WorldWideScience

Sample records for two-minute period pulsating

  1. Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares

    Science.gov (United States)

    McLaughlin, J. A.; Nakariakov, V. M.; Dominique, M.; Jelínek, P.; Takasao, S.

    2018-02-01

    Solar flare emission is detected in all EM bands and variations in flux density of solar energetic particles. Often the EM radiation generated in solar and stellar flares shows a pronounced oscillatory pattern, with characteristic periods ranging from a fraction of a second to several minutes. These oscillations are referred to as quasi-periodic pulsations (QPPs), to emphasise that they often contain apparent amplitude and period modulation. We review the current understanding of quasi-periodic pulsations in solar and stellar flares. In particular, we focus on the possible physical mechanisms, with an emphasis on the underlying physics that generates the resultant range of periodicities. These physical mechanisms include MHD oscillations, self-oscillatory mechanisms, oscillatory reconnection/reconnection reversal, wave-driven reconnection, two loop coalescence, MHD flow over-stability, the equivalent LCR-contour mechanism, and thermal-dynamical cycles. We also provide a histogram of all QPP events published in the literature at this time. The occurrence of QPPs puts additional constraints on the interpretation and understanding of the fundamental processes operating in flares, e.g. magnetic energy liberation and particle acceleration. Therefore, a full understanding of QPPs is essential in order to work towards an integrated model of solar and stellar flares.

  2. Quasi-periodic 1-hour pulsations in the Saturn's outer magnetosphere

    Science.gov (United States)

    Rusaitis, L.; Khurana, K. K.; Walker, R. J.; Kivelson, M.

    2017-12-01

    Pulsations in the Saturn's magnetic field and particle fluxes of approximately 1-hour periodicity have been frequently detected in the outer Saturnian magnetosphere by the Cassini spacecraft since 2004. These particle and magnetic field enhancements have been typically observed more often in the dusk sector of the planet, and mid to high latitudes. We investigate nearly 200 of these events as detected by the magnetometer and the Cassini Low-Energy Magnetospheric Measurement System detector (LEMMS) data during the 2004-2015 time frame to characterize these pulsations and suggest their origin. The mechanism needed to produce these observed enhancements needs to permit the acceleration of the energetic electrons to a few MeV and a variable periodicity of enhancements from 40 to 90 minutes. We examine the relation of the oscillations to the periodic power modulations in Saturn kilometric radiation (SKR), using the SKR phase model of Kurth et al. [2007] and Provan et al. [2011]. Finally, we show that similar pulsations can also be observed at 2.5-D MHD simulations of Saturn's magnetosphere.

  3. Pulsation properties of Mira long period variables

    International Nuclear Information System (INIS)

    Cahn, J.H.

    1980-01-01

    A matter of great interest to variable star students concerns the mode of pulsation of Mira long period variables. In this report we first give observational evidence for the pulsation constant Q. We then compare the observations with calculations. Next, we review two interesting groups of papers dealing with hydrodynamic properties of long period variables. In the first, a fully dynamic nonlinear calculation maps out the Mira instability domain. In the second, special attention is paid to shock propagation beyond the photosphere which in large measure accounts for the complex spectra from this region. (orig./WL)

  4. First Kepler results on compact pulsators - V. Slowly pulsating subdwarf B stars in short-period binaries

    DEFF Research Database (Denmark)

    Kawaler, Stephen D.; Reed, Michael D.; Østensen, Roy H.

    2010-01-01

    of sdB stars with a close M-dwarf companion with orbital periods of less than half a day. Because the orbital period is so short, the stars should be in synchronous rotation, and if so, the rotation period should imprint itself on the multiplet structure of the pulsations. However, we do not find clear......The survey phase of the Kepler Mission includes a number of hot subdwarf B (sdB) stars to search for non-radial pulsations. We present our analysis of two sdB stars that are found to be g-mode pulsators of the V1093 Her class. These two stars also display the distinct irradiation effect typical...... evidence for such rotational splitting. Though the stars do show some frequency spacings that are consistent with synchronous rotation, they also display multiplets with splittings that are much smaller. Longer-duration time series photometry will be needed to determine if those small splittings...

  5. Theoretical growth rates, periods, and pulsation constants for long-period variables

    International Nuclear Information System (INIS)

    Fox, M.W.; Wood, P.R.

    1982-01-01

    Theoretical values of the growth rate, period, and pulsation constant for the first three radial pulsation modes in red giants (Population II and galactic disk) and supergiants have been derived in the linear, nonadiabatic approximation. The effects of altering the surface boundary conditions, the effective temperature (or mixing length), and the opacity in the outer layers have been explored. In the standard models, the Q-value for the first overtone can be much larger (Q 1 1 roughly-equal0.04); in addition, the Q-value for the fundamental mode is reduced from previous values, as is the period ratio P 0 /P 1 . The growth rate for the fundamental mode is found to increase with luminosity on the giant branch while the growth rate for the first overtone decreases. Dynamical instabilities found in previous adiabatic models of extreme red giants do not occur when nonadiabatic effects are included in the models. In some massive, luminous models, period ratios P 0 /P 1 approx.7 occur when P 0 approx.2000--5000 days; it is suggested that the massive galactic supergiants and carbon stars which have secondary periods Papprox.2000--7000 days and primary periods Papprox.300--700 days are first-overtone pulsators in which the long secondary periods are due to excitation of the fundamental mode. Some other consequences of the present results are briefly discussed, with particular emphasis on the mode of pulsation of the Mira variables. Subject headings: stars: long-period variables: stars: pulsation: stars: supergiants

  6. Period--luminosity--color relations and pulsation modes of pulsating variable stars

    International Nuclear Information System (INIS)

    Breger, M.; Bregman, J.N.

    1975-01-01

    The periods of delta Scuti, RR Lyrae, dwarf Cepheid, and W Virginis variables have been investigated for their dependence on luminosity, color, mass, and pulsation modes. A maximum-likelihood method, which includes consideration of the observational errors in each coordinate, has been applied to obtain observational period-luminosity-color (P-L-C) relations

  7. Quasi-periodic Pulsations in the Most Powerful Solar Flare of Cycle 24

    Science.gov (United States)

    Kolotkov, Dmitrii Y.; Pugh, Chloe E.; Broomhall, Anne-Marie; Nakariakov, Valery M.

    2018-05-01

    Quasi-periodic pulsations (QPPs) are common in solar flares and are now regularly observed in stellar flares. We present the detection of two different types of QPP signals in the thermal emission light curves of the X9.3-class solar flare SOL2017-09-06T12:02, which is the most powerful flare of Cycle 24. The period of the shorter-period QPP drifts from about 12 to 25 s during the flare. The observed properties of this QPP are consistent with a sausage oscillation of a plasma loop in the flaring active region. The period of the longer-period QPP is about 4 to 5 minutes. Its properties are compatible with standing slow magnetoacoustic oscillations, which are often detected in coronal loops. For both QPP signals, other mechanisms such as repetitive reconnection cannot be ruled out, however. The studied solar flare has an energy in the realm of observed stellar flares, and the fact that there is evidence of a short-period QPP signal typical of solar flares along with a long-period QPP signal more typical of stellar flares suggests that the different ranges of QPP periods typically observed in solar and stellar flares is likely due to observational constraints, and that similar physical processes may be occurring in solar and stellar flares.

  8. Natural convection in square enclosure induced by inner circular cylinder with time-periodic pulsating temperature

    KAUST Repository

    Huang, Zhu

    2015-03-01

    The periodic unsteady natural convection flow and heat transfer in a square enclosure containing a concentric circular cylinder is numerically studied. The temperature of the inner circular cylinder fluctuates periodically with time at higher averaged value while the temperature of the enclosure keeps lower constant, and the natural convection is driven by the temperature difference. The two-dimensional natural convection is simulated with high accuracy temporal spectral method and local radial basis functions method. The Rayleigh number is studied in the range 103 ≤ Ra ≤ 106, the temperature pulsating period ranges from 0.01 to 100 and the temperature pulsating amplitudes are a = 0.5, 1.0 and 1.5. Numerical results reveal that the fluid flow and heat transfer is strongly dependent on the pulsating temperature of inner cylinder. Comparing with the steady state natural convection, the heat transfer is enhanced generally for the time-periodic unsteady natural convection, and the local maximum heat transfer rate is observed for Ra = 105 and 106. Moreover, the phenomenon of backward heat transfer is discussed quantitatively. Also, the influence of pulsating temperature on the unsteady fluid flow and heat transfer are discussed and analyzed.

  9. PULSATION-TRIGGERED MASS LOSS FROM AGB STARS: THE 60 DAY CRITICAL PERIOD

    International Nuclear Information System (INIS)

    McDonald, I.; Zijlstra, A. A.

    2016-01-01

    Low- and intermediate-mass stars eject much of their mass during the late, red giant branch (RGB) phase of evolution. The physics of their strong stellar winds is still poorly understood. In the standard model, stellar pulsations extend the atmosphere, allowing a wind to be driven through radiation pressure on condensing dust particles. Here, we investigate the onset of the wind, using nearby RGB stars drawn from the Hipparcos catalog. We find a sharp onset of dust production when the star first reaches a pulsation period of 60 days. This approximately coincides with the point where the star transitions to the first overtone pulsation mode. Models of the spectral energy distributions show stellar mass-loss rate suddenly increasing at this point, by a factor of ∼10 over the existing (chromospherically driven) wind. The dust emission is strongly correlated with both pulsation period and amplitude, indicating stellar pulsation is the main trigger for the strong mass loss, and determines the mass-loss rate. Dust emission does not strongly correlate with stellar luminosity, indicating radiation pressure on dust has little effect on the mass-loss rate. RGB stars do not normally appear to produce dust, whereas dust production by asymptotic giant branch stars appears commonplace, and is probably ubiquitous above the RGB-tip luminosity. We conclude that the strong wind begins with a step change in mass-loss rate and is triggered by stellar pulsations. A second rapid mass-loss-rate enhancement is suggested when the star transitions to the fundamental pulsation mode at a period of ∼300 days.

  10. The pulsation mode and period-luminosity relationship of cool variables in globular clusters

    International Nuclear Information System (INIS)

    Whitelock, P.A.

    1986-01-01

    The period-luminosity-temperature relationship for globular cluster red and yellow variables is examined. The results suggest that the higher temperature, more metal-deficient cluster variables pulsate in the fundamental mode, while the lower temperature more metal-rich variables pulsate in the first overtone. On the assumption that this is correct, a relationship between fundamental period and bolometric magnitude is derived for cluster variables with observed periods of between 1 and 300 days. (author)

  11. Dynamics of long-period irregular pulsations in high latitudes during strong magnetic storms

    International Nuclear Information System (INIS)

    Kurazhkovskaya, N.A.; Klajn, B.I.

    1995-01-01

    Effects of strong magnetic storms within np type high-latitudinal long-period irregular pulsations at Mirny studied using data obtained at observatory of the magnetosphere south hemisphere. Variation of long-period irregular pulsation amplitude is shown to depend essentially on duration of storm initial phase and on the nature of solar wind heterogeneity enabling growth of strong storm. 14 refs

  12. MULTI-SITE OBSERVATIONS OF PULSATION IN THE ACCRETING WHITE DWARF SDSS J161033.64-010223.3 (V386 Ser)

    International Nuclear Information System (INIS)

    Mukadam, Anjum S.; Szkody, P.; Townsley, D. M.; Gaensicke, B. T.; Marsh, T. R.; Aungwerojwit, A.; Southworth, J.; Robinson, E. L.; For, B.-Q.; Bildsten, L.; Schreiber, M. R.; Schwope, A.; Tovmassian, G.; Zharikov, S. V.; Hidas, M. G.; Baliber, N.; Brown, T.; Woudt, P. A.; Warner, B.; O'Donoghue, D.

    2010-01-01

    Non-radial pulsations in the primary white dwarfs of cataclysmic variables can now potentially allow us to explore the stellar interior of these accretors using stellar seismology. In this context, we conducted a multi-site campaign on the accreting pulsator SDSS J161033.64-010223.3 (V386 Ser) using seven observatories located around the world in 2007 May over a duration of 11 days. We report the best-fit periodicities here, which were also previously observed in 2004, suggesting their underlying stability. Although we did not uncover a sufficient number of independent pulsation modes for a unique seismological fit, our campaign revealed that the dominant pulsation mode at 609 s is an evenly spaced triplet. The even nature of the triplet is suggestive of rotational splitting, implying an enigmatic rotation period of about 4.8 days. There are two viable alternatives assuming the triplet is real: either the period of 4.8 days is representative of the rotation period of the entire star with implications for the angular momentum evolution of these systems, or it is perhaps an indication of differential rotation with a fast rotating exterior and slow rotation deeper in the star. Investigating the possibility that a changing period could mimic a triplet suggests that this scenario is improbable, but not impossible. Using time-series spectra acquired in 2009 May, we determine the orbital period of SDSS J161033.64-010223.3 to be 83.8 ± 2.9 minutes. Three of the observed photometric frequencies from our 2007 May campaign appear to be linear combinations of the 609 s pulsation mode with the first harmonic of the orbital period at 41.5 minutes. This is the first discovery of a linear combination between non-radial pulsation and orbital motion for a variable white dwarf.

  13. Two new pulsating low-mass pre-white dwarfs or SX Phoenicis stars?

    Science.gov (United States)

    Corti, M. A.; Kanaan, A.; Córsico, A. H.; Kepler, S. O.; Althaus, L. G.; Koester, D.; Sánchez Arias, J. P.

    2016-03-01

    Context. The discovery of pulsations in low-mass stars opens an opportunity to probe their interiors and determine their evolution by employing the tools of asteroseismology. Aims: We aim to analyse high-speed photometry of SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25 and discover brightness variabilities. In order to locate these stars in the Teff - log g diagram, we fit optical spectra (SDSS) with synthetic non-magnetic spectra derived from model atmospheres. Methods: To carry out this study, we used the photometric data we obtained for these stars with the 2.15 m telescope at CASLEO, Argentina. We analysed their light curves and applied the discrete Fourier transform (FT) to determine the pulsation frequencies. Finally, we compare both stars in the Teff - log g diagram, with two known pre-white dwarfs and seven pulsating pre-ELM white dwarf stars, δ Scuti, and SX Phe stars Results: We report the discovery of pulsations in SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25. We determine their effective temperature and surface gravity to be Teff = 7972 ± 200 K, log g = 4.25 ± 0.5 and Teff = 7925 ± 200 K, log g = 4.25 ± 0.5, respectively. With these parameters, these new pulsating low-mass stars can be identified with either ELM white dwarfs (with ~0.17 M⊙) or more massive SX Phe stars. We identified pulsation periods of 3278.7 and 1633.9 s for SDSS J145847.02+070754.46 and a pulsation period of 3367.1 s for SDSS J173001.94+070600.25. These two new objects, together with those of Maxted et al. (2013, 2014), indicate the possible existence of a new instability domain towards the late stages of evolution of low-mass white dwarf stars, although their identification with SX Phe stars cannot be discarded. Visiting Astronomer, Complejo Astronómico El Leoncito operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  14. Double-mode pulsation

    International Nuclear Information System (INIS)

    Cox, A.N.

    1982-01-01

    Double mode pulsation is a very pervasive phenomenon in stars all over the Hertzsprung-Russell diagram. In order of increasing radius, examples are: ZZ Ceti stars, the sun, the delta Scuti stars, RR Lyrae variables, the β Cephei variables and those related to them, Cepheids, and maybe even the Mira stars. These many modes have been interpreted as both radial and nonradial modes, but in many cases the actual mode has not been clearly identified. Yellow giants seem to be the most simple pulsators with a large majority of the RR Lyrae variables and Cepheids showing only one pulsation period. We limit this review to those very few cases for classical Cepheids and RR Lyrae variables which display two modes. For these we know many facts about these stars, but the actual cause of the pulsation in two modes simultaneously remains unknown

  15. The DECam Minute Cadence Survey

    Science.gov (United States)

    Belardi, C.; Kilic, M.; Munn, J. A.; Gianninas, A.; Barber, S. D.; Dey, A.; Stetson, P. B.

    2017-03-01

    We present the first results from a minute cadence survey of a 3 deg2 field obtained with the Dark Energy Camera. We imaged part of the Canada- France-Hawaii Telescope Legacy Survey area over eight half-nights. We use the stacked images to identify 111 high proper motion white dwarf candidates with g≤ 24.5 mag and search for eclipse-like events and other sources of variability. We find a new g=20.64 mag pulsating ZZ Ceti star with pulsation periods of 11-13 min. However, we do not find any transiting planetary companions in the habitable zone of our target white dwarfs. Given the probability of eclipses of 1% and our observing window from the ground, the non-detection of such companions in this first field is not surprising. Minute cadence DECam observations of additional fields will provide stringent constraints on the frequency of planets in the white dwarf habitable zone.

  16. ON THE PULSATIONAL-ORBITAL-PERIOD RELATION OF ECLIPSING BINARIES WITH δ-SCT COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. B.; Luo, C. Q. [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Fu, J. N. [Department of Astronomy, Beijing Normal University, Beijing 100875 (China)

    2013-11-01

    We have deduced a theoretical relation between the pulsation and orbital-periods of pulsating stars in close binaries based on their Roche lobe filling. It appears to be of a simple linear form, with the slope as a function of the pulsation constant, the mass ratio, and the filling factor for an individual system. Testing the data of 69 known eclipsing binaries containing δ-Sct-type components yields an empirical slope of 0.020 ± 0.006 for the P{sub pul}-P{sub orb} relation. We have further derived the upper limit of the P{sub pul}/P{sub orb} ratio for the δ-Sct stars in eclipsing binaries with a value of 0.09 ± 0.02. This value could serve as a criterion to distinguish whether or not a pulsator in an eclipsing binary pulsates in the p-mode. Applying the deduced P{sub pul}-P{sub orb} relation, we have computed the dominant pulsation constants for 37 δ-Sct stars in eclipsing systems with definite photometric solutions. These ranged between 0.008 and 0.033 days with a mean value of about 0.014 days, indicating that δ-Sct stars in eclipsing binaries mostly pulsate in the fourth or fifth overtones.

  17. Long-period Intensity Pulsations in Coronal Loops Explained by Thermal Non-equilibrium Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Froment, C.; Auchère, F.; Bocchialini, K.; Buchlin, E.; Solomon, J. [Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, F-91405 Orsay cedex (France); Aulanier, G. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France); Mikić, Z., E-mail: clara.froment@astro.uio.no [Predictive Science, Inc., San Diego, CA 92121 (United States)

    2017-02-01

    In solar coronal loops, thermal non-equilibrium (TNE) is a phenomenon that can occur when the heating is both highly stratified and quasi-constant. Unambiguous observational identification of TNE would thus permit us to strongly constrain heating scenarios. While TNE is currently the standard interpretation of coronal rain, the long-term periodic evolution predicted by simulations has never been observed. However, the detection of long-period intensity pulsations (periods of several hours) has been recently reported with the Solar and Heliospheric Observatory /EIT, and this phenomenon appears to be very common in loops. Moreover, the three intensity-pulsation events that we recently studied with the Solar Dynamics Observatory /Atmospheric Imaging Assembly (AIA) show strong evidence for TNE in warm loops. In this paper, a realistic loop geometry from linear force-free field (LFFF) extrapolations is used as input to 1D hydrodynamic simulations. Our simulations show that, for the present loop geometry, the heating has to be asymmetrical to produce TNE. We analyze in detail one particular simulation that reproduces the average thermal behavior of one of the pulsating loop bundle observed with AIA. We compare the properties of this simulation with those deduced from the observations. The magnetic topology of the LFFF extrapolations points to the presence of sites of preferred reconnection at one footpoint, supporting the presence of asymmetric heating. In addition, we can reproduce the temporal large-scale intensity properties of the pulsating loops. This simulation further strengthens the interpretation of the observed pulsations as signatures of TNE. This consequently provides important information on the heating localization and timescale for these loops.

  18. DISCOVERY OF PULSATIONS, INCLUDING POSSIBLE PRESSURE MODES, IN TWO NEW EXTREMELY LOW MASS, He-CORE WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Bell, Keaton J.; Harrold, Samuel T. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Gianninas, A.; Kilic, Mukremin, E-mail: jjhermes@astro.as.utexas.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States)

    2013-03-10

    We report the discovery of the second and third pulsating extremely low mass (ELM) white dwarfs (WDs), SDSS J111215.82+111745.0 (hereafter J1112) and SDSS J151826.68+065813.2 (hereafter J1518). Both have masses < 0.25 M{sub Sun} and effective temperatures below 10, 000 K, establishing these putatively He-core WDs as a cooler class of pulsating hydrogen-atmosphere WDs (DAVs, or ZZ Ceti stars). The short-period pulsations evidenced in the light curve of J1112 may also represent the first observation of acoustic (p-mode) pulsations in any WD, which provide an exciting opportunity to probe this WD in a complimentary way compared to the long-period g-modes that are also present. J1112 is a T{sub eff} =9590 {+-} 140 K and log g =6.36 {+-} 0.06 WD. The star displays sinusoidal variability at five distinct periodicities between 1792 and 2855 s. In this star, we also see short-period variability, strongest at 134.3 s, well short of the expected g-modes for such a low-mass WD. The other new pulsating WD, J1518, is a T{sub eff} =9900 {+-} 140 K and log g =6.80 {+-} 0.05 WD. The light curve of J1518 is highly non-sinusoidal, with at least seven significant periods between 1335 and 3848 s. Consistent with the expectation that ELM WDs must be formed in binaries, these two new pulsating He-core WDs, in addition to the prototype SDSS J184037.78+642312.3, have close companions. However, the observed variability is inconsistent with tidally induced pulsations and is so far best explained by the same hydrogen partial-ionization driving mechanism at work in classic C/O-core ZZ Ceti stars.

  19. VERY LONG-PERIOD PULSATIONS BEFORE THE ONSET OF SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Baolin; Huang, Jing; Tan, Chengming; Zhang, Yin [Key Laboratory of Solar Activity, National Astronomical Observatories of Chinese Academy of Sciences, Beijing 100012 (China); Yu, Zhiqiang, E-mail: bltan@nao.cas.cn [School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-12-20

    Solar flares are the most powerful explosions occurring in the solar system, which may lead to disastrous space weather events and impact various aspects of our Earth. It remains a big challenge in modern astrophysics to understand the origin of solar flares and predict their onset. Based on the analysis of soft X-ray emission observed by the Geostationary Operational Environmental Satellite , this work reports a new discovery of very long-periodic pulsations occurring in the preflare phase before the onset of solar flares (preflare-VLPs). These pulsations typically have periods of 8–30 min and last for about 1–2 hr. They are possibly generated from LRC oscillations of plasma loops where electric current dominates the physical process during magnetic energy accumulation in the source region. Preflare-VLPs provide essential information for understanding the triggering mechanism and origin of solar flares, and may be a convenient precursory indicator to help us respond to solar explosions and the corresponding disastrous space weather events.

  20. First Kepler results on compact pulsators – VIII. Mode identifications via period spacings in g-mode pulsating subdwarf B stars

    DEFF Research Database (Denmark)

    Reed, M.D.; Baran, A.; Quint, A.C.

    2011-01-01

    We investigate the possibility of nearly equally spaced periods in 13 hot subdwarf B (sdB) stars observed with the Kepler spacecraft and one observed with CoRoT. Asymptotic limits for gravity (g-)mode pulsations provide relationships between equal-period spacings of modes with differing degrees ℓ...

  1. Are dayside long-period pulsations related to the cusp?

    Directory of Open Access Journals (Sweden)

    V. Pilipenko

    2015-03-01

    Full Text Available We compare simultaneous observations of long-period ultra-low-frequency (ULF wave activity from a Svalbard/IMAGE fluxgate magnetometer latitudinal profile covering the expected cusp geomagnetic latitudes. Irregular Pulsations at Cusp Latitudes (IPCL and narrowband Pc5 waves are found to be a ubiquitous element of ULF activity in the dayside high-latitude region. To identify the ionospheric projections of the cusp, we use the width of return signal of the Super Dual Auroral Radar Network (SuperDARN radar covering the Svalbard archipelago, predictions of empirical cusp models, augmented whenever possible by Defense Meteorological Satellite Program (DMSP identification of magnetospheric boundary domains. The meridional spatial structure of broadband dayside Pc5–6 pulsation spectral power has been found to have a localized latitudinal peak, not under the cusp proper as was previously thought, but several degrees southward from the equatorward cusp boundary. The earlier claims of the dayside monochromatic Pc5 wave association with the open–closed boundary also seems doubtful. Transient currents producing broadband Pc5–6 probably originate at the low-latitude boundary layer/central plasma sheet (LLBL/CPS interface, though such identification with available DMSP data is not very precise. The occurrence of broadband Pc5–6 pulsations in the dayside boundary layers is a challenge to modelers because so far their mechanism has not been firmly identified.

  2. Electron energy measurements in pulsating auroras

    International Nuclear Information System (INIS)

    McEwan, D.J.; Yee, E.; Whalen, B.A.; Yau, A.W.

    1981-01-01

    Electron spectra were obtained during two rocket flights into pulsating aurora from Southend, Saskatchewan. The first rocket launched at 1143:24 UT on February 15, 1980 flew into an aurora of background intensity 275 R of N 2 + 4278 A and showing regular pulsations with about a 17 s period. Electron spectra of Maxwellian energy distributions were observed with an average E 0 = 1.5 keV, rising to 1.8 keV during the pulsations. There was one-to-one correspondence between the electron energy modulation and the observed optical pulsations. The second rocket, launched at 1009:10 UT on February 23, flew into a diffuse auroral surface of intensity 800 R of N 2 + 4278 A and with somewhat irregular pulsations. The electron spectra were again of Maxwellian energy distribution with an average E 0 = 1.8 keV increasing to 2.1 keV during the pulsations. The results from these flights suggest that pulsating auroras occurring in the morning sector may be quite commonly excited by low energy electrons. The optical pulsations are due to periodic increases in the energy of the electrons with the source of modulation in the vicintiy of the geomagnetic equatorial plane. (auth)

  3. Pulsating red variables

    International Nuclear Information System (INIS)

    Whitelock, P.A.

    1990-01-01

    The observational characteristics of pulsating red variables are reviewed with particular emphasis on the Miras. These variables represent the last stage in the evolution of stars on the Asymptotic Giant Branch (AGB). A large fraction of the IRAS sources in the Bulge are Mira variables and a subset of these are also OH/IR sources. Their periods range up to 720 days, though most are between 360 and 560 days. At a given period those stars with the highest pulsation amplitudes have the highest mass-loss rates; this is interpreted as evidence for a causal connection between mass-loss and pulsation. It is suggested that once an AGB star has become a Mira it will evolve with increasing pulsation amplitude and mass-loss, but with very little change of luminosity or logarithmic period. 26 refs

  4. Long-period intensity pulsations in the solar corona during activity cycle 23

    Science.gov (United States)

    Auchère, F.; Bocchialini, K.; Solomon, J.; Tison, E.

    2014-03-01

    We report on the detection (10σ) of 917 events of long-period (3 to 16 h) intensity pulsations in the 19.5 nm passband of the SOHO Extreme ultraviolet Imaging Telescope. The data set spans from January 1997 to July 2010, i.e. the entire solar cycle 23 and the beginning of cycle 24. The events can last for up to six days and have relative amplitudes up to 100%. About half of the events (54%) are found to happen in active regions, and 50% of these have been visually associated with coronal loops. The remaining 46% are localized in the quiet Sun. We performed a comprehensive analysis of the possible instrumental artefacts and we conclude that the observed signal is of solar origin. We discuss several scenarios that could explain the main characteristics of the active region events. The long periods and the amplitudes observed rule out any explanation in terms of magnetohydrodynamic waves. Thermal non-equilibrium could produce the right periods, but it fails to explain all the observed properties of coronal loops and the spatial coherence of the events. We propose that moderate temporal variations of the heating term in the energy equation, so as to avoid a thermal non-equilibrium state, could be sufficient to explain those long-period intensity pulsations. The large number of detections suggests that these pulsations are common in active regions. This would imply that the measurement of their properties could provide new constraints on the heating mechanisms of coronal loops. Movies are available in electronic form at http://www.aanda.org

  5. A search for hot pulsators similar to PG1159-035 and the central star of K 1-16

    International Nuclear Information System (INIS)

    Bond, H.E.; Grauer, A.D.; Liebert, J.; Fleming, T.; Green, R.F.

    1987-01-01

    The variations of PG1159-035 (GWVir)were discovered by McGraw et al. This object is the prototype of a anew class of pulsating stars located in an instability strip at the left-hand edge of the HR diagram. PG1159-035 and the spectroscopically similar objects PG1707+427 and PG2131+066 display complex non-radial modes with periodicities of order 10 minutes. Grauer and Bond recently discovered that the central star of the planetary nebula Kohoutek 1-16 also exhibits pulsation properties, with dominant periodicities of 25-28 minutes. These four objects display the following characteristics: High effective temperatures (--10 5 Κ) and moderately high surface gravities (log g ≅ 6-8); He II, C IV, and O VI absorption lines in the optical spectra, often reversed with emission cores; No hydrogen lines clearly detected; The pulsational instability has been attributed to partial ionization of carbon and/or oxygen

  6. Model atmospheres with periodic shocks. [pulsations and mass loss in variable stars

    Science.gov (United States)

    Bowen, G. H.

    1989-01-01

    The pulsation of a long-period variable star generates shock waves which dramatically affect the structure of the star's atmosphere and produce conditions that lead to rapid mass loss. Numerical modeling of atmospheres with periodic shocks is being pursued to study the processes involved and the evolutionary consequences for the stars. It is characteristic of these complex dynamical systems that most effects result from the interaction of various time-dependent processes.

  7. On the evolutionary status and pulsations of the recently discovered blue large-amplitude pulsators (BLAPs)

    Science.gov (United States)

    Romero, Alejandra D.; Córsico, A. H.; Althaus, L. G.; Pelisoli, I.; Kepler, S. O.

    2018-06-01

    The blue large-amplitude pulsators (BLAPs) constitute a new class of pulsating stars. They are hot stars with effective temperatures of ˜30 000 K and surface gravities of log g ˜ 4.9, that pulsate with periods in the range 20-40 min. Until now, their origin and evolutionary state, as well as the nature of their pulsations, were not been unveiled. In this paper, we propose that the BLAPs are the hot counterpart of the already known pulsating pre-extremely low mass (pre-ELM) white dwarf (WD) stars, that are He-core low-mass stars resulting from interacting binary evolution. Using fully evolutionary sequences, we show that the BLAPs are well represented by pre-ELM WD models with high effective temperature and stellar masses ˜0.34 M⊙. From the analysis of their pulsational properties, we find that the observed variabilities can be explained by high-order non-radial g-mode pulsations or, in the case of the shortest periods, also by low-order radial modes, including the fundamental radial mode. The theoretical modes with periods in the observed range are unstable due to the κ mechanism associated with the Z-bump in the opacity at log T ˜ 5.25.

  8. First Kepler results on compact pulsators - III. Subdwarf B stars with V1093 Her and hybrid (DW Lyn) type pulsations

    Science.gov (United States)

    Reed, M. D.; Kawaler, S. D.; Østensen, R. H.; Bloemen, S.; Baran, A.; Telting, J. H.; Silvotti, R.; Charpinet, S.; Quint, A. C.; Handler, G.; Gilliland, R. L.; Borucki, W. J.; Koch, D. G.; Kjeldsen, H.; Christensen-Dalsgaard, J.

    2010-12-01

    We present the discovery of non-radial pulsations in five hot subdwarf B (sdB) stars based on 27 d of nearly continuous time series photometry using the Kepler spacecraft. We find that every sdB star cooler than ≈27 500 K that Kepler has observed (seven so far) is a long-period pulsator of the V1093 Her (PG 1716) class or a hybrid star with both short and long periods. The apparently non-binary long-period and hybrid pulsators are described here. The V1093 Her periods range from 1 to 4.5 h and are associated with g-mode pulsations. Three stars also exhibit short periods indicative of p-modes with periods of 2-5 min and in addition, these stars exhibit periodicities between both classes from 15 to 45 min. We detect the coolest and longest-period V1093 Her-type pulsator to date, KIC010670103 (Teff≈ 20 900 K, Pmax≈ 4.5 h) as well as a suspected hybrid pulsator, KIC002697388, which is extremely cool (Teff≈ 23 900 K) and for the first time hybrid pulsators which have larger g-mode amplitudes than p-mode ones. All of these pulsators are quite rich with many frequencies and we are able to apply asymptotic relationships to associate periodicities with modes for KIC010670103. Kepler data are particularly well suited for these studies as they are long duration, extremely high duty cycle observations with well-behaved noise properties.

  9. Synchronous observations of long-periodic geomagnetic pulsations on the ATS-6 satellite and on the Earth surface

    International Nuclear Information System (INIS)

    Barfild, Dzh.N.; Bondarenko, N.M.; Buloshnikov, A.M.; Gokhberg, M.B.; Kalisher, A.L.; Mak-Ferron, R.L.; Troitskaya, V.A.

    1977-01-01

    Geomagnetic pulsations of the Pi2 and Pc4 types recorded by the ATS-6 geostationary satellite and by observatories located near the geomagnetic longitude of the space satellite from the 24th of May, 1974 to the 1st of September, 1976 are compared. The periods of the Pi2 pulsations measured by the space satellite and on the Earth practically coincide, dynamic spectra and spectral densities are similar. The amplitude of the Pi2 pulsations recorded in auroral latitudes is several times wider than the amplitude measured by the ATS-6 while in middle latitudes the amplitude is much smaller than on the satellite. The Pc4 pulsations are not practically observed on the Earth for they are probably excited in narrow local areas of the magnitosphere. In order to arrive to the single-valued solution of the problem of the mechanism of the generation and localization of the pulsation source it is necessary to carry out simultaneous observations on the Earth and in the magnitosphere

  10. Super-Nyquist White Dwarf Pulsations in K2 Long-Cadence Data

    Science.gov (United States)

    Bell, Keaton J.; Hermes, JJ; Montgomery, Michael H.; Vanderbosch, Zach

    2017-06-01

    The Kepler and K2 missions have recently revolutionized the field of white dwarf asteroseismology. Since white dwarfs pulsate on timescales of order 10 minutes, we aim to observe these objects at K2’s short cadence (1 minute). Occasionally we find signatures of pulsations in white dwarf targets that were only observed by K2 at long cadence (30 minute). These signals suffer extreme aliasing since the intrinsic frequencies exceed the Nyquist sampling limit. We present our work to recover accurate frequency determinations for these targets, guided by a limited amount of supplementary, ground-based photometry from McDonald Observatory.

  11. PULSATION PERIOD VARIATIONS IN THE RRc LYRAE STAR KIC 5520878

    Energy Technology Data Exchange (ETDEWEB)

    Hippke, Michael [Institute for Data Analysis, Luiter Str. 21b, D-47506 Neukirchen-Vluyn (Germany); Learned, John G. [High Energy Physics Group, Department of Physics and Astronomy, University of Hawaii, Manoa 327 Watanabe Hall, 2505 Correa Road, Honolulu, HI 96822 (United States); Zee, A. [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States); Edmondson, William H. [School of Computer Science, University of Birmingham, Birmingham B15 2TT (United Kingdom); Lindner, John F. [Physics Department, The College of Wooster, Wooster, OH 44691 (United States); Kia, Behnam; Ditto, William L. [Department of Physics and Astronomy, University of Hawai' i at Mānoa, Honolulu, HI 96822 (United States); Stevens, Ian R., E-mail: hippke@ifda.eu, E-mail: jgl@phys.hawaii.edu, E-mail: zee@kitp.ucsb.edu, E-mail: w.h.edmondson@bham.ac.uk, E-mail: jlindner@wooster.edu, E-mail: wditto@hawaii.edu, E-mail: behnam@hawaii.edu, E-mail: irs@star.sr.bham.ac.uk [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2015-01-01

    Learned et al. proposed that a sufficiently advanced extra-terrestrial civilization may tickle Cepheid and RR Lyrae variable stars with a neutrino beam at the right time, thus causing them to trigger early and jogging the otherwise very regular phase of their expansion and contraction. This would turn these stars into beacons to transmit information throughout the galaxy and beyond. The idea is to search for signs of phase modulation (in the regime of short pulse duration) and patterns, which could be indicative of intentional, omnidirectional signaling. We have performed such a search among variable stars using photometric data from the Kepler space telescope. In the RRc Lyrae star KIC 5520878, we have found two such regimes of long and short pulse durations. The sequence of period lengths, expressed as time series data, is strongly autocorrelated, with correlation coefficients of prime numbers being significantly higher (p = 99.8%). Our analysis of this candidate star shows that the prime number oddity originates from two simultaneous pulsation periods and is likely of natural origin. Simple physical models elucidate the frequency content and asymmetries of the KIC 5520878 light curve. Despite this SETI null result, we encourage testing of other archival and future time-series photometry for signs of modulated stars. This can be done as a by-product to the standard analysis, and can even be partly automated.

  12. The correspondence between dayside long-period geomagnetic pulsations and the open-closed field line boundary

    Science.gov (United States)

    Pilipenko, V. A.; Kozyreva, O. V.; Lorentzen, D. A.; Baddeley, L. J.

    2018-05-01

    Long-period pulsations in the nominal Pc5-6 band (periods about 3-15 min) have been known to be a persistent feature of dayside high latitudes. A mixture of broadband Irregular Pulsations at Cusp Latitudes (IPCL) and narrowband P≿5 waves is often observed. The mechanism and origin of IPCL have not been firmly established yet. Magnetopause surface eigenmodes were suggested as a potential source of high-latitude ULF waves with frequencies less than 2 mHz. A ground response to these modes is expected to be beneath the ionospheric projection of the open-closed field line boundary (OCB). To unambiguously resolve a possible association of IPCL with the magnetopause surface modes, multi-instrument observation data from Svalbard have been analyzed. We examine the latitudinal structure of high-latitude pulsations in the Pc5-6 band recorded by magnetometers covering near-cusp latitudes. This structure is compared with an instant location of the equatorward boundary of the cusp aurora, assumed to be a proxy of the OCB. The optical OCB latitude has been identified by an automatic algorithm, using data from the meridian scanning photometer at Longyearbyen, Svalbard. The comparison has shown that the latitudinal maximum of the broadband IPCL maximizes about 2°-3° deeper in the magnetosphere than the OCB optical proxy. Therefore, these pulsations cannot be associated with the ground image of the magnetopause surface modes. It is likely that an essentially non-dipole geometry of field lines and a high variability of the magnetopause region may suppress the excitation efficiency. The obtained result imposes important limitations on possible mechanisms of high-latitude dayside ULF variations.

  13. Constraints on stellar evolution from pulsations

    International Nuclear Information System (INIS)

    Cox, A.N.

    1984-01-01

    Consideration of the many types of intrinsic variable stars, that is, those that pulsate, reveals that perhaps a dozen classes can indicate some constraints that affect the results of stellar evolution calculations, or some interpretations of observations. Many of these constraints are not very strong or may not even be well defined yet. The author discusses the case for six classes: classical Cepheids with their measured Wesselink radii, the observed surface effective temperatures of the known eleven double-mode Cepheids, the pulsation periods and measured surface effective temperatures of three R CrB variables, the delta Scuti variable VZ Cnc with a very large ratio of its two observed periods, the nonradial oscillations of the Sun, and the period ratios of the newly discovered double-mode RR Lyrae variables. (Auth.)

  14. EXOSAT observations of V471 Tauri - a 9.25 minute white dwarf pulsation and orbital phase dependent X-ray dips

    International Nuclear Information System (INIS)

    Jensen, K.A.; Swank, J.H.; Petre, P.; Guinan, E.F.; Sion, E.M.; Navy, E. O. Hulburt Center for Space Research, Washington, DC; Villanova Univ., PA)

    1986-01-01

    New results obtained from a 28 hr continuous observation of V471 Tauri with the EXOSAT satellite are reported. The detection of soft X-ray fluxes from both the white dwarf and the K dwarf, the discovery of a 9.25 minute pulsation from the white dwarf, and the discovery of orbital phase-related soft X-ray dips are discussed. The dips may be correlated with the triangular Lagrangian points of the binary orbit. The X-ray flux from the white dwarf is consistent with thermal models for a white dwarf photosphere with T(eff) of about 35,000 K, log g = 8.0-8.5, and log N(H) = 18.65 + or - 0.2. 25 references

  15. Cepheid pulsation theory and multiperiodic cepheid variables

    International Nuclear Information System (INIS)

    Cox, A.N.; Cox, J.P.

    1975-01-01

    In this review of the multiperiodic Cepheid variables, the subject matter is divided into four parts. The first discusses general causes of pulsation of Cepheids and other variable stars, and their locations on the H-R diagram. In the second section, the linear adiabatic and nonadiabatic theory calculation of radial pulsation periods and their application to the problem of masses and double-mode Cepheids are reviewed. Periodic solutions, and their stability, of the nonlinear radial pulsation equations for Cepheids and RR Lyrae stars are considered in the third section. The last section provides the latest results on nonlinear, nonperiodic, radial pulsations for Cepheids and RR Lyrae stars. (BJG)

  16. First Kepler results on compact pulsators - III. Subdwarf B stars with V1093 Her and hybrid (DW Lyn) type pulsations

    DEFF Research Database (Denmark)

    Reed, M.D.; Kawaler, Stephen D.; Østensen, Roy H.

    2010-01-01

    1093 Her (PG 1716) class or a hybrid star with both short and long periods. The apparently non-binary long-period and hybrid pulsators are described here. The V1093 Her periods range from 1 to 4.5 h and are associated with g-mode pulsations. Three stars also exhibit short periods indicative of p...

  17. Effects of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector

    Science.gov (United States)

    Kang, Zhongtao; Li, Qinglian; Cheng, Peng; Zhang, Xinqiao; Wang, Zhen-guo

    2016-10-01

    To understand the influence of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector, a back-lighting photography technique has been employed to capture the instantaneous self-pulsated spray and stable spray images with a high speed camera. The diameter and velocity of the droplets in the spray have been characterized with a Dantec Phase Doppler Anemometry (PDA) system. The effects of self-pulsation on the spray pattern, primary breakup, spray angle, diameter and velocity distribution and mass flow rate distribution are analyzed and discussed. The results show that the spray morphology is greatly influenced by self-pulsation. The stable spray has a cone shape, while the self-pulsated spray looks like a Christmas tree. The main difference of these two sprays is the primary breakup. The liquid film of stable spray keeps stable while that of self-pulsated spray oscillates periodically. The film width of self-pulsated spray varies in a large range with 'neck' and 'shoulder' features existing. The liquid film of self-pulsated spray breaks up at the second neck, and then the second shoulder begins to breakup into ligaments. The self-pulsated spray produces droplet clusters periodically, varies horizontal spray width and mass flux periodically. From the point of spatial distribution, self-pulsation is good for the spray, it uniformizes the mass flux along radius and increases the spray angle. However, when self-pulsation occurs, the SMD distribution varies from an inverted V shape to a hollow cone shape, and SMD increases at all the measuring points. Namely, from the point of atomization performance, self-pulsation has negative effects even when the breakup length is smaller. The effects of self-pulsation on the diameter and velocity distributions of the spray are mainly in the center part of the spray. The periphery of stable and self-pulsated spray has similar diameter and velocity distribution.

  18. A statistical method for draft tube pressure pulsation analysis

    International Nuclear Information System (INIS)

    Doerfler, P K; Ruchonnet, N

    2012-01-01

    Draft tube pressure pulsation (DTPP) in Francis turbines is composed of various components originating from different physical phenomena. These components may be separated because they differ by their spatial relationships and by their propagation mechanism. The first step for such an analysis was to distinguish between so-called synchronous and asynchronous pulsations; only approximately periodic phenomena could be described in this manner. However, less regular pulsations are always present, and these become important when turbines have to operate in the far off-design range, in particular at very low load. The statistical method described here permits to separate the stochastic (random) component from the two traditional 'regular' components. It works in connection with the standard technique of model testing with several pressure signals measured in draft tube cone. The difference between the individual signals and the averaged pressure signal, together with the coherence between the individual pressure signals is used for analysis. An example reveals that a generalized, non-periodic version of the asynchronous pulsation is important at low load.

  19. The mechanism of pulsating aurora

    International Nuclear Information System (INIS)

    Johnstone, A.D.

    1983-01-01

    New measurement using ground-based techniques, sounding-rockets and geostationary satellites show that pulsating aurora is almost certainly caused by a modulation of the precipitating electron beam. The modulation is probably imposed near the magnetic equator by an interaction with ELF waves which are observed to be modulated at the same frequency. The measured wave intensity is not strong enough to cause pulsations by variation of the rate of pitch angle diffusion so it is suggested that the pulsation is caused by a coherent interaction involving the generation of ELF chorus. The periodicity arises because the chorus is shut-off after approximately half a bounce period when the increased rate of precipitation removes most of the resonant electrons. The supply is then replenished by pitch angle diffusion

  20. ENIGMATIC RECURRENT PULSATIONAL VARIABILITY OF THE ACCRETING WHITE DWARF EQ LYN (SDSS J074531.92+453829.6)

    Energy Technology Data Exchange (ETDEWEB)

    Mukadam, Anjum S.; Szkody, Paula [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); Townsley, D. M.; Brockett, T. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Gaensicke, B. T.; Parsons, S. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Southworth, J. [Astrophysics Group, Keele University, Staffordshire ST5 5BG (United Kingdom); Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Harrold, S. [Department of Astronomy, University of Texas at Austin, Austin, TX 78759 (United States); Tovmassian, G.; Zharikov, S. [Observatorio Astronomico Nacional SPM, Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Ensenada, BC (Mexico); Drake, A. J. [Department of Astronomy and the Center for Advanced Computing Research, California Institute of Technology, Pasadena, CA 91225 (United States); Henden, A. [American Association of Variable Star Observers, 25 Birch Street, Cambridge, MA 02138 (United States); Rodriguez-Gil, P. [Departamento de Astrofisica, Universidad de La Laguna, La Laguna, E-38204 Santa Cruz de Tenerife (Spain); Sion, E. M. [Department of Astronomy and Astrophysics, Villanova University, Villanova, PA 19085 (United States); Zola, S.; Szymanski, T. [Astronomical Observatory, Jagiellonian University, ul. Orla 171, PL-30-244 Krakow (Poland); Pavlenko, E. [Crimean Astrophysical Observatory, Crimea 98409 (Ukraine); and others

    2013-09-15

    Photometric observations of the cataclysmic variable EQ Lyn (SDSS J074531.92+453829.6), acquired from 2005 October to 2006 January, revealed high-amplitude variability in the range 1166-1290 s. This accreting white dwarf underwent an outburst in 2006 October, during which its brightness increased by at least five magnitudes, and it started exhibiting superhumps in its light curve. Upon cooling to quiescence, the superhumps disappeared and it displayed the same periods in 2010 February as prior to the outburst within the uncertainties of a couple of seconds. This behavior suggests that the observed variability is likely due to nonradial pulsations in the white dwarf star, whose core structure has not been significantly affected by the outburst. The enigmatic observations begin with an absence of pulsational variability during a multi-site campaign conducted in 2011 January-February without any evidence of a new outburst; the light curve is instead dominated by superhumps with periods in the range of 83-87 minutes. Ultraviolet Hubble Space Telescope time-series spectroscopy acquired in 2011 March reveals an effective temperature of 15,400 K, placing EQ Lyn within the broad instability strip of 10,500-16,000 K for accreting pulsators. The ultraviolet light curve with 90% flux from the white dwarf shows no evidence of any pulsations. Optical photometry acquired during 2011 and Spring 2012 continues to reflect the presence of superhumps and an absence of pulsations. Subsequent observations acquired in 2012 December and 2013 January finally indicate the disappearance of superhumps and the return of pulsational variability with similar periods as previous data. However, our most recent data from 2013 March to May reveal superhumps yet again with no sign of pulsations. We speculate that this enigmatic post-outburst behavior of the frequent disappearance of pulsational variability in EQ Lyn is caused either by heating the white dwarf beyond the instability strip due to an

  1. Detection of Quasi-Periodic Pulsations in Solar EUV Time Series

    Science.gov (United States)

    Dominique, M.; Zhukov, A. N.; Dolla, L.; Inglis, A.; Lapenta, G.

    2018-04-01

    Quasi-periodic pulsations (QPPs) are intrinsically connected to the mechanism of solar flares. They are regularly observed in the impulsive phase of flares since the 1970s. In the past years, the studies of QPPs regained interest with the advent of a new generation of soft X-ray/extreme ultraviolet radiometers that pave the way for statistical surveys. Since the amplitude of QPPs in these wavelengths is rather small, detecting them implies that the overall trend of the time series needs to be removed before applying any Fourier or wavelet transform. This detrending process is known to produce artificial detection of periods that must then be distinguished from real ones. In this paper, we propose a set of criteria to help identify real periods and discard artifacts. We apply these criteria to data taken by the Extreme Ultraviolet Variability Experiment (EVE)/ESP onboard the Solar Dynamics Observatory (SDO) and the Large Yield Radiometer (LYRA) onboard the PRoject for On-Board Autonomy 2 (PROBA2) to search for QPPs in flares stronger than M5.0 that occurred during Solar Cycle 24.

  2. First Kepler results on compact pulsators - II. KIC 010139564, a new pulsating subdwarf B (V361 Hya) star with an additional low-frequency mode

    DEFF Research Database (Denmark)

    Kawaler, Stephen; Reed, M.D.; Quint, A.C.

    2010-01-01

    We present the discovery of non-radial pulsations in a hot subdwarf B star based on 30.5 d of nearly continuous time series photometry using the Kepler spacecraft. KIC 010139564 is found to be a short-period pulsator of the V361 Hya (EC 14026) class with more than 10 independent pulsation modes...... whose periods range from 130 to 190 s. It also shows one periodicity at a period of 3165 s. If this periodicity is a high-order g-mode, then this star may be the hottest member of the hybrid DW Lyn stars. In addition to the resolved pulsation frequencies, additional periodic variations in the light...... are independent stellar oscillation modes. We find that most of the identified periodicities are indeed stable in phase and amplitude, suggesting a rotation period of 2-3 weeks for this star, but further observations are needed to confirm this suspicion....

  3. Low-mass Pre-He White Dwarf Stars in Kepler Eclipsing Binaries with Multi-periodic Pulsations

    Science.gov (United States)

    Zhang, X. B.; Fu, J. N.; Liu, N.; Luo, C. Q.; Ren, A. B.

    2017-12-01

    We report the discovery of two thermally bloated low-mass pre-He white dwarfs (WDs) in two eclipsing binaries, KIC 10989032 and KIC 8087799. Based on the Kepler long-cadence photometry, we determined comprehensive photometric solutions of the two binary systems. The light curve analysis reveals that KIC 10989032 is a partially eclipsed detached binary system containing a probable low-mass WD with the temperature of about 10,300 K. Having a WD with the temperature of about 13,300, KKIC 8087799 is typical of an EL CVn system. By utilizing radial velocity measurements available for the A-type primary star of KIC 10989032, the mass and radius of the WD component are determined to be 0.24+/- 0.02 {M}⊙ and 0.50+/- 0.01 {R}⊙ , respectively. The values of mass and radius of the WD in KIC 8087799 are estimated as 0.16 ± 0.02 M ⊙ and 0.21 ± 0.01 R ⊙, respectively, according to the effective temperature and mean density of the A-type star derived from the photometric solution. We therefore introduce KIC 10989032 and KIC 8087799 as the eleventh and twelfth dA+WD eclipsing binaries in the Kepler field. Moreover, both binaries display marked multi-periodic pulsations superimposed on binary effects. A preliminary frequency analysis is applied to the light residuals when subtracting the synthetic eclipsing light curves from the observations, revealing that the light pulsations of the two systems are both due to the δ Sct-type primaries. We hence classify KIC 10989032 and KIC 8087799 as two WD+δ Sct binaries.

  4. Pulsations of the R Coronae Borealis stars

    International Nuclear Information System (INIS)

    Cox, J.P.; King, D.S.; Cox, A.N.; Wheeler, J.C.; Hansen, C.J.; Hodson, S.W.

    1980-01-01

    The radial pulsations of very luminous, low-mass models (L/M approx. 10 4 , solar units), which are possible representatives of the R CrB stars, have been examined. These pulsations are extremely nonadiabatic. There are in some cases at least one extra (strange) mode which makes interpretation difficult. The blue instability edges are also peculiar, in that there is an abrupt excursion of the blue edge to the blue for L/M sufficiently large. The range of periods of the model encompasses observed periods of the Cepheid-like pulsations of actual R CrB stars

  5. Pulsations of Energetic Electron Pulsations In Association With Substorm Onset

    Science.gov (United States)

    Åsnes, A.; Stadsnes, J.; Bjordal, J.; Østgaard, N.; Haaland, S.; Rosenberg, T. J.; Detrick, D. L.

    The Polar Ionospheric X-ray Imaging Experiment (PIXIE) is giving detailed images of the energetic electron precipitation when the POLAR satellite is near perigee over the Antarctica. In this area the PIXIE images have a spatial resolution of the order of 100 km, and a temporal resolution of 10 s can be obtained. In this paper we present the results of a study focusing on the onset and expansion of a substorm occuring on July 24, 1998. In this event we observe strong modulations of the energetic electron precipitation with period around 1 minute following substorm onset. The pulsations were restricted to a narrow magnetic local time sector in the pre-midnight region, about 0.5 hours wide, and showed movement towards higher latitudes and earlier lo- cal times. The event will be discussed in context of measurements from ground sta- tions and satellites in geosynchronous orbit. Precipitation of energetic electrons will be compared with VLF/ELF ground measurements. Features in the energetic elec- tron precipitation will be mapped to the magnetospheric equatorial plane by field line tracing.

  6. The first evidence for multiple pulsation axes: a new rapidly oscillating Ap star in the Kepler field, KIC 10195926

    DEFF Research Database (Denmark)

    Kurtz, Donald W.; Cunha, Margarida S.; Saio, H.

    2011-01-01

    We have discovered a new rapidly oscillating Ap (roAp) star among the Kepler mission target stars, KIC 10195926. This star shows two pulsation modes with periods that are amongst the longest known for roAp stars at 17.1 and 18.1 min, indicating that the star is near the terminal-age main sequence...... model that these two modes cannot have the same axis of pulsation. This is the first time for any pulsating star that evidence has been found for separate pulsation axes for different modes. The two modes are separated in frequency by 55 μHz, which we model as the large separation. The star is an α2 CVn...... spotted magnetic variable that shows a complex rotational light variation with a period of Prot= 5.684 59 d. For the first time for any spotted magnetic star of the upper main sequence, we find clear evidence of light variation with a period of twice the rotation period, that is, a subharmonic frequency...

  7. Photometric study of the pulsating, eclipsing binary OO DRA

    International Nuclear Information System (INIS)

    Zhang, X. B.; Deng, L. C.; Tian, J. F.; Wang, K.; Yan, Z. Z.; Luo, C. Q.; Sun, J. J.; Liu, Q. L.; Xin, H. Q.; Zhou, Q.; Luo, Z. Q.

    2014-01-01

    We present a comprehensive photometric study of the pulsating, eclipsing binary OO Dra. Simultaneous B- and V-band photometry of the star was carried out on 14 nights. A revised orbital period and a new ephemeris were derived from the data. The first photometric solution of the binary system and the physical parameters of the component stars are determined. They reveal that OO Dra could be a detached system with a less-massive secondary component nearly filling its Roche lobe. By subtracting the eclipsing light changes from the data, we obtained the intrinsic pulsating light curves of the hotter, massive primary component. A frequency analysis of the residual light yields two confident pulsation modes in both B- and V-band data with the dominant frequency detected at 41.865 c/d. A brief discussion concerning the evolutionary status and the pulsation nature of the binary system is finally given.

  8. The effect of tides on self-driven stellar pulsations

    Science.gov (United States)

    Balona, L. A.

    2018-06-01

    In addition to rotation, a tidal force in a binary introduces another axis of symmetry joining the two centres of mass. If the stars are in circular orbit and synchronous rotation, a pulsation with spherical harmonic degree l is split into l + 1 frequencies. In the observer's frame of reference, these in turn are further split into equidistant frequencies spaced by multiples of the orbital frequency. In the periodogram of a pulsating star, tidal action can be seen as low-amplitude equidistant splitting of each oscillation mode which are not harmonics of the orbital frequency. This effect is illustrated using Kepler observations of the heartbeat variable, KIC 4142768, which is also a δ Scuti star. Even though the theory is only applicable to circular orbits, the expected equidistant splitting is clearly seen in all four of the highest amplitude modes. This results in amplitude variability of each pulsation mode with a period equal to the orbital period.

  9. On the pulsation modes and masses of RGB OSARGs

    Directory of Open Access Journals (Sweden)

    Saio H.

    2013-03-01

    Full Text Available OSARG (OGLE Small Amplitude Red Giants variables are RGB or AGB stars that show multi-periodic light variations with periods of about 10-100 days. Comparing linear nonadiabatic pulsation periods and period ratios with observed ones, we determined pulsation modes and masses of the RGB OSARG variables in the LMC. We found that pulsations of OSARGs involve radial 1st to 3rd overtones, p4 of l = 1, and p2 of l = 2 modes. The range of mass isfound to be 0.9-1.4M⊙ for RGB OSARGs and their mass-luminosity relation is logL/L⊙ = 0.79 M/M⊙ + 2.2.

  10. Auroral pulsations and accompanying VLF emissions

    Directory of Open Access Journals (Sweden)

    V. R. Tagirov

    Full Text Available Results of simultaneous TV observations of pulsating auroral patches and ELF-VLF-emissions in the morning sector carried out in Sodankylä (Finland on February 15, 1991 are presented. Auroral pulsating activity was typical having pulsating patches with characteristic periods of about 7 s. Narrow-band hiss emissions and chorus elements at intervals of 0.3–0.4 s formed the main ELF-VLF activity in the frequency range 1.0–2.5 kHz at the same time. The analysis of auroral images with time resolution of 0.04 s allowed perfectly separate analysis of spatial and temporal variations in the auroral luminosity. Mutual correspondence between the behaviour of the luminous auroral patches and the appearance of ELF noise type hiss emissions and VLF chorus trains was found in two intervals chosen for analysis. While the hiss emissions were associated with the appearance of luminosity inside a limited area close to the zenith, the structured VLF emissions were accompanied by rapid motion of luminosity inside the area. The spatial dimension of the pulsating area was about 45–50 km and luminosity propagated inside it with velocity of about 10–12 kms. We discuss a new approach to explain the 5–15 s auroral pulsation based on the theory of flowing cyclotron maser and relaxation characteristics of ionosphere.

    Key words. Magnetospheric physics (auroral phenomena; magnetosphere-ionosphere interactions · Space plasma physics (wave-particle interactions

  11. Pulsations of delta Scuti stars

    International Nuclear Information System (INIS)

    Cox, A.N.

    1989-01-01

    A general review of the pulsating δ Scuti variables is given including the observed light curves and positions of the stars in the Hertzsprung-Russell diagram. Theoretical interpretations from evolution and pulsation calculations give their masses, radii, luminosities, and even their approximate internal compositions. Three models of these stars are discussed and used to study the nonlinear hydrodynamic behavior of these stars. The hydrodynamic equations and the Stellingwerf method for obtaining strictly periodic solutions are outlined. Problems of allowing for time-dependent convection and its great sensitivity to temperature and density are presented. Tentative results to date do not show any tendency for amplitudes to grow to large unobserved amplitudes, in disagreement with an earlier suggestion by Stellingwerf. It is found that the very small growth rates of the pulsations may even be too small to be useful in seeking a periodic solution. 15 refs., 8 figs., 3 tabs

  12. Infrared and optical pulsations from HZ hercules and possible 3.5 second infrared pulsations from IE 2259+586

    International Nuclear Information System (INIS)

    Middleditch, J.; Pennypacker, C.R.; Burns, M.S.

    1983-01-01

    The spectrum of the pulsed optical and infrared flux from HZ Her has been measured to be flat by simultaneous observations with the NASA IRTF 3.0 m and the Lick Crossley 91 cm telescopes. The pulsed fluxes in the 3200-7500 A bandpass and the 1.0-2.5 μm bandpass were both measured to be consistent with 27 μJy and indicate that the reprocessed pulsation spectrum may be optically thin thermal bremsstrahlung radiation, modulated in intensity. However, the temperature required for a good fit is > or =30,000 K. The results of a search for periodic infrared pulsations from other X-ray and radio pulsars, supernova remnants, and the galactic center source IRS 16, are also reported. We have possibly detected 3.5 s infrared pulsations from the X-ray binary pulsar, IE 2259+586. The 285.7 mHz infrared pulsation frequency from IE 2259+586 is consistent with the 286.6 mHz second harmonic X-ray pulsations reprocessed from a companion star in the close binary orbit whose period has been tentatively established to be approx.2300 s

  13. Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space

    International Nuclear Information System (INIS)

    Han, Wenhu; Gao, Yang; Wang, Cheng; Law, Chung K.

    2015-01-01

    The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale. Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies

  14. A Pulsation Mechanism for GW Virginis Variables

    Science.gov (United States)

    Cox, Arthur N.

    2003-03-01

    The mechanism that produces pulsations in the hottest pre-white dwarfs has been uncertain since the early work indicated that helium is a poison that smooths opacity bumps in the opacity-temperature plane caused by the ionizations of the large observed amounts of carbon and oxygen. Very little helium seemed to be needed to prevent the kappa effect pulsation driving, but helium amounts of almost half of the mass in the surface composition are observed in the pulsating PG 1159-035 stars called the GW Virginis variables. Rather little change in the C and O surface abundances is observed from the hottest (RX J2117.1+3412 at 170,000 K) to the coolest (PG 0122+200 at 80,000 K) GW Vir variables. Actually the shortest observed periods (300-400 s) of these variables are generally predicted to be unstable in all models, but the longest observed periods (up to 1000 s) are difficult to excite. Three recent investigations differ in their conclusions, with two finding that helium and even a slight amount of hydrogen does not prevent the kappa effect of C and O ionizations. A more detailed study reported here confirms the poisoning effect of helium. However, the ionization K- and L-edge opacity of the original iron, whose global abundance is unaffected by all previous evolution, especially if enhanced by radiation absorption levitation, can give different, previously unexplored, opacity driving that can explain the observed pulsations. But even this iron ionization driving can be somewhat poisoned by bump smoothing if the C and O abundances are large. Nonvariable GW Vir stars in the observed instability strip could be the result of small composition variations in the pulsation driving layers.

  15. Long periods (1 -10 mHz) geomagnetic pulsations variation with solar cycle in South Atlantic Magnetic Anomaly

    Science.gov (United States)

    Rigon Silva, Willian; Schuch, Nelson Jorge; Guimarães Dutra, Severino Luiz; Babulal Trivedi, Nalin; Claudir da Silva, Andirlei; Souza Savian, Fernando; Ronan Coelho Stekel, Tardelli; de Siqueira, Josemar; Espindola Antunes, Cassio

    The occurrence and intensity of the geomagnetic pulsations Pc-5 (2-7 mHz) and its relationship with the solar cycle in the South Atlantic Magnetic Anomaly -SAMA is presented. The study of geomagnetic pulsations is important to help the understanding of the physical processes that occurs in the magnetosphere region and help to predict geomagnetic storms. The fluxgate mag-netometers H, D and Z, three axis geomagnetic field data from the Southern Space Observatory -SSO/CRS/INPE -MCT, São Martinho da Serra (29.42° S, 53.87° W, 480m a.s.l.), RS, Brasil, a were analyzed and correlated with the solar wind parameters (speed, density and temperature) from the ACE and SOHO satellites. A digital filtering to enhance the 2-7 mHz geomagnetic pulsations was used. Five quiet days and five perturbed days in the solar minimum and in the solar maximum were selected for this analysis. The days were chosen based on the IAGA definition and on the Bartels Musical Diagrams (Kp index) for 2001 (solar maximum) and 2008 (solar minimum). The biggest Pc-5 amplitude averages differences between the H-component is 78,35 nT for the perturbed days and 1,60nT for the quiet days during the solar maximum. For perturbed days the average amplitude during the solar minimum is 8,32 nT, confirming a direct solar cycle influence in the geomagnetic pulsations intensity for long periods.

  16. Amplitude Modulation of Pulsation Modes in Delta Scuti Stars

    Science.gov (United States)

    Bowman, Dominic M.

    2017-10-01

    The pulsations in δ Sct stars are excited by a heat engine driving mechanism caused by increased opacity in their surface layers, and have pulsation periods of order a few hours. Space based observations in the last decade have revealed a diverse range of pulsational behaviour in these stars, which is investigated using an ensemble of 983 δ Sct stars observed continuously for 4 yr by the Kepler Space Telescope. A statistical search for amplitude modulation of pulsation modes is carried out and it is shown that 61.3 per cent of the 983 δ Sct stars exhibit significant amplitude modulation in at least a single pulsation mode, and that this is uncorrelated with effective temperature and surface gravity. Hence, the majority of δ Sct stars exhibit amplitude modulation, with time-scales of years and longer demonstrated to be significant in these stars both observationally and theoretically. An archetypal example of amplitude modulation in a δ Sct star is KIC 7106205, which contains only a single pulsation mode that varies significantly in amplitude whilst all other pulsation modes stay constant in amplitude and phase throughout the 4-yr Kepler data set. Therefore, the visible pulsational energy budget in this star, and many others, is not conserved over 4 yr. Models of beating of close-frequency pulsation modes are used to identify δ Sct stars with frequencies that lie closer than 0.001 d^{-1}, which are barely resolved using 4 yr of Kepler observations, and maintain their independent identities over 4 yr. Mode coupling models are used to quantify the strength of coupling and distinguish between non-linearity in the form of combination frequencies and non-linearity in the form of resonant mode coupling for families of pulsation modes in several stars. The changes in stellar structure caused by stellar evolution are investigated for two high amplitude δ Sct (HADS) stars in the Kepler data set, revealing a positive quadratic change in phase for the fundamental and

  17. Constraints on stellar evolution from pulsations

    International Nuclear Information System (INIS)

    Cox, A.N.

    1983-01-01

    Consideration of the many types of intrinsic variable stars, that is, those that pulsate, reveals that perhaps a dozen classes can indicate some constraints that affect the results of stellar evolution calculations, or some interpretations of observations. Many of these constraints are not very strong or may not even be well defined yet. In this review we discuss only the case for six classes: classical Cepheids with their measured Wesselink radii, the observed surface effective temperatures of the known eleven double-mode Cepheids, the pulsation periods and measured surface effective temperatures of three R CrB variables, the delta Scuti variable VZ Cnc with a very large ratio of its two observed periods, the nonradial oscillations of our sun, and the period ratios of the newly discovered double-mode RR Lyrae variables. Unfortunately, the present state of knowledge about the exact compositions; mass loss and its dependence on the mass, radius, luminosity, and composition; ;and internal mixing processes, as well as sometimes the more basic parameters such as luminosities and surface effective temperatures prevent us from applying strong constraints for every case where currently the possibility exists

  18. STELLAR PULSATIONS AND PERIOD CHANGES IN THE SX PHOENICIS STAR XX CYGNI

    International Nuclear Information System (INIS)

    Yang, X. H.; Fu, J. N.; Zha, Q.

    2012-01-01

    Time-series photometric observations were made for the SX Phoenicis star XX Cyg between 2007 and 2011 at the Xinglong Station of National Astronomical Observatories of China. With the light curves derived from the new observations, we do not detect any secondary maximum in the descending portion of the light curves of XX Cyg, as reported in some previous work. Frequency analysis of the light curves confirms a fundamental frequency f 0 = 7.4148 cycles day –1 and up to 19 harmonics, 11 of which are newly detected. However, no secondary mode of pulsation is detected from the light curves. The O–C diagram, produced from 46 newly determined times of maximum light combined with those derived from the literature, reveals a continuous period increase with the rate of (1/P)(dP/dt) = 1.19(13) × 10 –8 yr -1 . Theoretical rates of period change due to the stellar evolution were calculated with a modeling code. The result shows that the observed rate of period change is fully consistent with period change caused by evolutionary behavior predicted by standard theoretical models.

  19. Variations in energy, flux, and brightness of pulsating aurora measured at high time resolution

    Directory of Open Access Journals (Sweden)

    H. Dahlgren

    2017-03-01

    Full Text Available High-resolution multispectral optical and incoherent scatter radar data are used to study the variability of pulsating aurora. Two events have been analysed, and the data combined with electron transport and ion chemistry modelling provide estimates of the energy and energy flux during both the ON and OFF periods of the pulsations. Both the energy and energy flux are found to be reduced during each OFF period compared with the ON period, and the estimates indicate that it is the number flux of foremost higher-energy electrons that is reduced. The energies are found never to drop below a few kilo-electronvolts during the OFF periods for these events. The high-resolution optical data show the occurrence of dips in brightness below the diffuse background level immediately after the ON period has ended. Each dip lasts for about a second, with a reduction in brightness of up to 70 % before the intensity increases to a steady background level again. A different kind of variation is also detected in the OFF period emissions during the second event, where a slower decrease in the background diffuse emission is seen with its brightness minimum just before the ON period, for a series of pulsations. Since the dips in the emission level during OFF are dependent on the switching between ON and OFF, this could indicate a common mechanism for the precipitation during the ON and OFF phases. A statistical analysis of brightness rise, fall, and ON times for the pulsations is also performed. It is found that the pulsations are often asymmetric, with either a slower increase of brightness or a slower fall.

  20. Sparsely-Observed Pulsating Red Giants in the AAVSO Observing Program

    Science.gov (United States)

    Percy, J. R.

    2018-06-01

    This paper reports on time-series analysis of 156 pulsating red giants (21 SRa, 52 SRb, 33 SR, 50 Lb) in the AAVSO observing program for which there are no more than 150-250 observations in total. Some results were obtained for 68 of these stars: 17 SRa, 14 SRb, 20 SR, and 17 Lb. These results generally include only an average period and amplitude. Many, if not most of the stars are undoubtedly more complex; pulsating red giants are known to have wandering periods, variable amplitudes, and often multiple periods including "long secondary periods" of unknown origin. These results (or lack thereof) raise the question of how the AAVSO should best manage the observation of these and other sparsely-observed pulsating red giants.

  1. Observation of the pulsating aurora by S-520-12 rocket at Norway

    International Nuclear Information System (INIS)

    Tsuruda, K.; Hayakawa, H.; Machida, S.; Mukai, T.; Morioka, A.; Nagano, I.; Miyaoka, H.

    1991-01-01

    Particle, field an wave observations in a pulsating aurora have been carried out using the sounding rocket S-520-12, at northern polar region, Norway, on February 26, 1990. The initial analysis has disclosed two new findings, (i) precipitating low energy electrons associated with the auroral patch region, which suggests the secondary local acceleration of the auroral particles, (ii) pulsating LF wave component that is generated by periodically precipitating energetic electrons above the auroral ionosphere. (author)

  2. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    International Nuclear Information System (INIS)

    Córsico, A.H.; Althaus, L.G.; Bertolami, M.M. Miller; Kepler, S.O.; García-Berro, E.

    2014-01-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ ν ) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ ν  ∼< 10 -11  μ B . This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound

  3. Near-IR period-luminosity relations for pulsating stars in ω Centauri (NGC 5139)

    Science.gov (United States)

    Navarrete, C.; Catelan, M.; Contreras Ramos, R.; Alonso-García, J.; Gran, F.; Dékány, I.; Minniti, D.

    2017-08-01

    Aims: The globular cluster ω Centauri (NGC 5139) hosts hundreds of pulsating variable stars of different types, thus representing a treasure trove for studies of their corresponding period-luminosity (PL) relations. Our goal in this study is to obtain the PL relations for RR Lyrae and SX Phoenicis stars in the field of the cluster, based on high-quality, well-sampled light curves in the near-infrared (IR). Methods: Observations were carried out using the VISTA InfraRed CAMera (VIRCAM) mounted on the Visible and Infrared Survey Telescope for Astronomy (VISTA). A total of 42 epochs in J and 100 epochs in KS were obtained, spanning 352 days. Point-spread function photometry was performed using DoPhot and DAOPHOT crowded-field photometry packages in the outer and inner regions of the cluster, respectively. Results: Based on the comprehensive catalog of near-IR light curves thus secured, PL relations were obtained for the different types of pulsators in the cluster, both in the J and KS bands. This includes the first PL relations in the near-IR for fundamental-mode SX Phoenicis stars. The near-IR magnitudes and periods of Type II Cepheids and RR Lyrae stars were used to derive an updated true distance modulus to the cluster, with a resulting value of (m - M)0 = 13.708 ± 0.035 ± 0.10 mag, where the error bars correspond to the adopted statistical and systematic errors, respectively. Adding the errors in quadrature, this is equivalent to a heliocentric distance of 5.52 ± 0.27 kpc. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, with the VISTA telescope (project ID 087.D-0472, PI R. Angeloni).

  4. Amplitude Variations in Pulsating Red Giants. II. Some Systematics

    Science.gov (United States)

    Percy, J. R.; Laing, J.

    2017-12-01

    In order to extend our previous studies of the unexplained phenomenon of cyclic amplitude variations in pulsating red giants, we have used the AAVSO time-series analysis package vstar to analyze long-term AAVSO visual observations of 50 such stars, mostly Mira stars. The relative amount of the variation, typically a factor of 1.5, and the time scale of the variation, typically 20-35 pulsation periods, are not significantly different in longer-period, shorter-period, and carbon stars in our sample, and they also occur in stars whose period is changing secularly, perhaps due to a thermal pulse. The time scale of the variations is similar to that in smaller-amplitude SR variables, but the relative amount of the variation appears to be larger in smaller-amplitude stars, and is therefore more conspicuous. The cause of the amplitude variations remains unclear, though they may be due to rotational modulation of a star whose pulsating surface is dominated by the effects of large convective cells.

  5. Comparative pulsation calculations with OP and OPAL opacities

    Science.gov (United States)

    Kanbur, Shashi M.; Simon, Norman R.

    1994-01-01

    Comparative linear nonadiabatic pulsation calculations are presented using the OPAL and Opacity Project opacities. The two sets of opacities include effects due to intermediate coupling and fine structure as well as new abundances. We used two mass luminosity (M-L) relations, one standard (BIT), and one employing substantial convective core overshoot (COV). The two sets of opacities cannot be differentiated on the basis of the stellar pulsation calculations presented here. The BIT relation can model the beat and bump Cepheids with masses between 4 and 7 solar mass, while if the overshoot relation is used, masses between 2 and 6 solar mass are required. In the RR Lyrae regime, we find the inferred masses of globular cluster RRd stars to be little influenced by the choice of OPAL or OP. Finally, the limited modeling we have done is not able to constrain the Cepheid M-L relation based upon period ratios observed in the beat and bump stars.

  6. Pulsating variables

    International Nuclear Information System (INIS)

    1989-01-01

    The study of stellar pulsations is a major route to the understanding of stellar structure and evolution. At the South African Astronomical Observatory (SAAO) the following stellar pulsation studies were undertaken: rapidly oscillating Ap stars; solar-like oscillations in stars; 8-Scuti type variability in a classical Am star; Beta Cephei variables; a pulsating white dwarf and its companion; RR Lyrae variables and galactic Cepheids. 4 figs

  7. Linear radial pulsation theory. Lecture 5

    International Nuclear Information System (INIS)

    Cox, A.N.

    1983-01-01

    We describe a method for getting an equilibrium stellar envelope model using as input the total mass, the envelope mass, the surface effective temperature, the total surface luminosity, and the composition of the envelope. Then wih the structure of the envelope model known, we present a method for obtaining the raidal pulsation periods and growth rates for low order modes. The large amplitude pulsations observed for the yellow and red giants and supergiants are always these radial models, but for the stars nearer the main sequence, as for all of our stars and for the white dwarfs, there frequently are nonradial modes occuring also. Application of linear theory radial pulsation theory is made to the giant star sigma Scuti variables, while the linear nonradial theory will be used for the B stars in later lectures

  8. Pulsations of the Free Oscillations of the Earth in an Hourly Period Range

    Science.gov (United States)

    Sobolev, G. A.; Zakrzhevskaya, N. A.; Akatova, K. N.

    2018-05-01

    The records from 161 identical broadband seismic stations located in different regions of the world after the strong earthquakes off Sumatra Island on December 26, 2004 with magnitude M = 9.1, in Chile on February 27, 2010 with M = 8.8, and the Tohoku earthquake in Japan on March 11, 2011 with M = 9.0 are studied. Oscillations with a period of 11 h are analyzed. They are observed as pulsations in the free radial oscillations of the Earth lasting more than one week. The stations located a few hundred kilometers apart from each other demonstrate identical records. As the distance between the stations becomes larger, the structure of the records becomes different. At interstation distances of about 3800 km, the records at the stations have opposite phases, and at distances of 7600 km, the phases coincide. This is reflected in the spatial structure of the areas of the positive and negative phases of the oscillations on the Earth's surface. This structure recurs at the same time instant after the three considered earthquakes, which indicates that this effect is independent of the properties of the sources. The spatial positions of the areas of positive and negative phases are also not correlated to the geological conditions in the vicinity of the stations which are located both in the subduction zone and within the platform. The structure of the pulsations and their spatial distribution differ from the variations of the Earth's tides.

  9. Experimental study of Large-scale cryogenic Pulsating Heat Pipe

    Science.gov (United States)

    Barba, Maria; Bruce, Romain; Bonelli, Antoine; Baudouy, Bertrand

    2017-12-01

    Pulsating Heat Pipes (PHP) are passive two-phase heat transfer devices consisting of a long capillary tube bent into many U-turns connecting the condenser part to the evaporator part. They are thermally driven by an oscillatory flow of liquid slugs and vapor plugs coming from phase changes and pressure differences along the tube. The coupling of hydrodynamic and thermodynamic effects allows high heat transfer performances. Three closed-loop pulsating heat pipes have been developed by the DACM (Department of Accelerators, Cryogenics and Magnetism) of CEA Paris-Saclay, France. Each PHP measures 3.7 meters long (0.35 m for the condenser and the evaporator and 3 m for the adiabatic part), being almost 20 times longer than the longest cryogenic PHP tested. These PHPs have 36, 22 and 12 parallel channels. Numerous tests have been performed in horizontal position (the closest configuration to non-gravity) using nitrogen as working fluid, operating between 75 and 90 K. The inner and outer diameters of the stainless steel capillary tubes are 1.5 and 2 mm respectively. The PHPs were operated at different filling ratios (20 to 90 %), heat input powers (3 to 20 W) and evaporator and condenser temperatures (75 to 90 K). As a result, the PHP with 36 parallel channels achieves a certain level of stability during more than thirty minutes with an effective thermal conductivity up to 200 kW/m.K at 10 W heat load and during forty minutes with an effective thermal conductivity close to 300 kW/m.K at 5 W heat load.

  10. Musical scale estimation for some multiperiodic pulsating stars

    Science.gov (United States)

    Ulaş, B.

    2009-03-01

    The agreement between frequency arrangements of some multiperiodic pulsating stars and musical scales is investigated in this study. The ratios of individual pulsation frequencies of 28 samples of various types of pulsating stars are compared to 57 musical scales by using two different methods. The residual sum of squares of stellar observational frequency ratios is chosen as the indicator of the accordance. The result shows that the arrangements of pulsation frequencies of Y Cam and HD 105458 are similar to Diminished Whole Tone Scale and Arabian(b) Scale, respectively.

  11. Observation of a Short Period Quasi-periodic Pulsation in Solar X-Ray, Microwave, and EUV Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pankaj; Cho, Kyung-Suk [Korea Astronomy and Space Science Institute (KASI), Daejeon, 305-348 (Korea, Republic of); Nakariakov, Valery M., E-mail: pankaj@kasi.re.kr [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, CV4 7AL (United Kingdom)

    2017-02-10

    This paper presents the multiwavelength analysis of a 13 s quasi-periodic pulsation (QPP) observed in hard X-ray (12–300 keV) and microwave (4.9–34 GHz) emissions during a C-class flare that occurred on 2015 September 21. Atmospheric Image Assembly (AIA) 304 and 171 Å images show an emerging loop/flux tube (L1) moving radially outward, which interacts with the preexisting structures within the active region (AR). The QPP was observed during the expansion of and rising motion of L1. The Nobeyama Radioheliograph microwave images in 17/34 GHz channels reveal a single radio source that was co-spatial with a neighboring loop (L2). In addition, using AIA 304 Å images, we detected intensity oscillations in the legs of L2 with a period of about 26 s. A similar oscillation period was observed in the GOES soft X-ray flux derivative. This oscillation period seems to increase with time. We suggest that the observed QPP is most likely generated by the interaction between L2 and L3 observed in the AIA hot channels (131 and 94 Å). The merging speed of loops L2 and L3 was ∼35 km s{sup −1}. L1 was destroyed possibly by its interaction with preexisting structures in the AR, and produced a cool jet with the speed of ∼106–118 km s{sup −1} associated with a narrow CME (∼770 km s{sup −1}). Another mechanism of the QPP in terms of a sausage oscillation of the loop (L2) is also possible.

  12. Detection and Interpretation of Long-lived X-Ray Quasi-periodic Pulsations in the X-class Solar Flare on 2013 May 14

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, Brian R.; Tolbert, Anne K.; Inglis, Andrew; Ireland, Jack; Wang, Tongjiang; Holman, Gordon D. [Solar Physics Laboratory, Code 671, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hayes, Laura A. [ADNET Systems, Inc. at NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gallagher, Peter T., E-mail: brian.r.dennis@nasa.gov [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2017-02-10

    Quasi-periodic pulsations (QPP) seen in the time derivative of the GOES soft X-ray light curves are analyzed for the X3.2 event on 2013 May 14. The pulsations are apparent for a total of at least two hours from the impulsive phase to well into the decay phase, with a total of 163 distinct pulses evident to the naked eye. A wavelet analysis shows that the characteristic timescale of these pulsations increases systematically from ∼25 s at 01:10 UT, the time of the GOES peak, to ∼100 s at 02:00 UT. A second “ridge” in the wavelet power spectrum, most likely associated with flaring emission from a different active region, shows an increase from ∼40 s at 01:40 UT to ∼100 s at 03:10 UT. We assume that the QPP that produced the first ridge result from vertical kink-mode oscillations of the newly formed loops following magnetic reconnection in the coronal current sheet. This allows us to estimate the magnetic field strength as a function of altitude given the density, loop length, and QPP timescale as functions of time determined from the GOES light curves and Ramaty High Energy Solar Spectroscopic Imager ( RHESSI ) images. The calculated magnetic field strength of the newly formed loops ranges from ∼500 G at an altitude of 24 Mm to a low value of ∼10 G at 60 Mm, in general agreement with the expected values at these altitudes. Fast sausage-mode oscillations are also discussed and cannot be ruled out as an alternate mechanism for producing the QPP.

  13. Pulsations and period variations of the δ Scuti star AN Lyncis in a possible three-body system

    Science.gov (United States)

    Li, Gang; Fu, Jianning; Su, Jie; Fox-Machado, Lester; Michel, Raul; Guo, Zhen; Liu, Jinzhong; Feng, Guojie

    2018-01-01

    Observations for the δ Scuti star AN Lyn have been made between 2008 and 2016 with the 85-cm telescope at Xinglong station of National Astronomical Observatories of China, the 84-cm telescope at SPM Observatory of Mexico and the Nanshan One metre Wide field Telescope of Xinjiang Observatory of China. Data in V in 50 nights and in R in 34 nights are obtained in total. The bi-site observations from both Xinglong Station and SPM Observatory in 2014 are analysed with Fourier Decomposition to detect pulsation frequencies. Two independent frequencies are resolved, including one non-radial mode. A number of stellar model tracks are constructed with the MESA code and the fit of frequencies leads to the best-fitting model with the stellar mass of M = 1.70 ± 0.05 M⊙, the metallicity abundance of Z = 0.020 ± 0.001, the age of 1.33 ± 0.01 billion years and the period change rate 1/P · dP/dt = 1.06 × 10-9 yr-1, locating the star at the evolutionary stage close to the terminal age main sequence. The O-C diagram provides the period change rate of (1/P)(dP/dt) = 4.5(8) × 10-7 yr-1. However, the period change rate calculated from the models is smaller in two orders than the one derived from the O-C diagram. Together with the sinusoidal function signature, the period variations are regarded to be dominated by the light-travel time effect of the orbital motion of a three-body system with two low-luminosity components, rather than the stellar evolutionary effect.

  14. Pulsational instabilities in hot pre-horizontal branch stars

    Directory of Open Access Journals (Sweden)

    Battich Tiara

    2017-01-01

    Full Text Available The ϵ mechanism is a self-excitation mechanism of pulsations which acts on the regions where nuclear burning takes place. It has been shown that the ϵ mechanism can excite pulsations in models of hot helium-core flash, and that the pulsations of LS IV-14· 116, a He-enriched hot subdwarf star, could be explained that way. We aim to study the ϵmechanism effects on models of hot pre-horizontal branch stars and determine, if possible, a domain of instability in the log g — log Teff plane. We compute non-adiabatic non-radial pulsations on such stellar models, adopting different values of initial chemical abundances and mass of the hydrogen envelope at the time of the main helium flash. We find an instability domain of long-period (400 s ≲ P ≲ 2500 s g-modes for models with 22000K ≲ Teff ≲ 50000K and 4.67 ≲ log g ≲ 6.15.

  15. Periodic variations of cosmic ray intensity with period of -37 minute observed on April 25th, 1984

    International Nuclear Information System (INIS)

    Sakai, Takasuke; Kato, Masahito; Takei, Ryoji; Tamai, Eiji

    1985-01-01

    Existence of cosmic ray variation with period ranging from a few hours to seconds during geomagnetically quiet and perturb period at different altitude with different detector, was reported previously. As short period variation is thought to be transient with small amplitude fluctuation, consequently high counting rate of cosmic ray and appropriate method for finding short periodicity, is required. Further, there is similar phenomenon in which short variation, followed by storm sudden commencement (SSC) and/or Forbush decrease (FD) occurs. In 1979, Kato et al. used 3 minutes data at Mt. Norikura and obtained -6 x 10 5 count/min, and tried to find out short periodicity of cosmic ray around SSC, but no clear conclusion was obtained. T. Sakai, et al., used plastic scintillation counter of Akeno observatory, following their preceding work. The counter has an area about 154 m 2 . High counting rate of -2 x 10 6 counts/min. was observed at Akeno which revealed the existence of -37 minute periodical oscillation with an amplitude of 0.1 % in p-p during the time period of 1300 - 1900 UT on April 25th 1984, one day before FD. Observed periodical oscillation of cosmic ray counting rate may be the result of the changes in magnetic field. But, it must be noted that there remains possibility of oscillation of cosmic ray intensity in the interplanetary space during the period, independent of geomagnetic field. (author)

  16. FOLLOW-UP OBSERVATIONS OF THE SECOND AND THIRD KNOWN PULSATING HOT DQ WHITE DWARFS

    International Nuclear Information System (INIS)

    Dufour, P.; Green, E. M.; Fontaine, G.; Brassard, P.; Francoeur, M.; Latour, M.

    2009-01-01

    We present follow-up time-series photometric observations that confirm and extend the results of the significant discovery made by Barlow et al. that the Hot DQ white dwarfs SDSS J220029.08 - 074121.5 and SDSS J234843.30 - 094245.3 are luminosity variable. These are the second and third known members of a new class of pulsating white dwarfs, after the prototype SDSS J142625.71+575218.3. We find that the light curve of SDSS J220029.08 - 074121.5 is dominated by an oscillation at 654.397 ± 0.056 s, and that the light pulse folded on that period is highly nonlinear due to the presence of the first and second harmonic of the main pulsation. We also present evidence for the possible detection of two additional pulsation modes with low amplitudes and periods of 577.576 ± 0.226 s and 254.732 ± 0.048 s in that star. Likewise, we find that the light curve of SDSS J234843.30 - 094245.3 is dominated by a pulsation with a period of 1044.168 ± 0.012 s, but with no sign of harmonic components. A new oscillation, with a low amplitude and a period of 416.919 ± 0.004 s, is also probably detected in that second star. We argue, on the basis of the very different folded pulse shapes, that SDSS J220029.08 - 074121.5 is likely magnetic, while SDSS J234843.30 - 094245.3 is probably not.

  17. On the temporal fluctuations of pulsating auroral luminosity

    International Nuclear Information System (INIS)

    Yamamoto, Tatsundo

    1988-01-01

    From a study of all-sky TV records, it is shown that the luminosity fluctuations of pulsating auroras can be understood in terms of a series of pulses with rapid on-off switchings in burstlike fashion and that the widths of successive pulses (pulsation on times) are fairly constant. This is common even when luminosity fluctuations consist of complex-irregular variations, in contrast to the pulsation off time that is significantly variable. Complex-irregular variations are ground to be due to simultaneous appearance of more pulsating patches that exhibit movements eastward and westward over the site, and each of the patches shows primarily isolated luminosity pulses. Several examples are presented and described in detail. A natural consequence of these observations is that the classical concept of period does not mean much and the luminosity fluctuations should be treated as a series of individual isolated pulses where the pulsation on time is the most essential quantity. These characteristics are briefly discussed in relation to VLF/ELF wave-particle interactions in the magnetosphere. Then a new interpretation of the nonlinear relaxation oscillation model is proposed, where the propagation effect of VLF/ELF waves in low energy plasm irregularities near the magnetospheric equatorial plane plays an essential role to produce rapid on-off switchings of precipitating energetic electron fluxes. Both electromagnetic and electrostatic waves are possibly related to the precipitation pulsations

  18. Pulsating strings from two-dimensional CFT on (T4N/S(N

    Directory of Open Access Journals (Sweden)

    Carlos Cardona

    2015-04-01

    Full Text Available We propose a state from the two-dimensional conformal field theory on the orbifold (T4N/S(N as a dual description for a pulsating string moving in AdS3. We show that, up to first order in the deforming parameter, the energy in both descriptions has the same dependence on the mode number, but with a non-trivial function of the coupling.

  19. Finding binaries from phase modulation of pulsating stars with Kepler

    Science.gov (United States)

    Shibahashi, Hiromoto; Murphy, Simon; Bedding, Tim

    2017-09-01

    Binary orbital motion causes a periodic variation in the path length travelled by light emitted from a star towards us. Hence, if the star is pulsating, the observed phase of the pulsation varies over the orbit. Conversely, once we have observed such phase variation, we can extract information about the binary orbit from photometry alone. Continuous and precise space-based photometry has made it possible to measure these light travel time effects on the pulsating stars in binary systems. This opens up a new way of finding unseen brown dwarfs, planets, or massive compact stellar remnants: neutron stars and black holes.

  20. Long-Period Variability in o Ceti

    Science.gov (United States)

    Templeton, Matthew R.; Karovska, Margarita

    2009-02-01

    We carried out a new and sensitive search for long-period variability in the prototype of the Mira class of long-period pulsating variables, o Ceti (Mira A), the closest and brightest Mira variable. We conducted this search using an unbroken light curve from 1902 to the present, assembled from the visual data archives of five major variable star observing organizations from around the world. We applied several time-series analysis techniques to search for two specific kinds of variability: long secondary periods (LSPs) longer than the dominant pulsation period of ~333 days, and long-term period variation in the dominant pulsation period itself. The data quality is sufficient to detect coherent periodic variations with photometric amplitudes of 0.05 mag or less. We do not find evidence for coherent LSPs in o Ceti to a limit of 0.1 mag, where the amplitude limit is set by intrinsic, stochastic, low-frequency variability of approximately 0.1 mag. We marginally detect a slight modulation of the pulsation period similar in timescale to that observed in the Miras with meandering periods, but with a much lower period amplitude of ±2 days. However, we do find clear evidence of a low-frequency power-law component in the Fourier spectrum of o Ceti's long-term light curve. The amplitude of this stochastic variability is approximately 0.1 mag at a period of 1000 days, and it exhibits a turnover for periods longer than this. This spectrum is similar to the red noise spectra observed in red supergiants.

  1. Study of electric field pulsation in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S; Itoh, K

    2011-01-01

    A model for the experimental results of the periodic oscillation of the electric field, so-called the electric field pulsation, observed in the Compact Helical Device (Fujisawa et al 1998 Phys. Rev. Lett. 81 2256) and the Large Helical Device (Shimizu et al 2010 Plasma Fusion Res. 5 S1015) is presented. A self-generated oscillation of the radial electric field is shown as the simulation result in helical plasmas. The reduction of the anomalous transport diffusivity in the core region is observed due to the strong shear of the radial electric field when the positive electric field is shown in the core region in the periodic oscillation of E r . Two different time scales are found in the self-generated oscillation, which are the transport time scale and the fast time scale at the transition of the radial electric field. This oscillation because of the hysteresis characteristic is attributed to the electric field pulsation observed in helical plasmas. The parameter region of the condition for the self-generated oscillation is derived. It is shown that the multiple solutions of the radial electric field for the ambipolar condition are necessary but not sufficient for obtaining the self-generated oscillation.

  2. A 12 MINUTE ORBITAL PERIOD DETACHED WHITE DWARF ECLIPSING BINARY

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kilic, Mukremin; Kenyon, Scott J.; Hermes, J. J.; Winget, D. E.; Prieto, Carlos Allende

    2011-01-01

    We have discovered a detached pair of white dwarfs (WDs) with a 12.75 minute orbital period and a 1315 km s -1 radial velocity amplitude. We measure the full orbital parameters of the system using its light curve, which shows ellipsoidal variations, Doppler boosting, and primary and secondary eclipses. The primary is a 0.25 M sun tidally distorted helium WD, only the second tidally distorted WD known. The unseen secondary is a 0.55 M sun carbon-oxygen WD. The two WDs will come into contact in 0.9 Myr due to loss of energy and angular momentum via gravitational wave radiation. Upon contact the systems may merge (yielding a rapidly spinning massive WD), form a stable interacting binary, or possibly explode as an underluminous Type Ia supernova. The system currently has a gravitational wave strain of 10 -22 , about 10,000 times larger than the Hulse-Taylor pulsar; this system would be detected by the proposed Laser Interferometer Space Antenna gravitational wave mission in the first week of operation. This system's rapid change in orbital period will provide a fundamental test of general relativity.

  3. A Model of the Pulsating Extremely Low-mass White Dwarf Precursor WASP 0247-25B

    Science.gov (United States)

    Istrate, A. G.; Fontaine, G.; Heuser, C.

    2017-10-01

    We present an analysis of the evolutionary and pulsation properties of the extremely low-mass white dwarf precursor (B) component of the double-lined eclipsing system WASP 0247-25. Given that the fundamental parameters of that star have been obtained previously at a unique level of precision, WASP 0247-25B represents the ideal case for testing evolutionary models of this newly found category of pulsators. Taking into account the known constraints on the mass, orbital period, effective temperature, surface gravity, and atmospheric composition, we present a model that is compatible with these constraints and show pulsation modes that have periods very close to the observed values. Importantly, these modes are predicted to be excited. Although the overall consistency remains perfectible, the observable properties of WASP 0247-25B are closely reproduced. A key ingredient of our binary evolutionary models is represented by rotational mixing as the main competitor against gravitational settling. Depending on assumptions made about the values of the degree index ℓ for the observed pulsation modes, we found three possible seismic solutions. We discuss two tests, rotational splitting and multicolor photometry, that should readily identify the modes and discriminate between these solutions. However, this will require improved temporal resolution and higher S/N observations, which are currently unavailable.

  4. Pulsating stars

    CERN Document Server

    Catelan, M?rcio

    2014-01-01

    The most recent and comprehensive book on pulsating stars which ties the observations to our present understanding of stellar pulsation and evolution theory.  Written by experienced researchers and authors in the field, this book includes the latest observational results and is valuable reading for astronomers, graduate students, nuclear physicists and high energy physicists.

  5. γ DORADUS PULSATIONS IN THE ECLIPSING BINARY STAR KIC 6048106

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Woo, E-mail: jwlee@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34113 (Korea, Republic of)

    2016-12-20

    We present the Kepler photometry of KIC 6048106, which is exhibiting the O’Connell effect and multiperiodic pulsations. Including a starspot on either of the components, light-curve synthesis indicates that this system is a semi-detached Algol with a mass ratio of 0.211, an orbital inclination of 73.°9, and a large temperature difference of 2534 K. To examine in detail both the spot variations and pulsations, we separately analyzed the Kepler time-series data at the interval of an orbital period in an iterative way. The results reveal that the variable asymmetries of the light maxima can be interpreted as the changes with time of a magnetic cool spot on the secondary component. Multiple frequency analyses were performed in the outside-eclipse light residuals after removal of the binarity effects from the observed Kepler data. We detected 30 frequencies with signal to noise amplitude ratios larger than 4.0, of which six ( f {sub 2}– f {sub 6} and f {sub 10}) can be identified as high-order (17 ≤  n  ≤ 25) low-degree ( ℓ  = 2) gravity-mode pulsations that were stable during the observing run of 200 days. In contrast, the other frequencies may be harmonic and combination terms. For the six frequencies, the pulsation periods and pulsation constants are in the ranges of 0.352–0.506 days and 0.232–0.333 days, respectively. These values and the position on the Hertzsprung–Russell diagram demonstrate that the primary star is a γ Dor variable. The evolutionary status and the pulsation nature of KIC 6048106 are discussed.

  6. Identification and period investigation of pulsation variable star UY Camelopardalis, an RR Lyrae star in binary system

    Science.gov (United States)

    Li, Lin-Jia; Qian, Sheng-Bang; Voloshina, Irina; Metlov, Vladimir G.; Zhu, Li-Ying; Liao, Wen-Ping

    2018-06-01

    We present photometric measurements of the short period variable star UY Cam, which has been classified as a δ Scuti or c-type RR Lyrae (RRc) variable in different catalogs. Based on the analyses on Fourier coefficients and (NUV - V)0, we find that UY Cam is probably an RRc star. We obtain 58 new times of light maximum for UY Cam based on several sky surveys and our observations. Combining these with the times of light maximum in literature, a total of 154 times of light maximum are used to analyze the O - C diagram of UY Cam. The results show that the O - C pattern can be described by a downward parabolic component with a rate of -6.86 ± 0.47 × 10-11 d d-1, and a cyclic variation with a period of 65.7 ± 2.4 yr. We suppose these components are caused by the stellar evolution and the light travel time effect (LiTE) of a companion in elliptical orbit, respectively. By calculation, the minimum mass of the potential companion is about 0.17 M⊙, and its mass should be less than or equal to the pulsation primary star when the inclination i > 22.5°D. Therefore, the companion should be a low-mass star, like a late-type main-sequence star or a white dwarf. Due to the unique property of UY Cam, we suggest that more observations and studies on UY Cam and other RRc stars are needed to check the nature of these stars, including the pulsations and binarities.

  7. Compressional Pc5 type pulsations in the morningside plasma sheet

    Energy Technology Data Exchange (ETDEWEB)

    Vaivads, A.; Baumjohann, W.; Haerendel, G.; Nakamura, R.; Kucharek, H.; Klecker, B. [Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany); Lessard, M.R. [Dartmouth Coll., Hanover, NH (United States). Thayer School of Engineering; Kistler, L.M. [New Hampshire Univ., Durham (United States). Space Science Center; Mukai, T.; Nishida, A. [Institute of Space and Astronautical Science, Sagamihara, Kanagawa (Japan)

    2001-03-01

    We study compressional pulsations in Pc5 frequency range observed in the dawn-side at distances of about 10 R{sub E}, close to the magnetic equator. We use data obtained during two events of conjunctions between Equator-S and Geotail: 1000-1700 UT on 9 March 1998, and 0200-0600 UT on 25 April 1998. In both events, pulsations are observed after substorm activity. The pulsations are antisymmetric with respect to the equatorial plane (even mode), and move eastward with phase velocity close to plasma velocity. The pulsations tend to be pressure balanced. We also discuss possible generation mechanisms of the pulsations. (orig.)

  8. Mass loss and cepheid pulsation

    International Nuclear Information System (INIS)

    Davis, C.G. Jr.

    1977-01-01

    Two purposes are served: to discuss the latest improvements in nonlinear pulsation theory indicating the ability to resolve features such as the ''Christy bump'' on the light curves and to show from the results of a bump model and recent observations that mass loss is one of the possible explanations for the mass discrepancy problem between evolutionary and pulsation theories. Recent observations by Sanford and Gow of Los Alamos and Bernat (McDonald Observatory) show that extensive mass loss has occurred in the evolution of the M supergiant α Orionis

  9. Estimation of friction loss under forced flow pulsations in a channel with discrete roughness elements

    Science.gov (United States)

    Davletshin, I. A.; Dushina, O. A.; Mikheev, N. I.; Kolchin, S. A.

    2017-11-01

    The pulsating flow in a circular channel with semicircular annular ribs as discrete roughness elements has been studied experimentally. Air flow under atmospheric conditions at the channel inlet has been considered. Steady and pulsating air flow has been studied under different frequencies and amplitudes of forced pulsations generated by periodic blockage of the channel cross section by a rotating flap. Flow resistance in pulsating regimes has been estimated from the average static pressure drop. The resistance values attained twice the steady flow ones.

  10. Understanding the self-sustained oscillating two-phase flow motion in a closed loop pulsating heat pipe

    International Nuclear Information System (INIS)

    Spinato, Giulia; Borhani, Navid; Thome, John R.

    2015-01-01

    In the framework of efficient thermal management schemes, pulsating heat pipes (PHPs) represent a breakthrough solution for passive on-chip two-phase flow cooling of micro-electronics. Unfortunately, the unique coupling of thermodynamics, hydrodynamics and heat transfer, responsible for the self-sustained pulsating two-phase flow in such devices, presents many challenges to the understanding of the underlying physical phenomena which have so far eluded accurate prediction. In this experimental study, the novel time-strip image processing technique was used to investigate the thermo-flow dynamics of a single-turn channel CLPHP (closed loop pulsating heat pipe) charged with R245fa and tested under different operating conditions. The resulting frequency data confirmed the effect of flow pattern, and thus operating conditions, on the oscillating behavior. Dominant frequencies from 1.2 Hz for the oscillating regime to 0.6 Hz for the unidirectional flow circulation regime were measured, whilst wide spectral bands were observed for the unstable circulation regime. In order to analytically assess the observed trends in the spectral behavior, a spring-mass-damper system model was developed for the two-phase flow motion. As well as showing that system stiffness and mass have an effect on the two-phase flow dynamics, further insights into the flow pattern transition mechanism were also gained. - Highlights: • A novel synchronized thermal and visual investigation technique was applied to a CLPHP. • Thermal and hydrodynamic behaviors were analyzed by means of spectral analysis. • 3D frequency spectra for temperature and flow data show significant trends. • A spring-mass-damper system model was developed for the two-phase flow motion. • System stiffness and mass have an effect on the two-phase flow dynamics.

  11. A Model of the Pulsating Extremely Low-mass White Dwarf Precursor WASP 0247–25B

    Energy Technology Data Exchange (ETDEWEB)

    Istrate, A. G. [Center for Gravitation, Cosmology, and Astrophysics, Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States); Fontaine, G. [Département de Physique, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7 (Canada); Heuser, C., E-mail: istrate@uwm.edu [Dr. Karl Remeis-Observatory and ECAP, Astronomical Institute, Friedrich-Alexander University Erlangen-Nürnberg, Sternwartstr. 7, D-96049 Bamberg (Germany)

    2017-10-01

    We present an analysis of the evolutionary and pulsation properties of the extremely low-mass white dwarf precursor (B) component of the double-lined eclipsing system WASP 0247−25. Given that the fundamental parameters of that star have been obtained previously at a unique level of precision, WASP 0247−25B represents the ideal case for testing evolutionary models of this newly found category of pulsators. Taking into account the known constraints on the mass, orbital period, effective temperature, surface gravity, and atmospheric composition, we present a model that is compatible with these constraints and show pulsation modes that have periods very close to the observed values. Importantly, these modes are predicted to be excited. Although the overall consistency remains perfectible, the observable properties of WASP 0247−25B are closely reproduced. A key ingredient of our binary evolutionary models is represented by rotational mixing as the main competitor against gravitational settling. Depending on assumptions made about the values of the degree index ℓ for the observed pulsation modes, we found three possible seismic solutions. We discuss two tests, rotational splitting and multicolor photometry, that should readily identify the modes and discriminate between these solutions. However, this will require improved temporal resolution and higher S/N observations, which are currently unavailable.

  12. A Search for Rapidly Pulsating Hot Subdwarf Stars in the GALEX Survey

    Energy Technology Data Exchange (ETDEWEB)

    Boudreaux, Thomas M.; Barlow, Brad N.; Soto, Alan Vasquez [Department of Physics, High Point University, One University Parkway, High Point, NC 27268 (United States); Fleming, Scott W. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Million, Chase [Million Concepts LLC, P.O. Box 119, 141 Mary Street, Lemont, PA 16851 (United States); Reichart, Dan E.; Haislip, Josh B.; Moore, Justin P. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Linder, Tyler R. [Department of Physics, Eastern Illinois University, 600 Lincoln Avenue, Charleston, IL 61920 (United States)

    2017-08-20

    NASA’s Galaxy Evolution Explorer ( GALEX ) provided near- and far-UV observations for approximately 77% of the sky over a 10-year period; however, the data reduction pipeline initially only released single NUV and FUV images to the community. The recently released Python module gPhoton changes this, allowing calibrated time-series aperture photometry to be extracted easily from the raw GALEX data set. Here we use gPhoton to generate light curves for all hot subdwarf B (sdB) stars that were observed by GALEX , with the intention of identifying short-period, p-mode pulsations. We find that the spacecraft’s short visit durations, uneven gaps between visits, and dither pattern make the detection of hot subdwarf pulsations difficult. Nonetheless, we detect UV variations in four previously known pulsating targets and report their UV pulsation amplitudes and frequencies. Additionally, we find that several other sdB targets not previously known to vary show promising signals in their periodograms. Using optical follow-up photometry with the Skynet Robotic Telescope Network, we confirm p-mode pulsations in one of these targets, LAMOST J082517.99+113106.3, and report it as the most recent addition to the sdBV{sub r} class of variable stars.

  13. Modulation depth analysis in fast pulsations of solar radio emission

    International Nuclear Information System (INIS)

    Chernov, G.P.; Kurts, Yu.; Akademie der Wissenschaften der DDR, Berlin

    1990-01-01

    A model of millisecond pulsations due to a pulsation regime of a whistler spectrum is confirmed by the statistical analysis of the modulation depth in five type IV bursts; a modulation depth distribution ΔI/I versus the period (p) grows linearly (with the different slope) up to the maximum at the value ΔI/I ≅ 0.5-0.6. The same dependence ΔI/I(p) for spikes, observed during the same events, testifies also in favour of this model. The overlap on fast pulsations of fiber bursts and of sudden reductions are displayed in the ΔI/I(p) distribution by diffuse tails which are naturally explained by the known models of this fine structure

  14. THE DISCOVERY OF DIFFERENTIAL RADIAL ROTATION IN THE PULSATING SUBDWARF B STAR KIC 3527751

    Energy Technology Data Exchange (ETDEWEB)

    Foster, H. M.; Reed, M. D. [Department of Physics, Astronomy, and Materials Science, Missouri State University, Springfield, MO 65897 (United States); Telting, J. H. [Nordic Optical Telescope, Rambla José Ana Fernández Pérez 7, E-38711 Breña Baja (Spain); Østensen, R. H. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Baran, A. S. [Uniwersytet Pedagogiczny, Obserwatorium na Suhorze, ul. Podchorażych 2, 30-084 Kraków (Poland)

    2015-06-01

    We analyze 3 yr of nearly continuous Kepler spacecraft short cadence observations of the pulsating subdwarf B (sdB) star KIC 3527751. We detect a total of 251 periodicities, most in the g-mode domain, but some where p-modes occur, confirming that KIC 3527751 is a hybrid pulsator. We apply seismic tools to the periodicities to characterize the properties of KIC 3527751. Techniques to identify modes include asymptotic period spacing relationships, frequency multiplets, and the separation of multiplet splittings. These techniques allow for 189 (75%) of the 251 periods to be associated with pulsation modes. Included in these are three sets of ℓ = 4 multiplets and possibly an ℓ = 9 multiplet. Period spacing sequences indicate ℓ = 1 and 2 overtone spacings of 266.4 ± 0.2 and 153.2 ± 0.2 s, respectively. We also calculate reduced periods, from which we find evidence of trapped pulsations. Such mode trappings can be used to constrain the core/atmosphere transition layers. Interestingly, frequency multiplets in the g-mode region, which sample deep into the star, indicate a rotation period of 42.6 ± 3.4 days while p-mode multiplets, which sample the outer envelope, indicate a rotation period of 15.3 ± 0.7 days. We interpret this as differential rotation in the radial direction with the core rotating more slowly. This is the first example of differential rotation for a sdB star.

  15. Pulsator-like Spectra from Ultraluminous X-Ray Sources and the Search for More Ultraluminous Pulsars

    International Nuclear Information System (INIS)

    Pintore, F.; Mereghetti, S.; Zampieri, L.; Stella, L.; Israel, G. L.; Wolter, A.

    2017-01-01

    Ultraluminous X-ray sources (ULXs) are a population of extragalactic objects whose luminosity exceeds the Eddington limit for a 10 M ⊙ black hole (BH). Their properties have been widely interpreted in terms of accreting stellar-mass or intermediate-mass BHs. However at least three neutron stars (NSs) have been recently identified in ULXs through the discovery of periodic pulsations. Motivated by these findings we studied the spectral properties of a sample of bright ULXs using a simple continuum model which was extensively used to fit the X-ray spectra of accreting magnetic NSs in the Galaxy. We found that such a model, consisting of a power-law with a high-energy exponential cut-off, fits most of the ULX spectra analyzed here very well, at a level comparable to that of models involving an accreting BH. On these grounds alone we suggest that other non-pulsating ULXs may host NSs. We also found that above 2 keV the spectrum of known pulsating ULXs is harder than that of the majority of the other ULXs of the sample, with only IC 342 X-1 and Ho IX X-1 displaying spectra of comparable hardness. We thus suggest that these two ULXs may host an accreting NS and encourage searches for periodic pulsations in the flux.

  16. Pulsator-like Spectra from Ultraluminous X-Ray Sources and the Search for More Ultraluminous Pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Pintore, F.; Mereghetti, S. [INAF-IASF Milano, via E. Bassini 15, I-20133 Milano (Italy); Zampieri, L. [INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Stella, L.; Israel, G. L. [INAF—Osservatorio astronomico di Roma, Via Frascati 44, I-00078, Monteporzio Catone (Italy); Wolter, A. [INAF, Osservatorio Astronomico di Brera, via Brera 28, I-20121 Milano (Italy)

    2017-02-10

    Ultraluminous X-ray sources (ULXs) are a population of extragalactic objects whose luminosity exceeds the Eddington limit for a 10 M {sub ⊙} black hole (BH). Their properties have been widely interpreted in terms of accreting stellar-mass or intermediate-mass BHs. However at least three neutron stars (NSs) have been recently identified in ULXs through the discovery of periodic pulsations. Motivated by these findings we studied the spectral properties of a sample of bright ULXs using a simple continuum model which was extensively used to fit the X-ray spectra of accreting magnetic NSs in the Galaxy. We found that such a model, consisting of a power-law with a high-energy exponential cut-off, fits most of the ULX spectra analyzed here very well, at a level comparable to that of models involving an accreting BH. On these grounds alone we suggest that other non-pulsating ULXs may host NSs. We also found that above 2 keV the spectrum of known pulsating ULXs is harder than that of the majority of the other ULXs of the sample, with only IC 342 X-1 and Ho IX X-1 displaying spectra of comparable hardness. We thus suggest that these two ULXs may host an accreting NS and encourage searches for periodic pulsations in the flux.

  17. Compressional Pc5 type pulsations in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    A. Vaivads

    Full Text Available We study compressional pulsations in Pc5 frequency range observed in the dawn-side at distances of about 10 RE , close to the magnetic equator. We use data obtained during two events of conjunctions between Equator-S and Geotail: 1000–1700 UT on 9 March 1998, and 0200–0600 UT on 25 April 1998. In both events, pulsations are observed after substorm activity. The pulsations are antisymmetric with respect to the equatorial plane (even mode, and move eastward with phase velocity close to plasma velocity. The pulsations tend to be pressure balanced. We also discuss possible generation mechanisms of the pulsations.

    Key words. Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and instabilities; plasma sheet

  18. Compressional Pc5 type pulsations in the morningside plasma sheet

    Directory of Open Access Journals (Sweden)

    A. Vaivads

    2001-03-01

    Full Text Available We study compressional pulsations in Pc5 frequency range observed in the dawn-side at distances of about 10 RE , close to the magnetic equator. We use data obtained during two events of conjunctions between Equator-S and Geotail: 1000–1700 UT on 9 March 1998, and 0200–0600 UT on 25 April 1998. In both events, pulsations are observed after substorm activity. The pulsations are antisymmetric with respect to the equatorial plane (even mode, and move eastward with phase velocity close to plasma velocity. The pulsations tend to be pressure balanced. We also discuss possible generation mechanisms of the pulsations.Key words. Magnetospheric physics (magnetospheric configuration and dynamics; MHD waves and instabilities; plasma sheet

  19. Radioheliograph observations of a pulsating structure associated with a moving type IV burst

    International Nuclear Information System (INIS)

    Pick, M.; Trottet, G.

    1978-01-01

    Observations of a pulsating structure with the Mark II Nancay Radioheliograph are reported. These fluctuations are found to occur early in the development of a moving type IV burst. It is confirmed that the source of these fluctuations is of small extent and that it is embedded in the moving type IV continuum, plausibly at the top of an expanding arch. The observations suggest that the pulsating structure consists of recurrent enhanced pulses (mean recurrency time 1.7 s) followed by trains of periodic pulses (mean periodicity 0.37 s). The intensity of the mean enhanced pulses has a damping time of about 5 s. It is shown that previous interpretation of the pulsating structure by Rosenberg (1970) cannot account for the present observations. (Auth.)

  20. A single LipiFlow® Thermal Pulsation System treatment improves meibomian gland function and reduces dry eye symptoms for 9 months.

    Science.gov (United States)

    Greiner, Jack V

    2012-04-01

    To evaluate the effect of a single treatment with the LipiFlow(®) Thermal Pulsation System on signs of meibomian gland dysfunction (MGD) and dry eye symptoms over a 9-month period. Patients (n = 42 eyes, 21 subjects) diagnosed with MGD and dry eye symptoms were recruited for a non-significant risk, prospective, open-label, 1-month clinical trial. Patients received a single 12-minute treatment using the LipiFlow(®) Thermal Pulsation System on each eye. The LipiFlow(®) device applies heat to the conjunctival surfaces of the upper and lower inner eyelids while simultaneously applying pulsatile pressure to the outer eyelid surfaces to express the meibomian glands. Patient symptoms were evaluated using the Ocular Surface Disease Index (OSDI) and Standard Patient Evaluation for Eye Dryness (SPEED) dry eye questionnaires; tear break-up time was measured with the dry eye test (DET™); and meibomian gland function was evaluated using a standardized diagnostic expression technique. Data are presented for patient's pre-treatment (baseline) and at 1-month and 9-month post-treatment. Meibomian gland secretion scores improved significantly from baseline (4.4 ± 4.0) to 1-month post-treatment (11.3 ± 6.2; p dry eye disease, the LipiFlow(®) Thermal Pulsation System offers a technological advancement for the treatment of dry eye disease secondary to meibomian gland dysfunction. A single 12-minute LipiFlow(®) treatment results in up to 9 months of sustained improvement of meibomian gland function, tear break-up time and dry eye symptoms that are unparalleled with current dry eye treatments.

  1. The eclipsing system V404 Lyr: Light-travel times and γ Doradus pulsations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Woo; Kim, Seung-Lee; Hong, Kyeongsoo; Lee, Chung-Uk; Koo, Jae-Rim, E-mail: jwlee@kasi.re.kr, E-mail: slkim@kasi.re.kr, E-mail: kshong@kasi.re.kr, E-mail: leecu@kasi.re.kr, E-mail: koojr@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2014-08-01

    We present the physical properties of V404 Lyr exhibiting eclipse timing variations and multiperiodic pulsations from all historical data including the Kepler and SuperWASP observations. Detailed analyses of 2922 minimum epochs showed that the orbital period has varied through a combination of an upward-opening parabola and two sinusoidal variations, with periods of P {sub 3} = 649 days and P {sub 4} = 2154 days and semi-amplitudes of K {sub 3} = 193 s and K {sub 4} = 49 s, respectively. The secular period increase at a rate of +1.41 × 10{sup –7} days yr{sup –1} could be interpreted as a combination of the secondary to primary mass transfer and angular momentum loss. The most reasonable explanation for both sinusoids is a pair of light-travel-time effects due to two circumbinary objects with projected masses of M {sub 3} = 0.47 M {sub ☉} and M {sub 4} = 0.047 M {sub ☉}. The third-body parameters are consistent with those calculated using the Wilson-Devinney binary code. For the orbital inclinations i {sub 4} ≳ 43°, the fourth component has a mass within the hydrogen-burning limit of ∼0.07 M {sub ☉}, which implies that it is a brown dwarf. A satisfactory model for the Kepler light curves was obtained by applying a cool spot to the secondary component. The results demonstrate that the close eclipsing pair is in a semi-detached, but near-contact, configuration; the primary fills approximately 93% of its limiting lobe and is larger than the lobe-filling secondary. Multiple frequency analyses were applied to the light residuals after subtracting the synthetic eclipsing curve from the Kepler data. This revealed that the primary component of V404 Lyr is a γ Dor type pulsating star, exhibiting seven pulsation frequencies in the range of 1.85-2.11 day{sup –1} with amplitudes of 1.38-5.72 mmag and pulsation constants of 0.24-0.27 days. The seven frequencies were clearly identified as high-order low-degree gravity-mode oscillations which might be excited

  2. An Analysis of Pulsating Subdwarf B Star EPIC 203948264 Observed During Campaign 2 of K2

    Directory of Open Access Journals (Sweden)

    Ketzer Laura

    2017-01-01

    Full Text Available We present a preliminary analysis of the newly–discovered pulsating subdwarf B (sdB star EPIC 203948264. The target was observed for 83 days in short cadence mode during Campaign 2 of K2, the two–gyro mission of the Kepler space telescope. A time–series analysis of the data revealed 22 independent pulsation frequencies in the g–mode region ranging from 100 to 600 μHz (0:5 to 2:8 hours. The main method we use to identify pulsation modes is asymptotic period spacing, and we were able to assign all but one of the pulsations to either l = 1 or l = 2. The average period spacings of both sequences are 261:34 ± 0.78 s and 151:18 ± 0.34 s, respectively. The pulsation amplitudes range from 0.77 ppt down to the detection limit at 0.212 ppt, and are not stable over the duration of the campaign. We detected one possible low–amplitude, l = 2, rotationally split multiplet, which allowed us to constrain the rotation period to 46 days or longer. This makes EPIC 203948264 another slowly rotating sdB star.

  3. Theory of auroral zone PiB pulsation spectra

    International Nuclear Information System (INIS)

    Lysak, R.L.

    1988-01-01

    Changes in the auroral zone current system are often accompanied by magnetic pulsations with periods of about 1 s. These so-called bursts of irregular pulsations (PiB) have been observed both on ground magnetograms and with in situ satellite observations. These pulsations can be understood as excitations of a resonant cavity in the topside ionosphere, where the Alfven speed has a strong gradient due to the exponential decrease of density above the ionosphere. These waves have a frequency which scales as the ratio of the Alfven speed at the ionosphere divided by the ionospheric scale height. For a pure exponential Alfven speed profile, the mode frequencies are related to zeros of the zeroth-order Bessel function. For other profiles of the density, and therefore Alfven speed, the frequencies are not exactly given by the simple theory, but the frequency and mode structure are similar provided the Alfven speed sharply increases above the ionosphere

  4. Pulsations of delta Scuti stars

    International Nuclear Information System (INIS)

    Cox, A.N.

    1990-01-01

    In this paper the authors give a general review of the pulsating δ Scuti variables, including the observed light curves and positions of the stars in the Hertzsprung-Russell diagram. Theoretical interpretations from evolution and pulsation calculations give their masses, radii, luminosities, and even their approximate internal compositions. Then we discuss three models of these stars, and use them to study the nonlinear hydrodynamic behavior of these stars, after which the authors outline the hydrodynamic equations and the Stellingwerf method for obtaining strictly periodic solutions. The authors also present the problems of allowing for time-dependent convection and its great sensitivity to temperature and density. Tentative results to data do not show any tendency for amplitudes to grow to large unobserved amplitudes, in disagreement with an earlier suggestion by Stellingwerf. Finally, the authors find that the very small growth rates of the pulsations may even be too small to be useful in seeking a periodic solution. The δ Scuti variables are the most common type of variable star in our galaxy except for the white dwarfs. This is because stars in the mass range from just over one M circle-dot up to at least several M circle-dot pass through the yellow giant instability strip in the Hertzsprung-Russell diagram as they evolve off the main sequence to the red. Actually, stars up to the maximum main sequence mass also evolve through this region at higher luminosities, but there are so few of them, and they evolve so rapidly to the red, that they are almost unknown. At the higher luminosity, they probably would be called first-instability strip-crossing Cepheids anyway. Such cepheids are difficult to separate from those that are on the second blueward instability strip crossing that is much slower. Really, the δ Scuti variables are just low-luminosity Cepheids

  5. Ultra-fast magnetic resonance encephalography of physiological brain activity - Glymphatic pulsation mechanisms?

    Science.gov (United States)

    Kiviniemi, Vesa; Wang, Xindi; Korhonen, Vesa; Keinänen, Tuija; Tuovinen, Timo; Autio, Joonas; LeVan, Pierre; Keilholz, Shella; Zang, Yu-Feng; Hennig, Jürgen; Nedergaard, Maiken

    2016-06-01

    The theory on the glymphatic convection mechanism of cerebrospinal fluid holds that cardiac pulsations in part pump cerebrospinal fluid from the peri-arterial spaces through the extracellular tissue into the peri-venous spaces facilitated by aquaporin water channels. Since cardiac pulses cannot be the sole mechanism of glymphatic propulsion, we searched for additional cerebrospinal fluid pulsations in the human brain with ultra-fast magnetic resonance encephalography. We detected three types of physiological mechanisms affecting cerebral cerebrospinal fluid pulsations: cardiac, respiratory, and very low frequency pulsations. The cardiac pulsations induce a negative magnetic resonance encephalography signal change in peri-arterial regions that extends centrifugally and covers the brain in ≈1 Hz cycles. The respiratory ≈0.3 Hz pulsations are centripetal periodical pulses that occur dominantly in peri-venous areas. The third type of pulsation was very low frequency (VLF 0.001-0.023 Hz) and low frequency (LF 0.023-0.73 Hz) waves that both propagate with unique spatiotemporal patterns. Our findings using critically sampled magnetic resonance encephalography open a new view into cerebral fluid dynamics. Since glymphatic system failure may precede protein accumulations in diseases such as Alzheimer's dementia, this methodological advance offers a novel approach to image brain fluid dynamics that potentially can enable early detection and intervention in neurodegenerative diseases. © The Author(s) 2015.

  6. HYBRID γ DORADUS-δ SCUTI PULSATORS: NEW INSIGHTS INTO THE PHYSICS OF THE OSCILLATIONS FROM KEPLER OBSERVATIONS

    International Nuclear Information System (INIS)

    Grigahcene, A.; Monteiro, M. J. P. F. G.; Antoci, V.; Handler, G.; Houdek, G.; Balona, L.; Catanzaro, G.; Daszynska-Daszkiewicz, J.; Guzik, J. A.; Kurtz, D. W.; Marconi, M.; Ripepi, V.; Moya, A.; Suarez, J.-C.; Uytterhoeven, K.; Borucki, W. J.; Brown, T. M.; Christensen-Dalsgaard, J.; Gilliland, R. L.; Jenkins, J. M.

    2010-01-01

    Observations of the pulsations of stars can be used to infer their interior structure and test theoretical models. The main-sequence γ Doradus (Dor) and δ Scuti (Sct) stars with masses 1.2-2.5 M sun are particularly useful for these studies. The γ Dor stars pulsate in high-order g-modes with periods of order 1 day, driven by convective blocking at the base of their envelope convection zone. The δ Sct stars pulsate in low-order g- and p-modes with periods of order 2 hr, driven by the κ mechanism operating in the He II ionization zone. Theory predicts an overlap region in the Hertzsprung-Russell diagram between instability regions, where 'hybrid' stars pulsating in both types of modes should exist. The two types of modes with properties governed by different portions of the stellar interior provide complementary model constraints. Among the known γ Dor and δ Sct stars, only four have been confirmed as hybrids. Now, analysis of combined Quarter 0 and Quarter 1 Kepler data for hundreds of variable stars shows that the frequency spectra are so rich that there are practically no pure δ Sct or γ Dor pulsators, i.e., essentially all of the stars show frequencies in both the δ Sct and the γ Dor frequency range. A new observational classification scheme is proposed that takes into account the amplitude as well as the frequency and is applied to categorize 234 stars as δ Sct, γ Dor, δ Sct/γ Dor or γ Dor/δ Sct hybrids.

  7. lamda 557.7 nm pulsations within quiet pre-breakup aurorae at L=8.7

    International Nuclear Information System (INIS)

    Thomas, I.L.

    1974-01-01

    Pulsations in the [OI] Λ557.7 nm emission, with a typical period of 10-20 s, were consistently observed within quiet pre-breakup auroral forms from Mawson, Antarctica (L = 8.7), during 1967. By relating these observations to the model location of the auroral oval, an indication of the parent magnetospheric region is gained. From these results, and other reports, it is concluded that optical pulsations are a basic feature of the auroral display. The occurrence of an 'optical auroral pulsation pearl necklace' is reported. (author)

  8. Period variations in pulsating X-ray sources. I. Accretion flow parameters and neutron star structure from timing observations

    International Nuclear Information System (INIS)

    Lamb, F.K.; Pines, D.; Shaham, J.

    1978-01-01

    We show that valuable information about both accretion flows and neutron star structure can be obtained from X-ray timing observations of period variations in pulsating sources. Such variations can result from variations in the accretion flow, or from internal torque variations, associated with oscillations of the fluid core or the unpinning of vortices in the inner crust. We develop a statistical description of torque variations in terms of noise processes, indicate how the applicability of such a description may be tested observationally, and show how it may be used to determine from observation both the properties of accretion flows and the internal structure of neutron stars, including the relative inertial moments of the crust and superfluid neutron core, the crust-core coupling time, and the frequencies of any low-frequency internal collective modes. Particular attention is paid to the physical origin of spin-down episodes; it is shown that usyc episodes may result either from external torque reversals or from internal torque variations.With the aid of the statistical description, the response of the star to torque fluctuations is calculated for three stellar models: (i) a completely rigid star; (ii) a two-component star; and (iii) a two-component star with a finite-frequency internal mode, such as the Tkachenko mode of a rotating neutron superfluid. Our calculations show that fluctuating torques could account for the period the period variations and spin-down episodes observed in Her X-1 and Cen X-3, including the large spin-down event observed in the latter source during 1972 September-October. The torque noise strengths inferred from current timing observations using the simple two-component models are shown to be consistent with those to be expected from fluctuations in accretion flows onto magnetic neutron stars

  9. The Properties of Long Period Variables in the LMC from MACHO

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, O J; Hawley, S L; Cook, K H

    2008-05-06

    We present a new analysis of the long period variables in the Large Magellanic Cloud from the MACHO Variable Star Catalog. Three-quarters of our sample of evolved, variable stars have periodic light curves. We characterize the stars in our sample using the multiple periods found in their frequency spectra. Additionally, we use single-epoch 2MASS measurements to construct the average infrared light curves for different groups of these stars. Comparison with evolutionary models shows that stars on the RGB or the Early AGB often show non-periodic variability, but begin to pulsate with periods on the two shortest period-luminosity sequences (1 & 2) when they brighten to K{sub s} {approx} 13. The stars on the Thermally Pulsing AGB are more likely to pulsate with longer periods that lie on the next two P-L sequences (3 & 4), including the sequence associated with the Miras in the LMC. The Petersen diagram and its variants show that multi-periodic stars on each pair of these sequences (3 & 4, and 1 & 2), typically pulsate with periods associated only with that pair. The periods in these multi-periodic stars become longer and stronger as the star evolves. We further constrain the mechanism behind the long secondary periods (LSPs) seen in half of our sample, and find that there is a close match between the luminosity functions of the LSP stars and all of the stars in our sample, and that these star's pulsation amplitudes are relatively wavelength independent. Although this is characteristic of stellar multiplicity, the large number of these variables is problematic for that explanation.

  10. Numerical assessment of pulsating water jet in the conical diffusers

    Science.gov (United States)

    Tanasa, Constantin; Ciocan, Tiberiu; Muntean, Sebastian

    2017-11-01

    The hydraulic fluctuations associated with partial load operating conditions of Francis turbines are often periodic and characterized by the presence of a vortex rope. Two types of pressure fluctuations associated with the draft tube surge are identified in the literature. The first is an asynchronous (rotating) pressure fluctuation due to the precession of the helical vortex around the axis of the draft tube. The second type of fluctuation is a synchronous (plunging) fluctuation. The plunging fluctuations correspond to the flow field oscillations in the whole hydraulic passage, and are generally propagated overall in the hydraulic system. The paper introduced a new control method, which consists in injecting a pulsating axial water jet along to the draft tube axis. Nevertheless, the great calling of this control method is to mitigate the vortex rope effects targeting the vortex sheet and corresponding plunging component. In this paper, is presented our 3D numerical investigations with and without pulsating axial water jet control method in order to evaluate the concept.

  11. Study of the velocity distribution influence upon the pressure pulsations in draft tube model of hydro-turbine

    Science.gov (United States)

    Sonin, V.; Ustimenko, A.; Kuibin, P.; Litvinov, I.; Shtork, S.

    2016-11-01

    One of the mechanisms of generation of powerful pressure pulsations in the circuit of the turbine is a precessing vortex core, formed behind the runner at the operation points with partial or forced loads, when the flow has significant residual swirl. To study periodic pressure pulsations behind the runner the authors of this paper use approaches of experimental modeling and methods of computational fluid dynamics. The influence of velocity distributions at the output of the hydro turbine runner on pressure pulsations was studied based on analysis of the existing and possible velocity distributions in hydraulic turbines and selection of the distribution in the extended range. Preliminary numerical calculations have showed that the velocity distribution can be modeled without reproduction of the entire geometry of the circuit, using a combination of two blade cascades of the rotor and stator. Experimental verification of numerical results was carried out in an air bench, using the method of 3D-printing for fabrication of the blade cascades and the geometry of the draft tube of hydraulic turbine. Measurements of the velocity field at the input to a draft tube cone and registration of pressure pulsations due to precessing vortex core have allowed building correlations between the velocity distribution character and the amplitude-frequency characteristics of the pulsations.

  12. A pulsation analysis of K2 observations of the subdwarf B star PG 1142-037 during Campaign 1: A subsynchronously rotating ellipsoidal variable

    DEFF Research Database (Denmark)

    Reed, M. D.; Baran, A. S.; Østensen, R. H.

    2016-01-01

    We report a new subdwarf B pulsator, PG 1142-037, discovered during the first full-length campaign of K2, the two-gyro mission of the Kepler space telescope. 14 periodicities have been detected between 0.9 and 2.5 hr with amplitudes below 0.35 parts-per-thousand. We have been able to associate all...... of the pulsations with low-degree, ℓ ≤ 2 modes. Follow-up spectroscopy of PG 1142 has revealed it to be in a binary with a period of 0.54 d. Phase-folding the K2 photometry reveals a two-component variation including both Doppler boosting and ellipsoidal deformation. Perhaps the most surprising and interesting...

  13. Stellar pulsations in beyond Horndeski gravity theories

    Science.gov (United States)

    Sakstein, Jeremy; Kenna-Allison, Michael; Koyama, Kazuya

    2017-03-01

    Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.

  14. O-C analysis of the pulsating subdwarf B star PG 1219 + 534

    Science.gov (United States)

    Otani, Tomomi; Stone-Martinez, Alexander; Oswalt, Terry D.; Morello, Claudia; Moss, Adam; Singh, Dana; Sampson, Kenneth; DeAbreu, Caila; Khan, Aliyah; Seepersad, Austin; Shaikh, Mehvesh; Wilson, Linda

    2017-01-01

    PG 1219 + 534 (KY Uma) is a subdwarf B pulsating star with multiple periodicities between 120 - 175 s. So far, the most promising theory for the origin of subdwarf B (sdB) stars is that they result from binary mass transfer near the Helium Flash stage of evolution. The observations of PG 1219 +534 reported here are part of our program to constrain this evolutional theory by searching for companions and determining orbital separations around sdB pulsators using the Observed-minus-Calculated (O-C) method. A star’s position in space will wobble due to the gravitational forces of any companion or planet. If the star emits a periodic signal like pulsations, its orbital motion around the system’s center of mass causes periodic changes in the light pulse arrival times. PG 1219 + 534 was monitored for 90 hours during 2010-1 and 2016 using the 0.9m SARA-KP telescope at Kitt Peak National Observatory (KPNO), Arizona, and the 0.8 m Ortega telescope at Florida Institute of Technology in Melbourne. In this poster we present our time-series photometry and O-C analysis of this data.

  15. The sdB pulsating star V391 Peg and its putative giant planet revisited after 13 years of time-series photometric data

    Science.gov (United States)

    Silvotti, R.; Schuh, S.; Kim, S.-L.; Lutz, R.; Reed, M.; Benatti, S.; Janulis, R.; Lanteri, L.; Østensen, R.; Marsh, T. R.; Dhillon, V. S.; Paparo, M.; Molnar, L.

    2018-04-01

    V391 Peg (alias HS 2201+2610) is a subdwarf B (sdB) pulsating star that shows both p- and g-modes. By studying the arrival times of the p-mode maxima and minima through the O-C method, in a previous article the presence of a planet was inferred with an orbital period of 3.2 years and a minimum mass of 3.2 MJup. Here we present an updated O-C analysis using a larger data set of 1066 h of photometric time series ( 2.5× larger in terms of the number of data points), which covers the period between 1999 and 2012 (compared with 1999-2006 of the previous analysis). Up to the end of 2008, the new O-C diagram of the main pulsation frequency (f1) is compatible with (and improves) the previous two-component solution representing the long-term variation of the pulsation period (parabolic component) and the giant planet (sine wave component). Since 2009, the O-C trend of f1 changes, and the time derivative of the pulsation period (p.) passes from positive to negative; the reason of this change of regime is not clear and could be related to nonlinear interactions between different pulsation modes. With the new data, the O-C diagram of the secondary pulsation frequency (f2) continues to show two components (parabola and sine wave), like in the previous analysis. Various solutions are proposed to fit the O-C diagrams of f1 and f2, but in all of them, the sinusoidal components of f1 and f2 differ or at least agree less well than before. The nice agreement found previously was a coincidence due to various small effects that are carefully analyzed. Now, with a larger dataset, the presence of a planet is more uncertain and would require confirmation with an independent method. The new data allow us to improve the measurement of p. for f1 and f2: using only the data up to the end of 2008, we obtain p.1 = (1.34 ± 0.04) × 10-12 and p.2 = (1.62 ± 0.22) × 10-12. The long-term variation of the two main pulsation periods (and the change of sign of p.1) is visible also in direct

  16. Occurrence and average behavior of pulsating aurora

    Science.gov (United States)

    Partamies, N.; Whiter, D.; Kadokura, A.; Kauristie, K.; Nesse Tyssøy, H.; Massetti, S.; Stauning, P.; Raita, T.

    2017-05-01

    Motivated by recent event studies and modeling efforts on pulsating aurora, which conclude that the precipitation energy during these events is high enough to cause significant chemical changes in the mesosphere, this study looks for the bulk behavior of auroral pulsations. Based on about 400 pulsating aurora events, we outline the typical duration, geomagnetic conditions, and change in the peak emission height for the events. We show that the auroral peak emission height for both green and blue emission decreases by about 8 km at the start of the pulsating aurora interval. This brings the hardest 10% of the electrons down to about 90 km altitude. The median duration of pulsating aurora is about 1.4 h. This value is a conservative estimate since in many cases the end of event is limited by the end of auroral imaging for the night or the aurora drifting out of the camera field of view. The longest durations of auroral pulsations are observed during events which start within the substorm recovery phases. As a result, the geomagnetic indices are not able to describe pulsating aurora. Simultaneous Antarctic auroral images were found for 10 pulsating aurora events. In eight cases auroral pulsations were seen in the southern hemispheric data as well, suggesting an equatorial precipitation source and a frequent interhemispheric occurrence. The long lifetimes of pulsating aurora, their interhemispheric occurrence, and the relatively high-precipitation energies make this type of aurora an effective energy deposition process which is easy to identify from the ground-based image data.

  17. DISCOVERY OF 14 NEW SLOWLY PULSATING B STARS IN THE OPEN CLUSTER NGC 7654

    International Nuclear Information System (INIS)

    Luo, Y. P.; Han, Z. W.; Zhang, X. B.; Deng, L. C.

    2012-01-01

    We carried out time-series BV CCD photometric observations of the open cluster NGC 7654 (Messier 52) to search for variable stars. Eighteen slowly pulsating B (SPB) stars have been detected, among which 14 candidates are newly discovered, three known ones are confirmed, and a previously found δ Scuti star is also identified as an SPB candidate. Twelve SPBs are probable cluster members based on membership analysis. This makes NGC 7654 the richest galactic open cluster in terms of SPB star content. It is also a new discovery that NGC 7654 hosts three γ Dor star candidates. We found that all these stars (18 SPB and 3 γ Dor stars) have periods longer than their corresponding fundamental radial mode. With such a big sample of g-mode pulsators in a single cluster, it is clear that multi-mode pulsation is more common in the upper part of the main sequence than in the lower part. All the stars span a narrow strip on the period-luminosity plane, which also includes the γ Dor stars at the low-luminosity extension. This result implies that there may be a single period-luminosity relation applicable to all g-mode main-sequence pulsators. As a by-product, three EA-type eclipsing binaries and an EW-type eclipsing binary are also discovered.

  18. Pulsating aurora from electron scattering by chorus waves

    Science.gov (United States)

    Kasahara, S.; Miyoshi, Y.; Yokota, S.; Mitani, T.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Matsuoka, A.; Kazama, Y.; Frey, H. U.; Angelopoulos, V.; Kurita, S.; Keika, K.; Seki, K.; Shinohara, I.

    2018-02-01

    Auroral substorms, dynamic phenomena that occur in the upper atmosphere at night, are caused by global reconfiguration of the magnetosphere, which releases stored solar wind energy. These storms are characterized by auroral brightening from dusk to midnight, followed by violent motions of distinct auroral arcs that suddenly break up, and the subsequent emergence of diffuse, pulsating auroral patches at dawn. Pulsating aurorae, which are quasiperiodic, blinking patches of light tens to hundreds of kilometres across, appear at altitudes of about 100 kilometres in the high-latitude regions of both hemispheres, and multiple patches often cover the entire sky. This auroral pulsation, with periods of several to tens of seconds, is generated by the intermittent precipitation of energetic electrons (several to tens of kiloelectronvolts) arriving from the magnetosphere and colliding with the atoms and molecules of the upper atmosphere. A possible cause of this precipitation is the interaction between magnetospheric electrons and electromagnetic waves called whistler-mode chorus waves. However, no direct observational evidence of this interaction has been obtained so far. Here we report that energetic electrons are scattered by chorus waves, resulting in their precipitation. Our observations were made in March 2017 with a magnetospheric spacecraft equipped with a high-angular-resolution electron sensor and electromagnetic field instruments. The measured quasiperiodic precipitating electron flux was sufficiently intense to generate a pulsating aurora, which was indeed simultaneously observed by a ground auroral imager.

  19. Articulated pipes conveying fluid pulsating with high frequency

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1999-01-01

    Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hanging...... pipe position will lose stability if the mean flow speed exceeds a certain critical value. Adding a pulsating component to the fluid flow is shown to stabilize the hanging position for high values of the ratio between fluid and pipe-mass, and to marginally destabilize this position for low ratios....... An approximate nonlinear solution for small-amplitude flutter oscillations is obtained using a fifth-order multiple scales perturbation method, and large-amplitude oscillations are examined by numerical integration of the autonomous model equations, using a path-following algorithm. The pulsating fluid component...

  20. Modeling pulsations in hot stars with winds

    Energy Technology Data Exchange (ETDEWEB)

    Noels, Arlette; Godart, Melanie [Institut d' Astrophysique et de Geophysique, Liege (Belgium); Dupret, Marc-Antoine [Observatoire de Paris-Meudon, LESIA (France)], E-mail: Arlette.Noels@ulg.ac.be, E-mail: ma.dupret@obspm.fr, E-mail: Melanie.Godart@ulg.ac.be

    2008-10-15

    The interaction pulsation/mass loss takes different aspects. Pulsations can trigger mass loss as in LBVs and Miras; on the other hand, mass loss can modify the driving conditions within the stars. But the most spectacular aspect is the effect on stellar models which, in turn, opens a royal way to asteroseismology to test physical conditions inside massive stars, such as the extent of convective cores or the appearance of new driving mechanisms. We start with a discussion on MS stars and their strange mode instabilities. We then move on to the excitation of the LBV phenomenon. WR stars and the newly observed MOST period in WR123 are discussed in view of the power of asteroseismology. We then turn to B supergiants, in particular HD163899, and show how asteroseismology can really probe convection, semiconvection and mass loss.

  1. Stellar pulsations in beyond Horndeski gravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Sakstein, Jeremy [Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104 (United States); Kenna-Allison, Michael; Koyama, Kazuya, E-mail: sakstein@physics.upenn.edu, E-mail: mka1g13@soton.ac.uk, E-mail: kazuya.koyama@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom)

    2017-03-01

    Theories of gravity in the beyond Horndeski class recover the predictions of general relativity in the solar system whilst admitting novel cosmologies, including late-time de Sitter solutions in the absence of a cosmological constant. Deviations from Newton's law are predicted inside astrophysical bodies, which allow for falsifiable, smoking-gun tests of the theory. In this work we study the pulsations of stars by deriving and solving the wave equation governing linear adiabatic oscillations to find the modified period of pulsation. Using both semi-analytic and numerical models, we perform a preliminary survey of the stellar zoo in an attempt to identify the best candidate objects for testing the theory. Brown dwarfs and Cepheid stars are found to be particularly sensitive objects and we discuss the possibility of using both to test the theory.

  2. Modeling pulsations in hot stars with winds

    International Nuclear Information System (INIS)

    Noels, Arlette; Godart, Melanie; Dupret, Marc-Antoine

    2008-01-01

    The interaction pulsation/mass loss takes different aspects. Pulsations can trigger mass loss as in LBVs and Miras; on the other hand, mass loss can modify the driving conditions within the stars. But the most spectacular aspect is the effect on stellar models which, in turn, opens a royal way to asteroseismology to test physical conditions inside massive stars, such as the extent of convective cores or the appearance of new driving mechanisms. We start with a discussion on MS stars and their strange mode instabilities. We then move on to the excitation of the LBV phenomenon. WR stars and the newly observed MOST period in WR123 are discussed in view of the power of asteroseismology. We then turn to B supergiants, in particular HD163899, and show how asteroseismology can really probe convection, semiconvection and mass loss.

  3. Pulsations and period changes of the non-Blazhko RR lyrae variable Y oct observed from Dome A, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Zhihua, Huang; Jianning, Fu; Weikai, Zong; Lingzhi, Wang; Zonghong, Zhu [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); M, Macri Lucas; Lifan, Wang [Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX (United States); Ashley, Michael C. B.; S, Lawrence Jon; Daniel, Luong-Van [School of Physics, University of New South Wales, NSW (Australia); Xiangqun, Cui; Long-Long, Feng; Xuefei, Gong; Qiang, Liu; Huigen, Yang; Xiangyan, Yuan; Xu, Zhou; Zhenxi, Zhu [Chinese Center for Antarctic Astronomy, Nanjing (China); R, Pennypacker Carl [Center for Astrophysics, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); G, York Donald, E-mail: jnfu@bnu.edu.cn [Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, Chicago, IL (United States)

    2015-01-01

    During the operation of the Chinese Small Telescope Array (CSTAR) in Dome A of Antarctica in the years 2008, 2009, and 2010, large amounts of photometric data have been obtained for variable stars in the CSTAR field. We present here the study of one of six RR Lyrae variables, Y Oct, observed with CSTAR in Dome A, Antarctica. Photometric data in the i band were obtained in 2008 and 2010, with a duty cycle (defined as the fraction of time representing scientifically available data to CSTAR observation time) of about 44% and 52%, respectively. In 2009, photometric data in the g and r bands were gathered for this star, with a duty cycle of 65% and 60%, respectively. Fourier analysis of the data in the three bands only shows the fundamental frequency and its harmonics, which is characteristic of the non-Blazhko RR Lyrae variables. Values of the fundamental frequency and the amplitudes, as well as the total pulsation amplitude, are obtained from the data in the three bands separately. The amplitude of the fundamental frequency and the total pulsation amplitude in the g band are the largest, and those in the i band the smallest. Two-hundred fifty-one times of maximum are obtained from the three seasons of data, which are analyzed together with 38 maximum times provided in the GEOS RR Lyrae database. A period change rate of −0.96 ± 0.07 days Myr{sup −1} is then obtained, which is a surprisingly large negative value. Based on relations available in the literature, the following physical parameters are derived: [Fe/H] = −1.41 ± 0.14, M{sub V} = 0.696 ± 0.014 mag, V−K = 1.182 ± 0.028 mag, logT{sub eff} = 3.802 ± 0.003 K, logg = 2.705 ± 0.004, logL/L{sub ⊙} = 1.625 ± 0.013, and logM/M{sub ⊙} = −0.240 ± 0.019.

  4. Origin of the visual and infrared pulsations in the intermediate polar FO Aqr (H2215-086)

    Energy Technology Data Exchange (ETDEWEB)

    Berriman, G; Bailey, J; Axon, D J; Hough, J H

    1986-12-01

    Simultaneous visual and infrared polarimetry of the intermediate polar FO Aqr (H2215-086) shows that its visual and infrared pulsations, seen at the rotation period of the white dwarf, are not circularly polarized. This is despite the fact that the infrared pulsations come from optically thin material: if cyclotron emission is important, it must be efficiently depolarized without the pulsations being hidden. We describe how this may come about, and discuss what further measurements will best establish whether cyclotron emission is important. The visual pulsations come from opaque material, and most likely arise from reprocessing at the surface of the white dwarf, but the possibility that cyclotron emission is important in the visual too cannot be definitely excluded.

  5. Simultaneous measurement of aurora-related, irregular magnetic pulsations at northern and southern high latitudes

    International Nuclear Information System (INIS)

    Arnoldy, R.L.; Rajashekar, R.; Cahill, L.J. Jr.; Engebretson, M.J.; Rosenberg, T.J.; Mende, S.B.

    1987-01-01

    A dominant feature of high-latitude magnetic pulsations is large-amplitude irregular pulsations (Pi) which are closely correlated with the movement of the observing station under particle precipitation, producing the dayside auroral and the high-latitude expansion of nightside aurora. The dayside Pi-1 pulsation maximum centered about local magnetic noon has no strong seasonal dependence, indicating that the dayside aurora illuminates both hemispheres independent of the latitude of the subsolar point. The summer noon pulsation maximum has, however, a greater longitudinal extent than the winter noon maximum, as measured at 74 degree-75 degree invariant latitude. The nightside magnetic pulsations are bursts of Pi (PiB) having an average duration of 15 min. From Defense Meteorological Satellite Program photos the auroral forms related to the high-latitude PiB can be identified as the poleward discrete arc generally having a large longitudinal extent. If the auroral forms are very similar in both hemispheres, then the large longitudinal extent coupled with movement of the auroral could explain why 85% of the PiB events have onsets within 10 min at opposite hemisphere sites (South Pole, Antarctica, and Sondre Stromfjord, Greenland) separated in local magnetic time by about 1.5 hours. There is no seasonal dependence in the statistical occurrence of PiB, nor in its simultaneity in opposite hemispheres. Apparently, the seasonal distortion of the tail plasma sheet has little effect on the acceleration of high-latitude auroral beams. The actual several minute time difference in opposite hemisphere onsets of PiB is probably due to the westward/poleward motion of the longitudinally extended aurora

  6. Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System

    International Nuclear Information System (INIS)

    Wit, Julien de; Lewis, Nikole K.; Knutson, Heather A.; Batygin, Konstantin; Fuller, Jim; Antoci, Victoria; Fulton, Benjamin J.; Laughlin, Gregory; Deming, Drake; Shporer, Avi; Cowan, Nicolas B.; Agol, Eric; Burrows, Adam S.; Fortney, Jonathan J.; Langton, Jonathan; Showman, Adam P.

    2017-01-01

    Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet’s atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet–star interactions in HAT-P-2's eccentric planetary system gained from the analysis of ∼350 hr of 4.5 μ m observations with the Spitzer Space Telescope . The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2 b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2 b’s 4.5 μ m photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet’s orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.

  7. Kepler observations of rapidly oscillating Ap, δ Scuti and γ Doradus pulsations in Ap stars

    DEFF Research Database (Denmark)

    Balona, Luis A.; Cunha, Margarida S.; Kurtz, Donald W.

    2011-01-01

    Observations of the A5p star KIC 8677585 obtained during the Kepler 10-d commissioning run with 1-min time resolution show that it is a rapidly oscillating Ap (roAp) star with several frequencies with periods near 10 min. In addition, a low frequency at 3.142 d−1 is also clearly present....... Multiperiodic γ Doradus (γ Dor) and δ Scuti (δ Sct) pulsations, never before seen in any Ap star, are present in Kepler observations of at least three other Ap stars. Since γ Dor pulsations are seen in Ap stars, it is likely that the low frequency in KIC 8677585 is also a γ Dor pulsation. The simultaneous...... presence of both γ Dor and roAp pulsations and the unexpected detection of δ Sct and γ Dor pulsations in Ap stars present new opportunities and challenges for the interpretation of these stars. Since it is easy to confuse Am and Ap stars at classification dispersions, the nature of these Ap stars...

  8. A test of Pulsation Theory in Hot B Subdwarfs

    Science.gov (United States)

    Fontaine, Gilles

    There are currently of the order of 15 hot B subdwarf (sdB) stars which are known to exhibit low-amplitude (a few to tens of millimag), short-period (100-500 s), multiperiodic luminosity variations. These pulsations are thought to be driven by an opacity bump linked to the presence of a local enhancement of the iron abundance in the envelopes of sdB stars. Such an enhancement results quite naturally from the diffusive equilibrium between gravitational settling and radiative support in the stellar envelope. Nevertheless, surveys for pulsating sdB stars show that, in several instances, variable and non-variable objects with similar effective temperatures and gravities may coexist in the HR diagram. This result suggests that an additional parameter, perhaps a weak stellar wind, might affect the extent of the iron reservoir and thus the ability of the latter to drive pulsations in sdB stars. Fortunately, it is expected that such a wind might also leave its mark on the photospheric heavy element abundance patterns. The intended FUSE observations will i) permit a direct comparison of the heavy element abundance patterns in variable and nonvariable stars of similar atmospheric parameters; ii) provide a consistency check with our wind models; and iii) provide a test of the currently-favored explanation for the driving of the observed pulsations.

  9. Accretion by rotating magnetic neutron stars. III. Accretion torques and period changes in pulsating X-ray sources

    International Nuclear Information System (INIS)

    Ghosh, P.; Lamb, F.K.

    1979-01-01

    We use the solutions of the two-dimensional hydromagnetic equations obtained previously to calculate the torque on a magnetic neutron star accreting from a Keplerian disk. We find that the magnetic coupling between the star and the plasma outside the inner edge of the disk is appreciable. As a result of this coupling the spin-up torque on fast rotators is substantially less than that on slow rotators; for sufficiently high stellar angular velocities or sufficiently low accretion rates this coupling dominates that de to the plasma and the magnetic field at the inner edge of the disk, braking the star's rotation even while accretion, and hence X-ray emission, continues.We apply these results to pulsating X-ray sources, and show that the observed secular spin-up rates of all the sources in which this rate has been measured can be accounted for quantitatively if one assumes that these sources are accreting from Keplerian disks and have magnetic moments approx.10 29 --10 32 gauss cm 3 . The reduction of the torque on fast rotators provides a natural explanation of the spin-up rate of Her X-1, which is much below that expected for slow rotators. We show further that a simple relation between the secular spin-up rate : P and the quantity PL/sup 3/7/ adequately represents almost all the observational data, P and L being the pulse period and the luminosity of the source, respectively. This ''universal'' relation enables one to estimate any one of the parameters P, P, and L for a given source if the other two are known. We show that the short-term period fluctuations observed in Her X-1, Cen X-3, Vela X-1, and X Per can be accounted for quite naturally as consequences of torque variations caused by fluctuations in the mass transfer rate. We also indicate how the spin-down torque at low luminosities found here may account for the paradoxical existence of a large number of long-period sources with short spin-up time scales

  10. New pulsating casing collar to improve cementing quality

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P. [Southwest Petroleum Inst., Nanchong, Sichuan (China); He, K. [JiangHan Petroleum Administration Bureau, Qianjiang, Hubei (China); Wu, J. [Chevron Petroleum Tech. Co., Houston, TX (United States)

    1998-12-31

    This paper presents the design and test results of a new pulsating casing collar which improves cementing quality. The new pulsating casing collar (PCC) is designed according to the Helmholtz oscillator to generate a pulsating jet flow by self-excitation in the cementing process. By placing this new pulsating casing collar at the bottom of casing string, the generated pulsating jet flow transmits vibrating pressure waves up through the annulus and helps remove drilling mud in the annulus. It can therefore improve cementing quality, especially when eccentric annulus exists due to casing eccentricity where the mud is difficult to remove. The new pulsating casing collar consists of a top nozzle, a resonant chamber, and a bottom nozzle. It can be manufactured easily and is easy to use in the field. It has been tested in Jianghan oil-field, P.R. China. The field-test results support the theoretical analysis and laboratory test, and the cementing quality is shown greatly improved by using the new pulsating casing collar.

  11. Theoretical pulsation of metallic-line stars

    International Nuclear Information System (INIS)

    Cox, A.N.; King, D.S.; Hodson, S.W.

    1979-01-01

    The linear-theory radial-pulsation stability of low-helium delta Scuti variable models (1.0--2.5 Msun) has been investigated to see if metallicism and pulsation can occur simultaneously. Metallicism, which occurs in slowly rotating stars after the gravitational settling of He and the loss of the He II convection zone and its deep mixing for Y< or approx. =0.1, can then be established rapidly compared with the evolution time scale. Pulsation can still occur with driving due to the residual helium and the enhanced hydrogen. With the reduced helium giving no connection zone, the pulsation instability strip, whose blue and edges are estimated in this paoer, is about half as wide as with a normal helium abundance. Zero helium in the surface driving regions, however, produces blue edges so red that probably no instability strip exists at all. The red edge, predicted theoretically on the basis of the importance of convection in the outer zone, agrees well with the observational one. Cool, low-helium and metallic-line stars are then predicted to pulsate in a 200--500 K wide strip that is widest between the main-sequence luminosity of 5 Lsun and 15 Lsun. This strip reasonably includes the observed pulsating delta Del and mild Am stars, but there may be conflicts. Since blue edges for varying ionization-zone helium content occur across the entire instability strip, bluer first and higher overtone pulsations are also predicted everywhere from less than 7000 K to over 8000 K, the redder ones probably showing metallicism

  12. A LARGE-SCALE SEARCH FOR EVIDENCE OF QUASI-PERIODIC PULSATIONS IN SOLAR FLARES

    Energy Technology Data Exchange (ETDEWEB)

    Inglis, A. R.; Ireland, J.; Dennis, B. R. [Solar Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hayes, L; Gallagher, P. [Trinity College Dublin, Dublin (Ireland)

    2016-12-20

    The nature of quasi-periodic pulsations (QPP) in solar flares is poorly constrained, and critically the general prevalence of such signals in solar flares is unknown. Therefore, we perform a large-scale search for evidence of signals consistent with QPP in solar flares, focusing on the 1–300 s timescale. We analyze 675 M- and X-class flares observed by the Geostationary Operational Environmental Satellite (GOES) series in 1–8 Å soft X-rays between 2011 February 1 and 2015 December 31. Additionally, over the same era we analyze Fermi /Gamma-ray Burst Monitor (GBM) 15–25 keV X-ray data for each of these flares associated with a Fermi /GBM solar flare trigger, a total of 261 events. Using a model comparison method, we determine whether there is evidence for a substantial enhancement in the Fourier power spectrum that may be consistent with a QPP signature, based on three tested models; a power-law plus a constant, a broken power-law plus constant, and a power-law-plus-constant with an additional QPP signature component. From this, we determine that ∼30% of GOES events and ∼8% of Fermi /GBM events show strong signatures consistent with classical interpretations of QPP. For the remaining events either two or more tested models cannot be strongly distinguished from each other, or the events are well-described by single power-law or broken power-law Fourier power spectra. For both instruments, a preferred characteristic timescale of ∼5–30 s was found in the QPP-like events, with no dependence on flare magnitude in either GOES or GBM data. We also show that individual events in the sample show similar characteristic timescales in both GBM and GOES data sets. We discuss the implications of these results for our understanding of solar flares and possible QPP mechanisms.

  13. A Large-Scale Search for Evidence of Quasi-Periodic Pulsations in Solar Flares

    Science.gov (United States)

    Inglis, A. R.; Ireland, J.; Dennis, B. R..; Hayes, L.; Gallagher, P.

    2016-01-01

    The nature of quasi-periodic pulsations (QPP) in solar flares is poorly constrained, and critically the general prevalence of such signals in solar flares is unknown. Therefore, we perform a large-scale search for evidence of signals consistent with QPP in solar flares, focusing on the 1300 s timescale. We analyze 675 M- and X-class flares observed by the Geostationary Operational Environmental Satellite (GOES) series in 18 soft X-rays between 2011 February 1 and 2015 December 31. Additionally, over the same era we analyze Fermi/Gamma-ray Burst Monitor (GBM) 1525 keV X-ray data for each of these flares associated with a Fermi/GBM solar flare trigger, a total of 261 events. Using a model comparison method, we determine whether there is evidence for a substantial enhancement in the Fourier power spectrum that may be consistent with a QPP signature, based on three tested models; a power-law plus a constant, a broken power-law plus constant, and a power-law-plus-constant with an additional QPP signature component. From this, we determine that approx. 30% of GOES events and approx. 8% of Fermi/GBM events show strong signatures consistent with classical interpretations of QPP. For the remaining events either two or more tested models cannot be strongly distinguished from each other, or the events are well-described by single power-law or broken power-law Fourier power spectra. For both instruments, a preferred characteristic time-scale of approx. 5-30 s was found in the QPP-like events, with no dependence on flare magnitude in either GOES or GBM data. We also show that individual events in the sample show similar characteristic time-scales in both GBM and GOES data sets. We discuss the implications of these results for our understanding of solar flares and possible QPP mechanisms.

  14. A LARGE-SCALE SEARCH FOR EVIDENCE OF QUASI-PERIODIC PULSATIONS IN SOLAR FLARES

    International Nuclear Information System (INIS)

    Inglis, A. R.; Ireland, J.; Dennis, B. R.; Hayes, L; Gallagher, P.

    2016-01-01

    The nature of quasi-periodic pulsations (QPP) in solar flares is poorly constrained, and critically the general prevalence of such signals in solar flares is unknown. Therefore, we perform a large-scale search for evidence of signals consistent with QPP in solar flares, focusing on the 1–300 s timescale. We analyze 675 M- and X-class flares observed by the Geostationary Operational Environmental Satellite (GOES) series in 1–8 Å soft X-rays between 2011 February 1 and 2015 December 31. Additionally, over the same era we analyze Fermi /Gamma-ray Burst Monitor (GBM) 15–25 keV X-ray data for each of these flares associated with a Fermi /GBM solar flare trigger, a total of 261 events. Using a model comparison method, we determine whether there is evidence for a substantial enhancement in the Fourier power spectrum that may be consistent with a QPP signature, based on three tested models; a power-law plus a constant, a broken power-law plus constant, and a power-law-plus-constant with an additional QPP signature component. From this, we determine that ∼30% of GOES events and ∼8% of Fermi /GBM events show strong signatures consistent with classical interpretations of QPP. For the remaining events either two or more tested models cannot be strongly distinguished from each other, or the events are well-described by single power-law or broken power-law Fourier power spectra. For both instruments, a preferred characteristic timescale of ∼5–30 s was found in the QPP-like events, with no dependence on flare magnitude in either GOES or GBM data. We also show that individual events in the sample show similar characteristic timescales in both GBM and GOES data sets. We discuss the implications of these results for our understanding of solar flares and possible QPP mechanisms.

  15. Multipoint spacecraft observations of long-lasting poloidal Pc4 pulsations in the dayside magnetosphere on 1–2 May 2014

    Directory of Open Access Journals (Sweden)

    G. Korotova

    2016-11-01

    Full Text Available We use magnetic field and plasma observations from the Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS and Geostationary Operational Environmental Satellite system (GOES spacecraft to study the spatial and temporal characteristics of long-lasting poloidal Pc4 pulsations in the dayside magnetosphere. The pulsations were observed after the main phase of a moderate storm during low geomagnetic activity. The pulsations occurred during various interplanetary conditions and the solar wind parameters do not seem to control the occurrence of the pulsations. The most striking feature of the Pc4 magnetic field pulsations was their occurrence at similar locations during three of four successive orbits. We used this information to study the latitudinal nodal structure of the pulsations and demonstrated that the latitudinal extent of the magnetic field pulsations did not exceed 2 Earth radii (RE. A phase shift between the azimuthal and radial components of the electric and magnetic fields was observed from ZSM  =  0.30 RE to ZSM  =  −0.16 RE. We used magnetic and electric field data from Van Allen Probes to determine the structure of ULF waves. We showed that the Pc4 magnetic field pulsations were radially polarized and are the second-mode harmonic waves. We suggest that the spacecraft were near a magnetic field null during the second orbit when they failed to observe the magnetic field pulsations at the local times where pulsations were observed on previous and successive orbits. We investigated the spectral structure of the Pc4 pulsations. Each spacecraft observed a decrease of the dominant period as it moved to a smaller L shell (stronger magnetic field strength. We demonstrated that higher frequencies occurred at times and locations where Alfvén velocities were greater, i.e., on Orbit 1. There is some evidence that the periods of the pulsations increased during the plasmasphere refilling

  16. Elimination of motion and pulsation artifacts using BLADE sequences in shoulder MR imaging

    International Nuclear Information System (INIS)

    Lavdas, E.; Zaloni, E.; Vlychou, M.; Vassiou, K.; Fezoulidis, I.; Tsagkalis, A.; Dailiana, Z.

    2015-01-01

    To evaluate the ability of proton-density with fat-suppression BLADE (proprietary name for periodically rotated overlapping parallel lines with enhanced reconstruction in MR systems from Siemens Healthcare, PDFS BLADE) and turbo inversion recovery magnitude-BLADE (TIRM BLADE) sequences to reduce motion and pulsation artifacts in shoulder magnetic resonance examinations. Forty-one consecutive patients who had been routinely scanned for shoulder examination participated in the study. The following pairs of sequences with and without BLADE were compared: (a) Oblique coronal proton-density sequence with fat saturation of 25 patients and (b) oblique sagittal T2 TIRM-weighed sequence of 20 patients. Qualitative analysis was performed by two experienced radiologists. Image motion and pulsation artifacts were also evaluated. In oblique coronal PDFS BLADE sequences, motion artifacts have been significantly eliminated, even in five cases of non-diagnostic value with conventional imaging. Similarly, in oblique sagittal T2 TIRM BLADE sequences, image quality has been improved, even in six cases of non-diagnostic value with conventional imaging. Furthermore, flow artifacts have been improved in more than 80% of all the cases. The use of BLADE sequences is recommended in shoulder imaging, especially in uncooperative patients because it effectively eliminates motion and pulsation artifacts. (orig.)

  17. High-cadence spectroscopy of M-dwarfs - II. Searching for stellar pulsations with HARPS

    Science.gov (United States)

    Berdiñas, Z. M.; Rodríguez-López, C.; Amado, P. J.; Anglada-Escudé, G.; Barnes, J. R.; MacDonald, J.; Zechmeister, M.; Sarmiento, L. F.

    2017-08-01

    Stellar oscillations appear all across the Hertzsprung-Russell diagram. Recent theoretical studies support their existence also in the atmosphere of M dwarfs. These studies predict for them short periodicities ranging from 20 min to 3 h. Our Cool Tiny Beats (CTB) programme aims at finding these oscillations for the very first time. With this goal, CTB explores the short time domain of M dwarfs using radial velocity data from the High Accuracy Radial velocity Planet Searcher (HARPS)-European Southern Observatory and HARPS-N high-precision spectrographs. Here we present the results for the two most long-term stable targets observed to date with CTB, GJ 588 and GJ 699 (I.e. Barnard's star). In the first part of this work we detail the correction of several instrumental effects. These corrections are especially relevant when searching for subnight signals. Results show no significant signals in the range where M dwarfs pulsations were predicted. However, we estimate that stellar pulsations with amplitudes larger than ˜0.5 m s-1 can be detected with a 90 per cent completeness with our observations. This result, along with the excess of power regions detected in the periodograms, opens the possibility of non-resolved very low amplitude pulsation signals. Next generation more precise instrumentation would be required to detect such oscillations. However, the possibility of detecting pulsating M-dwarf stars with larger amplitudes is feasible due to the short size of the analysed sample. This motivates the need for completeness of the CTB survey.

  18. Theory of ultra-low-frequency magnetic pulsations in the earth's magnetosphere

    International Nuclear Information System (INIS)

    Chen, Liu.

    1991-03-01

    Long-period (T = 10-600 s) geomagnetic pulsations are known to be associated with magnetohydrodynamic (MHD) perturbations in the Earth's magnetosphere. Broadly speaking, there are two categories of excitation mechanisms. The first category corresponds to impulsive/external excitations, where MHD waves exhibit the stable discrete as well as continuous spectra. The second category corresponds to spontaneous/internal excitations, where MHD instabilities are excited either reactively or via wave-particle interactions. In this tutorial lecture, we briefly review theories concerning both categories of excitation mechanisms and compare theoretical predictions with available satellite observations. 20 refs

  19. A Refined Search for Pulsations in White Dwarf Companions to Millisecond Pulsars

    Science.gov (United States)

    Kilic, Mukremin; Hermes, J. J.; Córsico, A. H.; Kosakowski, Alekzander; Brown, Warren R.; Antoniadis, John; Calcaferro, Leila M.; Gianninas, A.; Althaus, Leandro G.; Green, M. J.

    2018-06-01

    We present optical high-speed photometry of three millisecond pulsars with low-mass (<0.3 M⊙) white dwarf companions, bringing the total number of such systems with follow-up time-series photometry to five. We confirm the detection of pulsations in one system, the white dwarf companion to PSR J1738+0333, and show that the pulsation frequencies and amplitudes are variable over many months. A full asteroseismic analysis for this star is under-constrained, but the mode periods we observe are consistent with expectations for a M⋆ = 0.16 - 0.19M⊙ white dwarf, as suggested from spectroscopy. We also present the empirical boundaries of the instability strip for low-mass white dwarfs based on the full sample of white dwarfs, and discuss the distinction between pulsating low-mass white dwarfs and subdwarf A/F stars.

  20. Solar wind controlled pulsations: A review

    International Nuclear Information System (INIS)

    Odera, T.J.

    1986-01-01

    Studies of the solar wind controlled Pc 3, 4 pulsations by early and recent researchers are highlighted. The review focuses on the recent observations, which cover the time during the International Magnetospheric Study (IMS). Results from early and recent observations agree on one point, that is, that the Pc 3, 4 pulsations are influenced by three main solar wind parameters, namely, the solar wind velocity V/sub 5w/, the IMF orientation theta/sub x/B, and magnitude B. The results can be interpreted, preferably, in terms of an external origin for Pc 3, 4 pulsations. This implies, essentially, the signal model, which means that the pulsations originate in the upstream waves (in the interplanetary medium) and are transported by convection to the magnetopause, where they couple to oscillations of the magnetospheric field lines

  1. Discovery of Three Pulsating, Mixed-atmosphere, Extremely Low-mass White Dwarf Precursors

    Science.gov (United States)

    Gianninas, A.; Curd, Brandon; Fontaine, G.; Brown, Warren R.; Kilic, Mukremin

    2016-05-01

    We report the discovery of pulsations in three mixed-atmosphere, extremely low-mass white dwarf (ELM WD, M ≤slant 0.3 M ⊙) precursors. Following the recent discoveries of pulsations in both ELM and pre-ELM WDs, we targeted pre-ELM WDs with mixed H/He atmospheres with high-speed photometry. We find significant optical variability in all three observed targets with periods in the range 320-590 s, consistent in timescale with theoretical predictions of p-mode pulsations in mixed-atmosphere ≈0.18 M ⊙ He-core pre-ELM WDs. This represents the first empirical evidence that pulsations in pre-ELM WDs can only occur if a significant amount of He is present in the atmosphere. Future, more extensive, timeseries photometry of the brightest of the three new pulsators offers an excellent opportunity to constrain the thickness of the surface H layer, which regulates the cooling timescales for ELM WDs. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  2. Planet-induced Stellar Pulsations in HAT-P-2's Eccentric System

    Energy Technology Data Exchange (ETDEWEB)

    Wit, Julien de [Department of Earth, Atmospheric and Planetary Sciences, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Lewis, Nikole K. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Knutson, Heather A.; Batygin, Konstantin [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Fuller, Jim [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Antoci, Victoria [Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Fulton, Benjamin J. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Laughlin, Gregory [Department of Astronomy, Yale University, New Haven, CT 06511 (United States); Deming, Drake [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States); Shporer, Avi [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91009 (United States); Cowan, Nicolas B. [Department of Physics, Department of Earth and Planetary Sciences, McGill University, 3550 rue University, Montreal, QC H3A 2A7 (Canada); Agol, Eric [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Burrows, Adam S. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Langton, Jonathan [Department of Physics, Principia College, Elsah, IL 62028 (United States); Showman, Adam P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2017-02-20

    Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planet’s atmosphere redistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet–star interactions in HAT-P-2's eccentric planetary system gained from the analysis of ∼350 hr of 4.5 μ m observations with the Spitzer Space Telescope . The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2 b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2 b’s 4.5 μ m photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planet’s orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2's pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.

  3. A Test of Pulsation Theory in Hot B Subdwarfs (bis)

    Science.gov (United States)

    Fontaine, G.

    There are currently 33 hot B subdwarf (sdB) stars which are known to exhibit low-amplitude (a few to tens of mmag), short-period (100-500 s), multiperiodic luminosity variations caused by acoustic mode instabilities. These pulsations are thought to be driven by an opacity bump linked to the presence of a local enhancement of the iron and other iron-peak elements) abundance in the envelopes of sdB stars. Such an enhancement results quite naturally from the diffusive equilibrium between gravitational settling and radiative support in the stellar envelope. Nevertheless, surveys for pulsating sdB stars show that variable and nonvariable objects with similar effective temperatures and gravities coexist in the log g-Teff diagram. This puzzling result suggests that an additional parameter, perhaps a weak stellar wind, might affect the extent of the iron reservoir and thus the ability of the latter to drive pulsations in sdB stars. Fortunately, it is expected that such a wind might also leave its mark on the photospheric heavy element abundance patterns. The intended FUSE observations will 1) permit a direct comparison of the heavy element abundance patterns in variable and nonvariable stars of similar atmospheric parameters, 2) provide a consistency check with our wind models, and 3) provide a test of the currently-favored explanation for the driving of the observed pulsations.

  4. The origin of the visual and infrared pulsations in the intermediate polar FO Aqr (H2215-086)

    International Nuclear Information System (INIS)

    Berriman, G.; Axon, D.J.; Hough, J.H.

    1986-01-01

    Simultaneous visual and infrared polarimetry of the intermediate polar FO Aqr (H2215-086) shows that its visual and infrared pulsations, seen at the rotation period of the white dwarf, are not circularly polarized. This is despite the fact that the infrared pulsations come from optically thin material: if cyclotron emission is important, it must be efficiently depolarized without the pulsations being hidden. We describe how this may come about, and discuss what further measurements will best establish whether cyclotron emission is important. The visual pulsations come from opaque material, and most likely arise from reprocessing at the surface of the white dwarf, but the possibility that cyclotron emission is important in the visual too cannot be definitely excluded. (author)

  5. Influence of cathode flow pulsation on performance of proton exchange membrane fuel cell with interdigitated gas distributors

    International Nuclear Information System (INIS)

    Ramiar, A.; Mahmoudi, A.H.; Esmaili, Q.; Abdollahzadeh, M.

    2016-01-01

    In this paper, a numerical study is conducted in order to investigate the effect of pulsation of air flow at the cathode side of Proton Exchange Membrane (PEM) fuel cell with interdigitated flow field. A two dimensional, isothermal, two-phase, unsteady multi-component transport model is used in order to simulate the transport phenomena. The obtained results are discussed in terms of the influence of flow pulsation on water management and cell performance. The results prove the effectiveness of flow pulsation on improving water removal from cell, enhancing reactants transports to the reaction sites, and increasing the cell performance expressed by increment in the cell limiting current density and maximum output power. The effects of pulsation frequency (f), amplitude (Amp), and mean inlet pressure (P_i_n) on the performance and the output power of the cell, are also investigated. The performance of the cell has no dependency on the frequency range considered in this study. However, as the pulsation amplitude increases the increment in the cell performance is more obvious. Moreover, applying flow pulsation at low flow rates leads to higher efficiency in water removal and performance enhancement. - Highlights: • Mechanism of water and oxygen transport under flow pulsation are discussed. • Pulsating cathode flow increases the limiting current density and output power. • The performance of cell has no significant dependency on pulsation frequency. • The performance and output power increase with the pulsation amplitude. • Using pulsating flow at lower average pressures leads to higher water removal rate.

  6. Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures

    Science.gov (United States)

    Freytag, B.; Liljegren, S.; Höfner, S.

    2017-04-01

    Context. Observations of asymptotic giant branch (AGB) stars with increasing spatial resolution reveal new layers of complexity of atmospheric processes on a variety of scales. Aims: To analyze the physical mechanisms that cause asymmetries and surface structures in observed images, we use detailed 3D dynamical simulations of AGB stars; these simulations self-consistently describe convection and pulsations. Methods: We used the CO5BOLD radiation-hydrodynamics code to produce an exploratory grid of global "star-in-a-box" models of the outer convective envelope and the inner atmosphere of AGB stars to study convection, pulsations, and shock waves and their dependence on stellar and numerical parameters. Results: The model dynamics are governed by the interaction of long-lasting giant convection cells, short-lived surface granules, and strong, radial, fundamental-mode pulsations. Radial pulsations and shorter wavelength, traveling, acoustic waves induce shocks on various scales in the atmosphere. Convection, waves, and shocks all contribute to the dynamical pressure and, thus, to an increase of the stellar radius and to a levitation of material into layers where dust can form. Consequently, the resulting relation of pulsation period and stellar radius is shifted toward larger radii compared to that of non-linear 1D models. The dependence of pulsation period on luminosity agrees well with observed relations. The interaction of the pulsation mode with the non-stationary convective flow causes occasional amplitude changes and phase shifts. The regularity of the pulsations decreases with decreasing gravity as the relative size of convection cells increases. The model stars do not have a well-defined surface. Instead, the light is emitted from a very extended inhomogeneous atmosphere with a complex dynamic pattern of high-contrast features. Conclusions: Our models self-consistently describe convection, convectively generated acoustic noise, fundamental-mode radial

  7. Nonlinear pulsations of luminous He stars

    International Nuclear Information System (INIS)

    Proffitt, C.R.; Cox, A.N.

    1986-01-01

    Radial pulsations in models of R Cor Bor stars and BD + 1 0 4381 have been studied with a nonlinear hydrodynamic pulsation code. Comparisons are made with previous calculations and with observed light and velocity curves. 13 refs., 2 tabs

  8. TIME DELAYS IN QUASI-PERIODIC PULSATIONS OBSERVED DURING THE X2.2 SOLAR FLARE ON 2011 FEBRUARY 15

    Energy Technology Data Exchange (ETDEWEB)

    Dolla, L.; Marque, C.; Seaton, D. B.; Dominique, M.; Berghmans, D.; Cabanas, C.; De Groof, A.; Verdini, A.; West, M. J.; Zhukov, A. N. [Solar-Terrestrial Center of Excellence, Royal Observatory of Belgium, Avenue Circulaire 3, B-1180 Brussels (Belgium); Van Doorsselaere, T. [Centrum voor Plasma-Astrofysica, Department of Mathematics, KULeuven, Celestijnenlaan 200B bus 2400, B-3001 Leuven (Belgium); Schmutz, W. [Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos Dorf (Switzerland); Zender, J., E-mail: dolla@sidc.be [European Space Agency, ESTEC, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands)

    2012-04-10

    We report observations of quasi-periodic pulsations (QPPs) during the X2.2 flare of 2011 February 15, observed simultaneously in several wavebands. We focus on fluctuations on timescale 1-30 s and find different time lags between different wavebands. During the impulsive phase, the Reuven Ramaty High Energy Solar Spectroscopic Imager channels in the range 25-100 keV lead all the other channels. They are followed by the Nobeyama RadioPolarimeters at 9 and 17 GHz and the extreme-ultraviolet (EUV) channels of the Euv SpectroPhotometer (ESP) on board the Solar Dynamic Observatory. The zirconium and aluminum filter channels of the Large Yield Radiometer on board the Project for On-Board Autonomy satellite and the soft X-ray (SXR) channel of ESP follow. The largest lags occur in observations from the Geostationary Operational Environmental Satellite, where the channel at 1-8 A leads the 0.5-4 A channel by several seconds. The time lags between the first and last channels is up to Almost-Equal-To 9 s. We identified at least two distinct time intervals during the flare impulsive phase, during which the QPPs were associated with two different sources in the Nobeyama RadioHeliograph at 17 GHz. The radio as well as the hard X-ray channels showed different lags during these two intervals. To our knowledge, this is the first time that time lags are reported between EUV and SXR fluctuations on these timescales. We discuss possible emission mechanisms and interpretations, including flare electron trapping.

  9. TIDALLY INDUCED PULSATIONS IN KEPLER ECLIPSING BINARY KIC 3230227

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhao; Gies, Douglas R. [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States); Fuller, Jim, E-mail: guo@astro.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: jfuller@caltech.edu [TAPIR, Walter Burke Institute for Theoretical Physics, Mailcode 350-17, Caltech, Pasadena, CA 91125 (United States)

    2017-01-01

    KIC 3230227 is a short period (P  ≈ 7.0 days) eclipsing binary with a very eccentric orbit ( e  = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M {sub 1} = 1.84 ± 0.18  M {sub ⊙}, M {sub 2} = 1.73 ± 0.17  M {sub ⊙} and radii of R {sub 1} = 2.01 ± 0.09  R {sub ⊙}, R {sub 2} = 1.68 ± 0.08 R {sub ⊙} for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l  = 2, m  = −2 prograde modes.

  10. TIDALLY INDUCED PULSATIONS IN KEPLER ECLIPSING BINARY KIC 3230227

    International Nuclear Information System (INIS)

    Guo, Zhao; Gies, Douglas R.; Fuller, Jim

    2017-01-01

    KIC 3230227 is a short period (P  ≈ 7.0 days) eclipsing binary with a very eccentric orbit ( e  = 0.6). From combined analysis of radial velocities and Kepler light curves, this system is found to be composed of two A-type stars, with masses of M 1  = 1.84 ± 0.18  M ⊙ , M 2  = 1.73 ± 0.17  M ⊙ and radii of R 1  = 2.01 ± 0.09  R ⊙ , R 2  = 1.68 ± 0.08 R ⊙ for the primary and secondary, respectively. In addition to an eclipse, the binary light curve shows a brightening and dimming near periastron, making this a somewhat rare eclipsing heartbeat star system. After removing the binary light curve model, more than 10 pulsational frequencies are present in the Fourier spectrum of the residuals, and most of them are integer multiples of the orbital frequency. These pulsations are tidally driven, and both the amplitudes and phases are in agreement with predictions from linear tidal theory for l  = 2, m  = −2 prograde modes.

  11. Optical pulsation from the HZ Her/Her X-1 system

    International Nuclear Information System (INIS)

    Chester, T.J.

    1977-01-01

    A theoretical model for the observed optical pulsation from the x-ray binary HZ Her/Her X-1 is presented. Its foundation is a general computer code for an x-ray illuminated stellar atmosphere. Detailed results are given for several atmospheres applicable to HZ Her. A formalism is developed to calculate the amount of pulsed optical radiation emergent from these atmospheres if they are exposed to pulsed x rays. This formalism is used to calculate the pulsed and unpulsed optical light curves for HZ Her. The calculated optical pulsation agrees with the observed amplitude. A nonuniform x-ray beam can cause the amplitude and velocity of the optical pulsation to vary by more than a factor of two for fixed system parameters. The presence of soft x rays (0.1 to 1 keV) can significantly affect the calculated pulsation amplitude. The model places explicit limits on the system parameters; in particular, if corotation is assumed, 0.8 M/sub sun/ less than or equal to M/sub Her X-1/ less than or equal to 1.7 M/sub sun/

  12. Energetic particle counterparts for geomagnetic pulsations of Pc1 and IPDP types

    Directory of Open Access Journals (Sweden)

    T. A. Yahnina

    Full Text Available Using the low-altitude NOAA satellite particle data, we study two kinds of localised variations of energetic proton fluxes at low altitude within the anisotropic zone equatorward of the isotropy boundary. These flux variation types have a common feature, i.e. the presence of precipitating protons measured by the MEPED instrument at energies more than 30 keV, but they are distinguished by the fact of the presence or absence of the lower-energy component as measured by the TED detector on board the NOAA satellite. The localised proton precipitating without a low-energy component occurs mostly in the morning-day sector, during quiet geomagnetic conditions, without substorm injections at geosynchronous orbit, and without any signatures of plasmaspheric plasma expansion to the geosynchronous distance. This precipitation pattern closely correlates with ground-based observations of continuous narrow-band Pc1 pulsations in the frequency range 0.1–2 Hz (hereafter Pc1. The precipitation pattern containing the low energy component occurs mostly in the evening sector, under disturbed geomagnetic conditions, and in association with energetic proton injections and significant increases of cold plasma density at geosynchronous orbit. This precipitation pattern is associated with geomagnetic pulsations called Intervals of Pulsations with Diminishing Periods (IPDP, but some minor part of the events is also related to narrow-band Pc1. Both Pc1 and IPDP pulsations are believed to be the electromagnetic ion-cyclotron waves generated by the ion-cyclotron instability in the equatorial plane. These waves scatter energetic protons in pitch angles, so we conclude that the precipitation patterns studied here are the particle counterparts of the ion-cyclotron waves.

    Key words. Ionosphere (particle precipitation – Magnetospheric physics (energetic particles, precipitating – Space plasma physics (wave-particle interactions

  13. Energetic particle counterparts for geomagnetic pulsations of Pc1 and IPDP types

    Directory of Open Access Journals (Sweden)

    T. A. Yahnina

    2003-12-01

    Full Text Available Using the low-altitude NOAA satellite particle data, we study two kinds of localised variations of energetic proton fluxes at low altitude within the anisotropic zone equatorward of the isotropy boundary. These flux variation types have a common feature, i.e. the presence of precipitating protons measured by the MEPED instrument at energies more than 30 keV, but they are distinguished by the fact of the presence or absence of the lower-energy component as measured by the TED detector on board the NOAA satellite. The localised proton precipitating without a low-energy component occurs mostly in the morning-day sector, during quiet geomagnetic conditions, without substorm injections at geosynchronous orbit, and without any signatures of plasmaspheric plasma expansion to the geosynchronous distance. This precipitation pattern closely correlates with ground-based observations of continuous narrow-band Pc1 pulsations in the frequency range 0.1–2 Hz (hereafter Pc1. The precipitation pattern containing the low energy component occurs mostly in the evening sector, under disturbed geomagnetic conditions, and in association with energetic proton injections and significant increases of cold plasma density at geosynchronous orbit. This precipitation pattern is associated with geomagnetic pulsations called Intervals of Pulsations with Diminishing Periods (IPDP, but some minor part of the events is also related to narrow-band Pc1. Both Pc1 and IPDP pulsations are believed to be the electromagnetic ion-cyclotron waves generated by the ion-cyclotron instability in the equatorial plane. These waves scatter energetic protons in pitch angles, so we conclude that the precipitation patterns studied here are the particle counterparts of the ion-cyclotron waves.Key words. Ionosphere (particle precipitation – Magnetospheric physics (energetic particles, precipitating – Space plasma physics (wave-particle interactions

  14. TV morphology of some episodes of pulsating auroras

    International Nuclear Information System (INIS)

    Vallance Jones, A.; Gattinger, R.L.

    1981-01-01

    Sets of all-sky TV images of pulsating auroras obtained during the displays through which the sounding rockets of the Pulsating Aurora Campaign were fired are presented and discussed. It is emphasized that these displays are considerably more complex and variable than might seem to be the case on the basis of zenith photometer records. The pulsation modulation pattern was observed to be travelling westward during the first flight; later in the same display this apparent motion ceased. For the second flight the pulsation modulation pattern was almost stationary. (auth)

  15. Treatment for meibomian gland dysfunction and dry eye symptoms with a single-dose vectored thermal pulsation: a review.

    Science.gov (United States)

    Blackie, Caroline A; Carlson, Alan N; Korb, Donald R

    2015-07-01

    Meibomian gland dysfunction (MGD) is understood to be a highly prevalent, chronic progressive disease and the leading cause of dry eye. All available published peer-reviewed results of the novel vectored thermal pulsation therapy for patients with MGD are investigated. The PubMed and meeting abstract search revealed a total of 31 peer-reviewed reports on vectored thermal pulsation therapy at the time of the search (eight manuscripts and 23 meeting abstracts). All manuscripts evidence a significant increase in meibomian gland function (∼3×) and symptom improvement post a single 12-min treatment. Additional reported objective measures such as osmolarity, tear break-up time, or lipid layer thickness also increased as a result of the therapy; however, not all findings were statistically significant. The randomized controlled studies evidence sustained gland function and symptom relief lasting out to 12 months. The uncontrolled case series evidence significantly longer duration of effect. A single 12 minute vectored thermal pulsation treatment allows for reducing dry eye symptoms, improving meibomian gland function and other correlates of the ocular surface health.

  16. QUASI-PERIODIC ACCELERATION OF ELECTRONS IN THE FLARE ON 2012 JULY 19

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jing [Key Laboratory of Solar Activities, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 (China); Kontar, Eduard P. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Nakariakov, Valery M. [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Gao, Guannan, E-mail: huangj@bao.ac.cn [Yunnan Observatory, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China)

    2016-11-10

    Quasi-periodic pulsations (QPPs) of nonthermal emission in an M7.7 class flare on 2012 July 19 are investigated with spatially resolved observations at microwave and HXR bands and with spectral observations at decimetric, metric waves. Microwave emission at 17 GHz of two footpoints, HXR emission at 20–50 keV of the north footpoint and loop top, and type III bursts at 0.7–3 GHz show prominent in-phase oscillations at 270 s. The microwave emission of the loop leg has less pulsation but stronger emission. Through the estimation of plasma density around the loop top from EUV observations, we find that the local plasma frequency would be 1.5 GHz or even higher. Thus, type III bursts at 700 MHz originate above the loop top. Quasi-periodic acceleration or injection of energetic electrons is proposed to dominate these in-phase QPPs of nonthermal emission from footpoints, loop top, and above. In the overlying region, drifting pulsations (DPS) at 200–600 MHz oscillate at a distinct period (200 s). Its global structure drifts toward lower frequency, which is closely related to upward plasmoids observed simultaneously from EUV emission. Hence, nonthermal emission from overlying plasmoids and underlying flaring loops show different oscillating periods. Two individual systems of quasi-periodic acceleration of electrons are proposed to coincide in the bi-direction outflows from the reconnection region.

  17. Suppressed phase variations in a high amplitude rapidly oscillating Ap star pulsating in a distorted quadrupole mode

    Science.gov (United States)

    Holdsworth, Daniel L.; Saio, H.; Bowman, D. M.; Kurtz, D. W.; Sefako, R. R.; Joyce, M.; Lambert, T.; Smalley, B.

    2018-05-01

    We present the results of a multisite photometric observing campaign on the rapidly oscillating Ap (roAp) star 2MASS 16400299-0737293 (J1640; V = 12.7). We analyse photometric B data to show the star pulsates at a frequency of 151.93 d-1 (1758.45 μHz; P = 9.5 min) with a peak-to-peak amplitude of 20.68 mmag, making it one of the highest amplitude roAp stars. No further pulsation modes are detected. The stellar rotation period is measured at 3.674 7 ± 0.000 5 d, and we show that rotational modulation due to spots is in antiphase between broad-band and B observations. Analysis and modelling of the pulsation reveals this star to be pulsating in a distorted quadrupole mode, but with a strong spherically symmetric component. The pulsational phase variation in this star is suppressed, leading to the conclusion that the contribution of ℓ > 2 components dictate the shape of phase variations in roAp stars that pulsate in quadrupole modes. This is only the fourth time such a strong pulsation phase suppression has been observed, leading us to question the mechanisms at work in these stars. We classify J1640 as an A7 Vp SrEu(Cr) star through analysis of classification resolution spectra.

  18. Discovery of a Detached, Eclipsing 40 Minute Period Double White Dwarf Binary and a Friend: Implications for He+CO White Dwarf Mergers

    International Nuclear Information System (INIS)

    Brown, Warren R.; Kilic, Mukremin; Kosakowski, Alekzander; Gianninas, A.

    2017-01-01

    We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M ⊙ and a 0.52 M ⊙ WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ∼34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin–orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen.

  19. Discovery of a Detached, Eclipsing 40 Minute Period Double White Dwarf Binary and a Friend: Implications for He+CO White Dwarf Mergers

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Kilic, Mukremin; Kosakowski, Alekzander; Gianninas, A., E-mail: wbrown@cfa.harvard.edu, E-mail: kilic@ou.edu, E-mail: alexg@nhn.ou.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks Street, Norman, OK 73019 (United States)

    2017-09-20

    We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M {sub ⊙} and a 0.52 M {sub ⊙} WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ∼34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin–orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen.

  20. Hybrid γ Doradus–δ Scuti Pulsators: New Insights into the Physics of the Oscillations from Kepler Observations

    DEFF Research Database (Denmark)

    Grigahcène, A.; Antoci, V.; Balona, L.

    2010-01-01

    Observations of the pulsations of stars can be used to infer their interior structure and test theoretical models. The main-sequence γ Doradus (Dor) and δ Scuti (Sct) stars with masses 1.2–2.5 M are particularly useful for these studies. The γ Dor stars pulsate in high-order g-modes with periods...

  1. A systematic search for new X-ray pulsators in ROSAT fields

    Science.gov (United States)

    Israel, G. L.

    1996-10-01

    number greatly exceeds the number of serendipitous X-ray sources previously known and catalogued in the Einstein and EXOSAT (about 6000) databases. In this thesis work, based on the results and products contained in the WGA catalogue, we have selected a sample of X-ray sources the light curves of which contained enough photons to carry out a meaningful timing analysis. These light curves were then searched for periodic modulations in a systematic way and a catalogue of candidate X-ray pulsators was created for further detailed study, including optical and X-ray observations. The definition of the sample was based on the minimum number of source photons, 200, that is required to reach a given sensitivity in a search for periodic pulsations with a specified number of trial frequencies. The WGA catalogue contains about 23000 light curves with more than 200 photons. In such a sample, a number of X-ray sources is expected to possess periodic modulation resulting in a power spectrum peak(s). A recently developed technique (Israel & Stella 1996) aimed at the detection of coherent or quasi-coherent signals in presence of additional non-Poissonian noise components in the power spectrum was used and applied to the selected sample of 23000 WGA light curves. The technique was modified and upgraded during this thesis work to take into account the timing problems specific to the ROSAT PSPC data. The ROSAT orbital period (96min) and the oscillations in the pointing direction (402s, ``wobble'') during the observations carried out with the PSPC detector were extensively investigated and, when possible, their effects on the search for periodicity minimised. The timing analysis of the 23000 light curves was performed by means of these techniques in a systematic and automated fashion. Starting from the PSPC light curves a catalogue of pulsator candidates together with the peak and power spectrum parameters was produced. Two different search approaches were adopted: one to cover the largest

  2. Penetration of geomagnetic pulsations from one polar cao cap to the other one

    International Nuclear Information System (INIS)

    Mal'tsev, Yu.P.; Lyatskij, V.B.

    1982-01-01

    A theoretical study is made of penetration of geomagnetic pulsations, excited in one polar cap in the region of open field lines, into the other one. The geomagnetic pulsations excited in a polar cap in the region of open field lines are also observed in the opposite polar cap. This is connected with the flow of ionospheric perturbation currents from one hemisphere to another over the boundary of the region with closed magnetic lines. In case of long-period oscillations under symmetrical conditions, both in the north and south polar caps, the ionospheric effect of the opposite hemisphere results in the fact that the electrical currents flowing from a source to the polar cap boundary grow 1.5 times as high. In case of short-period oscillations a portion of longitudinal current flowing between the hemispheres is branched away for polarization currents. As a result, the electrical field and currents in the ionosphere of the opposite hemisphere can substantially decrease as compared to the long-period oscillations

  3. On the role of resonances in double-mode pulsation

    International Nuclear Information System (INIS)

    Dziembowski, W.; Kovacs, G.

    1984-01-01

    Simultaneous effects of resonant coupling and non-linear saturation of linear driving mechanism on the finite amplitude solution of multi-modal pulsation problem and on its stability are investigated. Both effects are calculated in the lowest order of approximation in terms of amplitudes. It is shown that the 2:1 resonance between one of the two linearly unstable modes and a higher frequency mode causes double-mode (fundamental and first overtone) pulsation. In a certain range of parameters, such as the frequency mismatch, the linear growth and damping rates, it is the only stable solution of the problem. (author)

  4. Development of pulsating twin jets mechanism for mixing flow heat transfer analysis.

    Science.gov (United States)

    Gitan, Ali Ahmed; Zulkifli, Rozli; Abdullah, Shahrir; Sopian, Kamaruzzaman

    2014-01-01

    Pulsating twin jets mechanism (PTJM) was developed in the present work to study the effect of pulsating twin jets mixing region on the enhancement of heat transfer. Controllable characteristics twin pulsed jets were the main objective of our design. The variable nozzle-nozzle distance was considered to study the effect of two jets interaction at the mixing region. Also, the phase change between the frequencies of twin jets was taken into account to develop PTJM. All of these factors in addition to the ability of producing high velocity pulsed jet led to more appropriate design for a comprehensive study of multijet impingement heat transfer problems. The performance of PTJM was verified by measuring the pulse profile at frequency of 20 Hz, where equal velocity peak of around 64 m/s for both jets was obtained. Moreover, the jet velocity profile at different pulsation frequencies was tested to verify system performance, so the results revealed reasonable velocity profile configuration. Furthermore, the effect of pulsation frequency on surface temperature of flat hot plate in the midpoint between twin jets was studied experimentally. Noticeable enhancement in heat transfer was obtained with the increasing of pulsation frequency.

  5. PULSATIONS IN HYDROGEN BURNING LOW-MASS HELIUM WHITE DWARFS

    International Nuclear Information System (INIS)

    Steinfadt, Justin D. R.; Bildsten, Lars; Arras, Phil

    2010-01-01

    Helium core white dwarfs (WDs) with mass M ∼ sun undergo several Gyr of stable hydrogen burning as they evolve. We show that in a certain range of WD and hydrogen envelope masses, these WDs may exhibit g-mode pulsations similar to their passively cooling, more massive carbon/oxygen core counterparts, the ZZ Cetis. Our models with stably burning hydrogen envelopes on helium cores yield g-mode periods and period spacings longer than the canonical ZZ Cetis by nearly a factor of 2. We show that core composition and structure can be probed using seismology since the g-mode eigenfunctions predominantly reside in the helium core. Though we have not carried out a fully nonadiabatic stability analysis, the scaling of the thermal time in the convective zone with surface gravity highlights several low-mass helium WDs that should be observed in search of pulsations: NLTT 11748, SDSS J0822+2753, and the companion to PSR J1012+5307. Seismological studies of these He core WDs may prove especially fruitful, as their luminosity is related (via stable hydrogen burning) to the hydrogen envelope mass, which eliminates one model parameter.

  6. Pulsations in white dwarf stars

    OpenAIRE

    Van Grootel, Valérie; Fontaine, Gilles; Brassard, Pierre; Dupret, Marc-Antoine

    2017-01-01

    I will present a description of the six distinct families of pulsating white dwarfs that are currently known. Pulsations are present at various stages of the evolution (from hot, pre-white dwarfs to cool white dwarfs), at various stellar masses, and for various atmospheric compositions. In all of them, a mechanism linked to opacity changes along the evolution drives the oscillations. The existence of these oscillations offers the opportunity to apply asteroseismology for constraining physics ...

  7. Self-pulsation in Raman fiber amplifiers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Ott, Johan Raunkjær; Rottwitt, Karsten

    2009-01-01

    Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated.......Dynamic behavior caused by Brillouin scattering in Raman fiber amplifiers is studied. Modes of self-pulsation steady state oscillations are found. Their dependence on amplification scheme is demonstrated....

  8. K2 Campaign 5 observations of pulsating subdwarf B stars: binaries and super-Nyquist frequencies

    Science.gov (United States)

    Reed, M. D.; Armbrecht, E. L.; Telting, J. H.; Baran, A. S.; Østensen, R. H.; Blay, Pere; Kvammen, A.; Kuutma, Teet; Pursimo, T.; Ketzer, L.; Jeffery, C. S.

    2018-03-01

    We report the discovery of three pulsating subdwarf B stars in binary systems observed with the Kepler space telescope during Campaign 5 of K2. EPIC 211696659 (SDSS J083603.98+155216.4) is a g-mode pulsator with a white dwarf companion and a binary period of 3.16 d. EPICs 211823779 (SDSS J082003.35+173914.2) and 211938328 (LB 378) are both p-mode pulsators with main-sequence F companions. The orbit of EPIC 211938328 is long (635 ± 146 d) while we cannot constrain that of EPIC 211823779. The p modes are near the Nyquist frequency and so we investigate ways to discriminate super- from sub-Nyquist frequencies. We search for rotationally induced frequency multiplets and all three stars appear to be slow rotators with EPIC 211696659 subsynchronous to its orbit.

  9. Deep asteroseismic sounding of the compact hot B subdwarf pulsator KIC02697388 from Kepler time series photometry

    DEFF Research Database (Denmark)

    Charpinet, S.; Van Grootel, Valerie; Fontaine, G.

    2011-01-01

    of the sdBVs star KIC02697388 monitored with Kepler, using the rich pulsation spectrum uncovered during the ~27-day-long exploratory run Q2.3. Methods: We analyse new high-S/N spectroscopy of KIC02697388 using appropriate NLTE model atmospheres to provide accurate atmospheric parameters for this star. We...... also reanalyse the Kepler light curve using standard prewhitening techniques. On this basis, we apply a forward modelling technique using our latest generation of sdB models. The simultaneous match of the independent periods observed in KIC02697388 with those of models leads objectively...... that this mode can be accounted for particularly well by our optimal seismic models, both in terms of frequency match and nonadiabatic properties. The seismic analysis leads us to identify two model solutions that can both account for the observed pulsation properties of KIC02697388. Despite this remaining...

  10. Double throat pressure pulsation dampener for oil-free screw compressors

    Science.gov (United States)

    Lucas, Michael J.

    2005-09-01

    This paper describes a recent invention at Ingersoll-Rand for reducing the pressure pulsations in an oil-free screw compressor. Pressure pulsation is a term used in the air compressor industry to describe the rapid change in pressure with time measured in the downstream piping of the air compressor. The pulsations are due to the rapid opening and closing of the screws as the compressed air is eject from the compressor into the piping system. The pulsations are known to produce excessive noise levels and high levels of vibration in the piping system. Reducing these pulsations is critical to achieving a quiet running compressor. This paper will describe the methodology used to analyze the data and show both computational and experimental results achieved using the pulsation dampener. A patent for this design has been filed with the US patent office.

  11. Source of temperature and pressure pulsations during sessile droplet evaporation into multicomponent atmospheres.

    Science.gov (United States)

    Persad, Aaron H; Sefiane, Khellil; Ward, Charles A

    2013-10-29

    During sessile droplet evaporation, studies with IR thermography and shadowgraphs have indicated temperature pulsations. We confirm those observations with microthermocouples, but microthermocouples also indicate temperature pulsations in the atmosphere of the droplet. The pressure in this atmosphere pulsated as well and was correlated with the temperature pulsations in the droplet. Also, we find that if a droplet evaporates into its own vapor, there are no temperature or pressure pulsations. The pulsations occur only if the droplet evaporates into an atmosphere with a component having a heat of solution with the droplet when it adsorbs-absorbs. None of the currently proposed mechanisms for the temperature pulsations provide an explanation for the coupling between the temperature pulsations in the droplet and the vapor-phase pressure pulsations, and for the absence of the pulsations when the system is single-component. As a mechanism for the pulsations, we propose that when a droplet is exposed to an atmosphere containing a component that has a heat of solution with the droplet, energy will be released from adsorption-absorption. This energy will cause pulsations in the evaporation flux, and these pulsations could cause the observed temperature and pressure pulsations. We examine this mechanism by showing that, if the measured temperature pulsations in a water droplet exposed to a methanol atmosphere are used as the input to a theory of evaporation kinetics (statistical rate theory), the pressure pulsations of the water vapor in the methanol atmosphere are predicted and agree with those measured with a quadrupole mass analyzer. When the inputs and outputs are reversed in the theory, we find that the temperature pulsations in the droplet are correctly predicted from the measured water vapor pulsations in the atmosphere.

  12. Appraisal of electromagnetic induction effects on magnetic pulsation studies

    Directory of Open Access Journals (Sweden)

    B. R. Arora

    Full Text Available The quantification of wave polarization characteristics of ULF waves from the geomagnetic field variations is done under ‘a priori’ assumption that fields of internal induced currents are in-phase with the external inducing fields. Such approximation is invalidated in the regions marked by large lateral conductivity variations that perturb the flow pattern of induced currents. The amplitude and phase changes that these perturbations produce, in the resultant fields at the Earth’s surface, make determination of polarization and phase of the oscillating external signals problematic. In this paper, with the help of a classical Pc5 magnetic pulsation event of 24 March 1991, recorded by dense network of magnetometers in the equatorial belt of Brazil, we document the nature and extent of the possible influence of anomalous induction effects in the wave polarization of ULF waves. The presence of anomalous induction effects at selected sites lead to an over estimation of the equatorial enhancement at pulsation period and also suggest changes in the azimuth of ULF waves as they propagate through the equatorial electrojet. Through numerical calculations, it is shown that anomalous horizontal fields, that result from induction in the lateral conductivity distribution in the study region, vary in magnitude and phase with the polarization of external source field. Essentially, the induction response is also a function of the period of external inducing source field. It is further shown that when anomalous induction fields corresponding to the magnitude and polarization of the 24 March 1991 pulsation event are eliminated from observed fields, corrected amplitude in the X and Y horizontal components allows for true characterisation of ULF wave parameters.

    Key words. Geomagnetism and paleomagnetism (geomagnetic induction – Ionosphere (equatorial ionosphere – Magnetospheric physics (magnetosphere-ionosphere interactions

  13. Association between substorm onsets in auroral all-sky images and geomagnetic Pi2pulsations

    Science.gov (United States)

    Miura, T.; Ieda, A.; Teramoto, M.; Kawashima, T.

    2017-12-01

    Substorms are explosive disturbances in the magnetosphere and ionosphere of Earth. Substorm onsets are often identified usingsudden auroral brightenings (auroral breakup) or geomagnetic Pi2 pulsations. These auroral brightenings and Pi2 pulsations aresupposed to occur simultaneously within approximately 1 min of each other. However, as auroral brightenings typically includea two-stage development, this simultaneity is not straightforward. In this study, we clarify the correspondence between Pi2 pulsations and auroral brightenings, including the two-stage development.The first stage of the development is the sudden brightening of an auroral arc near the midnight (initial brightening)and the second stage is the poleward expansion of the auroral arc. We compared all-sky images (3 s resolution) in Canada andgeomagnetic observations (0.5-1 s resolution) in North and Central America, using data from the THEMIS project. In this study,we examined three substorms events that exhibit evidence of the two-stage auroral development. In the first event (4 March 2008), an auroral initial brightening occurred at 0533:57 UT and a poleward expansion was observedat 0538:12 UT (4 min after the initial brightening) in Gillam (magnetic latitude:66.0 °, longitude:333 °, MLT:22.9). In contract,the Pi2 pulsation started at 0539:30 UT, which is closer to the time of the poleward expansion, in Carson City (magnetic latitude:45.0 °, longitude:304 °). and San Juan (magnetic latitude:27.9 °, longitude:6.53 °). Thus, we consider this Pi2 pulsation ascorresponding to the poleward expansion rather than the initial brightening. This correspondence was also seen in the other twoevents, suggesting that it is not exceptional. We interpret that the Pi2 pulsation corresponds to the poleward expansion becauseboth are caused by the magnetic field dipolarization, which is a drastic change that propagates from low- to high-latitude fieldlines.

  14. Hydrodynamics of piston-driven laminar pulsating flow: Part 2. Fully developed flow

    International Nuclear Information System (INIS)

    Aygun, Cemalettin; Aydin, Orhan

    2014-01-01

    Highlights: • The piston-driven laminar pulsating flow in a pipe is studied. • Fully developed flow is examined analytically, numerically and experimentally. • An increase in F results an increase in the amplitude of the centerline velocity. • The characters of the radial velocity profiles critically depend on both the frequency and the phase angle. • The near/off-wall flow reversals are observed for F = 105, 226 and 402. - Abstract: Piston-driven pulsating flow is a specific type of pressure-driven pulsating flows. In this study, piston-driven laminar pulsating flow in a pipe is studied. This study mainly exists of two parts: developing flow and fully developed flow. In this part, hydrodynamically fully developed flow is examined analytically, numerically and experimentally. A constant value of the time-averaged Reynolds number is considered, Re = 1000. In the theoretical studies, both analytical and numerical, an inlet velocity profile representing the experimental case, i.e., the piston driven flow, is assumed. In the experiments, in the hydrodynamically fully developed region, radial velocity distribution and pressure drop are obtained using hot-wire anemometer and pressure transmitter, respectively. The effect pulsation frequency on the friction coefficient as well as velocity profiles are obtained. A good agreement is observed among analytical, numerical and experimental results

  15. Test Characteristics of Neck Fullness and Witnessed Neck Pulsations in the Diagnosis of Typical AV Nodal Reentrant Tachycardia

    Science.gov (United States)

    Sakhuja, Rahul; Smith, Lisa M; Tseng, Zian H; Badhwar, Nitish; Lee, Byron K; Lee, Randall J; Scheinman, Melvin M; Olgin, Jeffrey E; Marcus, Gregory M

    2011-01-01

    Summary Background Claims in the medical literature suggest that neck fullness and witnessed neck pulsations are useful in the diagnosis of typical AV nodal reentrant tachycardia (AVNRT). Hypothesis Neck fullness and witnessed neck pulsations have a high positive predictive value in the diagnosis of typical AVNRT. Methods We performed a cross sectional study of consecutive patients with palpitations presenting to a single electrophysiology (EP) laboratory over a 1 year period. Each patient underwent a standard questionnaire regarding neck fullness and/or witnessed neck pulsations during their palpitations. The reference standard for diagnosis was determined by electrocardiogram and invasive EP studies. Results Comparing typical AVNRT to atrial fibrillation (AF) or atrial flutter (AFL) patients, the proportions with neck fullness and witnessed neck pulsations did not significantly differ: in the best case scenario (using the upper end of the 95% confidence interval [CI]), none of the positive or negative predictive values exceeded 79%. After restricting the population to those with supraventricular tachycardia other than AF or AFL (SVT), neck fullness again exhibited poor test characteristics; however, witnessed neck pulsations exhibited a specificity of 97% (95% CI 90–100%) and a positive predictive value of 83% (95% CI 52–98%). After adjustment for potential confounders, SVT patients with witnessed neck pulsations had a 7 fold greater odds of having typical AVNRT, p=0.029. Conclusions Although neither neck fullness nor witnessed neck pulsations are useful in distinguishing typical AVNRT from AF or AFL, witnessed neck pulsations are specific for the presence of typical AVNRT among those with SVT. PMID:19479968

  16. Flow effects due to pulsation in an internal combustion engine exhaust port

    International Nuclear Information System (INIS)

    Semlitsch, Bernhard; Wang, Yue; Mihăescu, Mihai

    2014-01-01

    Highlights: • Using POD analysis to identify large coherent flow structures in a complex geometry. • Flow field alters significant for constant and pulsating boundary conditions. • The discharge coefficient of the exhaust port decreases 2% with flow pulsation. • Pulsation causes a pumping mechanism due to a phase shift of pressure and momentum. - Abstract: In an internal combustion engine, the residual energy remaining after combustion in the exhaust gasses can be partially recovered by a downstream arranged device. The exhaust port represents the passage guiding the exhaust gasses from the combustion chamber to the energy recovering device, e.g. a turbocharger. Thus, energy losses in the course of transmission shall be reduced as much as possible. However, in one-dimensional engine models used for engine design, the exhaust port is reduced to its discharge coefficient, which is commonly measured under constant inflow conditions neglecting engine-like flow pulsation. In this present study, the influence of different boundary conditions on the energy losses and flow development during the exhaust stroke are analyzed numerically regarding two cases, i.e. using simple constant and pulsating boundary conditions. The compressible flow in an exhaust port geometry of a truck engine is investigated using three-dimensional Large Eddy Simulations (LES). The results contrast the importance of applying engine-like boundary conditions in order to estimate accurately the flow induced losses and the discharge coefficient of the exhaust port. The instantaneous flow field alters significantly when pulsating boundary conditions are applied. Thus, the induced losses by the unsteady flow motion and the secondary flow motion are increased with inflow pulsations. The discharge coefficient decreased about 2% with flow pulsation. A modal flow decomposition method, i.e. Proper Orthogonal Decomposition (POD), is used to analyze the coherent structures induced with the particular

  17. The research on flow pulsation characteristics of axial piston pump

    Science.gov (United States)

    Wang, Bingchao; Wang, Yulin

    2017-01-01

    The flow pulsation is an important factor influencing the axial piston pump performance. In this paper we implement modeling and simulation of the axial piston pump with AMESim software to explore the flow pulsation characteristics under various factors . Theory analysis shows the loading pressure, angular speed, piston numbers and the accumulator impose evident influence on the flow pulsation characteristics. This simulation and analysis can be used for reducing the flow pulsation rate via properly setting the related factors.

  18. Oscillation Mode Variability in Evolved Compact Pulsators from Kepler Photometry. I. The Hot B Subdwarf Star KIC 3527751

    Science.gov (United States)

    Zong, Weikai; Charpinet, Stéphane; Fu, Jian-Ning; Vauclair, Gérard; Niu, Jia-Shu; Su, Jie

    2018-02-01

    We present the first results of an ensemble and systematic survey of oscillation mode variability in pulsating hot B subdwarf (sdB) and white dwarf stars observed with the original Kepler mission. The satellite provides uninterrupted high-quality photometric data with a time baseline that can reach up to 4 yr collected on pulsating stars. This is a unique opportunity to characterize long-term behaviors of oscillation modes. A mode modulation in amplitude and frequency can be independently inferred by its fine structure in the Fourier spectrum, from the sLSP, or with prewhitening methods applied to various parts of the light curve. We apply all these techniques to the sdB star KIC 3527751, a long-period-dominated hybrid pulsator. We find that all the detected modes with sufficiently large amplitudes to be thoroughly studied show amplitude and/or frequency variations. Components of three identified quintuplets around 92, 114, and 253 μHz show signatures that can be linked to nonlinear interactions according to the resonant mode coupling theory. This interpretation is further supported by the fact that many oscillation modes are found to have amplitudes and frequencies showing correlated or anticorrelated variations, a behavior that can be linked to the amplitude equation formalism, where nonlinear frequency corrections are determined by their amplitude variations. Our results suggest that oscillation modes varying with diverse patterns are a very common phenomenon in pulsating sdB stars. Close structures around main frequencies therefore need to be carefully interpreted in light of this finding to secure a robust identification of real eigenfrequencies, which is crucial for seismic modeling. The various modulation patterns uncovered should encourage further developments in the field of nonlinear stellar oscillation theory. It also raises a warning to any long-term project aiming at measuring the rate of period change of pulsations caused by stellar evolution, or at

  19. Analysis of main influence factors on coronary artery image quality with 64-multidetector row helical CT using a pulsating cardiac phantom

    International Nuclear Information System (INIS)

    Liu Bin; Zhao Hong; Wu Xingwang; Zhang Jiawen; Yu Yongqiang; Liao Jingmin

    2006-01-01

    Objective: To explore the main influence factors (heart rate, rotation speed, and reconstruction algorithm) on the image quality of coronary artery with 40 mm VCT (64-detector row helical CT) using a pulsating cardiac phantom. Methods: An adjustable pulsating cardiac phantom (GE) containing predetermined simulated coronary arteries was scanned using a 40 mm VCT (GE LightSpeed CT) with cardiac pulsating rates of 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, and 115 beats per minute (bpm). The variable rotation speeds technique of 0.35 s, 0.40 s, and 0.45 s were used, respectively. The raw data were reconstructed using both one-sector and multi-sector reconstruction algorithm at optimal window of the R-R interval. The image quality score (IQS) was evaluated by two radiologists according to the same evaluation standard of reformated image. The correlation between heart rate (HR), roation speed, reconstruction algorithm, and IQS were analyzed. The IQS as independent variable and the HR, rotation speed, reconstruction algorithm as dependent variables were analyzed by multiple linear regression analysis. Results: The heart rate and the reconstruction algorithm had significant influence on IQS. The rotation speed (0.35s, 0.40 s, and 0.45 s) didn't have significant influence on IQS. There was linear regression relationship between heart rate, reconstruction algorithm and IQS (P<0.01). The equation of multiple regression was IQS=5.154-0.046 x (HR) + 0.500 x (reconstruction algorithm). The multi-sector reconstruction algorithm improved the image quality than one-sector did. Conclusion: The main influence factors on the image quality of coronary artery can be evaluated with 40 mm VCT using a pulsating cardiac phantom. It plays an important role in clinical research and application. (authors)

  20. Gas compressor with side branch absorber for pulsation control

    Science.gov (United States)

    Harris, Ralph E [San Antonio, TX; Scrivner, Christine M [San Antonio, TX; Broerman, III, Eugene L.

    2011-05-24

    A method and system for reducing pulsation in lateral piping associated with a gas compressor system. A tunable side branch absorber (TSBA) is installed on the lateral piping. A pulsation sensor is placed in the lateral piping, to measure pulsation within the piping. The sensor output signals are delivered to a controller, which controls actuators that change the acoustic dimensions of the SBA.

  1. The ionospheric signature of Pi 2 pulsations observed by STARE

    International Nuclear Information System (INIS)

    Sutcliffe, P.R.; Nielsen, E.

    1992-01-01

    This study extends the work of Sutcliffe and Nielsen (1990) in which a classical Pi 2 pulsation was first isolated in Scandinavian Twin Auroral Radar Experiment (STARE) data. A high-pass-filtering technique is used to remove the background electric field in the STARE data and so reveal the spatial and temporal ionospheric signatures of the Pi 2 pulsation electric fields. A number of events are identified and examples presented in which pulsation electric fields up to 50 mV/m are observed. Magnetic field oscillations computed from the filtered STARE data using the Biot-Savart law correlate well with pulsation magnetometer data. A 180 degree phase difference is observed between high- and low-altitude X component pulsations. The ionospheric signature of a Pi 2 is located slightly poleward of the core of the auroral breakup region where the southward, westward, and northward directed background electric fields coverage; the strongest pulsation fields occur in the region of equatorward directed electric fields. The ionospheric electric field patterns of the Pi 2 pulsations determined from the STARE data correlate well with those modeled for a transverse Alfven wave incident on an east-west aligned high-conductivity strip in the ionosphere

  2. Van Allen Probe observations of drift-bounce resonances with Pc 4 pulsations and wave–particle interactions in the pre-midnight inner magnetosphere

    Directory of Open Access Journals (Sweden)

    G. I. Korotova

    2015-08-01

    Full Text Available We present Van Allen Probe B observations of azimuthally limited, antisymmetric, poloidal Pc 4 electric and magnetic field pulsations in the pre-midnight sector of the magnetosphere from 05:40 to 06:00 UT on 1 May 2013. Oscillation periods were similar for the magnetic and electric fields and proton fluxes. The flux of energetic protons exhibited an energy-dependent response to the pulsations. Energetic proton variations were anticorrelated at medium and low energies. Although we attribute the pulsations to a drift-bounce resonance, we demonstrate that the energy-dependent response of the ion fluxes results from pulsation-associated velocities sweeping energy-dependent radial ion flux gradients back and forth past the spacecraft.

  3. Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. V. Asteroseismology of ELMV white dwarf stars

    Science.gov (United States)

    Calcaferro, Leila M.; Córsico, Alejandro H.; Althaus, Leandro G.

    2017-11-01

    Context. Many pulsating low-mass white dwarf stars have been detected in the past years in the field of our Galaxy. Some of them exhibit multiperiodic brightness variation, therefore it is possible to probe their interiors through asteroseismology. Aims: We present a detailed asteroseismological study of all the known low-mass variable white dwarf stars based on a complete set of fully evolutionary models that are representative of low-mass He-core white dwarf stars. Methods: We employed adiabatic radial and nonradial pulsation periods for low-mass white dwarf models with stellar masses ranging from 0.1554 to 0.4352 M⊙ that were derived by simulating the nonconservative evolution of a binary system consisting of an initially 1 M⊙ zero-age main-sequence (ZAMS) star and a 1.4 M⊙ neutron star companion. We estimated the mean period spacing for the stars under study (where this was possible), and then we constrained the stellar mass by comparing the observed period spacing with the average of the computed period spacings for our grid of models. We also employed the individual observed periods of every known pulsating low-mass white dwarf star to search for a representative seismological model. Results: We found that even though the stars under analysis exhibit few periods and the period fits show multiplicity of solutions, it is possible to find seismological models whose mass and effective temperature are in agreement with the values given by spectroscopy for most of the cases. Unfortunately, we were not able to constrain the stellar masses by employing the observed period spacing because, in general, only few periods are exhibited by these stars. In the two cases where we were able to extract the period spacing from the set of observed periods, this method led to stellar mass values that were substantially higher than expected for this type of stars. Conclusions: The results presented in this work show the need for further photometric searches, on the one hand

  4. Optical observations of Magnetosphere-Ionosphere coupling: Inter-hemispheric electron reflections within pulsating aurora

    Science.gov (United States)

    Samara, M.; Michell, R.; Khazanov, G. V.; Grubbs, G. A., II

    2017-12-01

    Magnetosphere-Ionosphere coupling is exhibited in reflected primary and secondary electrons which constitute the second step in the formation of the total precipitating electron distribution. While they have largely been missing from the current theoretical studies of particle precipitation, ground based observations point to the existence of a reflected electron population. We present evidence that pulsating aurora is caused by electrons bouncing back and forth between the two hemispheres. This means that these electrons are responsible for some of the total light in the aurora, a possibility that has largely been ignored in theoretical models. Pulsating auroral events imaged optically at high time resolution present direct observational evidence in agreement with the inter-hemispheric electron bouncing predicted by the SuperThermal Electron Trans-port (STET) model. Immediately following each of the `pulsation-on' times are equally spaced, and subsequently fainter pulsations, which can be explained by the primary precipitating electrons reflecting upwards from the ionosphere, traveling to the opposite hemisphere, and reflecting upwards again. The high time-resolution of these data, combined with the short duration of the `pulsation-on' time ( 1 s) and the relatively long spacing between pulsations ( 6 to 9 s) made it possible to observe the faint optical pulses caused by the reflected electrons coming from the opposite hemisphere. These results are significant and have broad implications because they highlight that the formation of the auroral electron distributions within regions of diffuse and pulsating aurora contain contributions from reflected primary and secondary electrons. These processes can ultimately lead to larger fluxes than expected when considering only the primary injection of magnetospheric electrons.

  5. Photometric Survey to Search for Field sdO Pulsators

    Science.gov (United States)

    Johnson, C.; Green, E.; Wallace, S.; O'Malley, C.; Amaya, H.; Biddle, L.; Fontaine, G.

    2014-04-01

    We present the results of a campaign to search for subdwarf O (sdO) star pulsators among bright field stars. The motivation for this project is the recent discovery by Randall et al. (2011) of four rapidly pulsating sdO stars in the globular cluster ω Cen, with Teff near 50,000 K, 5.4 -0.1 and similar temperatures and gravities. To date, we have found no detectable pulsations at amplitudes above 0.08% (4 times the mean noise level) in any of the 36 field sdO stars that we observed. The presence of pulsations in ω Cen sdO stars and their apparent absence in seemingly comparable field sdO stars is perplexing. While very suggestive, the significance of this result is difficult to assess more completely right now due to remaining uncertainties about the temperature width and purity of the ω Cen instability strip and the existence of any sdO pulsators with weaker amplitudes than the current detection limit in globular clusters.

  6. The history and development of nonlinear stellar pulsation codes

    International Nuclear Information System (INIS)

    Davis, C.G.

    1987-01-01

    This review is limited to the history and development of nonlinear stellar pulsation codes and methods. The narrative includes examples of practical interest in the application of these numerical methods to problems in stellar pulsation such as Cepheid mass discrepancy, the delineation of the RR Lyrae instability strip, and the question of the development of double-mode pulsation as observed in Cepheids, RR Lyrae and other variable stars. 15 refs

  7. Non-Invasive Measurement of Intracranial Pressure Pulsation using Ultrasound

    Science.gov (United States)

    Ueno, Toshiaki; Ballard, R. E.; Yost, W. T.; Hargens, A. R.

    1997-01-01

    Exposure to microgravity causes a cephalad fluid shift which may elevate intracranial pressure (ICP). Elevation in ICP may affect cerebral hemodynamics in astronauts during space flight. ICP is, however, a difficult parameter to measure due to the invasiveness of currently available techniques. We already reported our development of a non-invasive ultrasound device for measurement of ICP. We recently modified the device so that we might reproducibly estimate ICP changes in association with cardiac cycles. In the first experiment, we measured changes in cranial distance with the ultrasound device in cadavera while changing ICP by infusing saline into the lateral ventricle. In the second experiment, we measured changes in cranial distance in five healthy volunteers while placing them in 60 deg, 30 deg head-up tilt, supine, and 10 deg head-down tilt position. In the cadaver study, fast Fourier transformation revealed that cranial pulsation is clearly associated with ICP pulsation. The ratio of cranial distance and ICP pulsation is 1.3microns/mmHg. In the tilting study, the magnitudes of cranial pulsation are linearly correlated to tilt angles (r=0.87). The ultrasound device has sufficient sensitivity to detect cranial pulsation in association with cardiac cycles. By analyzing the magnitude of cranial pulsation, estimates of ICP during space flight are possible.

  8. Thermal-diffusional Instability in White Dwarf Flames: Regimes of Flame Pulsation

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Guangzheng; Zhao, Yibo; Zhou, Cheng; Gao, Yang; Law, Chung K. [Center for Combustion Energy, Tsinghua University, Beijing 100084 (China); Modestov, Mikhail, E-mail: gaoyang-00@mails.tsinghua.edu.cn [Nordita, KTH Royal Institute of Technology and Stockholm University, SE-10691, Stockholm (Sweden)

    2017-05-20

    Thermal-diffusional pulsation behaviors in planar as well as outwardly and inwardly propagating white dwarf (WD) carbon flames are systematically studied. In the 1D numerical simulation, the asymptotic degenerate equation of state and simplified one-step reaction rates for nuclear reactions are used to study the flame propagation and pulsation in WDs. The numerical critical Zel’dovich numbers of planar flames at different densities ( ρ = 2, 3, and 4 × 10{sup 7} g cm{sup −3}) and of spherical flames (with curvature c = −0.01, 0, 0.01, and 0.05) at a particular density ( ρ = 2 × 10{sup 7} g cm{sup −3}) are presented. Flame front pulsation in different environmental densities and temperatures are obtained to form the regime diagram of pulsation, showing that carbon flames pulsate in the typical density of 2 × 10{sup 7} g cm{sup −3} and temperature of 0.6 × 10{sup 9} K. While being stable at higher temperatures, at relatively lower temperatures, the amplitude of the flame pulsation becomes larger. In outwardly propagating spherical flames the pulsation instability is enhanced and flames are also easier to quench due to pulsation at small radius, while the inwardly propagating flames are more stable.

  9. KEPLER ECLIPSING BINARIES WITH DELTA SCUTI/GAMMA DORADUS PULSATING COMPONENTS. I. KIC 9851944

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhao; Gies, Douglas R.; Matson, Rachel A. [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States); Hernández, Antonio García, E-mail: guo@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: rmatson@chara.gssu.edu, E-mail: agh@astro.up.pt [Instituto de Astrofísica e Ciências do Espaco, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto (Portugal)

    2016-07-20

    KIC 9851944 is a short-period ( P = 2.16 days) eclipsing binary in the Kepler field of view. By combining the analysis of Kepler photometry and phase-resolved spectra from Kitt Peak National Observatory and Lowell Observatory, we determine the atmospheric and physical parameters of both stars. The two components have very different radii (2.27 R {sub ⊙}, 3.19 R {sub ⊙}) but close masses (1.76 M {sub ⊙}, 1.79 M {sub ⊙}) and effective temperatures (7026, 6902 K), indicating different evolutionary stages. The hotter primary is still on the main sequence (MS), while the cooler and larger secondary star has evolved to the post-MS, burning hydrogen in a shell. A comparison with coeval evolutionary models shows that it requires solar metallicity and a higher mass ratio to fit the radii and temperatures of both stars simultaneously. Both components show δ Scuti-type pulsations, which we interpret as p -modes and p and g mixed modes. After a close examination of the evolution of δ Scuti pulsational frequencies, we make a comparison of the observed frequencies with those calculated from MESA/GYRE.

  10. In situ observations of Pc1 pearl pulsations by the Van Allen Probes

    Science.gov (United States)

    Paulson, K. W.; Smith, C. W.; Lessard, M. R.; Engebretson, M. J.; Torbert, R. B.; Kletzing, C. A.

    2014-03-01

    We present in situ observations of Pc1 pearl pulsations using the Van Allen Probes. These waves are often observed using ground-based magnetometers, but are rarely observed by orbiting satellites. With the Van Allen Probes, we have seen at least 14 different pearl pulsation events during the first year of operations. These new in situ measurements allow us to identify the wave classification based on local magnetic field conditions. Additionally, by using two spacecraft, we are able to observe temporal changes in the region of observation. The waves appear to be generated at an overall central frequency, as often observed on the ground, and change polarization from left- to right-handedness as they propagate into a region where they are resonant with the crossover frequency (where R- and L-mode waves have the same phase velocity). By combining both in situ and ground-based data, we have found that the region satisfying electromagnetic ion cyclotron wave generation conditions is azimuthally large while radially narrow. The observation of a similar modulation period on the ground as in the magnetosphere contradicts the bouncing wave packet mechanism of generation.

  11. Observations of the magnetic fluctuation enhancement in the earth's foreshock region

    Science.gov (United States)

    Le, G.; Russell, C. T.

    1990-01-01

    Upstream waves have been postulated to be a major source of energy for the dayside magnetic pulsations within the magnetosphere. Thus, it is of interest to determine over what frequency range in the ion foreshock the power of fluctuations in the solar wind is enhanced. The magnetic field data from pairs of spacecraft, when they stay on either side of the ion foreshock boundary, were examined. It was found that the power of magnetic fluctuations is enhanced only at periods less than about two minutes, not at longer periods. Thus the upstream waves may contribute to Pc 3 and Pc 4 pulsations in the dayside magnetosphere, but they cannot be directly responsible for the longer-period waves.

  12. Contamination of RR Lyrae stars from Binary Evolution Pulsators

    Science.gov (United States)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Belczyński, Krzysztof; Stępień, Kazimierz; Wiktorowicz, Grzegorz; Iłkiewicz, Krystian

    2016-06-01

    Binary Evolution Pulsator (BEP) is an extremely low-mass member of a binary system, which pulsates as a result of a former mass transfer to its companion. BEP mimics RR Lyrae-type pulsations but has different internal structure and evolution history. We present possible evolution channels to produce BEPs, and evaluate the contamination value, i.e. how many objects classified as RR Lyrae stars can be undetected BEPs. In this analysis we use population synthesis code StarTrack.

  13. Suppression of Squeal Noise Excited by the Pressure Pulsation from the Flapper-Nozzle Valve inside a Hydraulic Energy System

    Directory of Open Access Journals (Sweden)

    Meng Chen

    2018-04-01

    Full Text Available Squeal noise often occurs in a two-stage electrohydraulic servo-valve, which is an unfavorable issue of modern hydraulic energy systems. The root causes of such noise from the servo-valve are still unclear. The objective of this paper is to explore the noise mechanism in a servo-valve excited by the pressure pulsations from the hydraulic energy system perspective. The suppressing capability of squeal noise energy is investigated by changing the pressure pulsation frequency and natural frequency of the flapper-armature assembly. The frequencies of the pressure pulsations are adjusted by setting different speeds of the hydraulic pump varying from 10,400–14,400 rpm, and two flapper-armature assemblies with different armature lengths are used in the tested hydraulic energy system. The first eight vibration mode shapes and natural frequencies of the flapper-armature assembly are obtained by numerical modal analysis using two different armature lengths. The characteristics of pressure pulsations at the pump outlet and in the chamber of the flapper-nozzle valve, armature vibration and noise are tested and compared with the natural frequencies of the flapper-armature assembly. The results reveal that the flapper-armature assembly vibrates and makes the noise with the same frequencies as the pressure pulsations inside the hydraulic energy system. Resonance appears when the frequency of the pressure pulsations coincides with the natural frequency of the flapper-armature assembly. Therefore, it can be concluded that the pressure pulsation energy from the power supply may excite the vibration of the flapper-armature assembly, which may consequently cause the squeal noise inside the servo-valve. It is verified by the numerical simulations and experiments that setting the pressure pulsation frequencies different from the natural frequencies of the flapper-armature assembly can suppress the resonance and squeal noise.

  14. Pulsating star research and the Gaia revolution

    Science.gov (United States)

    Eyer, Laurent; Clementini, Gisella; Guy, Leanne P.; Rimoldini, Lorenzo; Glass, Florian; Audard, Marc; Holl, Berry; Charnas, Jonathan; Cuypers, Jan; Ridder, Joris De; Evans, Dafydd W.; de Fombelle, Gregory Jevardat; Lanzafame, Alessandro; Lecoeur-Taibi, Isabelle; Mowlavi, Nami; Nienartowicz, Krzysztof; Riello, Marco; Ripepi, Vincenzo; Sarro, Luis; Süveges, Maria

    2017-09-01

    In this article we present an overview of the ESA Gaia mission and of the unprecedented impact that Gaia will have on the field of variable star research. We summarise the contents and impact of the first Gaia data release on the description of variability phenomena, with particular emphasis on pulsating star research. The Tycho-Gaia astrometric solution, although limited to 2.1 million stars, has been used in many studies related to pulsating stars. Furthermore a set of 3,194 Cepheids and RR Lyrae stars with their times series have been released. Finally we present the plans for the ongoing study of variable phenomena with Gaia and highlight some of the possible impacts of the second data release on variable, and specifically, pulsating stars.

  15. Cerebrospinal fluid pulsation amplitude and its quantitative relationship to cerebral blood flow pulsations: a phase-contrast MR flow imaging study

    International Nuclear Information System (INIS)

    Bhadelia, R.A.; Bogdan, A.R.; Kaplan, R.F.; Wolpert, S.M.

    1997-01-01

    Our purpose in this investigation was to explain the heterogeneity in the cerebrospinal fluid (CSF) flow pulsation amplitudes. To this end, we determined the contributions of the cerebral arterial and jugular venous flow pulsations to the amplitude of the CSF pulsation. We examined 21 healthy subjects by cine phase-contrast MRI at the C2-3 disc level to demonstrate the CSF and vascular flows as waveforms. Multiple regression analysis was performed to calculate the contributions of (a) the arterial and venous waveform amplitudes and (b) the delay between the maximum systolic slopes of the arterial and venous waveforms (AV delay), in order to predict the amplitude of the CSF waveform. The contribution of the arterial waveform amplitude was positive (r = 0.61; p 0.003) to the CSF waveform amplitude and that of the venous waveform amplitude was negative (r = -0.50; p = 0.006). Both in combination accounted for 56 % of the variance in predicting the CSF waveform amplitude (p < 0.0006). The contribution of AV delay was not significant. The results show that the variance in the CSF flow pulsation amplitudes can be explained by concurrent evaluation of the CSF and vascular flows. Improvement in the techniques, and controlled experiments, may allow use of CSF flow pulsation amplitudes for clinical applications in the non-invasive assessment of intracranial dynamics by MRI. (orig.). With 3 figs., 2 tabs

  16. INFRARED SPECTROSCOPY OF SYMBIOTIC STARS. VII. BINARY ORBIT AND LONG SECONDARY PERIOD VARIABILITY OF CH CYGNI

    International Nuclear Information System (INIS)

    Hinkle, Kenneth H.; Joyce, Richard R.; Fekel, Francis C.

    2009-01-01

    High-dispersion spectroscopic observations are used to refine orbital elements for the symbiotic binary CH Cyg. The current radial velocities, added to a previously published 13 year time series of infrared velocities for the M giant in the CH Cyg symbiotic system, more than double the length of the time series to 29 years. The two previously identified velocity periods are confirmed. The long period, revised to 15.6 ± 0.1 yr, is shown to result from a binary orbit with a 0.7 M sun white dwarf and 2 M sun M giant. Mass transfer to the white dwarf is responsible for the symbiotic classification. CH Cyg is the longest period S-type symbiotic known. Similarities with the longer period D-type systems are noted. The 2.1 year period is shown to be on Wood's sequence D, which contains stars identified as having long secondary periods (LSP). The cause of the LSP variation in CH Cyg and other stars is unknown. From our review of possible causes, we identify g-mode nonradial pulsation as the leading mechanism for LSP variation in CH Cyg. If g-mode pulsation is the cause of the LSPs, a radiative region is required near the photosphere of pulsating asymptotic giant branch stars.

  17. Masses and pulsations of BL Herculis variables

    International Nuclear Information System (INIS)

    Hodson, S.W.; Cox, A.N.; King, D.S.

    1981-01-01

    From linear results, the masses of BL Her variables must be nearer to 0.55 M /sub sun/ than 0.75 M /sub sun/ if the bump phase transition (resonance) is to be located anywhere near the observed period range of 1./sup d/5 to 1./sup d/7. The nonlinear results are consistent with the Simon resonance concept, but demonstrate that light and velocity curve shapes are a nonlinear phenomenon that require nonlinear period ratios to display the resonances only in the narrow, observed range of 1./sup d/5 to 1./sup d/7. The mass near 0.55 M /sub sun/ is in good agreement with evolution calculations (Sweigart and Gross, 1976) and nonlinear pulsation studies of Carson, Stothers, and Vemury (1981) and Stothers

  18. Investigation on the Possible Relationship between Magnetic Pulsations and Earthquakes

    Science.gov (United States)

    Jusoh, M.; Liu, H.; Yumoto, K.; Uozumi, T.; Takla, E. M.; Yousif Suliman, M. E.; Kawano, H.; Yoshikawa, A.; Asillam, M.; Hashim, M.

    2012-12-01

    The sun is the main source of energy to the solar system, and it plays a major role in affecting the ionosphere, atmosphere and the earth surface. The connection between solar wind and the ground magnetic pulsations has been proven empirically by several researchers previously (H. J. Singer et al., 1977, E. W. Greenstadt, 1979, I. A. Ansari 2006 to name a few). In our preliminary statistical analysis on relationship between solar and seismic activities (Jusoh and Yumoto, 2011, Jusoh et al., 2012), we observed a high possibility of solar-terrestrial coupling. We observed high tendency of earthquakes to occur during lower phase solar cycles which significantly related with solar wind parameters (i.e solar wind dynamic pressure, speed and input energy). However a clear coupling mechanism was not established yet. To connect the solar impact on seismicity, we investigate the possibility of ground magnetic pulsations as one of the connecting agent. In our analysis, the recorded ground magnetic pulsations are analyzed at different ranges of ultra low frequency; Pc3 (22-100 mHz), Pc4 (6.7-22 mHz) and Pc5 (1.7-6.7 mHz) with the occurrence of local earthquake events at certain time periods. This analysis focuses at 2 different major seismic regions; north Japan (mid latitude) and north Sumatera, Indonesia (low latitude). Solar wind parameters were obtained from the Goddard Space Flight Center, NASA via the OMNIWeb Data Explorer and the Space Physics Data Facility. Earthquake events were extracted from the Advanced National Seismic System (ANSS) database. The localized Pc3-Pc5 magnetic pulsations data were extracted from Magnetic Data Acquisition System (MAGDAS)/Circum Pan Magnetic Network (CPMN) located at Ashibetsu (Japan); for earthquakes monitored at north Japan and Langkawi (Malaysia); for earthquakes observed at north Sumatera. This magnetometer arrays has established by International Center for Space Weather Science and Education, Kyushu University, Japan. From the

  19. The coupling between pulsation and mass loss in massive stars

    OpenAIRE

    Townsend, Rich

    2007-01-01

    To what extent can pulsational instabilities resolve the mass-loss problem of massive stars? How important is pulsation in structuring and modulating the winds of these stars? What role does pulsation play in redistributing angular momentum in massive stars? Although I cannot offer answers to these questions, I hope at the very least to explain how they come to be asked.

  20. Linear nonradial pulsation theory. Lecture 7

    International Nuclear Information System (INIS)

    Cox, A.N.

    1983-01-01

    Many of the upper main-sequence stars pulsate in spheroidal nonradial modes. We know this to be true in numerous cases, as we have tabulated for the #betta# Cephei and delta Scuti variables in previous lectures. However, we cannot identify the actual mode for any star except for the low-order pressure p and f modes of our sun. It remains a great challenge to clearly state what really is occurring, in the process we learn more about how stars evolve and pulsate

  1. THE NEWLY DISCOVERED PULSATING LOW-MASS WHITE DWARFS: AN EXTENSION OF THE ZZ CETI INSTABILITY STRIP

    Energy Technology Data Exchange (ETDEWEB)

    Van Grootel, V.; Dupret, M.-A. [Institut d' Astrophysique et de Geophysique de l' Universite de Liege, Allee du 6 Aout 17, B-4000 Liege (Belgium); Fontaine, G.; Brassard, P., E-mail: valerie.vangrootel@ulg.ac.be [Departement de Physique, Universite de Montreal, Succ. Centre-Ville, C.P. 6128, Montreal, QC H3C 3J7 (Canada)

    2013-01-01

    In light of the exciting discovery of g-mode pulsations in extremely low-mass, He-core DA white dwarfs, we report on the results of a detailed stability survey aimed at explaining the existence of these new pulsators as well as their location in the spectroscopic Hertzsprung-Russell diagram. To this aim, we calculated some 28 evolutionary sequences of DA models with various masses and chemical layering. These models are characterized by the so-called ML2/{alpha} = 1.0 convective efficiency and take into account the important feedback effect of convection on the atmospheric structure. We pulsated the models with the nonadiabatic code MAD, which incorporates a detailed treatment of time-dependent convection. On the other hand, given the failure of all nonadiabatic codes, including MAD, to account properly for the red edge of the strip, we resurrect the idea that the red edge is due to energy leakage through the atmosphere. We thus estimated the location of that edge by requiring that the thermal timescale in the driving region-located at the base of the H convection zone-be equal to the critical period beyond which l = 1 g-modes cease to exist. Using this approach, we find that our theoretical ZZ Ceti instability strip accounts remarkably well for the boundaries of the empirical strip, including the low-gravity, low-temperature regime where the three new pulsators are found. We also account for the relatively long periods observed in these stars, and thus conclude that they are true ZZ Ceti stars, but with low masses.

  2. Recent developments in pulsating aurora studies

    International Nuclear Information System (INIS)

    Sandahl, I.

    1985-11-01

    The field of pulsating aurora studies is reviewed. The paper begins with a short description of the characteristics of pulsating auroras and the theoretical ideas which, in view of existing experimental results, seem most important. A selection of new theoretical results and experimental results from both ground based instruments and instruments on rockets and satellites is then presented. There is now convincing evidence that the luminosity modulation is caused by a modulated flux of electron. The electron flux modulation seems to arise from a modulated resonant interaction between electrons and whistler mode waves in the equatorial plane, but the reason for the modulation is not known. Measurements concerning the drift and location of patches and the creation of Pi1 micropulsations are also deiscussed. Finally some suggestions for future research work are outlined. Optical measurements, especially with low light level TV, have proven to be of great importance in experimental studies of pulsating auroras. (author)

  3. The period-luminosity and period-radius relations of Type II and anomalous Cepheids in the Large and Small Magellanic Clouds

    Science.gov (United States)

    Groenewegen, M. A. T.; Jurkovic, M. I.

    2017-07-01

    Context. Type II Cepheids (T2Cs) and anomalous Cepheids (ACs) are pulsating stars that follow separate period-luminosity relations. Aims: We study the period-luminosity (PL) and period-radius (PR) relations for T2Cs and ACs in the Magellanic Clouds. Methods: In an accompanying paper we determined the luminosities and effective temperatures for the 335 T2Cs and ACs in the LMC and SMC discovered in the OGLE-III survey, by constructing the spectral energy distribution (SED) and fitting this with model atmospheres and a dust radiative transfer model (in the case of dust excess). Building on these results we studied the PL and PR relations of these sources. Using existing pulsation models for RR Lyrae and classical Cepheids we derive the period-luminosity-mass-temperature-metallicity relations and then estimate the pulsation mass. Results: The PL relation for the T2Cs does not appear to depend on metallicity and is Mbol = + 0.12-1.78log P (for P R = 0.846 + 0.521log P. Relations for fundamental and first overtone LMC ACs are also presented. The pulsation masses from the RR Lyrae and classical Cepheid pulsation models agree well for the short period T2Cs, the BL Her subtype, and ACs, and are consistent with estimates in the literature, I.e. MBLH 0.49M⊙ and MAC 1.3M⊙, respectively. The masses of the W Vir appear similar to the BL Her. The situation for the pWVir and RV Tau stars is less clear. For many RV Tau the masses are in conflict with the standard picture of (single-star) post-AGB evolution, where the masses are either too large (≳1 M⊙) or too small (≲0.4 M⊙). Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A29

  4. Acoustic radiation force control: Pulsating spherical carriers.

    Science.gov (United States)

    Rajabi, Majid; Mojahed, Alireza

    2018-02-01

    The interaction between harmonic plane progressive acoustic beams and a pulsating spherical radiator is studied. The acoustic radiation force function exerted on the spherical body is derived as a function of the incident wave pressure and the monopole vibration characteristics (i.e., amplitude and phase) of the body. Two distinct strategies are presented in order to alter the radiation force effects (i.e., pushing and pulling states) by changing its magnitude and direction. In the first strategy, an incident wave field with known amplitude and phase is considered. It is analytically shown that the zero- radiation force state (i.e., radiation force function cancellation) is achievable for specific pulsation characteristics belong to a frequency-dependent straight line equation in the plane of real-imaginary components (i.e., Nyquist Plane) of prescribed surface displacement. It is illustrated that these characteristic lines divide the mentioned displacement plane into two regions of positive (i.e., pushing) and negative (i.e., pulling) radiation forces. In the second strategy, the zero, negative and positive states of radiation force are obtained through adjusting the incident wave field characteristics (i.e., amplitude and phase) which insonifies the radiator with prescribed pulsation characteristics. It is proved that zero radiation force state occurs for incident wave pressure characteristics belong to specific frequency-dependent circles in Nyquist plane of incident wave pressure. These characteristic circles divide the Nyquist plane into two distinct regions corresponding to positive (out of circles) and negative (in the circles) values of radiation force function. It is analytically shown that the maximum amplitude of negative radiation force is exactly equal to the amplitude of the (positive) radiation force exerted upon the sphere in the passive state, by the same incident field. The developed concepts are much more deepened by considering the required

  5. Pulsating star research and the Gaia revolution

    Directory of Open Access Journals (Sweden)

    Eyer Laurent

    2017-01-01

    Full Text Available In this article we present an overview of the ESA Gaia mission and of the unprecedented impact that Gaia will have on the field of variable star research. We summarise the contents and impact of the first Gaia data release on the description of variability phenomena, with particular emphasis on pulsating star research. The Tycho-Gaia astrometric solution, although limited to 2.1 million stars, has been used in many studies related to pulsating stars. Furthermore a set of 3,194 Cepheids and RR Lyrae stars with their times series have been released. Finally we present the plans for the ongoing study of variable phenomena with Gaia and highlight some of the possible impacts of the second data release on variable, and specifically, pulsating stars.

  6. Spectral structure of Pc3–4 pulsations: possible signatures of cavity modes

    Directory of Open Access Journals (Sweden)

    P. R. Sutcliffe

    2013-04-01

    Full Text Available In this study we investigate the spectral structure of Pc3–4 pulsations observed at low and midlatitudes. For this purpose, ground-based magnetometer data recorded at the MM100 stations in Europe and at two low latitude stations in South Africa were used. In addition, fluxgate magnetometer data from the CHAMP (CHAllenging Minisatellite Payload low Earth orbit satellite were used. The results of our analysis suggest that at least three mechanisms contribute to the spectral content of Pc3–4 pulsations typically observed at these latitudes. We confirm that a typical Pc3–4 pulsation contains a field line resonance (FLR contribution, with latitude dependent frequency, and an upstream wave (UW contribution, with frequency proportional to the IMF (interplanetary magnetic field magnitude BIMF. Besides the FLR and UW contributions, the Pc3–4 pulsations consistently contain signals at other frequencies that are independent of latitude and BIMF. We suggest that the most likely explanation for these additional frequency contributions is that they are fast mode resonances (FMRs related to cavity, waveguide, or virtual modes. Although the above contributions to the pulsation spectral structure have been reported previously, we believe that this is the first time where evidence is presented showing that they are all present simultaneously in both ground-based and satellite data.

  7. SDSS J184037.78+642312.3: THE FIRST PULSATING EXTREMELY LOW MASS WHITE DWARF

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Brown, Warren R.; Kenyon, Scott J. [Smithsonian Astrophysical Observatory, 60 Garden St, Cambridge, MA 02138 (United States); Kilic, Mukremin, E-mail: jjhermes@astro.as.utexas.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, OK 73019 (United States)

    2012-05-10

    We report the discovery of the first pulsating extremely low mass (ELM) white dwarf (WD), SDSS J184037.78+642312.3 (hereafter J1840). This DA (hydrogen-atmosphere) WD is by far the coolest and the lowest-mass pulsating WD, with T{sub eff} = 9100 {+-} 170 K and log g = 6.22 {+-} 0.06, which corresponds to a mass of {approx}0.17 M{sub Sun }. This low-mass pulsating WD greatly extends the DAV (or ZZ Ceti) instability strip, effectively bridging the log g gap between WDs and main-sequence stars. We detect high-amplitude variability in J1840 on timescales exceeding 4000 s, with a non-sinusoidal pulse shape. Our observations also suggest that the variability is multi-periodic. The star is in a 4.6 hr binary with another compact object, most likely another WD. Future, more extensive time-series photometry of this ELM WD offers the first opportunity to probe the interior of a low-mass, presumably He-core WD using the tools of asteroseismology.

  8. SDSS J184037.78+642312.3: THE FIRST PULSATING EXTREMELY LOW MASS WHITE DWARF

    International Nuclear Information System (INIS)

    Hermes, J. J.; Montgomery, M. H.; Winget, D. E.; Brown, Warren R.; Kenyon, Scott J.; Kilic, Mukremin

    2012-01-01

    We report the discovery of the first pulsating extremely low mass (ELM) white dwarf (WD), SDSS J184037.78+642312.3 (hereafter J1840). This DA (hydrogen-atmosphere) WD is by far the coolest and the lowest-mass pulsating WD, with T eff = 9100 ± 170 K and log g = 6.22 ± 0.06, which corresponds to a mass of ∼0.17 M ☉ . This low-mass pulsating WD greatly extends the DAV (or ZZ Ceti) instability strip, effectively bridging the log g gap between WDs and main-sequence stars. We detect high-amplitude variability in J1840 on timescales exceeding 4000 s, with a non-sinusoidal pulse shape. Our observations also suggest that the variability is multi-periodic. The star is in a 4.6 hr binary with another compact object, most likely another WD. Future, more extensive time-series photometry of this ELM WD offers the first opportunity to probe the interior of a low-mass, presumably He-core WD using the tools of asteroseismology.

  9. Searching for X-ray Pulsations from Neutron Stars Using NICER

    Science.gov (United States)

    Ray, Paul S.; Arzoumanian, Zaven; Gendreau, Keith C.; Bogdanov, Slavko; Bult, Peter; Chakrabarty, Deepto; Chakrabarty, Deepto; Guillot, Sebastien; Harding, Alice; Ho, Wynn C. G.; Lamb, Frederick; Mahmoodifar, Simin; Miller, Cole; Strohmayer, Tod; Wilson-Hodge, Colleen; Wolff, Michael T.; NICER Science Team Working Group on Pulsation Searches and Multiwavelength Coordination

    2018-01-01

    The Neutron Star Interior Composition Explorer (NICER) presents an exciting new capability for discovering new modulation properties of X-ray emitting neutron stars, including large area, low background, extremely precise absolute time stamps, superb low-energy response and flexible scheduling. The Pulsation Searches and Multiwavelength Coordination working group has designed a 2.5 Ms observing program to search for pulsations and characterize the modulation properties of about 30 known or suspected neutron star sources across a number of source categories. A key early goal will be to search for pulsations from millisecond pulsars that might exhibit thermal pulsations from the surface suitable for pulse profile modeling to constrain the neutron star equation of state. In addition, we will search for pulsations from transitional millisecond pulsars, isolated neutron stars, LMXBs, accretion-powered millisecond pulsars, central compact objects and other sources. We present our science plan and initial results from the first months of the NICER mission.

  10. On a method of numerical calculation of nonlinear radial pulsations of stars

    International Nuclear Information System (INIS)

    Kosovichev, A.G.

    1984-01-01

    Some features of using the finite difference method for numerical investigation of nonradial pulsations of stars were considered. The mathematical model of these pulsations is described by time-dependent gasdynaMic equations with gravity. A one-dimentional (spherically-symmetric) case is considered. It was obtained a two-parametric family of ultimate conservative difference schemes where the diffepence analogy of the main conservative laws as well as the additional relations for the balance to individual kinds of energy are performed. Such difference schemes provide more exact calculation of nonlinear flows with shocks as compared with the other difference schemes with the same order of approximation. The methods of numerical solution of implicit (absolute stable) difference schemes for a given family were considered. The coupled equations are solved through iterative Newton method Using martrix and separate successive eliminations. Numerical method can be used for calculation of large amplitude radial pulsations of stars

  11. Discovery of a Detached, Eclipsing 40 Minute Period Double White Dwarf Binary and a Friend: Implications for He+CO White Dwarf Mergers

    Science.gov (United States)

    Brown, Warren R.; Kilic, Mukremin; Kosakowski, Alekzander; Gianninas, A.

    2017-09-01

    We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 minutes, respectively. The 40 minute system is eclipsing; it is composed of a 0.30 M ⊙ and a 0.52 M ⊙ WD. The 46 minute system is a likely LISA verification binary. The short 20 ± 2 Myr and ˜34 Myr gravitational-wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin-orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger, as proposed by Shen. Based on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona, and on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium.

  12. White dwarf evolution - Cradle-to-grave constraints via pulsation

    Science.gov (United States)

    Kawaler, Steven D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge.

  13. Four new massive pulsating white dwarfs including an ultramassive DAV

    Science.gov (United States)

    Curd, Brandon; Gianninas, A.; Bell, Keaton J.; Kilic, Mukremin; Romero, A. D.; Allende Prieto, Carlos; Winget, D. E.; Winget, K. I.

    2017-06-01

    We report the discovery of four massive (M > 0.8 M⊙) ZZ Ceti white dwarfs, including an ultramassive 1.16 M⊙ star. We obtained ground-based, time series photometry for 13 white dwarfs from the Sloan Digital Sky Survey Data Release 7 and Data Release 10 whose atmospheric parameters place them within the ZZ Ceti instability strip. We detect monoperiodic pulsations in three of our targets (J1015, J1554 and J2038) and identify three periods of pulsation in J0840 (173, 327 and 797 s). Fourier analysis of the remaining nine objects does not indicate variability above the 4 detection threshold. Our preliminary asteroseismic analysis of J0840 yields a stellar mass M = 1.14 ± 0.01 M⊙, hydrogen and helium envelope masses of MH = 5.8 × 10-7 M⊙ and MHe = 4.5 × 10-4 M⊙ and an expected core crystallized mass ratio of 50-70 per cent. J1015, J1554 and J2038 have masses in the range 0.84-0.91 M⊙ and are expected to have a CO core; however, the core of J0840 could consist of highly crystallized CO or ONeMg given its high mass. These newly discovered massive pulsators represent a significant increase in the number of known ZZ Ceti white dwarfs with mass M > 0.85 M⊙, and detailed asteroseismic modelling of J0840 will allow for significant tests of crystallization theory in CO and ONeMg core white dwarfs.

  14. Chandra and XMM-Newton observations of the low-luminosity X-ray pulsators SAX J1324.4−6200 and SAX J1452.8−5949

    NARCIS (Netherlands)

    Kaur, R.; Wijnands, R.; Patruno, A.; Testa, V.; Israel, G.; Degenaar, N.; Paul, B.; Kumar, B.

    2009-01-01

    We present results from our Chandra and XMM-Newton observations of two low-luminosity X-ray pulsators SAX J1324.4-6200 and SAX J1452.8-5949 which have spin periods of 172 and 437 s, respectively. The XMM-Newton spectra for both sources can be fitted well with a simple power-law model of photon

  15. Zinc electrodeposition from alkaline zincate solution by pulsating overpotentials

    Directory of Open Access Journals (Sweden)

    MILOS V. SIMICIC

    2000-09-01

    Full Text Available It is well known that smooth zinc deposits cannot be obtained from alkaline zincate using constant overpotential and current rate. During prolonged metal deposition, spongy and dendritic deposits are formed. It has been shown that the deposits are less agglomerated in the case of square-wave pulsating overpotentials regime than the ones obtained in case of constant overpotential regime. This is explained in a semiquantitative way by two phenomena: selective anodic dissolution during overpotentials “off” period and decreasing diffusion control. These effects is more pronounced at higher pause-to-pulse ratio. Increasing the pause-to-pulse ratio causes a reduction of the ratio between diffusion and activation overpotential, resulting in a more compact deposit. Confirmation of the proposed semiquantitative mathematical model was obtained by zinc electrodeposition onto a copper wire from a 0.1 M zincate solution in 1.0 M KOH at room temperature.

  16. Observations of the magnetic fluctuation enhancement in the Earth's foreshock region

    International Nuclear Information System (INIS)

    Le, G.; Russell, C.T.

    1990-01-01

    Upstream waves have been postulated to be a major source of energy for the dayside magnetic pulsations within the magnetosphere. Thus it is of interest to determine over what frequency range in the ion foreshock the power of fluctuations in the solar wind is enhanced. The authors have examined the magnetic field data from pairs of spacecraft when they are on either side of the ion fore-shock boundary. They find that the power of magnetic fluctuations is enhanced only at periods less than about two minutes, not at longer periods. Thus the upstream waves may contribute to Pc 3 and Pc 4 pulsations in the dayside magnetosphere, but they can not be directly responsible for the longer period waves

  17. The Cepheid mass discrepancy and pulsation-driven mass loss

    NARCIS (Netherlands)

    Neilson, H.R.; Cantiello, M.; Langer, N.

    2011-01-01

    Context. A longstanding challenge for understanding classical Cepheids is the Cepheid mass discrepancy, where theoretical mass estimates using stellar evolution and stellar pulsation calculations have been found to differ by approximately 10−20%. Aims. We study the role of pulsation-driven mass loss

  18. White dwarf evolution - Cradle-to-grave constraints via pulsation

    International Nuclear Information System (INIS)

    Kawaler, S.D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge. 44 refs

  19. Effect of isoproterenol, phenylephrine, and sodium nitroprusside on fundus pulsations in healthy volunteers.

    Science.gov (United States)

    Schmetterer, L; Wolzt, M; Salomon, A; Rheinberger, A; Unfried, C; Zanaschka, G; Fercher, A F

    1996-03-01

    Recently a laser interferometric method for topical measurement of fundus pulsations has been developed. Fundus pulsations in the macular region are caused by the inflow and outflow of blood into the choroid. The purpose of this work was to study the influence of a peripheral vasoconstricting (the alpha 1 adrenoceptor agonist phenylephrine), a predominantly positive inotropic (the non-specific beta adrenoceptor agonist isoproterenol), and a non-specific vasodilating (sodium nitroprusside) model drug on ocular fundus pulsations to determine reproducibility and sensitivity of the method. In a double masked randomised crossover study the drugs were administered in stepwise increasing doses to 10 male and nine female healthy volunteers. Systemic haemodynamic variables and fundus pulsations were measured at all infusion steps. Fundus pulsation increased during infusion of isoproterenol with statistical significance versus baseline at the lowest dose of 0.1 microgram/min. Neither peripheral vasoconstriction nor peripheral vasodilatation affected the ocular fundus pulsations. Measurements of fundus pulsations is a highly reproducible method in healthy subjects with low ametropy. Changes of local pulsatile ocular blood flow were detectable with our method following the infusion of isoproterenol. As systemic pharmacological vasodilatation or vasoconstriction did not change fundus pulsations, further experimental work has to be done to evaluate the sensitivity of the laser interferometric fundus pulsation measurement in various eye diseases.

  20. Spectroscopic properties of a two-dimensional time-dependent Cepheid model. I. Description and validation of the model

    Science.gov (United States)

    Vasilyev, V.; Ludwig, H.-G.; Freytag, B.; Lemasle, B.; Marconi, M.

    2017-10-01

    Context. Standard spectroscopic analyses of Cepheid variables are based on hydrostatic one-dimensional model atmospheres, with convection treated using various formulations of mixing-length theory. Aims: This paper aims to carry out an investigation of the validity of the quasi-static approximation in the context of pulsating stars. We check the adequacy of a two-dimensional time-dependent model of a Cepheid-like variable with focus on its spectroscopic properties. Methods: With the radiation-hydrodynamics code CO5BOLD, we construct a two-dimensional time-dependent envelope model of a Cepheid with Teff = 5600 K, log g = 2.0, solar metallicity, and a 2.8-day pulsation period. Subsequently, we perform extensive spectral syntheses of a set of artificial iron lines in local thermodynamic equilibrium. The set of lines allows us to systematically study effects of line strength, ionization stage, and excitation potential. Results: We evaluate the microturbulent velocity, line asymmetry, projection factor, and Doppler shifts. The microturbulent velocity, averaged over all lines, depends on the pulsational phase and varies between 1.5 and 2.7 km s-1. The derived projection factor lies between 1.23 and 1.27, which agrees with observational results. The mean Doppler shift is non-zero and negative, -1 km s-1, after averaging over several full periods and lines. This residual line-of-sight velocity (related to the "K-term") is primarily caused by horizontal inhomogeneities, and consequently we interpret it as the familiar convective blueshift ubiquitously present in non-pulsating late-type stars. Limited statistics prevent firm conclusions on the line asymmetries. Conclusions: Our two-dimensional model provides a reasonably accurate representation of the spectroscopic properties of a short-period Cepheid-like variable star. Some properties are primarily controlled by convective inhomogeneities rather than by the Cepheid-defining pulsations. Extended multi-dimensional modelling

  1. Ionospheric Electron Heating Associated With Pulsating Auroras: Joint Optical and PFISR Observations

    Science.gov (United States)

    Liang, Jun; Donovan, E.; Reimer, A.; Hampton, D.; Zou, S.; Varney, R.

    2018-05-01

    In a recent study, Liang et al. (2017, https://doi.org/10.1002/2017JA024127) repeatedly identified strong electron temperature (Te) enhancements when Swarm satellites traversed pulsating auroral patches. In this study, we use joint optical and Poker Flat Incoherent Scatter Radar (PFISR) observations to further investigate the F region plasma signatures related to pulsating auroras. On 19 March 2015 night, which contained multiple intervals of pulsating auroral activities, we identify a statistical trend, albeit not a one-to-one correspondence, of strong Te enhancements ( 500-1000 K) in the upper F region ionosphere during the passages of pulsating auroras over PFISR. On the other hand, there is no discernible and repeatable density enhancement in the upper F region during pulsating auroral intervals. Collocated optical and NOAA satellite observations suggest that the pulsating auroras are composed of energetic electron precipitation with characteristic energy >10 keV, which is inefficient in electron heating in the upper F region. Based upon PFISR observations and simulations from Liang et al. (2017) model, we propose that thermal conduction from the topside ionosphere, which is heated by precipitating low-energy electrons, offers the most likely explanation for the observed electron heating in the upper F region associated with pulsating auroras. Such a heating mechanism is similar to that underlying the "stable auroral red arcs" in the subauroral ionosphere. Our proposal conforms to the notion on the coexistence of an enhanced cold plasma population and the energetic electron precipitation, in magnetospheric flux tubes threading the pulsating auroral patch. In addition, we find a trend of enhanced ion upflows during pulsating auroral intervals.

  2. Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars

    Science.gov (United States)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Cacciari, C.; Clementini, C.

    2016-05-01

    We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a least squares deconvolution (LSD) of the line profiles in order to an- alyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (+- 2 kms^-1) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 kms^-1 even with a low number of high- resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.

  3. The MACHO Project Sample of Galactic Bulge High-Amplitude Scuti Stars: Pulsation Behavior and Stellar Properties

    International Nuclear Information System (INIS)

    Bennett, D.P.; Cook, K.H.; Freeman, K.C.; Geha, M.; Griest, K.; Lehner, M.J.; Marshall, S.L.; McNamara, B.J.; Minniti, D.; Nelson, C.; Peterson, B.A.; Popowski, P.; Pratt, M.R.; Quinn, P.J.; Rodgers, A.W.; Sutherland, W.; Templeton, M.R.; Vandehei, T.; Welch, D.L.

    1999-01-01

    We have detected 90 objects with periods and lightcurve structure similar to those of field(delta) Scuti stars, using the Massive Compact Halo Object (MACHO) Project database of Galactic bulge photometry. If we assume similar extinction values for all candidates and absolute magnitudes similar to those of other field high-amplitude(delta) Scuti stars (HADS), the majority of these objects lie in or near the Galactic bulge. At least two of these objects are likely foreground(delta) Scuti stars, one of which may be an evolved nonradial pulsator, similar to other evolved, disk-population(delta) Scuti stars. We have analyzed the light curves of these objects and find that they are similar to the light curves of field(delta) Scuti stars and the(delta) Scuti stars found by the Optical Gravitational Lens Experiment (OGLE). However, the amplitude distribution of these sources lies between those of low- and high-amplitude(delta) Scuti stars, which suggests that they may be an intermediate population. We have found nine double-mode HADS with frequency ratios ranging from 0.75 to 0.79, four probable double- and multiple-mode objects, and another four objects with marginal detections of secondary modes. The low frequencies (5-14 cycles d(sup -1)) and the observed period ratios of(approx)0.77 suggest that the majority of these objects are evolved stars pulsating in fundamental or first overtone radial modes

  4. Constraining convection parameters from the light curve shapes of pulsating white dwarf stars: the cases of EC 14012-1446 and WD 1524-0030

    Energy Technology Data Exchange (ETDEWEB)

    Handler, G; Lendl, M; Beck, P [Institut fuer Astronomie, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180 Wien (Austria); Provencal, J L; Montgomery, M H [Mt. Cuba Observatory and Department of Physics and Astronomy, University of Delaware, 223 Sharp Laboratory, Newark, DE 19716 (Cuba); Romero-Colmenero, E [South AfricAN Astronomical Observatory, PO Box 9, Observatory 7935 (South Africa); Sanchawala, K; Chen, W-P [Graduate Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan (China); Wood, M A; Silver, I [Department of Physics and Space Sciences and SARA Observatory, Florida Institute of Technology, Melbourne, FL 32901 (United States)], E-mail: handler@astro.univie.ac.at

    2008-10-15

    Montgomery [1] developed a method to probe convection in pulsating white dwarf stars which allows the recovery of the thermal response time of the convection zone by fitting observed nonsinusoidal light curves. He applied this method to two objects; the Whole Earth Telescope (WET) observed the pulsating DB white dwarf GD 358 for just this purpose. Given this WET run's success, it is time to extend Montgomery's method to pulsating DA white dwarf (ZZ Ceti) stars. We present observations of two ZZ Ceti stars, WD 1524-0030 and EC 14012-1446, both observed from multiple sites. EC 14012-1446 seems better suited thAN WD1524-0030 for a future WET run because it has more pulsation modes excited and because it pulsation spectrum appears to be more stable in time. We call for participation in this effort to take place in April 2008.

  5. Pulsations of stellar models in H and He burning phases

    Energy Technology Data Exchange (ETDEWEB)

    Gurm, H S; Sukhija, H M; Badalia, J K [Punjabi Univ., Patalia (India). Dept. of Astronomy and Space Sciences

    1983-02-01

    A study of pulsational properties with evolution has been done for a 15.6 Msub(sun) star with Xsub(e)=0.90 and Ysub(e)=0.08. Pulsational properties in the hydrogen-burning stages have been compared with those in helium-burning stages. A comparison with observed characteristics of ..beta.. Cepheids, classical Cepheids and supergiant variables has been made during the course of its evolution. In addition, models of 5, 9, and 15 Msub(sun) with Xsub(e)=0.708, Ysub(e)=0.272 have also been studied for pulsational properties during the helium burning stage. It is also seen that pulsational instability is sensitive to changes in initial chemical composition and opacity parameters, n and s. A low helium abundance could be a reason for the stability of the models, even when lying in the instability strip of the H-R diagram.

  6. Excitation of Stellar Pulsations

    DEFF Research Database (Denmark)

    Houdek, G.

    2012-01-01

    In this review I present an overview of our current understanding of the physical mechanisms that are responsible for the excitation of pulsations in stars with surface convection zones. These are typically cooler stars such as the δ Scuti stars, and stars supporting solar-like oscillations....

  7. Driving and damping mechanisms in hybrid pressure-gravity modes pulsators

    Energy Technology Data Exchange (ETDEWEB)

    Dupret, M A [Observatoire de Paris, LESIA, CNRS UMR 8109, 5 place J. Janssen, 92195 Meudon (France); Miglio, A; Montalban, J; Noels, A [Institut d' Astrophysique et Geophysique, Universite de Liege (Belgium); Grigahcene, A [CRAAG - Algiers Observatory BP 63 Bouzareah 16340, Algiers (Algeria)], E-mail: MA.dupret@obspm.fr

    2008-10-15

    We study the energetic aspects of hybrid pressure-gravity modes pulsations. The case of hybrid {beta} Cephei-SPB pulsators is considered with special attention. In addition to the already known sensitivity of the driving mechanism to the heavy elements mixture (mainly the iron abundance), we show that the characteristics of the propagation and evanescent regions play also a major role, determining the extension of the stable gap in the frequency domain between the unstable low order pressure and high order gravity modes. Finally, we consider the case of hybrid {delta} Sct-{gamma} Dor pulsators.

  8. DISCOVERY OF X-RAY PULSATION FROM THE GEMINGA-LIKE PULSAR PSR J2021+4026

    Energy Technology Data Exchange (ETDEWEB)

    Lin, L. C. C. [General Education Center, China Medical University, Taichung 40402, Taiwan (China); Hui, C. Y.; Seo, K. A., E-mail: cyhui@cnu.ac.kr [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Hu, C. P.; Chou, Y. [Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China); Wu, J. H. K.; Huang, R. H. H. [Institute of Astronomy, National Tsing-Hua University, Hsinchu 30013, Taiwan (China); Trepl, L. [Astrophysikalisches Institut und Universitaets-Sternwarte, Universitaet Jena, Schillergaesschen 2-3, D-07745 Jena (Germany); Takata, J.; Wang, Y.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (Hong Kong)

    2013-06-10

    We report the discovery of an X-ray periodicity of {approx}265.3 ms from a deep XMM-Newton observation of the radio-quiet {gamma}-ray pulsar, PSR J2021+4026, located at the edge of the supernova remnant G78.2+2.1 ({gamma}-Cygni). The detected frequency is consistent with the {gamma}-ray pulsation determined by the observation of the Fermi Gamma-ray Space Telescope at the same epoch. The X-ray pulse profile resembles the modulation of a hot spot on the surface of the neutron star. The phase-averaged spectral analysis also suggests that the majority of the observed X-rays have thermal origins. This is the third member in the class of radio-quiet pulsars with significant pulsations detected from both X-ray and {gamma}-ray regimes.

  9. Short repetition time multiband echo-planar imaging with simultaneous pulse recording allows dynamic imaging of the cardiac pulsation signal.

    Science.gov (United States)

    Tong, Yunjie; Hocke, Lia M; Frederick, Blaise deB

    2014-11-01

    Recently developed simultaneous multislice echo-planar imaging (EPI) sequences permit imaging of the whole brain at short repetition time (TR), allowing the cardiac fluctuations to be fully sampled in blood-oxygen-level dependent functional MRI (BOLD fMRI). A novel low computational analytical method was developed to dynamically map the passage of the pulsation signal through the brain and visualize the whole cerebral vasculature affected by the pulse signal. This algorithm is based on a simple combination of fast BOLD fMRI and the scanner's own built-in pulse oximeter. Multiple, temporally shifted copies of the pulse oximeter data (with 0.08 s shifting step and coverage of a 1-s span) were downsampled and used as cardiac pulsation regressors in a general linear model based analyses (FSL) of the fMRI data. The resulting concatenated z-statistics maps show the voxels that are affected as the cardiac signal travels through the brain. Many voxels were highly correlated with the pulsation regressor or its temporally shifted version. The dynamic and static cardiac pulsation maps obtained from both the task and resting state scans, resembled cerebral vasculature. The results demonstrated: (i) cardiac pulsation significantly affects most voxels in the brain; (ii) combining fast fMRI and this analytical method can reveal additional clinical information to functional studies. Copyright © 2013 Wiley Periodicals, Inc.

  10. Modelling of temperature distribution and temperature pulsations in elements of fast breeder reactor

    International Nuclear Information System (INIS)

    Sorokin, A.P.; Bogoslovskaia, G.P.; Ushakov, P.A.; Zhukov, A.V.; Ivanov, Eu.F.; Matjukhin, N.M.

    2004-01-01

    From thermophysical point of view, integrated configuration of liquid metal cooled reactor has some limitations. Large volume of mixing chamber causes a complex behavior of thermal hydraulic characteristics in such facilities. Also, this volume is responsible for large-scale eddies in the coolant, existence of stagnant areas and flow stratification, occurrence of temperature non-uniformity and pulsation of coolant and structure temperatures. Temperature non-uniformities and temperature pulsations depend heavily even on small variations in reactor core design. The paper presents some results on modeling of thermal hydraulic processes occurring in liquid metal cooled reactor. The behavior of following parameters are discussed: temperature non-uniformities at the core output and related temperature pulsations; temperature pulsations due to mixing of sodium jets at different temperatures; temperature pulsations arising if a part of loop (circuit) is shut off; temperature non-uniformities and pulsation at the core output and related temperature pulsation; temperature pulsations due to mixing of sodium jets at different temperatures; temperature pulsations arising if a part of loop (circuit) is shut off; temperature non-uniformities and pulsation of temperature during transients and during transition to natural convection cooling. Also, the issue of modeling of temperature behavior in compact arrangement of fast reactor fuel pins using water as modeling liquid is considered in the paper. One more discussion is concerned with experimental method of modeling of liquid metal mixing with the use of air. The method is based on freon tracer technique. The results of simulation of the thermal hydraulic processes mentioned above have been analyzed, that will allow the main lines of the study to be determined and conclusion to be drawn regarding the temperature behavior in fast reactor units. (author)

  11. Quasi-Periodic Pulse Amplitude Modulation in the Accreting Millisecond Pulsar IGR J00291+5934

    Science.gov (United States)

    Bult, Peter; van Doesburgh, Marieke; van der Klis, Michiel

    2017-01-01

    We introduce a new method for analyzing the a periodic variability of coherent pulsations in accreting millisecond X-ray pulsars (AMXPs). Our method involves applying a complex frequency correction to the time-domain lightcurve, allowing for the aperiodic modulation of the pulse amplitude to be robustly extracted in the frequency domain. We discuss the statistical properties of the resulting modulation spectrum and show how it can be correlated with the non-pulsed emission to determine if the periodic and a periodic variability are coupled processes. Using this method, we study the 598.88 Hz coherent pulsations of the AMXP IGR J00291+5934 as observed with the Rossi X-ray Timing Explorer and XMM-Newton. We demonstrate that our method easily confirms the known coupling between the pulsations and a strong 8 mHz quasi-periodic oscillation (QPO) in XMM-Newton observations. Applying our method to the RXTE observations, we further show, for the first time, that the much weaker 20 mHz QPO and its harmonic are also coupled with the pulsations. We discuss the implications of this coupling and indicate how it may be used to extract new information on the underlying accretion process.

  12. Energies of precipitating electrons during pulsating aurora events derived from ionosonde observations

    International Nuclear Information System (INIS)

    MacDougall, J.W.; Hofstee, J.; Koehler, J.A.

    1981-01-01

    The time-history of particle energies and fluxes associated with pulsating auroras in the morning sector is derived from ionosonde measurements. All the pulsating auroras studied showed a similar history with the pulsations occurring during a time interval of the order of an hour during which the average auroral Maxwellian characteristic energy stays relatively constant but the energy flux decreases progressively during the event. A possible explanation for this behaviour in terms of an injection of particles into a magnetospheric 'bottle' near the midnight meridian and the progressive precipitation out of the bottle during the pulsating event is suggested. (auth)

  13. Temporally and spatially pulsating solitons in a nonlinear stage of the long-wave Buneman instability

    International Nuclear Information System (INIS)

    Kono, M.; Kawakita, M.

    1990-01-01

    A nonlinear equation describing the development of the Buneman instability has been derived and solved with the aid of Hirota's bilinear transform [J. Math. Phys. 14, 810 (1973)] to give a variety of stationary solutions, such as pulsating solitons, temporally localized and spatially periodic solutions, as well as ordinary solitons

  14. A new method of measuring centre-of-mass velocities of radially pulsating stars from high-resolution spectroscopy

    Science.gov (United States)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Fossati, L.

    2018-03-01

    We present a radial velocity analysis of 20 solar neighbourhood RR Lyrae and three Population II Cepheid variables. We obtained high-resolution, moderate-to-high signal-to-noise ratio spectra for most stars; these spectra covered different pulsation phases for each star. To estimate the gamma (centre-of-mass) velocities of the programme stars, we use two independent methods. The first, `classic' method is based on RR Lyrae radial velocity curve templates. The second method is based on the analysis of absorption-line profile asymmetry to determine both pulsational and gamma velocities. This second method is based on the least-squares deconvolution (LSD) technique applied to analyse the line asymmetry that occurs in the spectra. We obtain measurements of the pulsation component of the radial velocity with an accuracy of ±3.5 km s-1. The gamma velocity was determined with an accuracy of ±10 km s-1, even for those stars having a small number of spectra. The main advantage of this method is the possibility of obtaining an estimation of gamma velocity even from one spectroscopic observation with uncertain pulsation phase. A detailed investigation of LSD profile asymmetry shows that the projection factor p varies as a function of the pulsation phase - this is a key parameter, which converts observed spectral line radial velocity variations into photospheric pulsation velocities. As a by-product of our study, we present 41 densely spaced synthetic grids of LSD profile bisectors based on atmospheric models of RR Lyr covering all pulsation phases.

  15. Stellar Pulsations, Impact of New Instrumentation and New Insights

    CERN Document Server

    Garrido, R; Balona, L; Christensen-Dalsgaard, J; 20th Stellar Pulsation Conference Series

    2013-01-01

    Analyses of photometric time series obtained from the MOST, CoRoT and Kepler space missions were presented at the 20th conference on Stellar Pulsations (Granada, September 2011). These results are leading to a re-appraisal of our views on stellar pulsation in some stars and posing some new and unexpected challenges. The very important and exciting role played by innovative ground-based observational techniques, such as interferometric measurements of giant pulsating stars and high-resolution spectroscopy in the near infrared, is also discussed. These Proceedings are distinguished by the format of the conference, which brings together a variety of related but different topics not found in other meetings of this nature.

  16. Unusual strong quasi-monochromatic ground Pc5 geomagnetic pulsations in the recovery phase of November 2003 superstorm

    Directory of Open Access Journals (Sweden)

    N. G. Kleimenova

    2005-10-01

    Full Text Available Unusually large-amplitude morning Pc5 magnetic pulsations during the recovery phase of the huge magnetic storm in November 2003 have been studied by using ground-based multi-point observations. Two main spectral Pc5 enhancements were observed: at f≈2 mHz, which featured slowly increasing frequency with decreasing latitude, and at f≈3 mHz, which was latitude independent. The Pc5 pulsations were observed at wide range of latitudes (more than 10° with the same very strong amplitude (up to 500nT and with the same polarization. Only the 3-mHz peak was clearly seen in the spectra of pulsating auroral radio absorption, as observed by the Finnish riometer chain. Short and localized bursts of PiB (f~50–100 mHz magnetic pulsations and simultaneous short bursts of energetic electron precipitation were observed in the morning sector, as well. The beginning of the large-amplitude morning Pc5 activity occurred simultaneously with a substorm onset in the evening and midnight sectors. However, the spectra of pulsations in the morning and evening sectors were different. They were compared with spectra of IMF and solar wind parameters, measured by ACE spacecraft. The similarity between the spectra of morning Pc5 and IMF By was found, but the spectra of evening Pi3 pulsations were similar to the spectra of solar wind density variations. The Pc5 and PiB pulsations, as well as bursts of the auroral radio absorption, suddenly disappeared, when the solar wind density abruptly dropped. We suppose that the ~2-mHz Pc5 geomagnetic pulsations could be attributed to field line resonance (FLR, however, the 3-mHz oscillations were apparently non-resonance origin.

    Keywords. Magnetospheric physics (MHD waves and instabilities; Solar wind-magnetosphere interaction; Storms and substorms

  17. Unusual strong quasi-monochromatic ground Pc5 geomagnetic pulsations in the recovery phase of November 2003 superstorm

    Directory of Open Access Journals (Sweden)

    N. G. Kleimenova

    2005-10-01

    Full Text Available Unusually large-amplitude morning Pc5 magnetic pulsations during the recovery phase of the huge magnetic storm in November 2003 have been studied by using ground-based multi-point observations. Two main spectral Pc5 enhancements were observed: at f≈2 mHz, which featured slowly increasing frequency with decreasing latitude, and at f≈3 mHz, which was latitude independent. The Pc5 pulsations were observed at wide range of latitudes (more than 10° with the same very strong amplitude (up to 500nT and with the same polarization. Only the 3-mHz peak was clearly seen in the spectra of pulsating auroral radio absorption, as observed by the Finnish riometer chain. Short and localized bursts of PiB (f~50–100 mHz magnetic pulsations and simultaneous short bursts of energetic electron precipitation were observed in the morning sector, as well. The beginning of the large-amplitude morning Pc5 activity occurred simultaneously with a substorm onset in the evening and midnight sectors. However, the spectra of pulsations in the morning and evening sectors were different. They were compared with spectra of IMF and solar wind parameters, measured by ACE spacecraft. The similarity between the spectra of morning Pc5 and IMF By was found, but the spectra of evening Pi3 pulsations were similar to the spectra of solar wind density variations. The Pc5 and PiB pulsations, as well as bursts of the auroral radio absorption, suddenly disappeared, when the solar wind density abruptly dropped. We suppose that the ~2-mHz Pc5 geomagnetic pulsations could be attributed to field line resonance (FLR, however, the 3-mHz oscillations were apparently non-resonance origin. Keywords. Magnetospheric physics (MHD waves and instabilities; Solar wind-magnetosphere interaction; Storms and substorms

  18. Destroying Aliases from the Ground and Space: Super-Nyquist ZZ Cetis in K2 Long Cadence Data

    Science.gov (United States)

    Bell, Keaton J.; Hermes, J. J.; Vanderbosch, Z.; Montgomery, M. H.; Winget, D. E.; Dennihy, E.; Fuchs, J. T.; Tremblay, P.-E.

    2017-12-01

    With typical periods of the order of 10 minutes, the pulsation signatures of ZZ Ceti variables (pulsating hydrogen-atmosphere white dwarf stars) are severely undersampled by long-cadence (29.42 minutes per exposure) K2 observations. Nyquist aliasing renders the intrinsic frequencies ambiguous, stifling precision asteroseismology. We report the discovery of two new ZZ Cetis in long-cadence K2 data: EPIC 210377280 and EPIC 220274129. Guided by three to four nights of follow-up, high-speed (≤slant 30 s) photometry from the McDonald Observatory, we recover accurate pulsation frequencies for K2 signals that reflected four to five times off the Nyquist with the full precision of over 70 days of monitoring (∼0.01 μHz). In turn, the K2 observations enable us to select the correct peaks from the alias structure of the ground-based signals caused by gaps in the observations. We identify at least seven independent pulsation modes in the light curves of each of these stars. For EPIC 220274129, we detect three complete sets of rotationally split {\\ell }=1 (dipole mode) triplets, which we use to asteroseismically infer the stellar rotation period of 12.7 ± 1.3 hr. We also detect two sub-Nyquist K2 signals that are likely combination (difference) frequencies. We attribute our inability to match some of the K2 signals to the ground-based data to changes in pulsation amplitudes between epochs of observation. Model fits to SOAR spectroscopy place both EPIC 210377280 and EPIC 220274129 near the middle of the ZZ Ceti instability strip, with {T}{eff} =11590+/- 200 K and 11810 ± 210 K, and masses 0.57 ± 0.03 M ⊙ and 0.62 ± 0.03 M ⊙, respectively.

  19. Pulsations of stellar models in H and He burning phases

    International Nuclear Information System (INIS)

    Gurm, H.S.; Sukhija, H.M.; Badalia, J.K.

    1983-01-01

    A study of pulsational properties with evolution has been done for a 15.6 Msub(sun) star with Xsub(e)=0.90 and Ysub(e)=0.08. Pulsational properties in the hydrogen-burning stages have been compared with those in helium-burning stages. A comparison with observed characteristics of #betta# Cepheids, classical Cepheids and supergiant variables has been made during the course of its evolution. In addition, models of 5, 9, and 15 Msub(sun) with Xsub(e)=0.708, Ysub(e)=0.272 have also been studied for pulsational properties during the helium burning stage. It is also seen that pulsational instability is sensitive to changes in initial chemical composition and opacity parameters, n and s. A low helium abundance could be a reason for the stability of the models, even when lying in the instability strip of the H-R diagram. (orig.)

  20. Doubling the number of pulsating DB white dwarfs

    International Nuclear Information System (INIS)

    Nitta, Atsuko; Kleinman, S J; Krzenski, J; Kepler, S O; Metcalfe, T S; Mukadam, Anjum S; Mullally, F; Nather, R E; Winget, D E; Sullivan, D; Thompson, Susan E

    2009-01-01

    We are searching for new pulsating DB white dwarf stars (DBVs) based on the newly found white dwarf stars from the spectra obtained by the Sloan Digital Sky Survey. DBVs pulsate at hotter temperature ranges than their better known cousins, DAVs or ZZ Ceti stars. Since the evolution of white dwarf stars is characterized by cooling, asteroseismological studies of DBVs give us opportunities to study white dwarf structure at a different evolutionary stage than the DAVs. The hottest DBVs are thought to have neutrino luminosities exceeding their photon luminosities (Winget et al. 2004), a quantity measurable through asteroseismology. Therefore, they can also be used to study neutrino physics in the stellar interior. At the time of the meeting, we reported on the nine new DBVs, doubling the number of previously known DBVs. Here we report the new nine pulsators' lightcurves and power spectra.

  1. Pulsation of high luminosity helium stars

    International Nuclear Information System (INIS)

    King, D.S.; Wheeler, J.C.; Cox, J.P.; Cox, A.N.; Hodson, S.W.

    1979-01-01

    Preliminary calculations are made on a systematic restudy of the linear and nonlinear pulsations of helium stars allowing for more recent and higher estimates of the effective temperature and for the high carbon abundance. Linear and nonlinear models are used. Results show qualitative agreement with earlier ones, models with sufficiently large L/M have a very hot blue edge for their instability strip, very large L/M values lead to dynamically unstable models which would appear to eject mass and therefore may not be realistic models for the pulsating RCrB stars, for the sequence studied a reasonable mass could be greater than or equal to 1.5 Msub solar. 12 references

  2. Exhaust pressure pulsation observation from turbocharger instantaneous speed measurement

    Science.gov (United States)

    Macián, V.; Luján, J. M.; Bermúdez, V.; Guardiola, C.

    2004-06-01

    In internal combustion engines, instantaneous exhaust pressure measurements are difficult to perform in a production environment. The high temperature of the exhaust manifold and its pulsating character make its application to exhaust gas recirculation control algorithms impossible. In this paper an alternative method for estimating the exhaust pressure pulsation is presented. A numerical model is built which enables the exhaust pressure pulses to be predicted from instantaneous turbocharger speed measurements. Although the model is data based, a theoretical description of the process is also provided. This combined approach makes it possible to export the model for different engine operating points. Also, compressor contribution in the turbocharger speed pulsation is discussed extensively. The compressor contribution is initially neglected, and effects of this simplified approach are analysed.

  3. Structure of Alpha Virginis. III. The pulsation characteristics

    International Nuclear Information System (INIS)

    Odell, A.P.

    1980-01-01

    Stellar structure models which were generated to match the photometric and binary properties of the B1.5 IV star Spica (α Vir) are analyzed for pulsation characteristics. The pulsation computations were linear and adiabatic and included both radial and nonradial (l=2) motions. Three sets of models were tested: normal evolution using Cox-Steward opacities, normal evolution using opacities increased substantially over Cox-Stewart, and evolution models using Cox-Stewart opacities but with a nonshrinking convective core

  4. Nonradial pulsations of hot evolved stars

    International Nuclear Information System (INIS)

    Starrfield, S.G.

    1987-01-01

    There are three classes of faint blue variable stars: the ZZ Ceti variables (DAV degenerate dwarfs), the DBV variables (DB degenerate dwarfs), and the GW Vir variables (DOV degenerate dwarfs). None of these classes of variable stars were known at the time of the last blue star meeting. Observational and theoretical studies of the ZZ Ceti variables, the DBV variables, and the GW Vir variables have shown them to be pulsating in nonradial g-modes. The cause of the pulsation has been determined for each class of variable star and, in all cases, also involves predictions of the stars envelope composition. The predictions are that the ZZ Ceti variables must have pure hydrogen surface layers, the DBV stars must have pure helium surface layers, and the GW Vir stars must have carbon and oxygen rich surface layers with less than 30% (by mass) of helium. Given these compositions, it is found that pulsation driving occurs as a result of the kappa and gamma effects operating in the partial ionization zones of either hydrogen or helium. In addition, a new driving mechanism, called convection blocking, also occurs in these variables. For the GW Vir variables, it is the kappa and gamma effects in the partial ionization regions of carbon and oxygen. 45 refs

  5. MHz-level self-sustained pulsation in polymer microspheres on a chip

    Directory of Open Access Journals (Sweden)

    Zhou-Chen Luo

    2014-12-01

    Full Text Available We observe MHz-level periodic self-sustained pulsation (SSP in the transmission spectrum of a polydimethylsiloxane (PDMS spherical microcavity on a silicon chip, under a fixed-frequency continuous laser excitation. The SSP results from the strong competition between the thermo-optic and thermal expansion effects of PDMS within the cavity mode volume. The experimental results show good agreement with the theoretical prediction by considering the modification of the thermal expansion coefficient and the temperature distribution within the mode volume.

  6. Simultaneous Observations of pi 2 Pulsations on the Satellite and Geound-Based Measurements

    Directory of Open Access Journals (Sweden)

    S. H. Lee

    1997-12-01

    Full Text Available We have investigated Pi2 pulsations which were observed both on ground magnetometer array and by satellites. On November 9th in 1994, pi2 pulsations appeared globally on the 190/210 magnetometer chain and Hermanus station when two satellites(EXOS-D and ETS-VI were located near the magnetic meridian of the 210 array. The local time of measurements covers form morning(LT=8.47hr to afternoon(LT=20.3hr and the bandwidth of peak frequency is found relatively small. The signals of the electric field measurement of board the EXOS-D, which is located inside the plasmasphere(L=2.35, are highly coherent with the ground-based observations with the out of phase oscillations. However, the magnetic field measurement on the ETS-VI in the outer magnetosphere(L=6.60 shows no signature of pi2 pulsations over the same time interval and the correlation with any of ground-based stations is found to be very weak, even though both satellites and magnetometer chain are located close to each other in local time. We suggest that this event may be a direct evidence of Pi2 pulsations as virtual resonant modes which are localized in the plasmasphere(Lee 1996. The results show that the cavity mode oscillations can occur in the inner magnetosphere with less spectral noise compared to the outer magnetospheric case.

  7. Concerning the generation of geomagnetic giant pulsations by drift-bounce resonance ring current instabilities

    Directory of Open Access Journals (Sweden)

    K.-H. Glassmeier

    1999-03-01

    Full Text Available Giant pulsations are nearly monochromatic ULF-pulsations of the Earth's magnetic field with periods of about 100 s and amplitudes of up to 40 nT. For one such event ground-magnetic observations as well as simultaneous GEOS-2 magnetic and electric field data and proton flux measurements made in the geostationary orbit have been analysed. The observations of the electromagnetic field indicate the excitation of an odd-mode type fundamental field line oscillation. A clear correlation between variations of the proton flux in the energy range 30-90 keV with the giant pulsation event observed at the ground is found. Furthermore, the proton phase space density exhibits a bump-on-the-tail signature at about 60 keV. Assuming a drift-bounce resonance instability as a possible generation mechanism, the azimuthal wave number of the pulsation wave field may be determined using a generalized resonance condition. The value determined in this way,  m = - 21 ± 4, is in accord with the value m = - 27 ± 6 determined from ground-magnetic measurements. A more detailed examination of the observed ring current plasma distribution function f shows that odd-mode type eigenoscillations are expected for the case ∂f / ∂W > 0, much as observed. This result is different from previous theoretical studies as we not only consider local gradients of the distribution function in real space, but also in velocity space. It is therefore concluded that the observed giant pulsation is the result of a drift-bounce resonance instability of the ring current plasma coupling to an odd-mode fundamental standing wave. The generation of the bump-on-the-tail distribution causing ∂f / ∂W > 0 can be explained due to velocity dispersion of protons injected into the ring current. Both this velocity dispersion and the necessary substorm activity causing the injection of protons into the nightside magnetosphere are observed.Key words. Magnetospheric physics (energetic particles , trapped

  8. The Secret Lives of Cepheids: δ Cep—The Prototype of a New Class of Pulsating X-Ray Variable Stars

    Science.gov (United States)

    Engle, Scott G.; Guinan, Edward F.; Harper, Graham M.; Cuntz, Manfred; Remage Evans, Nancy; Neilson, Hilding R.; Fawzy, Diaa E.

    2017-03-01

    From our Secret Lives of Cepheids program, the prototype Classical Cepheid, δ Cep, is found to be an X-ray source with periodic pulsation-modulated X-ray variations. This finding complements our earlier reported phase-dependent FUV-UV emissions of the star that increase ˜10-20 times with highest fluxes at ˜ 0.90{--}0.95φ , just prior to maximum brightness. Previously δ Cep was found as potentially X-ray variable, using XMM-Newton observations. Additional phase-constrained data were secured with Chandra near X-ray emission peak, to determine if the emission and variability were pulsation-phase-specific to δ Cep and not transient or due to a possible coronally active, cool companion. The Chandra data were combined with prior XMM-Newton observations, and were found to very closely match the previously observed X-ray behavior. From the combined data set, a ˜4 increase in X-ray flux is measured, reaching a peak {L}{{X}} = 1.7 × 1029 erg s-1 near 0.45ϕ. The precise X-ray flux phasing with the star’s pulsation indicates that the emissions arise from the Cepheid and not from a companion. However, it is puzzling that the maximum X-ray flux occurs ˜0.5ϕ (˜3 days) later than the FUV-UV maximum. There are several other potential Cepheid X-ray detections with properties similar to δ Cep, and comparable X-ray variability is indicated for two other Cepheids: β Dor and V473 Lyr. X-ray generating mechanisms in δ Cep and other Cepheids are discussed. If additional Cepheids are confirmed to show phased X-ray variations, then δ Cep will be the prototype of a new class of pulsation-induced X-ray variables.

  9. GD 154: White dwarf with multi- and monoperiodic pulsation

    Directory of Open Access Journals (Sweden)

    Bognár Zs.

    2013-03-01

    Full Text Available We present the white dwarf GD 154 as an example where either monoperiodic or multiperiodic pulsation were found at different epochs. The mono-multi-monoperiodic stage seems to alternate. Many questions have been raised. Is this behaviour connected to the evolution of DAV stars? How often does it happen? Is there any regularity in this change of the pulsational behaviour or is it irregular?

  10. High Resolution Spectroscopy of the Pulsating White Dwarf G29-38

    OpenAIRE

    Thompson, Susan E.; Clemens, J. C.; van Kerkwijk, M. H.; Koester, D.

    2003-01-01

    We present the analysis of time-resolved, high resolution spectra of the cool white dwarf pulsator, G29-38. From measuring the Doppler shifts of the H-alpha core, we detect velocity changes as large as 16.5 km/s and conclude that they are due to the horizontal motions associated with the g-mode pulsations on the star. We detect seven pulsation modes from the velocity time-series and identify the same modes in the flux variations. We discuss the properties of these modes and use the advantage ...

  11. PCS: an Euler--Lagrange method for treating convection in pulsating stars using finite difference techniques in two spatial dimensions

    International Nuclear Information System (INIS)

    Deupree, R.G.

    1977-01-01

    Finite difference techniques were used to examine the coupling of radial pulsation and convection in stellar models having comparable time scales. Numerical procedures are emphasized, including diagnostics to help determine the range of free parameters

  12. Construction of the Database for Pulsating Variable Stars

    Science.gov (United States)

    Chen, Bing-Qiu; Yang, Ming; Jiang, Bi-Wei

    2012-01-01

    A database for pulsating variable stars is constructed to favor the study of variable stars in China. The database includes about 230,000 variable stars in the Galactic bulge, LMC and SMC observed in an about 10 yr period by the MACHO(MAssive Compact Halo Objects) and OGLE(Optical Gravitational Lensing Experiment) projects. The software used for the construction is LAMP, i.e., Linux+Apache+MySQL+PHP. A web page is provided for searching the photometric data and light curves in the database through the right ascension and declination of an object. Because of the flexibility of this database, more up-to-date data of variable stars can be incorporated into the database conveniently.

  13. Russian Pulsating Mixer Pump Deployment in the Gunite and Associated Tanks at ORNL

    International Nuclear Information System (INIS)

    Hatchell, Brian K.; Lewis, Ben; Johnson, Marshall A.; Randolph, J. G.

    2001-01-01

    In FY 1998, Pulsating Mixer Pump (PMP) technology, consisting of a jet mixer powered by a reciprocating air supply, was selected for deployment in one of the Gunite and Associated Tanks at Oak Ridge National Laboratory (ORNL) to mobilize settled solids. The pulsating mixer pump technology was identified during FY 1996 and FY 1997 technical exchanges between the U.S. Department of Energy (DOE) Tanks Focus Area Retrieval and Closure program, the DOE Environmental Management International Programs, and delegates from Russia as a promising technology that could be implemented in the DOE complex. During FY 1997, the pulsating mixer pump technology, provided by the Russian Integrated Mining Chemical Company, was tested at Pacific Northwest National Laboratory (PNNL) to observe its ability to suspend settled solids. Based on the results of this demonstration, ORNL and DOE staff determined that a modified pulsating mixer pump would meet project needs for remote sludge mobilization of Gunite tank sludge and reduce the cost of operation and maintenance of more expensive mixing systems. The functions and requirements of the system were developed by combining the results and recommendations from the pulsating mixer pump demonstration at PNNL with the requirements identified by staff at ORNL involved with the remediation of the Gunite and Associated Tanks. The PMP is comprised of a pump chamber, check valve, a working gas supply pipe, a discharge manifold, and four jet nozzles. The pump uses two distinct cycles, fill and discharge, to perform its mixing action. During the fill cycle, vacuum is applied to the pump chamber by an eductor, which draws liquid into the pump. When the liquid level inside the chamber reaches a certain level, the chamber is pressurized with compressed air to discharge the liquid through the jet nozzles and back into the tank to mobilize sludge and settled solids.

  14. Pulsating Heat pipe Only for Space (PHOS): results of the REXUS 18 sounding rocket campaign

    International Nuclear Information System (INIS)

    Creatini, F; Guidi, G M; Belfi, F; Cicero, G; Fioriti, D; Di Prizio, D; Piacquadio, S; Becatti, G; Orlandini, G; Frigerio, A; Fontanesi, S; Nannipieri, P; Rognini, M; Morganti, N; Filippeschi, S; Di Marco, P; Fanucci, L; Baronti, F; Mameli, M; Manzoni, M

    2015-01-01

    Two Closed Loop Pulsating Heat Pipes (CLPHPs) are tested on board REXUS 18 sounding rocket in order to obtain data over a relatively long microgravity period (approximately 90 s). The CLPHPs are partially filled with FC-72 and have, respectively, an inner tube diameter larger (3 mm) and slightly smaller (1.6 mm) than the critical diameter evaluated in static Earth gravity conditions. On ground, the small diameter CLPHP effectively works as a Pulsating Heat Pipe (PHP): the characteristic slug and plug flow pattern forms inside the tube and the heat exchange is triggered by thermally driven self-sustained oscillations of the working fluid. On the other hand, the large diameter CLPHP works as a two- phase thermosyphon in vertical position and doesn't work in horizontal position: in this particular condition, the working fluid stratifies within the device as the surface tension force is no longer able to balance buoyancy. Then, the idea to test the CLPHPs in reduced gravity conditions: as the gravity reduces the buoyancy forces becomes less intense and it is possible to recreate the typical PHP flow pattern also for larger inner tube diameters. This allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience low gravity conditions due to a failure in the yoyo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described. (paper)

  15. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  16. Progress of cryogenic pulsating heat pipes at UW-Madison

    Science.gov (United States)

    Diego Fonseca, Luis; Mok, Mason; Pfotenhauer, John; Miller, Franklin

    2017-12-01

    Space agencies continuously require innovative cooling systems that are lightweight, low powered, physically flexible, easily manufactured and, most importantly, exhibit high heat transfer rates. Therefore, Pulsating Heat Pipes (PHPs) are being investigated to provide these requirements. This paper summarizes the current development of cryogenic Pulsating Heat Pipes with single and multiple evaporator sections built and successfully tested at UW-Madison. Recently, a helium based Pulsating Heat Pipe with three evaporator and three condenser sections has been operated at fill ratios between 20 % and 80 % operating temperature range of 2.9 K to 5.19 K, resulting in a maximum effective thermal conductivity up to 50,000 W/m-K. In addition, a nitrogen Pulsating Heat Pipe has been built with three evaporator sections and one condenser section. This PHP achieved a thermal performance between 32,000 W/m-K and 96,000 W/m-K at fill ratio ranging from 50 % to 80 %. Split evaporator sections are very important in order to spread cooling throughout an object of interest with an irregular temperature distribution or where multiple cooling locations are required. Hence this type of configurations is a proof of concept which hasn’t been attempted before and if matured could be applied to cryo-propellant tanks, superconducting magnets and photon detectors.

  17. Massive B-type pulsators in low-metallicity environments

    Science.gov (United States)

    Karoff, C.; Arentoft, T.; Glowienka, L.; Coutures, C.; Nielsen, T. B.; Dogan, G.; Grundahl, F.; Kjeldsen, H.

    2009-07-01

    Massive B-type pulsators such as β Cep and slowly pulsating B (SPB) stars pulsate due to layers of increased opacity caused by partial ionization. The increased opacity blocks the energy flux to the surface of the stars which causes the layers to rise and the opacity to drop. This cyclical behavior makes the star act as a heat engine and the star will thus pulsate. For β Cep and SPB stars the increased opacity is believed to be caused by partial ionization of iron and these stars should therefore contain non-insignificant quantities of the metal. A good test of this theory is to search for β Cep and SPB stars in low-metallicity environments. If no stars are found the theory is supported, but, on the other hand, if a substantial number of β Cep and SPB stars are found in these environments then the theory is not supported and a %solutions solution is needed. With a growing number of identified β Cep and SPB stars in the low-metallicity Magellanic Clouds we seem to be left with the second case. We will in this context discuss recent findings of β Cep and SPB stars in the Magellanic Clouds and some possible solutions to the discrepancy between these observations and the theory. We also describe an ambitious project that we have initiated on the Small Magellanic Cloud open cluster NGC 371 which will help to evaluate these solutions.

  18. The MACHO Project Sample of Galactic Bulge High-Amplitude {delta} Scuti Stars: Pulsation Behavior and Stellar Properties

    Energy Technology Data Exchange (ETDEWEB)

    Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Freeman, K. C.; Geha, M.; Griest, K. (and others)

    2000-06-20

    We have detected 90 objects with periods and light-curve structures similar to those of field {delta} Scuti stars using the Massive Compact Halo Object (MACHO) Project database of Galactic bulge photometry. If we assume similar extinction values for all candidates and absolute magnitudes similar to those of other field high-amplitude {delta} Scuti stars (HADS), the majority of these objects lie in or near the Galactic bulge. At least two of these objects are likely foreground {delta} Scuti stars, one of which may be an evolved nonradial pulsator, similar to other evolved, disk-population {delta} Scuti stars. We have analyzed the light curves of these objects and find that they are similar to the light curves of field {delta} Scuti stars and the {delta} Scuti stars found by the Optical Gravitational Lens Experiment (OGLE). However, the amplitude distribution of these sources lies between those of low- and high-amplitude {delta} Scuti stars, which suggests that they may be an intermediate population. We have found nine double-mode HADS with frequency ratios ranging from 0.75 to 0.79, four probable double- and multiple-mode objects, and another four objects with marginal detections of secondary modes. The low frequencies (5-14 cycles day-1) and the observed period ratios of {approx}0.77 suggest that the majority of these objects are evolved stars pulsating in fundamental or first overtone radial modes. (c) 2000 The American Astronomical Society.

  19. THE LEO IV DWARF SPHEROIDAL GALAXY: COLOR-MAGNITUDE DIAGRAM AND PULSATING STARS

    International Nuclear Information System (INIS)

    Moretti, Maria Ida; Dall'Ora, Massimo; Ripepi, Vincenzo

    2009-01-01

    We present the first V, B - V color-magnitude diagram of the Leo IV dwarf spheroidal galaxy, a faint Milky Way satellite recently discovered by the Sloan Digital Sky Survey. We have obtained B, V time-series photometry reaching about half a magnitude below the Leo IV turnoff, which we detect at V = 24.7 mag, and have performed the first study of the variable star population. We have identified three RR Lyrae stars (all fundamental-mode pulsators, RRab) and one SX Phoenicis variable in the galaxy. In the period-amplitude diagram the Leo IV RR Lyrae stars are located close to the loci of Oosterhoff type I systems and the evolved fundamental-mode RR Lyrae stars in the Galactic globular cluster M3. However, their mean pulsation period, (Pab) = 0.655 days, would suggest an Oosterhoff type II classification for this galaxy. The RR Lyrae stars trace very well the galaxy's horizontal branch, setting its average magnitude at (V RR ) = 21.48 ± 0.03 mag (standard deviation of the mean). This leads to a distance modulus of μ 0 = 20.94 ± 0.07 mag, corresponding to a distance of 154 ± 5 kpc, by adopting for the Leo IV dSph a reddening E(B - V) = 0.04 ± 0.01 mag and a metallicity of [Fe/H] = -2.31 ± 0.10.

  20. Pulsating stars in the region of Carina Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Steslicki, Marek [Astronomical Institute, University of Wroclaw (Poland)], E-mail: steslicki@astro.uni.wroc.p1

    2008-10-15

    We present the results of a search for pulsating stars in the region of Carina Nebula which includes three very young open clusters: Trumpler 14, 15 and 16. The search was made with the Wide Field Imager (WFI) on the MPG/ESO 2.2-m telescope in La Silla (Chile). In total, about 16,000 stars have been analyzed using classical Fourier techniques. We found over 20 pulsating {delta}-Scuti type stars in this region. Most of them are probable members of open clusters at the pre-main sequence evolutionary stage.

  1. A 15.7-Minute AM CVn Binary Discovered in K2

    Science.gov (United States)

    Green, M. J.; Hermes, J. J.; Marsh, T. R.; Steeghs, D. T. H.; Bell, Keaton J.; Littlefair, S. P.; Parsons, S. G.; Dennihy, E.; Fuchs, J. T.; Reding, J. S.; Kaiser, B. C.; Ashley, R. P.; Breedt, E.; Dhillon, V. S.; Gentile Fusillo, N. P.; Kerry, P.; Sahman, D. I.

    2018-04-01

    We present the discovery of SDSS J135154.46-064309.0, a short-period variable observed using 30-minute cadence photometry in K2 Campaign 6. Follow-up spectroscopy and high-speed photometry support a classification as a new member of the rare class of ultracompact accreting binaries known as AM CVn stars. The spectroscopic orbital period of 15.65 ± 0.12 minutes makes this system the fourth-shortest period AM CVn known, and the second system of this type to be discovered by the Kepler spacecraft. The K2 data show photometric periods at 15.7306 ± 0.0003 minutes, 16.1121 ± 0.0004 minutes and 664.82 ± 0.06 minutes, which we identify as the orbital period, superhump period, and disc precession period, respectively. From the superhump and orbital periods we estimate the binary mass ratio q = M2/M1 = 0.111 ± 0.005, though this method of mass ratio determination may not be well calibrated for helium-dominated binaries. This system is likely to be a bright foreground source of gravitational waves in the frequency range detectable by LISA, and may be of use as a calibration source if future studies are able to constrain the masses of its stellar components.

  2. Electromagnetic activity of a pulsating paramagnetic neutron star

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Podgainy, D.V.; Yang, J.; Weber, F.

    2002-01-01

    The fact that neutron star matter possesses the capability of maintaining a highly intense magnetic field has been and still is among the most debatable issues in pulsar astrophysics. Over the years, there were several independent suggestions that the dominant source of pulsar magnetism is either the field-induced or the spontaneous magnetic polarization of the baryon material. The Pauli paramagnetism of degenerate neutron matter is one of the plausible and comprehensive mechanisms of the magnetic ordering of neutron magnetic moments, promoted by a seed magnetic field inherited by the neutron star from a massive progenitor and amplified by its implosive contraction due to the magnetic flux conservation. Adhering to this attitude and based on the equations of magnetoelastic dynamics underlying continuum mechanics of single-axis magnetic insulators, we investigate electrodynamics of a paramagnetic neutron star undergoing nonradial pulsations. We show that the suggested approach regains a recent finding of Akhiezer et al. that the spin-polarized neutron matter can transmit perturbations by low-frequency transverse magnetoelastic waves. We found that nonradial torsional magnetoelastic pulsations of a paramagnetic neutron star can serve as a powerful generator of a highly intense electric field producing the magnetospheric polarization charge whose acceleration along the open magnetic field lines leads to the synchrotron and curvature radiation. Analytic and numerical estimates for periods of nonradial torsional magnetoelastic modes are presented and are followed by a discussion of their possible manifestation in currently monitored activity of pulsars and magnetars

  3. Optical pulsations from 4U 0900--40: Do they exist

    International Nuclear Information System (INIS)

    Nelson, J.; Middleditch, J.; Cordova, F.

    1979-01-01

    A search for optical pulsations from 4U 0900--40 (HD 77581) was made in 1977--1978 using Hβ interference filters. No pulsations were detected above 10 -3 of the observed flux. This contrasts with Steiner's detection of pulsatons at the 2% level. Ariel 5 data covering both our observations and Steiner's show that X-ray variability does not support this decrepancy

  4. Modelling of temperature distribution and pulsations in fast reactor units

    International Nuclear Information System (INIS)

    Ushakov, P.A.; Sorokin, A.P.

    1994-01-01

    Reasons for the occurrence of thermal stresses in reactor units have been analyzed. The main reasons for this analysis are: temperature non-uniformity at the output of reactor core and breeder and the ensuing temperature pulsation; temperature pulsations due to mixing of sodium jets of a different temperature; temperature nonuniformity and pulsations resulting from the part of loops (circuits) un-plug; temperature nonuniformity and fluctuations in transient and accidental shut down of reactor or transfer to cooling by natural circulation. The results of investigating the thermal hydraulic characteristics are obtained by modelling the processes mentioned above. Analysis carried out allows the main lines of investigation to be defined and conclusions can be drawn regarding the problem of temperature distribution and fluctuation in fast reactor units

  5. The Nainital Cape Survey Project : A Search for Pulsation in Chemically Peculiar Stars

    Science.gov (United States)

    Chakradhari, Nand Kumar; Joshi, Santosh

    2018-04-01

    The Nainital-Cape Survey is a dedicated search programme initiated in 1999 in the coordination of astronomers from SAAO South Africa, ARIES Nainital and ISRO Bangalore. Over the last 17 years a total of 345 chemically peculiar stars were monitored for photometric variability, making it one of the longest ground-based survey to search for pulsation in chemically peculiar stars in terms of both time span and sample size. Under this survey, we discovered rapid pulsation in the Ap star HD12098 while δ Scuti-type pulsations were detected in seven Am stars. Those stars in which pulsations were not detected have also been tabulated along with their detailed astrophysical parameters for further investigation.

  6. Nonlinear asteroseismology: insight from amplitude and frequency modulations of oscillation modes in compact pulsators from Kepler photometry

    Directory of Open Access Journals (Sweden)

    Zong Weikai

    2017-01-01

    Full Text Available Nonlinear mode interactions are difficult to observe from ground-based telescopes as the typical periods of the modulations induced by those nonlinear phenomena are on timescales of weeks, months, even years. The launch of space telescopes, e.g., Kepler, has tremendously changed the situation and shredded new light on this research field. We present results from Kepler photometry showing evidence that nonlinear interactions between modes occur in the two compact pulsators KIC 8626021, a DB white dwarf, and KIC 10139564, a short period hot B subdwarf. KIC 8626021 and KIC 10139564 had been monitored by Kepler in short-cadence for nearly two years and more than three years without interruption, respectively. By analyzing these high-quality photometric data, we found that the modes within the triplets induced by rotation clearly reveal different behaviors: their frequencies and amplitudes may exhibit either periodic or irregular modulations, or remain constant. These various behaviors of the amplitude and of the frequency modulations of the oscillation modes observed in these two stars are in good agreement with those predicted within the amplitude equation formalism in the case of the nonlinear resonant mode coupling mechanism.

  7. Design optimization of a linear permanent magnet synchronous motor for extra low force pulsations

    International Nuclear Information System (INIS)

    Isfahani, Aarsh Hassanpour; Vaez-Zadeh, Sadegh

    2007-01-01

    Air cored linear permanent magnet synchronous motors have essentially low force pulsations due to the lack of the primary iron core and teeth. However, a motor design with much lower force pulsations is required for many precise positioning systems, as in fabrication of microelectronic chips. This paper presents the design optimization of an air cored linear permanent magnet synchronous motor with extra low force pulsations for such applications. In order to achieve the goal, an analytical layer model of the machine is developed. A very effective objective function regarding force pulsations is then proposed; while the selected motor dimensions are regarded as the design variables. A genetic algorithm is used to find the optimal motor dimensions. This results in a substantial ninety percent reduction in the force pulsations. The design optimization is verified by a finite element method

  8. Concerning the generation of geomagnetic giant pulsations by drift-bounce resonance ring current instabilities

    Directory of Open Access Journals (Sweden)

    K.-H. Glassmeier

    Full Text Available Giant pulsations are nearly monochromatic ULF-pulsations of the Earth's magnetic field with periods of about 100 s and amplitudes of up to 40 nT. For one such event ground-magnetic observations as well as simultaneous GEOS-2 magnetic and electric field data and proton flux measurements made in the geostationary orbit have been analysed. The observations of the electromagnetic field indicate the excitation of an odd-mode type fundamental field line oscillation. A clear correlation between variations of the proton flux in the energy range 30-90 keV with the giant pulsation event observed at the ground is found. Furthermore, the proton phase space density exhibits a bump-on-the-tail signature at about 60 keV. Assuming a drift-bounce resonance instability as a possible generation mechanism, the azimuthal wave number of the pulsation wave field may be determined using a generalized resonance condition. The value determined in this way, 
    m
    = - 21 ± 4, is in accord with the value m = - 27 ± 6 determined from ground-magnetic measurements. A more detailed examination of the observed ring current plasma distribution function f shows that odd-mode type eigenoscillations are expected for the case ∂f / ∂W > 0, much as observed. This result is different from previous theoretical studies as we not only consider local gradients of the distribution function in real space, but also in velocity space. It is therefore concluded that the observed giant pulsation is the result of a drift-bounce resonance instability of the ring current plasma coupling to an odd-mode fundamental standing wave. The generation of the bump-on-the-tail distribution causing ∂f / ∂W > 0 can be explained due to velocity dispersion of protons injected into the ring current. Both this velocity dispersion and the necessary substorm activity causing the injection of protons into the nightside magnetosphere are observed

  9. Gravity Modes Reveal the Internal Rotation of a Post-mass-transfer Gamma Doradus/Delta Scuti Hybrid Pulsator in Kepler Eclipsing Binary KIC 9592855

    Science.gov (United States)

    Guo, Z.; Gies, D. R.; Matson, R. A.

    2017-12-01

    We report the discovery of a post-mass-transfer Gamma Doradus/Delta Scuti hybrid pulsator in the eclipsing binary KIC 9592855. This binary has a circular orbit, an orbital period of 1.2 days, and contains two stars of almost identical masses ({M}1=1.72 {M}⊙ ,{M}2=1.71 {M}⊙ ). However, the cooler secondary star is more evolved ({R}2=1.96 {R}⊙ ), while the hotter primary is still on the zero-age-main-sequence ({R}1=1.53 {R}⊙ ). Coeval models from single-star evolution cannot explain the observed masses and radii, and binary evolution with mass-transfer needs to be invoked. After subtracting the binary light curve, the Fourier spectrum shows low-order pressure-mode pulsations, and more dominantly, a cluster of low-frequency gravity modes at about 2 day-1. These g-modes are nearly equally spaced in period, and the period spacing pattern has a negative slope. We identify these g-modes as prograde dipole modes and find that they stem from the secondary star. The frequency range of unstable p-modes also agrees with that of the secondary. We derive the internal rotation rate of the convective core and the asymptotic period spacing from the observed g-modes. The resulting values suggest that the core and envelope rotate nearly uniformly, i.e., their rotation rates are both similar to the orbital frequency of this synchronized binary.

  10. Discovery of multiple pulsations in the new δ Scuti star HD 92277: Asteroseismology from Dome A, Antarctica

    International Nuclear Information System (INIS)

    Zong, Weikai; Fu, Jian-Ning; Niu, Jia-Shu; Zhu, Zonghong; Charpinet, S.; Vauclair, G.; Ashley, Michael C. B.; Lawrence, Jon S.; Luong-Van, Daniel; Cui, Xiangqun; Gong, Xuefei; Feng, Longlong; Wang, Lifan; Yuan, Xiangyan; Zhu, Zhenxi; Liu, Qiang; Wang, Lingzhi; Zhou, Xu; Pennypacker, Carl R.; York, Donald G.

    2015-01-01

    We report the discovery of low-amplitude oscillations in the star HD 92277 from long, continuous observations in the r and g bands using the CSTAR telescopes in Antarctica. A total of more than 1950 hours of high-quality light curves were used to categorize HD 92277 as a new member of the δ Scuti class. We have detected 21 (20 frequencies are independent and one is the linear combination) and 14 (13 frequencies are independent and one is the linear combination) pulsation frequencies in the r and g bands, respectively, indicating a multi-periodic pulsation behavior. The primary frequency f 1 = 10.810 days −1 corresponds to a period of 0.0925 days and is an l = 1 mode. We estimate a B − V index of 0.39 and derive an effective temperature of 6800 K for HD 92277. We conclude that long, continuous and uninterrupted time-series photometry can be performed from Dome A, Antarctica, and that this is especially valuable for asteroseismology where multi-color observations (often not available from space-based telescopes) assist with mode identification.

  11. Narrowband dm-spikes, intermediate drift bursts and pulsations in the solar flare of August 19, 1981

    International Nuclear Information System (INIS)

    Karlicky, M.

    1986-01-01

    In the initial phase (1251-1253 UT) of the flare of Aug. 19, 1981, an interesting group of narrowband dm-spikes, intermediate drift bursts and pulsations was observed. The paper tries to explain this group of bursts by a uniform model. It is shown that all these bursts are associated with acceleration and trapping of superthermal electrons in the flare loop. The parameters of the flare loop and the electric field in the acceleration process are estimated. An explanation is given of why the ''period'' of intermediate drift bursts and of pulsations is the same. Later the flare loop under study explodes and a shock wave (type II radio burst) is generated at a relatively high altitude of ∼ 100,000 km above the photosphere. This process is connected with the 10 cm radio flux decrease. (author)

  12. Short Communication: Thoraco-pericardiotomy in two bovines under ...

    African Journals Online (AJOL)

    The present paper deals with two typical cases of traumatic pericarditis,in a crossbred pregnant cow and a bullock. The patients had a history of brisket edema, anorexia, and wasting condition for a period of 15 days. The physical and clinical examination for both cases revealed jugular pulsation, marked edema of brisket ...

  13. KIC 6048106: an Algol-type eclipsing system with long-term magnetic activity and hybrid pulsations - I. Binary modelling

    Science.gov (United States)

    Samadi Ghadim, A.; Lampens, P.; Jassur, M.

    2018-03-01

    The A-F-type stars and pulsators (δ Scuti-γ Dor) are in a critical regime where they experience a transition from radiative to convective transport of energy in their envelopes. Such stars can pulsate in both gravity and acoustic modes. Hence, the knowledge of their fundamental parameters along with their observed pulsation characteristics can help in improving the stellar models. When residing in a binary system, these pulsators provide more accurate and less model-dependent stellar parameters than in the case of their single counterparts. We present a light-curve model for the eclipsing system KIC 6048106 based on the Kepler photometry and the code PHOEBE. We aim to obtain accurate physical parameters and tough constraints for the stellar modelling of this intermediate-mass hybrid pulsator. We performed a separate modelling of three light-curve segments which show a distinct behaviour due to a difference in activity. We also analysed the Kepler Eclipse Time Variations (ETVs). KIC 6048106 is an Algol-type binary with F5-K5 components, a near-circular orbit and a 1.56-d period undergoing variations of the order of Δ P/P˜eq 3.60× 10^{-7} in 287 ± 7 d. The primary component is a main-sequence star with M1 = 1.55 ± 0.11 M⊙, R1 = 1.57 ± 0.12 R⊙. The secondary is a much cooler subgiant with M2 = 0.33 ± 0.07 M⊙, R2 = 1.77 ± 0.16 R⊙. Many small near-polar spots are active on its surface. The second quadrature phase shows a brightness modulation on a time-scale 290 ± 7 d, in good agreement with the ETV modulation. This study reveals a stable binary configuration along with clear evidence of a long-term activity of the secondary star.

  14. Computational model of miniature pulsating heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Mario J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Givler, Richard C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-01-01

    The modeling work described herein represents Sandia National Laboratories (SNL) portion of a collaborative three-year project with Northrop Grumman Electronic Systems (NGES) and the University of Missouri to develop an advanced, thermal ground-plane (TGP), which is a device, of planar configuration, that delivers heat from a source to an ambient environment with high efficiency. Work at all three institutions was funded by DARPA/MTO; Sandia was funded under DARPA/MTO project number 015070924. This is the final report on this project for SNL. This report presents a numerical model of a pulsating heat pipe, a device employing a two phase (liquid and its vapor) working fluid confined in a closed loop channel etched/milled into a serpentine configuration in a solid metal plate. The device delivers heat from an evaporator (hot zone) to a condenser (cold zone). This new model includes key physical processes important to the operation of flat plate pulsating heat pipes (e.g. dynamic bubble nucleation, evaporation and condensation), together with conjugate heat transfer with the solid portion of the device. The model qualitatively and quantitatively predicts performance characteristics and metrics, which was demonstrated by favorable comparisons with experimental results on similar configurations. Application of the model also corroborated many previous performance observations with respect to key parameters such as heat load, fill ratio and orientation.

  15. The white dwarf in dwarf nova SDSS J080434.20+510349.2: Entering the instability strip?

    Energy Technology Data Exchange (ETDEWEB)

    Pavlenko, E, E-mail: pavlenko@crao.crimea.u [Crimean astrophysical observatory, Crimea 98409 (Ukraine)

    2009-06-01

    SDSS J080434.20+510349.2 is a WZ Sge type binary that displayed a rare outburst in 2006 (Pavlenko et al. 2007). During the long-lasting tail of the late stage of the outburst, the binary showed a two-humped or four-humped profile of the orbital light modulation. The amplitude of the orbital light curve decreased while the mean brightness decreased; moreover, that occurred approx 10 times faster during the fast outburst decline with respect to the late quiet state of slow outburst fading. There were no white dwarf pulsations detected in this system, neither 1 - 1.5 months prior to the outburst, nor in 1.5 - 2 months after the 2006 outburst. However, strong non-radial pulsations with period 12.6 minutes and a mean amplitude of 0.05m were first detected in the V band with the 2.6-m Shajn mirror telescope of the Crimean astrophysical observatory, approx 8 months after the outburst. The evolution of pulsations over two years, in 2006 - 2008, is considered. It is supposed that pulsations first appeared when the cooling white dwarf (after the outburst) entered the instability strip, although the possibility of temporary lack of pulsations at some occasions could not be excluded.

  16. Transformerless photovoltaic inverters with leakage current and pulsating power elimination

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Wang, H.

    2015-01-01

    This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV......-to-ground parasitic capacitance can be bypassed by introducing a common mode (CM) conducting path to the inverter. The resulting ground leakage current is therefore well controlled to be below the regulation limit. Moreover, the proposed inverter can also eliminate the well-known double line frequency pulsating power....... The mechanism of leakage current suppression and the closed-loop control of pulsating power decoupling are discussed in the paper in details. A 500 W prototype was also built and tested in the laboratory, and both simulation and experimental results are finally presented to show the excellent performance...

  17. Heat transfer of pulsating laminar flow in pipes with wall thermal inertia

    International Nuclear Information System (INIS)

    Yuan, Hongsheng; Tan, Sichao; Wen, Jing; Zhuang, Nailiang

    2016-01-01

    The effects of wall thermal inertia on heat transfer of pulsating laminar flow with constant power density within the pipe wall are investigated theoretically. The energy equation of the fully developed flow and heat transfer is solved by separation of variables and Green's function. The effects of the pulsation amplitude and frequency, the Prandtl number and the wall heat capacity on heat transfer features characterized by temperature, heat flux and Nusselt number are analyzed. The results show that the oscillation of wall heat flux increases along with the wall thermal inertia, while the oscillation of temperature and Nusselt number is suppressed by the wall thermal inertia. The influence of pulsation on the average Nusselt number is also obtained. The pulsating laminar flow can reduce the average Nusselt number. The Nusselt number reduction of pipe flow are a little more remarkable than that of flow between parallel plates, which is mainly caused by differences in hydraulic and thermal performances of the channels. (authors)

  18. Analysis of Pressure Pulsation Induced by Rotor-Stator Interaction in Nuclear Reactor Coolant Pump

    Directory of Open Access Journals (Sweden)

    Xu Zhang

    2017-01-01

    Full Text Available The internal flow of reactor coolant pump (RCP is much more complex than the flow of a general mixed-flow pump due to high temperature, high pressure, and large flow rate. The pressure pulsation that is induced by rotor-stator interaction (RSI has significant effects on the performance of pump; therefore, it is necessary to figure out the distribution and propagation characteristics of pressure pulsation in the pump. The study uses CFD method to calculate the behavior of the flow. Results show that the amplitudes of pressure pulsation get the maximum between the rotor and stator, and the dissipation rate of pressure pulsation in impellers passage is larger than that in guide vanes passage. The behavior is associated with the frequency of pressure wave in different regions. The flow rate distribution is influenced by the operating conditions. The study finds that, at nominal flow, the flow rate distribution in guide vanes is relatively uniform and the pressure pulsation amplitude is the smallest. Besides, the vortex shedding or backflow from the impeller blade exit has the same frequency as pressure pulsation but there are phase differences, and it has been confirmed that the absolute value of phase differences reflects the vorticity intensity.

  19. Cycles of self-pulsations in a photonic integrated circuit.

    Science.gov (United States)

    Karsaklian Dal Bosco, Andreas; Kanno, Kazutaka; Uchida, Atsushi; Sciamanna, Marc; Harayama, Takahisa; Yoshimura, Kazuyuki

    2015-12-01

    We report experimentally on the bifurcation cascade leading to the appearance of self-pulsation in a photonic integrated circuit in which a laser diode is subjected to delayed optical feedback. We study the evolution of the self-pulsing frequency with the increase of both the feedback strength and the injection current. Experimental observations show good qualitative accordance with numerical results carried out with the Lang-Kobayashi rate equation model. We explain the mechanism underlying the self-pulsations by a phenomenon of beating between successive pairs of external cavity modes and antimodes.

  20. Precise atmospheric parameters for the shortest-period binary white dwarfs: gravitational waves, metals, and pulsations

    International Nuclear Information System (INIS)

    Gianninas, A.; Kilic, Mukremin; Dufour, P.; Bergeron, P.; Brown, Warren R.; Hermes, J. J.

    2014-01-01

    We present a detailed spectroscopic analysis of 61 low-mass white dwarfs and provide precise atmospheric parameters, masses, and updated binary system parameters based on our new model atmosphere grids and the most recent evolutionary model calculations. For the first time, we measure systematic abundances of He, Ca, and Mg for metal-rich, extremely low mass white dwarfs and examine the distribution of these abundances as a function of effective temperature and mass. Based on our preliminary results, we discuss the possibility that shell flashes may be responsible for the presence of the observed He and metals. We compare stellar radii derived from our spectroscopic analysis to model-independent measurements and find good agreement except for white dwarfs with T eff ≲ 10,000 K. We also calculate the expected gravitational wave strain for each system and discuss their significance to the eLISA space-borne gravitational wave observatory. Finally, we provide an update on the instability strip of extremely low mass white dwarf pulsators.

  1. Precise atmospheric parameters for the shortest-period binary white dwarfs: gravitational waves, metals, and pulsations

    Energy Technology Data Exchange (ETDEWEB)

    Gianninas, A.; Kilic, Mukremin [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Dufour, P.; Bergeron, P. [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7 (Canada); Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Hermes, J. J., E-mail: alexg@nhn.ou.edu [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2014-10-10

    We present a detailed spectroscopic analysis of 61 low-mass white dwarfs and provide precise atmospheric parameters, masses, and updated binary system parameters based on our new model atmosphere grids and the most recent evolutionary model calculations. For the first time, we measure systematic abundances of He, Ca, and Mg for metal-rich, extremely low mass white dwarfs and examine the distribution of these abundances as a function of effective temperature and mass. Based on our preliminary results, we discuss the possibility that shell flashes may be responsible for the presence of the observed He and metals. We compare stellar radii derived from our spectroscopic analysis to model-independent measurements and find good agreement except for white dwarfs with T {sub eff} ≲ 10,000 K. We also calculate the expected gravitational wave strain for each system and discuss their significance to the eLISA space-borne gravitational wave observatory. Finally, we provide an update on the instability strip of extremely low mass white dwarf pulsators.

  2. Diagnostics of high-speed streams and coronal holes using geomagnetic pulsations

    International Nuclear Information System (INIS)

    Bol'shakova, O.V.; Troitskaya, V.A.

    1980-01-01

    In order to study the relations of high-speed solar wind streams and coronal holes analyzed are the parameters of geomagnetic pulsations of the Rs3 type and of high-speed streams at the decrease branch and in the minimum of solar activity. On the basis of the analysis of exciting pulsation regime determined are the differences in characteristics of high-speed stream properties. Presented are the graphical distributions of a number of occurrances of high-speed streams, coronal holes and pure regimes of Rs3R pulsations in several sections of 1973 in the Sun rotations of N1903-1919 and of the change of solar wind velocity while passing through the high-speed streams. It is found that Rs3R occurrance can serve an indicator of the high-speed flux connection with the large equatorial coronal hole. On the basis of the analysis of exciting pulsation properties determined are the differences in the stream characteristics. However the preliminary estimates permit to adopt neither the first nor the second of the existing hypotheses on the sourse of formation of high-speed streams

  3. SSC-excited pulsations recorded near noon on GEOS 2 and on the ground (CDAW 6)

    International Nuclear Information System (INIS)

    Wedeken, U.; Voelker, H.; Knott, K.; Lester, M.

    1986-01-01

    The SSC occurring on March 22, 1979, at 0826 UT had an unusually sharp onset in Scandinavia, in Middle Europe and in experiments on the geostationary satellite GEOS 2, which was near noon, local magnetic time. The ground magnetometer stations showed a small preimpuse which started approx.5 s before the main impulse. Both impulses needed approx.2 s to ''propagate'' from ground stations at L = 6.3-4.6. Search coil magnetometers indicate a very small precursor in northern Finland (Lapprox.4.4-6.0) which started approx.15-20 s before the main impulse. This small precursor also occurred close to the time of the SSC onset at GEOS 2. We interpret this precursor as an effect of precipitating electrons changing the ionospheric conductivity in a localized region. The main impulse triggered damped magnetic pulsations (Psc) with periods near 160 s and 50 s visible in northern Scandinavia and the electric field detector on GEOS 2. Furthermore, the magnetic field and the energetic ions at GEOS observed pulsations with periods near 80 s, but these could only be observed at the northernmost ground stations. There are several indications that the first three harmonics of standing hydromagnetic waves are detected. They may correspond to periodic oscillations of the subsolar point or eigenperiods of the SSC-excited fast mode (compressional cavity resonance). The tentatively identified second harmonic wave (period approx.80 s) is indicative of a bounce resonance of ring current protons. Inside the plasmasphere the dominant period of a superimposed Psc 4 event increased with latitude for the H component indicating several toroidal eigenoscillations

  4. Quasi-periodic Pulse Amplitude Modulation in the Accreting Millisecond Pulsar IGR J00291+5934

    Energy Technology Data Exchange (ETDEWEB)

    Bult, Peter [Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Doesburgh, Marieke van; Klis, Michiel van der [Anton Pannekoek Institute, University of Amsterdam, Postbus 94249, 1090 GE Amsterdam (Netherlands)

    2017-08-20

    We introduce a new method for analyzing the aperiodic variability of coherent pulsations in accreting millisecond X-ray pulsars (AMXPs). Our method involves applying a complex frequency correction to the time-domain light curve, allowing for the aperiodic modulation of the pulse amplitude to be robustly extracted in the frequency domain. We discuss the statistical properties of the resulting modulation spectrum and show how it can be correlated with the non-pulsed emission to determine if the periodic and aperiodic variability are coupled processes. Using this method, we study the 598.88 Hz coherent pulsations of the AMXP IGR J00291+5934 as observed with the Rossi X-ray Timing Explorer and XMM-Newton . We demonstrate that our method easily confirms the known coupling between the pulsations and a strong 8 mHz quasi-periodic oscillation (QPO) in XMM-Newton observations. Applying our method to the RXTE observations, we further show, for the first time, that the much weaker 20 mHz QPO and its harmonic are also coupled with the pulsations. We discuss the implications of this coupling and indicate how it may be used to extract new information on the underlying accretion process.

  5. Noise Radiation Of A Strongly Pulsating Tailpipe Exhaust

    Science.gov (United States)

    Peizi, Li; Genhua, Dai; Zhichi, Zhu

    1993-11-01

    The method of characteristics is used to solve the problem of the propagation of a strongly pulsating flow in an exhaust system tailpipe. For a strongly pulsating exhaust, the flow may shock at the pipe's open end at some point in a pulsating where the flow pressure exceeds its critical value. The method fails if one insists on setting the flow pressure equal to the atmospheric pressure as the pipe end boundary condition. To solve the problem, we set the Mach number equal to 1 as the boundary condition when the flow pressure exceeds its critical value. For a strongly pulsating flow, the fluctuations of flow variables may be much higher than their respective time averages. Therefore, the acoustic radiation method would fail in the computation of the noise radiation from the pipe's open end. We simulate the exhaust flow out of the open end as a simple sound source to compute the noise radiation, which has been successfully applied in reference [1]. The simple sound source strength is proportional to the volume acceleration of exhaust gas. Also computed is the noise radiation from the turbulence of the exhaust flow, as was done in reference [1]. Noise from a reciprocating valve simulator has been treated in detail. The radiation efficiency is very low for the pressure range considered and is about 10 -5. The radiation efficiency coefficient increases with the square of the frequency. Computation of the pipe length dependence of the noise radiation and mass flux allows us to design a suitable length for an aerodynamic noise generator or a reciprocating internal combustion engine. For the former, powerful noise radiation is preferable. For the latter, maximum mass flux is desired because a freer exhaust is preferable.

  6. Reasons for the appearance of pulsations in gas-lift wells and methods of eliminating them

    Energy Technology Data Exchange (ETDEWEB)

    Sibirev, A P; Grekhov, V V; Leonov, V A; Shigapov, R R

    1985-01-01

    It is shown that the main reason for pulsation in the gas-lift well output is lack of coordinated operation between the bed and the gas-lift lifter. A plan is suggested for making decisions to conduct work to detect and eliminate pulsations in the gas-lift well output which permit elimination of the pulsation in the shortest time and with the least outlays.

  7. Analysis of a double pipe heat exchanger performance by use of porous baffles and pulsating flow

    International Nuclear Information System (INIS)

    Targui, N.; Kahalerras, H.

    2013-01-01

    Highlights: • A double pipe heat exchanger performance is numerically studied. • Use of porous baffles and pulsating flow to enhance heat exchanger efficiency. • The governing equations are solved by the control volume method. • The efficiency increases with the amplitude and frequency of pulsation. • The highest values of are obtained when only hot fluid is pulsating (Case3). - Abstract: A numerical investigation is carried out to analyze the effect of porous baffles and flow pulsation on a double pipe heat exchanger performance. The hot fluid flows in the inner cylinder, whereas the cold fluid circulates in the annular gap. The Darcy–Brinkman–Forchheimer model is adopted to describe the flow in the porous regions and the finite volume method is used to solve the governing equations with the appropriate boundary conditions. The effects of the amplitude and frequency of pulsation, as well as the porous baffles permeability on the flow structure and the heat exchanger efficiency are analyzed. The results reveal that the addition of an oscillating component to the mean flow affects the flow structure, and enhances the heat transfer in comparison to the steady non pulsating flow. The highest heat exchanger performance is obtained when only the flow of the hot fluid is pulsating

  8. Spatiotemporal structure of pulsating solitons in the cubic-quintic Ginzburg-Landau equation: A novel variational formulation

    Energy Technology Data Exchange (ETDEWEB)

    Mancas, Stefan C. [Department of Mathematics, University of Central Florida, Orlando, FL 32816-1364 (United States)], E-mail: smancas@mail.ucf.edu; Roy Choudhury, S. [Department of Mathematics, University of Central Florida, Orlando, FL 32816-1364 (United States)], E-mail: choudhur@longwood.cs.ucf.edu

    2009-04-15

    Comprehensive numerical simulations (reviewed in Dissipative Solitons, Akhmediev and Ankiewicz (Eds.), Springer, Berlin, 2005) of pulse solutions of the cubic-quintic Ginzburg-Landau Equation (CGLE), a canonical equation governing the weakly nonlinear behavior of dissipative systems in a wide variety of disciplines, reveal various intriguing and entirely novel classes of solutions. In particular, there are five new classes of pulse or solitary waves solutions, viz. pulsating, creeping, snake, erupting, and chaotic solitons. In contrast to the regular solitary waves investigated in numerous integrable and non-integrable systems over the last three decades, these dissipative solitons are not stationary in time. Rather, they are spatially confined pulse-type structures whose envelopes exhibit complicated temporal dynamics. The numerical simulations also reveal very interesting bifurcations sequences of these pulses as the parameters of the CGLE are varied. In this paper, we address the issues of central interest in the area, i.e., the conditions for the occurrence of the five categories of dissipative solitons, as well the dependence of both their shape and their stability on the various parameters of the CGLE, viz. the nonlinearity, dispersion, linear and nonlinear gain, loss and spectral filtering parameters. Our predictions on the variation of the soliton amplitudes, widths and periods with the CGLE parameters agree with simulation results. First, we elucidate the Hopf bifurcation mechanism responsible for the various pulsating solitary waves, as well as its absence in Hamiltonian and integrable systems where such structures are absent. Next, we develop and discuss a variational formalism within which to explore the various classes of dissipative solitons. Given the complex dynamics of the various dissipative solutions, this formulation is, of necessity, significantly generalized over all earlier approaches in several crucial ways. Firstly, the starting formulation

  9. White Dwarf Rotation as a Function of Mass and a Dichotomy of Mode Line Widths: Kepler  Observations of 27 Pulsating DA White Dwarfs through K2 Campaign 8

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, J. J.; Fanale, S. M.; Dennihy, E.; Fuchs, J. T.; Dunlap, B. H.; Clemens, J. C. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Gänsicke, B. T.; Greiss, S.; Tremblay, P.-E.; Fusillo, N. P. Gentile; Raddi, R.; Chote, P.; Marsh, T. R. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Kawaler, Steven D. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Bell, Keaton J.; Montgomery, M. H.; Winget, D. E. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Redfield, S., E-mail: jjhermes@unc.edu [Wesleyan University Astronomy Department, Van Vleck Observatory, 96 Foss Hill Drive, Middletown, CT 06459 (United States)

    2017-10-01

    We present photometry and spectroscopy for 27 pulsating hydrogen-atmosphere white dwarfs (DAVs; a.k.a. ZZ Ceti stars) observed by the Kepler space telescope up to K2 Campaign 8, an extensive compilation of observations with unprecedented duration (>75 days) and duty cycle (>90%). The space-based photometry reveals pulsation properties previously inaccessible to ground-based observations. We observe a sharp dichotomy in oscillation mode line widths at roughly 800 s, such that white dwarf pulsations with periods exceeding 800 s have substantially broader mode line widths, more reminiscent of a damped harmonic oscillator than a heat-driven pulsator. Extended Kepler coverage also permits extensive mode identification: we identify the spherical degree of 87 out of 201 unique radial orders, providing direct constraints of the rotation period for 20 of these 27 DAVs, more than doubling the number of white dwarfs with rotation periods determined via asteroseismology. We also obtain spectroscopy from 4 m-class telescopes for all DAVs with Kepler photometry. Using these homogeneously analyzed spectra, we estimate the overall mass of all 27 DAVs, which allows us to measure white dwarf rotation as a function of mass, constraining the endpoints of angular momentum in low- and intermediate-mass stars. We find that 0.51–0.73 M {sub ⊙} white dwarfs, which evolved from 1.7–3.0 M {sub ⊙} ZAMS progenitors, have a mean rotation period of 35 hr with a standard deviation of 28 hr, with notable exceptions for higher-mass white dwarfs. Finally, we announce an online repository for our Kepler data and follow-up spectroscopy, which we collect at http://k2wd.org.

  10. Experimental comparison and visualization of in-tube continuous and pulsating flow boiling

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Markussen, Wiebke Brix; Meyer, Knud Erik

    2018-01-01

    This experimental study investigated the application of fluid flow pulsations for in-tube flow boiling heat transfer enhancement in an 8 mm smooth round tube made of copper. The fluid flow pulsations were introduced by a flow modulating expansion device and were compared with continuous flow...... cycle time (7 s) reduced the time-averaged heat transfer coefficients by 1.8% and 2.3% for the low and high subcooling, respectively, due to significant dry-out when the flow-modulating expansion valve was closed. Furthermore, the flow pulsations were visualized by high-speed camera to assist...... generated by a stepper-motor expansion valve in terms of the time-averaged heat transfer coefficient. The cycle time ranged from 1 s to 7 s for the pulsations, the time-averaged refrigerant mass flux ranged from 50 kg m−2 s−1 to 194 kg m−2 s−1 and the time-averaged heat flux ranged from 1.1 kW m−2 to 30.6 k...

  11. Highly Reliable Transformerless Photovoltaic Inverters With Leakage Current and Pulsating Power Elimination

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Loh, Poh Chiang

    2016-01-01

    This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV-to-ground parasi......This paper presents a transformerless inverter topology, which is capable of simultaneously solving leakage current and pulsating power issues in grid-connected photovoltaic (PV) systems. Without adding any additional components to the system, the leakage current caused by the PV......-to-ground parasitic capacitance can be bypassed by introducing a common-mode (CM) conducting path to the inverter. The resulting ground leakage current is therefore well controlled to be below the regulation limit. Furthermore, the proposed inverter can also eliminate the well-known double-line-frequency pulsating...... power that is inherent in single-phase PV systems. By properly injecting CM voltages to the output filter capacitors, the pulsating power can be decoupled from the dc-link. Therefore, it is possible to use long-lifetime film capacitors instead of electrolytic capacitors to improve the reliability...

  12. Pulsations of white dwarf stars with thick hydrogen or helium surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.N.; Starrfield, S.G.; Kidman, R.B.; Pesnell, W.D.

    1986-07-01

    In order to see if there could be agreement between results of stellar evolution theory and those of nonradial pulsation theory, calculations of white dwarf models have been made for hydrogen surface masses of 10/sup -4/ solar masses. Earlier results indicated that surface masses greater than 10/sup -8/ solar masses would not allow nonradial pulsations, even though all the driving and damping is in surface layers only 10/sup -12/ of the mass thick. It is shown that the surface mass of hydrogen in the pulsating white dwarfs (ZZ Ceti variables) can be any value as long as it is thick enough to contain the surface convection zone. 10 refs., 6 figs.

  13. Continuous vs. pulsating flow boiling. Part 2: Statistical comparison using response surface methodology

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian; Meyer, Knud Erik

    2016-01-01

    Response surface methodology is used to investigate an active method for flow boiling heat transfer enhancement by means of fluid flow pulsation. The flow pulsations are introduced by a flow modulating expansion device and compared with the baseline continuous flow provided by a stepper...

  14. Finding the first cosmic explosions. III. Pulsational pair-instability supernovae

    International Nuclear Information System (INIS)

    Whalen, Daniel J.; Smidt, Joseph; Even, Wesley; Fryer, Chris L.; Woosley, S. E.; Heger, Alexander; Stiavelli, Massimo

    2014-01-01

    Population III supernovae have been the focus of growing attention because of their potential to directly probe the properties of the first stars, particularly the most energetic events that can be seen at the edge of the observable universe. But until now pulsational pair-instability supernovae, in which explosive thermonuclear burning in massive stars fails to unbind them but can eject their outer layers into space, have been overlooked as cosmic beacons at the earliest redshifts. These shells can later collide and, like Type IIn supernovae, produce superluminous events in the UV at high redshifts that could be detected in the near infrared today. We present numerical simulations of a 110 M ☉ pulsational pair-instability explosion done with the Los Alamos radiation hydrodynamics code Radiation Adaptive Grid Eulerian. We find that collisions between consecutive pulsations are visible in the near infrared out to z ∼ 15-20 and can probe the earliest stellar populations at cosmic dawn.

  15. Metallicism and pulsation: an analysis of the delta Delphini stars

    International Nuclear Information System (INIS)

    Kurtz, D.W.

    1976-01-01

    Fine abundance analyses of seven delta Delphini stars and one delta Scuti star relative to four comparison standards are presented. Five of the delta Del stars are shown to have abundances most similar to the evolved Am stars. It is argued that these abundances are different from the classical Am star and Ap star abundances and that similarities to the Ba II star abundances are coincidental. We suggest that the anomalous abundance delta Del stars are evolved metallic line stars on the basis of their abundances, position in the β, M/sub v/ plane, inferred rotational velocities, and perhaps their binary incidence. Some of the delta Del stars are delta Scuti pulsators. We argue that pulsation and metallicism are mutually exclusive among the classical Am stars but may coexist in other stars related to the classical Am stars. A preference for the diffusion hypothesis model for the metallic line stars is stated and supported and the implications of the coexistence of pulsation and diffusion are discussed

  16. Latitudinally propagating on-off switching aurorae and associated geomagnetic pulsations

    International Nuclear Information System (INIS)

    Oguti, T.; Kokubun, S.; Hayashi, K.; Tsuruda, K.; Machida, S.; Kitamura, T.; Saka, O.; Watanabe, T.

    1981-01-01

    Poleward propagating on-off switching aurorae and equatorward propagating aurorae, otherwise similar, were observed simultaneously at Rabbit Lake and La Ronge, respectively, for about 40 min before dawn of Feb 20, 1980. Rabbit Lake is a high auroral latitude site at the northern end of the Saskatchewan chain of stations for the Pulsating Aurora Campaign, whereas La Ronge, due south of Rabbit, is almost at the southern edge of the auroral zone. The repetition periods of the on-off switching aurorae are about 6 to 13 s. The poleward propagating aurorae had well defined fronts of light which extended a few hundred kilometres or more in the east-west direction. The light fronts of the equatorward propagating aurorae, though comparable in extent, were less well defined: they were thicker and fuzzier. The poleward propagating aurorae moved with a speed of approximately 10 km/s whereas the equatorward ones did so with a slightly greater velocity. Geomagnetic field fluctuations were concurrent with the aurorae at both sites. At Rabbit Lake, northward (southward) field changes were associated with upward (downward) changes, whereas the trend is reversed at La Ronge, viz., northward (southward) changes with downward (upward) changes. These trends are consistent with a model of a periodic occurrence of two line currents, westward and eastward, the former moving poleward north of Rabbit Lake and the latter approaching La Ronge from the north

  17. Discovery of multiple pulsations in the new δ Scuti star HD 92277: Asteroseismology from Dome A, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Weikai; Fu, Jian-Ning; Niu, Jia-Shu; Zhu, Zonghong [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Charpinet, S.; Vauclair, G. [Université de Toulouse, UPS-OMP, IRAP, F-31400 Toulouse (France); Ashley, Michael C. B.; Lawrence, Jon S.; Luong-Van, Daniel [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Cui, Xiangqun; Gong, Xuefei [Nanjing Institute of Astronomical Optics and Technology, Nanjing 210042 (China); Feng, Longlong; Wang, Lifan; Yuan, Xiangyan; Zhu, Zhenxi [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Liu, Qiang; Wang, Lingzhi; Zhou, Xu [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Pennypacker, Carl R. [Center for Astrophysics, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); York, Donald G., E-mail: jnfu@bnu.edu.cn [Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States)

    2015-02-01

    We report the discovery of low-amplitude oscillations in the star HD 92277 from long, continuous observations in the r and g bands using the CSTAR telescopes in Antarctica. A total of more than 1950 hours of high-quality light curves were used to categorize HD 92277 as a new member of the δ Scuti class. We have detected 21 (20 frequencies are independent and one is the linear combination) and 14 (13 frequencies are independent and one is the linear combination) pulsation frequencies in the r and g bands, respectively, indicating a multi-periodic pulsation behavior. The primary frequency f{sub 1} = 10.810 days{sup −1} corresponds to a period of 0.0925 days and is an l = 1 mode. We estimate a B − V index of 0.39 and derive an effective temperature of 6800 K for HD 92277. We conclude that long, continuous and uninterrupted time-series photometry can be performed from Dome A, Antarctica, and that this is especially valuable for asteroseismology where multi-color observations (often not available from space-based telescopes) assist with mode identification.

  18. The propagation of pressure pulsations in the primary circuit of power plant A1

    International Nuclear Information System (INIS)

    Pecinka, L.

    1976-01-01

    A classification is made of the exciting forces of pressure pulsations in the primary coolant circuit with forced coolant circulation. A mathematical model is constructed of the propagation of pressure pulsations in the system and examples of measurements are given. The measurement methods used and the methods for the generalization of obtained data are assessed. The methods and results of the measurements of hydrodynamic pressure pulsations in a closed primary circuit with forced coolant circulation of the A-1 nuclear power plant are given. (F.M.)

  19. Micro-Channel Embedded Pulsating Heat Pipes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — As the need for thermal control technology becomes more demanding Micro-Channel Embedded Pulsating Heat Pipes (ME-PHPs) represents a sophisticated and enabling...

  20. Pulsating aurora and cosmic noise absorption associated with growth-phase arcs

    Directory of Open Access Journals (Sweden)

    D. McKay

    2018-01-01

    Full Text Available The initial stage of a magnetospheric substorm is the growth phase, which typically lasts 1–2 h. During the growth phase, an equatorward moving, east–west extended, optical auroral arc is observed. This is called a growth-phase arc. This work aims to characterize the optical emission and riometer absorption signatures associated with growth-phase arcs of isolated substorms. This is done using simultaneous all-sky camera and imaging riometer observations. The optical and riometric observations allow determination of the location of the precipitation within growth-phase arcs of low- (< 10  keV and high- (>  10 keV energy electrons, respectively. The observations indicate that growth-phase arcs have the following characteristics: 1. The peak of the cosmic noise absorption (CNA arc is equatorward of the optical emission arc. This CNA is contained within the region of diffuse aurora on the equatorward side.2. Optical pulsating aurora are seen in the border region between the diffuse emission region on the equatorward side and the bright growth-phase arc on the poleward side. CNA is detected in the same region. 3. There is no evidence of pulsations in the CNA. 4. Once the equatorward drift starts, it proceeds at constant speed, with uniform separation between the growth-phase arc and CNA of 40 ± 10 km. Optical pulsating aurora are known to be prominent in the post-onset phase of a substorm. The fact that pulsations are also seen in a fairly localized region during the growth phase shows that the substorm expansion-phase dynamics are not required to closely precede the pulsating aurora.

  1. The secret lives of Cepheids: evolutionary changes and pulsation-induced shock heating in the prototype classical Cepheid δ Cep

    Energy Technology Data Exchange (ETDEWEB)

    Engle, Scott G.; Guinan, Edward F. [Department of Astrophysics and Planetary Science, Villanova University, Villanova, PA 19085 (United States); Harper, Graham M. [School of Physics, Trinity College Dublin, College Green, Dublin 2 (Ireland); Neilson, Hilding R. [Department of Physics and Astronomy, East Tennessee State University, Box 70652, Johnson City, TN 37614 (United States); Evans, Nancy Remage, E-mail: scott.engle@villanova.edu [Smithsonian Astrophysical Observatory, MS 4, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-10-10

    Over the past decade, the Secret Lives of Cepheids (SLiC) program has been carried out at Villanova University to study aspects and behaviors of classical Cepheids that are still not well understood. In this, the first of several planned papers on program Cepheids, we report the current results for δ Cep, the Cepheid prototype. Ongoing photometry has been obtained to search for changes in the pulsation period, light-curve morphology, and amplitude. Combining our photometry with the times of maximum light compilation by Berdnikov et al. returns a small period change of dP/dt ≈–0.1006 ± 0.0002 s yr{sup -1}. There is also evidence for a gradual light amplitude increase of ∼0.011 mag (V band) and ∼0.012 mag (B band) per decade over the last ∼50 years. In addition, Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) UV spectrophotometry and XMM-Newton X-ray data were carried out to investigate the high-temperature plasmas present above the Cepheid photospheres. In total, from the five visits (eight exposures) with XMM-Newton, δ Cep is found to be a soft X-ray source (L {sub X} (0.3-2 keV) ≈4.5-13 × 10{sup 28} erg s{sup -1}) with peak flux at kT = 0.6-0.9 keV. The X-ray activity is found to vary, possibly in phase with the stellar pulsations. From 2010-2013, nine observations of δ Cep were carried out with HST-COS. The UV emissions are also variable and well phased with the stellar pulsations. Maximum UV line emissions occur near, or slightly before, maximum optical light, varying by as much as 20 times. This variability shows that pulsation-induced shock heating plays a significant role in Cepheid atmospheres, possibly in addition to a quiescent, magnetic heating. The results of this study show Cepheid atmospheres to be rather complex and dynamic.

  2. The secret lives of Cepheids: evolutionary changes and pulsation-induced shock heating in the prototype classical Cepheid δ Cep

    International Nuclear Information System (INIS)

    Engle, Scott G.; Guinan, Edward F.; Harper, Graham M.; Neilson, Hilding R.; Evans, Nancy Remage

    2014-01-01

    Over the past decade, the Secret Lives of Cepheids (SLiC) program has been carried out at Villanova University to study aspects and behaviors of classical Cepheids that are still not well understood. In this, the first of several planned papers on program Cepheids, we report the current results for δ Cep, the Cepheid prototype. Ongoing photometry has been obtained to search for changes in the pulsation period, light-curve morphology, and amplitude. Combining our photometry with the times of maximum light compilation by Berdnikov et al. returns a small period change of dP/dt ≈–0.1006 ± 0.0002 s yr -1 . There is also evidence for a gradual light amplitude increase of ∼0.011 mag (V band) and ∼0.012 mag (B band) per decade over the last ∼50 years. In addition, Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) UV spectrophotometry and XMM-Newton X-ray data were carried out to investigate the high-temperature plasmas present above the Cepheid photospheres. In total, from the five visits (eight exposures) with XMM-Newton, δ Cep is found to be a soft X-ray source (L X (0.3-2 keV) ≈4.5-13 × 10 28 erg s -1 ) with peak flux at kT = 0.6-0.9 keV. The X-ray activity is found to vary, possibly in phase with the stellar pulsations. From 2010-2013, nine observations of δ Cep were carried out with HST-COS. The UV emissions are also variable and well phased with the stellar pulsations. Maximum UV line emissions occur near, or slightly before, maximum optical light, varying by as much as 20 times. This variability shows that pulsation-induced shock heating plays a significant role in Cepheid atmospheres, possibly in addition to a quiescent, magnetic heating. The results of this study show Cepheid atmospheres to be rather complex and dynamic.

  3. Pitch angle scattering and particle precipitation in a pulsating aurora - an experimental study

    International Nuclear Information System (INIS)

    Sandahl, I.

    1984-10-01

    A pulsating aurora occurring during the recovery phase of a substorm on January 27, 1979 was monitored by a large set of instruments. The Swedish sounding rocket S23-L2 was launched at magnetic midnight over pulsating patches, some of which exhibited 3+-1 Hz modulation. The ground based instrumentation included auroral TV cameras, all sky cameras, photometers and magnetometers. The geostationary satellite GEOS-2 was located in the equatorial plane, approximately conjugate to the rocket. The central experiment of this study is the particle experiment on the rocket. Several aspects of pulsating auroras have been investigated. The auroral luminosity variations were very well correlated to variations in the flux of precipitating hot electrons. The 1-20 second pulsations were caused by increased fluxes of 4-40 keV electrons. The 3+-1 Hz modulation was detected in 7-200 keV electrons, but the biggest energy flux modulation occurred for electrons of about 60 keV. Model calculations involving the electron distributions measured by the sounding rocket and GEOS-2, consistently show that the electrons may have been scattered into the loss cone through the Doppler shifted gyroresonance with whistler mode waves. The scattering was not a pure pitch angle scattering as in the classical Coroniti and Kennel theory, but involved also a systematic energy loss from the particles. The waves were probably hiss with some chorus elements. The equatorial plane plasma density was estimated in two independent ways to be about 2x10 6 m- 3 . The 3+-1 Hz modulation was measured both by the particle experiment on the rocket and by the wave experiment on GEOS-2. Properties of the modulated fluxes are described and a qualitative model for the cause of the modulation is proposed. (author)

  4. Numerical Simulation of Pulsation Flow in the Vapour Channel of Short Low Temperature Heat Pipes at High Heat Loads

    Science.gov (United States)

    Seryakov, A. V.; Konkin, A. V.

    2017-11-01

    The results of the numerical simulation of pulsations in the Laval-liked vapour channel of short low-temperature range heat pipes (HPs) are presented. The numerical results confirmed the experimentally obtained increase of the frequency of pulsations in the vapour channel of short HPs with increasing overheat of the porous evaporator relative to the boiling point of the working fluid. The occurrence of pressure pulsations inside the vapour channel in a short HPs is a complex phenomenon associated with the boiling beginning in the capillary-porous evaporator at high heat loads, and appearance the excess amount of vapour above it, leading to the increase in pressure P to a value at which the boiling point TB of the working fluid becomes higher than the evaporator temperature Tev. Vapour clot spreads through the vapour channel and condense, and then a rarefaction wave return from condenser in the evaporator, the boiling in which is resumed and the next cycle of the pulsations is repeated. Numerical simulation was performed using finite element method implemented in the commercial program ANSYS Multiphisics 14.5 in the two-dimensional setting of axis symmetric moist vapour flow with third kind boundary conditions.

  5. Period Variations for the Cepheid VZ Cyg

    Science.gov (United States)

    Sirorattanakul, Krittanon; Engle, Scott; Pepper, Joshua; Wells, Mark; Laney, Clifton D.; Rodriguez, Joseph E.; Stassun, Keivan G.

    2017-12-01

    The Cepheid Period-Luminosity law is a key rung on the extragalactic distance ladder. However, numerous Cepheids are known to undergo period variations. Monitoring, refining, and understanding these period variations allows us to better determine the parameters of the Cepheids themselves and of the instability strip in which they reside, and to test models of stellar evolution. VZ Cyg, a classical Cepheid pulsating at ˜4.864 days, has been observed for over 100 years. Combining data from literature observations, the Kilodegree Extremely Little Telescope (KELT) transit survey, and new targeted observations with the Robotically Controlled Telescope (RCT) at Kitt Peak, we find a period change rate of dP/dt = -0.0642 ± 0.0018 s yr-1. However, when only the recent observations are examined, we find a much higher period change rate of dP/dt = -0.0923 ± 0.0110 s yr-1. This higher rate could be due to an apparent long-term (P ≈ 26.5 years) cyclic period variation. The possible interpretations of this single Cepheid’s complex period variations underscore both the need to regularly monitor pulsating variables and the important benefits that photometric surveys such as KELT can have on the field. Further monitoring of this interesting example of Cepheid variability is recommended to confirm and better understand the possible cyclic period variations. Further, Cepheid timing analyses are necessary to fully understand their current behaviors and parameters, as well as their evolutionary histories.

  6. Fuel-element temperature nonstationary distribution caused by local pulsations of the factor of heat transfer to a coolant

    International Nuclear Information System (INIS)

    Pupko, V.Ya.

    1978-01-01

    The equation of nonstationary heat transfer caused by the appearance of a local pulse jump in the factor of heat transfer to a coolant is solved analytically for a cylindrical fuel element. The problem solution is generalized to a case of the periodically pulsating factor of heat transfer according to its value in an arbitrary point of the fuel element surface

  7. Detection of Stellar Pulsations in the Planet Host Star γ Cephei A by High Precision Radial Velocity Measurements

    International Nuclear Information System (INIS)

    Endl, Michael; Castanheira, Barbara G.; Cochran, William D.; Bean, Jacob L.; Wittenmyer, Robert A.; Hatzes, Artie P.

    2009-01-01

    We present a first analysis of our asteroseismology campaign on the planet host star γ Cep A. We used seven consecutive nights at the Harlan J. Smith 2.7 m telescope at McDonald Observatory to obtain 1200 highly precise radial velocity measurements. We find the star to be a multi-periodic pulsator with a frequency spacing of 15 μHz.

  8. Long-period variables in the Magellanic Clouds: Supergiants, AGB stars, supernova precursors, planetary nebula precursors, and enrichment of the interstellar medium

    International Nuclear Information System (INIS)

    Wood, P.; Bessell, M.S.; Fox, M.W.

    1983-01-01

    Infrared JHK magnitudes and low-dispersion red spectra have been obtained for 90 long-period variables (LPVs) in the Small and Large Magellanic Clouds. The LPVs fall into two distinct groups, core helium (or carbon) burning supergiants and stars on the asymptotic giant branch (AGB). The supergiants have small pulsation amplitudes in K ( or approx. =5 M/sub sun/ produce supernovae while less massive stars produce planetary nebulae with nebula masses from approx.0.1--2.1 M/sub sun/. The coreburning red supergiants appear highly overluminous for their pulsation mass, indicating that they have lost up to half their mass since the main-sequence phase

  9. Pulsating jet-like structures in magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Goncharov, V. P. [A. M. Obukhov Institute of Atmospheric Physics RAS, 109017 Moscow (Russian Federation); Pavlov, V. I. [UFR des Mathématiques Pures et Appliquées, Univ. Lille, CNRS FRE 3723 - LML, F-59000 Lille (France)

    2016-08-15

    The formation of pulsating jet-like structures has been studied in the scope of the nonhydrostatic model of a magnetized plasma with horizontally nonuniform density. We discuss two mechanisms which are capable of stopping the gravitational spreading appearing to grace the Rayleigh-Taylor instability and to lead to the formation of stationary or oscillating localized structures. One of them is caused by the Coriolis effect in the rotating frames, and another is connected with the Lorentz effect for magnetized fluids. Magnetized jets/drops with a positive buoyancy must oscillate in transversal size and can manifest themselves as “radio pulsars.” The estimates of their frequencies are made for conditions typical for the neutron star's ocean.

  10. Pulsational stabilities of a star in thermal imbalance: comparison between the methods

    International Nuclear Information System (INIS)

    Vemury, S.K.

    1978-01-01

    The stability coefficients for quasi-adiabatic pulsations for a model in thermal imbalance are evaluated using the dynamical energy (DE) approach, the total (kinetic plus potential) energy (TE) approach, and the small amplitude (SA) approaches. From a comparison among the methods, it is found that there can exist two distinct stability coefficients under conditions of thermal imbalance as pointed out by Demaret. It is shown that both the TE approaches lead to one stability coefficient, while both the SA approaches lead to another coefficient. The coefficient obtained through the energy approaches is identified as the one which determines the stability of the velocity amplitudes.For a prenova model with a thin hydrogen-burning shell in thermal imbalance, several radial modes are found to be unstable both for radial displacements and for velocity amplitudes. However, a new kind of pulsational instability also appears, viz., while the radial displacements are unstable, the velocity amplitudes may be stabilized through the thermal imbalance terms

  11. Impact of pulsations on vortex flowmeters

    NARCIS (Netherlands)

    Peters, M.C.A.M.; Bokhorst, E. van; Limpens, C.H.L.

    1998-01-01

    The impact of imposed pulsations on the output of five 3”-industrial vortex flow meters with a triangular bluff body and various type of sensors was experimentally investigated in a gas flow over a wide range of frequencies from 20 Hz to 400 Hz and amplitudes ranging from 1% to 30% rms of the

  12. KIC 8164262: a heartbeat star showing tidally induced pulsations with resonant locking

    Science.gov (United States)

    Hambleton, K.; Fuller, J.; Thompson, S.; Prša, A.; Kurtz, D. W.; Shporer, A.; Isaacson, H.; Howard, A. W.; Endl, M.; Cochran, W.; Murphy, S. J.

    2018-02-01

    We present the analysis of KIC 8164262, a heartbeat star with a high-amplitude (∼1 mmag), tidally resonant pulsation (a mode in resonance with the orbit) at 229 times the orbital frequency and a plethora of tidally induced g-mode pulsations (modes excited by the orbit). The analysis combines Kepler light curves with follow-up spectroscopic data from the Keck telescope, KPNO (Kitt Peak National Observatory) 4-m Mayall telescope and the 2.7-m telescope at the McDonald observatory. We apply the binary modelling software, PHOEBE, to the Kepler light curve and radial velocity data to determine a detailed binary star model that includes the prominent pulsation and Doppler boosting, alongside the usual attributes of a binary star model (including tidal distortion and reflection). The results show that the system contains a slightly evolved F star with an M secondary companion in a highly eccentric orbit (e = 0.886). We use the results of the binary star model in a companion paper (Fuller) where we show that the prominent pulsation can be explained by a tidally excited oscillation mode held near resonance by a resonance locking mechanism.

  13. Damage Accumulation in Vertical Breakwaters due to Combined Impact Loading and Pulsating Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Nielsen, Søren R. K.

    1999-01-01

    Vertical wall breakwaters used to protect for example an harbour from large waves usually consist of large concrete caissons placed on the seabed. The wave loads can be divided in two types, pulsating and impact loads. For some types of breakwaters especially the impact wave loads can be very large...

  14. Theoretical research of helium pulsating heat pipe under steady state conditions

    International Nuclear Information System (INIS)

    Xu, D; Liu, H M; Li, L F; Huang, R J; Wang, W

    2015-01-01

    As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied. (paper)

  15. Theoretical research of helium pulsating heat pipe under steady state conditions

    Science.gov (United States)

    Xu, D.; Liu, H. M.; Li, L. F.; Huang, R. J.; Wang, W.

    2015-12-01

    As a new-type heat pipe, pulsating heat pipe (PHP) has several outstanding features, such as great heat transport ability, strong adjustability, small size and simple construction. PHP is a complex two-phase flow system associated with many physical subjects and parameters, which utilizes the pressure and temperature changes in volume expansion and contraction during phase changes to excite the pulsation motion of liquid plugs and vapor bubbles in the capillary tube between the evaporator and the condenser. At present time, some experimental investigation of helium PHP have been done. However, theoretical research of helium PHP is rare. In this paper, the physical and mathematical models of operating mechanism for helium PHP under steady state are established based on the conservation of mass, momentum, and energy. Several important parameters are correlated and solved, including the liquid filling ratio, flow velocity, heat power, temperature, etc. Based on the results, the operational driving force and flow resistances of helium PHP are analysed, and the flow and heat transfer is further studied.

  16. Behavior of instantaneous lateral velocity and flow pulsation in duct flow with cylindrical rod

    International Nuclear Information System (INIS)

    Lee, Chi Young; Shin, Chang Hwan; Park, Ju Yong; Oh, Dong Seok; Chun, Tae Hyun; In, Wang Kee

    2012-01-01

    Recently, KAERI (Korea Atomic Energy Research Institute) has examined and developed a dual cooled annular fuel. Dual cooled annular fuel allows the coolant to flow through the inner channel as well as the outer channel. Due to inner channel, the outer diameter of dual cooled annular fuel (15.9 mm) is larger than that of conventional cylindrical solid fuel (9.5 mm). Hence, dual cooled annular fuel assembly becomes a tight lattice fuel bundle configuration to maintain the same array size and guide tube locations as cylindrical solid fuel assembly. P/Ds (pitch between rods to rod diameter ratio) of dual cooled annular and cylindrical solid fuel assemblies are 1.08 and 1.35, respectively. This difference of P/D could change the behavior of turbulent flow in rod bundle. Our research group has investigated a turbulent flow parallel to the fuel rods using two kinds of simulated 3x3 rod bundles. To measure the turbulent rod bundle flow, PIV (Particle Image Velocimetry) and MIR (Matching Index of Refraction) techniques were used. In a simulated dual cooled annular fuel bundle (i.e., P/D=1.08), the quasi periodic oscillating flow motion in the lateral direction, called the flow pulsation, was observed, which significantly increased the lateral turbulence intensity at the rod gap center. The flow pulsation was visualized and measured clearly and successfully by PIV and MIR techniques. Such a flow motion may have influence on the fluid induced vibration, heat transfer, CHF (Critical Heat Flux), and flow mixing between subchannels in rod bundle flow. On the other hand, in a simulated cylindrical solid fuel bundle (i.e., P/D=1.35), the peak of turbulence intensity at the gap center was not measured due to an irregular motion of the lateral flow. This study implies that the behavior of lateral velocity in rod bundle flow is greatly influenced by the P/D (i.e., gap distance). In this work, the influence of gap distance on behavior of instantaneous lateral velocity and flow

  17. On the effect of pulsating flow on surge margin of small centrifugal compressors for automotive engines

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, J.; Climent, H.; Guardiola, C.; Tiseira, A. [CMT-Motores Termicos, Universidad Politecnica de Valencia (Spain); Camino de Vera s/n, E 46022, Valencia (Spain)

    2009-11-15

    Surge is becoming a limiting factor in the design of boosting systems of downsized diesel engines. Although standard compressor flowcharts are used for the selection of those machines for a given application, on-engine conditions widely differ from steady flow conditions, thus affecting compressor behaviour and consequently surge phenomenon. In this paper the effect of pulsating flow is investigated by means of a steady gas-stand that has been modified to produce engine-like pulsating flow. The effect of pressure pulses' amplitude and frequency on the compressor surge line location has been checked. Results show that pulsating flow in the 40-67 Hz range (corresponding to characteristic pulsation when boosting an internal combustion engine) increases surge margin. This increased margin is similar for all the tested frequencies but depends on pulsation amplitude. In a further step, a non-steady compressor model is used for modelling the tests, thus allowing a deeper analysis of the involved phenomena. Model results widely agree with experimental results. (author)

  18. Non-contact method of search and analysis of pulsating vessels

    Science.gov (United States)

    Avtomonov, Yuri N.; Tsoy, Maria O.; Postnov, Dmitry E.

    2018-04-01

    Despite the variety of existing methods of recording the human pulse and a solid history of their development, there is still considerable interest in this topic. The development of new non-contact methods, based on advanced image processing, caused a new wave of interest in this issue. We present a simple but quite effective method for analyzing the mechanical pulsations of blood vessels lying close to the surface of the skin. Our technique is a modification of imaging (or remote) photoplethysmography (i-PPG). We supplemented this method with the addition of a laser light source, which made it possible to use other methods of searching for the proposed pulsation zone. During the testing of the method, several series of experiments were carried out with both artificial oscillating objects as well as with the target signal source (human wrist). The obtained results show that our method allows correct interpretation of complex data. To summarize, we proposed and tested an alternative method for the search and analysis of pulsating vessels.

  19. Pressure pulsation measurements in pipe and cluster flows

    International Nuclear Information System (INIS)

    Benemann, A.; Voj, P.

    1976-01-01

    Measuring and evaluation techniques of pressure pulsations in pipe and cluster flows are described. The measurements were made on a 1 m long SNR rod-cluster and its feed and drain pipes. At Reynolds numbers in the cluster of 8.9 x 10 4 flow velocities of 14 m/sec were achieved. With the aid of a block diagram recording of the measured values by piezoelectric crystal and piezo-resistive strain gange as well as data processing are explained. For the analytical treatment of the pressure pulsation signals characterizing the turbulence field computer codes of a digital computer and a fast-fourier analyzer (Hewlett-Packard 5450 A) were used. The results show good agreement with theoretical curves on the behaviour of turbulent boundary layers of cluster and pipe flows at high Reynolds numbers. (TK) [de

  20. Radial Velocity Fiber-Fed Spectrographs Towards the Discovery of Compact Planets and Pulsations on M Stars

    Science.gov (United States)

    Berdiñas, Zaira M.

    2016-11-01

    outlined two possible solutions: either the FWHM measurements need to be decorrelated with the changes of flux on the spectra as a function of wavelength, or the spectra need to be corrected very precisely before deriving proxies for the mean line profiles. In the second part of this dissertation, and taking advantage of the above characterization of systematic effects in the sub-night domain, I present the first CTB results regarding the detection of stellar pulsations in M dwarfs. The detection of such pulsations would open a new field of study for these stars, namely the field of asteroseismology. The asteroseismology tools allow to calculate very precisely the star physical parameters, thus improving the calculation of the bulk properties of any orbiting planet. This part of the thesis is focused on GJ 588 and GJ 699 (Barnard’s star), two of the most long-term stable M dwarfs observed by HARPS and other high-precision surveys. Firstly in this section, I detail the procedures applied to correct the CTB data from known instrumental effects such as the charge transfer efficiency, the seeing effect, or the wavelength calibration 1-2 m/s night-to-night jumps produced by the wavelength calibration. Later, we used likelihood periodograms to unveil periodical signals embedded in the range of periods where stellar pulsations are predicted. Neither the radial velocities nor the time-series of the second order moment of the mean- line profile showed confident detections. In spite of that, our study with injected sinusoids indicates that signals above the (\\sim)0.5 m/s threshold would be detected in 90% of the cases. In other words, this is an upper limit of sensibility showing that stellar pulsations in the predicted range of periods from 20 min to 3 h can be detected with four consecutive nights of observations provided that their amplitudes are larger than (\\sim)0.5 m/s. This result combined with some tentative detection of some signals below this threshold motivates us to

  1. ON THE POSSIBLE EXISTENCE OF SHORT-PERIOD g-MODE INSTABILITIES POWERED BY NUCLEAR-BURNING SHELLS IN POST-ASYMPTOTIC GIANT BRANCH H-DEFICIENT (PG1159-TYPE) STARS

    International Nuclear Information System (INIS)

    Corsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.; Gonzalez Perez, J. M.; Kepler, S. O.

    2009-01-01

    We present a pulsational stability analysis of hot post-asymptotic giant branch (AGB) H-deficient pre-white dwarf stars with active He-burning shells. The stellar models employed are state-of-the-art equilibrium structures representative of PG1159 stars derived from the complete evolution of the progenitor stars, through the thermally pulsing AGB phase and born-again episode. On the basis of fully nonadiabatic pulsation computations, we confirmed theoretical evidence for the existence of a separate PG1159 instability strip in the log T eff -log g diagram characterized by short-period g-modes excited by the ε-mechanism. This instability strip partially overlaps the already known GW Vir instability strip of intermediate/long-period g-modes destabilized by the classical κ-mechanism acting on the partial ionization of C and/or O in the envelope of PG1159 stars. We found that PG1159 stars characterized by thick He-rich envelopes and located inside this overlapping region could exhibit both short and intermediate/long periods simultaneously. As a natural application of our results, we study the particular case of VV 47, a pulsating planetary nebula nucleus (PG1159 type) that is particularly interesting because it has been reported to exhibit a rich and complex pulsation spectrum including a series of unusually short pulsation periods. We found that the long periods exhibited by VV 47 can be readily explained by the classical κ-mechanism, while the observed short-period branch below ∼300 s could correspond to modes triggered by the He-burning shell through the ε-mechanism, although more observational work is needed to confirm the reality of these short-period modes. Were the existence of short-period g-modes in this star convincingly confirmed by future observations, VV 47 could be the first known pulsating star in which both the κ-mechanism and the ε-mechanism of mode driving are simultaneously operating.

  2. A new analgesic method, two-minute sciatic nerve press, for immediate pain relief: a randomized trial

    Directory of Open Access Journals (Sweden)

    Zhang Fenglin

    2008-01-01

    Full Text Available Abstract Background Current analgesics have drawbacks such as delays in acquisition, lag-times for effect, and side effects. We recently presented a preliminary report of a new analgesic method involving a two-minute sciatic nerve press, which resulted in immediate short-term relief of pain associated with dental and renal diseases. The present study investigated whether this technique was effective for pain associated with other disease types, and whether the relief was effective for up to one hour. Methods This randomized, placebo-controlled, parallel-group trial was conducted in four hospitals in Anhui Province, China. Patients with pain were sequentially recruited by participating physicians during clinic visits, and 135 patients aged 15 – 80 years were enrolled. Dental disease patients included those with acute pulpitis and periapical abscesses. Renal disease patients included those with kidney infections and/or stones. Tumor patients included those with nose, breast, stomach and liver cancers, while Emergency Room patients had various pathologies. Patients were randomly assigned to receive a "sciatic nerve press" in which pressure was applied simultaneously to the sciatic nerves at the back of both thighs, or a "placebo press" in which pressure was applied to a parallel region on the front of the thighs. Each fist applied a pressure of 11 – 20 kg for 2 minutes. Patients rated their level of pain before and after the procedure. Results The "sciatic nerve press" produced immediate relief of pain in all patient groups. Emergency patients reported a 43.5% reduction in pain (p th minutes, and the relief decreased 47% by the 60th minutes. Conclusion Two minutes of pressure on both sciatic nerves produced immediate significant short-term conduction analgesia. This technique is a convenient, safe and powerful method for the short-term treatment of clinical pain associated with a diverse range of pathologies. Trial registration Current

  3. Study on the Pressure Pulsation inside Runner with Splitter Blades in Ultra-High Head Turbine

    International Nuclear Information System (INIS)

    Meng, L; Zhang, S P; Zhou, L J; Wang, Z W

    2014-01-01

    Runners with splitter blades were used widely for the high efficiency and stability. In this paper, the unsteady simulation of an ultra-high head turbine at the best efficiency point, 50% and 75% discharge points were established, to analyze the pressure pulsation in the vaneless space, rotating domain and the draft tube. First of all, runners with different length splitter blades and without splitter blades were compared to learn the efficiency and the pressure distribution on the blade surface. And then the amplitude of the pressure pulsation was analysed. The peak efficiency of the runner with splitter blades is remarkably higher than that of the corresponding impeller without splitter blades. And the efficiency of the turbine is the highest when the length ratio of the splitter blades is 0.75 times the main blades. The pressure pulsation characteristics were also influenced, because the amplitudes of the pulsation induced by the RSI phenomenon were changed as a result of more blades. At last, the best design plan of the length of the splitter blades (length ratio=0.825) was obtained, which improved the pressure pulsation characteristics without significant prejudice to the efficiency

  4. Whole Earth Telescope discovery of a strongly distorted quadrupole pulsation in the largest amplitude rapidly oscillating Ap star

    Science.gov (United States)

    Holdsworth, Daniel L.; Kurtz, D. W.; Saio, H.; Provencal, J. L.; Letarte, B.; Sefako, R. R.; Petit, V.; Smalley, B.; Thomsen, H.; Fletcher, C. L.

    2018-01-01

    We present a new analysis of the rapidly oscillating Ap (roAp) star, 2MASS J19400781 - 4420093 (J1940; V = 13.1). The star was discovered using SuperWASP broad-band photometry to have a frequency of 176.39 d-1 (2041.55 μHz; P = 8.2 min; Holdsworth et al. 2014a) and is shown here to have a peak-to-peak amplitude of 34 mmag. J1940 has been observed during three seasons at the South African Astronomical Observatory, and has been the target of a Whole Earth Telescope campaign. The observations reveal that J1940 pulsates in a distorted quadrupole mode with unusual pulsational phase variations. A higher signal-to-noise ratio spectrum has been obtained since J1940's first announcement, which allows us to classify the star as A7 Vp Eu(Cr). The observing campaigns presented here reveal no pulsations other than the initially detected frequency. We model the pulsation in J1940 and conclude that the pulsation is distorted by a magnetic field of strength 1.5 kG. A difference in the times of rotational maximum light and pulsation maximum suggests a significant offset between the spots and pulsation axis, as can be seen in roAp stars.

  5. Light curves for ''bump Cepheids'' computed with a dynamically zoned pulsation code

    International Nuclear Information System (INIS)

    Adams, T.F.; Castor, J.E.; Davis, C.G.

    1978-01-01

    The dynamically zoned pulsation code developed by Castor, Davis, and Davison has been used to recalculate the Goddard model and to calculate three other Cepheid models with the same period (9.8 days). This family of models shows how the bumps and other features of the light and velocity curves change as the mass is varied at constant period. This study, with a code that is capable of producing reliable light curves, shows again that the light and velocity curves for 9.8-day Cepheid models with standard homogeneous compositions do not show bumps like those that are observed unless the mass is significantly lower than the ''evolutionary mass.'' The light and velocity curves for the Goddard model presented here are similar to those computed independently by Fischel, Sparks, and Karp. They should be useful as standards for future investigators

  6. Investigation on field method using strain measurement on pipe surface to measure pressure pulsation in piping systems

    International Nuclear Information System (INIS)

    Maekawa, Akira; Tsuji, Takashi; Takahashi, Tsuneo; Kato, Minoru

    2013-01-01

    Accurate evaluation of the occurrence location and amplitude of pressure pulsations in piping systems can lead to efficient plant maintenance by preventing fatigue failure of piping and components because the pulsations can be one of the main causes of vibration fatigue and acoustic noise in piping. A non-destructive field method to measure pressure pulsations easily and directly was proposed to replace conventional methods such as prediction using numerical simulations and estimation using locally installed pressure gauges. The proposed method was validated experimentally by measuring pulsating flow in a mock-up piping system. As a result, it was demonstrated that the method to combine strain measurement on the outer surface of pipe with the formula for thick-walled cylinders could measure amplitudes and behavior of the pressure pulsations with a practical accuracy. Factors affecting the measurement accuracy of the proposed method were also discussed. Furthermore, the applicability of the formula for thin-walled cylinders was examined for variously shaped pipes. (author)

  7. KIC 4552982: outbursts and pulsations in the longest-ever pseudo-continuous light curve of a ZZ Ceti

    Directory of Open Access Journals (Sweden)

    Bell K. J.

    2015-01-01

    Full Text Available KIC 4552982 was the first ZZ Ceti (hydrogen-atmosphere pulsating white dwarf identified to lie in the Kepler field, resulting in the longest pseudo-continuous light curve ever obtained for this type of variable star. In addition to the pulsations, this light curve exhibits stochastic episodes of brightness enhancement unlike any previously studied white dwarf phenomenon. We briefly highlight the basic outburst and pulsation properties in these proceedings.

  8. Experimental investigation on a pulsating heat pipe with hydrogen

    International Nuclear Information System (INIS)

    Deng, H R; Liu, Y M; Ma, R F; Han, D Y; Gan, Z H; Pfotenhauer, J M

    2015-01-01

    The pulsating heat pipe (PHP) has been increasingly studied in cryogenic application, for its high transfer coefficient and quick response. Compared with Nb 3 Sn and NbTi, MgB 2 whose critical transformation temperature is 39 K, is expected to replace some high-temperature superconducting materials at 25 K. In order to cool MgB 2 , this paper designs a Hydrogen Pulsating Heat Pipe, which allows a study of applied heat, filling ratio, turn number, inclination angle and length of adiabatic section on the thermal performance of the PHP. The thermal performance of the hydrogen PHP is investigated for filling ratios of 35%, 51%, 70% at different heat inputs, and provides information regarding the starting process is received at three filling ratios. (paper)

  9. Evaluation of pump pulsation in respirable size-selective sampling: part II. Changes in sampling efficiency.

    Science.gov (United States)

    Lee, Eun Gyung; Lee, Taekhee; Kim, Seung Won; Lee, Larry; Flemmer, Michael M; Harper, Martin

    2014-01-01

    This second, and concluding, part of this study evaluated changes in sampling efficiency of respirable size-selective samplers due to air pulsations generated by the selected personal sampling pumps characterized in Part I (Lee E, Lee L, Möhlmann C et al. Evaluation of pump pulsation in respirable size-selective sampling: Part I. Pulsation measurements. Ann Occup Hyg 2013). Nine particle sizes of monodisperse ammonium fluorescein (from 1 to 9 μm mass median aerodynamic diameter) were generated individually by a vibrating orifice aerosol generator from dilute solutions of fluorescein in aqueous ammonia and then injected into an environmental chamber. To collect these particles, 10-mm nylon cyclones, also known as Dorr-Oliver (DO) cyclones, were used with five medium volumetric flow rate pumps. Those were the Apex IS, HFS513, GilAir5, Elite5, and Basic5 pumps, which were found in Part I to generate pulsations of 5% (the lowest), 25%, 30%, 56%, and 70% (the highest), respectively. GK2.69 cyclones were used with the Legacy [pump pulsation (PP) = 15%] and Elite12 (PP = 41%) pumps for collection at high flows. The DO cyclone was also used to evaluate changes in sampling efficiency due to pulse shape. The HFS513 pump, which generates a more complex pulse shape, was compared to a single sine wave fluctuation generated by a piston. The luminescent intensity of the fluorescein extracted from each sample was measured with a luminescence spectrometer. Sampling efficiencies were obtained by dividing the intensity of the fluorescein extracted from the filter placed in a cyclone with the intensity obtained from the filter used with a sharp-edged reference sampler. Then, sampling efficiency curves were generated using a sigmoid function with three parameters and each sampling efficiency curve was compared to that of the reference cyclone by constructing bias maps. In general, no change in sampling efficiency (bias under ±10%) was observed until pulsations exceeded 25% for the

  10. Study on pressure pulsation and piping vibration of complex piping of reciprocating compressor

    International Nuclear Information System (INIS)

    Xu Bin; Feng Quanke; Yu Xiaoling

    2008-01-01

    This paper presents a preliminary research on the piping vibration and pressure pulsation of reciprocating compressor piping system. On the basis of plane wave theory, the calculation of gas column natural frequency and pressure pulsation in complex pipelines is done by using the transfer matrix method and stiffness matrix method, respectively. With the discretization method of FEM, a mathematical model for calculating the piping vibration and stress of reciprocating compressor piping system is established, and proper boundary conditions are proposed. Then the structural modal and stress of the piping system are calculated with CAESAR II. The comparison of measured and calculated values found that the one dimensional wave equation can accurately calculate the natural frequency and pressure pulsation in gas column of piping system for reciprocating compressor. (authors)

  11. Ocular pulsation correlates with ocular tension: the choroid as piston for an aqueous pump?

    Science.gov (United States)

    Phillips, C I; Tsukahara, S; Hosaka, O; Adams, W

    1992-01-01

    In 26 random out-patients, including 13 treated glaucoma patients and ocular hypertensives, the higher the ocular tension, the greater the pulse amplitude, by Alcon pneumotonometry, at a statistically significant level. In a single untreated hypertensive, when 2-hourly pneumotonometry was done for 24 h, the correlation was similar and significant. The higher the diastolic blood pressure, the higher the ocular pulsation, also significantly. Pulsation is suggested to be a pump, the choroid being the piston, contributing (1) to an increase in the outflow of aqueous humour and (2) to a homeostatic mechanism contributing to normalization of the intra-ocular pressure, wherein pulsation increases or decreases, as the intraocular pressure increases or decreases, respectively.

  12. Period of sunspot numbers is 11. 02653720 years (11 years 9 days 16 hours 18 minutes 0 seconds)

    Energy Technology Data Exchange (ETDEWEB)

    Norita, S [Miyazaki Univ. (Japan). Faculty of Engineering

    1976-09-01

    In the statistical analysis of time series there have been applied usually the stationary stochastic process or the Markov stochastic process and recently there are applied remarkably an autoregressive process, a stochastic difference equation, an autoregressive-moving average process, a moving average process, the Whittaker periodogram, the correlogram, Schuster periodogram, chi-squared periodogram, level crossings, harmonic process, difference method, spectral density and first order vector equation, but in special case it is desirable to apply the nonstationary stocastic process. In this paper we introduce a stationarity into the autoregressive process and then it is the first purpose to compute precisely the period of sunspot numbers. The result up to the eighth places at the decimal point was obtained that its period is 11.02653720 years, that is, 11 years 9 days 16 hours 18 minutes 0 seconds. This is considered to be more relevant than numerical values by which Schuster (1906) and Yule (1927) had calculated the respective 11.125 years and 10.60 years in the past. We revised the theoretical expression in the thesis of Anderson, Shaman, Lindgren, Brillinger, Newbold, Parzen, Kingman, Van Ness and Kenneth, etc. and executed the numerical analysis of period of sunspot numbers investigated now.

  13. Period of sunspot numbers is 11.02653720 years (11 years 9 days 16 hours 18 minutes 0 seconds)

    International Nuclear Information System (INIS)

    Norita, Sadataka

    1976-01-01

    In the statistical analysis of time series there have been applied usually the stationary stochastic process or the Markov stochastic process and recently there are applied remarkably an autoregressive process, a stochastic difference equation, an autoregressive-moving average process, a moving average process, the Whittaker periodogram, the correlogram, Schuster periodogram, chi-squared periodogram, level crossings, harmonic process, difference method, spectral density and first order vector equation, but in special case it is desirable to apply the nonstationary stocastic process. In this paper we introduce an stationarity into the autoregressive process and then it is the first purpose to compute precisely period of sunspot numbers. The result up to the eighth places at the decimal point was obtained that its period is 11.02653720 years, that is, 11 years 9 days 16 hours 18 minutes 0 seconds. This is considered to be more relevant than numerical values by which Schuster (1906) and Yule (1927) had calculated the respective 11.125 years and 10.60 years in the past. We revised the theoretical expression in the thesis of Anderson, Shaman, Lindgren, Brillinger, Newbold, Parzen, Kingman, Van Ness and Kenneth, etc. and executed the numerical analysis of period of sunspot numbers investigated now. (auth.)

  14. RR lyrae variable pulsations and the Oosterhoff groups

    International Nuclear Information System (INIS)

    Cox, A.N.

    1981-01-01

    It is concluded that Oosterhoff group I clusters have 0.55 M/sub sun/ stars and group II clusters have 0.65 M/sub sun/ stars. The Y value is always about 0.29. Mean log L/L/sub sun/ values are 1.66 and 1.78 giving M/sub bol/ = 0.60 and 0.30 for the RR Lyrae variables in these two groups of clusters. For field RR Lyrae variables at M = approx. 0.5 M/sub sun/ or less, perhaps M/sub bol/ = 0.90 or even larger as Clube and Jones propose. Apparently all evolution is blueward for RR Lyrae variables, and the color overlap of F and 1H pulsators is not real

  15. Pulsating Heat Pipe for Cryogenic Fluid Management, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A passive Pulsating Heat Pipe (PHP) system is proposed to distribute cooling over broad areas with low additional system mass. The PHP technology takes advantage of...

  16. The occurrence of binary evolution pulsators in classical instability strip of RR Lyrae and Cepheid variables

    Science.gov (United States)

    Karczmarek, P.; Wiktorowicz, G.; Iłkiewicz, K.; Smolec, R.; Stępień, K.; Pietrzyński, G.; Gieren, W.; Belczynski, K.

    2017-04-01

    Single star evolution does not allow extremely low-mass stars to cross the classical instability strip (IS) during the Hubble time. However, within binary evolution framework low-mass stars can appear inside the IS once the mass transfer (MT) is taken into account. Triggered by a discovery of low-mass (0.26 M⊙) RR Lyrae-like variable in a binary system, OGLE-BLG-RRLYR-02792, we investigate the occurrence of similar binary components in the IS, which set up a new class of low-mass pulsators. They are referred to as binary evolution pulsators (BEPs) to underline the interaction between components, which is crucial for substantial mass-loss prior to the IS entrance. We simulate a population of 500 000 metal-rich binaries and report that 28 143 components of binary systems experience severe MT (losing up to 90 per cent of mass), followed by at least one IS crossing in luminosity range of RR Lyrae (RRL) or Cepheid variables. A half of these systems enter the IS before the age of 4 Gyr. BEPs display a variety of physical and orbital parameters, with the most important being the BEP mass in range 0.2-0.8 M⊙, and the orbital period in range 10-2 500 d. Based on the light curve only, BEPs can be misclassified as genuine classical pulsators, and as such they would contaminate genuine RRL and classical Cepheid variables at levels of 0.8 and 5 per cent, respectively. We state that the majority of BEPs will remain undetected and we discuss relevant detection limitations.

  17. Linear theory period ratios for surface helium enhanced double-mode Cepheids

    International Nuclear Information System (INIS)

    Cox, A.N.; Hodson, S.W.; King, D.S.

    1979-01-01

    Linear nonadiabatic theory period ratios for models of double-mode Cepheids with their two periods between 1 and 7 days have been computed, assuming differing amounts and depths of surface helium enhancement. Evolution theory masses and luminosities are found to be consistent with the observed periods. All models give Pi 1 /Pi 0 approx. =0.70 as observed for the 11 known variables, contrary to previous theoretical conclusions. The composition structure that best fits the period ratios has the helium mass fraction in the outer 10 -3 of the stellar mass (T< or =250,000 K) as 0.65, similar to a previous model for the triple-mode pulsator AC And. This enrichment can be established by a Cepheid wind and downward inverted μ gradient instability mixing in the lifetime of these low-mass classical Cepheids

  18. Experimental investigation of a pulsating heat pipe for hybrid vehicle applications

    International Nuclear Information System (INIS)

    Burban, G.; Ayel, V.; Alexandre, A.; Lagonotte, P.; Bertin, Y.; Romestant, C.

    2013-01-01

    This paper deals with the experimental results of an unlooped pulsating heat pipe (PHP) developed and tested in an electronic thermal management field with hybrid vehicle applications in mind. The 2.5 mm inner tube diameter device was cooled by an air heat exchanger to replicate the environment of a vehicle. In order to characterize this pulsating heat pipe, four working fluids have been tested. They are acetone, methanol, water, and n-pentane, with applied thermal power ranging from 25 W to 550 W, air temperature ranging from 10 °C to 60 °C and air velocity ranging from 0.25 m s −1 to 2 m s −1 . Three inclinations have also been tested according to their horizontal positions: +45° (condenser above the evaporator), 0° and −45° (condenser below the evaporator). Among the different results, some of the most revelatory were obtained with regard to unfavourable inclination (−45°), for which the performances were very interesting considering a terrestrial application. On the other hand, one also observed low temperature limitations for water as a working fluid and degradation of performances for n-pentane tested at 60 °C air temperature. On an overall basis, however, it should be noted that the PHP functioned with high reliability and reproducibility and without any failure during the start-up or working stage. - Highlights: ► An unlooped pulsating heat pipe (PHP) has been tested varying heat power, air velocity and temperature, inclination and fluid. ► Four working fluids have been tested and classified into two groups according to the performances of the PHP. ► Interesting water phenomena have been highlighted in this study. ► The PHP worked with a good reliability and reproducibility.

  19. Experimental observation of pulsating instability under acoustic field in downward-propagating flames at large Lewis number

    KAUST Repository

    Yoon, Sung Hwan

    2017-10-12

    According to previous theory, pulsating propagation in a premixed flame only appears when the reduced Lewis number, β(Le-1), is larger than a critical value (Sivashinsky criterion: 4(1 +3) ≈ 11), where β represents the Zel\\'dovich number (for general premixed flames, β ≈ 10), which requires Lewis number Le > 2.1. However, few experimental observation have been reported because the critical reduced Lewis number for the onset of pulsating instability is beyond what can be reached in experiments. Furthermore, the coupling with the unavoidable hydrodynamic instability limits the observation of pure pulsating instabilities in flames. Here, we describe a novel method to observe the pulsating instability. We utilize a thermoacoustic field caused by interaction between heat release and acoustic pressure fluctuations of the downward-propagating premixed flames in a tube to enhance conductive heat loss at the tube wall and radiative heat loss at the open end of the tube due to extended flame residence time by diminished flame surface area, i.e., flat flame. The thermoacoustic field allowed pure observation of the pulsating motion since the primary acoustic force suppressed the intrinsic hydrodynamic instability resulting from thermal expansion. By employing this method, we have provided new experimental observations of the pulsating instability for premixed flames. The Lewis number (i.e., Le ≈ 1.86) was less than the critical value suggested previously.

  20. Soft controller switching technique to minimize the torque and current pulsations of a SCIM during its reswitching

    International Nuclear Information System (INIS)

    Larik, A.S.

    2010-01-01

    The direct-on-line starting of induction motor draws heavy current and to limit this Inrush current to a safe level normally a star-delta switch is used. However, the switching over from star to delta causes over current transients and this leads to torque pulsations. Therefore, in this paper the current and torque pulsations developed during the switching process are focused and a soft-switched controller is devised to minimize the re-closure transient currents and torque pulsations during star-delta switching of induction motor. The designed system can readily handles the sensing of favorable conditions of re closure of a switched-off running induction motor and it minimizes the inrush current and hence the pulsations of torque of all types of induction motors, whether, single-phase or three phase. An investigation is made into the transient currents and pulsation torques generated due to opening the circuit of a running induction motor and the switching pattern of star-delta switching. The re-switching control scheme for the induction motor is practically tested in the laboratory with and without soft controller. (author)

  1. Energy confinement in the tokamak devices pulsator and ASDEX

    International Nuclear Information System (INIS)

    Klueber, O.; Murmann, H.

    1982-04-01

    The energy confinement of ohmically heated hydrogen plasmas obtained in the ASDEX and Pulsator tokamaks is investigated. In both devices, the confinement time does not follow a simple scaling law of the type tausub(E) approx. equal to nsub(e)a 2 . In the case of Pulsator, a regime is identified in which the transport is governed by electron heat conduction. The experimental data are compared with an analytic solution of the energy balance equation from which a heat diffusivity chisub(e) approx. equal to Zsub(eff)sup(1/3)/nsub(e)(r)Tsub(e)sup(1/2)(r)q(r) is inferred. chisub(i) is supposed to be neoclassical (plateau regime). Heat conduction following these laws is shown to lead to a consistent description of the full data set. (orig.)

  2. The effects of 3:1 resonances in stellar pulsations

    International Nuclear Information System (INIS)

    Moskalik, P.; Buchler, J.R.

    1989-01-01

    The effects of a 3:1 resonance are studied and compared to those of a 2:1 resonance. When the growth rate of the higher frequency mode is negative it is shown that a 3:1 resonance affects the pulsation in a very similar fashion to a 2:1 resonance. In fact, it may be very difficult to discriminate in observational data between these two types of coupling. On the other hand, when the higher frequency mode is linearly unstable a 3:1 resonance, contrary to a 2:1 case, is unable to saturate the instability in the absence of nonresonant coupling terms. Astrophysical applications are discussed. 19 refs

  3. Quasiperiodic ULF-pulsations in Saturn's magnetosphere

    Directory of Open Access Journals (Sweden)

    G. Kleindienst

    2009-02-01

    Full Text Available Recent magnetic field investigations made onboard the Cassini spacecraft in the magnetosphere of Saturn show the existence of a variety of ultra low frequency plasma waves. Their frequencies suggest that they are presumably not eigenoscillations of the entire magnetospheric system, but excitations confined to selected regions of the magnetosphere. While the main magnetic field of Saturn shows a distinct large scale modulation of approximately 2 nT with a periodicity close to Saturn's rotation period, these ULF pulsations are less obvious superimposed oscillations with an amplitude generally not larger than 3 nT and show a package-like structure. We have analyzed these wave packages and found that they are correlated to a certain extent with the large scale modulation of the main magnetic field. The spatial localization of the ULF wave activity is represented with respect to local time and Kronographic coordinates. For this purpose we introduce a method to correct the Kronographic longitude with respect to a rotation period different from its IAU definition. The observed wave packages occur in all magnetospheric regions independent of local time, elevation, or radial distance. Independent of the longitude correction applied the wave packages do not occur in an accentuated Kronographic longitude range, which implies that the waves are not excited or confined in the same selected longitude ranges at all times or that their lifetime leads to a variable phase with respect to the longitudes where they have been exited.

  4. Effect of isoproterenol, phenylephrine, and sodium nitroprusside on fundus pulsations in healthy volunteers.

    OpenAIRE

    Schmetterer, L; Wolzt, M; Salomon, A; Rheinberger, A; Unfried, C; Zanaschka, G; Fercher, A F

    1996-01-01

    AIMS/BACKGROUND: Recently a laser interferometric method for topical measurement of fundus pulsations has been developed. Fundus pulsations in the macular region are caused by the inflow and outflow of blood into the choroid. The purpose of this work was to study the influence of a peripheral vasoconstricting (the alpha 1 adrenoceptor agonist phenylephrine), a predominantly positive inotropic (the non-specific beta adrenoceptor agonist isoproterenol), and a non-specific vasodilating (sodium n...

  5. Modeling Pc4 Pulsations in Two and a Half Dimensions with Comparisons to Van Allen Probes Observations

    Science.gov (United States)

    McEachern, Charles A.

    Field line resonances---that is, Alfven waves bouncing between the northern and southern foot points of a geomagnetic field line---serve to energize magnetospheric particles through drift-resonant interactions, carry energy from high to low altitude, induce currents in the magnetosphere, and accelerate particles into the atmosphere. Wave structure and polarization significantly impact the execution these roles. The present work showcases a new two and a half dimensional code, Tuna, ideally suited to model FLRs, with the ability to consider large-but-finite azimuthal modenumbers, coupling between the poloidal, toroidal, and compressional modes, and arbitrary harmonic structure. Using Tuna, the interplay between Joule dissipation and poloidal-to-toroidal rotation is considered for both dayside and nightside conditions. An attempt is also made to demystify giant pulsations, a class of FLR knows for its distinctive ground signatures. Numerical results are supplemented by a survey of ˜700 FLRs using data from the Van Allen Probes, the first such survey to characterize each event by both polarization and harmonic. The combination of numerical and observational results suggests an explanation for the disparate distributions observed in poloidal and toroidal FLR events.

  6. Global Ultra-Low-Frequency Geomagnetic Pulsations Associated with the March 24, 1991 Geomagnetic Storm

    Directory of Open Access Journals (Sweden)

    Nan-Wei Chen Jann-Yenq Liu

    2008-01-01

    Full Text Available On 24 March 1991, global ultra-low-frequency (ULF pulsations (1.1 - 3.3 mHz observed in the magnetosphere as well as on the ground were studied via analyzing magnetic field data obtained from a global network, comprising ground-based observatories and geosynchronous satellites. In the magnetosphere, the compressional and transverse components of the magnetic fields recorded at two satellites, GOES 6 and GOES 7, showed dominant fluctuations when they were in the vicinity of the noon sector, whereas the transverse fluctuations became dominant when they were at the dawn side. Similarly, on the ground, the H and D components had major fluctuations along with an increase in amplitude from low to high geomagnetic latitudes. In addition, the amplitude of the ULF pulsation was enhanced at the dawn and dusk sides. The geomagnetic pulsations propagated anti-sunward and were of counterclockwise and clockwise elliptical polarizations at the dawn and dusk sides respectively. The counterclockwise elliptical polarization reversed to a clockwise elliptical polarization at geomagnetic local noon and linear polarization was observed during the reversal. It appears that the analysis of the global network data not only provided us with a study of the characteristics of the waves in the magnetosphere and on the ground but also provided us with correlations between the geosynchronous and ground observations, which should be essential to the determination of possible mechanisms of this storm-related wave event.

  7. Flow control by combining radial pulsation and rotation of a cylinder in uniform flow

    Science.gov (United States)

    Oualli, H.; Hanchi, S.; Bouabdallah, A.; Gad-El-Hak, M.

    2008-11-01

    Flow visualizations and hot-wire measurements are carried out to study a circular cylinder undergoing simultaneous radial pulsation and rotation and placed in a uniform flow. The Reynolds number is in the range of 1,000--22,000, for which transition in the shear layers and near wake is expected. Our previous experimental and numerical investigations in this subcritical flow regime have established the existence of an important energy transfer mechanism from the mean flow to the fluctuations. Radial pulsations cause and enhance that energy transfer. Certain values of the amplitude and frequency of the pulsations lead to negative drag (i.e. thrust). The nonlinear interaction between the Magnus effect induced by the steady rotation of the cylinder and the near-wake modulated by the bluff body's pulsation leads to alteration of the omnipresent Kármán vortices and the possibility of optimizing the lift-to-drag ratio as well as the rates of heat and mass transfer. Other useful applications include the ability to enhance or suppress the turbulence intensity, and to avoid the potentially destructive lock-in phenomenon in the wake of bridges, electric cables and other structures.

  8. Monitoring pulsating giant stars in M33: star formation history and chemical enrichment

    Science.gov (United States)

    Javadi, A.; van Loon, J. Th

    2017-06-01

    We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). A new method has been developed by us to use pulsating giant stars to reconstruct the star formation history of galaxies over cosmological time as well as using them to map the dust production across their host galaxies. In first Instance the central square kiloparsec of M33 was monitored and long period variable stars (LPVs) were identified. We give evidence of two epochs of a star formation rate enhanced by a factor of a few. These stars are also important dust factories, we measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. Then the monitoring survey was expanded to cover a much larger part of M33 including spiral arms. Here we present our methodology and describe results for the central square kiloparsec of M33 [1-4] and disc of M33 [5-8].

  9. Monitoring pulsating giant stars in M33: star formation history and chemical enrichment

    International Nuclear Information System (INIS)

    Javadi, A; Van Loon, J Th

    2017-01-01

    We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group spiral galaxy M33 (Triangulum). A new method has been developed by us to use pulsating giant stars to reconstruct the star formation history of galaxies over cosmological time as well as using them to map the dust production across their host galaxies. In first Instance the central square kiloparsec of M33 was monitored and long period variable stars (LPVs) were identified. We give evidence of two epochs of a star formation rate enhanced by a factor of a few. These stars are also important dust factories, we measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. Then the monitoring survey was expanded to cover a much larger part of M33 including spiral arms. Here we present our methodology and describe results for the central square kiloparsec of M33 [1–4] and disc of M33 [5–8]. (paper)

  10. The analysis of the possibility of using 10-minute rainfall series to determine the maximum rainfall amount with 5 minutes duration

    Science.gov (United States)

    Kaźmierczak, Bartosz; Wartalska, Katarzyna; Wdowikowski, Marcin; Kotowski, Andrzej

    2017-11-01

    Modern scientific research in the area of heavy rainfall analysis regarding to the sewerage design indicates the need to develop and use probabilistic rain models. One of the issues that remains to be resolved is the length of the shortest amount of rain to be analyzed. It is commonly believed that the best time is 5 minutes, while the least rain duration measured by the national services is often 10 or even 15 minutes. Main aim of this paper is to present the difference between probabilistic rainfall models results given from rainfall time series including and excluding 5 minutes rainfall duration. Analysis were made for long-time period from 1961-2010 on polish meteorological station Legnica. To develop best fitted to measurement rainfall data probabilistic model 4 probabilistic distributions were used. Results clearly indicates that models including 5 minutes rainfall duration remains more appropriate to use.

  11. Pulsations of the High-Amplitude δ Scuti star YZ Bootis

    Science.gov (United States)

    Yang, Tao-Zhi; Esamdin, Ali; Fu, Jian-Ning; Niu, Hu-Biao; Feng, Guo-Jie; Song, Fang-Fang; Liu, Jin-Zhong; Ma, Lu

    2018-01-01

    We present a study on pulsations of the high-amplitude δ Scuti star YZ Boo based on photometric observations in Johnson V and R bands with both the Nanshan 1-m telescope of Xinjiang AstronomicalObservatory (XAO) and the Xinglong 85-cmtelescope of NationalAstronomical Observatories, Chinese Academy of Sciences (NAOC). Fourier analysis of the light curves reveals the fundamental radial mode and its five harmonics, with the fourth and fifth being newly detected. Thirty-nine new times of maximum light are determined from the light curves, and combined with those in the literature, we construct the O ‑ C diagram, derive a new ephemeris and determine a new value for the updated period of 0.104091579(2). In addition, the O ‑ C diagram reveals an increasing rate of period change for YZ Boo. Theoretical models are calculated and constrained with the observationally determined parameters of YZ Boo. The mass and age of YZ Boo are hence derived as M = 1.61±0.05 M ⊙ and age = (1.44±0.14)×109 yr, respectively.With both the frequency of the fundamental radial mode and the rate of period change, YZ Boo is located at the post main sequence stage.

  12. Meibomian gland dysfunction patients with novel Sjögren’s syndrome biomarkers benefit significantly from a single vectored thermal pulsation procedure: a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Epitropoulos AT

    2017-04-01

    Full Text Available Alice T Epitropoulos,1,2 Krysta Goslin,2 Raman Bedi,3 Caroline A Blackie4 1Ophthalmic Surgeons and Consultants of Ohio, The Eye Center of Columbus, 2The Ohio State University Wexner Medical Center, Department of Ophthalmology, Columbus, OH, USA; 3Iris Advanced Eye Centre, Chandigarh, India; 4TearScience Inc., Morrisville, NC, USA Purpose: To measure the effects from a single vectored thermal pulsation treatment of the meibomian glands on dry eye signs and symptoms in patients who tested positively versus negatively for novel Sjögren’s syndrome (SS biomarkers. Methods: The retrospective study included the deidentified data of 102 eyes of 59 patients with dry eye and meibomian gland dysfunction (MGD, who were also tested for novel biomarkers for SS and underwent a single 12-minute LipiFlow thermal pulsation procedure. All patients were already being treated with individualized dry eye therapy but remained symptomatic. Meibomian gland secretion (MGS scores, Standard Patient Evaluation of Eye Dryness (SPEED questionnaire scores and tear breakup times (TBUTs before and 8 weeks after thermal pulsation treatment were analyzed. Results: Twenty-three patients tested positive for novel biomarkers of SS and 36 patients tested negative. At baseline, MGS, SPEED and TBUT of both SS-positive and SS-negative patients were equivalent. At 8 weeks’ post-treatment, mean MGS score, SPEED and TBUT were 13.0±7.8, 12.5±6.8 and 9.6±4.6, respectively, in SS-positive patients and 15.9±7.9, 10.0±6.3 and 8.3±4.6, respectively, in SS-negative patients (P<0.001. While the post-treatment MGS was significantly better in SS-negative patients than SS-positive (P=0.021, no significant difference between post-treatment SPEED and TBUT was observed between the two groups (P>0.05. Conclusion: LipiFlow treatment in MGD patients who were SS-positive for novel biomarkers of SS demonstrated improvement in signs and symptoms of dry eye. While improvement in MGS scores in SS

  13. Pulsation of IU Per from the Ground-based and ‘Integral’ Photometry

    Directory of Open Access Journals (Sweden)

    Kundra E.

    2013-06-01

    Full Text Available IU Per is an eclipsing semi-detached binary with a pulsating component. Using our own ground-based, as well as INTEGRAL satellite photometric observations in the B and V passbands, we derived geometrical and physical parameters of this system. We detected the short-term variations of IU Per in the residuals of brightness after the subtraction of synthetic light curves. Analysis of these residuals enabled us to characterize and localize the source of short-term variations as the pulsations of the primary component typical to δ Scuti-type stars.

  14. Using nonradial pulsations to determine the envelope composition of very evolved stars

    International Nuclear Information System (INIS)

    Starrfield, S.

    1986-01-01

    Recent observational and theoretical studies of the ZZ Ceti variables (DA degenerate dwarfs), the DBV variables (DB degenerate dwarfs), and the GW Vir variables (DO degenerate dwarfs) have shown them to be pulsating in nonradial g + -modes. The pulsation mechanism has been identified for each class of variable star and, in all cases, involves predictions of the stars envelope composition. The ZZ Ceti variables must have pure hydrogen surface layers, the DBV stars must have pure helium surface layers, and the GW Vir stars must have carbon and oxygen rich surface layers. 44 refs

  15. Breaking the EOS-gravity degeneracy with masses and pulsating frequencies of neutron stars

    International Nuclear Information System (INIS)

    Lin, Weikang; Li, Bao-An; Chen, Lie-Wen; Wen, De-Hua; Xu, Jun

    2014-01-01

    A thorough understanding of many astrophysical phenomena associated with compact objects requires reliable knowledge about both the equation of state (EOS) of super-dense nuclear matter and the theory of strong-field gravity simultaneously because of the EOS-gravity degeneracy. Currently, variations of the neutron star (NS) mass–radius correlation from using alternative gravity theories are much larger than those from changing the NS matter EOS within known constraints. At least two independent observables are required to break the EOS-gravity degeneracy. Using model EOSs for hybrid stars and a Yukawa-type non-Newtonian gravity, we investigate both the mass–radius correlation and pulsating frequencies of NSs. While the maximum mass of NSs increases, the frequencies of the f, p 1 , p 2 , and w I pulsating modes are found to decrease with the increasing strength of the Yukawa-type non-Newtonian gravity, providing a useful reference for future determination simultaneously of both the strong-field gravity and the supranuclear EOS by combining data of x-ray and gravitational wave emissions of NSs. (paper)

  16. Studies of Geomagnetic Pulsations Using Magnetometer Data from the CHAMP Low-Earth-Orbit Satellite and Ground-Based Stations: a Review

    Directory of Open Access Journals (Sweden)

    P R Sutcliffe

    2011-06-01

    Full Text Available We review research on geomagnetic pulsations carried out using magnetic field measurements from the CHAMP low-Earth-orbit (LEO satellite and ground-based stations in South Africa and Hungary. The high quality magnetic field measurements from CHAMP made it possible to extract and clearly resolve Pi2 and Pc3 pulsations in LEO satellite data. Our analyses for nighttime Pi2 pulsations are indicative of a cavity mode resonance. However, observations of daytime Pi2 pulsation events identified in ground station data show no convincing evidence of their occurrence in CHAMP data. We also studied low-latitude Pc3 pulsations and found that different types of field line resonant structure occur, namely discrete frequencies driven by a narrow band source and L-dependent frequencies driven by a broad band source.

  17. Optical pulsations in AM Her systems. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Langer, S.H.

    1985-06-01

    The AM Her systems are widely believed to be mass transfer binaries containing a white dwarf primary accreting from a red dwarf secondary. The magnetic field of the white dwarf is so strong that it prevents the formation of an accretion disk and funnels the accretion flow into the polar caps of the white dwarf. The accreting matter is decelerated from free fall by passage through a standoff shock located somewhat above the surface of the white dwarf. The hot postshock gas radiates hard x-rays and electron cyclotron emission and cools until it settles onto the photosphere. Middleditch (1982) reported the discovery of a broad feature between 0.4 and 0.8 Hz in the power spectrum of AN UMa and E1405-451. Observations of AM Her and of AN UMa in its faint state did not show similar features. This feature was tentatively identified with the instability discovered by LCS, but it was clear that improved observations and models were both required to confirm the identification. Recent observations by Larsson (1985) confirm the presence of the feature in the power spectrum of E1405-451 and show clearly visible pulsations in the light curves as well as demonstrating that the pulsation is predominantly in red light. As a result it seems worthwhile to present theoretical predictions for optical pulsations. The model of the system is described, emphasizing the general physics of the problem at the expense of details about the numerical aspects. Some of the expected properties of the optical emission are presented, and the observations and model improvements that are of the most immediate interest are suggested. 16 refs., 4 figs.

  18. Optical pulsations in AM Her systems. Revision 1

    International Nuclear Information System (INIS)

    Langer, S.H.

    1985-06-01

    The AM Her systems are widely believed to be mass transfer binaries containing a white dwarf primary accreting from a red dwarf secondary. The magnetic field of the white dwarf is so strong that it prevents the formation of an accretion disk and funnels the accretion flow into the polar caps of the white dwarf. The accreting matter is decelerated from free fall by passage through a standoff shock located somewhat above the surface of the white dwarf. The hot postshock gas radiates hard x-rays and electron cyclotron emission and cools until it settles onto the photosphere. Middleditch (1982) reported the discovery of a broad feature between 0.4 and 0.8 Hz in the power spectrum of AN UMa and E1405-451. Observations of AM Her and of AN UMa in its faint state did not show similar features. This feature was tentatively identified with the instability discovered by LCS, but it was clear that improved observations and models were both required to confirm the identification. Recent observations by Larsson (1985) confirm the presence of the feature in the power spectrum of E1405-451 and show clearly visible pulsations in the light curves as well as demonstrating that the pulsation is predominantly in red light. As a result it seems worthwhile to present theoretical predictions for optical pulsations. The model of the system is described, emphasizing the general physics of the problem at the expense of details about the numerical aspects. Some of the expected properties of the optical emission are presented, and the observations and model improvements that are of the most immediate interest are suggested. 16 refs., 4 figs

  19. NADH oxidase activity (NOX) and enlargement of HeLa cells oscillate with two different temperature-compensated period lengths of 22 and 24 minutes corresponding to different NOX forms

    Science.gov (United States)

    Wang, S.; Pogue, R.; Morre, D. M.; Morre, D. J.

    2001-01-01

    NOX proteins are cell surface-associated and growth-related hydroquinone (NADH) oxidases with protein disulfide-thiol interchange activity. A defining characteristic of NOX proteins is that the two enzymatic activities alternate to generate a regular period length of about 24 min. HeLa cells exhibit at least two forms of NOX. One is tumor-associated (tNOX) and is inhibited by putative quinone site inhibitors (e.g., capsaicin or the antitumor sulfonylurea, LY181984). Another is constitutive (CNOX) and refractory to inhibition. The periodic alternation of activities and drug sensitivity of the NADH oxidase activity observed with intact HeLa cells was retained in isolated plasma membranes and with the solubilized and partially purified enzyme. At least two activities were present. One had a period length of 24 min and the other had a period length of 22 min. The lengths of both the 22 and the 24 min periods were temperature compensated (approximately the same when measured at 17, 27 or 37 degrees C) whereas the rate of NADH oxidation approximately doubled with each 10 degrees C rise in temperature. The rate of increase in cell area of HeLa cells when measured by video-enhanced light microscopy also exhibited a complex period of oscillations reflective of both 22 and 24 min period lengths. The findings demonstrate the presence of a novel oscillating NOX activity at the surface of cancer cells with a period length of 22 min in addition to the constitutive NOX of non-cancer cells and tissues with a period length of 24 min.

  20. Impulsively started, steady and pulsated annular inflows

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Raouf, Emad [General Field Engineer, Halliburton Energy Services 719 Hangar Dr, New Iberia, LA 70560, United States of America (United States); Sharif, Muhammad A R; Baker, John, E-mail: abdelraouf.em@gmail.com, E-mail: msharif@eng.ua.edu, E-mail: john.baker@eng.ua.edu [Aerospace Engineering and Mechanics Department, The University of Alabama, Tuscaloosa, Alabama 35487, United States of America (United States)

    2017-04-15

    A computational investigation was carried out on low Reynolds number laminar inflow starting annular jets using multiple blocking ratios and atmospheric ambient conditions. The jet exit velocity conditions are imposed as steady, unit pulsed, and sinusoidal pulsed while the jet surroundings and the far-field jet inlet upstream conditions are left atmospheric. The reason is to examine the flow behavior in and around the jet inlet under these conditions. The pulsation mode behavior is analyzed based on the resultant of the momentum and pressure forces at the entry of the annulus, the circulation and vortex formation, and the propulsion efficiency of the inflow jets. The results show that under certain conditions, the net force of inflow jets (sinusoidal pulsed jets in particular) could point opposite to the flow direction due to the adverse pressure drops in the flow. The propulsion efficiency is also found to increase with pulsation frequency and the sinusoidal pulsed inflow jets are more efficient than the unit pulsed inflow jets. In addition, steady inflow jets did not trigger the formation of vortices, while unit and sinusoidal pulsed inflow jets triggered the formation of vortices under a certain range of frequencies. (paper)

  1. Seasonal and diurnal dependence of Pc 3-5 magnetic pulsation power at geomagnetically conjugate stations in the auroral zones

    International Nuclear Information System (INIS)

    Saito, Hiroaki; Sato, Natsuo; Tonegawa, Yutaka; Yoshino, Takeo; Saemundsson, T.

    1989-01-01

    Seasonal and diurnal variations of Pc 3-5 magnetic pulsation powers have been examined using 2 years of magnetic data from geomagnetically conjugate stations, Syowa in Antarctica and Husafell and Tjoernes in Iceland. The magnetic pulsation powers are found to be relatively higher at the winter hemisphere station than at the summer station. The pulsations observed during equinox show a diurnal dependence, i.e., that the power density is higher in the geomagnetic morning at the stations in Iceland than at Syowa, and this relationship is reversed in the afternoon. The power density ratio of Pc 3 pulsations between the conjugate stations, which is associated with the seasons and with local time, is higher than that of Pc 5. These characteristics can be attributed to the effects of sunlight in the ionosphere, i.e., Pc 3-5 pulsations are shielded when the waves propagate from the magnetosphere to the ground through the sunlit ionosphere

  2. The Secret Lives of Cepheids: Evolutionary Changes and Pulsation-induced Shock Heating in the Prototype Classical Cepheid δ Cep

    Science.gov (United States)

    Engle, Scott G.; Guinan, Edward F.; Harper, Graham M.; Neilson, Hilding R.; Remage Evans, Nancy

    2014-10-01

    Over the past decade, the Secret Lives of Cepheids (SLiC) program has been carried out at Villanova University to study aspects and behaviors of classical Cepheids that are still not well understood. In this, the first of several planned papers on program Cepheids, we report the current results for δ Cep, the Cepheid prototype. Ongoing photometry has been obtained to search for changes in the pulsation period, light-curve morphology, and amplitude. Combining our photometry with the times of maximum light compilation by Berdnikov et al. returns a small period change of dP/dt ≈-0.1006 ± 0.0002 s yr-1. There is also evidence for a gradual light amplitude increase of ~0.011 mag (V band) and ~0.012 mag (B band) per decade over the last ~50 years. In addition, Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) UV spectrophotometry and XMM-Newton X-ray data were carried out to investigate the high-temperature plasmas present above the Cepheid photospheres. In total, from the five visits (eight exposures) with XMM-Newton, δ Cep is found to be a soft X-ray source (L X (0.3-2 keV) ≈4.5-13 × 1028 erg s-1) with peak flux at kT = 0.6-0.9 keV. The X-ray activity is found to vary, possibly in phase with the stellar pulsations. From 2010-2013, nine observations of δ Cep were carried out with HST-COS. The UV emissions are also variable and well phased with the stellar pulsations. Maximum UV line emissions occur near, or slightly before, maximum optical light, varying by as much as 20 times. This variability shows that pulsation-induced shock heating plays a significant role in Cepheid atmospheres, possibly in addition to a quiescent, magnetic heating. The results of this study show Cepheid atmospheres to be rather complex and dynamic. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS

  3. Time-series surveys and pulsating stars: The near-infrared perspective

    Directory of Open Access Journals (Sweden)

    Matsunaga Noriyuki

    2017-01-01

    Full Text Available The purpose of this review is to discuss the advantages and problems of nearinfrared surveys in observing pulsating stars in the Milky Way. One of the advantages of near-infrared surveys, when compared to optical counterparts, is that the interstellar extinction is significantly smaller. As we see in this review, a significant volume of the Galactic disk can be reached by infrared surveys but not by optical ones. Towards highly obscured regions in the Galactic mid-plane, however, the interstellar extinction causes serious problems even with near-infrared data in understanding the observational results. After a review on previous and current near-infrared surveys, we discuss the effects of the interstellar extinction in optical (including Gaia to near-infrared broad bands based on a simple calculation using synthetic spectral energy distribution. We then review the recent results on classical Cepheids towards the Galactic center and the bulge, as a case study, to see the impact of the uncertainty in the extinction law. The extinction law, i.e. the wavelength dependency of the extinction, is not fully characterized, and its uncertainty makes it hard to make the correction. Its characterization is an urgent task in order to exploit the outcomes of ongoing large-scale surveys of pulsating stars, e.g. for drawing a map of pulsating stars across the Galactic disk.

  4. Metamodeling and optimization of the THF process with pulsating pressure

    Science.gov (United States)

    Bucconi, Marco; Strano, Matteo

    2018-05-01

    Tube hydroforming is a process used in various applications to form the tube in a desired complex shape, by combining the use of internal pressure, which provides the required stress to yield the material, and axial feeding, which helps the material to flow towards the bulging zone. In many studies it has been demonstrated how wrinkling and bursting defects can be severely reduced by means of a pulsating pressure, and how the so-called hammering hydroforming enhances the formability of the material. The definition of the optimum pressure and axial feeding profiles represent a daunting challenge in the designing phase of the hydroforming operation of a new part. The quality of the formed part is highly dependent on the amplitude and the peak value of the pulsating pressure, along with the axial stroke. In this paper, a research is reported, conducted by means of explicit finite element simulations of a hammering THF operation and metamodeling techniques aimed at optimizing the process parameters for the production of a complex part. The improved formability is explored for different factors and an optimization strategy is used to determine the most convenient pressure and axial feed profile curves for the hammering THF process of the examined part. It is shown how the pulsating pressure allows the minimization of the energy input in the process, still respecting final quality requirements.

  5. Investigation on Characterizing Heated Pulsating Flows with Hot Wire Anemometers - A Hands-On Approach

    Directory of Open Access Journals (Sweden)

    Marius Alexandru PANAIT

    2014-06-01

    Full Text Available The pulsating heated flows are traditionally a difficult subject to treat with conventional hot wire or film methods. Special factors that complicate matters are flow reversal and non linear flow effects of vortices and wire probe wake disturbances on the heat transfer to the hot film or wire sensor in heated pulsating flows. The presence of these strongly nonlinear and unknown terms leads to great difficulties in calibration of hot film probes in this particular regime. The paper analyses the current state of matters in the field and reports a series of solutions that have been practically tested in a case of a high speed pulsated heated flow. Normally such measurements are made in a non-contact fashion using a LDV system or various visualization techniques but there have been recent attempts to use a constant temperature hot wire anemometer system (CTA.To obtain meaningful calibration for hot wire films in hot pulsating flows, a comparison system on other principles (LDV was used, as well as a specially designed nozzle to replace the calibrator unit that could not be operated with heated fluid due to structural integrity reasons. The method as described below works well for the expected speed range that could be generated using the special nozzle.

  6. Quantitative Assessment of the Impact of Blood Pulsation on Intraocular Pressure Measurement Results in Healthy Subjects

    Directory of Open Access Journals (Sweden)

    Robert Koprowski

    2017-01-01

    Full Text Available Background. Blood pulsation affects the results obtained using various medical devices in many different ways. Method. The paper proves the effect of blood pulsation on intraocular pressure measurements. Six measurements for each of the 10 healthy subjects were performed in various phases of blood pulsation. A total of 8400 corneal deformation images were recorded. The results of intraocular pressure measurements were related to the results of heartbeat phases measured with a pulse oximeter placed on the index finger of the subject’s left hand. Results. The correlation between the heartbeat phase measured with a pulse oximeter and intraocular pressure is 0.69±0.26 (p<0.05. The phase shift calculated for the maximum correlation is equal to 60±40° (p<0.05. When the moment of measuring intraocular pressure with an air-puff tonometer is not synchronized, the changes in IOP for the analysed group of subjects can vary in the range of ±2.31 mmHg (p<0.3. Conclusions. Blood pulsation has a statistically significant effect on the results of intraocular pressure measurement. For this reason, in modern ophthalmic devices, the measurement should be synchronized with the heartbeat phases. The paper proposes an additional method for synchronizing the time of pressure measurement with the blood pulsation phase.

  7. Creating a Positive Classroom Culture: Minute by Minute

    Science.gov (United States)

    Wright, Ali

    2014-01-01

    This article offers a peek into high school math teacher Ali Wright's typical school day, which includes time-tested strategies that she uses to build a positive culture in her classroom. Scheduled timeframes and activities include before school starts, five minutes before class, during announcements, during class, last five minutes of class,…

  8. Parameters of the plasma of a dc pulsating discharge in a supersonic air flow

    Energy Technology Data Exchange (ETDEWEB)

    Shibkov, V. M., E-mail: shibkov@phys.msu.ru; Shibkova, L. V.; Logunov, A. A. [Moscow State University, Faculty of Physics (Russian Federation)

    2017-03-15

    A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.

  9. Pulsations in M dwarf stars

    OpenAIRE

    Rodríguez-López, C.; MacDonald, J.; Moya, A.

    2011-01-01

    We present the results of the first theoretical non-radial non-adiabatic pulsational study of M dwarf stellar models with masses in the range 0.1 to 0.5M_solar. We find the fundamental radial mode to be unstable due to an \\epsilon mechanism caused by deuterium (D-) burning for the young 0.1 and 0.2M_solar models, by non-equilibrium He^3 burning for the 0.2 and 0.25M_solar models of 10^4Myr, and by a flux blocking mechanism for the partially convective 0.4 and 0.5M_solar models once they reach...

  10. Pulsations in white dwarfs: Selected topics

    Directory of Open Access Journals (Sweden)

    Saio H.

    2013-03-01

    Full Text Available This paper presents a very brief overview of the observed properties of g-mode pulsations in variable white dwarfs. We then discuss a few selected topics: Excitation mechanisms (kappa- and convection- mechanisms, and briefly the effect of a strong magnetic field (∼ 1 MG on g-modes as recently found in a hot DQ (carbon-rich atmosphere white dwarf. In the discussion of excitation mechanisms, a simple interpretation for the convection mechanism is given.

  11. Elimination of torque pulsations in a direct drive EV wheel motor

    Energy Technology Data Exchange (ETDEWEB)

    Hredzak, B.; Gair, S. [Napier Univ., Edinburgh (United Kingdom); Eastham, J.F. [Univ. of Bath (United Kingdom)

    1996-09-01

    Double sided axial field machines are attractive for direct wheel drives in electric vehicles. This is due to the fact that stator/rotor misalignments can be accommodated. In this case the stator of the machine is envisaged mounted on the chassis of the car while the rotor directly drives the road wheel. Since the wheel is perturbed by the road surface the rotor will move vertically between the outside stator assemblies and thus give rise to torque pulsations. A vector control scheme has been implemented whereby the torque pulsations are eliminated by (i) calculation of the flux variation due to the rotor perturbation and (ii) using this signal for the modulation of the motor input current.

  12. Numerical analysis of pulsating heat pipe based on separated flow model

    International Nuclear Information System (INIS)

    Kim, Jong Soo; Im, Yong Bin; Bui, Ngoc Hung

    2005-01-01

    The examination on the operating mechanism of a Pulsating Heat Pipe (PHP) using visualization revealed that the working fluid in the PHP oscillated to the axial direction by the contraction and expansion of vapor plugs. This contraction and expansion is due to the formation and extinction of bubbles in the evaporating and condensing section, respectively. In this paper, a theoretical model of PHP was presented. The theoretical model was based on the separated flow model with two liquid slugs and three vapor plugs. The results show that the diameter, surface tension and charge ratio of working fluid have significant effects on the performance of the PHP. The following conclusions were obtained. The periodic oscillations of liquid slugs and vapor plugs were obtained under specified parameters. When the hydraulic diameter of the PHP was increased to d=3 mm, the frequency of oscillation decreased. By increasing the charging ratio from 40 to 60 by volume ratio, the pressure difference between the evaporating section and condensing section increased, the amplitude of oscillation reduced, and the oscillation frequency decreased. The working fluid with higher surface tension resulted in an increase in the amplitude and frequency of oscillation. Also the average temperature of vapor plugs decreased

  13. Warm-up Optimizes Postural Control but Requires Some Minutes of Recovery.

    Science.gov (United States)

    Paillard, Thierry; Kadri, Mohamed Abdelhafid; Nouar, Merbouha Boulahbel; Noé, Frederic

    2018-05-02

    Paillard, T, Kadri, MA, Nouar, MB, and Noé, F. Warm-up optimizes postural control but requires some minutes of recovery. J Strength Cond Res XX(X): 000-000, 2018-The aim was to compare monopedal postural control between the dominant leg (D-Leg) and the nondominant leg (ND-Leg) in pre- and post-warm-up conditions. Thirty healthy male sports science students were evaluated before and after a warm-up exercise (12 minutes of pedaling with an incremental effort on a cycle ergometer with a controlled workload). Monopodal postural control was assessed for the D- and ND-Legs before and immediately, 2, 5, 10, and 15 minutes after the warm-up exercise, using a force platform and calculating the displacement velocity of the center of foot pressure on the mediolateral (COPML velocity) and anteroposterior (COPAP velocity) axes. No significant difference was observed between the D-Leg and ND-Leg for both COPML and COPAP velocity in all the periods. In comparison with pre-warm-up, COPML decreased after 15-minute and 10-minute recovery periods for the D-Leg and the ND-Leg, respectively (p warm-up optimized monopedal postural control but did not make it possible to distinguish a difference between the D-Leg and the ND-Leg. Some minutes of recovery are required between the end of the whole-body warm-up exercise and the beginning of the postural test to optimize postural control. The optimal duration of recovery turns out to be about 10-15 minutes.

  14. Arterial Pulsations cannot Drive Intramural Periarterial Drainage: Significance for Aβ Drainage

    Directory of Open Access Journals (Sweden)

    Alexandra K. Diem

    2017-08-01

    Full Text Available Alzheimer's Disease (AD is the most common form of dementia and to date there is no cure or efficient prophylaxis. The cognitive decline correlates with the accumulation of amyloid-β (Aβ in the walls of capillaries and arteries. Our group has demonstrated that interstitial fluid and Aβ are eliminated from the brain along the basement membranes of capillaries and arteries, the intramural periarterial drainage (IPAD pathway. With advancing age and arteriosclerosis, the stiffness of arterial walls, this pathway fails in its function and Aβ accumulates in the walls of arteries. In this study we tested the hypothesis that arterial pulsations drive IPAD and that a valve mechanism ensures the net drainage in a direction opposite to that of the blood flow. This hypothesis was tested using a mathematical model of the drainage mechanism. We demonstrate firstly that arterial pulsations are not strong enough to produce drainage velocities comparable to experimental observations. Secondly, we demonstrate that a valve mechanism such as directional permeability of the IPAD pathway is necessary to achieve a net reverse flow. The mathematical simulation results are confirmed by assessing the pattern of IPAD in mice using pulse modulators, showing no significant alteration of IPAD. Our results indicate that forces other than the cardiac pulsations are responsible for efficient IPAD.

  15. Arterial pseudoaneurysms of the shoulder mimicking other entities: utilization of pulsation artifact on musculoskeletal MR for accurate diagnosis in 2 cases

    Energy Technology Data Exchange (ETDEWEB)

    Samim, Mohammad [New York University, Department of Radiology, Hospital for Joint Disease, New York, NY (United States); Mandell, Jacob; Smith, Stacy; Kapoor, Neena; Czuczman, Gregory [Harvard Medical School, Department of Radiology, Brigham and Women' s Hospital, Boston, MA (United States)

    2017-08-15

    We present two cases of pseudoaneurysm (PSA) about the shoulder mimicking more common clinical entities - soft tissue neoplasm and septic arthritis - for which biopsy of the mass and joint aspiration were requested respectively. We review the imaging findings of PSA with emphasis on findings in musculoskeletal protocol MRI, including the identification of pulsation artifact in both cases, which was critical to establishing the correct diagnosis. In the proper clinical setting, with imaging findings demonstrating a complex mass or fluid collection, MR images should be scrutinized for the presence of pulsation artifact, which can help diagnose a high-flow vascular lesion and avoid a potentially harmful invasive procedure such as biopsy. (orig.)

  16. Detection of 3-Minute Oscillations in Full-Disk Lyman-alpha Emission During A Solar Flare

    Science.gov (United States)

    Milligan, R. O.; Ireland, J.; Fleck, B.; Hudson, H. S.; Fletcher, L.; Dennis, B. R.

    2017-12-01

    We report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Lyman-alpha (from GOES/EUVS) and Lyman continuum (from SDO/EVE) emission from the 2011 February 15 X-class flare revealed a 3-minute period present during the flare's main phase. The formation temperature of this emission locates this radiation to the flare's chromospheric footpoints, and similar behaviour is found in the SDO/AIA 1600A and 1700A channels, which are dominated by chromospheric continuum. The implication is that the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray energies (50-100 keV) in RHESSI data we can state that this 3-minute oscillation does not depend on the rate of energization of, or energy deposition by, non-thermal electrons. However, a second period of 120 s found in both hard X-ray and chromospheric emission is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Lyman-alpha line may influence the composition and dynamics of planetary atmospheres during periods of high activity.

  17. An improved arterial pulsation measurement system based on optical triangulation and its application in the traditional Chinese medicine

    Science.gov (United States)

    Wu, Jih-Huah; Lee, Wen-Li; Lee, Yun-Parn; Lin, Ching-Huang; Chiou, Ji-Yi; Tai, Chuan-Fu; Jiang, Joe-Air

    2011-08-01

    An improved arterial pulsation measurement (APM) system that uses three LED light sources and a CCD image sensor to measure pulse waveforms of artery is presented. The relative variations of the pulses at three measurement points near wrist joints can be determined by the APM system simultaneously. The height of the arterial pulsations measured by the APM system achieves a resolution of better than 2 μm. These pulsations contain useful information that can be used as diagnostic references in the traditional Chinese medicine (TCM) in the future.

  18. Thermal performance of a PCB embedded pulsating heat pipe for power electronics applications

    International Nuclear Information System (INIS)

    Kearney, Daniel J.; Suleman, Omar; Griffin, Justin; Mavrakis, Georgios

    2016-01-01

    Highlights: • Planar, compact PCB embedded pulsating heat pipe for heat spreading applications. • Embedded heat pipe operates at sub-ambient pressure with environmentally. • Compatible fluids. • Range of optimum operating conditions, orientations and fill ratios identified. - Abstract: Low voltage power electronics applications (<1.2 kV) are pushing the design envelope towards increased functionality, better reliability, low profile and reduced cost. One packaging method to enable these constraints is the integration of active power electronic devices into the printed circuit board improving electrical and thermal performance. This development requires a reliable passive thermal management solution to mitigate hot spots due to the increased heat flux density. To this end, a 44 channel open looped pulsating heat pipe (OL-PHP) is experimentally investigated for two independent dielectric working fluids – Novec"T"M 649 and Novec"T"M 774 – due to their lower pressure operation and low global warming potential compared to traditional two-phase coolants. The OL-PHP is investigated in vertical (90°) orientation with fill ratios ranging from 0.30 to 0.70. The results highlight the steady state operating conditions for each working fluid with instantaneous plots of pressure, temperature, and thermal resistance; the minimum potential bulk thermal resistance for each fill ratio and the effective thermal conductivity achievable for the OL-PHP.

  19. Experimental investigation of pulsating heat pipe performance with regard to fuel cell cooling application

    International Nuclear Information System (INIS)

    Clement, Jason; Wang Xia

    2013-01-01

    A pulsating heat pipe (PHP) is a closed loop, passive heat transfer device. Its operation depends on the phase change of a working fluid within the loop. Design and performance testing of a pulsating heat pipe was conducted under conditions to simulate heat dissipation requirements of a proton exchange membrane (PEM) fuel cell stack. Integration of pulsating heat pipes within bipolar plates of the stack would eliminate the need for ancillary cooling equipment, thus also reducing parasitic losses and increasing energy output. The PHP under investigation, having dimensions of 46.80 cm long and 14.70 cm wide, was constructed from 0.3175 cm copper tube. Heat pipes effectiveness was found to be dependent upon several factors such as energy input, types of working fluid and its filling ratio. Power inputs to the evaporator side of the pulsating heat pipe varied from 80 to 180 W. Working fluids tested included acetone, methanol, and deionized water. Filling ratios between 30 and 70 percent of the total working volume were also examined. Methanol outperformed other fluids tested; with a 45 percent fluid fill ratio and a 120 W power input, the apparatus took the shortest time to reach steady state and had one of the smallest steady state temperature differences. The various conditions studied were chosen to assess the heat pipe's potential as cooling media for PEM fuel cells. - Highlights: ► Methanol as a working fluid outperformed both acetone and water in a pulsating heat pipe. ► Performance for the PHP peaked with methanol and a fill ratio of 45 percent fluid to total volume. ► A smaller resistance was associated with a higher power input to the system.

  20. Multiple ground-based and satellite observations of global Pi 2 magnetic pulsations

    International Nuclear Information System (INIS)

    Yumoto, K.; Takahashi, K.; Sakurai, T.; Sutcliffe, P.R.; Kokubun, S.; Luehr, H.; Saito, T.; Kuwashima, M.; Sato, N.

    1990-01-01

    Four Pi 2 magnetic pulsations, observed on the ground at L = 1.2-6.9 in the interval from 2,300 UT on May 22 to 0300 UT on May 23, 1985, provide new evidence of a global nature of Pi 2 pulsations in the inner (L approx-lt 7) region of the magnetosphere bounded by the plasma sheet during quiet geomagnetic conditions. In the present study, magnetic data have been collected from stations distributed widely both in local time and in latitude, including conjugate stations, and from the AMPTE/CCE spacecraft located in the magnetotail. On the basis of high time resolution magnetic field data, the following characteristics of Pi 2 have been established: horizontal components, H and D, of the Pi 2 oscillate nearly antiphase and in-phase, respectively, between the high- and low-altitude stations in the midnight southern hemisphere. Both the H and D components of the Pi 2 have nearly in-phase relationships between the nightside and the dayside stations at low latitude. The Pi 2 amplitude is larger at the high-latitude station and decreases toward lower latitudes. The dominant periods of the Pi 2 are nearly identical at all stations. Although a direct coincidence between spacecraft-observed and ground-based global Pi 2 events does not exist for these events, the Pi 2 events are believed to be a forced field line oscillation of global scale, coupled with the magnetospheric cavity resonance wave in the inner magnetosphere during the substorm expansive phase

  1. INTRODUCING CAFein, A NEW COMPUTATIONAL TOOL FOR STELLAR PULSATIONS AND DYNAMIC TIDES

    International Nuclear Information System (INIS)

    Valsecchi, F.; Farr, W. M.; Willems, B.; Rasio, F. A.; Kalogera, V.

    2013-01-01

    Here we present CAFein, a new computational tool for investigating radiative dissipation of dynamic tides in close binaries and of non-adiabatic, non-radial stellar oscillations in isolated stars in the linear regime. For the latter, CAFein computes the non-adiabatic eigenfrequencies and eigenfunctions of detailed stellar models. The code is based on the so-called Riccati method, a numerical algorithm that has been successfully applied to a variety of stellar pulsators, and which does not suffer from the major drawbacks of commonly used shooting and relaxation schemes. Here we present an extension of the Riccati method to investigate dynamic tides in close binaries. We demonstrate CAFein's capabilities as a stellar pulsation code both in the adiabatic and non-adiabatic regimes, by reproducing previously published eigenfrequencies of a polytrope, and by successfully identifying the unstable modes of a stellar model in the β Cephei/SPB region of the Hertzsprung-Russell diagram. Finally, we verify CAFein's behavior in the dynamic tides regime by investigating the effects of dynamic tides on the eigenfunctions and orbital and spin evolution of massive main sequence stars in eccentric binaries, and of hot Jupiter host stars. The plethora of asteroseismic data provided by NASA's Kepler satellite, some of which include the direct detection of tidally excited stellar oscillations, make CAFein quite timely. Furthermore, the increasing number of observed short-period detached double white dwarfs (WDs) and the observed orbital decay in the tightest of such binaries open up a new possibility of investigating WD interiors through the effects of tides on their orbital evolution

  2. IGR J17062–6143 Is an Accreting Millisecond X-Ray Pulsar

    Energy Technology Data Exchange (ETDEWEB)

    Strohmayer, Tod [Astrophysics Science Division and Joint Space-Science Institute, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Keek, Laurens [X-ray Astrophysics Laboratory, NASA/GSFC and CRESST and the Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2017-02-20

    We present the discovery of 163.65 Hz X-ray pulsations from IGR J17062−6143 in the only observation obtained from the source with the Rossi X-ray Timing Explorer . This detection makes IGR J17062−6143 the lowest-frequency accreting millisecond X-ray pulsar presently known. The pulsations are detected in the 2–12 keV band with an overall significance of 4.3 σ and an observed pulsed amplitude of 5.54% ± 0.67% (in this band). Both dynamic power spectral and coherent phase timing analysis indicate that the pulsation frequency is decreasing during the ≈1.2 ks observation in a manner consistent with orbital motion of the neutron star. Because the observation interval is short, we cannot precisely measure the orbital period; however, periods shorter than 17 minutes are excluded at 90% confidence. For the range of acceptable circular orbits the inferred binary mass function substantially overlaps the observed range for the AMXP population as a whole.

  3. IGR J170626143 is an Accreting Millisecond X-Ray Pulsar

    Science.gov (United States)

    Strohmayer, Tod E.; Keek, Laurens

    2017-01-01

    We present the discovery of 163.65 Hz X-ray pulsations from IGR J17062-6143 in the only observation obtained from the source with the Rossi X-ray Timing Explorer. This detection makes IGR J17062-6143 the lowest frequency accreting millisecond X-ray pulsar presently known. The pulsations are detected in the 2-12 keV band with an overall significance of 4.3sigma and an observed pulsed amplitude of 5.54% +/-0.67% (in this band). Both dynamic power spectral and coherent phase timing analysis indicate that the pulsation frequency is decreasing during the approx. =1.2 ks observation in a manner consistent with orbital motion of the neutron star. Because the observation interval is short, we cannot precisely measure the orbital period; however, periods shorter than 17 minutes are excluded at 90% confidence. For the range of acceptable circular orbits the inferred binary mass function substantially overlaps the observed range for the AMXP population as a whole.

  4. A dynamic film model of the pulsating heat pipe

    International Nuclear Information System (INIS)

    Nikolayev, Vadim S.

    2011-01-01

    This article deals with the numerical modeling of the pulsating heat pipe (PHP) and is based on the film evaporation/condensation model recently applied to the single-bubble PHP (Das et al., 2010, 'Thermally Induced Two-Phase Oscillating Flow Inside a Capillary Tube', Int. J. Heat Mass Transfer, 53(19-20), pp. 3905-3913). The described numerical code can treat the PHP of an arbitrary number of bubbles and branches. Several phenomena that occur inside the PHP are taken into account: coalescence of liquid plugs, film junction or rupture, etc. The model reproduces some of the experimentally observed regimes of functioning of the PHP such as chaotic or intermittent oscillations of large amplitudes. Some results on the PHP heat transfer are discussed. (author)

  5. The effect of two-injection ethanol sclerotherapy with 5 minute duration of exposure time in simple renal cysts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Eun; Cho, Jae Ho [Dept. of Radiology, College of Medicine, Yeungnam University, Daegu (Korea, Republic of)

    2017-08-15

    To evaluate the results of two-injection ethanol sclerotherapy in simple renal cysts performed with 5-minute ethanol exposure time. We retrospectively reviewed 30 renal cysts in 30 patients treated by ethanol sclerotherapy between November 2002 and October 2015. Under ultrasound guidance, the renal cyst was punctured and a 7 Fr pigtail catheter was inserted, and then complete aspiration of the cystic fluid was performed. Then, 99.9% ethanol in a quantity amounting to 1/3–1/2 of the aspirated volume was infused into the cyst and it was immediately removed. The same amount of ethanol was re-infused and removed after 5 minutes. Follow-up examination was performed using ultrasound or CT images at least 3 months after the procedure and pre- and post-treatment cyst volumes were estimated. The therapeutic response was classified as either complete success (volume reduction, ≥ 95%), partial success (volume reduction, 50–95%), or failure (volume reduction, < 50%) based on the volume reduction rate. The average volume reduction rate was 96.3%. The rates of complete success, partial success and failure were 80% (n = 24), 20% (n = 6), and 0% (n = 0), respectively. There was no complication except for minor flank pain. Two-injection ethanol sclerotherapy with 5-minute exposure time represents a simple and effective treatment for simple renal cysts.

  6. Pulsating stars in SuperWASP

    Directory of Open Access Journals (Sweden)

    Holdsworth Daniel L.

    2017-01-01

    Full Text Available SuperWASP is one of the largest ground-based surveys for transiting exoplanets. To date, it has observed over 31 million stars. Such an extensive database of time resolved photometry holds the potential for extensive searches of stellar variability, and provide solid candidates for the upcoming TESS mission. Previous work by e.g. [15], [5], [12] has shown that the WASP archive provides a wealth of pulsationally variable stars. In this talk I will provide an overview of the SuperWASP project, present some of the published results from the survey, and some of the on-going work to identify key targets for the TESS mission.

  7. Detection of Three-minute Oscillations in Full-disk Ly α Emission during a Solar Flare

    Energy Technology Data Exchange (ETDEWEB)

    Milligan, Ryan O.; Fletcher, Lyndsay [SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Fleck, Bernhard [ESA Directorate of Science, Operations Department, c/o NASA/GSFC Code 671, Greenbelt, MD 20071 (United States); Ireland, Jack; Dennis, Brian R. [Solar Physics Laboratory (Code 671), Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2017-10-10

    In this Letter we report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Ly α (from GOES /EUVS) and Lyman continuum (from Solar Dynamics Observatory ( SDO )/EVE) emission from the 2011 February 15 X-class flare (SOL2011-02-15T01:56) revealed a ∼3 minute period present during the flare’s main phase. The formation temperature of this emission locates this radiation at the flare’s chromospheric footpoints, and similar behavior is found in the SDO /Atmospheric Imaging Assembly 1600 and 1700 Å channels, which are dominated by chromospheric continuum. The implication is that the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray (HXR) energies (50–100 keV) in Reuven Ramaty High Energy Solar Spectroscopic Imager data we can state that this 3-minute oscillation does not depend on the rate of energization of non-thermal electrons. However, a second period of 120 s found in both HXR and chromospheric lightcurves is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Ly α line may influence the composition and dynamics of planetary atmospheres during periods of high activity.

  8. Get 150 minutes/week of moderate physical activity: It doesn’t matter how

    Science.gov (United States)

    Researchers at the National Cancer Institute have shown that people who engage in more minutes of moderate-intensity physical activity enjoy health benefits (measured here by likelihood of dying during the study period), but it does not matter how those minutes are accumulated.

  9. DRhoGEF2 regulates cellular tension and cell pulsations in the Amnioserosa during Drosophila dorsal closure.

    Directory of Open Access Journals (Sweden)

    Dulce Azevedo

    Full Text Available Coordination of apical constriction in epithelial sheets is a fundamental process during embryogenesis. Here, we show that DRhoGEF2 is a key regulator of apical pulsation and constriction of amnioserosal cells during Drosophila dorsal closure. Amnioserosal cells mutant for DRhoGEF2 exhibit a consistent decrease in amnioserosa pulsations whereas overexpression of DRhoGEF2 in this tissue leads to an increase in the contraction time of pulsations. We probed the physical properties of the amnioserosa to show that the average tension in DRhoGEF2 mutant cells is lower than wild-type and that overexpression of DRhoGEF2 results in a tissue that is more solid-like than wild-type. We also observe that in the DRhoGEF2 overexpressing cells there is a dramatic increase of apical actomyosin coalescence that can contribute to the generation of more contractile forces, leading to amnioserosal cells with smaller apical surface than wild-type. Conversely, in DRhoGEF2 mutants, the apical actomyosin coalescence is impaired. These results identify DRhoGEF2 as an upstream regulator of the actomyosin contractile machinery that drives amnioserosa cells pulsations and apical constriction.

  10. Influence of speed and frequency towards the automotive turbocharger turbine performance under pulsating flow conditions

    International Nuclear Information System (INIS)

    Padzillah, M.H.; Rajoo, S.; Martinez-Botas, R.F.

    2014-01-01

    Highlights: • 3D CFD modeling of a turbocharger turbine with pulsating flow. • Characterization based on turbine speed and frequency. • Speed has higher influence on turbine performance compared to frequency. • Detailed localized flow behavior are shown for better understanding. - Abstract: The ever-increasing demand for low carbon applications in automotive industry has intensified the development of highly efficient engines and energy recovery devices. Even though there are significant developments in the alternative powertrains such as full electric, their full deployment is hindered by high costing and unattractive life-cycle energy and emission balance. Thus powertrain based on highly efficient internal combustion engines are still considered to be the mainstream for years to come. Traditionally, turbocharger has been an essential tool to boost the engine power, however in recent years it is seen as an enabling technology for engine downsizing. It is a well-known fact that a turbocharger turbine in an internal combustion engine operates in a highly pulsating exhaust flow. There are numerous studies looking into the complex interaction of the pulsating exhaust gas within the turbocharger turbine, however the phenomena is still not fully integrated into the design stage. Industry practice is still to design and match the turbine to an engine based on steady performance maps. The current work is undertaken with the mind to move one step closer towards fully integrating the pulsating flow performance into the turbocharger turbine design. This paper presents the development efforts and results from a full 3-D CFD model of a turbocharger turbine stage. The simulations were conducted at 30,000 rpm and 48,000 rpm (50% and 80% design speed respectively) for both 20 Hz and 80 Hz pulsating flow inlet conditions. Complete validation procedure using cold-flow experimental data is also described. The temporal and spatial resolutions of the incidence angle at the

  11. Dynamic association between intraocular pressure and spontaneous pulsations of retinal veins.

    Science.gov (United States)

    Golzan, S Mojtaba; Graham, Stuart L; Leaney, John; Avolio, Alberto

    2011-01-01

    The amplitude of spontaneous retinal venous pulsations (SRVP) is known to be affected by intraocular pressure (IOP), retinal venous pressure, and intracranial pressure (ICP). This study characterized SRVPs adjacent to the disc and quantified changes in the amplitude of these pulsations during IOP manipulation in normal subjects. The study included 12 subjects (40 ± 15, 4 females, 8 males). Baseline IOP (range 10-25 mmHg) was measured and SRVP recorded using the dynamic retinal vessel analyzer (DVA). IOP was lowered using aproclonidine 0.5% and measured every 15 min, followed by dynamic recording of SRVP. Two subjects were also tested with timolol 0.5%, and three were treated with a placebo drop. Mean amplitude of SRVP was determined within each sample at the same site. Blood pressure and heart rate were tracked continuously. Amplitude of SRVP decreased in all subjects with reduction of IOP with aproclonidine and timolol. Mean SRVP amplitude was 8.5 ± 6 μm at baseline and reduced to 2.5 ± 1.8 μm after 45 min (p blood pressure, and heart rate did not change significantly from the baseline. Analysis of waveforms showed a slight phase shift only (150 ± 78.5 ms, p = 0.93) between disc veins and adjacent retinal vein. SRVPs in the peripapillary retina have similar waveform characteristics to those at the disc. SRVP amplitudes are reduced by manipulation of IOP downwards with pharmacological intervention. The relationship was consistent in all individuals tested for two classes of drugs and was independent of BP or heart rate changes.

  12. Study of sdO models. Pulsation Analysis

    OpenAIRE

    Rodríguez-López, C.; Moya, A.; Garrido, R.; MacDonald, J.; Oreiro, R.; Ulla, A.

    2009-01-01

    We have explored the possibility of driving pulsation modes in models of sdO stars in which the effects of element diffusion, gravitational settling and radiative levitation have been neglected so that the distribution of iron-peak elements remains uniform throughout the evolution. The stability of these models was determined using a non-adiabatic oscillations code. We analysed 27 sdO models from 16 different evolutionary sequences and discovered the first ever sdO models capable of driving h...

  13. Stability of radial and non-radial pulsation modes of massive ZAMS models

    International Nuclear Information System (INIS)

    Odell, A.P.; Pausenwein, A.; Weiss, W.W.; Hajek, A.

    1987-01-01

    The authors have computed non-adiabatic eigenvalues for radial and non-radial pulsation modes of star models between 80 and 120 M solar with composition of chi=0.70 and Z=0.02. The radial fundamental mode is unstable in models with mass greater than 95 M solar , but the first overtone mode is always stable. The non-radial modes are all stable for all models, but the iota=2 f-mode is the closest to being driven. The non-radial modes are progressively more stable with higher iota and with higher n (for both rho- and g-modes). Thus, their results indicate that radial pulsation limits the upper mass of a star

  14. Experimental study on transition characteristics of pulsating flow in narrow rectangular channel

    International Nuclear Information System (INIS)

    Zhang Chuan; Tan Sichao; Liu Yusheng; Gao Puzhen; Zhao Jianing; Zhang Hong

    2013-01-01

    Experimental study of flow characteristic in smooth narrow rectangular channel under harmonic pulsating flow which covers laminar to turbulent flow (Reynolds number 7504-450) was carried out. The experimental results show that the frictional factors in acceleration phase of pulsating flow are higher than that in steady state, but lower than that in deceleration phase. Womersley parameter has a significant influence on the critical Reynolds number. The critical Reynolds number decreases with the increase of Womersley parameter in acceleration phase and it is opposite in deceleration phase. An empirical correlation was developed to predict the critical Reynolds number based on the experimental data, and the correlation can fit with critical Reynolds number in steady state. (authors)

  15. Predicting phase shift effects for vibrating fluid-conveying pipes due to Coriolis forces and fluid pulsation

    DEFF Research Database (Denmark)

    Enz, Stephanie; Thomsen, Jon Juel

    2011-01-01

    to improve accuracy, precision, and robustness of CFMs. A simple mathematical model of a fluid-conveying pipe is formulated and the effect of pulsating fluid flow is analyzed using a multiple time scaling perturbation analysis. The results are simple analytical predictions for the transverse pipe...... and uncontrolled during CFM operation by feedback control. The analytical predictions offer an immediate insight into how fluid pulsation affects phase shift, which is a quantity measured by CFMs to estimate the mass flow, and lead to hypotheses for more complex geometries, i.e. industrial CFMs. The validity...... displacement and approximate axial shift in vibration phase. The analytical predictions are tested against pure numerical solution using representative examples, showing good agreement. Fluid pulsations are predicted not to influence CFM accuracy, since proper signal filtering is seen to allow...

  16. Self-sustained pulsation in the oxide-confined vertical-cavity surface-emitting lasers based on submonolayer InGaAs quantum dots

    International Nuclear Information System (INIS)

    Kuzmenkov, A. G.; Ustinov, V. M.; Sokolovskii, G. S.; Maleev, N. A.; Blokhin, S. A.; Deryagin, A. G.; Chumak, S. V.; Shulenkov, A. S.; Mikhrin, S. S.; Kovsh, A. R.; McRobbie, A. D.; Sibbett, W.; Cataluna, M. A.; Rafailov, E. U.

    2007-01-01

    The authors report the observation of strong self-pulsations in molecular-beam epitaxy-grown oxide-confined vertical-cavity surface-emitting lasers based on submonolayer InGaAs quantum dots. At continuous-wave operation, self-pulsations with pulse durations of 100-300 ps and repetition rates of 0.2-0.6 GHz were measured. The average optical power of the pulsations was 0.5-1.0 mW at the laser continuous-wave current values of 1.5-2.5 mA

  17. Analysis of partially pulsating fatigue process on carbon steel with microstructural observation

    International Nuclear Information System (INIS)

    Shimano, Hiroyuki; Faiz, M. Khairi; Hara, Asato; Yoshizumi, Kyoko; Yoshida, Makoto; Horibe, Susumu

    2016-01-01

    Pulsating low-cycle fatigue processes, up to the present, have been divided into three states: the transient state, steady state, and accelerating state of ratcheting. In our previous work, we suggested that fatigue behavior of pulsating fatigue process should be classified into five stages in which the plastic strain amplitude and the ratcheting strain rate are plotted on the X and Y axis, respectively. In this study, at the condition of R=−0.3 (partially pulsating fatigue), the change in the plastic strain amplitude and ratcheting strain rate for each cycle to failure was examined on AISI 1025 carbon steel. The dislocation substructure was examined using transmission electron microscopy (TEM) for each stage, except for stage I. It was also demonstrated that the fatigue process can be divided into five stages: stage I corresponds to the un-pinning of dislocations from the Cottrell atmosphere and propagation of the Luders band. Stage II corresponds to the restriction of dislocation movement by dislocation tangles. Stage III corresponds to the formation of dislocation cells. Stage IV corresponds to the promotion of the to-and-fro (back-and-forth) motion of dislocations by a re-arrangement of the dislocations in the cells. Stage V corresponds to the release of dislocation movement by the collapse of dislocation cells.

  18. On the relevance of source effects in geomagnetic pulsations for induction soundings

    Science.gov (United States)

    Neska, Anne; Tadeusz Reda, Jan; Leszek Neska, Mariusz; Petrovich Sumaruk, Yuri

    2018-03-01

    This study is an attempt to close a gap between recent research on geomagnetic pulsations and their usage as source signals in electromagnetic induction soundings (i.e., magnetotellurics, geomagnetic depth sounding, and magnetovariational sounding). The plane-wave assumption as a precondition for the proper performance of these methods is partly violated by the local nature of field line resonances which cause a considerable portion of pulsations at mid latitudes. It is demonstrated that and explained why in spite of this, the application of remote reference stations in quasi-global distances for the suppression of local correlated-noise effects in induction arrows is possible in the geomagnetic pulsation range. The important role of upstream waves and of the magnetic equatorial region for such applications is emphasized. Furthermore, the principal difference between application of reference stations for local transfer functions (which result in sounding curves and induction arrows) and for inter-station transfer functions is considered. The preconditions for the latter are much stricter than for the former. Hence a failure to estimate an inter-station transfer function to be interpreted in terms of electromagnetic induction, e.g., because of field line resonances, does not necessarily prohibit use of the station pair for a remote reference estimation of the impedance tensor.

  19. Analysis of partially pulsating fatigue process on carbon steel with microstructural observation

    Energy Technology Data Exchange (ETDEWEB)

    Shimano, Hiroyuki, E-mail: tales-of-destiny@akane.waseda.jp [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Faiz, M. Khairi; Hara, Asato; Yoshizumi, Kyoko [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Yoshida, Makoto [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan); Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26, Nishi-Waseda, Shinjyuku-ku, Tokyo 169-0051 (Japan); Horibe, Susumu [Department of Modern Mechanical Engineering, Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shinjyuku-ku Okubo, Tokyo 169-8555 (Japan)

    2016-01-10

    Pulsating low-cycle fatigue processes, up to the present, have been divided into three states: the transient state, steady state, and accelerating state of ratcheting. In our previous work, we suggested that fatigue behavior of pulsating fatigue process should be classified into five stages in which the plastic strain amplitude and the ratcheting strain rate are plotted on the X and Y axis, respectively. In this study, at the condition of R=−0.3 (partially pulsating fatigue), the change in the plastic strain amplitude and ratcheting strain rate for each cycle to failure was examined on AISI 1025 carbon steel. The dislocation substructure was examined using transmission electron microscopy (TEM) for each stage, except for stage I. It was also demonstrated that the fatigue process can be divided into five stages: stage I corresponds to the un-pinning of dislocations from the Cottrell atmosphere and propagation of the Luders band. Stage II corresponds to the restriction of dislocation movement by dislocation tangles. Stage III corresponds to the formation of dislocation cells. Stage IV corresponds to the promotion of the to-and-fro (back-and-forth) motion of dislocations by a re-arrangement of the dislocations in the cells. Stage V corresponds to the release of dislocation movement by the collapse of dislocation cells.

  20. On the relevance of source effects in geomagnetic pulsations for induction soundings

    Directory of Open Access Journals (Sweden)

    A. Neska

    2018-03-01

    Full Text Available This study is an attempt to close a gap between recent research on geomagnetic pulsations and their usage as source signals in electromagnetic induction soundings (i.e., magnetotellurics, geomagnetic depth sounding, and magnetovariational sounding. The plane-wave assumption as a precondition for the proper performance of these methods is partly violated by the local nature of field line resonances which cause a considerable portion of pulsations at mid latitudes. It is demonstrated that and explained why in spite of this, the application of remote reference stations in quasi-global distances for the suppression of local correlated-noise effects in induction arrows is possible in the geomagnetic pulsation range. The important role of upstream waves and of the magnetic equatorial region for such applications is emphasized. Furthermore, the principal difference between application of reference stations for local transfer functions (which result in sounding curves and induction arrows and for inter-station transfer functions is considered. The preconditions for the latter are much stricter than for the former. Hence a failure to estimate an inter-station transfer function to be interpreted in terms of electromagnetic induction, e.g., because of field line resonances, does not necessarily prohibit use of the station pair for a remote reference estimation of the impedance tensor.

  1. DISCOVERY OF AN ULTRACOMPACT GAMMA-RAY MILLISECOND PULSAR BINARY CANDIDATE

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Albert K. H.; Jin, Ruolan; Yen, T.-C.; Tam, P. H. T.; Lin, L. C. C. [Institute of Astronomy and Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hu, C.-P. [Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China); Hui, C. Y.; Park, S. M. [Department of Astronomy and Space Science, Chungnam National University, Daejeon (Korea, Republic of); Takata, J.; Cheng, K. S. [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Kim, C. L., E-mail: akong@phys.nthu.edu.tw [Department of Physics and Astronomy, Seoul National University (Korea, Republic of)

    2014-10-20

    We report multi-wavelength observations of the unidentified Fermi object 2FGL J1653.6-0159. With the help of high-resolution X-ray observations, we have identified an X-ray and optical counterpart to 2FGL J1653.6-0159. The source exhibits a periodic modulation of 75 minutes in the optical and possibly also in the X-ray. We suggest that 2FGL J1653.6-0159 is a compact binary system with an orbital period of 75 minutes. Combining the gamma-ray and X-ray properties, 2FGL J1653.6-0159 is potentially a black-widow-/redback-type gamma-ray millisecond pulsar (MSP). The optical and X-ray light curve profiles show that the companion is mildly heated by the high-energy emission and that the X-rays are from intrabinary shock. Although no radio pulsation has yet been detected, we estimated that the spin period of the MSP is ∼ 2 ms based on a theoretical model. If pulsation can be confirmed in the future, 2FGL J1653.6-0159 will become the first ultracompact rotation-powered MSP.

  2. Galex and Optical Observations of GW Librae during the Long Decline from Superoutburst

    Science.gov (United States)

    Bullock, Eric; Szkody, Paula; Mukadam, Anjum S.; Borges, Bernardo W.; Fraga, Luciano; Gansicke, Boris T.; Harrison, Thomas E.; Henden, Arne; Holtzman, Jon; Howell, Steve B.; hide

    2011-01-01

    The prototype of accreting, pulsating white dwarfs (GW Lib) underwent a large amplitude dwarf nova outburst in 2007. We used ultraviolet data from Galaxy Evolution Explorer and ground-based optical photometry and spectroscopy to follow GW Lib for three years following this outburst. Several variations are apparent during this interval. The optical shows a superhump modulation in the months following outburst, while a 19 minute quasi-periodic modulation lasting for several months is apparent in the year after outburst. A long timescale (about 4 hr) modulation first appears in the UV a year after outburst and increases in amplitude in the following years. This variation also appears in the optical two years after outburst but is not in phase with the UV. The pre-outburst pulsations are not yet visible after three years, likely indicating the white dwarf has not returned to its quiescent state.

  3. A Project to Develop an Index of PC 3,4,5 Geomagnetic Pulsations and to Study Their control by Solar Wind Parameters.

    Science.gov (United States)

    1983-04-01

    source of Pc 3,4 pulsations in foreshock signals, shock pulsations, and magnetosheath turbulence, and several groups are actively exanining this...link between wavetrains in the sheath and Pc 3,4 has ever been proved, however, althugh the possibility that foreshock waves, which resemble pulsations...shock and foreshock reglons con- variations in wave correlation observable in the stitute the essential tool for distingi.shing running 12-second

  4. FUNCTIONS AND REQUIREMENTS FOR RUSSIAN PULSATING MONITOR DEPLOYMENT IN THE GUNITE AND ASSOCIATED TANKS AT OAK RIDGE NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    Thomas Albert

    1999-01-01

    This document provides functions and requirements to support deployment of pulsating mixer pump technology in the Oak Ridge National Laboratory (ORNL) Gunite and Associated Tanks to mobilize and mix the settled sludge and solids in these tanks. In FY 1998 pulsating mixer pump technology, a jet mixer powered by a reciprocating air supply, was selected for FY 1999 deployment in one of the GAAT tanks to mobilize settled solids. Pulsating mixer pump technology was identified in FY 1996 during technical exchanges between the US Department of Energy (DOE) Tanks Focus Area Retrieval and Closure program, the DOE Environmental Management International Programs, and delegates from Russia as a promising technology that could be implemented in the US. The pulsating mixer pump technology, provided by the Russian Integrated Mining Chemical Company, was tested at Pacific Northwest National Laboratory (PNNL) to observe its ability to mobilize settled solids. Based on the results of this demonstration, ORNL and DOE staff determined that a modified pulsating mixer pump would meet project needs for bulk mobilization of Gunite tank sludge prior to deployment of other retrieval systems. The deployment of this device is expected to significantly reduce the costs of operation and maintenance of more expensive retrieval systems. The functions and requirements presented here were developed by evaluating the results and recommendations that resulted from the pulsating mixer pump demonstration at PNNL, and by coupling this with the remediation needs identified by staff at ORNL involved with the remediation of the Gunite and Associated Tanks

  5. Absolute Properties of the Pulsating Post-mass Transfer Eclipsing Binary OO Draconis

    Science.gov (United States)

    Lee, Jae Woo; Hong, Kyeongsoo; Koo, Jae-Rim; Park, Jang-Ho

    2018-01-01

    OO Dra is a short-period Algol system with a δ Sct-like pulsator. We obtained time-series spectra between 2016 February and May to derive the fundamental parameters of the binary star and to study its evolutionary scenario. The radial velocity (RV) curves for both components were presented, and the effective temperature of the hotter and more massive primary was determined to be {T}{eff,1}=8260+/- 210 K by comparing the disentangling spectrum and the Kurucz models. Our RV measurements were solved with the BV light curves of Zhang et al. using the Wilson-Devinney binary code. The absolute dimensions of each component are determined as follows: M 1 = 2.03 ± 0.06 {M}⊙ , M 2 = 0.19 ± 0.01 {M}⊙ , R 1 = 2.08 ± 0.03 {R}⊙ , R 2 = 1.20 ± 0.02 {R}⊙ , L 1 = 18 ± 2 {L}⊙ , and L 2 = 2.0 ± 0.2 {L}⊙ . Comparison with stellar evolution models indicated that the primary star resides inside the δ Sct instability strip on the main sequence, while the cool secondary component is noticeably overluminous and oversized. We demonstrated that OO Dra is an oscillating post-mass transfer R CMa-type binary; the originally more massive star became the low-mass secondary component through mass loss caused by stellar wind and mass transfer, and the gainer became the pulsating primary as the result of mass accretion. The R CMa stars, such as OO Dra, are thought to have formed by non-conservative binary evolution and ultimately to evolve into EL CVn stars.

  6. Effects of Pulsating Flow on Mass Flow Balance and Surge Margin in Parallel Turbocharged Engines

    OpenAIRE

    Thomasson, Andreas; Eriksson, Lars

    2015-01-01

    The paper extends a mean value model of a parallel turbocharged internal combustion engine with a crank angle resolved cylinder model. The result is a 0D engine model that includes the pulsating flow from the intake and exhaust valves. The model captures variations in turbo speed and pressure, and therefore variations in the compressor operating point, during an engine cycle. The model is used to study the effect of the pulsating flow on mass flow balance and surge margin in parallel turbocha...

  7. Minutes

    International Nuclear Information System (INIS)

    1998-01-01

    In the minutes of II Uruguayan Geological Congress have been included the following topics: structural geology, tectonic, sedimentology, stratigraphy, mineralogy, petrology, geochemistry, paleontology, mineral prospecting, economic, regional and applied geology. (author)

  8. Comparison of computer codes for evaluation of double-supply-frequency pulsations in linear induction pumps

    International Nuclear Information System (INIS)

    Kirillov, Igor R.; Obukhov, Denis M.; Ogorodnikov, Anatoly P.; Araseki, Hideo

    2004-01-01

    The paper describes and compares three computer codes that are able to estimate the double-supply-frequency (DSF) pulsations in annular linear induction pumps (ALIPs). The DSF pulsations are the result of interaction of the magnetic field and induced in liquid metal currents both changing with supply-frequency. They may be of some concern for electromagnetic pumps (EMP) exploitation and need to be evaluated at their design. The results of computer simulation are compared with experimental ones for annular linear induction pump ALIP-1

  9. Taking minutes of meetings

    CERN Document Server

    Gutmann, Joanna

    2016-01-01

    aking Minutes of Meetings guides you through the entire process behind minute taking: arranging the meeting; writing the agenda; creating the optimum environment; structuring the meeting and writing notes up accurately. The minute-taker is one of the most important and powerful people in a meeting and you can use this opportunity to develop your knowledge, broaden your horizons and build credibility within the organization. Taking Minutes of Meetings is an easy to read 'dip-in, dip-out' guide which shows you how to confidently arrange meetings and produce minutes. It provides hands-on advice about the sections of a meeting as well as tips on how to create an agenda, personal preparation, best practice advice on taking notes and how to improve your accuracy. Brand new chapters of this 4th edition include guidance on using technology to maximize effectiveness and practical help with taking minutes for a variety of different types of meetings. The creating success series of books... With over one million copi...

  10. KIC 3240411 - the hottest known SPB star with the asymptotic g-mode period spacing

    Science.gov (United States)

    Szewczuk, Wojciech; Daszyńska-Daszkiewicz, Jadwiga

    2018-05-01

    We report the discovery of the hottest hybrid B-type pulsator, KIC 3240411, that exhibits the period spacing in the low-frequency range. This pattern is associated with asymptotic properties of high-order gravity (g-) modes. Our seismic modelling made simultaneously with the mode identification shows that dipole axisymmetric modes best fit the observations. Evolutionary models are computed with MESA code and pulsational models with the linear non-adiabatic code employing the traditional approximation to include the effects of rotation. The problem of mode excitation is discussed. We confirm that significant modification is indispensable to explain an instability of both pressure and gravity modes in the observed frequency ranges of KIC 3240411.

  11. Comparison of a single-dose vectored thermal pulsation procedure with a 3-month course of daily oral doxycycline for moderate-to-severe meibomian gland dysfunction

    Directory of Open Access Journals (Sweden)

    Hagen KB

    2018-01-01

    Full Text Available Kerry B Hagen,1 Raman Bedi,2 Caroline A Blackie,3 Kellie J Christenson-Akagi1 1EyeHealth Northwest, Portland, OR, USA; 2Iris Advanced Eye Centre, Chandigarh, India; 3TearScience, Inc., Morrisville, NC, USA Purpose: The aim of this study was to compare the efficacy of a single bilateral 12-minute vectored thermal pulsation (VTP procedure versus daily oral doxycycline for 3 months for moderate-to-severe meibomian gland dysfunction (MGD.Methods: This prospective, randomized, parallel-group, single-masked study included 28 subjects who received either a single-dose VTP or 3 months of doxycycline treatment. At baseline and 3 months post treatment, all subjects were evaluated for the following: dry eye symptoms with a standard dry eye questionnaire (the Standard Patient Evaluation for Eye Dryness [SPEED], meibomian gland (MG function by counting the number of glands yielding liquid secretion with the MG evaluator (MGE, tear breakup time (TBUT and corneal and conjunctival staining.Results: In the VTP group, at 3 months, there was a significant improvement in MG function (4.00±1.47 to 7.73±5.53, SPEED score (11.00±3.30 to 5.42±2.15, TBUT (6.26±2.01 to 8.44±1.81, corneal staining (0.38±0.50 to 0.12±0.33 and conjunctival staining (1.69±1.93 to 0.62±0.85. In the doxycycline group, there was a significant improvement in MG function (4.63±1.41 to 10.63±5.91, SPEED score (13.42±4.17 to 9.42±5.47 and conjunctival staining (2.38±1.88 to 1.13±1.51, but the improvement in TBUT (6.90±2.56 to 7.59±2.03 and corneal staining (0.21±0.41 to 0.13±0.34 was not statistically significant (p=0.262 and p=0.414, respectively. At 3 months, SPEED score was significantly better in the VTP group (p<0.05; other parameters were comparable between the two groups.Conclusion: A single 12-minute bilateral VTP procedure was significantly more effective than the 3-month daily course of oral doxycycline at improving the dry eye symptoms secondary to MGD. A single

  12. A likely candidate of type Ia supernova progenitors: the X-ray pulsating companion of the hot subdwarf HD 49798

    International Nuclear Information System (INIS)

    Wang Bo; Han Zhanwen

    2010-01-01

    HD 49798 is a hydrogen depleted subdwarf O6 star and has an X-ray pulsating companion (RX J0648.0-4418). The X-ray pulsating companion is a massive white dwarf. Employing Eggleton's stellar evolution code with the optically thick wind assumption, we find that the hot subdwarf HD 49798 and its X-ray pulsating companion could produce a type Ia supernova (SN Ia) in future evolution. This implies that the binary system is a likely candidate of an SN Ia progenitor. We also discuss the possibilities of some other WD + He star systems (e.g. V445 Pup and KPD 1930+2752) for producing SNe Ia. (research papers)

  13. Pulsating Instability of Turbulent Thermonuclear Flames in Type Ia Supernovae

    Science.gov (United States)

    Poludnenko, Alexei Y.

    2014-01-01

    Presently, one of the main explosion scenarios of type Ia supernovae (SNIa), aimed at explaining both "normal" and subluminous events, is the thermonuclear incineration of a white-dwarf in a single-degenerate system. The underlying engine of such explosions is the turbulent thermonuclear flame. Modern, large-scale, multidimensional simulations of SNIa cannot resolve the internal flame structure, and instead must include a subgrid-scale prescription for the turbulent-flame properties. As a result, development of robust, parameter-free, large-scale models of SNIa crucially relies on the detailed understanding of the turbulent flame properties during each stage of the flame evolution. Due to the complexity of the flame dynamics, such understanding must be validated by the first-principles direct numerical simulations (DNS). In our previous work, we showed that sufficiently fast turbulent flames are inherently susceptible to the development of detonations, which may provide the mechanism for the deflagration-to-detonation transition (DDT) in the delayed-detonation model of SNIa. Here we extend this study by performing detailed analysis of the turbulent flame properties at turbulent intensities below the critical threshold for DDT. We carried out a suite of 3D DNS of turbulent flames for a broad range of turbulent intensities and system sizes using a simplified, single-step, Arrhenius-type reaction kinetics. Our results show that at the later stages of the explosion, as the turbulence intensity increases prior to the possible onset of DDT, the flame front will become violently unstable. We find that the burning rate exhibits periodic pulsations with the energy release rate varying by almost an order of magnitude. Furthermore, such flame pulsations can produce pressure waves and shocks as the flame speed approaches the critical Chapman-Jouguet deflagration speed. Finally, in contrast with the current theoretical understanding, such fast turbulent flames can propagate at

  14. The temporal and spatial variations of low frequency geomagnetic pulsations at polar cusp and cap latitudes

    International Nuclear Information System (INIS)

    Kleimenova, N.; Kozyreva, O.V.; Francia, P.; Villante, U.

    1999-01-01

    Geomagnetic field measurements at two Antarctic are compared during two weeks in the local summer (January 1-15, 1992). Low frequency (0.6 mHz) pulsations are observed at each station near local magnetic noon. The same wave packets appear in some case also at the other station, although with a significant attenuation, more clearly in the morning sector; the wave show a near noon reversal of the polarization sense from counterclockwise in the morning to clockwise in the afternoon indicating a westward and an eastward propagation, respectively

  15. The temporal and spatial variations of low frequency geomagnetic pulsations at polar cusp and cap latitudes

    Directory of Open Access Journals (Sweden)

    J. Bitterly

    1999-06-01

    Full Text Available Geomagnetic field measurements at two Antarctic stations are compared during two weeks in the local summer (January 1-15, 1992. Low frequency (0.6-6 mHz pulsations are observed at each station near local magnetic noon. The same wave packets appear in some cases also at the other station, although with a significant attenuation, more clearly in the morning sector; the waves show a near noon reversal of the polarization sense from counter-clockwise in the morning to clockwise in the afternoon indicating a westward and an eastward propagation, respectively.

  16. Engineering of spatial solitons in two-period QPM structures

    DEFF Research Database (Denmark)

    Johansen, Steffen Kjær; Carrasco, Silvia; Torner, Lluis

    2002-01-01

    We report on a scheme which might make it practically possible to engineer the effective competing nonlinearities that on average govern the light propagation in quasi-phase-matching (QPM) gratings. Modulation of the QPM period with a second longer period, introduces an extra degree of freedom...... relative lengths of the two periods and we consider the effect on solitons and the bandwidth for their generation. We derive an expression for the bandwidth of multicolor soliton generation in two-period QPM samples and we predict and confirm numerically that the bandwidth is broader in the two-period QPM...

  17. Survey of non-linear hydrodynamic models of type-II Cepheids

    Science.gov (United States)

    Smolec, R.

    2016-03-01

    We present a grid of non-linear convective type-II Cepheid models. The dense model grids are computed for 0.6 M⊙ and a range of metallicities ([Fe/H] = -2.0, -1.5, -1.0), and for 0.8 M⊙ ([Fe/H] = -1.5). Two sets of convective parameters are considered. The models cover the full temperature extent of the classical instability strip, but are limited in luminosity; for the most luminous models, violent pulsation leads to the decoupling of the outermost model shell. Hence, our survey reaches only the shortest period RV Tau domain. In the Hertzsprung-Russell diagram, we detect two domains in which period-doubled pulsation is possible. The first extends through the BL Her domain and low-luminosity W Vir domain (pulsation periods ˜2-6.5 d). The second domain extends at higher luminosities (W Vir domain; periods >9.5 d). Some models within these domains display period-4 pulsation. We also detect very narrow domains (˜10 K wide) in which modulation of pulsation is possible. Another interesting phenomenon we detect is double-mode pulsation in the fundamental mode and in the fourth radial overtone. Fourth overtone is a surface mode, trapped in the outer model layers. Single-mode pulsation in the fourth overtone is also possible on the hot side of the classical instability strip. The origin of the above phenomena is discussed. In particular, the role of resonances in driving different pulsation dynamics as well as in shaping the morphology of the radius variation curves is analysed.

  18. Minimum period and the gap in periods of Cataclysmic binaries

    International Nuclear Information System (INIS)

    Paczynski, B.; Sienkiewicz, R.

    1983-01-01

    The 81 minute cutoff to the orbital periods of hydrogen-rich cataclysmic binaries is consistent with evolution of those systems being dominated by angular momentum losses due to gravitational radiation. Unfortunately, many uncertainties, mainly poorly known atmospheric opacities below 2000 K, make is physically impossible to verify the quadrupole formula for gravitational radiation by using the observed cutoff at 81 minutes. The upper boundary of the gap in orbital periods observed at about 3 hours is almost certainly due to enhanced angular momentum losses from cataclysmic binaries which have longer periods. The physical mechanism of those losses is not identified, but a possible importance of stellar winds is pointed out. The lower boundary of the gap may be explained with the oldest cataclysmic binaries, whose periods evolved past the minimum at 81 minutes and reached the value of 2 hours within about 12 x 10 9 years after the binary had formed. Those binaries should have secondary components of only 0.02 solar masses, and their periods could be used to estimate ages of the oldest cataclysmic stars, and presumably the age of Galaxy. An alternative explanation for the gap requires that binaries should be detached while crossing the gap. A possible mechanism for this phenomenon is discussed. It requires the secondary components to be about 0.2 solar masses in the binaries just below the gap

  19. Pulsational instability of high-luminosity H-rich pre-white dwarf star

    Directory of Open Access Journals (Sweden)

    Calcaferro Leila M.

    2017-01-01

    Full Text Available We present a pulsational stability analysis on high-luminosity H-rich (DA white dwarf models evolved from low-metallicity progenitors. We found that the ε mechanism due to H-shell burning is able to excite low-order g modes.

  20. Morphology of low-frequency waves in the solar wind and their relation to ground pulsations

    International Nuclear Information System (INIS)

    Odera, T.J.; Stuart, W.F.

    1986-01-01

    Three classes of low frequency waves (period range 20 to 80 s) were identified using data from the UCLA fluxgate magnetometer experiment on board the ISEE 2 spacecraft. These are continuous pulsations similar in type to Pc 3, band-limited oscillations distinguished by mixed period fluctuations, and relatively isolated wave bundles. The waves were preferentially observed when the interplanetary magnetic field (IMF) direction was sunward and were most common when the cone angle, i.e. the angle between IMF and the Sun-Earth line (thetasub(xB)) was often between 15 deg and 45 deg. Their frequency is proportional to the IMF magnitude. Comparison between the waves observed on board the ISEE 2 spacecraft and the Pc 3-4 recorded simultaneously at a mid-latitude ground station, Oulu (L = 4.5), showed that similarity of spectra of the waves in the spacecraft and on the ground was very rare and that correspondence between the events in space and on the ground was extremely low. (author)

  1. Effect of the August 11, 1999 total solar eclipse on geomagnetic pulsations

    Czech Academy of Sciences Publication Activity Database

    Pal, B.; Heilig, B.; Zieger, B.; Szendröi, J.; Verö, J.; Lühr, H.; Yumoto, K.; Tanaka, Y.; Střeštík, Jaroslav

    2007-01-01

    Roč. 42, č. 1 (2007), s. 23-58 ISSN 1217-8977 Institutional research plan: CEZ:AV0Z30120515 Keywords : field line resonance * geomagnetic pulsations * solar eclipse Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  2. Minutes of the twelfth INDC meeting, Vienna, 5-9 October 1981

    International Nuclear Information System (INIS)

    Yiftah, S.

    1982-08-01

    The Twelfth Meeting of the INDC was held at IAEA Headquarters in Vienna from 5-9 October 1981. The meeting was attended by 13 committee members (member from Australia excused), six advisers and three observers from 14 Member States and two international organisations. The committee reviewed the nuclear data activities of the IAEA, in Member States and in nuclear data centres during the period since its Eleventh Meeting in Vienna in June 1980. It also discussed and reviewed in detail the Agency's future nuclear data programme for the period 1982-84. In general, the IAEA nuclear data programme reflects the trends discussed and detailed at the 11th INDC Meeting. The official minutes include summaries of the discussions of the agenda items, full reports of subcommittees, list of actions, together with lists of participants and subcommittee membership

  3. Pseudo-field line resonances in ground Pc5 pulsation events

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2005-02-01

    Full Text Available In this work we study four representative cases of Pc5 ground pulsation events with discrete and remarkably stable frequencies extended at least in a high-latitude range of ~20°; a feature that erroneously gives the impression for an oscillation mode with "one resonant field line". Additionally, the presented events show characteristic changes in polarization sense, for a meridian chain of stations from the IMAGE array, and maximize their amplitude at or close to the supposed resonant magnetic field shell, much like the typical FLR. Nevertheless, they are not authentic FLRs, but pseudo-FLRs, as they are called. These structures are produced by repetitive and tilted twin-vortex structures caused by magnetopause surface waves, which are probably imposed by solar wind pressure waves. The latter is confirmed with in-situ measurements obtained by the Cluster satellites, as well as the Geotail, Wind, ACE, and LANL 1994-084 satellites. This research effort is largely based on two recent works: first, Sarafopoulos (2004a has observationally established that a solar wind pressure pulse (stepwise pressure variation produces a twin-vortex (single vortex current system over the ionosphere; second, Sarafopoulos (2004b has studied ground events with characteristic dispersive latitude-dependent structures and showed that these are associated with twin-vortex ionosphere current systems. In this work, we show that each pseudo-FLR event is associated with successive and tilted large-scale twin-vortex current systems corresponding to a magnetopause surface wave with wavelength 10-20RE. We infer that between an authentic FLR, which is a spatially localized structure with an extent 0.5RE in the magnetospheric equatorial plane, and the magnetopause surface wavelength, there is a scale factor of 20-40. A chief observational finding, in this work, is that there are Pc5 ground pulsation events showing two gradual and latitude

  4. Pseudo-field line resonances in ground Pc5 pulsation events

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2005-02-01

    Full Text Available In this work we study four representative cases of Pc5 ground pulsation events with discrete and remarkably stable frequencies extended at least in a high-latitude range of ~20°; a feature that erroneously gives the impression for an oscillation mode with "one resonant field line". Additionally, the presented events show characteristic changes in polarization sense, for a meridian chain of stations from the IMAGE array, and maximize their amplitude at or close to the supposed resonant magnetic field shell, much like the typical FLR. Nevertheless, they are not authentic FLRs, but pseudo-FLRs, as they are called. These structures are produced by repetitive and tilted twin-vortex structures caused by magnetopause surface waves, which are probably imposed by solar wind pressure waves. The latter is confirmed with in-situ measurements obtained by the Cluster satellites, as well as the Geotail, Wind, ACE, and LANL 1994-084 satellites. This research effort is largely based on two recent works: first, Sarafopoulos (2004a has observationally established that a solar wind pressure pulse (stepwise pressure variation produces a twin-vortex (single vortex current system over the ionosphere; second, Sarafopoulos (2004b has studied ground events with characteristic dispersive latitude-dependent structures and showed that these are associated with twin-vortex ionosphere current systems. In this work, we show that each pseudo-FLR event is associated with successive and tilted large-scale twin-vortex current systems corresponding to a magnetopause surface wave with wavelength 10-20RE. We infer that between an authentic FLR, which is a spatially localized structure with an extent 0.5RE in the magnetospheric equatorial plane, and the magnetopause surface wavelength, there is a scale factor of 20-40. A chief observational finding, in this work, is that there are Pc5 ground pulsation events showing two gradual and latitude dependent phase-shifts of 180°, at the

  5. Comparing the asteroseismic properties of pulsating extremely low-mass pre-white dwarf stars and δ Scuti stars

    Directory of Open Access Journals (Sweden)

    Arias J.P.Sánchez

    2017-01-01

    Full Text Available We present the first results of a detailed comparison between the pulsation properties of pulsating Extremely Low-Mass pre-white dwarf stars (the pre-ELMV variable stars and δ Scuti stars. The instability domains of these very different kinds of stars nearly overlap in the log Teff vs. log g diagram, leading to a degeneracy in the classification of the stars. Our aim is to provide asteroseismic tools for their correct classification.

  6. Effects of pulsating water jet impact on aluminium surface

    Czech Academy of Sciences Publication Activity Database

    Foldyna, Josef; Sitek, Libor; Ščučka, Jiří; Martinec, Petr; Valíček, Jan; Páleníková, K.

    2009-01-01

    Roč. 2009, č. 20 (2009), s. 6174-6180 ISSN 0924-0136 R&D Projects: GA ČR GA101/07/1451; GA ČR GP101/07/P512 Institutional research plan: CEZ:AV0Z30860518 Keywords : pulsating water jet * jet impact * material erosion * surface characteristics Subject RIV: JQ - Machines ; Tools Impact factor: 1.420, year: 2009 http://www.sciencedirect.com/science

  7. X-Ray Flare Oscillations Track Plasma Sloshing along Star-disk Magnetic Tubes in the Orion Star-forming Region

    Science.gov (United States)

    Reale, Fabio; Lopez-Santiago, Javier; Flaccomio, Ettore; Petralia, Antonino; Sciortino, Salvatore

    2018-03-01

    Pulsing X-ray emission tracks the plasma “echo” traveling in an extremely long magnetic tube that flares in an Orion pre-main sequence (PMS) star. On the Sun, flares last from minutes to a few hours and the longest-lasting ones typically involve arcades of closed magnetic tubes. Long-lasting X-ray flares are observed in PMS stars. Large-amplitude (∼20%), long-period (∼3 hr) pulsations are detected in the light curve of day-long flares observed by the Advanced CCD Imaging Spectrometer on-board Chandra from PMS stars in the Orion cluster. Detailed hydrodynamic modeling of two flares observed on V772 Ori and OW Ori shows that these pulsations may track the sloshing of plasma along a single long magnetic tube, triggered by a sufficiently short (∼1 hr) heat pulse. These magnetic tubes are ≥20 solar radii long, enough to connect the star with the surrounding disk.

  8. X-ray properties of the Be/X-ray systems 2S0114+650 LSI+65 deg 010

    International Nuclear Information System (INIS)

    Koenigsberger, G.; Swank, J.H.; Szymkowiak, A.E.

    1982-12-01

    Results are presented from experiments on the Einstein Observatory, HEAO-1 and OSO-8 on the temporal and spectral properties of 2S0114+650. In a 12 hour Einstein MPC and SSS observation two episodes of flaring occurred by an order of magnitude over about 1 hour. Variability on shorter time scales showed a preferred period of 14.9 minutes, but periodic pulsations were not seen in the HEAO-1 and OSO-8 data. There is some evidence that the spectrum is steeper when the source is quiescent at low luminosity, but no large spectral changes attended the flares. Absorption column densities were consistent with interstellar reddening of the proposed companion, the Be star LSI+65 deg 010. In the minute and hour variability and in the spectral character, 2S0114+650 is similar to other Be star-neutron star binary X-ray sources. Variations over several days in the OSO-8 data suggest orbital effects

  9. Magnetospheric pulsations: Models and observations of compressional waves

    International Nuclear Information System (INIS)

    Zhu, Xiaoming.

    1989-01-01

    The first part of the dissertation models ultralow frequency (ULF) waves in a simplified geometry in order to understand the physics of the mode coupling between the compressional and shear Alfven waves in an inhomogeneous magnetized plasma. Wave mode coupling occurs when a field line resonant frequency (defined by the shear Alfven mode) matches the global mode frequency (defined by the compressional mode). Large wave amplitudes occur near the resonant field line. Although the wave amplitude of the global mode is small away from resonant field lines, significant wave energy is stored in the wave mode due to its large scale nature. It serves as a reservoir to continuously feed energy to resonant field lines. This mechanism may explain why some field line resonances can last for times longer than that predicted from the ionospheric Joule dissipation. A nonmonotonic Alfven velocity divides the magnetosphere into two or more cavities by the local maxima of the Alfven velocity. The global mode is typically localized in one of the cavities except at some preferred frequencies, the global mode can extend through more than one cavity. This may explain ULF wave excitations in the low latitude magnetosphere. The second part of the dissertation is devoted to study compressional waves in the outer magnetosphere using magnetic field and plasma data. Statistical information on the distribution of compressional Pc 5 waves in the outer magnetosphere is obtained. Large amplitude, long period compressional Pc 5 pulsations are found very common near the magnetic equator. They are polarized mainly in a meridian plane with comparable compressional and transverse amplitudes. Close correlation between compressional wave amplitude and plasma β is also found. Several case studies show that compressional waves are quenched in the region where β < 1

  10. Minimisation of pressure pulsations in the screw compressor discharge piping

    Energy Technology Data Exchange (ETDEWEB)

    Zaytsev, D. [Grasso GmbH Refrigeration Technology, Berlin (Germany). R and D Screw Compressors

    2006-07-01

    A problem of noise and vibration in the piping between the screw compressor and oil separator arises if the natural gas pulsations in the piping get in the resonance with the pulsations sent by the compressor. Several typical piping geometries such as a short and a long pipe with the open end and a short pipe with agglomerator have been studied to evaluate the natural frequency of the gas column. It was found that because of the wave reflection from the open pipe end the gas in such a pipe has several natural frequencies dependent on the sound speed and on the pipe length. Since the sound speed of various refrigerants differs significantly, the resonance pipe length will also vary strongly from one refrigerant to another. Hence, to avoid the resonance a separate examination for each refrigerant would be required at the compressor package design stage. Unlike open ended pipes, in the pipe with agglomerator the wave reflection at the agglomerator side is reduced. This allows using of one standard discharge pipe geometry resonance-free independent on the refrigerant. (orig.)

  11. Seismic isolation of two dimensional periodic foundations

    International Nuclear Information System (INIS)

    Yan, Y.; Mo, Y. L.; Laskar, A.; Cheng, Z.; Shi, Z.; Menq, F.; Tang, Y.

    2014-01-01

    Phononic crystal is now used to control acoustic waves. When the crystal goes to a larger scale, it is called periodic structure. The band gaps of the periodic structure can be reduced to range from 0.5 Hz to 50 Hz. Therefore, the periodic structure has potential applications in seismic wave reflection. In civil engineering, the periodic structure can be served as the foundation of upper structure. This type of foundation consisting of periodic structure is called periodic foundation. When the frequency of seismic waves falls into the band gaps of the periodic foundation, the seismic wave can be blocked. Field experiments of a scaled two dimensional (2D) periodic foundation with an upper structure were conducted to verify the band gap effects. Test results showed the 2D periodic foundation can effectively reduce the response of the upper structure for excitations with frequencies within the frequency band gaps. When the experimental and the finite element analysis results are compared, they agree well with each other, indicating that 2D periodic foundation is a feasible way of reducing seismic vibrations.

  12. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets

    International Nuclear Information System (INIS)

    Snezhko, Alexey; Aranson, Igor S; Jacob, Eshel Ben

    2008-01-01

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 0 C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets

  13. Pulsating-gliding transition in the dynamics of levitating liquid nitrogen droplets

    Energy Technology Data Exchange (ETDEWEB)

    Snezhko, Alexey; Aranson, Igor S [Materials Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Argonne, IL 60439 (United States); Jacob, Eshel Ben [School of Physics and Astronomy, 69978 Tel Aviv University, Tel Aviv (Israel)], E-mail: aranson@msd.anl.gov

    2008-04-15

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 {sup 0}C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets.

  14. Effects of gas periodic stimulation on key enzyme activity in gas double-dynamic solid state fermentation (GDD-SSF).

    Science.gov (United States)

    Chen, Hongzhang; Shao, Meixue; Li, Hongqiang

    2014-03-05

    The heat and mass transfer have been proved to be the important factors in air pressure pulsation for cellulase production. However, as process of enzyme secretion, the cellulase formation has not been studied in the view of microorganism metabolism and metabolic key enzyme activity under air pressure pulsation condition. Two fermentation methods in ATPase activity, cellulase productivity, weight lose rate and membrane permeability were systematically compared. Results indicated that gas double-dynamic solid state fermentation had no obviously effect on cell membrane permeability. However, the relation between ATPase activity and weight loss rate was linearly dependent with r=0.9784. Meanwhile, the results also implied that gas periodic stimulation had apparently strengthened microbial metabolism through increasing ATPase activity during gas double-dynamic solid state fermentation, resulting in motivating the production of cellulase by Trichoderma reesei YG3. Therefore, the increase of ATPase activity would be another crucial factor to strengthen fermentation process for cellulase production under gas double-dynamic solid state fermentation. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Spinning phenomena and energetics of spherically pulsating patterns in stratified fluids

    International Nuclear Information System (INIS)

    Ibragimov, Ranis N; Dameron, Michael

    2011-01-01

    The nonlinear solutions of the two-dimensional Boussinesq equations describing internal waves in rotating stratified fluids were obtained as group invariant solutions. The latter nonlinear solutions correspond to the rotation transformation preserving the form of the original nonlinear equations of motion. It is shown that the obtained class of exact solutions can be associated with the spherically pulsating patterns observed in uniformly stratified fluids. It is also shown that the obtained rotationally symmetric solutions are bounded functions that can be visualized as spinning patterns in stratified fluids. It is also shown that the rotational transformation provides the energy conservation law together with other conservation laws for which the spinning phenomena is observed. The effects of nonlinearity and the Earth's rotation on such a phenomenon are also discussed.

  16. Relation of geomagnetic pulsations to parmeters of mid-latitude lower ionosphere

    International Nuclear Information System (INIS)

    Dorokhov, V.L.; Kostrov, L.S.; Martynenko, S.I.; Piven', L.A.; Pushin, V.F.; Shemet, A.S.

    1989-01-01

    Results of experimental investigation of the effect of geomagnetic pulsations on parameters of medium-latitude lower ionosphere with the use of methods of partial reflections and Doppler probing at short waves are presented. The relation between changes in geomagnetic field and intensity of partially reflected radiosignals is detected

  17. 2-minute Gridded Global Relief Data (ETOPO2) v2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Two-minute gridded global relief for both ocean and land areas are available in the ETOPO2v2 (2006) database. ETOPO2v2 replaced ETOPO2 (2001). The historic 2-minute...

  18. The Extraordinary X-ray Light Curve of the Classical Nova V1494 Aql in Outburst: The Discovery of Pulsations and a ``Burst''

    Science.gov (United States)

    Starrfield, Sumner; Drake, Jeremy

    2001-09-01

    V1494 Aql (Nova Aql 1999 No. 2) was discovered on 2 December 1999. It reached Vmax ~4 making it the brightest northern hemisphere nova since V1500 Cyg erupted in 1975. Our early optical spectra showed that it was an ``Fe II'' class nova (Williams, R.E. AJ, 104, 725, 1992). We activated our CHANDRA Target of Opportunity proposal for bright novae in outburst and obtained ACIS-I spectra on 15 April and 7 June 2000 which showed only emission lines. Our third observation, on 6 August, showed that its spectrum had evolved into that characteristic of a Super Soft X-ray Source (at low resolution it resembled an ``emission'' line with a peak ~ 0.5 keV). We obtained HRC-S+LETG spectra on 28 September (8 ksec) and 1 October 2000 (17 ksec). These spectra qualitatively resembled those of CAL 83 obtained with XMM (Paerels, F., et al. 2001, A&A, 365, L308) and demonstrated that we were observing the atmosphere of a hot white dwarf which was probably still undergoing nuclear burning near the surface. An abundance analysis of the X-ray spectrum is in progress using new Non-LTE stellar atmospheres. We then analyzed the X-ray light curve of our grating observations and, to our surprise, found that we had discovered both a short time scale ``burst'' and that the nova was oscillating. Neither of these phenomena have ever been seen in the light curve of a nova in outburst. The ``burst'' was a factor of 6 rise in X-ray counts near the middle of the second observation which lasted about 1000 sec and exhibited at least two peaks plus other structure. Currently, we have no explanation for the cause of this burst. Our time series analysis of the combined 25 ksec observation showed a peak at 2500 sec which was present in independent analyses of both the zeroth order image and the dispersed spectrum. We also analyzed the light curves of the HRC-S+LETG observations of HZ 43, Sirius B, and V382 Vel (Nova Vel 1999) and found no sign of any periodic behavior in the data which implied that the

  19. Construction of Database for Pulsating Variable Stars

    Science.gov (United States)

    Chen, B. Q.; Yang, M.; Jiang, B. W.

    2011-07-01

    A database for the pulsating variable stars is constructed for Chinese astronomers to study the variable stars conveniently. The database includes about 230000 variable stars in the Galactic bulge, LMC and SMC observed by the MACHO (MAssive Compact Halo Objects) and OGLE (Optical Gravitational Lensing Experiment) projects at present. The software used for the construction is LAMP, i.e., Linux+Apache+MySQL+PHP. A web page is provided to search the photometric data and the light curve in the database through the right ascension and declination of the object. More data will be incorporated into the database.

  20. An investigation of volute cross-sectional shape on turbocharger turbine under pulsating conditions in internal combustion engine

    International Nuclear Information System (INIS)

    Yang, Mingyang; Martinez-Botas, Ricardo; Rajoo, Srithar; Yokoyama, Takao; Ibaraki, Seiichi

    2015-01-01

    Highlights: • Cycle averaged efficiency is higher for the volute A (low aspect ratio). • More distorted flow in volute B is the reason for performance deterioration. • Flow in volute B (high aspect ratio) is more sensitive to pulsating flow. - Abstract: Engine downsizing is a proven method for CO_2 reduction in Internal Combustion Engine (ICE). A turbocharger, which reclaims the energy from the exhaust gas to boost the intake air, can effectively improve the power density of the engine thus is one of the key enablers to achieve the engine downsizing. Acknowledging its importance, many research efforts have gone into improving a turbocharger performance, which includes turbine volute. The cross-section design of a turbine volute in a turbocharger is usually a compromise between the engine level packaging and desired performance. Thus, it is beneficial to evaluate the effects of cross-sectional shape on a turbine performance. This paper presents experimental and computational investigation of the influence of volute cross-sectional shape on the performance of a radial turbocharger turbine under pulsating conditions. The cross-sectional shape of the baseline volute (denoted as Volute B) was optimized (Volute A) while the annulus distribution of area-to-radius ratio (A/R) for the two volute configurations are kept the same. Experimental results show that the turbine with the optimized volute A has better cycle averaged efficiency under pulsating flow conditions, for different loadings and frequencies. The advantage of performance is influenced by the operational conditions. After the experiment, a validated unsteady computational fluid dynamics (CFD) modeling was employed to investigate the mechanism by which performance differs between the baseline volute and the optimized version. Computational results show a stronger flow distortion in spanwise direction at the rotor inlet with the baseline volute. Furthermore, compared with the optimized volute, the flow

  1. Pulsating hydrodynamic instability and thermal coupling in an extended Landau/Levich model of liquid-propellant combustion. 2. Viscous analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stephen B. Margolis

    2000-01-01

    A pulsating form of hydrodynamic instability has recently been shown to arise during liquid-propellant deflagration in those parameter regimes where the pressure-dependent burning rate is characterized by a negative pressure sensitivity. This type of instability can coexist with the classical cellular, or Landau, form of hydrodynamic instability, with the occurrence of either dependent on whether the pressure sensitivity is sufficiently large or small in magnitude. For the inviscid problem, it has been shown that when the burning rate is realistically allowed to depend on temperature as well as pressure, that sufficiently large values of the temperature sensitivity relative to the pressure sensitivity causes the pulsating form of hydrodynamic instability to become dominant. In that regime, steady, planar burning becomes intrinsically unstable to pulsating disturbances whose wavenumbers are sufficiently small. In the present work, this analysis is extended to the fully viscous case, where it is shown that although viscosity is stabilizing for intermediate and larger wavenumber perturbations, the intrinsic pulsating instability for small wavenumbers remains. Under these conditions, liquid-propellant combustion is predicted to be characterized by large unsteady cells along the liquid/gas interface.

  2. Experimental convective heat transfer characterization of pulsating jet in cross flow: influence of Strouhal number excitation on film cooling effectiveness

    International Nuclear Information System (INIS)

    Lalizel, Gildas; Sultan, Qaiser; Fénot, Matthieu; Dorignac, Eva

    2012-01-01

    In actual gas turbine system, unsteadiness of the mainstream flow influences heat transfer and surface pressure distribution on the blade. In order to simulate these conditions, an experimental film cooling study with externally imposed pulsation is performed with purpose of characterizing both effects of turbine unsteadiness on film cooling (with frequency ranges typical to actual turbine), and also to figure out the range of Strouhal number pulsation under various blowing conditions, which could possibly deliver a performance improvement in film cooling. Influence of injection flow pulsation on adiabatic effectiveness and convective heat transfer coefficient are determined from IR-thermography of the wall for distances to the hole exit between 0 and 30 D.

  3. Outcomes of Thermal Pulsation Treatment for Dry Eye Syndrome in Patients With Sjogren Disease.

    Science.gov (United States)

    Godin, Morgan R; Stinnett, Sandra S; Gupta, Preeya K

    2018-04-26

    To evaluate the clinical outcomes of thermal pulsation treatment in patients with meibomian gland dysfunction (MGD) and dry eye secondary to Sjogren disease. Twenty-four eyes from 13 patients with previously diagnosed Sjogren disease who presented to our institution with dry eye symptoms and had thermal pulsation treatment were prospectively followed up. Patients underwent comprehensive slit-lamp examination, including MGD grading, gland oil flow, corneal and conjunctival staining scores, and tear break-up time (TBUT). Tear osmolarity was tested before and after treatment. The average patient age was 62.4 years (range, 31-78 yrs); 12 were women and 1 a man. The average meibomian gland oil flow score showed an increase from pretreatment 0.71 to 1.75 at 1 year posttreatment (range 9-15 months) (P = 0.001). The average corneal staining score decreased from a pretreatment grade of 1.04 to a posttreatment grade of 0.36 (P dry eye disease in patients with Sjogren disease and should not be overlooked when considering treatment options. Thermal pulsation is a therapeutic option for patients with Sjogren disease who have MGD and dry eye symptoms. After a single treatment, patients exhibited increased oil flow and tear break-up time with an associated decrease in corneal and conjunctival staining.

  4. Signatures of the low-latitude Pi 2 pulsations in Egypt

    Directory of Open Access Journals (Sweden)

    Essam Ghamry

    2012-06-01

    The result shows that the Pi 2 observed in the main phase of the geomagnetic storm have larger frequency than those observed in the recovery phase. These results excluded the field line resonance and the plasmapause surface as a possible generation mechanism, and suggest the cavity resonance as a possible generation mechanism of the Pi 2 pulsations at low latitude stations in Egypt.

  5. Results on (UNPublished Wet Runs on Pulsating DB White Dwarfs

    Directory of Open Access Journals (Sweden)

    Handler G.

    2003-03-01

    Full Text Available I have collected all the WET archival data on the pulsating DB white dwarf stars (DBVs and re-reduced them. In addition, the WET has recently observed three DBVs. Preliminary results on PG 1115+158, PG 1351+489, KUV 05134+2605, PG 1654+160 and PG 1456+103 are presented, and the future use of the data is outlined.

  6. Minute ventilation of cyclists, car and bus passengers: an experimental study

    Directory of Open Access Journals (Sweden)

    Hazel Peter

    2009-10-01

    Full Text Available Abstract Background Differences in minute ventilation between cyclists, pedestrians and other commuters influence inhaled doses of air pollution. This study estimates minute ventilation of cyclists, car and bus passengers, as part of a study on health effects of commuters' exposure to air pollutants. Methods Thirty-four participants performed a submaximal test on a bicycle ergometer, during which heart rate and minute ventilation were measured simultaneously at increasing cycling intensity. Individual regression equations were calculated between heart rate and the natural log of minute ventilation. Heart rates were recorded during 280 two hour trips by bicycle, bus and car and were calculated into minute ventilation levels using the individual regression coefficients. Results Minute ventilation during bicycle rides were on average 2.1 times higher than in the car (individual range from 1.3 to 5.3 and 2.0 times higher than in the bus (individual range from 1.3 to 5.1. The ratio of minute ventilation of cycling compared to travelling by bus or car was higher in women than in men. Substantial differences in regression equations were found between individuals. The use of individual regression equations instead of average regression equations resulted in substantially better predictions of individual minute ventilations. Conclusion The comparability of the gender-specific overall regression equations linking heart rate and minute ventilation with one previous American study, supports that for studies on the group level overall equations can be used. For estimating individual doses, the use of individual regression coefficients provides more precise data. Minute ventilation levels of cyclists are on average two times higher than of bus and car passengers, consistent with the ratio found in one small previous study of young adults. The study illustrates the importance of inclusion of minute ventilation data in comparing air pollution doses between

  7. Minute ventilation of cyclists, car and bus passengers: an experimental study.

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; van den Hazel, Peter; Brunekreef, Bert

    2009-10-27

    Differences in minute ventilation between cyclists, pedestrians and other commuters influence inhaled doses of air pollution. This study estimates minute ventilation of cyclists, car and bus passengers, as part of a study on health effects of commuters' exposure to air pollutants. Thirty-four participants performed a submaximal test on a bicycle ergometer, during which heart rate and minute ventilation were measured simultaneously at increasing cycling intensity. Individual regression equations were calculated between heart rate and the natural log of minute ventilation. Heart rates were recorded during 280 two hour trips by bicycle, bus and car and were calculated into minute ventilation levels using the individual regression coefficients. Minute ventilation during bicycle rides were on average 2.1 times higher than in the car (individual range from 1.3 to 5.3) and 2.0 times higher than in the bus (individual range from 1.3 to 5.1). The ratio of minute ventilation of cycling compared to travelling by bus or car was higher in women than in men. Substantial differences in regression equations were found between individuals. The use of individual regression equations instead of average regression equations resulted in substantially better predictions of individual minute ventilations. The comparability of the gender-specific overall regression equations linking heart rate and minute ventilation with one previous American study, supports that for studies on the group level overall equations can be used. For estimating individual doses, the use of individual regression coefficients provides more precise data. Minute ventilation levels of cyclists are on average two times higher than of bus and car passengers, consistent with the ratio found in one small previous study of young adults. The study illustrates the importance of inclusion of minute ventilation data in comparing air pollution doses between different modes of transport.

  8. Maintenance of Minute Circulation Volume during Orthotopic Liver Transplantation

    Directory of Open Access Journals (Sweden)

    D. A. Levit

    2011-01-01

    Full Text Available Objective: to optimize procedures to maintain minute circulation volume at different stages of orthotopic liver transplantation. Subjects and methods. In the period 2005—2010, Sverdlovsk Regional Clinical Hospital One performed 32 orthotopic liver transplantations, including one retransplantation. The patients’ ASA class was (4—5. The operations were carried out under general anesthesia. The mean duration of surgery was 8.1 (range 5.8—10.5 hours. The investigators applied anesthesia based on iso-fluorane 0.6—0.9 MAC (by monitoring the anesthesia depth index with cerebral state index (CSI-40-60, as well as extended central hemodynamic monitoring (prepulmonary hemodilution. All the operations were made via portofemoroaxillary bypass, by using a centrifugal Biopump. Eight surgical stages were identified: 1 run-in (after tracheal intubation; 2 liver mobilization; 3 partial bypass; 4 complete bypass (hepatectomy, a liver-free period; 5 reperfusion; 6 a postreperfusion period (bypass end; 7 biliary repair; 8 the end of an operation. The concentrations of blood parameters, electrolytes, acid-base balance, and the levels of lactate and glucose were examined. The data were processed statistically. Central hemodynamics was monitored by prepulmonary thermodilution, by calculating cardiac index (CI, stroke index, and total peripheral vascular resistance index (TPVRI at the stages: liver mobilization, postreperfusion period (bypass end, and the end of surgery. Results. Even during partial bypass, there was a significant drop in mean blood pressure (MBP as compared to the baseline levels (p<0.05. Reperfusion was also accompanied by a significant decrease in MBP and an increase in heart rate. At the end of reperfusion and in the postreperfusion period, TPVRI was halved (689.2±68.0 as compared to the baseline levels. In the postreperfusion period, central venous and pulmonary artery pressures were significantly increased by 32 and 21%, respectively

  9. Evaluation of pump pulsation in respirable size-selective sampling: Part III. Investigation of European standard methods.

    Science.gov (United States)

    Soo, Jhy-Charm; Lee, Eun Gyung; Lee, Larry A; Kashon, Michael L; Harper, Martin

    2014-10-01

    Lee et al. (Evaluation of pump pulsation in respirable size-selective sampling: part I. Pulsation measurements. Ann Occup Hyg 2014a;58:60-73) introduced an approach to measure pump pulsation (PP) using a real-world sampling train, while the European Standards (EN) (EN 1232-1997 and EN 12919-1999) suggest measuring PP using a resistor in place of the sampler. The goal of this study is to characterize PP according to both EN methods and to determine the relationship of PP between the published method (Lee et al., 2014a) and the EN methods. Additional test parameters were investigated to determine whether the test conditions suggested by the EN methods were appropriate for measuring pulsations. Experiments were conducted using a factorial combination of personal sampling pumps (six medium- and two high-volumetric flow rate pumps), back pressures (six medium- and seven high-flow rate pumps), resistors (two types), tubing lengths between a pump and resistor (60 and 90 cm), and different flow rates (2 and 2.5 l min(-1) for the medium- and 4.4, 10, and 11.2 l min(-1) for the high-flow rate pumps). The selection of sampling pumps and the ranges of back pressure were based on measurements obtained in the previous study (Lee et al., 2014a). Among six medium-flow rate pumps, only the Gilian5000 and the Apex IS conformed to the 10% criterion specified in EN 1232-1997. Although the AirChek XR5000 exceeded the 10% limit, the average PP (10.9%) was close to the criterion. One high-flow rate pump, the Legacy (PP=8.1%), conformed to the 10% criterion in EN 12919-1999, while the Elite12 did not (PP=18.3%). Conducting supplemental tests with additional test parameters beyond those used in the two subject EN standards did not strengthen the characterization of PPs. For the selected test conditions, a linear regression model [PPEN=0.014+0.375×PPNIOSH (adjusted R2=0.871)] was developed to determine the PP relationship between the published method (Lee et al., 2014a) and the EN methods

  10. [Treatment of lymphedema in institutions. Two weeks of in-hospital intensive lymphatic drainage followed by maintenance treatment with a pulsator].

    Science.gov (United States)

    Walby, R

    1990-10-10

    54 patients were admitted to The Norwegian Radium Hospital (hotel ward) for treatment of secondary lymph drainage in the arm or the leg. The treatment consisted of 14 days intensive lymph drainage, including massage and physical exercises, and intermittent compression with pulsator and bandaging. Information/instruction was given continuously. Good elastic stockings were supplied before the patients left the hospital. The treatment was succeeded by a maintenance programme, which the patients carried out themselves at home. The patients were closely followed up and reported on for six months, and were rechecked after another four and 12 months. We present the results after 14 days of intense treatment, followed by a 12-month maintenance programme.

  11. Local time asymmetry of Pc 4--5 pulsations and associated particle modulations at synchronous orbit

    International Nuclear Information System (INIS)

    Kokubun, S.; Erickson, K.N.; Fritz, T.A.; McPherron, R.L.

    1989-01-01

    Magnetic field and particle flux observations on board ATS 6 at synchronous altitude are used to examine the dawn-dusk asymmetry of characteristics of Pc 4--5 waves and associated particle flux modulation. Most waves at synchronous orbit having ground correlations are polarized in the azimuthal direction (A class) and are usually detected in the dawn sector. Waves with a radially oriented polarization ellipse (R-class) are almost never observed near the subsatellite point on the ground, except for the regular pulsations known as giant pulsation Pg, observed in the early morning. R class Pc 4 waves occur at all local times and have an occurrence peak in the afternoon

  12. A deceleration search for magnetar pulsations in the X-ray plateaus of short GRBs

    Science.gov (United States)

    Rowlinson, A.; Patruno, A.; O'Brien, P. T.

    2017-11-01

    A newly formed magnetar has been proposed as the central engine of short GRBs to explain ongoing energy injection giving observed plateau phases in the X-ray light curves. These rapidly spinning magnetars may be capable of emitting pulsed emission comparable to known pulsars and magnetars. In this paper we show that, if present, a periodic signal would be detectable during the plateau phases observed using the Swift/X-Ray Telescope recording data in Window Timing mode. We conduct a targeted deceleration search for a periodic signal from a newly formed magnetar in 2 Swift short GRBs and rule out any periodic signals in the frequency band 10-285 Hz to ≈15-30 per cent rms. These results demonstrate that we would be able to detect pulsations from the magnetar central engine of short GRBs if they contribute to 15-30 per cent of the total emission. We consider these constraints in the context of the potential emission mechanisms. The non-detection is consistent with the emission being reprocessed in the surrounding environment or with the rotation axis being highly aligned with the observing angle. As the emission may be reprocessed, the expected periodic emission may only constitute a few per cent of the total emission and be undetectable in our observations. Applying this strategy to future observations of the plateau phases with more sensitive X-ray telescopes may lead to the detection of the periodic signal.

  13. Decreasing of pulsation intensity levels in X-ray receivers

    CERN Document Server

    Dvoryankin, V F; Kudryashov, A A; Petrov, A G

    2002-01-01

    The low frequency filter is applied in the multichannel receiver on the basis of the GaAs epitaxial structures for decreasing the pulsations level at the signals amplifier outlet. The optimal band of the filter is determined by the transition processes by the detector scanning in the roentgen beams. The X-ray source of radiation with the medium-frequency feeding generator is used for verifying the quality of the obtained X-ray image

  14. Dose-remission of pulsating electromagnetic fields as augmentation in therapy-resistant depression

    DEFF Research Database (Denmark)

    Straasø, Birgit; Lauritzen, Lise; Lunde, Marianne

    2014-01-01

    OBJECTIVE: To evaluate to what extent a twice daily dose of Transcranial Pulsating ElectroMagnetic Fields (T-PEMF) was superior to once daily in patients with treatment-resistant depression as to obtaining symptom remission after 8 weeks of augmentation therapy. METHODS: A self-treatment set...

  15. The DB gap and a new class of pulsating white dwarfs

    Directory of Open Access Journals (Sweden)

    Shibahashi H.

    2013-03-01

    Full Text Available The recent systematic surveys providing enormously massive datasets of white dwarfs show that there is still a deficit of a factor of 2.5 in the DA/non-DA ratio within the temperature range of 30 000 K < Teff < 45 000 K, which has been regarded as the “DB gap” meaning a range with almost no helium atmosphere white dwarfs. Since all white dwarfs have to evolve through this temperature range along almost the identical sequence on the color-magnitude diagram, this implies that most of the helium atmosphere DO stars once evolve into hydrogen atmosphere hot DA stars in the temperature range of the DB gap and then back to helium atmosphere DB stars. Possible scenarios for this chameleon-like disguises of white dwarfs with helium dominant atmospheres are described and a new class of pulsating white dwarfs, named the hot-DAV stars, is predicted from these scenarios. One pulsating DA white dwarf, being consistent with the prediction, has been discovered indeed.

  16. Time resolved investigations on flow field and quasi wall shear stress of an impingement configuration with pulsating jets by means of high speed PIV and a surface hot wire array

    International Nuclear Information System (INIS)

    Janetzke, Timm; Nitsche, Wolfgang

    2009-01-01

    The effects of jet pulsation on flow field and quasi wall shear stress of an impingement configuration were investigated experimentally. The excitation Strouhal number and amplitude were varied as the most influential parameters. A line-array with three submerged air jets, and a confining plate were used. The flow field analysis by means of time resolved particle image velocimetry shows that the controlled excitation can considerably affect the near-field flow of an impinging jet array. These effects are visualized as organization of the coherent flow structures. Augmentation of the Kelvin-Helmholtz vortices in the jet shear layer depends on the Strouhal number and pulsation magnitude and can be associated with pairing of small scale vortices in the jet. A total maximum of vortex strength was observed when exciting with Sr = 0.82 and coincident high amplitudes. Time resolved interaction between impinging vortices and impingement plate boundary layer due to jet excitation was verified by using an array of 5 μm surface hot wires. Corresponding to the global flow field modification due to periodic jet pulsation, the impact of the vortex rings on the wall boundary layer is highly influenced by the above mentioned excitation parameters and reaches a maximum at Sr = 0.82.

  17. Design and development of a new pulsating cardiac coronary phantom for ECG-gated CT and its experimental characteristics

    International Nuclear Information System (INIS)

    Shen, Yun; Sato, Munekuni; Kimura, Fumiko; Jinzaki, Masahiro; Kuribayashi, Sachio; Horiguchi, Jun; Ito, Katsuhide

    2005-01-01

    The optimal pulsating cardiac phantom is an important tool for the evaluation of cardiac images and cardiac applications on electrocardiogram (ECG)-gated multidetector-row CT (MDCT). The purpose of this study was to demonstrate the design and fabrication of the pulsating cardiac coronary phantom. The newly developed pulsating cardiac coronary phantom has the following five key advantages: a driver component that uses only one servomotor to move the phantom in three dimensions (X, Y, and Z directions) with 16 presets of different heart types (heartbeat: 0-120 bpm; ejection fraction: 0-90%); versatile pumping and filling phases to simulate a real heart in a cardiac cycle can be incorporated into the driver sequence including shift of patient heartbeat or irregular pulse (maximum: 200 different heart waves in one scan); a cardiac coronary component constituted of an acrylic/silicon/rubber tube (2-6 mm inner diameter) with stent/in-stent restenosis/stenosis/soft plaque/calcification parts and maximum 16 coronary arteries that can be attached to the phantom in the same scan; the complete phantom can be submerged in a tank to simulate the heart and its surrounding tissues; ECG gating can be from interior trigger and exterior trigger. It has been confirmed that the developed pulsating cardiac phantom is very useful to quantitatively assess imaging of the heart and coronary arteries during phantom experiments. (author)

  18. X-RAY PULSATIONS FROM THE RADIO-QUIET GAMMA-RAY PULSAR IN CTA 1

    International Nuclear Information System (INIS)

    Caraveo, P. A.; De Luca, A.; Marelli, M.; Bignami, G. F.; Ray, P. S.; Saz Parkinson, P. M.; Kanbach, G.

    2010-01-01

    Prompted by the Fermi-LAT discovery of a radio-quiet gamma-ray pulsar inside the CTA 1 supernova remnant, we obtained a 130 ks XMM-Newton observation to assess the timing behavior of this pulsar. Exploiting both the unprecedented photon harvest and the contemporary Fermi-LAT timing measurements, a 4.7σ single-peak pulsation is detected, making PSR J0007+7303 the second example, after Geminga, of a radio-quiet gamma-ray pulsar also seen to pulsate in X-rays. Phase-resolved spectroscopy shows that the off-pulse portion of the light curve is dominated by a power-law, non-thermal spectrum, while the X-ray peak emission appears to be mainly of thermal origin, probably from a polar cap heated by magnetospheric return currents, pointing to a hot spot varying throughout the pulsar rotation.

  19. Copper alloys disintegration using pulsating water jet

    Czech Academy of Sciences Publication Activity Database

    Lehocká, D.; Klich, Jiří; Foldyna, Josef; Hloch, Sergej; Królczyk, J. B.; Cárach, J.; Krolczyk, G.

    2016-01-01

    Roč. 82, March 2016 (2016), s. 375-383 ISSN 0263-2241 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : pulsating water jet * generation of pulses * disintegration * surface morphology * copper alloys Subject RIV: JQ - Machines ; Tools Impact factor: 2.359, year: 2016 http://ac.els-cdn.com/S0263224116000154/1-s2.0-S0263224116000154-main.pdf?_tid=8f8d1de6-99e9-11e6-afbc-00000aacb362&acdnat=1477314089_59912e52847e91e2030d6a1afd09e7b2

  20. Long duration Pc 5 compressional pulsations inside the Earth's magnetotail lobes

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    Full Text Available Pc 5-type magnetic field pulsations are detected by the IMP-8 spacecraft well inside the Earth's magnetotail lobes. The three studied events with an average duration of 3 h and mean amplitude of ΔB/B=6.6% show a strong longitudinal oscillation. The clockwise polarization sense of the magnetic field arrowheads in the north lobe (as well as the counterclockwise in the south lobe on the XZ plane is consistent with that expected when periodic solar wind lateral pressures squeeze the magnetotail axisymmetrically while moving tailward. In the two case studies, the latter property has been found to concur with quasi-periodic upstream density fluctuations detected by ISEE-3 and/or ISSE-1. The lobe magnetic field oscillations are classified in two distinct modes. The manifestations of the first mode are tailward-travelling waves detectable along the By and Bz magnetic field traces (i.e., with regard to the Bz the spacecraft encounters constantly the same conspicuous signature of south-then-north tilting of field lines around each local compression region. The second mode is associated with prolonged periods of extremely low geomagnetic activity and exhibits a signature along the By component inconsistent with travelling waves. Thus, the maxima of compressions occur simultaneously with the maxima of By excursions: a feature that is explained in terms of tail-aligned current density flowing at the boundary which separates the stable magnetic field in the tail lobe from the very irregular in the magnetosheath. In this case, the spacecraft was located in the vicinity of the high-latitude tail boundary and the observed By excursions are consistent with those anticipated by the tail-aligned current polarity, which is determined by the dominant By-component of the interplanetary magnetic field (IMF. On the

  1. Convergence to a pulsating travelling wave for an epidemic reaction-diffusion system with non-diffusive susceptible population.

    Science.gov (United States)

    Ducrot, Arnaud; Giletti, Thomas

    2014-09-01

    In this work we study the asymptotic behaviour of the Kermack-McKendrick reaction-diffusion system in a periodic environment with non-diffusive susceptible population. This problem was proposed by Kallen et al. as a model for the spatial spread for epidemics, where it can be reasonable to assume that the susceptible population is motionless. For arbitrary dimensional space we prove that large classes of solutions of such a system have an asymptotic spreading speed in large time, and that the infected population has some pulse-like asymptotic shape. The analysis of the one-dimensional problem is more developed, as we are able to uncover a much more accurate description of the profile of solutions. Indeed, we will see that, for some initially compactly supported infected population, the profile of the solution converges to some pulsating travelling wave with minimal speed, that is to some entire solution moving at a constant positive speed and whose profile's shape is periodic in time.

  2. Suppression of stochastic pulsation in laser-plasma interaction by smoothing methods

    International Nuclear Information System (INIS)

    Hora, H.; Aydin, M.

    1992-01-01

    The control of the very complex behavior of a plasma with laser interaction by smoothing with induced spatial incoherence or other methods was related to improving the lateral uniformity of the irradiation. While this is important, it is shown from numerical hydrodynamic studies that the very strong temporal pulsation (stuttering) will mostly be suppressed by these smoothing methods too

  3. Dependence of current density and intensity of electric field on pulsation of thermodynamic parameters of plasma in the MHD generator

    International Nuclear Information System (INIS)

    Kapron, H.

    1976-01-01

    The investigations of pulsation in the MHD generators are described. The influence of termodynamic parameters pulsation on electric parameters of the MHD generator is presented using the method of little disturbances. The results of this investigation are formulas for momentary and average values of: electrical conductivity, the Hall parameter, current density and intensity of electrical field. Analitical investigations were verified by the experiments. (author)

  4. On the Quantum Potential and Pulsating Wave Packet in the Harmonic Oscillator

    International Nuclear Information System (INIS)

    Dubois, Daniel M.

    2008-01-01

    A fundamental mathematical formalism related to the Quantum Potential factor, Q, is presented in this paper. The Schroedinger equation can be transformed to two equations depending on a group velocity and a density of presence of the particle. A factor, in these equations, was called ''Quantum Potential'' by D. Bohm and B. Hiley. In 1999, I demonstrated that this Quantum Potential, Q, can be split in two Quantum Potentials, Q 1 , and Q 2 , for which the relation, Q=Q 1 +Q 2 , holds. These two Quantum Potentials depend on a fundamental new variable, what I called a phase velocity, u, directly related to the probability density of presence of the wave-particle, given by the modulus of the wave function. This paper gives some further developments for explaining the Quantum Potential for oscillating and pulsating Gaussian wave packets in the Harmonic Oscillator. It is shown that the two Quantum Potentials play a central role in the interpretation of quantum mechanics. A breakthrough in the formalism of the Quantum Mechanics could be provoked by the physical properties of these Quantum Potentials. The probability density of presence of the oscillating and pulsating Gaussian wave packets in the Harmonic Oscillator is directly depending on the ratio Q 2 /Q 1 of the two Quantum Potentials. In the general case, the energy of these Gaussian wave packets is not constant, but is oscillating. The energy is given by the sum of the kinetic energy, T, the potential energy, V, and the two Quantum Potentials: E=T+V+Q 1 +Q 2 . For some conditions, given in the paper, the energy can be a constant. The first remarkable result is the fact that the first Quantum Potential, Q 1 , is related to the ground state energy, E 0 , of the Quantum Harmonic Oscillator: Q 1 =h-bar ω/2=E 0 . The second result is related to the property of the second Quantum Potential, Q 2 , which plays the role of an anti-potential, Q 2 =-V(x), where V is the harmonic oscillator potential. This Quantum Potential

  5. Periodic trajectories for two-dimensional nonintegrable Hamiltonians

    International Nuclear Information System (INIS)

    Davies, K.T.R.

    1990-02-01

    I want to report on some calculations of classical periodic trajectories in a two-dimensional nonintegrable potential. After a brief introduction, I will present some details of the theory. The main part of this report will be devoted to showing pictures of the various families of trajectories and to discussing the topology (in E-τ space) and branching behavior of these families. Then I will demonstrate the connection between periodic trajectories and ''nearby'' nonperiodic trajectories, which nicely illustrates the relationship of this work to chaos. Finally, I will discuss very briefly how periodic trajectories can be used to calculate tori. 12 refs., 40 figs

  6. [Vaginitis and vaginosis. Comparison of two periods].

    Science.gov (United States)

    Ceruti, M; Canestrelli, M; Piantelli, G; Amone, F; Condemi, V; De Paolis, P; Ludovici, G; Somenzi, P

    1993-10-01

    Vaginitis is the most frequent gynecological disease. It is characterized by objective and subjective signs of inflammation and differs from bacterial vaginosis (BV) which is an abnormal condition of the vaginal ecosystem caused by the excessive growth of aerobic and anaerobic flora normally present in the vagina with an increased risk of pelvic inflammatory disease (PID). The authors report the results of a study carried out at the Centre for Gynecological Infections at the Clinic of Obstetrics and Gynecology of the University of Parma. 828 patients were enrolled in the study during the period 1985-86 and 1559 patients during the two-year period 1991-92. The aim of the study was to evaluate variations in epidemiological data for vaginitis and bacterial vaginosis in the two periods examined. No significant changes were observed (p > 0.05) with regard to the prevalence of Ca, Tv and BV forms. On the other hand, there was a significant reduction (p vaginitis and BV showed a reduction of other microorganisms and an increase in negative vaginal swabs in adults (> 20 years old).

  7. The effect of cushion-ram pulsation on hot stamping

    Science.gov (United States)

    Landgrebe, Dirk; Rautenstrauch, Anja; Kunke, Andreas; Polster, Stefan; Kriechenbauer, Sebastian; Mauermann, Reinhard

    2016-10-01

    Hot stamping is an important technology for manufacturing high-strength components. This technology offers the possibility to achieve significant weight reductions. In this study, cushion-ram pulsation (CRP), a new technology for hot stamping on servo-screw presses, was investigated and applied for hot stamping. Compared to a conventional process, the tests yielded a significantly higher drawing depth. In this paper, the CRP technology and the first test results with hot stamping were described in comparison to the conventional process.

  8. A THEMIS Case Study of Pi2 Pulsations in the Magnetotail and on the Ground Before a Substorm Onset

    Science.gov (United States)

    Miyashita, Y.; Angelopoulos, V.; Hiraki, Y.; Ieda, A.; Machida, S.

    2016-12-01

    Using THEMIS spacecraft and ground data, we studied low-frequency Pi2 pulsations in the magnetotail and on the ground just before a substorm onset. A case study shows that a new compressional Pi2 pulsation was observed in the plasma sheet just earthward of the near-Earth reconnection site 4 min before initial auroral brightening or 2 min before auroral fading. The ion and magnetic pressure perturbations appeared to be partly in phase at the beginning, indicating that the wave had fast mode. A similar wave was observed also tailward of the near-Earth reconnection site, although it occurred 4 min later. These waves may have been generated at the near-Earth reconnection site. On the ground, Pi2 pulsations were observed widely in the polar cap and at the auroral oval before initial auroral brightening and auroral fading, although the amplitudes were small, compared to those associated with auroral poleward expansion. There was a tendency that the waves were observed first in the polar cap near the initial auroral brightening site and then in the surrounding regions. Ionospheric convection began to be enhanced gradually 1 or 2 min after the Pi2 onsets. We discuss the causal relationship between the Pi2 pulsations in the magnetotail and on the ground as well as their role in substorm triggering.

  9. Thermal radiators with embedded pulsating heat pipes: Infra-red thermography and simulations

    International Nuclear Information System (INIS)

    Hemadri, Vadiraj A.; Gupta, Ashish; Khandekar, Sameer

    2011-01-01

    With the aim of exploring potential applications of Pulsating Heat Pipes (PHP), for space/terrestrial sectors, experimental study of embedded PHP thermal radiators, having two different effective Biot numbers respectively, and subjected to conjugate heat transfer conditions on their surface, i.e., natural convection and radiation, has been carried out under different thermo-mechanical boundary conditions. High resolution infrared camera is used to obtain spatial temperature profiles of the radiators. To complement the experimental study, detailed 3D computational heat transfer simulation has also been undertaken. By embedding PHP structures, it was possible to make the net thermal resistance of the mild steel radiator plate equivalent to the aluminum radiator plate, in spite of the large difference in their respective thermal conductivities (k Al ∼ 4k MS ). The study reveals that embedded PHP structures can be beneficial only under certain boundary conditions. The degree of isothermalization achieved in these structures strongly depends on its effective Biot number. The relative advantage of embedded PHP is appreciably higher if the thermal conductivity of the radiator plate material itself is low. The study indicates that the effective thermal conductivity of embedded PHP structure is of the order of 400 W/mK to 2300 W/mK, depending on the operating conditions. - Research highlights: → Study of radiator plates with embedded Pulsating Heat Pipe by infrared thermography. → Radiator is subjected to natural convection and radiation boundary conditions. → Experimental study is supported by 3D simulation. → Effective thermal conductivity of PHPs of the order of 2000 W/mK is obtained. → Efficacy of embedded PHPs depends on the effective Biot number of the system.

  10. Cepheids in external galaxies. I. The maser-host galaxy NGC 4258 and the metallicity dependence of period-luminosity and period-Wesenheit relations

    NARCIS (Netherlands)

    Bono, G.; Caputo, F.; Fiorentino, G.; Marconi, M.; Musella, I.

    2008-01-01

    We perform a detailed analysis of Cepheids in NGC4258, the Magellanic Clouds, and Milky Way in order to verify the reliability of the theoretical scenario based on a large set of nonlinear convective pulsation models. We derive Wesenheit functions from the synthetic BVI magnitudes of the pulsators,

  11. Discovery of pulsations from NGC 300 ULX1 and its fast period evolution

    Science.gov (United States)

    Carpano, S.; Haberl, F.; Maitra, C.; Vasilopoulos, G.

    2018-05-01

    The supernova impostor SN 2010da located in the nearby galaxy NGC 300, later identified as a likely supergiant B[e] high-mass X-ray binary, was simultaneously observed by NuSTAR and XMM-Newton between 2016 December 16 and 20, over a total time span of ˜310 ks. We report the discovery of a strong periodic modulation in the X-ray flux with a pulse period of 31.6 s and a very rapid spin-up, and confirm therefore that the compact object is a neutron star. We find that the spin period is changing from 31.71 s to 31.54 s over that period, with a spin-up rate of -5.56 × 10-7 s s-1, likely the largest ever observed from an accreting neutron star. The spectrum is described by a power-law and a disc blackbody model, leading to a 0.3-30 keV unabsorbed luminosity of 4.7 × 1039 erg s-1. Applying our best-fitting model successfully to the spectra of an XMM-Newton observation from 2010, suggests that the lower fluxes of NGC 300 ULX1 reported from observations around that time are caused by a large amount of absorption, while the intrinsic luminosity was similar as seen in 2016. A more constant luminosity level is also consistent with the long-term pulse period evolution approaching an equilibrium value asymptotically. We conclude that the source is another candidate for the new class of ultraluminous X-ray pulsars.

  12. Effect of external pulsation on kinematics of fluid particles in the field ...

    Indian Academy of Sciences (India)

    The effect of external pulsation on a pair of stationary Lamb–Oseen vortices of equal strength has been analyzed to investigate kinematic behavior of a fluid particle. The assumption of vortices being treated stationary or fixed vortex filaments is valid in a reference frame attached to the vortex system with axes along and ...

  13. Multiobjective optimal design of runner blade using efficiency and draft tube pulsation criteria

    International Nuclear Information System (INIS)

    Pilev, I M; Sotnikov, A A; Rigin, V E; Semenova, A V; Cherny, S G; Chirkov, D V; Bannikov, D V; Skorospelov, V A

    2012-01-01

    In the present work new criteria of optimal design method for turbine runner [1] are proposed. Firstly, based on the efficient method which couples direct simulation of 3D turbulent flow and engineering semi empirical formulas, the combined method is built for hydraulic energy losses estimation in the whole turbine water passage and the efficiency criterion is formulated. Secondly, the criterion of dynamic loads minimization is developed for those caused by vortex rope precession downstream of the runner. This criterion is based on the finding that the monotonic increase of meridional velocity component in the direction to runner hub, downstream of its blades, provides for decreasing the intensity of vortex rope and thereafter, minimization of pressure pulsation amplitude. The developed algorithm was applied to optimal design of 640 MW Francis turbine runner. It can ensure high efficiency at best efficiency operating point as well as diminished pressure pulsations at full load regime.

  14. Spectroscopic pulsational frequency identification and mode determination of γ Doradus star HD 12901

    Science.gov (United States)

    Brunsden, E.; Pollard, K. R.; Cottrell, P. L.; Wright, D. J.; De Cat, P.

    2012-12-01

    Using multisite spectroscopic data collected from three sites, the frequencies and pulsational modes of the γ Doradus star HD 12901 were identified. A total of six frequencies in the range 1-2 d-1 were observed, their identifications supported by multiple line-profile measurement techniques and previously published photometry. Five frequencies were of sufficient signal-to-noise ratio for mode identification, and all five displayed similar three-bump standard deviation profiles which were fitted well with (l,m) = (1,1) modes. These fits had reduced χ2 values of less than 18. We propose that this star is an excellent candidate to test models of non-radially pulsating γ Doradus stars as a result of the presence of multiple (1,1) modes. This paper includes data taken at the Mount John University Observatory of the University of Canterbury (New Zealand), the McDonald Observatory of the University of Texas at Austin (Texas, USA) and the European Southern Observatory at La Silla (Chile).

  15. Computation of periods of acoustical oscillations of the sun

    International Nuclear Information System (INIS)

    Vorontsov, S.V.; Zharkov, V.N.

    1977-01-01

    It is stated that regular pulsations of the Sun were first reported in 1975-76 by several investigators (see Nature 259:87 and 92 (1976)), and that these oscillations were difficult to identify. It was decided to compute the periods of some acoustical modes using experience gained in calculations of free oscillations of Jupiter and Saturn, employing some complete solar models for the interior, the convective zone and the solar atmosphere. The equations employed and the methods of computations are described, and the results are given. (U.K.)

  16. Problems of unsteady temperature measurements in a pulsating flow of gas

    International Nuclear Information System (INIS)

    Olczyk, A

    2008-01-01

    Unsteady flow temperature is one of the most difficult and complex flow parameters to measure. Main problems concern insufficient dynamic properties of applied sensors and an interpretation of recorded signals, composed of static and dynamic temperatures. An attempt is made to solve these two problems in the case of measurements conducted in a pulsating flow of gas in the 0–200 Hz range of frequencies, which corresponds to real conditions found in exhaust pipes of modern diesel engines. As far as sensor dynamics is concerned, an analysis of requirements related to the thermometer was made, showing that there was no possibility of assuring such a high frequency band within existing solutions. Therefore, a method of double-channel correction of sensor dynamics was proposed and experimentally tested. The results correspond well with the calculations made by means of the proposed model of sensor dynamics. In the case of interpretation of the measured temperature signal, a method for distinguishing its two components was proposed. This decomposition considerably helps with a correct interpretation of unsteady flow phenomena in pipes

  17. 78 FR 29672 - Cardiovascular Devices; Reclassification of External Counter-Pulsating Devices for Treatment of...

    Science.gov (United States)

    2013-05-21

    .... FDA-2013-N-0487] Cardiovascular Devices; Reclassification of External Counter- Pulsating Devices for... proposed rule (44 FR 13426, March 9, 1979), the Cardiovascular Device Classification Panel (the 1979 Panel... of Subjects in 21 CFR Part 870 Medical devices, Cardiovascular devices...

  18. Variable stars in metal-rich globular clusters. IV. Long-period variables in NGC 6496

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Mohamad A. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Layden, Andrew C.; Guldenschuh, Katherine A. [Physics and Astronomy Department, Bowling Green State University, Bowling Green, OH 43403 (United States); Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; Nysewander, M. C.; LaCluyze, A. P. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Welch, Douglas L., E-mail: mabbas@ari.uni-heidelberg.de, E-mail: laydena@bgsu.edu [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8 S 4M1 (Canada)

    2015-02-01

    We present VI-band photometry for stars in the metal-rich globular cluster NGC 6496. Our time-series data were cadenced to search for long-period variables (LPVs) over a span of nearly two years, and our variability search yielded the discovery of 13 new variable stars, of which 6 are LPVs, 2 are suspected LPVs, and 5 are short-period eclipsing binaries. An additional star was found in the ASAS database, and we clarify its type and period. We argue that all of the eclipsing binaries are field stars, while five to six of the LPVs are members of NGC 6496. We compare the period–luminosity distribution of these LPVs with those of LPVs in the Large Magellanic Cloud and 47 Tucanae, and with theoretical pulsation models. We also present a VI color–magnitude diagram, display the evolutionary states of the variables, and match isochrones to determine a reddening of E(B−V)= 0.21±0.02 mag and apparent distance modulus of 15.60±0.15 mag.

  19. Generalized periodic EEG activity in two cases of neurosyphilis

    Directory of Open Access Journals (Sweden)

    Anghinah Renato

    2006-01-01

    Full Text Available Neurosyphilis is a recognized cause of epileptic seizures and cognitive impairment, but is not usually associated with the finding of generalized periodic activity in the EEG. We report two similar cases characterized by progressive cognitive impairment followed by partial complex seizures, in whom the EEG showed generalized periodic activity. Both cerebrospinal fluid and the response to penicillin therapy confirmed the diagnoses of neurosyphilis in the two cases. The finding of EEG generalized periodic activity in patients with cognitive or behavioral disorders is usually associated with Creutzfeldt-Jakob disease, although there are other conditions, some of them potentially reversible, which may also present this EEG abnormality. Neurosyphilis has tended not to be included among them, and our present findings support the importance of first ruling out neurosyphilis in those patients with cognitive or behavioral disorders associated with generalized periodic epileptiform discharges.

  20. Minute Ventilation Limitations of Two Field Transport Ventilators.

    Science.gov (United States)

    Szpisjak, Dale F; Horn, Gregory; Shalov, Samuel; Abes, Alvin Angelo; Van Decar, Lauren

    2017-01-01

    Knowledge of transport ventilator performance impacts patient safety. This study compared minute ventilation (V E ) of the MOVES and Uni-Vent 731 when ventilating the VentAid Training Test Lung with compliance (C) ranging from 0.02 to 0.10 L/cm H 2 O and three different airway resistances (R) (none, Rp5, or Rp20). Tidal volume (V T ) was 800 ± 25 mL. Respiratory rate was increased to ventilator's maximum or until auto-PEEP > 5 cm H 2 O. Respiratory parameters were recorded with the RSS 100HR Research Pneumotach. Data were reported as median (interquartile range). Peak inspiratory pressure (PIP) of the Uni-Vent and MOVES ranged from 22.3 (22.2-22.5) to 82.6 (82.2-83.2) and 20.8 (20.6-20.9) to 50.6 (50.2-50.9) cm H 2 O, respectively. V E of the Uni-Vent and MOVES ranged from 17.7 (17.7-17.7) to 31.5 (31.5-31.5) and 11.3 (10.5-11.3) to 20.2 (19.7-20.5) L/min, respectively. Linear regression demonstrated strong, negative correlation of V E with PIP for the MOVES (V E [L/min] = 26 - 0.31 × PIP [cm H 2 O], r = -0.97) but weak, positive correlation for the Uni-Vent (r = 0.05). Uni-Vent V E exceeded MOVES V E under each test condition (p = 0.0002). If patient V E requirements exceed those predicted by the MOVES regression equation, then using the Uni-Vent should be considered. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  1. PULSATING REVERSE DETONATION MODELS OF TYPE Ia SUPERNOVAE. II. EXPLOSION

    International Nuclear Information System (INIS)

    Bravo, Eduardo; Garcia-Senz, Domingo; Cabezon, Ruben M.; DomInguez, Inmaculada

    2009-01-01

    Observational evidences point to a common explosion mechanism of Type Ia supernovae based on a delayed detonation of a white dwarf (WD). However, all attempts to find a convincing ignition mechanism based on a delayed detonation in a destabilized, expanding, white dwarf have been elusive so far. One of the possibilities that has been invoked is that an inefficient deflagration leads to pulsation of a Chandrasekhar-mass WD, followed by formation of an accretion shock that confines a carbon-oxygen rich core, while transforming the kinetic energy of the collapsing halo into thermal energy of the core, until an inward moving detonation is formed. This chain of events has been termed Pulsating Reverse Detonation (PRD). In this work, we present three-dimensional numerical simulations of PRD models from the time of detonation initiation up to homologous expansion. Different models characterized by the amount of mass burned during the deflagration phase, M defl , give explosions spanning a range of kinetic energies, K ∼ (1.0-1.2) x 10 51 erg, and 56 Ni masses, M( 56 Ni) ∼ 0.6-0.8 M sun , which are compatible with what is expected for typical Type Ia supernovae. Spectra and light curves of angle-averaged spherically symmetric versions of the PRD models are discussed. Type Ia supernova spectra pose the most stringent requirements on PRD models.

  2. Asymmetry and geometry effects on the dynamic behavior of a pulsating heat pipe

    NARCIS (Netherlands)

    Gursel, G.; Frijns, A.J.H.; Homburg, F.G.A.; Steenhoven, van A.A.; Colin, S; Morini, GL; Brandner, JJ; Newport, D

    2014-01-01

    A mass-spring-damper model is developed to investigate the motion in a pulsating heat pipe (PHP). A heat transfer model is coupled to this mass-spring-damper model in order to study the effectivity of a PHP under different operating conditions. Four different configurations (one PHP with 12 turns;

  3. Geomagnetic Pc3 pulsations during the total solar eclipse on Aug 11, 1999

    Czech Academy of Sciences Publication Activity Database

    Střeštík, Jaroslav; Prikner, Karel

    2003-01-01

    Roč. 47, č. 3 (2003), s. 565-578 ISSN 0039-3169 R&D Projects: GA ČR GA205/99/0915 Institutional research plan: CEZ:AV0Z3012916 Keywords : geomagnetic pulsations * solar eclipse * MHD waves Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 0.426, year: 2003

  4. Simulation and analysis of auroral radar signatures generated by a magnetospheric cavity mode

    International Nuclear Information System (INIS)

    McDiarmid, D.R.; Allan, W.

    1990-01-01

    Coherent auroral radar pulsation data are simulated for impulsively excited field line resonances (FLR) driven by a magnetospheric MHD cavity mode. These data are then analyzed according to three assumptions namely, (1) that each radar time sequence is monochromatic with a frequency fixed over latitude, (2) that each radar time sequence is monochromatic with a frequency which varies with latitude, and (3) that each radar time sequence consists of the sum of two damped sinusoids for which the frequency of one varies and the other is constant with latitude. Pulsations corresponding to all three assumptions have been previously observed and described in the literature. The results indicate the degree to which these analyses can misdirect the researcher with respect to the excitation of the pulsation. The first two analyses can indicate the existence of a constant-frequency single-component pulsation when there exists, in fact, an additional period-varying component as well. The results also suggest that the variation of the period with time in thse pulsations may be a useful detection criterion for cavity-driven FLRs

  5. Two-period resource duopoly with endogenous intertemporal capacity constraints

    International Nuclear Information System (INIS)

    Berk, Istemi

    2014-01-01

    This paper analyzes the strategic firm behavior within the context of a two-period resource duopoly model in which firms face endogenous intertemporal capacity constraints. Firms are allowed to invest in capacity in between two periods in order to increase their initial endowment of exhaustible resource stocks. Using this setup, we nd that the equilibrium price weakly decreases over time. Moreover, asymmetric distribution of initial resource stocks leads to a significant change in equilibrium outcome, provided that firms do not have the same cost structure in capacity additions. It is also verified that if only one company is capable of investment in capacity, the market moves to a more concentrated structure in the second period.

  6. Two-period resource duopoly with endogenous intertemporal capacity constraints

    Energy Technology Data Exchange (ETDEWEB)

    Berk, Istemi

    2014-07-15

    This paper analyzes the strategic firm behavior within the context of a two-period resource duopoly model in which firms face endogenous intertemporal capacity constraints. Firms are allowed to invest in capacity in between two periods in order to increase their initial endowment of exhaustible resource stocks. Using this setup, we nd that the equilibrium price weakly decreases over time. Moreover, asymmetric distribution of initial resource stocks leads to a significant change in equilibrium outcome, provided that firms do not have the same cost structure in capacity additions. It is also verified that if only one company is capable of investment in capacity, the market moves to a more concentrated structure in the second period.

  7. 1-3-7 minute intravenous urography

    International Nuclear Information System (INIS)

    Bahk, Yong Whee; Yoon, Sei Chul; Lee, Myung Hee

    1980-01-01

    Intravenous urography (IVU) as it is used widely today was probably started in early 1950's after the introduction of triiodobenzoic acid compounds as contrast media. This long cherished traditional method consists of taking radiograms at 5, 15 and 25 minutes after the injection of contrast medium. There are a few modifications of this standard urographic examination such as five minute IVU (Woodruff, 1959), minute-sequence pyelogram (Maxwell et al., 1964), drip infusion pyelography (Schencker, 1964) and nephrotomography (Evans et al., 1955). The present study has been undertaken to test if the conventional standard IVU can be more rapidly performed without losing essential informational contents of urograms. In this new clinical trial, urograms were taken at the end of 1, 3 and 7 minutes instead of 5, 15 and 25 minutes after the intravenous injection of contrast medium. We injected 40 ml of meglumine diatrizoate solution within 30 seconds using an 18G iv needle. (The amount of injected contrast medium has been reduced recently to ordinary single dose of 20 ml for subjects weighing less than 8 kg). Upon viewing the 7 minute film in front of an automatic processor, the examination was terminated after obtaining an upright view unless any further radiogram was indicated. As shown in Tables and Figures, our new 1-3-7 minute method has been proven to provide us with as much essential and useful information as conventional 5-15-25 minute urography. Thus, we were able to finish one examination within 10 minutes without losing any necessary diagnostic information. In some of patients with obstructive uropathy such as stone the examination was extended as long as it was desired. Side reactions were occasional nausea, flushing and rare mild vomiting which never prevented the examination

  8. Comparison of several hydrological cycle parameters in Croatia for two periods

    International Nuclear Information System (INIS)

    Pandzic, Kreso; Trninic, Dusan

    2004-01-01

    Comparison of several hydrological cycle parameter averages for two periods in Croatia is considered. Parameters are: yearly averages of: 2m air temperature, precipitation amounts, potential and real evapotranspiration amounts. A basic period (1951-1980) and period for comparison (1981-1997) have been chosen. (These periods accepted at The First Sub-Regional Expert Meeting on the 'Assesment of Climate Change Impacts on the Hydrological Cycles in South-Eastern Europe' held in Sofia (Bulgaria) 17-20 February 1999.) Differences between two period averages for 30 weather stations have been calculated. Temperature differences and those for potential evaporation are positive while for precipitation they are mainly negative. Real evaporation differences for two periods are an exception i.e. they are positive in continental but negative in Mediterranean part of Croatia. These results agree with global warming trend. (Author)

  9. A mass-spring-damper model of a pulsating heat pipe with asymmetric filling

    NARCIS (Netherlands)

    Gursel, G.; Frijns, A.J.H.; Homburg, F.G.A.; van Steenhoven, A.A.; Tadrist, L.; Graur, I.

    2014-01-01

    A pulsating heat pipe (PHP) is a device that transfers heat from a hot spot to a cold side by oscillating liquid slugs and vapor plugs. Its working principle is based on interplay between convective heat transfer, evaporation of the liquid at the hot side and condensation of the vapor at the cold

  10. The period-age relation for cepheids

    International Nuclear Information System (INIS)

    Efremov, Yu.N.

    1978-01-01

    The list of 119 cepheid-members of 55 clusters and associations of the Magellanic Clouds, the Galaxy, and M31 is given. The period-age relation is found from the data on 64 cepheids in 29 clusters for which the age determinations are available, the ages of extragalactic clusters were determined mainly from their integral colours. The U-B colours are found to be of much better age parameters than the B-V ones. The composite period-age relation agrees well with the theoretical one. The observed dispersion of the period-age relation leads to an estimate of the age dispersion about 1x10 7 years in the associations. Some peculiarities of the cepheids with the shortest periods amongst others in the same clusters are probably explained if they are overtone pulsators. The period-age relation may be used for an investigation of the recent history of star formation in the galaxies. This relation allows to determine the age gradient across the spiral arm in M31 which is in agreement with the density wave theory predictions. The distribution of cepheids in our Galaxy and neighbouring galaxies is consistent with the conception of star formation lasting for some dozen million years in cells with a dimension of some hundreds of parsecs

  11. Effect of using ethanol and methanol on thermal performance of a closed loop pulsating heat pipe (CLPHP) with different filling ratios

    Science.gov (United States)

    Rahman, Md. Lutfor; Salsabil, Zaimaa; Yasmin, Nusrat; Nourin, Farah Nazifa; Ali, Mohammad

    2016-07-01

    This paper presents an experimental study of a closed loop Pulsating Heat Pipe (CLPHP) as the demand of smaller and effective heat transfer devices is increasing day by day. PHP is a two phase heat transfer device suited for heat transfer applications, especially suited for handling moderate to high heat fluxes in different applications. A copper made Pulsating Heat Pipe (PHP) of 250 mm length is used in this experimental work with 2 mm ID and 3 mm OD, closed end-to-end in 8 looped, evacuated and then partially filled with working fluids. The evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The performance characterization is done for two working fluids at Vertical (0°) orientations. The working fluids are Methanol and Ethanol and the filling ratios are 40%, 50%, 60% & 70% based on total volume, respectively. The results show that the influence of various parameters, the heat input flux, and different filling ratios on a heat transfer performance of CLPHP. Methanol shows better performance as working fluid in PHP than ethanol at present orientation for a wide range of heat inputs and can be used at high heat input conditions. Ethanol is better choice to be used in low heat input conditions.

  12. Studies of optical pulsations from HZ Herculis/Hercules X-1: A determination of the mass of the neutron star

    International Nuclear Information System (INIS)

    Middleditch, J.; Nelson, J.

    1976-01-01

    In 500 hours of optical observations of this binary system we have repeatedly detected optical pulsations at the 0.1--0.3 percent level. These pulsations are present only for particular well-defined values of the binary and 35-day phases. Position of the pulsation-emitting regions, projected onto the orbital plane, have been measured, and three distinct regions have been resolved. A simple model is put forth which accounts for the observed binary behavior, which gives a direct determination of the mass ratio, M/sub HZHer//M/sub HerX-/ 1 =1.68 +- 0.10 and which establishes that the spin of the pulsar is prograde. Additionally, it is shown that Hz Her fills its Roche lobe. Using the above, the known X-ray eclipse duration, and the mass function, we calculate the orbital inclination to be i=87degree +- 3degree and the masses to be M/sub HerX-/ 1 =1.30 +- 0.14 M/sub sun/ and M/sub HZHer/=2.18 +- 0.11 M/sub sun/

  13. Effect of using acetone and distilled water on the performance of open loop pulsating heat pipe (OLPHP) with different filling ratios

    Science.gov (United States)

    Rahman, Md. Lutfor; Afrose, Tonima; Tahmina, Halima Khatun; Rinky, Rumana Parvin; Ali, Mohammad

    2016-07-01

    Pulsating heat pipe (PHP) is a new innovation in the modern era of miniaturizes thermal management system for its higher heating and cooling capacity. The objective of this experiment is to observe the performance of open loop pulsating heat pipe using two fluids at different filling ratios. This OLPHP is a copper capillary tube of 2.5mm outer diameter and 2mm inner diameter. It consists of 8 loops where the evaporative section is 50mm, adiabatic section is 120mm and condensation section is 80mm. The experiment is conducted with distilled water and acetone at 40%, 50%, 60%, and 70% filling ratios where 0° (vertical) is considered as definite angle of inclination. Distilled water and acetone are selected as working fluids considering their different latent heat of vaporization and surface tension. It is found that acetone shows lower thermal resistance than water at all heat inputs. Best performance of acetone is attained at 70% filling ratio. Water displays better heat transfer capability at 50% filling ratio.

  14. DISCOVERY OF GAMMA-RAY PULSATIONS FROM THE TRANSITIONAL REDBACK PSR J1227-4853

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T. J. [College of Science, George Mason University, Fairfax, VA 22030 (United States); Ray, P. S.; Cheung, C. C. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Roy, J.; Bhattacharyya, B.; Stappers, B. W. [Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Harding, A. K. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Pletsch, H. J.; Fort, S. [Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-30167 Hannover (Germany); Camilo, F. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Deneva, J. [National Research Council Research Associate, National Academy of Sciences, Washington, DC 20001 (United States); Kerr, M., E-mail: tyrel.j.johnson@gmail.com, E-mail: Paul.Ray@nrl.navy.mil, E-mail: jayanta.roy@manchester.ac.uk [CSIRO Astronomy and Space Science, Australia Telescope National Facility, Epping NSW 1710 (Australia)

    2015-06-10

    The 1.69 ms spin period of PSR J1227−4853 was recently discovered in radio observations of the low-mass X-ray binary XSS J12270−4859 following the announcement of a possible transition to a rotation-powered millisecond pulsar state, inferred from decreases in optical, X-ray, and gamma-ray flux from the source. We report the detection of significant (5σ) gamma-ray pulsations after the transition, at the known spin period, using ∼1 year of data from the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The gamma-ray light curve of PSR J1227−4853 can be fit by one broad peak, which occurs at nearly the same phase as the main peak in the 1.4 GHz radio profile. The partial alignment of light-curve peaks in different wavebands suggests that at least some of the radio emission may originate at high altitude in the pulsar magnetosphere, in extended regions co-located with the gamma-ray emission site. We folded the LAT data at the orbital period, both pre- and post-transition, but find no evidence for significant modulation of the gamma-ray flux. Analysis of the gamma-ray flux over the mission suggests an approximate transition time of 2012 November 30. Continued study of the pulsed emission and monitoring of PSR J1227−4853, and other known redback systems, for subsequent flux changes will increase our knowledge of the pulsar emission mechanism and transitioning systems.

  15. 78 FR 79304 - Cardiovascular Devices; Reclassification of External Counter-Pulsating Devices for Treatment of...

    Science.gov (United States)

    2013-12-30

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 870 [Docket No. FDA-2013-N-0487] Cardiovascular Devices; Reclassification of External Counter- Pulsating Devices for...--CARDIOVASCULAR DEVICES 0 1. The authority citation for 21 CFR part 870 continues to read as follows: Authority...

  16. Minutes of the thirteenth INDC meeting, Rio de Janeiro, 16-20 May 1983

    International Nuclear Information System (INIS)

    Rowlands, J.L.

    1984-01-01

    The Thirteenth Meeting of the INDC was held in Rio de Janeiro from 16-20 May 1983. This was the first meeting of the Committee in its three year period 1983/85. The meeting was attended by 12 Committee members and one alternate member (members from the Federal Republic of Germany and the USA excused) plus four advisers and five observers from 13 Member States and two international organizations. The Committee reviewed the nuclear data activities of the IAEA, in Member States and of the nuclear data centre networks during the 1 year period since its Twelfth Meeting in Vienna in October 1981. It also gave detailed advice on the Agency's future nuclear data programme until 1985/86. The Committee congratulated the IAEA Nuclear Data Section (NDS) for its excellent work and for following closely the recommendations of INDC. The minutes include summaries of the meeting discussions, full reports of the Subcommittees, lists of actions, participants and subcommittee membership

  17. Impingement heat/mass transfer to hybrid synthetic jets and other reversible pulsating jets

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Vít, T.

    2015-01-01

    Roč. 85, June (2015), s. 473-487 ISSN 0017-9310 R&D Projects: GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : impinging jet * reversible pulsating jet * synthetic jet Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts Impact factor: 2.857, year: 2015 http://www.sciencedirect.com/science/article/pii/S001793101500143X

  18. The effect of the August 11, 1999 total solar eclipse on geomagnetic pulsations

    Czech Academy of Sciences Publication Activity Database

    Střeštík, Jaroslav

    2001-01-01

    Roč. 31, č. 1 (2001), s. 335-338 ISSN 1335-2806. [IAGA Workshop /9./. Hurbanovo, 12.06.2000-18.06.2000] R&D Projects: GA ČR GA205/99/0915 Institutional research plan: CEZ:AV0Z3012916 Keywords : solar eclipse * geomagnetic pulsations * geomagnetic observatories Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  19. Pulsating Hydrodynamic Instability and Thermal Coupling in an Extended Landau/Levich Model of Liquid-Propellant Combustion -- I. Inviscid Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stephen B. Margolis; Forman A. Williams

    1999-03-01

    Hydrodynamic (Landau) instability in combustion is typically associated with the onset of wrinkling of a flame surface, corresponding to the formation of steady cellular structures as the stability threshold is crossed. In the context of liquid-propellant combustion, such instability has recently been shown to occur for critical values of the pressure sensitivity of the burning rate and the disturbance wavenumber, significantly generalizing previous classical results for this problem that assumed a constant normal burning rate. Additionally, however, a pulsating form of hydrodynamic instability has been shown to occur as well, corresponding to the onset of temporal oscillations in the location of the liquid/gas interface. In the present work, we consider the realistic influence of a nonzero temperature sensitivity in the local burning rate on both types of stability thresholds. It is found that for sufficiently small values of this parameter, there exists a stable range of pressure sensitivities for steady, planar burning such that the classical cellular form of hydrodynamic instability and the more recent pulsating form of hydrodynamic instability can each occur as the corresponding stability threshold is crossed. For larger thermal sensitivities, however, the pulsating stability boundary evolves into a C-shaped curve in the (disturbance-wavenumber, pressure-sensitivity) plane, indicating loss of stability to pulsating perturbations for all sufficiently large disturbance wavelengths. It is thus concluded, based on characteristic parameter values, that an equally likely form of hydrodynamic instability in liquid-propellant combustion is of a nonsteady, long-wave nature, distinct from the steady, cellular form originally predicted by Landau.

  20. Pulsation, Mass Loss and the Upper Mass Limit

    Science.gov (United States)

    Klapp, J.; Corona-Galindo, M. G.

    1990-11-01

    RESUMEN. La existencia de estrellas con masas en exceso de 100 M0 ha sido cuestionada por mucho tiempo. Lfmites superiores para la masa de 100 M0 han sido obtenidos de teorfas de pulsaci6n y formaci6n estelar. En este trabajo nosotros primero investigamos la estabilidad radial de estrellas masivas utilizando la aproximaci6n clasica cuasiadiabatica de Ledoux, la aproximaci6n cuasiadiabatica de Castor y un calculo completamente no-adiabatico. Hemos encontrado que los tres metodos de calculo dan resultados similares siempre y cuando una pequefia regi6n de las capas externas de la estrella sea despreciada para la aproximaci6n clasica. La masa crftica para estabilidad de estrellas masivas ha sido encontrada en acuerdo a trabajos anteriores. Explicamos Ia discrepancia entre este y trabajos anteriores por uno de los autores. Discunmos calculos no-lineales y perdida de masa con respecto a) lfmite superior de masa. The existence of stars with masses in excess of 100 M0 has been questioned for a very long time. Upper mass limits of 100 Me have been obtained from pulsation and star formation theories. In this work we first investigate the radial stability of massive stars using the classical Ledoux's quasiadiabatic approximation. the Castor quasiadiabatic approximation and a fully nonadiabatic calculation. We have found that the three methods of calculation give similar results provided that a small region in outer layers of the star be neglected for the classical approximation. The critical mass for stability of massive stars is found to be in agreement with previous work. We explain the reason for the discrepancy between this and previous work by one of the authors. We discuss non-linear calculations and mass loss with regard to the upper mass limit. Key words: STARS-MASS FUNCTION - STARS-MASS LOSS - STARS-PULSATION