of the DSMC. It is shown that, in flow problems involving with the wall boundary condition, the pressure among various properties is the most critical quantity in the verification and validation study of rarefied and micro gases. Such observation may imply the need of further theoretical and experimental investigation on the whole pressure and temperature flowfields beyond a reduced quantity such as the mass flow rate in the Poiseuille gas flows.
Giri, Sandip Kumar; Thapliyal, Kishore; Sen, Biswajit; Pathak, Anirban
2017-01-01
The transient quantum statistical properties of the atoms and molecules in an atom-molecule BEC system are investigated by obtaining a third-order perturbative solution of the Heisenberg's equations of motion corresponding to the Hamiltonian of the system, where two atoms can collide to form a molecule. Time dependent quantities, like two boson correlation, entanglement, squeezing, antibunching, etc., are computed, and their properties are compared. It is established that the atom-molecule BEC system is highly nonclassical as lower-order and higher-order squeezing and antibunching in pure (atomic and molecular) modes, squeezing and antibunching in compound mode, and lower-order and higher-order entanglement in compound mode can be observed in the atom-molecule BEC system. Exact numerical results are also reported and the analytic results obtained using the perturbative technique are shown to agree with the exact numerical results.
Ogawa, Shun; Yamaguchi, Yoshiyuki Y.
2015-06-01
An external force dynamically drives an isolated mean-field Hamiltonian system to a long-lasting quasistationary state, whose lifetime increases with population of the system. For second order phase transitions in quasistationary states, two nonclassical critical exponents have been reported individually by using a linear and a nonlinear response theories in a toy model. We provide a simple way to compute the critical exponents all at once, which is an analog of the Landau theory. The present theory extends the universality class of the nonclassical exponents to spatially periodic one-dimensional systems and shows that the exponents satisfy a classical scaling relation inevitably by using a key scaling of momentum.
Ogawa, Shun; Yamaguchi, Yoshiyuki Y
2015-06-01
An external force dynamically drives an isolated mean-field Hamiltonian system to a long-lasting quasistationary state, whose lifetime increases with population of the system. For second order phase transitions in quasistationary states, two nonclassical critical exponents have been reported individually by using a linear and a nonlinear response theories in a toy model. We provide a simple way to compute the critical exponents all at once, which is an analog of the Landau theory. The present theory extends the universality class of the nonclassical exponents to spatially periodic one-dimensional systems and shows that the exponents satisfy a classical scaling relation inevitably by using a key scaling of momentum.
Ghosh, Sharmistha
2010-04-06
The DNA polymerase encoded by bacteriophage T7 has low processivity. Escherichia coli thioredoxin binds to a segment of 76 residues in the thumb subdomain of the polymerase and increases the processivity. The binding of thioredoxin leads to the formation of two basic loops, loops A and B, located within the thioredoxin-binding domain (TBD). Both loops interact with the acidic C terminus of the T7 helicase. A relatively weak electrostatic mode involves the C-terminal tail of the helicase and the TBD, whereas a high affinity interaction that does not involve the C-terminal tail occurs when the polymerase is in a polymerization mode. T7 gene 2.5 single-stranded DNA-binding protein (gp2.5) also has an acidic C-terminal tail. gp2.5 also has two modes of interaction with the polymerase, but both involve the C-terminal tail of gp2.5. An electrostatic interaction requires the basic residues in loops A and B, and gp2.5 binds to both loops with similar affinity as measured by surface plasmon resonance. When the polymerase is in a polymerization mode, the C terminus of gene 2.5 protein interacts with the polymerase in regions outside the TBD.gp2.5 increases the processivity of the polymerase-helicase complex during leading strand synthesis. When loop B of the TBD is altered, abortive DNA products are observed during leading strand synthesis. Loop B appears to play an important role in communication with the helicase and gp2.5, whereas loop A plays a stabilizing role in these interactions. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.
Li, Huajiao; An, Haizhong; Wang, Yue; Huang, Jiachen; Gao, Xiangyun
2016-05-01
Keeping abreast of trends in the articles and rapidly grasping a body of article's key points and relationship from a holistic perspective is a new challenge in both literature research and text mining. As the important component, keywords can present the core idea of the academic article. Usually, articles on a single theme or area could share one or some same keywords, and we can analyze topological features and evolution of the articles co-keyword networks and keywords co-occurrence networks to realize the in-depth analysis of the articles. This paper seeks to integrate statistics, text mining, complex networks and visualization to analyze all of the academic articles on one given theme, complex network(s). All 5944 "complex networks" articles that were published between 1990 and 2013 and are available on the Web of Science are extracted. Based on the two-mode affiliation network theory, a new frontier of complex networks, we constructed two different networks, one taking the articles as nodes, the co-keyword relationships as edges and the quantity of co-keywords as the weight to construct articles co-keyword network, and another taking the articles' keywords as nodes, the co-occurrence relationships as edges and the quantity of simultaneous co-occurrences as the weight to construct keyword co-occurrence network. An integrated method for analyzing the topological features and evolution of the articles co-keyword network and keywords co-occurrence networks is proposed, and we also defined a new function to measure the innovation coefficient of the articles in annual level. This paper provides a useful tool and process for successfully achieving in-depth analysis and rapid understanding of the trends and relationships of articles in a holistic perspective.
Directory of Open Access Journals (Sweden)
Tatsuro Naganuma
Full Text Available Fatty acids (FAs are diverse molecules, and such diversity is important for lipids to exert their functions under several environmental conditions. FA elongation occurs at the endoplasmic reticulum and produces a variety of FA species; the FA elongation cycle consists of four distinct enzyme reactions. For this cycle to be driven efficiently, there must exist coordinated regulation of protein components of the FA elongation machinery. However, such regulation is poorly understood. In the present study, we performed biochemical analyses using the FA elongase ELOVL6 and the 3-ketoacyl-CoA reductase KAR, which catalyze the first and second steps of the FA elongation cycle, respectively. In vitro FA elongation assays using membrane fractions demonstrated that ELOVL6 activity was enhanced ∼10-fold in the presence of NADPH, although ELOVL6 itself did not require NADPH for its catalysis. On the other hand, KAR does use NADPH as a reductant in its enzyme reaction. Activity of purified ELOVL6 was enhanced by ∼3-fold in the presence of KAR. This effect was KAR enzyme activity-independent, since it was observed in the absence of NADPH and in the KAR mutant. However, ELOVL6 enzyme activity was further enhanced in a KAR enzyme activity-dependent manner. Therefore, KAR regulates ELOVL6 via two modes. In the first mode, KAR may induce conformational changes in ELOVL6 to become structure that can undergo catalysis. In the second mode, conversion of 3-ketoacyl-CoA to 3-hydroxyacyl-CoA by KAR may facilitate release of the product from the presumed ELOVL6-KAR complex.
Institute of Scientific and Technical Information of China (English)
SONG Fengfei; ZHOU Tianjun; WANG Lu
2013-01-01
In this study,two modes of the Silk Road pattern were investigated using NCEP2 reanalysis data and the simulation produced by Spectral Atmospheric Circulation Model of IAP LASG,Version 2 (SAMIL2.0) that was forced by SST observation data.The horizontal distribution of both modes were reasonably reproduced by the simulation,with a pattern correlation coefficient of 0.63 for the first mode and 0.62 for the second mode.The wave train was maintained by barotropic energy conversion (denoted as CK) and baroclinic energy conversion (denoted as CP) from the mean flow.The distribution of CK was dominated by its meridional component (CKy) in both modes.When integrated spatially,CKy was more efficient than its zonal component (CKx) in the first mode but less in the second mode.The distribution and efficiency of CK were not captured well by SAMIL2.0.However,the model performed reasonably well at reproducing the distribution and efficiency of CP in both modes.Because CP is more efficient than CK,the spatial patterns of the Silk Road pattern were well reproduced.Interestingly,the temporal phase of the second mode was well captured by a single-member simulation.However,further analysis of other ensemble runs demonstrated that the successful reproduction of the temporal phase was a result of internal variability rather than a signal of SST forcing.The analysis shows that the observed temporal variations of both CP and CK were poorly reproduced,leading to the low accuracy of the temporal phase of the Silk Road pattern in the simulation.
Dang, Juntao; Yi, Xingwen; Zhang, Jing; Ye, Taiping; Xu, Bo; Qiu, Kun
2016-07-25
While optical OFDM has been demonstrated for superior transmission performance, its analogue waveform in the time domain challenges many conventional all-optical wavelength converters (AOWC) that are needed for future flexible optical networks. There only exist a few reports on AOWC of OFDM signals, which are mainly based on the low-efficient four-wave mixing. In this paper, we propose an AOWC for OFDM signals by using two-mode injection-locking in a low-cost Fabry-Pérot laser. The control signal and the probe signal at a milliwatt power level are combined and injected into the FP laser. By a proper control, they can be injection-locked to two longitudinal modes in the FP laser and subsequently, the transmission of the probe signal is conditioned by the control signal. We conduct an experimental study on various aspects of this AOWC. Despite a vendor-specified electrical-to-optical (E/O) modulation bandwidth of 2.5 GHz, we find that the optical-to-optical (O/O) modulation bandwidth of AOWC is free from this limit and can be much wider. We examine the linear transfer curve of the AOWC by simply using the OFDM waveforms as the stimulus. The performance tolerance to the wavelength detuning and injected power ratio is also measured. The proposed AOWC can provide a linear transfer function from the control signal to the probe signal to support the random-fluctuated OFDM waveform. We also investigate the maximum capacity of the AOWC by using the adaptive bit-loading OFDM. Finally, we measure the power penalty after the AOWC at two different bit rates to show the tradeoff between the penalty and capacity.
Song, Fengfei; Zhou, Tianjun; Wang, Lu
2013-05-01
In this study, two modes of the Silk Road pattern were investigated using NCEP2 reanalysis data and the simulation produced by Spectral Atmospheric Circulation Model of IAP LASG, Version 2 (SAMIL2.0) that was forced by SST observation data. The horizontal distribution of both modes were reasonably reproduced by the simulation, with a pattern correlation coefficient of 0.63 for the first mode and 0.62 for the second mode. The wave train was maintained by barotropic energy conversion (denoted as CK) and baroclinic energy conversion (denoted as CP) from the mean flow. The distribution of CK was dominated by its meridional component (CK y ) in both modes. When integrated spatially, CK y was more efficient than its zonal component (CK x ) in the first mode but less in the second mode. The distribution and efficiency of CK were not captured well by SAMIL2.0. However, the model performed reasonably well at reproducing the distribution and efficiency of CP in both modes. Because CP is more efficient than CK, the spatial patterns of the Silk Road pattern were well reproduced. Interestingly, the temporal phase of the second mode was well captured by a single-member simulation. However, further analysis of other ensemble runs demonstrated that the successful reproduction of the temporal phase was a result of internal variability rather than a signal of SST forcing. The analysis shows that the observed temporal variations of both CP and CK were poorly reproduced, leading to the low accuracy of the temporal phase of the Silk Road pattern in the simulation.
Osior, Agnieszka
2017-03-14
According to the damped quantum rotation (DQR) theory, hindered rotation of methyl groups, evidenced in nuclear magnetic resonance (NMR) line shapes, is a nonclassical process. It comprises a number of quantum-rate processes measured by two different quantum-rate constants. The classical jump model employing only one rate constant is reproduced if these quantum constants happen to be equal. The values of their ratio, or the nonclassicallity coefficient, determined hitherto from NMR spectra of single crystals and solutions range from about 1.20 to 1.30 in the latter case to above 5.0 in the former, with the value of 1 corresponding to the jump model. Presently, first systematic investigations of the DQR effects in wide-line NMR spectra of a powder sample are reported. For 1,1,1-triphenylethane deuterated in the aromatic positions, the relevant line-shape effects were monitored in the range 99–121 K. The values of the nonclassicality coefficient dropping from 2.7 to 1.7 were evaluated in line shape fits to the experimental powder spectra from the range 99–108 K. At these temperatures, the fits with the conventional line-shape model are visibly inferior to the DQR fits. Using a theoretical model reported earlier, a semiquantitative interpretation of the DQR parameters evaluated from the spectra is given. It is shown that the DQR effects as such can be detected in wide-line NMR spectra of powdered samples, which are relatively facile to measure. However, a fully quantitative picture of these effects can only be obtained from the much more demanding experiments on single crystals.
Sequence and mRNA expression of nonclassical SLA class I genes SLA-7 and SLA-8.
Crew, Mark D; Phanavanh, Bounleut; Garcia-Borges, Carmen N
2004-05-01
Given the prominent position of pig endothelial cells in pig-to-human xenotransplantation and the role of classical and nonclassical MHC class I proteins in T and NK cell recognition, the expression of pig MHC (SLA) class I genes in a pig aortic endothelial cell line (AOC cells) was examined. Using a primer corresponding to a highly conserved region of exon 4, RT-PCR analysis of SLA class I expression in AOC cells revealed not only expression of the classical SLA class I ( SLA-1, -2, and -3) genes, but also SLA class I transcripts corresponding to SLA nonclassical class I (class Ib) genes SLA-6 and SLA-8. Further analysis of SLA class Ib expression in porcine aortic endothelial cells using SLA class I gene-specific primers confirmed SLA-6 and SLA-8 expression and also demonstrated expression of SLA-7. While SLA-6 has been relatively well characterized, no data regarding bona fide SLA-7 and SLA-8 transcripts have been reported. Therefore, cDNAs containing the complete open reading frames of SLA-6, -7, and -8 were obtained. Compared to an SLA-1 protein sequence, the predicted SLA-7 and -8 protein sequences exhibited most sequence divergence in alpha1, alpha2, and cytoplasmic domains. Expression of SLA-6, -7, and -8 was examined by RT-PCR using RNA prepared from a variety of tissues. SLA-6 transcripts were detected in every tissue examined. Except for brain, SLA-8 transcripts were similarly widespread. SLA-7 exhibited more limited tissue distribution.
Energy Technology Data Exchange (ETDEWEB)
Kawakatsu, Miho [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Goto, Shinji, E-mail: sgoto@nagasaki-u.ac.jp [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Yoshida, Takako; Urata, Yoshishige; Li, Tao-Sheng [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan)
2011-08-12
Highlights: {yields} Nuclear translocation of GST{pi} is abrogated by the deletion of the last 16 amino acid residues in the carboxy-terminal region, indicating that residues 195-208 of GST{pi} are required for nuclear translocation. {yields} The lack of a contiguous stretch of positively charged amino acid residues within the carboxy-terminal region of GST{pi}, suggests that the nuclear translocation of GST{pi} is mediated by a non-classical nuclear localization signal. {yields} An in vitro transport assay shows that the nuclear translocation of GST{pi} is dependent on cytosolic factors and ATP. -- Abstract: Glutathione S-transferase {pi} (GST{pi}), a member of the GST family of multifunctional enzymes, is highly expressed in human placenta and involved in the protection of cellular components against electrophilic compounds or oxidative stress. We have recently found that GST{pi} is expressed in the cytoplasm, mitochondria, and nucleus in some cancer cells, and that the nuclear expression of GST{pi} appears to correlate with resistance to anti-cancer drugs. Although the mitochondrial targeting signal of GST{pi} was previously identified in the amino-terminal region, the mechanism of nuclear translocation remains completely unknown. In this study, we find that the region of GST{pi}195-208 is critical for nuclear translocation, which is mediated by a novel and non-classical nuclear localization signal. In addition, using an in vitro transport assay, we demonstrate that the nuclear translocation of GST{pi} depends on the cytosolic extract and ATP. Although further experiments are needed to understand in depth the precise mechanism of nuclear translocation of GST{pi}, our results may help to establish more efficient anti-cancer therapy, especially with respect to resistance to anti-cancer drugs.
Directory of Open Access Journals (Sweden)
Christa E Flück
Full Text Available CONTEXT: Steroidogenic acute regulatory protein (StAR is crucial for transport of cholesterol to mitochondria where biosynthesis of steroids is initiated. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH. OBJECTIVE: StAR gene mutations causing partial loss of function manifest atypical and may be mistaken as familial glucocorticoid deficiency. Only a few mutations have been reported. DESIGN: To report clinical, biochemical, genetic, protein structure and functional data on two novel StAR mutations, and to compare them with published literature. SETTING: Collaboration between the University Children's Hospital Bern, Switzerland, and the CIBERER, Hospital Vall d'Hebron, Autonomous University, Barcelona, Spain. PATIENTS: Two subjects of a non-consanguineous Caucasian family were studied. The 46,XX phenotypic normal female was diagnosed with adrenal insufficiency at the age of 10 months, had normal pubertal development and still has no signs of hypergonodatropic hypogonadism at 32 years of age. Her 46,XY brother was born with normal male external genitalia and was diagnosed with adrenal insufficiency at 14 months. Puberty was normal and no signs of hypergonadotropic hypogonadism are present at 29 years of age. RESULTS: StAR gene analysis revealed two novel compound heterozygote mutations T44HfsX3 and G221S. T44HfsX3 is a loss-of-function StAR mutation. G221S retains partial activity (∼30% and is therefore responsible for a milder, non-classic phenotype. G221S is located in the cholesterol binding pocket and seems to alter binding/release of cholesterol. CONCLUSIONS: StAR mutations located in the cholesterol binding pocket (V187M, R188C, R192C, G221D/S seem to cause non-classic lipoid CAH. Accuracy of genotype-phenotype prediction by in vitro testing may vary with the assays employed.
Quantum state reduction and conditional time evolution of wave-particle correlations in cavity QED.
Foster, G T; Orozco, L A; Castro-Beltran, H M; Carmichael, H J
2000-10-09
We report measurements in cavity QED of a wave-particle correlation function which records the conditional time evolution of the field of a fraction of a photon. Detection of a photon prepares a state of well-defined phase that evolves back to equilibrium via a damped vacuum Rabi oscillation. We record the regression of the field amplitude. The recorded correlation function is nonclassical and provides an efficiency independent path to the spectrum of squeezing. Nonclassicality is observed even when the intensity fluctuations are classical.
King, Sun-Kun
1996-01-01
The variances of the quantum-mechanical noise in a two-input-port Michelson interferometer within the framework of the Loudon-Ni model were solved exactly in two general cases: (1) one coherent state input and one squeezed state input, and (2) two photon number states inputs. Low intensity limit, exponential decaying signal and the noise due to mixing were discussed briefly.
Energy Technology Data Exchange (ETDEWEB)
Hu, Ming-Liang, E-mail: mingliang0301@163.com
2012-09-15
Dynamics of disentanglement as measured by the tripartite negativity and Bell nonlocality as measured by the extent of violation of the multipartite Bell-type inequalities are investigated in this work. It is shown definitively that for the initial three-qubit Greenberger-Horne-Zeilinger (GHZ) or W class state preparation, the Bell nonlocality suffers sudden death under the influence of thermal reservoirs. Moreover, all the Bell-nonlocal states are useful for nonclassical teleportation, while there are entangled states that do not violate any Bell-type inequalities, but still yield nonclassical teleportation fidelity. - Highlights: Black-Right-Pointing-Pointer Comparison of different aspects of quantum correlations. Black-Right-Pointing-Pointer Robustness of the initial tripartite GHZ and W class states against decoherence. Black-Right-Pointing-Pointer Bell-nonlocality sudden death under the influence of thermal reservoir. Black-Right-Pointing-Pointer A nonzero minimum tripartite negativity is needed for nonclassical teleportation. Black-Right-Pointing-Pointer All the Bell-nonlocal states yield nonclassical teleportation fidelity.
Blomeyer, Christoph A; Bazil, Jason N; Stowe, David F; Dash, Ranjan K; Camara, Amadou K S
2016-06-01
The manner in which mitochondria take up and store Ca(2+) remains highly debated. Recent experimental and computational evidence has suggested the presence of at least two modes of Ca(2+) uptake and a complex Ca(2+) sequestration mechanism in mitochondria. But how Mg(2+) regulates these different modes of Ca(2+) uptake as well as mitochondrial Ca(2+) sequestration is not known. In this study, we investigated two different ways by which mitochondria take up and sequester Ca(2+) by using two different protocols. Isolated guinea pig cardiac mitochondria were exposed to varying concentrations of CaCl2 in the presence or absence of MgCl2. In the first protocol, A, CaCl2 was added to the respiration buffer containing isolated mitochondria, whereas in the second protocol, B, mitochondria were added to the respiration buffer with CaCl2 already present. Protocol A resulted first in a fast transitory uptake followed by a slow gradual uptake. In contrast, protocol B only revealed a slow and gradual Ca(2+) uptake, which was approximately 40 % of the slow uptake rate observed in protocol A. These two types of Ca(2+) uptake modes were differentially modulated by extra-matrix Mg(2+). That is, Mg(2+) markedly inhibited the slow mode of Ca(2+) uptake in both protocols in a concentration-dependent manner, but not the fast mode of uptake exhibited in protocol A. Mg(2+) also inhibited Na(+)-dependent Ca(2+) extrusion. The general Ca(2+) binding properties of the mitochondrial Ca(2+) sequestration system were reaffirmed and shown to be independent of the mode of Ca(2+) uptake, i.e. through the fast or slow mode of uptake. In addition, extra-matrix Mg(2+) hindered Ca(2+) sequestration. Our results indicate that mitochondria exhibit different modes of Ca(2+) uptake depending on the nature of exposure to extra-matrix Ca(2+), which are differentially sensitive to Mg(2+). The implications of these findings in cardiomyocytes are discussed.
Quantum Correlations in Mixed-State Metrology
Directory of Open Access Journals (Sweden)
Kavan Modi
2011-12-01
Full Text Available We analyze the effects of quantum correlations, such as entanglement and discord, on the efficiency of phase estimation by studying four quantum circuits that can be readily implemented using NMR techniques. These circuits define a standard strategy of repeated single-qubit measurements, a classical strategy where only classical correlations are allowed, and two quantum strategies where nonclassical correlations are allowed. In addition to counting space (number of qubits and time (number of gates requirements, we introduce mixedness as a key constraint of the experiment. We compare the efficiency of the four strategies as a function of the mixedness parameter. We find that the quantum strategy gives sqrt[N] enhancement over the standard strategy for the same amount of mixedness. This result applies even for highly mixed states that have nonclassical correlations but no entanglement.
TWO MODES OF SUMMER PRECIPITATION VARIATION OF HOLOCENE IN CHINA%全新世中国夏季降水量变化的两种模态
Institute of Scientific and Technical Information of China (English)
王绍武; 黄建斌; 闻新宇; 杨保; 任国玉
2009-01-01
根据气候模拟的夏季降水量及古气候湿润度代用资料,指出全新世中国夏季降水量变化存在两种模态.模态1:降水量异常的中心为一个东北-西南向的带;从东北、内蒙东部、经华北、河套到青藏高原为一正异常中心.模拟结果的EOF分析表明这种模态占模拟的全新世中国夏季降水量变化总方差的75.8%.全新世降水量变化的模拟主要考虑地球轨道要素,其中岁差起着重要作用.因此,这个模态可以称为岁差模.岁差模主要反映近万年全新世降水变化的趋势.模态2:降水量异常分布在中国东部(100°E以东)自北向南表现为负-正-负分布.负异常在内蒙中部到华北,正异常在黄河中游、淮河、到长江流域,江南部分地区又有负异常.这与模拟的大西洋热盐环流减弱所造成的中国夏季降水最异常分布一致.因此,这个模态可能与全新世的气候突变有关,称为气候突变模.覆盖中国的80个代用资料序列给出的9kaB.P.和4kaB.P.干湿分布,证明早全新世气候湿润,晚全新世气候干旱.这种变化趋势丰要反映了岁差的影响.同时,4kaB.P.虽然干旱分布广泛,但是长江流域、关中地区到高原东部则有若干气候湿润的指示.这表明4kaB.P.同时受岁差及气候突变的影响.%Two modes of summer precipitation variation of Holocene in China were identified according to climate modeling and palaeo-climatic humidity data,Mode 1 has such a feature given by EOF_1 of palaeo-climate modeling: positive precipitation anomaly centers are distributed in a NE-SW extended zone from North East China, Eastern Inner Mongolia, North China, the Great Bend of the Yellow River to the Tibet Plateau. This mode is correlated closely to the solar radiation change controlled mainly by precession in Holocene. It can be used to interpret 75.8% of the total variance of the modeled summer precipitation variation of Holocene. The modeling indicates that the
Measurement-Induced Macroscopic Superposition States in Cavity Optomechanics
Hoff, Ulrich B.; Kollath-Bönig, Johann; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L.
2016-09-01
A novel protocol for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator is proposed, compatible with existing optomechanical devices operating in the bad-cavity limit. By combining a pulsed optomechanical quantum nondemolition (QND) interaction with nonclassical optical resources and measurement-induced feedback, the need for strong single-photon coupling is avoided. We outline a three-pulse sequence of QND interactions encompassing squeezing-enhanced cooling by measurement, state preparation, and tomography.
Directory of Open Access Journals (Sweden)
Adriana C. Briozzo
2006-02-01
Full Text Available We prove the existence and uniqueness, local in time, of a solution for a one-phase Stefan problem of a non-classical heat equation for a semi-infinite material with temperature boundary condition at the fixed face. We use the Friedman-Rubinstein integral representation method and the Banach contraction theorem in order to solve an equivalent system of two Volterra integral equations.
Kwakowsky, Andrea; Potapov, Kyoko; Kim, SooHyun; Peppercorn, Katie; Tate, Warren P.; Ábrahám, István M.
2016-01-01
In Alzheimer’s disease (AD), there is a loss in cholinergic innervation targets of basal forebrain which has been implicated in substantial cognitive decline. Amyloid beta peptide (Aβ1–42) accumulates in AD that is highly toxic for basal forebrain cholinergic (BFC) neurons. Although the gonadal steroid estradiol is neuroprotective, the administration is associated with risk of off-target effects. Previous findings suggested that non-classical estradiol action on intracellular signaling pathways has ameliorative potential without estrogenic side effects. After Aβ1–42 injection into mouse basal forebrain, a single dose of 4-estren-3α, 17β-diol (estren), the non-classical estradiol pathway activator, restored loss of cholinergic cortical projections and also attenuated the Aβ1–42-induced learning deficits. Estren rapidly and directly phosphorylates c-AMP-response–element-binding-protein and extracellular-signal-regulated-kinase-1/2 in BFC neurons and restores the cholinergic fibers via estrogen receptor-α. These findings indicated that selective activation of non-classical intracellular estrogen signaling has a potential to treat the damage of cholinergic neurons in AD. PMID:26879842
Engineering extremal two-qubit entangled states with maximally entangled Gaussian light
Adesso, G; Illuminati, F; Paternostro, M
2010-01-01
We study state engineering induced by bilinear interactions between two remote qubits and light fields prepared in two-mode Gaussian states. The attainable two-qubit states span the entire physically allowed region in the entanglement-vs-global-purity plane. We show that two-mode Gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. The target two-qubit entanglement is determined quantitatively only by the purities of the two-mode Gaussian resource. Thus, a small set of parameters characterizing extremally entangled two-mode Gaussian states is sufficient to control completely the engineering of extremally entangled two-qubit states, which can be realized in realistic scenarios of cavity and circuit quantum electrodynamics.
Li, Huajiao; Fang, Wei; An, Haizhong; Yan, LiLi
2014-12-01
Two-mode and multi-mode networks represent new directions of simulating a complex network that can simulate the relationships among the entities more precisely. In this paper, we constructed two different levels of networks: one is the two-mode primitive networks of the energy listed companies and their shareholders on the basis of the two-mode method of complex theory, and the other is the derivative one-mode holding-based network based on the equivalence network theory. We calculated two different topological characteristics of the two networks, that is, the out-degree of the actor nodes of the two-mode network (9003 nodes) and the weights of the edges of the one-mode network (619,766 edges), and we analyzed the distribution features of both of the two topological characteristics. In this paper, we define both the weighted and un-weighted Shareholding Similarity Coefficient, and using the data of the worldwide listed energy companies and their shareholders as empirical study subjects, we calculated and compared both the weighted and un-weighted shareholding similarity coefficient of the worldwide listed energy companies. The result of the analysis indicates that (1) both the out-degree of the actor nodes of the two-mode network and the weights of the edges of the one-mode network follow a power-law distribution; (2) there are significant differences between the weighted and un-weighted shareholding similarity coefficient of the worldwide listed energy companies, and the weighted shareholding similarity coefficient is of greater regularity than the un-weighted one; (3) there are a vast majority of shareholders who hold stock in only one or a few of the listed energy companies; and (4) the shareholders hold stock in the same listed energy companies when the value of the un-weighted shareholding similarity coefficient is between 0.4 and 0.8. The study will be a helpful tool to analyze the relationships of the nodes of the one-mode network, which is constructed based
In Vitro Characterization of the Two-Stage Non-Classical Reassembly Pathway of S-Layers
Breitwieser, Andreas; Iturri, Jagoba; Toca-Herrera, Jose-Luis; Sleytr, Uwe B.; Pum, Dietmar
2017-01-01
The recombinant bacterial surface layer (S-layer) protein rSbpA of Lysinibacillus sphaericus CCM 2177 is an ideal model system to study non-classical nucleation and growth of protein crystals at surfaces since the recrystallization process may be separated into two distinct steps: (i) adsorption of S-layer protein monomers on silicon surfaces is completed within 5 min and the amount of bound S-layer protein sufficient for the subsequent formation of a closed crystalline monolayer; (ii) the recrystallization process is triggered—after washing away the unbound S-layer protein—by the addition of a CaCl2 containing buffer solution, and completed after approximately 2 h. The entire self-assembly process including the formation of amorphous clusters, the subsequent transformation into crystalline monomolecular arrays, and finally crystal growth into extended lattices was investigated by quartz crystal microbalance with dissipation (QCM-D) and atomic force microscopy (AFM). Moreover, contact angle measurements showed that the surface properties of S-layers change from hydrophilic to hydrophobic as the crystallization proceeds. This two-step approach is new in basic and application driven S-layer research and, most likely, will have advantages for functionalizing surfaces (e.g., by spray-coating) with tailor-made biological sensing layers. PMID:28216572
Energy Technology Data Exchange (ETDEWEB)
Tulsidas, S.; Thangamani, S; Ho, B; Sivaraman, J; Ding, J
2009-01-01
Serine proteases play a major role in host-pathogen interactions. The innate immune system is known to respond to invading pathogens in a nonspecific manner. The serine protease cascade is an essential component of the innate immune system of the horseshoe crab. The serine protease inhibitor CrSPI isoform 1 (CrSPI-1), a unique nonclassical Kazal-type inhibitor of molecular weight 9.3 kDa, was identified from the hepatopancreas of the horseshoe crab Carcinoscorpius rotundicauda. It potently inhibits subtilisin and constitutes a powerful innate immune defence against invading microbes. Here, the cloning, expression, purification and cocrystallization of CrSPI-1 with subtilisin are reported. The crystals diffracted to 2.6 {angstrom}resolution and belonged to space group P2{sub 1}, with unit-cell parameters a = 73.8, b = 65.0, c = 111.9 {angstrom}, {beta} = 95.4. The Matthews coefficient (VM = 2.64 {angstrom}3 Da-1, corresponding to 53% solvent content) and analysis of the preliminary structure solution indicated the presence of one heterotrimer (1:2 ratio of CrSPI-1:subtilisin) and one free subtilisin molecule in the asymmetric unit.
Alam, M. S.; Kranti, A.; Armstrong, G. A.
2011-08-01
The significance of optimization of gate-source/drain extension region (also known as a non-classical underlap design) in double gate (DG) silicon-on-insulator (SOI) FETs to improve the linearity performance of a low power folded cascode operational transconductance amplifier (OTA) is described. Based on a new figure-of-merit (FoM) involving AV, linearity, unity gain bandwidth fT and dc power consumption PDC, this article presents guideline for optimum design for underlap spacer s and film thickness Tsi to maximize the performance of OTA. It has been shown that FoM exhibited by an underlap DG MOSFET OTA gives significantly higher value (≅9) compared to a conventional single gate bulk MOSFET OTA. This is due to a combination of both higher fT, and higher gain AV for the same linearity at low power consumption of 360 μW. With gate length scaling, FoM continues to improve, primarily due to higher value of fT. A scaled bulk MOSFET OTA exhibits similar but much smaller enhancement in trend for FoM.
Gönç, E Nazli; Ozön, Z Alev; Alikaşifoğlu, Ayfer; Engiz, Ozlem; Bulum, Burcu; Kandemir, Nurgün
2011-01-01
To determine the critical features for the diagnosis of nonclassical 21 hydroxylase deficiency (NC210HD) without performing adrenocorticotropic hormone (ACTH) test, we studied 186 cases with premature adrenarche. Clinical and laboratory features as well as basal 17-hydroxyprogesterone (17-OHP) were analyzed to determine factors important for differentiating NC21OHD. Overall, 6 patients (3.2%) had ACTH-stimulated 17-OHP > 10 ng/ml. A cutoff level of 2 ng/ml for basal 17-OHP was 66.7% sensitive and 78% specific for NC21OHD; however, a cutoff level of 1.55 ng/ml had higher sensitivity (83%) and specificity (70.6%). A cutoff of 1.55 ng/ml would lead to 31% of cases with premature adrenarche having to undergo ACTH test, and only one case would have been missed. That case had a bone age SDS > 2. Three cases out of five with a basal 17-OHP > 5 ng/ml had stimulated 17-OHP bone SDS > 2 in those with lower basal levels as a guide for carrying out an ACTH test may yield better results in the diagnosis of NC21OHD in the premature adrenarche population. A cutoff of 5 ng/ml for basal 17-OHP should not be used for diagnosis of NC21OHD.
Institute of Scientific and Technical Information of China (English)
YUAN Qing-Hui; ZHOU Li-Xin
2007-01-01
The hydrolysis process of the anticancer agents novel non-classical transplatinum( Ⅱ ) with aliphatic amines and the influence of solvent models therein have been studied by using hybrid density functional theory (B3LYP). In this study, the stepwise hydrolysis, trans[PtCl2(Am)(isopropylamine)] + 2H2O → trans-[Pt(Am)(isopropylamine)(OH2)2]2++ 2Cl-, was explored. Implicit solvent effects were incorporated through polarized continuum models. The stationary points on the potential energy surfaces for the first and second hydrolysis steps,proceeding via a general SN2 pathway, were fully optimized and characterized. It was found that the first hydrolysis reaction is easier than the second one and the hydrolysis of trans- [PtCl2-(isopropylamine)2] is the easiest in our studying systems. The result can assist in under- tanding the hydrolysis mechanism of trans-[PtCl2(Am)(isopropylamine)] and designing novel Pt-based anticancer drugs.
In Vitro Characterization of the Two-Stage Non-Classical Reassembly Pathway of S-Layers
Directory of Open Access Journals (Sweden)
Andreas Breitwieser
2017-02-01
Full Text Available The recombinant bacterial surface layer (S-layer protein rSbpA of Lysinibacillus sphaericus CCM 2177 is an ideal model system to study non-classical nucleation and growth of protein crystals at surfaces since the recrystallization process may be separated into two distinct steps: (i adsorption of S-layer protein monomers on silicon surfaces is completed within 5 min and the amount of bound S-layer protein sufficient for the subsequent formation of a closed crystalline monolayer; (ii the recrystallization process is triggered—after washing away the unbound S-layer protein—by the addition of a CaCl2 containing buffer solution, and completed after approximately 2 h. The entire self-assembly process including the formation of amorphous clusters, the subsequent transformation into crystalline monomolecular arrays, and finally crystal growth into extended lattices was investigated by quartz crystal microbalance with dissipation (QCM-D and atomic force microscopy (AFM. Moreover, contact angle measurements showed that the surface properties of S-layers change from hydrophilic to hydrophobic as the crystallization proceeds. This two-step approach is new in basic and application driven S-layer research and, most likely, will have advantages for functionalizing surfaces (e.g., by spray-coating with tailor-made biological sensing layers.
Institute of Scientific and Technical Information of China (English)
Zhan You-Bang
2004-01-01
We have investigated the reduced fluctuation properties in a mesoscopic Josephson junction with the squeezed state at a finite temperature. It is shown that the fluctuations increase with increasing temperature and the mesoscopic Josephson junction subsystem can exhibit squeezing behaviour at an appropriately low temperature.
Effect of Cavity Decay on Entanglement of Ladder-Type Three-Level Atoms and a Two-Mode Cavity Field
Institute of Scientific and Technical Information of China (English)
GAO Cheng-Yuan; LIU Jin-Ming; MA Lei
2008-01-01
Considering the adiabatical approximation and the large detuning condition, we give the effective Hamil-tonian of a ladder-type three levels atom interacting with a bimodal cavity field. If two identical three-level atoms are sent through the cavity one by one, a two-atom entangled state can be generated. With the choice of the appropriate interaction time, a maximally entangled state of two atoms can be obtained if decoherence effect is ignored. Moreover, we discuss the effect of cavity decay on four physical quantities including atomic population probability, residual entan-glement of the first atom and the cavity field, concurrence between the two atoms, and fidelity for generating atomic EPR state, all of which decrease with the increase of cavity decay when the other parameters are fixed.
An introduction to quantum discord and non-classical correlations beyond entanglement
Adesso, Gerardo; Bromley, Thomas R
2016-01-01
In this didactic article we explore the concept of quantum correlations beyond entanglement. We begin by introducing and motivating the classically correlated states and then showing how to quantify the quantum correlations using an entropic approach, arriving at a well known measure called the quantum discord. Quantum correlations and discord are then operationally linked with the task of local broadcasting. We conclude by providing some alternative perspectives on quantum correlations and how to measure them.
Quantum Fluctuation Properties of Polariton System in Thermal Vacuum State Field
Institute of Scientific and Technical Information of China (English)
邵彬; 余天胜; 邹健; 曾天海
2004-01-01
Using the theory of thermal field dynamics (TFD), a model polariton system is investigated and the squeezing properties of the polariton system at finite temperature is discussed. It is shown that when the photon field is initially in a thermal vacuum state and the phonon initially in its lowest energy level state (the vacuum state), the phonon, photon and also the polariton system can exhibit nonclassical behaviour.
Capture and release of a conditional state of a cavity QED system by quantum feedback.
Smith, W P; Reiner, J E; Orozco, L A; Kuhr, S; Wiseman, H M
2002-09-23
Detection of a single photon escaping an optical cavity QED system prepares a nonclassical state of the electromagnetic field. The evolution of the state can be modified by changing the drive of the cavity. For the appropriate feedback, the conditional state can be captured (stabilized) and then released. This is observed by a conditional intensity measurement that shows suppression of vacuum Rabi oscillations for the length of the feedback pulse and their subsequent return.
Observation of spatial quantum correlations induced by multiple scattering of nonclassical light.
Smolka, S; Huck, A; Andersen, U L; Lagendijk, A; Lodahl, P
2009-05-15
We present the experimental realization of spatial quantum correlations of photons that are induced by multiple scattering of squeezed light. The quantum correlation relates photons propagating along two different light paths through the random medium and is infinite in range. Both positive and negative spatial quantum correlations are observed when varying the quantum state incident to the multiple scattering medium, and the strength of the correlations is controlled by the number of photons. The experimental results are in excellent agreement with recent theoretical proposals by implementing the full quantum model of multiple scattering.
Soliton Atom Laser with Quantum State Transfer Property
Institute of Scientific and Technical Information of China (English)
LIU Xiong-Jun; JING Hui; GE Mo-Lin
2006-01-01
@@ We study the nonlinear effects in the quantum states transfer technique from photons to matter waves in the three-level case, which may provide the formation of a soliton atom laser with nonclassical atoms. The validity of quantum transfer mechanism is confirmed in the presence of the intrinsic nonlinear atomic interactions. The accompanied frequency chirp effect is shown to have no influence on the grey solitons formed by the output atom laser and the possible quantum depletion effect is also briefly discussed.
Directory of Open Access Journals (Sweden)
Scott Glaberman
Full Text Available Squamates are a diverse order of vertebrates, representing more than 7,000 species. Yet, descriptions of full-length major histocompatibility complex (MHC genes in this group are nearly absent from the literature, while the number of MHC studies continues to rise in other vertebrate taxa. The lack of basic information about MHC organization in squamates inhibits investigation into the relationship between MHC polymorphism and disease, and leaves a large taxonomic gap in our understanding of amniote MHC evolution. Here, we use both cDNA and genomic sequence data to characterize a class I MHC gene (Amcr-UA from the Galápagos marine iguana, a member of the squamate subfamily Iguaninae. Amcr-UA appears to be functional since it is expressed in the blood and contains many of the conserved peptide-binding residues that are found in classical class I genes of other vertebrates. In addition, comparison of Amcr-UA to homologous sequences from other iguanine species shows that the antigen-binding portion of this gene is under purifying selection, rather than balancing selection, and therefore may have a conserved function. A striking feature of Amcr-UA is that both the cDNA and genomic sequences lack the transmembrane and cytoplasmic domains that are necessary to anchor the class I receptor molecule into the cell membrane, suggesting that the product of this gene is secreted and consequently not involved in classical class I antigen-presentation. The truncated and conserved character of Amcr-UA lead us to define it as a nonclassical gene that is related to the few available squamate class I sequences. However, phylogenetic analysis placed Amcr-UA in a basal position relative to other published classical MHC genes from squamates, suggesting that this gene diverged near the beginning of squamate diversification.
Kacer, Doreen; McIntire, Christian; Kirov, Alek; Kany, Erin; Roth, Jennifer; Liaw, Lucy; Small, Deena; Friesel, Robert; Basilico, Claudio; Tarantini, Francesca; Verdi, Joseph; Prudovsky, Igor
2011-01-01
FGF1, a widely expressed proangiogenic factor involved in tissue repair and carcinogenesis, is released from cells through a nonclassical pathway independent of endoplasmic reticulum and Golgi. Although several proteins participating in FGF1 export were identified, genetic mechanisms regulating this process remained obscure. We found that FGF1 export and expression are regulated through Notch signaling mediated by transcription factor CBF1and its partner MAML. The expression of a dominant negative (dn) form of CBF1 in 3T3 cells induces transcription of FGF1 and sphingosine kinase 1 (SphK1), which is a component of FGF1 export pathway. dnCBF1 expression stimulates the stress-independent release of transduced FGF1 from NIH 3T3 cells and endogenous FGF1 from A375 melanoma cells. NIH 3T3 cells transfected with dnCBF1 form colonies in soft agar and produce rapidly growing highly angiogenic tumors in nude mice. The transformed phenotype of dnCBF1 transfected cells is efficiently blocked by dn forms of FGF receptor 1 and S100A13, which is a component of FGF1 export pathway. FGF1 export and acceleration of cell growth induced by dnCBF1 depend on SphK1. Similar to dnCBF1, dnMAML transfection induces FGF1 expression and release, and accelerates cell proliferation. The latter effect is strongly decreased in FGF1 null cells. We suggest that the regulation of FGF1 expression and release by CBF1-mediated Notch signaling can play an important role in tumor formation. PMID:21302306
Characterization of SLCO5A1/OATP5A1, a solute carrier transport protein with non-classical function.
Directory of Open Access Journals (Sweden)
Katrin Sebastian
Full Text Available Organic anion transporting polypeptides (OATP/SLCO have been identified to mediate the uptake of a broad range of mainly amphipathic molecules. Human OATP5A1 was found to be expressed in the epithelium of many cancerous and non-cancerous tissues throughout the body but protein characterization and functional analysis have not yet been performed. This study focused on the biochemical characterization of OATP5A1 using Xenopus laevis oocytes and Flp-In T-REx-HeLa cells providing evidence regarding a possible OATP5A1 function. SLCO5A1 is highly expressed in mature dendritic cells compared to immature dendritic cells (∼6.5-fold and SLCO5A1 expression correlates with the differentiation status of primary blood cells. A core- and complex- N-glycosylated polypeptide monomer of ∼105 kDa and ∼130 kDa could be localized in intracellular membranes and on the plasma membrane, respectively. Inducible expression of SLCO5A1 in HeLa cells led to an inhibitory effect of ∼20% after 96 h on cell proliferation. Gene expression profiling with these cells identified immunologically relevant genes (e.g. CCL20 and genes implicated in developmental processes (e.g. TGM2. A single nucleotide polymorphism leading to the exchange of amino acid 33 (L→F revealed no differences regarding protein expression and function. In conclusion, we provide evidence that OATP5A1 might be a non-classical OATP family member which is involved in biological processes that require the reorganization of the cell shape, such as differentiation and migration.
Preparation of W state in resonant bimodal cavity quantum electrodynamics
Institute of Scientific and Technical Information of China (English)
2007-01-01
A scheme is proposed for generating entangled W states with four cavity modes. In this scheme, we send a Ⅴ-type three-level atom through two identical two-mode cavities in succession. After the atom exits from the second cavity,the four cavity modes are prepared in the W state. On the other hand we can obtain three-atom W states by sending three Ⅴ-type three-level atoms through a two-mode cavity in turn. The present scheme does not require conditional measurement, and it is easily generalized to preparing 2n-mode W states and n-atom W states.
Follow-up Contemporary Commercial Music (CCM) Survey: who's teaching what in nonclassical music.
Weekly, Edrie Means; Lovetri, Jeannette L
2009-05-01
A previous study, published in the Journal of Voice in 2003, revealed that a majority of teachers of Music Theater (MT), a style of Contemporary Commercial Music (CCM), had little professional experience and little formal training in vocal pedagogy for this style. Those who did indicate that they had had training did not describe the training nor quantify it in any manner. To ascertain what type of training was available for CCM in general and MT, in particular, a follow-up study seemed warranted. A new questionnaire was developed which asked for further information from teachers of MT in several areas including performance experience, training methods, teaching philosophy, the use of terminology, knowledge of voice science and medicine, and other parameters. Responses were gathered from 145 singing teachers throughout the United States and several foreign countries. Statistical analysis obtained from the data may lead to both a better understanding of the kind of training available for teachers of CCM repertoire, and of its content and applicability.
Non-classical large deviations for a noisy system with non-isolated attractors
Bouchet, Freddy; Touchette, Hugo
2012-05-01
We study the large deviations of a simple noise-perturbed dynamical system having continuous sets of steady states, which mimic those found in some partial differential equations related, for example, to turbulence problems. The system is a two-dimensional nonlinear Langevin equation involving a dissipative, non-potential force, which has the essential effect of creating a line of stable fixed points (attracting line) touching a line of unstable fixed points (repelling line). Using different analytical and numerical techniques, we show that the stationary distribution of this system satisfies, in the low-noise limit, a large deviation principle containing two competing terms: (i) a 'classical' but sub-dominant large deviation term, which can be derived from the Freidlin-Wentzell theory of large deviations by studying the fluctuation paths or instantons of the system near the attracting line, and (ii) a dominant large deviation term, which does not follow from the Freidlin-Wentzell theory, as it is related to fluctuation paths of zero action, referred to as sub-instantons, emanating from the repelling line. We discuss the nature of these sub-instantons, and show how they arise from the connection between the attracting and repelling lines. We also discuss in a more general way how we expect these to arise in more general stochastic systems having connected sets of stable and unstable fixed points, and how they should determine the large deviation properties of these systems.
DNA as a Model for Probing Polymer Entanglements: Circular Polymers and Non-Classical Dynamics
Directory of Open Access Journals (Sweden)
Kathryn Regan
2016-09-01
Full Text Available Double-stranded DNA offers a robust platform for investigating fundamental questions regarding the dynamics of entangled polymer solutions. The exceptional monodispersity and multiple naturally occurring topologies of DNA, as well as a wide range of tunable lengths and concentrations that encompass the entanglement regime, enable direct testing of molecular-level entanglement theories and corresponding scaling laws. DNA is also amenable to a wide range of techniques from passive to nonlinear measurements and from single-molecule to bulk macroscopic experiments. Over the past two decades, researchers have developed methods to directly visualize and manipulate single entangled DNA molecules in steady-state and stressed conditions using fluorescence microscopy, particle tracking and optical tweezers. Developments in microfluidics, microrheology and bulk rheology have also enabled characterization of the viscoelastic response of entangled DNA from molecular levels to macroscopic scales and over timescales that span from linear to nonlinear regimes. Experiments using DNA have uniquely elucidated the debated entanglement properties of circular polymers and blends of linear and circular polymers. Experiments have also revealed important lengthscale and timescale dependent entanglement dynamics not predicted by classical tube models, both validating and refuting new proposed extensions and alternatives to tube theory and motivating further theoretical work to describe the rich dynamics exhibited in entangled polymer systems.
Dominik Krezolek
2012-01-01
The aim of this article is to present some non-classical risk measures which are commonly used in financial investments, including investments in assets from the market of precious non-ferrous metals. The time series of log-returns of gold, silver, platinum and palladium prices are considered. To properly asses the investment risk the measures based on Value-at-Risk methodology have been used (the VaR estimation approach based on values from the tail of the distribution). Additionally, the me...
与哺乳动物精子竞争有关的两种信息输入处理模式%Two modes of input processing in relation to sperm competition in mammals
Institute of Scientific and Technical Information of China (English)
Javier delBARCO-TRILLO; Michael H. FERKIN
2005-01-01
Much research has been focused on the 'output' or response of males to particular risks of sperm competition (RSC). Lately, there has also been some interest on the types of information that males may use to assess RSC (RSC inputs). In contrast, there is a lack of studies on how males may process RSC inputs to generate such RSC outputs. Here we propose two modes of input processing (direct and indirect) and ways to test them in order to understand how a male may process and store RSC information. The direct mode of input processing predicts that a male may store RSC inputs through a physiological response, e.g., through a change in hormonal levels. As long as this response is active, the male will stay in a 'RSC state' and will produce an RSC output (e.g.,high sperm investment) instead of a non-RSC output (e.g., relatively lower sperm investment) when he encounters a female. The indirect mode of input processing predicts that a male may store RSC inputs in his memory and retrieve such information later on to modify his output (e.g., sperm investment or copulatory behavior) accordingly. We use a multidisciplinary approach that should appeal to those researchers that seek to understand male's adaptations to sperm competition at different levels. We believe that the testing of the hypotheses developed in this paper will lead to interesting findings and the development of new hypotheses.%过去的许多研究集中在"输出"或雄性对特定的精子竞争风险(Risks of sperm competition,RSC)的反应上,对于雄性利用何种类型的信息来估计RSC也有一些研究.相比而言,缺少对于雄性如何处理RSC信息输入从而产生RSC信息输出的研究.本文提出输入信息处理(直接处理与间接处理)的两种模型并提出了检验这两种模型的方法,以便理解雄性如何处理并储存精子竞争风险的有关信息.直接的输入信息处理模型预测,一个雄性个体可能通过生理反应如激
Institute of Scientific and Technical Information of China (English)
王伟达; 刘辉; 韩立金; 马文杰; 韩全福
2015-01-01
The two-mode electro-mechanical variable transmission(EVT) system can realize the power transmitting variable transmission by the split and couple of the electric and mechanical power. The electric and mechanical power is limited by the coupled restriction, and its distribution and dynamic control is quite difficult. Based on the power management strategy which is optimal fuel curve of engine-based and widely used, the affect to the system operating and power distributing of the efficiency model used to the calculation of power distribution and the response delay of the power components especially the engine is analyzed by the power balance equation and the test data. The engine speed based cooperation strategy of electric and mechanical power and the bus voltage based cooperation strategy of electric-driving power are proposed, which can ensure the system stability and electric power balance by the closed-loop control based on the measured variables. The EVT system test bench is established and the bench test results indicate that the researched dynamic power control strategy can realize the precise control and regulation of the multi-power by the closed-loop control, which can realize the optimal tradeoff of the regulation of the static-state target and the dynamic torque output required by the dynamic performance index, and ensure the system stable operation and the electric power balance.%双模式机电复合无级传动系统通过机电功率耦合实现动力传递和无级传动，其机电功率分配受耦合约束影响，分配与动态控制难度很大。在普遍采用的基于发动机最优燃油经济性曲线的功率管理策略基础上，通过功率平衡方程与试验数据分析控制策略中用于功率分配计算的效率模型和功率部件主要是发动机响应延迟对于动态过程中系统工作和功率分配的影响，提出基于系统中可测量的发动机转速的机电功率协调策略与基于母线电压的电动
Many-particle entanglement criterion for superradiant-like states
Tasgin, Mehmet Emre
2016-01-01
We derive a many-particle inseparability criterion for mixed states using the relation between single-mode and many-particle nonclassicalities. It works very well not only in the vicinity of the Dicke states, but also for the superposition of them: superradiant ground state of finite/infinite number of particles and time evolution of single-photon superradiance. We also obtain a criterion for ensemble-field entanglement which works fine for such kind of states. Even though the collective excitations of the many-particle system is sub-Poissonian --which results in entanglement-- the wave function displays bunching.
Directory of Open Access Journals (Sweden)
Jie HU
2016-04-01
Full Text Available Objective To screen non-classical 21-hydroxylase deficiency (NC-21OHD from patients diagnosed as polycystic ovary syndrome (PCOS by gene assay. Methods Ninety-eight patients with PCOS were enrolled according to 2003 Rotterdam criteria from Department of Endocrinology, Tangdu Hospital of Fourth Military Medical University, and they were divided into three groups according to the modified Ferriman-Gallway (mF-G score as follows: group A with score 0-2; group B with score 3-5, and group C with score ≥6. Meanwhile, 30 healthy subjects from the Medical Center of the Hospital were recruited as control group. Peripheral blood of all subjects were collected for extracting DNA, the CYP21A2 gene were amplified by 5 pairs of specific primers, and then the PCR products were sequenced by Shanghai Sangon Co. The subjects would accept test for serum cortisol and adrenocorticotropic hormone (ACTH at 8:00am if their CYP21A2 was proved to be abnormal. Results Thirty subjects of control group had no any defects in CYP21A2, but 5 of 98 patients with PCOS were proved to be deficient in CYP21A2, and the genotypes were V281L/920-921insT (P1, V281L/I230M (P2, V281L/Normal (P3, P4, P5, respectively, and all of them were heterozygous mutations. The incidences of NC-21OHD in group C and B were 28.6% and 3.3%, respectively. Genotype P1 had been identified to belong to NC-21OHD, which was consistent with its clinical phenotype. All genotypes P3, P4 and P5 belonged to carriers. But for P2, since I230M hadn't been reported in literature, the patient with V281L/I230M couldn't be classified now. Serum biochemical results showed that only in P1 the cortisol was close to the normal lower level, and ACTH was close to the normal upper limit of the reported level in the literature, and the remainders were all normal. Conclusions Although PCOS and NC-21OHD are very similar in clinical manifestations, they are different completely in the pathogenesis and treatment. So it
Zhang, Xiaofang; Werner-Zwanziger, Ulrike; Boyd, Daniel
2015-04-01
Non-classical ionomer glasses like those based on zinc-boron-germanium glasses are of special interest in a variety of medical applications owning to their unique combination of properties and potential therapeutic efficacy. These features may be of particular benefit with respect to the utilization of glass ionomer cements for minimally invasive dental applications such as the atruamatic restorative treatment, but also for expanded clinical applications in orthopedics and oral-maxillofacial surgery. A unique system of zinc-boron-germanium-based glasses (10 compositions in total) has been designed using a Design of Mixtures methodology. In the first instance, ionomer glasses were examined via differential thermal analysis, X-ray diffraction, and (11)B MAS NMR spectroscopy to establish fundamental composition - structure-property relationships for the unique system. Secondly, cements were synthesized based on each glass and handling characteristics (working time, Wt, and setting time, St) and compression strength were quantified to facilitate the development of both experimental and mathematical composition-structure-property relationships for the new ionomer cements. The novel glass ionomer cements were found to provide Wt, St, and compression strength in the range of 48-132 s, 206-602 s, and 16-36 MPa, respectively, depending on the ZnO/GeO2 mol fraction of the glass phase. A lower ZnO mol fraction in the glass phase provides higher glass transition temperature, higher N4 rate, and in combination with careful modulation of GeO2 mol fraction in the glass phase provides a unique approach to extending the Wt and St of glass ionomer cement without compromising (in fact enhancing) compression strength. The data presented in this work provide valuable information for the formulation of alternative glass ionomer cements for applications within and beyond the dental clinic, especially where conventional approaches to modulating working time and strength exhibit co
Institute of Scientific and Technical Information of China (English)
WANG XiaoGuang; FU Hong-Chen
2001-01-01
We introduce new kinds of states of quantized radiation fields, which are the superpositions of negative binomial states. They exhibit remarkable nonclassical properties and reduce to Schrodinger cat states in a certain limit.The algebras involved in the even and odd negative binomial states turn out to be generally deformed oscillator algebras.It is found that the even and odd negative binomial states satisfy the same eigenvalue equation with the same eigenvalue and they can be viewed as two-photon nonlinear coherent states. Two methods of generating such the states are proposed.``
Nonclassical Vitamin D Actions
Directory of Open Access Journals (Sweden)
Armin Zittermann
2010-03-01
Full Text Available It is becoming increasingly clear that vitamin D has a broad range of actions in the human body. Besides its well-known effects on calcium/phosphate homeostasis, vitamin D influences muscle function, cardiovascular homeostasis, nervous function, and the immune response. Vitamin D deficiency/insufficiency has been associated with muscle weakness and a high incidence of various chronic diseases such as cardiovascular disease, cancer, multiple sclerosis, and type 1 and 2 diabetes. Most importantly, low vitamin D status has been found to be an independent predictor of all-cause mortality. Several recent randomized controlled trials support the assumption that vitamin D can improve muscle strength, glucose homeostasis, and cardiovascular risk markers. In addition, vitamin D may reduce cancer incidence and elevated blood pressure. Since the prevalence of vitamin D deficiency/insufficiency is high throughout the world, there is a need to improve vitamin D status in the general adult population. However, the currently recommended daily vitamin D intake of 5–15 µg is too low to achieve an adequate vitamin D status in individuals with only modest skin synthesis. Thus, there is a need to recommend a vitamin D intake that is effective for achieving adequate circulating 25-hydroxyvitamin D concentrations (>75 nmol/L.
Continuous variable quantum cryptography using coherent states
Grosshans, F; Grosshans, Fr\\'ed\\'eric; Grangier, Philippe
2002-01-01
We propose several methods for quantum key distribution (QKD), based upon the generation and transmission of random distributions of coherent or squeezed states. We show that these protocols are secure against individual eavesdropping attacks, provided that the transmission of the optical line between Alice and Bob is larger than 50 %. The security of the protocol is related to the no-cloning theorem, that limits the signal to noise ratio of possible quantum measurements on the transmission line, even though the transmitted light has no "non-classical" feature such as squeezing. We show also that our approach can be used for evaluating any QKD protocol using light with gaussian statistics.
Noncommutative q -photon-added coherent states
Dey, Sanjib; Hussin, Véronique
2016-05-01
We construct the photon-added coherent states of a noncommutative harmonic oscillator associated to a q -deformed oscillator algebra. Various nonclassical properties of the corresponding system are explored, first, by studying two different types of higher-order quadrature squeezing, namely, the Hillery type and the Hong-Mandel type, and second, by testing the sub-Poissonian nature of photon statistics in higher order with the help of the correlation function and the Mandel parameter. Also, we compare the behavior of different types of quadrature and photon number squeezing of our system with those of the ordinary harmonic oscillator by considering the same set of parameters.
High-fidelity teleportation of continuous-variable quantum States using delocalized single photons
DEFF Research Database (Denmark)
Andersen, Ulrik L; Ralph, Timothy C
2013-01-01
states as in traditional teleportation but on an ensemble of single photon entangled states. We characterize the teleportation scheme with coherent states, mesoscopic superposition states, and two-mode squeezed states and we find several situations in which near-unity teleportation fidelity can...
Quantum Memory as Light Pulses Quantum States Transformer
Directory of Open Access Journals (Sweden)
Vetlugin A.N.
2015-01-01
Full Text Available Quantum memory can operate not only as a write-in/readout device [1] for quantum light pulses and non-classical states generation [2] device but also as a quantum states of light transformer. Here the addressable parallel quantum memory [3] possibilities for this type of transformation are researched. Quantum memory operates as a conventional N-port interferometer with N equals to the number of the involved spin waves. As example we consider the ability to transform quantum states of two light pulses – in this case the quantum memory works as a mirror with a controlled transmission factor.
Creating a Superposition of Unknown Quantum States.
Oszmaniec, Michał; Grudka, Andrzej; Horodecki, Michał; Wójcik, Antoni
2016-03-18
The superposition principle is one of the landmarks of quantum mechanics. The importance of quantum superpositions provokes questions about the limitations that quantum mechanics itself imposes on the possibility of their generation. In this work, we systematically study the problem of the creation of superpositions of unknown quantum states. First, we prove a no-go theorem that forbids the existence of a universal probabilistic quantum protocol producing a superposition of two unknown quantum states. Second, we provide an explicit probabilistic protocol generating a superposition of two unknown states, each having a fixed overlap with the known referential pure state. The protocol can be applied to generate coherent superposition of results of independent runs of subroutines in a quantum computer. Moreover, in the context of quantum optics it can be used to efficiently generate highly nonclassical states or non-Gaussian states.
Variable geometry two mode levitation trap
Babič, D.; Čadež, A.
1999-11-01
Construction and operation of the electrodynamic levitation trap which can be operated in a passive and an active mode is described. This combination together with variable electrode geometry simplifies the trap's design and simultaneously gives more flexibility with respect to different kinds of measurements. Sample measurements of mechanocaloric effect caused by nonuniform heating of a single levitated particle are presented and discussed.
Nonlinear Bogolyubov-Valatin transformations: Two modes
Scharnhorst, K.; van Holten, J.-W.
2011-11-01
Extending our earlier study of nonlinear Bogolyubov-Valatin transformations (canonical transformations for fermions) for one fermionic mode, in the present paper, we perform a thorough study of general (nonlinear) canonical transformations for two fermionic modes. We find that the Bogolyubov-Valatin group for n=2 fermionic modes, which can be implemented by means of unitary SU(2n=4) transformations, is isomorphic to SO(6;R)/Z2. The investigation touches on a number of subjects. As a novelty from a mathematical point of view, we study the structure of nonlinear basis transformations in a Clifford algebra [specifically, in the Clifford algebra C(0,4)] entailing (supersymmetric) transformations among multivectors of different grades. A prominent algebraic role in this context is being played by biparavectors (linear combinations of products of Dirac matrices, quadriquaternions, sedenions) and spin bivectors (antisymmetric complex matrices). The studied biparavectors are equivalent to Eddington's E-numbers and can be understood in terms of the tensor product of two commuting copies of the division algebra of quaternions H. From a physical point of view, we present a method to diagonalize any arbitrary two-fermion Hamiltonians. Relying on Jordan-Wigner transformations for two-spin- {1}/{2} and single-spin- {3}/{2} systems, we also study nonlinear spin transformations and the related problem of diagonalizing arbitrary two-spin- {1}/{2} and single-spin- {3}/{2} Hamiltonians. Finally, from a calculational point of view, we pay due attention to explicit parametrizations of SU(4) and SO(6;R) matrices (of respective sizes 4×4 and 6×6) and their mutual relation.
Two Modes of Partially Screened Gap
Szary, Andrzej; Gil, Janusz
2014-01-01
The analysis of X-ray observations suggest an ultrastrong ($B\\gtrsim 10^{14} \\,{\\rm G}$) surface magnetic field at the polar cap of pulsars (Szary, 2013). On the other hand, the temperature of the polar caps is about a few millions Kelvin. Based on these two facts we use the Partially Screened Gap (PSG) model to describe the Inner Acceleration Region (IAR). The PSG model assumes that the temperature of the actual polar cap is equal to the so-called critical value, i.e. the temperature at which the outflow of thermal ions from the surface screens the gap completely. We have found that, depending on the conditions above the polar cap, the generation of high energetic photons in IAR can be caused either by Curvature Radiation (CR) or by Inverse Compton Scattering (ICS). Completely different properties of both processes result in two different scenarios of breaking the acceleration gap: the so-called PSG-off mode for the gap dominated by CR and the PSG-on mode for the gap dominated by ICS. The existence of two di...
Caves, C. M.; Schumaker, B. L.
1985-01-01
A new formalism for analyzing two-photon devices, such as parametric amplifiers and phase-conjugate mirrors, is proposed in part I, focusing on the properties and the significance of the quadrature-phase amplitudes and two-mode squeezed states. Time-stationary quasi-probability noise is also detailed for the case of Gaussian noise, and uncertainty principles for the quadrature-phase amplitudes are outlined, as well as some important properties of the two-mode states. Part II establishes a mathematical foundation for the formalism, with introduction of a vector notation for compact representation of two-mode properties. Fundamental unitary operators and special quantum states are also examined with an emphasis on the two-mode squeezed states. The results are applied to a previously studied degenerate limit (epsilon = 0).
Synthesis of New 2-Halo-2-(1H-tetrazol-5-yl-2H-azirines via a Non-Classical Wittig Reaction
Directory of Open Access Journals (Sweden)
Ana L. Cardoso
2015-12-01
Full Text Available The synthesis and reactivity of tetrazol-5-yl-phosphorus ylides towards N-halosuccinimide/TMSN3 reagent systems was explored, opening the way to new haloazidoalkenes bearing a tetrazol-5-yl substituent. These compounds were obtained as single isomers, except in one case. X-ray crystal structures were determined for three derivatives, establishing that the non-classical Wittig reaction leads to the selective synthesis of haloazidoalkenes with (Z-configuration. The thermolysis of the haloazidoalkenes afforded new 2-halo-2-(tetrazol-5-yl-2H-azirines in high yields. Thus, the reported synthetic methodologies gave access to important building blocks in organic synthesis, vinyl tetrazoles and 2-halo-2-(tetrazol-5-yl-2H-azirine derivatives.
Directory of Open Access Journals (Sweden)
Aghalovyan M.L.
2014-03-01
Full Text Available We solve the non-classical boundary value problem for an orthotropic packet when on one of its front surface the corresponding components of the stress tensor are equal to zero and sets the value of the displacement vector. The task, in particular, is modeling the behavior of the lithospheric plates of the Earth, or a specific region of the earth's crust subject to tectonic movements of the fixed seismic stations, GPS and other measuring instruments. On the basis of three-dimensional equations of thermo-elasticity asymptotic method derived recurrence equations allow for a package of orthotropic layers of varying thickness. We derive recursive formulas for determining the components of the stress tensor and the displacement vector.
Entanglement in a Solid State Spin Ensemble
Simmons, Stephanie; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L W; Itoh, Kohei M; Morton, John J L
2010-01-01
Entanglement is the quintessential quantum phenomenon and a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing (QIP) and the strongest forms of quantum cryptography. Spin ensembles, such as those in liquid state nuclear magnetic resonance, have been powerful in the development of quantum control methods, however, these demonstrations contained no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered phosphorus-doped silicon. We combined high field/low temperature electron spin resonance (3.4 T, 2.9 K) with hyperpolarisation of the 31P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% compared with the ideal state a...
Entanglement and photon statistics of output fields from beam splitter for binomial state inputs
Institute of Scientific and Technical Information of China (English)
Zhou Qing-Ping; Fang Mao-Fa
2004-01-01
The entanglement properties are investigated based on linear entropy, and nonclassicalities are examined of output fields from a beam splitter for pure binomial state inputs. It is shown that the properties of the entanglement and the photon statistics of output fields are not only strongly dependent on the parameters of input binomial states but also quite involved with the nature of the beam splitter. The best entanglement can be obtained when the parameters of both input states and the beam splitter are chosen appropriately. Finally, we analyse briefly the distinguishability between the joint input state and the joint output state.
SU（2） Coherent State Description of Two—Mode Bose—Einstein Condensates
Institute of Scientific and Technical Information of China (English)
WUYing; YANGXiao－Xue
2002-01-01
We show that the evolution equations for mean quantities such as atom numbers and the inter-mode correlation for two-mode Bose-Einstein condensates form a closed set of equations in the SU(2) coherent state description,and they are identical in form to the two-mode mean-field model with only a slightly reduced two-body interaction strength.The exact analytical solutions to the evolution equations are also presented.
Probabilistic cloning of coherent states without a phase reference
DEFF Research Database (Denmark)
Müller, Christian R.; Wittmann, Christoffer; Marek, Petr
2012-01-01
We present a probabilistic cloning scheme operating independently of any phase reference. The scheme is based solely on a phase-randomized displacement and photon counting, omitting the need for nonclassical resources and nonlinear materials. In an experimental implementation, we employ the scheme...... to clone coherent states from a phase covariant alphabet and demonstrate that the cloner is capable of outperforming the hitherto best-performing deterministic scheme. An analysis of the covariances between the output states shows that uncorrelated clones can be approached asymptotically...
Afek, Itai; Silberberg, Yaron
2010-01-01
We generate bipartite states of light which exhibit an absence of multiphoton coincidence events between two modes amid a constant background flux. These `correlated photon holes' are produced by mixing a coherent state and relatively weak spontaneous parametric down-conversion using a balanced beamsplitter. Correlated holes with arbitrarily high photon numbers may be obtained by adjusting the relative phase and amplitude of the inputs. We measure states of up to five photons and verify their nonclassicality. The scheme provides a route for observation of high-photon-number nonclassical correlations without requiring intense quantum resources.
Preparing quantum vortex states with odd Schr(o)dinger cat states through a coupled waveguide system
Institute of Scientific and Technical Information of China (English)
Tang Hui-Qin; Li Shao-Xin; Zhu Kai-Cheng; Tang Ying; Zheng Xiao-Juan
2013-01-01
A scheme is proposed for preparing a quantum vortex state with a coupled waveguide,in which a single-mode odd cat state with weak intensity and a single-mode coherent state are inserted in the input ports,respectively.The analytical wavefunction of the resulting state in the quadrature space is derived,and the vortex structure of the output state is analyzed.It is found that the obtained states,which may carry a vortex with topological charge index one,are entangled and nonclassical,depending only on the scaled propagation time and the weak intensity of the input odd cat state instead of the displacement parameter of the input coherent state.The phase distribution,however,in the quadrature space,depends on the displacement parameter of the input coherent state
Quantum information processing with mesoscopic photonic states
DEFF Research Database (Denmark)
Madsen, Lars Skovgaard
2012-01-01
The thesis is built up around a versatile optical experimental setup based on a laser, two optical parametric ampliers, a few sets of modulators and two sets of homodyne detectors, which together with passive linear optics generate, process and characterize various types of Gaussian quantum states...... in the mixture of coherent states. Further we investigate the robustness of the discord of a broader range of states and suggest a toolbox of states which can be used to test if a protocol is discord based, before performing a rigid proof. Gaussian quantum key distribution can be implemented with current....... Using this setup we have experimentally and theoretically investigated Gaussian quantum discord, continuous variable quantum key distribution and quantum polarization. The Gaussian discord broadens the definition of non-classical correlations from entanglement, to all types of correlations which cannot...
Generation of Exotic Quantum States of a Cold Atomic Ensemble
DEFF Research Database (Denmark)
Christensen, Stefan Lund
. Furthermore, the nonclassical properties of the created state is inferred through the use of atomic quadrature quasi-probability distributions. The second generated state is a collective-single-excitation state — the atomic equivalent of a single photon. This state is created by the detection of a heralding......Over the last decades quantum effects have become more and more controllable, leading to the implementations of various quantum information protocols. These protocols are all based on utilizing quantum correlation. In this thesis we consider how states of an atomic ensemble with such correlations...... can be created and characterized. First we consider a spin-squeezed state. This state is generated by performing quantum non-demolition measurements of the atomic population difference. We show a spectroscopically relevant noise reduction of -1.7dB, the ensemble is in a many-body entangled state...
Directory of Open Access Journals (Sweden)
Lidia Cherezova
Full Text Available ORF73 latency-associated nuclear antigen (LANA of the Kaposi's sarcoma-associated herpesvirus (KSHV is targeted to the nucleus of infected cells where it binds to chromatin and mediates viral episome persistence, interacts with cellular proteins and plays a role in latency and tumorigenesis. A structurally related LANA homolog has been identified in the retroperitoneal fibromatosis herpesvirus (RFHV, the macaque homolog of KSHV. Here, we report the evolutionary and functional conservation of a novel bi-functional nuclear localization signal (NLS in KSHV and RFHV LANA. N-terminal peptides from both proteins were fused to EGFP or double EGFP fusions to examine their ability to induce nuclear transport of a heterologous protein. In addition, GST-pull down experiments were used to analyze the ability of LANA peptides to interact with members of the karyopherin family of nuclear transport receptors. Our studies revealed that both LANA proteins contain an N-terminal arginine/glycine (RG-rich domain spanning a conserved chromatin-binding motif, which binds directly to importin β1 in a RanGTP-sensitive manner and serves as an NLS in the importin β1-mediated non-classical nuclear import pathway. Embedded within this domain is a conserved lysine/arginine-(KR-rich bipartite motif that binds directly to multiple members of the importin α family of nuclear import adaptors in a RanGTP-insensitive manner and serves as an NLS in the classical importin α/β-mediated nuclear import pathway. The positioning of a classical bipartite kr-NLS embedded within a non-classical rg-NLS is a unique arrangement in these viral proteins, whose nuclear localization is critical to their functionality and to the virus life cycle. The ability to interact with multiple import receptors provides alternate pathways for nuclear localization of LANA. Since different import receptors can import cargo to distinct subnuclear compartments, a multifunctional NLS may provide LANA with an
Mohan, Sepuru K; Rani, Sandhya G; Kumar, Sriramoju M; Yu, Chin
2009-03-13
Fibroblast growth factors (FGFs) are key regulators of cell proliferation, differentiation, tumor-induced angiogenesis and migration. FGFs are essential for early embryonic development, organ formation and angiogenesis. They play important roles in tumor formation, inflammation, wound healing and restenosis. The biological effects of FGFs are mediated through the activation of the four transmembrane phosphotyrosine kinase receptors (FGFRs) in the presence of heparin sulfate proteoglycans (HSPGs) and therefore require the release of FGFs into the extracellular space. However, FGF-1 lacks the signal peptide required for the releasing of these proteins through the classical endoplasmic reticulum (ER)-Golgi secretary pathway. Maciag et al. demonstrated that FGF-1 is exported through a non-classical release pathway involving the formation of a specific multiprotein complex [M. Landriscina, R. Soldi, C. Bagala, I. Micucci, S. Bellum, F. Tarantini, I. Prudovsky, T. Maciag, S100A13 participates in the release of fibroblast growth factor 1 in response to heat shock in vitro, J. Biol. Chem. 276 (2001) 22544-22552; C.M. Carreira, T.M. LaVallee, F. Tarantini, A. Jackson, J.T. Lathrop, B. Hampton, W.H. Burgess, T. Maciag, S100A13 is involved in the regulation of fibroblast growth factor-1 and p40 synaptotagmin-1 release in vitro, J. Biol. Chem. 273 (1998) 22224-22231; T.M. LaValle, F. Tarantini, S. Gamble, C.M. Carreira, A. Jackson, T. Maciag, Synaptotagmin-1 is required for fibroblast growth factor-1 release, J. Biol. Chem. 273 (1998) 22217-22223; C. Bagalá, V. Kolev, A. Mandinova, R. Soldi, C. Mouta, I. Graziani, I, Prudovsky, T. Maciag, The alternative translation of synaptotagmin 1 mediates the non-classical release of FGF1, Biochem. Biophys. Res. Commun. 310 (2003) 1041-1047]. The protein constituents of this complex include FGF-1, S100A13 (a Ca(2+)-binding protein), and the p40 form of synaptotagmin 1 (Syt1). To understand the molecular events in the FGF-1 releasing
Garcia Gomes, Larissa; Bugano Diniz Gomes, Diogo; Marcondes, José Antônio Miguel; Madureira, Guiomar; de Mendonca, Berenice Bilharinho; Bachega, Tânia A. Sartori Sanchez
2016-01-01
Background In the nonclassical form (NC), good correlation has been observed between genotypes and 17OH-progesterone (17-OHP) levels. However, this correlation was not identified with regard to the severity of hyperandrogenic manifestations, which could depend on interindividual variability in peripheral androgen sensitivity. Androgen action is modulated by the polymorphic CAG tract (nCAG) of the androgen receptor (AR) gene and by polymorphisms in 5α-reductase type 2 (SRD5A2) enzyme, both of which are involved in the severity of hyperandrogenic disorders. Objectives To analyze whether nCAG-AR and SRD5A2 polymorphisms influence the severity of the nonclassical phenotype. Patients NC patients (n = 114) diagnosed by stimulated-17OHP ≥10 ng/mL were divided into groups according to the beginning of hyperandrogenic manifestations (pediatric and adolescent/adult) and CYP21A2 genotypes (C/C: homozygosis for mild mutations; A/C: compound heterozygosis for severe/mild mutations). Methods CYP21A2 mutations were screened by allelic-specific PCR, MLPA and/or sequencing. HpaII-digested and HpaII-undigested DNA samples underwent GeneScan analysis to study nCAG, and the SRD5A2 polymorphisms were screened by RLFP. Results Mean nCAG did not differ among pediatric, adolescent/adult and asymptomatic subjects. In the C/C genotype, we observed a significantly lower frequency of longer CAG alleles in pediatric patients than in adolescent/adults (p = 0.01). In patients carrying the A/C genotype, the frequencies of shorter and longer CAG alleles did not differ between pediatric patients and adolescent/adults (p>0.05). Patients with clitoromegaly had significantly lower weighted CAG biallelic mean than those without it: 19.1±2.7 and 21.6±2.5, respectively (p = 0.007), independent of the CYP21A2 genotype's severity. The SRD5A2 polymorphisms were not associated with the variability of hyperandrogenic NC phenotypes. Conclusions In this series, we observed a modulatory effect of the CAG
Relative entropy as a measure of entanglement for Gaussian states
Institute of Scientific and Technical Information of China (English)
Lu Huai-Xin; Zhao Bo
2006-01-01
In this paper, we derive an explicit analytic expression of the relative entropy between two general Gaussian states. In the restriction of the set for Gaussian states and with the help of relative entropy formula and Peres-Simon separability criterion, one can conveniently obtain the relative entropy entanglement for Gaussian states. As an example,the relative entanglement for a two-mode squeezed thermal state has been obtained.
Institute of Scientific and Technical Information of China (English)
Zhu Kai-Cheng; Li Shao-Xin; Tang Ying; Zheng Xiao-Juan; Tang Hui-Qin
2012-01-01
A new kind of quantum non-Gaussian state with a vortex structure,termed a Bessel-Gaussian vortex state,is constructed,which is an eigenstate of the sum of squared annihilation operators a2 + b2.The Wigner function of the quantum vortex state is derived and exhibits negativity which is an indication of nonclassicality.It is also found that a quantized vortex state is always in entanglement.And a scheme for generating such quantized vortex states is proposed.
Superposition of excited coherent states and their non-classical properties%叠加激发相干态及其非经典特性
Institute of Scientific and Technical Information of China (English)
蓝海江
2010-01-01
构造由两个强度相同、相位互为共轭的激发相干态叠加而成的叠加激发相干态,计算该叠加态的Wigner函数、二阶相干度及Mandel Q因子,并据此分析其非经典特性.结果表明,叠加激发相干态的Wigner函数出现负值,其二阶相干度及Mandel Q因子均小于1,说明叠加激发相干态的准概率分布出现负值,其光场具有反聚束效应,光场的光子数分布呈亚泊松分布.该叠加态是具有非经典特性的量子态.