WorldWideScience

Sample records for two-minute integrated doppler

  1. Integrated Range-Doppler Map and Extended Target Classification with Adaptive Waveform for Cognitive Radar

    Science.gov (United States)

    2014-12-01

    RANGE-DOPPLER MAP AND EXTENDED TARGET CLASSIFICATION WITH ADAPTIVE WAVEFORM FOR COGNITIVE RADAR by Jo-Yen Nieh December 2014 Dissertation...TYPE AND DATES COVERED Dissertation 4. TITLE AND SUBTITLE INTEGRATED RANGE-DOPPLER MAP AND EXTENDED TARGET CLASSIFICATION WITH ADAPTIVE WAVEFORM ...design an extended target classification scheme while determining the target’s range-and-Doppler location with the use of adaptive waveform for a

  2. Laser Doppler velocimetry in Microchannels using integrated optical waveguides.

    NARCIS (Netherlands)

    Pandraud, G.; van den Berg, Albert; Semenov, S.N.

    2000-01-01

    The possibility of laser Doppler velocimetry (LDV) in microchannels, where particles are suspended in a liquid, and where oscillating or evanescent guided coherent light wave is present, is examined theoretically. The conditions for the observation of the transverse and longitudinal collective phore

  3. Integrated optoelectronic probe including a vertical cavity surface emitting laser for laser Doppler perfusion monitoring

    NARCIS (Netherlands)

    Serov, Alexander N.; Nieland, Janharm; Oosterbaan, Sjoerd; Mul, de Frits F.M.; Kranenburg, van Herma; Bekman, Herman H.P.Th.; Steenbergen, Wiendelt

    2006-01-01

    An integrated optoelectronic probe with small dimensions, for direct-contact laser Doppler blood flow monitoring has been realized. A vertical cavity surface emitting laser (VCSEL), and a chip with photodetectors and all necessary electronics are integrated in a miniature probe head connected to a l

  4. Integrated Optoelectronic Probe Including a Vertical Cavity Surface Emitting Laser for Laser Doppler Perfusion Monitoring

    NARCIS (Netherlands)

    Serov, A.N.; Nieland, J.; Oosterbaan, S.; Steenbergen, W.; Bekman, H.H.P.T.; Mul, F.F.M. de; Kranenburg, H. van

    2006-01-01

    An integrated optoelectronic probe with small dimensions, for direct-contact laser Doppler blood flow monitoring has been realized. A vertical cavity surface emitting laser (VCSEL), and a chip with photodetectors and all necessary electronics are integrated in a miniature probe head connected to a l

  5. Sparse Representation Based Range-Doppler Processing for Integrated OFDM Radar-Communication Networks

    Directory of Open Access Journals (Sweden)

    Bo Kong

    2017-01-01

    Full Text Available In an integrated radar-communication network, multiuser access techniques with minimal performance degradation and without range-Doppler ambiguities are required, especially in a dense user environment. In this paper, a multiuser access scheme with random subcarrier allocation mechanism is proposed for orthogonal frequency division multiplexing (OFDM based integrated radar-communication networks. The expression of modulation Symbol-Domain method combined with sparse representation (SR for range-Doppler estimation is introduced and a parallel reconstruction algorithm is employed. The radar target detection performance is improved with less spectrum occupation. Additionally, a Doppler frequency detector is exploited to decrease the computational complexity. Numerical simulations show that the proposed method outperforms the traditional modulation Symbol-Domain method under ideal and realistic nonideal scenarios.

  6. Multimodal integration of micro-Doppler sonar and auditory signals for behavior classification with convolutional networks.

    Science.gov (United States)

    Dura-Bernal, Salvador; Garreau, Guillaume; Georgiou, Julius; Andreou, Andreas G; Denham, Susan L; Wennekers, Thomas

    2013-10-01

    The ability to recognize the behavior of individuals is of great interest in the general field of safety (e.g. building security, crowd control, transport analysis, independent living for the elderly). Here we report a new real-time acoustic system for human action and behavior recognition that integrates passive audio and active micro-Doppler sonar signatures over multiple time scales. The system architecture is based on a six-layer convolutional neural network, trained and evaluated using a dataset of 10 subjects performing seven different behaviors. Probabilistic combination of system output through time for each modality separately yields 94% (passive audio) and 91% (micro-Doppler sonar) correct behavior classification; probabilistic multimodal integration increases classification performance to 98%. This study supports the efficacy of micro-Doppler sonar systems in characterizing human actions, which can then be efficiently classified using ConvNets. It also demonstrates that the integration of multiple sources of acoustic information can significantly improve the system's performance.

  7. Two-minute training for improving neonatal bag and mask ventilation.

    Directory of Open Access Journals (Sweden)

    Jeroen J van Vonderen

    Full Text Available To test effectivity of a two-minute training consisting of a few key-points in ventilation using the self-inflating bag (SIB.Experienced and inexperienced caregivers were asked to mask ventilate a leak free manikin using the SIB before and after the training. Mask leak and pressures were measured using respiratory function monitoring. Pressures above 35 cm H2O were considered excessive. Parameters were compared using a Wilcoxon non-parametric test.Before and after the short training, experienced caregivers had minimal median (IQR mask leak (14 (3-75 vs. 3 (0-53%; p<0.01. Inexperienced users had large leak which reduced from 51 (7-91% before to 11 (2-71% after training (p<0.01. Pressures above 35 cm H2O hardly occurred in experienced caregivers (0 (0-5 vs. 0 (0-0%; ns. In inexperienced caregivers this frequently occurred but decreased considerably after training (94 (46-100 vs. 2 (0-70%; p<0.01.A two-minute training of bag and mask ventilation was effective. This training could be incorporated into any training program.

  8. Two-minute training for improving neonatal bag and mask ventilation.

    Science.gov (United States)

    van Vonderen, Jeroen J; Witlox, Ruben S; Kraaij, Sascha; te Pas, Arjan B

    2014-01-01

    To test effectivity of a two-minute training consisting of a few key-points in ventilation using the self-inflating bag (SIB). Experienced and inexperienced caregivers were asked to mask ventilate a leak free manikin using the SIB before and after the training. Mask leak and pressures were measured using respiratory function monitoring. Pressures above 35 cm H2O were considered excessive. Parameters were compared using a Wilcoxon non-parametric test. Before and after the short training, experienced caregivers had minimal median (IQR) mask leak (14 (3-75) vs. 3 (0-53)%; ptraining (ptraining (94 (46-100) vs. 2 (0-70)%; ptraining of bag and mask ventilation was effective. This training could be incorporated into any training program.

  9. Target detection in pulse-Doppler radar based on multi-scanning signal integration

    Directory of Open Access Journals (Sweden)

    O. S. Neuimin

    2013-07-01

    Full Text Available Introduction. Development of multi-scanning signal integration algorithms for pulseDoppler radars which are widely used in practice is of great practical importance. Problem statement. The problem of multi-scanning signal integration measuring range and range-rate is considered. The reflected signal from a target is a distorted white noise coherent packet of radio pulses with random initial phase and known amplitude. Target detection in a sequence of radar scans is reduced to the detection of target track. Development of a two-step multi-scanning incoherent signal integration algorithm. Two-step integration method is applied to reduce the number of tracks. In the first stage the initial signals detection with a sufficiently high probability of false alarm is performed. In the second stage the tracking problem for selection target markers is solved and the multiscanning signal integration is implemented. It provides an optimal target detection solution over K surveys with low signal-to-noise ratio. Expressions for the correct target detection probability and false alarm incorporating quality track tracking are obtained. Simulation results. Analysis of the algorithm is carried out as example of the little maneuvering target detection using the statistical modeling. The methods of calculating the output threshold (the cumulative statistics are compared on it is presented. Conclusions. Increasing the number of scans (in which the integration are performed leads to a significant decreasing the probability of false alarm, which allows to increase the signal-to-noise ratio compared with the detection in a single scan up to 3.5 dB.

  10. Non-invasive automated assessment of the ratio of pulmonary to systemic flow in patients with atrial septal defects by the colour Doppler velocity profile integration method

    OpenAIRE

    Ueda, Y.; Hozumi, T; Yoshida, K.; Watanabe, H; Akasaka, T; Takagi, T; Yamamuro, A; Homma, S; Yoshikawa, J

    2002-01-01

    Background: The recent introduction of the automated cardiac flow measurement (ACM) method, using spatiotemporal integration of the Doppler velocity profile, provides a quick and accurate automated calculation of cardiac output.

  11. Automated quantification of aortic regurgitant volume and regurgitant fraction using the digital colour Doppler velocity profile integration method in patients with aortic regurgitation

    OpenAIRE

    Miyake, Y.; Hozumi, T; Mori, I.; Sugioka, K; Yamamuro, A; Akasaka, T; Homma, S; Yoshida, K.; Yoshikawa, J

    2002-01-01

    Background: The recently introduced automated cardiac flow measurement (ACM) technique provides a quick and an accurate automated calculation of stroke volume and cardiac output. This is obtained by spatio-temporal integration of digital Doppler velocity profile data.

  12. An Integrating VAP Method for Single-Doppler Radar Wind Retrieval

    Institute of Scientific and Technical Information of China (English)

    LIANG Xudong; WANG Bin

    2009-01-01

    Some traditional methods, such as the velocity-azimuth display (VAD) and the velocity-azimuth pro-cessing (VAP), have been widely used to retrieve the 3-D wind field from single-Doppler radar data because of their relative conceptual and practical simplicity. The advantage of VAD is that it is not affected by small-scale perturbations of the radial wind along the azimuth, to which the VAP method is very sensitive. Nevertheless, the spatial resolution of the VAD method is very poor compared to the VAP method. We show, in this study, that these two retrieval methods are actually related with each other and they are two special applications of a retrieval function based on the azimuthal uniform-wind assumption for a given azimuthal interval [θ1,θ2]. When using this retrieval function to retrieve wind fields, the azimuthal interval used in retrieval can be adjusted according to the requirement of smoothness or resolution. The larger (smaller) the azimuthal interval is, the coarser (finer) the horizontal resolution of retrieved wind field is, and the more insensitive (sensitive) the retrieval method is to small-scale perturbations. Because the full information within the azimuthal interval [θ1,θ2], instead of the information at two terminal points only, i.e., azimuths θ1 and θ2, is used to retrieve the wind fields, this method is referred to as the integrating VAP (IVAP) method, wherein the horizontal wind field is retrieved by using the Doppler velocity over the part of circumference, delimited by the given azimuthal interval times the scan radius. By contrast, the VAP method uses only the velocities at two terminal points of the given azimuthal interval. Therefore, the IVAP method has a filtering function, and the filtering rate can be controlled by adjusting the azimuthal interval. The filter such as that used in the pre-processing of the VAP method is no longer necessary for the IVAP method. When the retrieval azimuthal interval is as large as a whole

  13. Integration of umbilical venous and arterial Doppler flow parameters for prediction of adverse perinatal outcome

    Directory of Open Access Journals (Sweden)

    Hebbar Shripad

    2015-01-01

    Full Text Available Background: Quantification of umbilical vein (UV blood flow rate and umbilical artery Doppler indices might be valuable in assessing fetuses at increased risk of perinatal complications as they receive their supply of oxygen and nutrients through this vessel. Previous studies have indicated that UV blood volume flow rate to umbilical artery pulsatility index (UAPI ratio (venous arterial index [VAI] evaluates both venous and arterial arm of fetal umbilical circulation and hence, can be adopted as a screening tool in management of high risk pregnancy. Objectives: To compare umbilical VAI with adverse perinatal outcome and also to evaluate its efficacy with other flow indices in determining perinatal outcome. Materials and Methods: Various Doppler indices such as normalized blood flow rate in UV (nUV, ml/kg estimated fetal weight/min, VAI (nUV/UAPI, umbilical artery resistance index (RI, UAPI, and systolic diastolic ratio were determined in 103 pregnant women within 2 weeks of the delivery. A risk score was devised using APGAR at 5 min, birth weight, preterm delivery, fetal distress, Neonatal Intensive Care Unit (NICU care, and perinatal death and this score was correlated with antenatal Doppler findings. Results: Subjects with low VAI were found to have a greater association with intrauterine growth restricted fetuses (28.5% and low liquor (35.7%, preterm deliveries (46.4%, lower mean birth weight (2.25 kg, higher NICU admission rates (32.1%. The unfavorable score was noticed in 25.2% of the neonates. They had lower VAI (156 vs. 241, UV diameter (6.2 mm vs. 7.8 mm, UV velocity (16.2 vs. 17.8, nUV (163.7 vs. 206.4, and higher PI (1.3 vs. 0.9. A cut-off of VAI of 105 ml/kg/min had sensitivity of 86.7% and a specificity of 93.5% for predicting poor perinatal outcome. Conclusion: VAI with a cut-off of 105 ml/kg/min can be used as an additional tool along with the other conventional Doppler indices in order to predict adverse fetal outcome.

  14. A new analgesic method, two-minute sciatic nerve press, for immediate pain relief: a randomized trial

    Directory of Open Access Journals (Sweden)

    Zhang Fenglin

    2008-01-01

    Full Text Available Abstract Background Current analgesics have drawbacks such as delays in acquisition, lag-times for effect, and side effects. We recently presented a preliminary report of a new analgesic method involving a two-minute sciatic nerve press, which resulted in immediate short-term relief of pain associated with dental and renal diseases. The present study investigated whether this technique was effective for pain associated with other disease types, and whether the relief was effective for up to one hour. Methods This randomized, placebo-controlled, parallel-group trial was conducted in four hospitals in Anhui Province, China. Patients with pain were sequentially recruited by participating physicians during clinic visits, and 135 patients aged 15 – 80 years were enrolled. Dental disease patients included those with acute pulpitis and periapical abscesses. Renal disease patients included those with kidney infections and/or stones. Tumor patients included those with nose, breast, stomach and liver cancers, while Emergency Room patients had various pathologies. Patients were randomly assigned to receive a "sciatic nerve press" in which pressure was applied simultaneously to the sciatic nerves at the back of both thighs, or a "placebo press" in which pressure was applied to a parallel region on the front of the thighs. Each fist applied a pressure of 11 – 20 kg for 2 minutes. Patients rated their level of pain before and after the procedure. Results The "sciatic nerve press" produced immediate relief of pain in all patient groups. Emergency patients reported a 43.5% reduction in pain (p th minutes, and the relief decreased 47% by the 60th minutes. Conclusion Two minutes of pressure on both sciatic nerves produced immediate significant short-term conduction analgesia. This technique is a convenient, safe and powerful method for the short-term treatment of clinical pain associated with a diverse range of pathologies. Trial registration Current

  15. The EarthCARE space-borne Doppler 94 GHz radar simulator: correction of multiple scattering, aliasing and NUBF and effects of variable along track integration

    Science.gov (United States)

    Augustynek, T.; Battaglia, A.; Kollias, P.

    2011-12-01

    The primary goal of this work is to address several challenges related to spaceborne Doppler radars like future the EarthCARE mission and recent developments of data simulation, correction and processing. The 94 GHz Cloud Profiling Radar onboard the ESA EarthCARE mission will be the first radar in space with Doppler capability allowing mean Doppler velocity measurements. This will enable more accurate characterization of clouds and precipitation (classification, retrieval accuracy, dynamics). It is the only instrument of this kind planned for the immediate post-CloudSat era and represents an irreplaceable asset in regards to climate change studies. Meeting the scientific accuracy requirements of vertical motions of 1 m/s, with a horizontal resolution of 1 km, is very challenging. The five key factors that control the performance of spaceborne radar will be discussed, such as: contribution of multiple scattering (MS), attenuation, velocity folding, non uniform beam filling (NUBF) and effects of along track integration of the signal. The research utilizes an end-to-end simulator for spaceborne Doppler radars. The simulator uses a Monte Carlo module which accounts for MS and produces ideal Doppler spectra as measured by a spaceborne radar flying over 3D highly resolved scenes produced via WRF Model simulations. The estimates of the Doppler moments (reflectivity, mean Doppler velocity and spectrum width) are achieved via the pulse pair technique. The objective method for identification of MS-contaminated range-bins based purely on the reflectivity-derived variables is described, with most important one, cumulative integrated reflectivity, found to be 41 dBZ_int which serves as the threshold value for identification of radar range gates contaminated by MS. This is further demonstrated in a CloudSat case study with the threshold value for CloudSat is found to be 41.9 dBZ_int. The unfolding procedure of Doppler velocities will be presented. Then we will describe the

  16. Design of integrated scanning laser Doppler velocitmeter using arrayed waveguide gratings

    Science.gov (United States)

    Maru, Koichi; Fujii, Yusaku; Obokata, Tomio; Ishima, Tsuneaki; Yupapin, Preecha; Pornsuwancharoen, Nithitroth; Juthanggoon, Thanaprasert

    2009-07-01

    An integrated scanned differential LDV has been proposed using planar lightwave circuit (PLC) technology. By using the proposed LDV, the measurement position can be scanned in depth direction without any mechanical movement. The PLC technology is utilized in the proposed design for achieving a compact optical circuit. The characteristics of the proposed LDV are simulated with a design model based on grating equations for AWGs. The simulation result reveals that the measurement position can be changed over the range of 46 mm in the depth direction without mechanical movement when the displacement between output sides of two waveguide arrays is 30 mm.

  17. Advanced W-Band Gallium Nitride Monolithic Microwave Integrated Circuits (MMICs) for Cloud Doppler Radar Supporting ACE Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop W-band Gallium Nitride (GaN) MMICs to enable the advanced cross-track scanning, dual-frequency Doppler cloud radar concept in support of the...

  18. Pig model of chronic myocardial ischemia and its investigation by ultrasonic integrated backscatter and Doppler tissue imaging

    Institute of Scientific and Technical Information of China (English)

    XU Jing; ZHAO Bao-zhen; WANG Zhong; GU Jun-yan; LU Shi-ping

    2004-01-01

    Objective: To construct an animal model of chronic ischemic myocardium, and evaluate it by ultrasonic integrated backscatter (IBS) and Doppler tissue imaging (DTI). Methods: An Ameroid constrictor was placed around the porcine left circumflex coronary artery (LCX). The calibrated average image intensity ( % AII), cyclic variation of IBS(CVIB), transmural gradient index (TGI) of CVIB in lateral- posterior wall (LPW), and DTI spectrum of LPW in left ventricular papillary muscle level short axis view (LVPM-SAM) and apical four chamber view (AP-4CV) at normal state, 2, 4,6 and 8 weeks postoperatively were measured. Results: Normal %AII, CVIB and TGI were 2.29 ± 0.32, 9.69 ± 2.22dB and 0.22 ± 0.08, respectively. The % AII increased gradually postoperatively. The CVIB decreased also gradually, and the decrease was higher in subepicardium than in subendocardium. Most of TGI decrease occurred from 2 to 4 weeks postoperatively and became zero at 8 weeks (P < O. 01 ); Normal Vs (peak systolic velocity) of AP-4CV was higher than that of LVPM-SAM ( P < 0.01 ). VE (peak early diastolic velocity) of AP-4CV was lower than that of LVPM-SAM ( P < 0.05). Vs and VE were all decreased after operation ( P < 0.01 ). The decrease of Vs in AP-4CV was greater than that in LVPM-SAM.Conclusion: The pathological changes of the myocardium in human ischemic heart disease (IHD) are similar to that of Ameriod model. IBS and DTI can detect echo changes and ventricular wall motion in chronic ischemic myocardium, and provide more information for clinical investigation and treatment of IHD.

  19. Doppler Tomography

    CERN Document Server

    Marsh, T R

    2000-01-01

    I review the method of Doppler tomography which translates binary-star line profiles taken at a series of orbital phases into a distribution of emission over the binary. I begin with a discussion of the basic principles behind Doppler tomography, including a comparison of the relative merits of maximum entropy regularisation versus filtered back-projection for implementing the inversion. Following this I discuss the issue of noise in Doppler images and possible methods for coping with it. Then I move on to look at the results of Doppler Tomography applied to cataclysmic variable stars. Outstanding successes to date are the discovery of two-arm spiral shocks in cataclysmic variable accretion discs and the probing of the stream/magnetospheric interaction in magnetic cataclysmic variable stars. Doppler tomography has also told us much about the stream/disc interaction in non-magnetic systems and the irradiation of the secondary star in all systems. The latter indirectly reveals such effects as shadowing by the a...

  20. Doppler imaging

    Energy Technology Data Exchange (ETDEWEB)

    Piskunov, N [Department of Physics and Astronomy, Uppsala University, Box 515, S-75120 Uppsala (Sweden)], E-mail: piskunov@fysast.uu.se

    2008-12-15

    In this paper, I present a short review of the history and modern status of Doppler imaging techniques, highlighting their dependence on the knowledge of the fundamental stellar parameters, the quality of stellar atmospheric models and the accuracy of spectral synthesis.

  1. Laser Doppler flowmetry imaging

    Science.gov (United States)

    Nilsson, Gert E.; Wardell, Karin

    1994-02-01

    A laser Doppler perfusion imager has been developed that makes possible mapping of tissue blood flow over surfaces with extensions up to about 12 cm X 12 cm. The He-Ne laser beam scans the tissue under study throughout 4096 measurement sites. A fraction of the backscattered and Doppler broadened light is detected by a photo diode positioned about 20 cm above the tissue surface. After processing, a signal that scales linearly with perfusion is stored in a computer and a color coded image of the spatial tissue perfusion is shown on a monitor. A full format scan is completed in about 4.5 minutes. Algorithms for calculating perfusion profiles and averages as well as substraction of one image from another, form an integral part of the system data analysis software. The perfusion images can also be exported to other software packages for further processing and analysis.

  2. The doppler ultrasound. La ecografia Doppler

    Energy Technology Data Exchange (ETDEWEB)

    Contreras Cecilia, E.; Lozano Setien, E.; Hernandez Montero, J.; Ganado Diaz, T.; Jorquera Moya, M.; Blasco Pascual, E. (Hospital Universitario San Carlos. Madrid (Spain))

    1994-01-01

    The discovery and development of Doppler ultrasound has had a great influence on Medical practice since it allows the noninvasive study of vascular pathology, both arterial and venous, as well as the flow patterns of the different parenchyma. This article deals with the principles, limitations and interpretation of the Doppler signal, as well as the different Doppler ultrasound systems routinely employed in Medicine.

  3. Incorporation of a Redfern Integrated Optics ORION Laser Module with an IPG Photonics Erbium Fiber Laser to Create a Frequency Conversion Photon Doppler Velocimeter for US Army Research Laboratory Measurements: Hardware, Data Analysis, and Error Quantification

    Science.gov (United States)

    2017-04-01

    ARL-MR-0953● Apr 2017 US Army Research Laboratory Incorporation of a Redfern Integrated Optics ORION Laser Module with an IPG...Photonics Erbium Fiber Laser to Create a Frequency- Conversion Photon Doppler Velocimeter for US Army Research Laboratory Measurements: Hardware...Laboratory Incorporation of a Redfern Integrated Optics ORION Laser Module with an IPG Photonics Erbium Fiber Laser to Create a Frequency- Conversion

  4. Dual-Doppler Feasibility Study

    Science.gov (United States)

    Huddleston, Lisa L.

    2012-01-01

    radar geometry issues at the NWS MLB radar, such as the "cone of silence" or beam blockage. In the event of a radar outage at one of the sites, the multi-radar algorithms would provide continuing coverage of the area through use of the data from the remaining operational radar sites. There are several options to collect, edit, synthesize and display dual-Doppler data sets. These options include commercial packages available for purchase and a variety of freeware packages available from the National Center for Atmospheric Research (NCAR) for processing raw radar data. However, evaluation of the freeware packages revealed that they do not have sufficient documentation and configuration control to be certified for 45 SW use. Additionally, a TI data line must be installed/leased from the NWS MLB office and CCAFS to enable the receipt of NWS MLB raw radar data to use in the dual-Doppler synthesis. Integration of the TI data line into the Eastern Range infrastructure that will meet the security requirements necessary for 45 SW use is time-consuming and costly. Overall evaluation indicates that establishment of the dual-Doppler capability using the existing operational radar systems is desirable and feasible with no technical concerns. Installation of such a system represents a significant enhancement to forecasting capabilities at the 45 WS and at NWS MLB. However, data security and cost considerations must be evaluated in light of current budgetary constraints. In any case, gaining the dual-Doppler capability will provide opportunities for better visualization of the wind field and better forecasting of the onset of convection and severe weather events to support space launch operations at KSC and CCAFS.

  5. Left ventricular outflow tract velocity time integral outperforms ejection fraction and Doppler-derived cardiac output for predicting outcomes in a select advanced heart failure cohort.

    Science.gov (United States)

    Tan, Christina; Rubenson, David; Srivastava, Ajay; Mohan, Rajeev; Smith, Michael R; Billick, Kristen; Bardarian, Samuel; Thomas Heywood, J

    2017-07-03

    Left ventricular outflow tract velocity time integral (LVOT VTI) is a measure of cardiac systolic function and cardiac output. Heart failure patients with low cardiac output are known to have poor cardiovascular outcomes. Thus, extremely low LVOT VTI may predict heart failure patients at highest risk for mortality. Patients with heart failure and extremely low LVOT VTI were identified from a single-center database. Baseline characteristics and heart failure related clinical outcomes (death, LVAD) were obtained at 12 months. Correlation between clinical endpoints and the following variables were analyzed: ejection fraction (EF), pulmonary artery systolic pressure (PASP), NYHA class, renal function, Doppler cardiac output (CO), and LVOT VTI. Study cohort consisted of 100 patients. At the 12-month follow up period, 30 events (28 deaths, 2 LVADs) were identified. Occurrence of death and LVAD implantation was statistically associated with a lower LVOT VTI (p = 0.039) but not EF (p = 0.169) or CO (p = 0.217). In multivariate analysis, LVOT VTI (p = 0.003) remained statistically significant, other significant variables were age (p = 0.033) and PASP (p = 0.022). Survival analysis by LVOT VTI tertile demonstrated an unadjusted hazard ratio of 4.755 (CI 1.576-14.348, p = 0.006) for combined LVAD and mortality at one year. Extremely low LVOT VTI strongly predicts adverse outcomes and identifies patients who may benefit most from advanced heart failure therapies.

  6. Differential doppler heterodyning technique

    DEFF Research Database (Denmark)

    Lading, Lars

    1971-01-01

    Measuring velocity without disturbing the moving object is possible by use of the laser doppler heterodyning technique. Theoretical considerations on the doppler shift show that the antenna property of the photodetector can solve an apparent conflict between two different ways of calculating...... the detected doppler frequency. It is found that the doppler frequency for this particular setup is independent of the direction of detection. Investigations of the signal-to-noise ratio (SNR) show that the maximum SNR-considering the optical setup-is obtained by measuring the frequency difference between two...

  7. Tendinopathy and Doppler activity

    DEFF Research Database (Denmark)

    Boesen, M I; Koenig, M J; Torp-Pedersen, S

    2006-01-01

    Intratendinous Doppler activity has been interpreted as an equivalent of neovessels in the Achilles tendon and as a sign of tendinosis (AT).......Intratendinous Doppler activity has been interpreted as an equivalent of neovessels in the Achilles tendon and as a sign of tendinosis (AT)....

  8. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H.; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue ...

  9. Ultrasonic colour Doppler imaging

    DEFF Research Database (Denmark)

    Evans, David H; Jensen, Jørgen Arendt; Nielsen, Michael Bachmann

    2011-01-01

    anatomy. The most common use of the technique is to image the movement of blood through the heart, arteries and veins, but it may also be used to image the motion of solid tissues such as the heart walls. Colour Doppler imaging is now provided on almost all commercial ultrasound machines, and has been......Ultrasonic colour Doppler is an imaging technique that combines anatomical information derived using ultrasonic pulse-echo techniques with velocity information derived using ultrasonic Doppler techniques to generate colour-coded maps of tissue velocity superimposed on grey-scale images of tissue...... vectors. This review briefly introduces the principles behind colour Doppler imaging and describes some clinical applications. It then describes the basic components of conventional colour Doppler systems and the methods used to derive velocity information from the ultrasound signal. Next, a number of new...

  10. 多江勒雷达/光纤捷联惯导组合导航同步方法研究%Research on Data Synchronization Method of Doppler Radar/FOG-SINS Integrated Navigation System

    Institute of Scientific and Technical Information of China (English)

    白宏阳; 薛晓中; 陈帅; 李松; 解宝同

    2011-01-01

    针对采用ARINC429总线通信的多普勒雷达/光纤捷联惯导直升机机载自主组合导航系统的时间同步问题,提出了一种有效的多普勒雷达同惯导间的软件同步方法;通过判断ARINC429总线上多普勒雷达信号的Label位标志,结合光纤捷联惯导的5ms中断时刻和嵌入式导航计算机提供的计时器,采用插值和外推的方法实现了多普勒雷达与光纡捷联惯导间信号的同步;最后对所设计的系统进行了长航时地面动态跑车试验,系统经同步后的的定位精度验证了所提方法的合理性和有效性.%Aiming at solving the time synchronization problem in Doppler Radar/Fiber Optical Gyroscope Strapdown Inertial Navigation System (FOG-SINS) integrated autonomous navigation system of helicopters where Doppler Radar sends data through ARINC429 data bus, an effective software algorithm of synchronization was designed. By judging the label-bit symbol of Doppler data sent through ARINC429 data bus, combined with the 5ms interrupt time of FOG-SINS as well as timer provided by DSP, the problem was solved using linear interpolation and extrapolation. Finally, aiming to validate the rationality, a long endurance van test was conducted , the excellent navigation result indicates the efficiency of the designed method.

  11. Pulse subtraction Doppler

    Science.gov (United States)

    Mahue, Veronique; Mari, Jean Martial; Eckersley, Robert J.; Caro, Colin G.; Tang, Meng-Xing

    2010-01-01

    Recent advances have demonstrated the feasibility of molecular imaging using targeted microbubbles and ultrasound. One technical challenge is to selectively detect attached bubbles from those freely flowing bubbles and surrounding tissue. Pulse Inversion Doppler is an imaging technique enabling the selective detection of both static and moving ultrasound contrast agents: linear scatterers generate a single band Doppler spectrum, while non-linear scatterers generate a double band spectrum, one being uniquely correlated with the presence of contrast agents and non-linear tissue signals. We demonstrate that similar spectrums, and thus the same discrimination, can be obtained through a Doppler implementation of Pulse Subtraction. This is achieved by reconstructing a virtual echo using the echo generated from a short pulse transmission. Moreover by subtracting from this virtual echo the one generated from a longer pulse transmission, it is possible to fully suppress the echo from linear scatterers, while for non-linear scatterers, a signal will remain, allowing classical agent detection. Simulations of a single moving microbubble and a moving linear scatterer subject to these pulses show that when the virtual echo and the long pulse echo are used to perform pulsed Doppler, the power Doppler spectrum allows separation of linear and non-linear moving scattering. Similar results are obtained on experimental data acquired on a flow containing either microbubble contrast agents or linear blood mimicking fluid. This new Doppler method constitutes an alternative to Pulse Inversion Doppler and preliminary results suggest that similar dual band spectrums could be obtained by the combination of any non-linear detection technique with Doppler demodulation.

  12. Integrating fluorescent dye flow-curve testing and acoustic Doppler velocimetry profiling for in situ hydraulic evaluation and improvement of clarifier performance.

    Science.gov (United States)

    Tarud, F; Aybar, M; Pizarro, G; Cienfuegos, R; Pastén, P

    2010-08-01

    Enhancing the performance of clarifiers requires a thorough understanding of their hydraulics. Fluorescence spectroscopy and acoustic doppler velocimeter (ADV) profiling generally have been used separately to evaluate secondary settlers. We propose that simultaneous use of these techniques is needed to obtain a more reliable and useful evaluation. Experiments were performed on laboratory- and full-scale clarifiers. Factors affecting Fluorescein and Rhodamine 6G properties were identified. Underestimations up to 500% in fluorescence intensities may be derived from differential fluorescence quenching by oxygen. A careful control and interpretation of fluorescent dye experiments is needed to minimize artifacts in real settings. While flow-curve tests constructed under controlled conditions provided a more accurate overall quantitative estimation of the hydraulic performance, ADV velocity and turbulence profiling provided a detailed spatial understanding of flow patterns that was used to troubleshoot and fix the causes of hydraulic short-circuits.

  13. Steerable Doppler transducer probes

    Energy Technology Data Exchange (ETDEWEB)

    Fidel, H.F.; Greenwood, D.L.

    1986-07-22

    An ultrasonic diagnostic probe is described which is capable of performing ultrasonic imaging and Doppler measurement consisting of: a hollow case having an acoustic window which passes ultrasonic energy and including chamber means for containing fluid located within the hollow case and adjacent to a portion of the acoustic window; imaging transducer means, located in the hollow case and outside the fluid chamber means, and oriented to direct ultrasonic energy through the acoustic window toward an area which is to be imaged; Doppler transducer means, located in the hollow case within the fluid chamber means, and movably oriented to direct Doppler signals through the acoustic window toward the imaged area; means located within the fluid chamber means and externally controlled for controllably moving the Doppler transducer means to select one of a plurality of axes in the imaged area along which the Doppler signals are to be directed; and means, located external to the fluid chamber means and responsive to the means for moving, for providing an indication signal for identifying the selected axis.

  14. Doppler cooling a microsphere

    CERN Document Server

    Barker, P F

    2010-01-01

    Doppler cooling the center-of-mass motion of an optically levitated microsphere via the velocity dependent scattering force from narrow whispering gallery mode (WGM) resonances is described. Light that is red detuned from the WGM resonance can be used to damp the center-of-mass motion in a process analogous to the Doppler cooling of atoms. Leakage of photons out of the microsphere when the incident field is near resonant with the narrow WGM resonance acts to damp the motion of the sphere. The scattering force is not limited by saturation, but can be controlled by the incident power. Cooling times on the order of seconds are calculated for a 20 micron diameter silica microsphere trapped within optical tweezers, with a Doppler temperature limit in the microKelvin regime.

  15. Pulse Doppler radar

    CERN Document Server

    Alabaster, Clive

    2012-01-01

    This book is a practitioner's guide to all aspects of pulse Doppler radar. It concentrates on airborne military radar systems since they are the most used, most complex, and most interesting of the pulse Doppler radars; however, ground-based and non-military systems are also included. It covers the fundamental science, signal processing, hardware issues, systems design and case studies of typical systems. It will be a useful resource for engineers of all types (hardware, software and systems), academics, post-graduate students, scientists in radar and radar electronic warfare sectors and milit

  16. Doppler radar physiological sensing

    CERN Document Server

    Lubecke, Victor M; Droitcour, Amy D; Park, Byung-Kwon; Singh, Aditya

    2016-01-01

    Presents a comprehensive description of the theory and practical implementation of Doppler radar-based physiological monitoring. This book includes an overview of current physiological monitoring techniques and explains the fundamental technology used in remote non-contact monitoring methods. Basic radio wave propagation and radar principles are introduced along with the fundamentals of physiological motion and measurement. Specific design and implementation considerations for physiological monitoring radar systems are then discussed in detail. The authors address current research and commercial development of Doppler radar based physiological monitoring for healthcare and other applications.

  17. Dual beam Doppler FD-OCT system with integrated Dynamic Vessel Analyzer and rotatable beams to measure total retinal blood flow

    Science.gov (United States)

    Doblhoff-Dier, Veronika; Werkmeister, René M.; Gröschl, Martin; Schmetterer, Leopold

    2014-03-01

    We present a method capable of measuring the total retinal blood flow in arteries and veins based on dual beam Fourierdomain Doppler optical coherence tomography (OCT) in combination with a fundus camera based Dynamic Vessel Analyzer. Incorporating a Dynamic vessel analyzer into the system not only gives a live image of the fundus - it also allows determining the vessels' diameter precisely during the OCT measurement, which is necessary for the determination of the blood flow. While dual beam systems with fixed detection plane allow only vessels with certain orientations to be measured, the detection plane of our system can be rotated by 90°. This ensures that the blood's velocity can be measured in all vessels around the optic nerve head. The results of the total blood flow measurements are in the same range as previously published data. Additionally, the high degree of conformity between the measured venous and arterial flow corroborated the system's validity. For larger vessels, the logarithmic values of vessel diameter and blood flow were found to be related linearly with a regression coefficient of around 3, which is in accordance with Murray's law. For smaller vessels (diameter below 60 μm), the values diverge from the linear dependence. The high sensitivity and the good agreement with published data suggest a high potential for examining the retinal blood flow in patients with ocular diseases.

  18. Calculation of the Doppler broadening function using Fourier analysis;Calculo da funcao de alargamento Doppler utilizando analise de Fourier

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Alessandro da Cruz

    2010-07-01

    An efficient and precise method for calculation of Doppler broadening function is very important to obtain average group microscopic cross sections, self shielding factors, resonance integrals and others reactor physics parameter. In this thesis two different methods for calculation of Doppler broadening function and interference term will be presented. The main method is based on a new integral form for Doppler broadening function {psi}(x,{zeta}) which gives a mathematical interpretation of the approximation proposed by Bethe and Placzek, as the convolution of the Lorentzian function with a Gaussian function. This interpretation besides leading to a new integral form for {psi}(x,{zeta}), enables to obtain a simple analytic solution for the Doppler broadening function. (author)

  19. Scanning laser Doppler vibrometry

    DEFF Research Database (Denmark)

    Brøns, Marie; Thomsen, Jon Juel

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from...

  20. The Doppler Pendulum Experiment

    Science.gov (United States)

    Lee, C. K.; Wong, H. K.

    2011-01-01

    An experiment to verify the Doppler effect of sound waves is described. An ultrasonic source is mounted at the end of a simple pendulum. As the pendulum swings, the rapid change of frequency can be recorded by a stationary receiver using a simple frequency-to-voltage converter. The experimental results are in close agreement with the Doppler…

  1. Doppler Shift Compensation Schemes in VANETs

    Directory of Open Access Journals (Sweden)

    F. Nyongesa

    2015-01-01

    Full Text Available Over the last decade vehicle-to-vehicle (V2V communication has received a lot of attention as it is a crucial issue in intravehicle communication as well as in Intelligent Transportation System (ITS. In ITS the focus is placed on integration of communication between mobile and fixed infrastructure to execute road safety as well as nonsafety information dissemination. The safety application such as emergence alerts lays emphasis on low-latency packet delivery rate (PDR, whereas multimedia and infotainment call for high data rates at low bit error rate (BER. The nonsafety information includes multimedia streaming for traffic information and infotainment applications such as playing audio content, utilizing navigation for driving, and accessing Internet. A lot of vehicular ad hoc network (VANET research has focused on specific areas including channel multiplexing, antenna diversity, and Doppler shift compensation schemes in an attempt to optimize BER performance. Despite this effort few surveys have been conducted to highlight the state-of-the-art collection on Doppler shift compensation schemes. Driven by this cause we survey some of the recent research activities in Doppler shift compensation schemes and highlight challenges and solutions as a stock-taking exercise. Moreover, we present open issues to be further investigated in order to address the challenges of Doppler shift in VANETs.

  2. Scanning laser Doppler vibrometry

    OpenAIRE

    2016-01-01

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from Polytec Inc. – was acquired and put to operation in October 2014, paid by a sub-donation of DKK 1,5 mill. of the total VILLUM CASMaT grant. Opening possibilities of measuring complicated vibration shapes...

  3. Holographic laser Doppler ophthalmoscopy

    CERN Document Server

    Simonutti, Manuel; Sahel, J A; Gross, Michel; Samson, Benjamin; Magnain, Caroline; Atlan, Michael; 10.1364/OL.35.001941

    2010-01-01

    We report laser Doppler ophthalmoscopic fundus imaging in the rat eye with near-IR heterodyne holography. Sequential sampling of the beat of the reflected radiation against a frequency-shifted optical local oscillator is made onto an array detector. Wide-field maps of fluctuation spectra in the 10 Hz to 25 kHz band exhibit angiographic contrasts in the retinal vascular tree without requirement of an exogenous marker.

  4. Quantification of cardiac blood flow by Doppler technique

    OpenAIRE

    Meijboom, Erik Jan

    1985-01-01

    textabstractThe investigations described in this thesis started as part of the research program of the divisions of pediatric cardiology of the Universities of Arizona and California (San Diego). The investigations were part of an ongoing project designed by D.J. Sahn and L.M. Valdes-Cruz. This project was initiated to implement Doppler techniques in the daily practice of pediatric cardiology. New developments in medical technology made the Doppler techniques integrated into sophisticated two...

  5. Laser double Doppler flowmeter

    Science.gov (United States)

    Poffo, L.; Goujon, J.-M.; Le Page, R.; Lemaitre, J.; Guendouz, M.; Lorrain, N.; Bosc, D.

    2014-05-01

    The Laser Doppler flowmetry (LDF) is a non-invasive method for estimating the tissular blood flow and speed at a microscopic scale (microcirculation). It is used for medical research as well as for the diagnosis of diseases related to circulatory system tissues and organs including the issues of microvascular flow (perfusion). It is based on the Doppler effect, created by the interaction between the laser light and tissues. LDF measures the mean blood flow in a volume formed by the single laser beam, that penetrate into the skin. The size of this measurement volume is crucial and depends on skin absorption, and is not directly reachable. Therefore, current developments of the LDF are focused on the use of always more complex and sophisticated signal processing methods. On the other hand, laser Double Doppler Flowmeter (FL2D) proposes to use two laser beams to generate the measurement volume. This volume would be perfectly stable and localized at the intersection of the two laser beams. With FL2D we will be able to determine the absolute blood flow of a specific artery. One aimed application would be to help clinical physicians in health care units.

  6. Comparisons between PW Doppler system and enhanced FM Doppler system

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Pedersen, P. C.

    1995-01-01

    This paper presents a new implementation of an echo-ranging FM Doppler system with improved performance, relative to the FM Doppler system reported previously. The use of long sweeps provides a significant reduction in peak to average power ratio compared to pulsed wave (PW) emission. A PW Doppler...... system exploits the direct relationship between arrival time of the received signal and range from the transducer. In the FM Doppler systems, a similar relationship exists in the spectral domain of the demodulated received signals, so that range is represented by frequency. Thus, a shift in location...... of moving scatterers between consecutive emissions corresponds to a frequency shift in the spectral signature. The improvement relative to the earlier version of the FM Doppler system is attained by utilizing cross-correlation of real spectra rather than of magnitude spectra for assessing flow velocity...

  7. ANL Doppler flowmeter

    Science.gov (United States)

    Karplus, H. B.; Raptis, A. C.; Lee, S.; Simpson, T.

    1985-10-01

    A flowmeter has been developed for measuring flow velocity in hot slurries. The flowmeter works on an ultrasonic Doppler principle in which ultrasound is injected into the flowing fluid through the solid pipe wall. Isolating waveguides separate the hot pipe from conventional ultrasonic transducers. Special clamp-on high-temperature transducers also can be adapted to work well in this application. Typical flows in pilot plants were found to be laminar, giving rise to broad-band Doppler spectra. A special circuit based on a servomechanism sensor was devised to determine the frequency average of such a broad spectrum. The device was tested at different pilot plants. Slurries with particulates greater than 70 microns (0.003 in.) yielded good signals, but slurries with extremely fine particulates were unpredictable. Small bubbles can replace the coarse particles to provide a good signal if there are not too many. Successful operation with very fine particulate slurries may have been enhanced by the presence of microbubbles.

  8. Laser Doppler Imaging of Microflow

    CERN Document Server

    Gross, Michel; Leng, Jacques

    2013-01-01

    We report a pilot study with a wide-field laser Doppler detection scheme used to perform laser Doppler anemometry and imaging of particle seeded microflow. The optical field carrying the local scatterers (particles) dynamic state, as a consequence of momentum transfer at each scattering event, is analyzed in the temporal frequencies domain. The setup is based on heterodyne digital holography, which is used to map the scattered field in the object plane at a tunable frequency with a multipixel detector. We show that wide-field heterodyne laser Doppler imaging can be used for quantitative microflow diagnosis; in the presented study, maps of the first-order moment of the Doppler frequency shift are used as a quantitative and directional estimator of the Doppler signature of particles velocity.

  9. Doppler characteristics of sea clutter.

    Energy Technology Data Exchange (ETDEWEB)

    Raynal, Ann Marie; Doerry, Armin Walter

    2010-06-01

    Doppler radars can distinguish targets from clutter if the target's velocity along the radar line of sight is beyond that of the clutter. Some targets of interest may have a Doppler shift similar to that of clutter. The nature of sea clutter is different in the clutter and exo-clutter regions. This behavior requires special consideration regarding where a radar can expect to find sea-clutter returns in Doppler space and what detection algorithms are most appropriate to help mitigate false alarms and increase probability of detection of a target. This paper studies the existing state-of-the-art in the understanding of Doppler characteristics of sea clutter and scattering from the ocean to better understand the design and performance choices of a radar in differentiating targets from clutter under prevailing sea conditions.

  10. Novel instantaneous laser Doppler velocimeter.

    Science.gov (United States)

    Avidor, J M

    1974-02-01

    A laser Doppler velocimeter capable of directly measuring instantaneous velocities is described. The new LDV uses a novel detection technique based on the utilization of a static slightly defocused spherical Fabry-Perot interferometer used in conjunction with a special mask for the detection of instantaneous Doppler frequency shifts. The essential characteristics of this LDV are discussed, and such a system recently developed is described. Results of turbulent flow measurements show good agreement with data obtained using hot wire anemometry.

  11. A Compensation Algorithm Based on RSPWVD-Hough Transform for Doppler Expansion in Passive Radar

    Directory of Open Access Journals (Sweden)

    Guan Xin

    2013-12-01

    Full Text Available For passive radar, long integration time is used to achieve high processing gain to detect weak target. But range migration and Doppler expansion may occur for high-speed targets. Keystone transform can be used to rectify range migration introduced by radial-speed. But tangential-speed may still lead to Doppler expansion, which entails a loss of integration gain. In this paper, signal model is presented to analyze the reason for Doppler expansion. Then, a Doppler expansion compensation method is introduced based on RSPWVD-Hough transform for multi-target scenario. Simulation results show that the proposed method can compensate the energy loss caused by Doppler expansion for multi-target scene, and it achieves good performance. The proposed method is also effective for weak targets, which means it can improve the detection ability of weak target in passive radar systems.

  12. Multigroup Free-atom Doppler-broadening Approximation. Theory

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Mark Girard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-06

    Multigroup cross sections at a one target temperature can be Doppler-broadened to multigroup cross sections at a higher target temperature by matrix multiplication if the group structure suf- ficiently resolves the original temperature continuous energy cross section. Matrix elements are the higher temperature group weighted averages of the integral over the lower temperature group boundaries of the free-atom Doppler-broadening kernel. The results match theory for constant and 1/v multigroup cross sections at 618 lanl group structure resolution.

  13. Gold nanorods as a contrast agent for Doppler optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    Bo Wang

    Full Text Available PURPOSE: To investigate gold nanorods (GNRs as a contrast agent to enhance Doppler optical coherence tomography (OCT imaging of the intrascleral aqueous humor outflow. METHODS: A serial dilution of GNRs was scanned with a spectral-domain OCT device (Bioptigen, Durham, NC to visualize Doppler signal. Doppler measurements using GNRs were validated using a controlled flow system. To demonstrate an application of GNR enhanced Doppler, porcine eyes were perfused at constant pressure with mock aqueous alone or 1.0×10(12 GNR/mL mixed with mock aqueous. Twelve Doppler and volumetric SD-OCT scans were obtained from the limbus in a radial fashion incremented by 30°, forming a circular scan pattern. Volumetric flow was computed by integrating flow inside non-connected vessels throughout all 12 scans around the limbus. RESULTS: At the GNR concentration of 0.7×10(12 GNRs/mL, Doppler signal was present through the entire depth of the testing tube without substantial attenuation. A well-defined laminar flow profile was observed for Doppler images of GNRs flowing through the glass capillary tube. The Doppler OCT measured flow profile was not statistically different from the expected flow profile based upon an autoregressive moving average model, with an error of -0.025 to 0.037 mm/s (p = 0.6435. Cross-sectional slices demonstrated the ability to view anterior chamber outflow ex-vivo using GNR-enhanced Doppler OCT. Doppler volumetric flow measurements were comparable to flow recorded by the perfusion system. CONCLUSIONS: GNRs created a measureable Doppler signal within otherwise silent flow fields in OCT Doppler scans. Practical application of this technique was confirmed in a constant pressure ex-vivo aqueous humor outflow model in porcine eyes.

  14. Planetary Doppler Imaging

    Science.gov (United States)

    Murphy, N.; Jefferies, S.; Hart, M.; Hubbard, W. B.; Showman, A. P.; Hernandez, G.; Rudd, L.

    2014-12-01

    Determining the internal structure of the solar system's gas and ice giant planets is key to understanding their formation and evolution (Hubbard et al., 1999, 2002, Guillot 2005), and in turn the formation and evolution of the solar system. While internal structure can be constrained theoretically, measurements of internal density distributions are needed to uncover the details of the deep interior where significant ambiguities exist. To date the interiors of giant planets have been probed by measuring gravitational moments using spacecraft passing close to, or in orbit around the planet. Gravity measurements are effective in determining structure in the outer envelope of a planet, and also probing dynamics (e.g. the Cassini and Juno missions), but are less effective in probing deep structure or the presence of discrete boundaries. A promising technique for overcoming this limitation is planetary seismology (analogous to helioseismology in the solar case), postulated by Vorontsov, 1976. Using trapped pressure waves to probe giant planet interiors allows insight into the density and temperature distribution (via the sound speed) down to the planetary core, and is also sensitive to sharp boundaries, for example at the molecular to metallic hydrogen transition or at the core-envelope interface. Detecting such boundaries is not only important in understanding the overall structure of the planet, but also has implications for our understanding of the basic properties of matter at extreme pressures. Recent Doppler measurements of Jupiter by Gaulme et al (2011) claimed a promising detection of trapped oscillations, while Hedman and Nicholson (2013) have shown that trapped waves in Saturn cause detectable perturbations in Saturn's C ring. Both these papers have fueled interest in using seismology as a tool for studying the solar system's giant planets. To fully exploit planetary seismology as a tool for understanding giant planet structure, measurements need to be made

  15. General principles of carotid Doppler ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Whal [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2014-03-15

    Carotid Doppler ultrasonography is a popular tool for evaluating atherosclerosis of the carotid artery. Its two-dimensional gray scale can be used for measuring the intima-media thickness, which is very good biomarker for atherosclerosis and can aid in plaque characterization. The plaque morphology is related to the risk of stroke. The ulceration of plaque is also known as one of the strong predictors of future embolic event risk. Color Doppler ultrasonography and pulse Doppler ultrasonography have been used for detecting carotid artery stenosis. Doppler ultrasonography has unique physical properties. The operator should be familiar with the physics and other parameters of Doppler ultrasonography to perform optimal Doppler ultrasonography studies.

  16. Doppler peaks from active perturbations

    CERN Document Server

    Magueijo, J; Coulson, D; Ferreira, P; Magueijo, Joao; Albrecht, Andreas; Coulson, David; Ferreira, Pedro

    1995-01-01

    We examine how the qualitative structure of the Doppler peaks in the angular power spectrum of the cosmic microwave anisotropy depends on the fundamental nature of the perturbations which produced them. The formalism of Hu and Sugiyama is extended to treat models with cosmic defects. We discuss how perturbations can be ``active'' or ``passive'' and ``incoherent'' or ``coherent'', and show how causality and scale invariance play rather different roles in these various cases. We find that the existence of secondary Doppler peaks and the rough placing of the primary peak unambiguously reflect these basic properties.

  17. Inverse Doppler Effects in Flute

    CERN Document Server

    Zhao, Xiao P; Liu, Song; Shen, Fang L; Li, Lin L; Luo, Chun R

    2015-01-01

    Here we report the observation of the inverse Doppler effects in a flute. It is experimentally verified that, when there is a relative movement between the source and the observer, the inverse Doppler effect could be detected for all seven pitches of a musical scale produced by a flute. Higher tone is associated with a greater shift in frequency. The effect of the inverse frequency shift may provide new insights into why the flute, with its euphonious tone, has been popular for thousands of years in Asia and Europe.

  18. Use of high sensitivity GNSS receiver Doppler measurements for indoor pedestrian dead reckoning.

    Science.gov (United States)

    He, Zhe; Renaudin, Valérie; Petovello, Mark G; Lachapelle, Gérard

    2013-03-28

    Dead-reckoning (DR) algorithms, which use self-contained inertial sensors combined with gait analysis, have proven to be effective for pedestrian navigation purposes. In such DR systems, the primary error is often due to accumulated heading drifts. By tightly integrating global navigation satellite system (GNSS) Doppler measurements with DR, such accumulated heading errors can usually be accurately compensated. Under weak signal conditions, high sensitivity GNSS (HSGNSS) receivers with block processing techniques are often used, however, the Doppler quality of such receivers is relatively poor due to multipath, fading and signal attenuation. This often limits the benefits of integrating HSGNSS Doppler with DR. This paper investigates the benefits of using Doppler measurements from a novel direct vector HSGNSS receiver with pedestrian dead-reckoning (PDR) for indoor navigation. An indoor signal and multipath model is introduced which explains how conventional HSGNSS Doppler measurements are affected by indoor multipath. Velocity and Doppler estimated by using direct vector receivers are introduced and discussed. Real experimental data is processed and analyzed to assess the veracity of proposed method. It is shown when integrating HSGNSS Doppler with PDR algorithm, the proposed direct vector method are more helpful than conventional block processing method for the indoor environments considered herein.

  19. Use of High Sensitivity GNSS Receiver Doppler Measurements for Indoor Pedestrian Dead Reckoning

    Directory of Open Access Journals (Sweden)

    Gérard Lachapelle

    2013-03-01

    Full Text Available Dead-reckoning (DR algorithms, which use self-contained inertial sensors combined with gait analysis, have proven to be effective for pedestrian navigation purposes. In such DR systems, the primary error is often due to accumulated heading drifts. By tightly integrating global navigation satellite system (GNSS Doppler measurements with DR, such accumulated heading errors can usually be accurately compensated. Under weak signal conditions, high sensitivity GNSS (HSGNSS receivers with block processing techniques are often used, however, the Doppler quality of such receivers is relatively poor due to multipath, fading and signal attenuation. This often limits the benefits of integrating HSGNSS Doppler with DR. This paper investigates the benefits of using Doppler measurements from a novel direct vector HSGNSS receiver with pedestrian dead-reckoning (PDR for indoor navigation. An indoor signal and multipath model is introduced which explains how conventional HSGNSS Doppler measurements are affected by indoor multipath. Velocity and Doppler estimated by using direct vector receivers are introduced and discussed. Real experimental data is processed and analyzed to assess the veracity of proposed method. It is shown when integrating HSGNSS Doppler with PDR algorithm, the proposed direct vector method are more helpful than conventional block processing method for the indoor environments considered herein.

  20. Doppler tomography in fusion plasmas and astrophysics

    CERN Document Server

    Salewski, Mirko; Heidbrink, Bill; Jacobsen, Asger Schou; Korsholm, Soren Bang; Leipold, Frank; Madsen, Jens; Moseev, Dmitry; Nielsen, Stefan Kragh; Rasmussen, Jesper; Stagner, Luke; Steeghs, Danny; Stejner, Morten; Tardini, Giovani; Weiland, Markus

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion D-alpha (FIDA) spectroscopy measurements in magnetically confined plasma, the D-alpha-photons are likewise Doppler-shifted ultimately due to gyration of the fast ions. In either case, spectra of Doppler-shifted line emission are sensitive to the velocity distribution of the emitters. Astrophysical Doppler tomography has lead to images of accretion discs of binaries revealing bright spots, spiral structures, and flow patterns. Fusion plasma Doppler tomography has lead to an image of the fast-ion velocity distribution function in the tokamak ASDEX Upgrade. This image matched numerical simulations very well. Here we discuss achievements of the Doppler tomography approach, its promise and limits, analogies and differences in astrophysical and fusion plasma Doppler tomography, and what ...

  1. Doppler Ultrasound: What Is It Used for?

    Science.gov (United States)

    ... in your neck (carotid artery stenosis) A Doppler ultrasound can estimate how fast blood flows by measuring the rate of change in its pitch (frequency). During a Doppler ultrasound, a technician trained in ultrasound imaging (sonographer) presses ...

  2. Velocity-aligned Doppler spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Koplitz, B.; Wittig, C.

    1989-03-01

    The technique of velocity-aligned Doppler spectrosocopy (VADS) is presented and discussed. For photolysis/probe experiments with pulsed initiation, VADS can yield Doppler profiles for nascent photofragments that allow detailed center-of-mass (c.m.) kinetic energy distributions to be extracted. When compared with traditional forms of Doppler spectroscopy, the improvement in kinetic energy resolution is dramatic. Changes in the measured profiles are a consequence of spatial discrimination (i.e., focused and overlapping photolysis and probe beams) and delayed observation. These factors result in the selective detection of species whose velocities are aligned with the wave vector of the probe radiation k/sub pr/, thus revealing the speed distribution along k/sub pr/ rather than the distribution of nascent velocity components projected upon this direction. Mathematical details of the procedure used to model VADS are given, and experimental illustrations for HI, H/sub 2/S, and NH/sub 3/ photodissociation are presented. In these examples, pulsed photodissociation produces H atoms that are detected by sequential two-photon, two-frequency ionization via Lyman-..cap alpha.. with a pulsed laser (121.6+364.7 nm), and measuring the Lyman-..cap alpha.. Doppler profile as a function of probe delay reveals both internal and c.m. kinetic energy distributions for the photofragments. Strengths and weaknesses of VADS as a tool for investigating photofragmentation phenomena are also discussed.

  3. Speckles in laser doppler perfusion imaging

    NARCIS (Netherlands)

    Rajan, Vinayakrishnan

    2007-01-01

    Laser Doppler Flowmetry (LDF) is a noninvasive diagnostic method to measure blood flow in tissue [1]. The technique is based on measuring the Doppler shift induced by moving red blood cells to the illuminating coherent light. A laser Doppler instrument often gives output signals related to the flux,

  4. Micro-Doppler Analysis of Small UAVs

    NARCIS (Netherlands)

    Wit, J.J.M. de; Harmanny, R.I.A.; Prémel Cabic, G.

    2012-01-01

    Coherent radar measures micro-Doppler properties of moving objects. The micro-Doppler signature depends on parts of an object moving and rotating in addition to the main body motion (e.g. rotor blades) and is therefore characteristic for the type of object. In this study, the micro-Doppler signature

  5. Micro-Doppler Analysis of Small UAVs

    NARCIS (Netherlands)

    Wit, J.J.M. de; Harmanny, R.I.A.; Prémel Cabic, G.

    2012-01-01

    Coherent radar measures micro-Doppler properties of moving objects. The micro-Doppler signature depends on parts of an object moving and rotating in addition to the main body motion (e.g. rotor blades) and is therefore characteristic for the type of object. In this study, the micro-Doppler signature

  6. The Doppler Effect--A New Approach

    Science.gov (United States)

    Allen, J.

    1973-01-01

    Discusses the Doppler effect as it applies to different situations, such as a stationary source of sound with the observer moving, a stationary observer, and the sound source and observer both moving. Police radar, satellite surveillance radar, radar astronomy, and the Doppler navigator, are discussed as applications of Doppler shift. (JR)

  7. Reducing Antenna Mechanical Noise in Precision Doppler Tracking

    Science.gov (United States)

    Armstrong, J. W.; Estabrook, F. B.; Asmar, S. W.; Iess, L.; Tortora, P.

    2006-05-01

    Precision Doppler tracking of deep-space probes is central to spacecraft navigation and many radio science investigations. The most sensitive Doppler observations to date have been taken using the NASA/JPL Deep Space Network (DSN) antenna DSS 25, a 34-m-diameter beam-waveguide station especially instrumented with simultaneous X-band (approximately 8.4-GHz) and Ka-band (approximately 32-GHz) links and tropospheric scintillation calibration equipment, tracking the Cassini spacecraft. These Cassini observations achieved Doppler fractional frequency stability (Doppler frequency fluctuation divided by center frequency, Delta f / f_o ) of approximately 3 x 10^-15 at tau = 1000 s integration. In those very-high-sensitivity tracks, the leading disturbance was antenna mechanical noise: time-dependent unmodeled physical motion of the ground antenna's phase center caused by antenna sag as the elevation angle changed, unmodeled subreflector motion, wind loading, bulk motion of the antenna as it rolled over irregularities in the supporting azimuth ring, differential thermal expansion of the structure, etc. This noise has seemed irreducible at reasonable cost, since it is unclear how to build a practical, large, moving, steel structure having mechanical stability significantly better than that of current tracking stations. Here we show how the mechanical noise of a large tracking antenna can effectively be removed when two-way Doppler tracking data from an existing DSN antenna are suitably combined with simultaneous tracking data using an ancillary (smaller and stiffer) antenna. Using our method, the mechanical noise in the final Doppler observable can be reduced, substantially, to that of the stiffer antenna.

  8. Nonsearching Doppler parameter and velocity estimation method for synthetic aperture radar ground moving target imaging

    Science.gov (United States)

    Li, Zhongyu; Wu, Junjie; Huang, Yunlin; Yang, Haiguang; Yang, Jianyu

    2016-07-01

    For synthetic aperture radar (SAR), ground moving target (GMT) imaging necessitates the compensation of the additional azimuth modulation contributed by the unknown movement of the GMT. That is to say, it is necessary to estimate the Doppler parameters of the GMT without a priori knowledge of the GMT's motion parameters. This paper presents a Doppler parameter and velocity estimation method to refocus the GMT from its smeared response in SAR image. The main idea of this method is that an azimuth reference function is constructed to do the correlation integral with the azimuth signal of the GMT. And in general, the Doppler parameters of the presumed azimuth reference function are different from those of the GMT's azimuth signal since the velocity parameters of the GMT are unknown. Therefore, the correlation operation referred to here is actually mismatched, and the processing result of is shifted and defocused. The shifted and defocused result is utilized to get the real Doppler parameters and the velocity parameters of the GMT. One advantage of this method is that it is a nonsearching method. Another advantage is that both the Doppler centroid and the Doppler frequency rate of the GMT can be simultaneously estimated according to the relationships between the Doppler parameters and the smeared response of the GMT. In addition, the velocity of the GMT can also be obtained based on the estimated Doppler parameters. Numerical simulations and experimental data processing verify the validity of the method proposed.

  9. An Observational Study of a Prefrontal Convective Rainband Using Tamex Single-and Dual-Doppler Data

    Science.gov (United States)

    1991-01-01

    integration from the surface. Other Doppler studies, e.g., Chong and Testud (1983), Lin et al. 37 (1986), etc, also showed similiar results. 4.3 Variational...Atmos. Sci., 39, 258- 279. Chong, M., and J. Testud , 1983: Three-Dimensional Wind Field Analysis from Dual-Doppler Radar Data. Part III: The Boundary

  10. Doppler indicates of uterine artery Doppler velocimetry by placental location

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sung Shik; Park, Yong Won; Cho, Jae Sung; Kwon, Hye Kyeung; Kim, Jae Wook [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2001-09-15

    Our purpose was to investigate the relation between the vascular resistance of uterine artery and placental location and to establish the reference value of Doppler index in uterine artery by placental location. Placental location and flow velocity waveforms of both uterine arteries in 7,016 pregnant women after 18 weeks gestation were examined using color Doppler ultrasonography. Placental location was classified as central and lateral placental and the uterine artery with lateral placental were divided into ipsilateral uterine artery (same side of the placental) and contralateral uterine artery (opposite side of the placenta). The uterine artery with central placental was classified as the central uterine artery. Systolic-Diastolic ratio (S/D ratio) of uterine arteries by gestational weeks were calculated and compared with the placental location and perinatal outcomes. In the lateral placental group, the S/D ratio of the contralateral uterine artery was higher than the ipsilateral one (mean=2.08+0.34 vs 1.89+0.34, p=0.0001). S/D ratio of the uterine artery decreased during second trimester and the ratio after 27 weeks was a tendency to have a constant values(ipsilateral: 1.85+ 0.34, central : 1.96+ 0.40, contralateral: 2.01+0.54). S/D ratio of the uterine artery was affected by placental location. So when we evaluate Doppler spectrum of uterine artery, placental location should be considered and we established the reference value of Doppler index of uterine artery by placental location.

  11. Azimuthal Doppler Effect in Optical Vortex Spectroscopy

    Science.gov (United States)

    Aramaki, Mitsutoshi; Yoshimura, Shinji; Toda, Yasunori; Morisaki, Tomohiro; Terasaka, Kenichiro; Tanaka, Masayoshi

    2015-11-01

    Optical vortices (OV) are a set of solutions of the paraxial Helmholtz equation in the cylindrical coordinates, and its wave front has a spiral shape. Since the Doppler shift is caused by the phase change by the movement in a wave field, the observer in the OV, which has the three-dimensional structured wave front, feels a three-dimensional Doppler effect. Since the multi-dimensional Doppler components are mixed into a single Doppler spectrum, development of a decomposition method is required. We performed a modified saturated absorption spectroscopy to separate the components. The OV and plane wave are used as a probe beam and pump beam, respectively. Although the plane-wave pump laser cancels the z-direction Doppler shift, the azimuthal Doppler shift remains in the saturated dip. The spatial variation of the dip width gives the information of the azimuthal Doppler shift. The some results of optical vortex spectroscopy will be presented.

  12. Uncertainty of Doppler reactivity worth due to uncertainties of JENDL-3.2 resonance parameters

    Energy Technology Data Exchange (ETDEWEB)

    Zukeran, Atsushi [Hitachi Ltd., Hitachi, Ibaraki (Japan). Power and Industrial System R and D Div.; Hanaki, Hiroshi; Nakagawa, Tuneo; Shibata, Keiichi; Ishikawa, Makoto

    1998-03-01

    Analytical formula of Resonance Self-shielding Factor (f-factor) is derived from the resonance integral (J-function) based on NR approximation and the analytical expression for Doppler reactivity worth ({rho}) is also obtained by using the result. Uncertainties of the f-factor and Doppler reactivity worth are evaluated on the basis of sensitivity coefficients to the resonance parameters. The uncertainty of the Doppler reactivity worth at 487{sup 0}K is about 4 % for the PNC Large Fast Breeder Reactor. (author)

  13. A Micro-Doppler Modulation of Spin Projectile on CW Radar

    Directory of Open Access Journals (Sweden)

    Liu Zhi-Xue

    2017-01-01

    Full Text Available To obtain the spin speed of projectile effectively, a micro-Doppler modulation model of rotating projectile measured by continuous-wave radar (CW radar is introduced. High spin speed of projectile brings micro-Doppler modulation on echoes of CW radar, and there are many micro-Doppler modulation harmonic waves in the zero intermediate frequency (ZIF echoes. The frequency interval of the adjacent harmonic waves is several times of rotational frequency, but the integral multiple is unknown. The simulation results prove correctness of the proposed mathematic model.

  14. Velocity-aligned Doppler spectroscopy

    Science.gov (United States)

    Xu, Z.; Koplitz, B.; Wittig, C.

    1989-03-01

    The use of velocity-aligned Doppler spectroscopy (VADS) to measure center-of-mass kinetic-energy distributions of nascent photofragments produced in pulsed-initiation photolysis/probe experiments is described and demonstrated. In VADS, pulsed photolysis and probe laser beams counterpropagate through the ionization region of a time-of-flight mass spectrometer. The theoretical principles of VADS and the mathematical interpretation of VADS data are explained and illustrated with diagrams; the experimental setup is described; and results for the photodissociation of HI, H2S, and NH3 are presented in graphs and characterized in detail. VADS is shown to give much higher kinetic-energy resolution than conventional Doppler spectroscopy.

  15. Transthoracic Doppler echocardiography to predict optimal tube pulsing window for coronary artery CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Gang, E-mail: cjr.sungang@vip.163.com [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China); Li, Min, E-mail: limin22000@yahoo.com.cn [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China); Jiang, Xiang-sen, E-mail: jiangxiangsen123@126.com [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China); Li, Li, E-mail: leely1976@yahoo.com.cn [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China); Peng, Zhao-hui, E-mail: zhaohuipeng_R@163.com [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China); Mu, Nan-nan, E-mail: munannan22000@sohu.com [Department of Medical Imaging, Jinan Military General Hospital, No. 25, Shifan Road, Jinan, Shandong Province 250031 (China)

    2012-09-15

    Rationale and objective: To evaluate the feasibility of transthoracic Doppler echocardiography to determine the optimal pulsing windows for CT coronary angiography to narrow the pulsing windows further, especially in higher heart rate. Materials and methods: Doppler was performed on 135 patients before CT scanning. For Doppler, the intervals with minimal motion were evaluated during both systole and diastole integrating electrocardiogram (ECG) intervals. For CT scanning, the retrospective ECG-gating was applied and the optimal reconstruction intervals were determined. The accuracy of Doppler analysis to predict the optimal reconstruction intervals was tested. The predicted length of pulsing windows was compared between Doppler analysis and traditional prospective ECG-gating protocol (heart rate ≦ 65 bpm, 60–76%; 66–79 bpm, 30–77%; ≧80 bpm, 31–47%). Results: According to Doppler analysis, the mean length of intervals with minimal motion in systole was 106.4 ± 39.2 ms and 125.2 ± 92.0 ms in diastole. When the intervals with minimal motion during diastole > 90 ms, the optimal reconstruction intervals were located at diastole; otherwise, at systole (P < 0.001). The optimal reconstruction intervals in 93.8% (132/135) patients could be predicted accurately by Doppler analysis. If the optimal reconstruction intervals predicted by Doppler were applied as the exposure windows, the mean length of pulsing windows should has been 105.2 ± 69.4 ms (range: 26.9–510.3 ms), which was significantly shorter than that of traditional prospective ECG-gating protocol (232.0 ± 120.2 ms, range: 93.2–427.3 ms, P < 0.001). Conclusion: Doppler can help detecting the optimal pulsing windows accurately. Prospective ECG-gating incorporating Doppler analysis may narrow pulsing windows significantly while maintaining image quality.

  16. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  17. DOPPLER ANALYSIS IN PREGNANCY INDUCED HYPERTENSION

    Directory of Open Access Journals (Sweden)

    Tushar

    2014-12-01

    Full Text Available A study of 50 cases was conducted to evaluate the role of Colour Doppler imaging in pregnancy induced hypertension with women over 28 weeks of gestation, the initial scan was performed immediately after the diagnosis of PIH to avoid any influence of treatment on Doppler evaluation. This study was aimed to analyze the blood flow in umbilical artery, maternal uterine artery & fetal middle cerebral artery using Doppler ultrasound.

  18. Emboli detection using the Doppler ultrasound technique

    Institute of Scientific and Technical Information of China (English)

    WANG Yuanyuan; CHEN Xi; ZHANG Yu; WANG Weiqi

    2003-01-01

    Embolic detection is very important to the early diagnosis of vessel disease. The Doppler ultrasound technique is one of the common methods to detect the emboli non-invasively. When the emboli pass through the sample volume of the Doppler ultrasound instrument, there exist high intensity transient Doppler signals. Thus the emboli can be detected directly from the variation of Doppler signal amplitude. Since there may be some disturbance in the system, this general detection method has great limitation. To improve the accuracy of emboli auto-detection, several novel methods are studied to obtain the sensitive characteristic of the emboli signals using the new signal processing theories.

  19. Challenging the two-minute tidal breathing challenge test

    NARCIS (Netherlands)

    Lexmond, Anne J; Hagedoorn, Paul; Frijlink, Henderik W; de Boer, Anne H

    2013-01-01

    BACKGROUND: In the adenosine 5'-monophosphate (AMP) bronchial challenge test, AMP is usually administered according to dosing protocols for methacholine. We investigated whether the 2-min tidal breathing challenge test for methacholine is applicable to AMP. Parameters known to affect nebulizer outpu

  20. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  1. Altered doppler flow patterns in cirrhosis patients: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Iranpour, Pooya; Lall, Chandana; Houshyar, Roozbeh; Helmy, Mohammad; Yang, Albert; Ward, Garrett; Goodwin, Scott C. [Dept. of Radiology, University of California Irvine, Orange (United States); Choi, Joon Il [Dept. of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2016-01-15

    Doppler ultrasonography of the hepatic vasculature is an integral part of evaluating precirrhotic and cirrhotic patients. While the reversal of the portal venous flow is a well-recognized phenomenon, other flow patterns, although not as easily understood, may play an important role in assessing the disease status. This article discusses the different characteristic flow patterns observed from the portal vein, hepatic artery, and hepatic vein in patients with liver cirrhosis or related complications and procedures. Knowledge of these different flow patterns provides additional information that may reinforce the diagnosis of cirrhosis, help in staging, and offer prognostic information for determining the direction of therapy. Doppler ultrasonography is invaluable when liver transplantation is being considered and aids in the diagnosis of cirrhosis and portal hypertension.

  2. Laser Doppler velocimetry using a modified computer mouse

    Science.gov (United States)

    Zaron, Edward D.

    2016-10-01

    A computer mouse has been modified for use as a low-cost laser Doppler interferometer and used to measure the two-component fluid velocity of a flowing soap film. The mouse sensor contains two vertical cavity surface emitting lasers, photodiodes, and signal processing hardware integrated into a single package, approximately 1 cm2 in size, and interfaces to a host computer via a standard USB port. Using the principle of self-mixing interferometry, whereby laser light re-enters the laser cavity after being scattered from a moving target, the Doppler shift and velocity of scatterers dispersed in the flow are measured. Observations of the boundary layer in a turbulent soap film channel flow demonstrate the capabilities of the sensor.

  3. Dipolar modulation in the size of galaxies: The effect of Doppler magnification

    CERN Document Server

    Bonvin, Camille; Bacon, David; Clarkson, Chris; Maartens, Roy; Moloi, Teboho; Bull, Philip

    2016-01-01

    Objects falling into an overdensity appear larger on its near side and smaller on its far side than other objects at the same redshift. This produces a dipolar pattern of magnification, primarily as a consequence of the Doppler effect. At low redshift this Doppler magnification completely dominates the usual integrated gravitational lensing contribution to the lensing magnification. We show that one can optimally observe this pattern by extracting the dipole in the cross-correlation of number counts and galaxy sizes. This dipole allows us to almost completely remove the contribution from gravitational lensing up to redshift 0.5, and even at high redshift z~1 the dipole picks up the Doppler magnification predominantly. Doppler magnification should be easily detectable in current and upcoming optical and radio surveys; by forecasting for telescopes such as the SKA, we show that this technique is competitive with using peculiar velocities via redshift-space distortions to constrain dark energy. It produces simil...

  4. Doppler tomography in fusion plasmas and astrophysics

    DEFF Research Database (Denmark)

    Salewski, Mirko; Geiger, B.; Heidbrink, W. W.

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion Dα (FIDA) spectroscopy measurements in magnetically confined plas...

  5. Radar Doppler Processing with Nonuniform Sampling.

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Conventional signal processing to estimate radar Doppler frequency often assumes uniform pulse/sample spacing. This is for the convenience of t he processing. More recent performance enhancements in processor capability allow optimally processing nonuniform pulse/sample spacing, thereby overcoming some of the baggage that attends uniform sampling, such as Doppler ambiguity and SNR losses due to sidelobe control measures.

  6. Doppler tomography in fusion plasmas and astrophysics

    NARCIS (Netherlands)

    Salewski, M.; Geiger, B.; Heidbrink, W. W.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Madsen, J.; Moseev, D.; Nielsen, S.K.; Rasmussen, J.; Stagner, L.; Steeghs, D.; Stejner, M.; Tardini, G.; Weiland, M.; ASDEX Upgrade team,

    2015-01-01

    Doppler tomography is a well-known method in astrophysics to image the accretion flow, often in the shape of thin discs, in compact binary stars. As accretion discs rotate, all emitted line radiation is Doppler-shifted. In fast-ion D-alpha (FIDA) spectroscopy measurements in magnetically confined pl

  7. Inverse Doppler Effects in Broadband Acoustic Metamaterials.

    Science.gov (United States)

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-08-31

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  8. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    Science.gov (United States)

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-08-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe.

  9. Observation of the Zero Doppler Effect

    Science.gov (United States)

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-04-01

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology.

  10. Estimating the Doppler centroid of SAR data

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang

    1989-01-01

    After reviewing frequency-domain techniques for estimating the Doppler centroid of synthetic-aperture radar (SAR) data, the author describes a time-domain method and highlights its advantages. In particular, a nonlinear time-domain algorithm called the sign-Doppler estimator (SDE) is shown to have...... attractive properties. An evaluation based on an existing SEASAT processor is reported. The time-domain algorithms are shown to be extremely efficient with respect to requirements on calculations and memory, and hence they are well suited to real-time systems where the Doppler estimation is based on raw SAR...... data. For offline processors where the Doppler estimation is performed on processed data, which removes the problem of partial coverage of bright targets, the ΔE estimator and the CDE (correlation Doppler estimator) algorithm give similar performance. However, for nonhomogeneous scenes it is found...

  11. Color doppler sonography in thickened gallbladder wall

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Suk; Choi, Seok Jin; Seo, Chang Hae; Eun, Choong Ki [Inje Univ. College of Medicine, Kimhae (Korea, Republic of)

    1996-11-01

    The thickening of the gallbladder wall is a valuable finding for the diagnosis of cholecystitis, but may be seen in non-cholecystic disease as well as in acute or chronic cholecystitis. The purpose of this study is to determine the value of color Doppler sonography in differentiating the causes of thickened gallbladder wall. Ninety eight patients with thickened gallbladder wall(more than 3mm) which was not due to gallbladder cancer were prospectively evaluated with color Doppler sonography. Sixty-six cases, confirmed by pathologic reports and clinical records, were analyzed for correlation between thickened gallbladder wall and color flow signal according to the underlying causes. Of the 66 patients, 28 cases were cholecystitis and 38 cases had non-cholecystic causes such as liver cirrhosis, ascites, hepatitis, pancreatitis, renal failure, and hypoalbuminemia. Of the 28 patients with cholecystitis(12 acute, 16 chronic), 23(82%) had color Doppler flow signals in the thickened gallbladder wall. Of the 38 patients with non-cholecystic causes, eight(21%) had color Doppler flow signals. There was a statistically significant difference of color Doppler flow signals between the cholecystitis and non-cholecystic groups(p=0.0001). No significant difference of color Doppler flow signals was found between cases of acute and chronic cholecystitis. Of the 23 patients with color Doppler flow signals in 28 cases of cholecystitis, 18(78.3%) showed a linear pattern and five(21.7%) showed a spotty pattern. Of the eight patients with color Doppler flow signals in the 38 non-cholecystic cases, four(50%) showed a linear pattern and four(50%) showed a spotty pattern. In cholecystitis, a linear color Doppler flow signal pattern is a much more frequent finding than a spotty pattern. Color Doppler sonography is a useful and adequate method for determining whether a thickened gallbladder wall is the result of cholecystitis or has non-cholecystic causes.

  12. Micro-Doppler frequency comb generation by rotating wire scatterers

    Science.gov (United States)

    Kozlov, V.; Filonov, D.; Yankelevich, Y.; Ginzburg, P.

    2017-03-01

    Electromagnetic scattering in accelerating reference frames inspires a variety of phenomena, requiring employment of general relativity for their description. While the 'quasi-stationary field' analysis could be applied to slowly-accelerating bodies as a first-order approximation, the scattering problem remains fundamentally nonlinear in boundary conditions, giving rise to multiple frequency generation (micro-Doppler shifts). Here a frequency comb, generated by an axially rotating subwavelength (cm-range) wires is analyzed theoretically and observed experimentally by illuminating the system with a 2 GHz carrier wave. Highly accurate 'lock in' detection scheme enables factorization of the carrier and observation of multiple peaks in a comb. The Hallen integral equation is employed for deriving the currents induced on the scatterer and a set of coordinate transformations, connecting laboratory and rotating frames, is applied in order to make analytical predictions of the spectral positions and amplitudes of the frequency comb peaks. Numeric simulations of the theoretic framework reveal the dependence of the micro-Doppler peaks on the wire's length and its axis of rotation. Unique spectral signature of micro-Doppler shifts could enable resolving internal structures of scatterers and mapping their accelerations in space, which is valuable for a variety of applications spanning from targets identification to stellar radiometry.

  13. Optical Doppler tomography and spectral Doppler imaging of localized ischemic stroke in a mouse model

    Science.gov (United States)

    Yu, Lingfeng; Nguyen, Elaine; Liu, Gangjun; Rao, Bin; Choi, Bernard; Chen, Zhongping

    2010-02-01

    We present a combined optical Doppler tomography/spectral Doppler imaging modality to quantitatively evaluate the dynamic blood circulation and the artery blockage before and after a localized ischemic stroke in a mouse model. Optical Doppler Tomography (ODT) combines the Doppler principle with optical coherence tomography for noninvasive localization and measurement of particle flow velocity in highly scattering media with micrometer scale spatial resolution. Spectral Doppler imaging (SDI) provides complementary temporal flow information to the spatially distributed flow information of Doppler imaging. Fast, repeated, ODT scans across an entire vessel were performed to record flow dynamic information with high temporal resolution of cardiac cycles. Spectral Doppler analysis of continuous Doppler images demonstrates how the velocity components and longitudinally projected flow-volume-rate change over time for scatters within the imaging volume using spectral Doppler waveforms. Furthermore, vascular conditions can be quantified with various Doppler-angle-independent flow indices. Non-invasive in-vivo mice experiments were performed to evaluate microvascular blood circulation of a localized ischemic stroke mouse model.

  14. Heart wall motion analysis by dynamic 3D strain rate imaging from tissue Doppler echocardiography

    Science.gov (United States)

    Hastenteufel, Mark; Wolf, Ivo; de Simone, Raffaele; Mottl-Link, Sibylle; Meinzer, Hans-Peter

    2002-04-01

    The knowledge about the complex three-dimensional (3D) heart wall motion pattern, particular in the left ventricle, provides valuable information about potential malfunctions, e.g., myocardial ischemia. Nowadays, echocardiography (cardiac ultrasound) is the predominant technique for evaluation of cardiac function. Beside morphology, tissue velocities can be obtained by Doppler techniques (tissue Doppler imaging, TDI). Strain rate imaging (SRI) is a new technique to diagnose heart vitality. It provides information about the contraction ability of the myocardium. Two-dimensional color Doppler echocardiography is still the most important clinical method for estimation of morphology and function. Two-dimensional methods leads to a lack of information due to the three-dimensional overall nature of the heart movement. Due to this complex three-dimensional motion pattern of the heart, the knowledge about velocity and strain rate distribution over the whole ventricle can provide more valuable diagnostic information about motion disorders. For the assessment of intracardiac blood flow three-dimensional color Doppler has already shown its clinical utility. We have developed methods to produce strain rate images by means of 3D tissue Doppler echocardiography. The tissue Doppler and strain rate images can be visualized and quantified by different methods. The methods are integrated into an interactively usable software environment, making them available in clinical everyday life. Our software provides the physician with a valuable tool for diagnosis of heart wall motion.

  15. Wideband radar micro-doppler applications

    Science.gov (United States)

    Tahmoush, Dave

    2013-05-01

    Wideband radar provides a significant improvement over traditional narrowband radars for micro-Doppler analysis because the high bandwidth can be used to separate many of the signals in range, allowing a simpler decomposition of the micro-Doppler signals. Recent wideband radar work has focused on micro-Doppler, but there is a point where the narrowband approach used to analyze the micro-Doppler signals breaks down. The effect is shown to be independent of frequency, but the error relative to the bandwidth is shown to be inversely proportional to the frequency and proportional to the velocity of the subject. This error can create a smearing effect in the observed Doppler if it is not corrected, leading to reduced signal-to-noise and the appearance of more diffuse targets in Doppler space. In range-space, wideband data can also break the subject into several range bins, affecting the observed signal to noise ratio. The possible applications of wideband micro-Doppler radar are also shown, including the separation of arm movement from human motion which implies that the arms are not encumbered.

  16. Rotational Doppler effect in nonlinear optics

    Science.gov (United States)

    Li, Guixin; Zentgraf, Thomas; Zhang, Shuang

    2016-08-01

    The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.

  17. Staggered Multiple-PRF Ultrafast Color Doppler.

    Science.gov (United States)

    Posada, Daniel; Poree, Jonathan; Pellissier, Arnaud; Chayer, Boris; Tournoux, Francois; Cloutier, Guy; Garcia, Damien

    2016-06-01

    Color Doppler imaging is an established pulsed ultrasound technique to visualize blood flow non-invasively. High-frame-rate (ultrafast) color Doppler, by emissions of plane or circular wavefronts, allows severalfold increase in frame rates. Conventional and ultrafast color Doppler are both limited by the range-velocity dilemma, which may result in velocity folding (aliasing) for large depths and/or large velocities. We investigated multiple pulse-repetition-frequency (PRF) emissions arranged in a series of staggered intervals to remove aliasing in ultrafast color Doppler. Staggered PRF is an emission process where time delays between successive pulse transmissions change in an alternating way. We tested staggered dual- and triple-PRF ultrafast color Doppler, 1) in vitro in a spinning disc and a free jet flow, and 2) in vivo in a human left ventricle. The in vitro results showed that the Nyquist velocity could be extended to up to 6 times the conventional limit. We found coefficients of determination r(2) ≥ 0.98 between the de-aliased and ground-truth velocities. Consistent de-aliased Doppler images were also obtained in the human left heart. Our results demonstrate that staggered multiple-PRF ultrafast color Doppler is efficient for high-velocity high-frame-rate blood flow imaging. This is particularly relevant for new developments in ultrasound imaging relying on accurate velocity measurements.

  18. Doppler backscatter properties of a blood-mimicking fluid for Doppler performance assessment.

    Science.gov (United States)

    Ramnarine, K V; Hoskins, P R; Routh, H F; Davidson, F

    1999-01-01

    The Doppler backscatter properties of a blood-mimickig fluid (BMF) were studied to evaluate its suitability for use in a Doppler flow test object. Measurements were performed using a flow rig with C-flex tubing and BMF flow produced by a roller pump or a gear pump. A SciMed Doppler system was used to measure the backscattered Doppler power with a root-mean-square power meter connected to the audio output. Studies investigated the dependence of the backscattered Doppler power of the BMF with: circulation time; batch and operator preparations; storage; sieve size; flow speed; and pump type. A comparison was made with human red blood cells resuspended in saline. The backscatter properties are stable and within International Electrotechnical Commission requirements. The BMF is suitable for use in a test object for Doppler performance assessment.

  19. Continuous cardiac output measurement - Aspects of Doppler frequency analysis

    Science.gov (United States)

    Mackay, R. S.; Hechtman, H. B.

    1975-01-01

    From the suprasternal notch blood flow velocity in the aorta can be measured non-invasively by a Doppler probe. Integration over systole after frequency analysis gives a measure of stroke volume if a separate diameter observation is incorporated. Frequency analysis by a zero crossing counter or by a set of parallel phaselock loops was less effective than a set of bandpass filters. Observations on dogs, baboons and humans before and after exercise or surgery suggest the indications to be useful. Application to judging heart failure by the effect of introducing a volume load is indicated. Changes in output also are measured in freely moving subjects.

  20. Doppler echocardiography in normal functioning valve prostheses.

    Science.gov (United States)

    Cha, R; Yang, S S; Salvucci, T; DiBlasi, S

    1994-09-01

    Even though there has been some criticism regarding the Doppler evaluation in prosthetic valves because of inter-observer and intra-observer variability, among other factors, and Doppler study has a tendency to have falsely high gradients compared to invasive studies, especially mechanical aortic prostheses, Doppler evaluation can provide reliable hemodynamic information about valve function. This test may be particularly useful if used serially, when baseline values are known. Doppler measurement of gradient and valve area has an expected normal range that is specific for the prosthetic type, size, anatomical position, and chronological age. Clearly, a database involving these aspects is needed to provide a more accurate normal range. This study is intended to provide guidance for echocardiographers.

  1. Teaching the Doppler effect in astrophysics

    Science.gov (United States)

    Hughes, Stephen W.; Cowley, Michael

    2017-03-01

    The Doppler effect is a shift in the frequency of waves emitted from an object moving relative to the observer. By observing and analysing the Doppler shift in electromagnetic waves from astronomical objects, astronomers gain greater insight into the structure and operation of our Universe. In this paper, a simple technique is described for teaching the basics of the Doppler effect to undergraduate astrophysics students using acoustic waves. An advantage of the technique is that it produces a visual representation of the acoustic Doppler shift. The equipment comprises a 40 kHz acoustic transmitter and a microphone. The sound is bounced off a computer fan and the signal collected by a DrDAQ ADC and processed by a spectrum analyser. Widening of the spectrum is observed as the fan power supply potential is increased from 4 to 12 V.

  2. High range resolution micro-Doppler analysis

    Science.gov (United States)

    Cammenga, Zachary A.; Smith, Graeme E.; Baker, Christopher J.

    2015-05-01

    This paper addresses use of the micro-Doppler effect and the use of high range-resolution profiles to observe complex targets in complex target scenes. The combination of micro-Doppler and high range-resolution provides the ability to separate the motion of complex targets from one another. This ability leads to the differentiation of targets based on their micro-Doppler signatures. Without the high-range resolution, this would not be possible because the individual signatures would not be separable. This paper also addresses the use of the micro-Doppler information and high range-resolution profiles to generate an approximation of the scattering properties of a complex target. This approximation gives insight into the structure of the complex target and, critically, is created without using a pre-determined target model.

  3. High Throughput Direct Detection Doppler Lidar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Lite Cycles, Inc. (LCI) proposes to develop a direct-detection Doppler lidar (D3L) technology called ELITE that improves the system optical throughput by more than...

  4. Student Microwave Experiments Involving the Doppler Effect.

    Science.gov (United States)

    Weber, F. Neff; And Others

    1980-01-01

    Described is the use of the Doppler Effect with microwaves in the measurement of the acceleration due to gravity of falling objects. The experiments described add to the repertoire of quantitative student microwave experiments. (Author/DS)

  5. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    National Research Council Canada - National Science Library

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-01-01

    .... With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally...

  6. Optical Doppler shift with structured light

    OpenAIRE

    2011-01-01

    When a light beam with a transverse spatially varying phase is considered for optical remote sensing, in addition to the usual longitudinal Doppler frequency shift of the returned signal induced by the motion of the scatter along the beam axis, a new transversal Doppler shift appears associated to the motion of the scatterer in the plane perpendicular to the beam axis. We discuss here how this new effect can be used to enhance the current capabilities of optical measurement system...

  7. with Ultrasound Color Doppler Imaging

    Directory of Open Access Journals (Sweden)

    Shin Takayama

    2012-01-01

    Full Text Available Color Doppler imaging (CDI can be used to noninvasively create images of human blood vessels and quantitatively evaluate blood flow in real-time. The purpose of this study was to assess the effects of acupuncture on the blood flow of the peripheral, mesenteric, and retrobulbar arteries by CDI. Statistical significance was defined as P values less than 0.05. Blood flow in the radial and brachial arteries was significantly lower during needle stimulation on LR3 than before in healthy volunteers, but was significantly higher after needle stimulation than before. LR3 stimulation also resulted in a significant decrease in the vascular resistance of the short posterior ciliary artery and no significant change of blood flow through the superior mesenteric artery (SMA during acupuncture. In contrast, ST36 stimulation resulted in a significant increase in blood flow through the SMA and no significant change in the vascular resistance of the retrobulbar arteries. Additionally, acupuncture at previously determined acupoints in patients with open-angle glaucoma led to a significant reduction in the vascular resistance of the central retinal artery and short posterior ciliary artery. Our results suggest that acupuncture can affect blood flow of the peripheral, mesenteric, and retrobulbar arteries, and CDI can be useful to evaluate hemodynamic changes by acupuncture.

  8. Doppler micro sense and avoid radar

    Science.gov (United States)

    Gorwara, Ashok; Molchanov, Pavlo; Asmolova, Olga

    2015-10-01

    There is a need for small Sense and Avoid (SAA) systems for small and micro Unmanned Aerial Systems (UAS) to avoid collisions with obstacles and other aircraft. The proposed SAA systems will give drones the ability to "see" close up and give them the agility to maneuver through tight areas. Doppler radar is proposed for use in this sense and avoid system because in contrast to optical or infrared (IR) systems Doppler can work in more harsh conditions such as at dusk, and in rain and snow. And in contrast to ultrasound based systems, Doppler can better sense small sized obstacles such as wires and it can provide a sensing range from a few inches to several miles. An SAA systems comprised of Doppler radar modules and an array of directional antennas that are distributed around the perimeter of the drone can cover the entire sky. These modules are designed so that they can provide the direction to the obstacle and simultaneously generate an alarm signal if the obstacle enters within the SAA system's adjustable "Protection Border". The alarm signal alerts the drone's autopilot to automatically initiate an avoidance maneuver. A series of Doppler radar modules with different ranges, angles of view and transmitting power have been designed for drones of different sizes and applications. The proposed Doppler radar micro SAA system has simple circuitry, works from a 5 volt source and has low power consumption. It is light weight, inexpensive and it can be used for a variety of small unmanned aircraft.

  9. The Doppler effect in NMR spectroscopy.

    Science.gov (United States)

    Guéron, Maurice

    2003-02-01

    An NMR sample may be subject to motions, such as those due to sample spinning or to liquid flow. Is the spectrum of such a sample affected by the Doppler effect? The question arises because, instrumental dimensions being much shorter than the wavelength, it is the near-field of the precessing magnetic moment which couples to the receiver coil, rather than the radiated far-field. We expand the near-field into plane propagating waves. For each such wave there is another one with the same amplitude, propagating in the opposite direction. The Doppler shifts are therefore equal and opposite. In the model case of a small fluid sample moving with constant velocity, this leads to a distribution of Doppler shifts which is symmetrical with respect to the unshifted frequency: there is no net spectral shift. We examine the possibility of observing the Doppler distribution in this case. We also consider the case of thermal motion of a gas. We draw attention to the resolved Doppler splitting of molecular rotational transitions in a supersonic burst as observed in a microwave resonator. We also mention briefly the Doppler effect in molecular beam spectroscopy.

  10. Ultrasonography with color Doppler and power Doppler in the diagnosis of periapical lesions

    Directory of Open Access Journals (Sweden)

    Sumit Goel

    2011-01-01

    Full Text Available Aim: To evaluate the efficacy of ultrasonography (USG with color Doppler and power Doppler applications over conventional radiography in the diagnosis of periapical lesions. Materials and Methods: Thirty patients having inflammatory periapical lesions of the maxillary or mandibular anterior teeth and requiring endodontic surgery were selected for inclusion in this study. All patients consented to participate in the study. We used conventional periapical radiographs as well as USG with color Doppler and power Doppler for the diagnosis of these lesions. Their diagnostic performances were compared against histopathologic examination. All data were compared and statistically analyzed. Results: USG examination with color Doppler and power Doppler identified 29 (19 cysts and 10 granulomas of 30 periapical lesions accurately, with a sensitivity of 100% for cysts and 90.91% for granulomas and a specificity of 90.91% for cysts and 100% for granulomas. In comparison, conventional intraoral radiography identified only 21 lesions (sensitivity of 78.9% for cysts and 45.4% for granulomas and specificity of 45.4% for cysts and 78.9% for granulomas. There was definite correlation between the echotexture of the lesions and the histopathological features except in one case. Conclusions: USG imaging with color Doppler and power Doppler is superior to conventional intraoral radiographic methods for diagnosing the nature of periapical lesions in the anterior jaws. This study reveals the potential of USG examination in the study of other jaw lesions.

  11. 'Integration'

    DEFF Research Database (Denmark)

    Olwig, Karen Fog

    2011-01-01

    After a long history dominated by out-migration, Denmark, Norway and Sweden have, in the past 50 years, become immigration societies. This article compares how these Scandinavian welfare societies have sought to incorporate immigrants and refugees into their national communities. It suggests that......, while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...... of equality in the three societies. Finally, it shows that family relations play a central role in immigrants’ and refugees’ establishment of a new life in the receiving societies, even though the welfare society takes on many of the social and economic functions of the family....

  12. Artificial blood circulatory and special Ultrasound Doppler probes for detecting and sizing gaseous embolism

    Directory of Open Access Journals (Sweden)

    Stark Philipp

    2016-09-01

    Full Text Available This paper presents a special designed artificial blood circulatory (ABC for studying gaseous embolism based on detection of gaseous emboli and their sizing using ultrasound (US spectral Doppler. Blood mimicking fluid (BMF was used in the circulatory to get valid results without using human blood. The additional necessary degassing circulatory shows a promising effect of decontaminating the BMF from air bubbles. This offers the base for detecting and sizing microemboli using special algorithms and finally leads to reliable calculations of dangerous embolism and its air volume. Standard US probes at an integrated tissue model and a new 8-MHz central catheter ultrasound (CCUS probe inside a superior vena cava model (SVCM are used and deliver the Doppler spectrogram as input for automatic emboli detection and further signal analysis. First results using the newly developed 8-MHz CCUS probe inside the SVCM and its Doppler spectrogram characteristics show promising results but need more detailed studies.

  13. Doppler-width thermodynamic thermometry by means of line-absorbance analysis

    Energy Technology Data Exchange (ETDEWEB)

    Castrillo, A.; De Vizia, M. D.; Gianfrani, L. [Dipartimento di Scienze Ambientali, Seconda Universita di Napoli, Caserta (Italy); Moretti, L. [Dipartimento di Matematica, Seconda Universita di Napoli, Caserta (Italy); Galzerano, G.; Laporta, P. [Dipartimento di Fisica, Politecnico di Milano and Istituto di Fotonica e Nanotecnologie (IFN-CNR), Milano (Italy); Merlone, A. [Istituto Nazionale di Ricerca Metrologica, Torino (Italy)

    2011-09-15

    A clean and effective implementation of Doppler-width thermometry is described. Exploiting the relationship between line-center absorbance and integrated absorbance, the Doppler width of a molecular spectral line can be retrieved from a set of profiles resulting from different gas pressures. The method is validated by its application to numerically simulated spectra. Preliminary experiments, in water vapor samples, turn out to be successful, demonstrating Doppler-widths' retrieval in the near-infrared with a precision of 8x10{sup -5}, at the water triple point temperature. The direct link to the Boltzmann constant makes the proposed method very attractive for temperature metrology as a tool for the realization of a new thermodynamic temperature scale.

  14. Low-noise III-V metasurface based semiconductor vortex laser and rotational Doppler velocimetry

    Science.gov (United States)

    Seghilani, Mohamed; Chomet, Baptiste; Myara, Mikhael; Sellahi, Mohamed; Legratiet, Luc; Beaudoin, Gregoire; Sagnes, Isabelle; Lalanne, Philippe; Garnache, Arnaud

    2017-03-01

    We demonstrate a surface-emitting laser, based on III-V semiconductor technology with an integrated metasurface, generating vortex-like coherent state in the Laguerre-Gauss basis.24 We use a first order phase perturbation to introduce a weak orbital anisotropy, based on a dielectric metasurface and non-linear laser dynamics, allowing selecting vortex handedness. Moreover, similarly to linear Doppler Shift, light carrying orbital angular momentum L, scattered by a rotating object at angular velocity, experiences a rotational Doppler shift L. We show that this fundamental light matter interaction can be detected exploiting self-mixing in a vortex laser under Doppler-shifted optical feedback, with quantum noise-limited light detection.25 This will allow us to combine a velocity sensor with optical tweezers for micro-manipulation applications, with high performances, simplicity and compactness. Such high performance laser opens the path to widespread new photonic applications.

  15. Development of the doppler electron velocimeter: theory.

    Energy Technology Data Exchange (ETDEWEB)

    Reu, Phillip L.

    2007-03-01

    Measurement of dynamic events at the nano-scale is currently impossible. This paper presents the theoretical underpinnings of a method for making these measurements using electron microscopes. Building on the work of Moellenstedt and Lichte who demonstrated Doppler shifting of an electron beam with a moving electron mirror, further work is proposed to perfect and utilize this concept in dynamic measurements. Specifically, using the concept of ''fringe-counting'' with the current principles of transmission electron holography, an extension of these methods to dynamic measurements is proposed. A presentation of the theory of Doppler electron wave shifting is given, starting from the development of the de Broglie wave, up through the equations describing interference effects and Doppler shifting in electron waves. A mathematical demonstration that Doppler shifting is identical to the conceptually easier to understand idea of counting moving fringes is given by analogy to optical interferometry. Finally, potential developmental experiments and uses of a Doppler electron microscope are discussed.

  16. Doppler method leak detection for LMFBR steam generators. Pt. 3. Investigation of detection sensitivity and method

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi; Kinoshita, Izumi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab

    2001-04-01

    To prevent the expansion of tube damage and to maintain structural integrity in the steam generators (SGs) of a fast breeder reactor (FBR), it is necessary to detect precisely and immediately any leakage of water from heat transfer tubes. Therefore, the Doppler method was developed. Previous studies have revealed that, in the SG full-sector model that simulates actual SGs, the Doppler method can detect bubbles of 0.4 l/s within a few seconds. However in consideration of the dissolution rate of hydrogen generated by a sodium-water reaction even from a small water leak, it is necessary to detect smaller leakages of water from the heat transfer tubes. The detection sensitivity of the Doppler method and the influence of background noise were experimentally investigated. In-water experiments were performed using the SG model. The results show that the Doppler method can detect bubbles of 0.01 l/s (equivalent to a water leak rate of about 0.01 g/s) within a few seconds and that the background noise has little effect on water leak detection performance. The Doppler method thus has great potential for the detection of water leakage in SGs. (author)

  17. Design and Development of a Scanning Airborne Direct Detection Doppler Lidar System

    Science.gov (United States)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    In the fall of 2005 we began developing an airborne scanning direct detection molecular Doppler lidar. The instrument is being built as part of the Tropospheric Wind Lidar Technology Experiment (TWiLiTE), a three year project selected by the NASA Earth Sun Technology Office under the Instrument Incubator Program. The TWiLiTE project is a collaboration involving scientists and engineers from NASA Goddard Space Flight Center, NOAA ESRL, Utah State University Space Dynamics Lab, Michigan Aerospace Corporation and Sigma Space Corporation. The TWiLiTE instrument will leverage significant research and development investments made by NASA Goddard and it's partners in the past several years in key lidar technologies and sub-systems (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. These sub-systems will be integrated into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57. The WB57 flies at an altitude of 18 km and from this vantage point the nadir viewing Doppler lidar will be able to profile winds through the full troposphere. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a future spaceborne tropospheric wind system. In addition to being a technology testbed for space based tropospheric wind lidar, when completed the TWiLiTE high altitude airborne lidar will be used for studying mesoscale dynamics and storm research (e.g. winter storms, hurricanes) and could be used for calibration and validation of satellite based wind systems such as ESA's Aeolus Atmospheric Dynamics Mission. The TWiLiTE Doppler lidar will have the capability to profile winds in clear air from the aircraft altitude of 18 km to the surface with 250 m vertical resolution and < 2mls

  18. Diabetic Nephropathy : Evaluation with Doppler Ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Jung Suk; Kim, Seung Hyup; Kang, Heung Sik; Park, Jae Hyung; Han, Man Chung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1996-06-15

    To compare Doppler ultrasonography with laboratory tests in evaluation of diabetic nephropathy. Fifty-five patients (mean age = 60, M : F = 26 : 29) with diabetes mellitus underwent renal Doppler ultrasonography. Resistive indices were compared with degree of proteinuria, serum creatinine level, and creatinine clearance rate. Eighteen patients who showed no proteinuria or microscopic proteinuria had a mean resistive index (RI) of 0.72 (SD, 0.05), 16 patients with macroscopic proteinuria without nephrotic syndrome had a mean RI of 0.82 (SD, 0.13), and 21 patients with nephrotic syndrome had a mean RI of 0.90 (SD, 0.12). Renal RI correlated highly with serum creatinine level (r = 0.62) and creatinine clearance rate (r = -0.43). Renal Doppler ultrasonography provides a useful indication of renal function in diabetic nephropathy but cannot offer an advantage over conventional laboratory test

  19. Wide Angle Michelson Doppler Imaging Interferometer (WAMDII)

    Science.gov (United States)

    Roberts, B.

    1986-01-01

    The wide angle Michelson Doppler imaging interferometer (WAMDII) is a specialized type of optical Michelson interferometer working at sufficiently long path difference to measure Doppler shifts and to infer Doppler line widths of naturally occurring upper atmospheric Gaussian line emissions. The instrument is intended to measure vertical profiles of atmospheric winds and temperatures within the altitude range of 85 km to 300 km. The WAMDII consists of a Michelson interferometer followed by a camera lens and an 85 x 106 charge coupled device photodiode array. Narrow band filters in a filter wheel are used to isolate individual line emissions and the lens forms an image of the emitting region on the charge coupled device array.

  20. Color Doppler ultrasonography evaluation of amblyopia

    Directory of Open Access Journals (Sweden)

    Ece Turan-Vural

    2013-07-01

    Full Text Available AIM: To assess the hemodynamic changes in the extraocular orbital vessels of amblyopic patients in comparison with non-amblyopic fellow eyes, using color Doppler ultrasonography(CDU. METHODS: Thirty-six eyes of 18 pediatric patients were included in the study(20 amblyopic, 16 normal. All eyes underwent color Doppler ultrasonography examination of ophthalmic artery, central retinal artery, and posterior ciliary artery. RESULTS: The only differences between the two groups with regard to color Doppler ultrasonography parameters was the significantly lower peak systolic velocity(32.70±11.60 vs 55.01±11.68, P=0.001and end-diastolic velocity(6.83±1.91 vs 13.99±4.15, P=0.001for ophthalmic artery in amblyopic eyes.CONCLUSION: Our study showed amblyopic eyes may present a decrease in retrobulbar blood flow velocity.

  1. Cancer therapy and cardiotoxicity: The need of serial Doppler echocardiography

    Directory of Open Access Journals (Sweden)

    Pardo Moira

    2007-01-01

    Full Text Available Abstract Cancer therapy has shown terrific progress leading to important reduction of morbidity and mortality of several kinds of cancer. The therapeutic management of oncologic patients includes combinations of drugs, radiation therapy and surgery. Many of these therapies produce adverse cardiovascular complications which may negatively affect both the quality of life and the prognosis. For several years the most common noninvasive method of monitoring cardiotoxicity has been represented by radionuclide ventriculography while other tests as effort EKG and stress myocardial perfusion imaging may detect ischemic complications, and 24-hour Holter monitoring unmask suspected arrhythmias. Also biomarkers such as troponine I and T and B-type natriuretic peptide may be useful for early detection of cardiotoxicity. Today, the widely used non-invasive method of monitoring cardiotoxicity of cancer therapy is, however, represented by Doppler-echocardiography which allows to identify the main forms of cardiac complications of cancer therapy: left ventricular (systolic and diastolic dysfunction, valve heart disease, pericarditis and pericardial effusion, carotid artery lesions. Advanced ultrasound tools, as Integrated Backscatter and Tissue Doppler, but also simple ultrasound detection of "lung comet" on the anterior and lateral chest can be helpful for early, subclinical diagnosis of cardiac involvement. Serial Doppler echocardiographic evaluation has to be encouraged in the oncologic patients, before, during and even late after therapy completion. This is crucial when using anthracyclines, which have early but, most importantly, late, cumulative cardiac toxicity. The echocardiographic monitoring appears even indispensable after radiation therapy, whose detrimental effects may appear several years after the end of irradiation.

  2. Development of Integrated Monitoring Platform for the New Generation Doppler Weather Radar-SA%新一代天气雷达集成监控平台开发

    Institute of Scientific and Technical Information of China (English)

    张骞; 陈海燕; 吕庆利; 杨传凤; 耿力

    2016-01-01

    The new generation weather radar is an important part of modern meteorological observation methods ,monitoring the run-ning status of the new generation weather radar is important for the normal operation of the radar .This paper introduces the compo-sition of radar system and classification of radar data ,and analyzes the characteristics and laws of the radar system when it is normal or abnormal .Using Macromedia Dreamweaver and PHP , the integrated monitoring platform for the new generation weather radar is developed .Using Web page to monitor the real-time radar system running status , the sound alarm will be triggered when the status is abnormal ,and radar power ,status parameters and other important performance indicators could also be monitored .%新一代天气雷达是现代气象观测手段中的重要组成部分,监控新一代天气雷达系统的运行状态对于雷达的正常运行有着重要意义。文中介绍了雷达系统的组成和雷达资料的分类,通过分析雷达系统运行正常与运行故障时的特征和规律,应用Macromedia Dreamweaver 和PHP开发新一代天气雷达集成监控平台,以Web网页形式实时监控雷达系统运行状态,既能在状态异常时触发声音报警,又能监控雷达功率、状态参数等重要性能指标。

  3. Observation of the inverse Doppler effect.

    Science.gov (United States)

    Seddon, N; Bearpark, T

    2003-11-28

    We report experimental observation of an inverse Doppler shift, in which the frequency of a wave is increased on reflection from a receding boundary. This counterintuitive effect has been produced by reflecting a wave from a moving discontinuity in an electrical transmission line. Doppler shifts produced by this system can be varied in a reproducible manner by electronic control of the transmission line and are typically five orders of magnitude greater than those produced by solid objects with kinematic velocities. Potential applications include the development of tunable and multifrequency radiation sources.

  4. Reversed Doppler effect in photonic crystals.

    Science.gov (United States)

    Reed, Evan J; Soljacić, Marin; Joannopoulos, John D

    2003-09-26

    Nonrelativistic reversed Doppler shifts have never been observed in nature and have only been speculated to occur in pathological systems with simultaneously negative effective permittivity and permeability. This Letter presents a different, new physical phenomenon that leads to a nonrelativistic reversed Doppler shift in light. It arises when light is reflected from a moving shock wave propagating through a photonic crystal. In addition to reflection of a single frequency, multiple discrete reflected frequencies or a 10 GHz periodic modulation can also be observed when a single carrier frequency of wavelength 1 microm is incident.

  5. Preprocessing of ionospheric echo Doppler spectra

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; ZHAO Zhengyu; WANG Feng; SU Fanfan

    2007-01-01

    The real-time information of the distant ionosphere can be acquired by using the Wuhan ionospheric oblique backscattering sounding system(WIOBSS),which adopts a discontinuous wave mechanism.After the characteristics of the ionospheric echo Doppler spectra were analyzed,the signal preprocessing was developed in this paper,which aimed at improving the Doppler spectra.The results indicate that the preprocessing not only makes the system acquire a higher ability of target detection but also suppresses the radio frequency interference by 6-7 dB.

  6. Optical Doppler shift with structured light.

    Science.gov (United States)

    Belmonte, Aniceto; Torres, Juan P

    2011-11-15

    When a light beam with a transverse spatially varying phase is considered for optical remote sensing, in addition to the usual longitudinal Doppler frequency shift of the returned signal induced by the motion of the scatter along the beam axis, a new transversal Doppler shift appears associated to the motion of the scatterer in the plane perpendicular to the beam axis. We discuss here how this new effect can be used to enhance the current capabilities of optical measurement systems, adding the capacity to detect more complex movements of scatters.

  7. Magnetic Doppler Imaging of Active Stars

    CERN Document Server

    Kochukhov, O

    2007-01-01

    We present a new implementation of the magnetic Doppler imaging technique, which aims at self-consistent temperature and magnetic mapping of the surface structures in cool active stars. Our magnetic imaging procedure is unique in its capability to model individual spectral features in all four Stokes parameters. We discuss performance and intrinsic limitations of the new magnetic Doppler imaging method. A special emphasis is given to the simultaneous modelling of the magnetically sensitive lines in the optical and infrared regions and to combining information from both atomic and molecular spectral features. These two techniques may, for the first time, give us a tool to study magnetic fields in the starspot interiors.

  8. Operational Bright-Band Snow Level Detection Using Doppler Radar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A method to detect the bright-band snow level from radar reflectivity and Doppler vertical velocity data collection with an atmospheric profiling Doppler radar. The...

  9. ISAR imaging using the instantaneous range instantaneous Doppler method

    CSIR Research Space (South Africa)

    Wazna, TM

    2015-10-01

    Full Text Available In Inverse Synthetic Aperture Radar (ISAR) imaging, the Range Instantaneous Doppler (RID) method is used to compensate for the nonuniform rotational motion of the target that degrades the Doppler resolution of the ISAR image. The Instantaneous Range...

  10. Fish embryo multimodal imaging by laser Doppler digital holography

    CERN Document Server

    Verrier, Nicolas; Picart, Pascal; Gross, Michel

    2015-01-01

    A laser Doppler imaging scheme combined to an upright microscope is proposed. Quantitative Doppler imaging in both velocity norm and direction, as well as amplitude contrast of either zebrafish flesh or vasculature is demonstrated.

  11. Photoacoustic Doppler flow measurement in optically scattering media

    Science.gov (United States)

    Fang, Hui; Maslov, Konstantin; Wang, Lihong V.

    2007-12-01

    We recently observed the photoacoustic Doppler effect from flowing small light-absorbing particles. Here, we apply the effect to measure blood-mimicking fluid flow in an optically scattering medium. The light scattering in the medium decreases the amplitude of the photoacoustic Doppler signal but does not affect either the magnitude or the directional discrimination of the photoacoustic Doppler shift. This technology may hold promise for a new Doppler method for measuring blood flow in microcirculation with high sensitivity.

  12. Acoustic micro-Doppler radar for human gait imaging.

    Science.gov (United States)

    Zhang, Zhaonian; Pouliquen, Philippe O; Waxman, Allen; Andreou, Andreas G

    2007-03-01

    A portable acoustic micro-Doppler radar system for the acquisition of human gait signatures in indoor and outdoor environments is reported. Signals from an accelerometer attached to the leg support the identification of the components in the measured micro-Doppler signature. The acoustic micro-Doppler system described in this paper is simpler and offers advantages over the widely used electromagnetic wave micro-Doppler radars.

  13. Photoacoustic Doppler effect from flowing small light-absorbing particles.

    Science.gov (United States)

    Fang, Hui; Maslov, Konstantin; Wang, Lihong V

    2007-11-01

    From the flow of a suspension of micrometer-scale carbon particles, the photoacoustic Doppler shift is observed. As predicted theoretically, the observed Doppler shift equals half of that in Doppler ultrasound and does not depend on the direction of laser illumination. This new physical phenomenon provides a basis for developing photoacoustic Doppler flowmetry, which can potentially be used for detecting fluid flow in optically scattering media and especially low-speed blood flow of relatively deep microcirculation in biological tissue.

  14. Assessment of Regional Myocardial Displacement via Spectral Tissue Doppler Compared with Color Tissue Tracking

    Directory of Open Access Journals (Sweden)

    Zahra Ojaghi-Haghighi

    2008-12-01

    Full Text Available Background: The recent developments in tissue Doppler imaging (TDI now more than ever permit the quantification of the myocardial function. In the current systems, tissue tracking or displacement curves are generated from color tissue Doppler data through the instantaneous temporal integral of velocity-time curves. Methods: The purpose of the present study was to assess regional myocardial displacement via spectral TDI. Maximum myocardial velocities were extracted from spectral pulsed tissue Doppler images using a developed computer program and were integrated throughout the cardiac cycle. Spectral tissue Doppler echocardiography was performed to evaluate longitudinal and radial functions in 20 healthy men, and the calculated end-systolic displacements were subsequently compared with the displacements measured from the same areas via color tissue tracking. Results: According to the Bland-Altman analysis between spectral tissue tracking and color tissue tracking, the significant arithmetic mean was 7.34 mm with SD mean differences of ±2.24 mm in all of the evaluated segments. Despite significant differences (p<0.001, there was a good significant correlation between the two methods (r=0.79, p<0.001. Conclusion: A verification study showed that the proposed approach had the ability to assess regional myocardial displacement using spectral TDI, which can be used in a wider range of equipment than is currently possible.

  15. Tissue Doppler imaging reproducibility during exercise.

    Science.gov (United States)

    Bougault, V; Nottin, S; Noltin, S; Doucende, G; Obert, P

    2008-05-01

    Tissue Doppler imaging (TDI) is an echocardiographic technique used during exercising to improve the accuracy of a cardiovascular diagnostic. The validity of TDI requires its reproducibility, which has never been challenged during moderate to maximal intensity exercising. The present study was specifically designed to assess the transmitral Doppler and pulsed TDI reproducibility in 19 healthy men, who had undergone two identical semi-supine maximal exercise tests on a cycle ergometer. Systolic (S') and diastolic (E') tissue velocities at the septal and lateral walls as well as early transmitral velocities (E) were assessed during exercise up to maximal effort. The data were compared between the two tests at 40 %, 60 %, 80 % and 100 % of maximal aerobic power. Despite upper body movements and hyperventilation, good quality echocardiographic images were obtained in each case. Regardless of exercise intensity, no differences were noticed between the two tests for all measurements. The variation coefficients for Doppler variables ranged from 3 % to 9 % over the transition from rest to maximal exercise. The random measurement error was, on average, 5.8 cm/s for E' and 4.4 cm/s for S'. Overall, the reproducibility of TDI was acceptable. Tissue Doppler imaging can be used to accurately evaluate LV diastolic and/or systolic function for this range of exercise intensity.

  16. Doppler-ultralydundersøgelse af underekstremitetsarteriosklerose

    DEFF Research Database (Denmark)

    Rørdam, P; von Jessen, F; Sillesen, H H;

    1992-01-01

    Arteriography, which requires resources and is not entirely without risk, has hitherto been a prerequisite for reconstructive surgery in cases of symptom-producing arteriosclerosis in the lower limbs. As an alternative, indirect Doppler ultrasonic examination has been employed but does not appear...

  17. Power Doppler sonography of cervical lymphadenopathy

    Energy Technology Data Exchange (ETDEWEB)

    Ahuja, Anil; Ying, Michael; Yuen, Yuen Hok; Metreweli, Constantine

    2001-12-01

    AIMS: The supraclavicular region is a common site for tuberculous and metastatic nodes from infraclavicular carcinomas. Grey scale sonographic features differentiating the two have been previously described. However, as power Doppler sonography is now frequently used in the assessment of neck nodes, power Doppler features that may help to differentiate the two are discussed. MATERIALS AND METHODS: In 78 patients, power Doppler sonograms of nodes involved by metastases from infraclavicular carcinomas (n = 24) and tuberculosis (n = 54) were evaluated. The intranodal distribution of vessels and the intranodal vascular resistance of vessels was assessed and compared. In addition, the power Doppler features of metastatic nodes from infraclavicular carcinomas were compared with metastatic nodes from a head and neck primary (n = 38) such as nasopharyngeal carcinoma (NPC). RESULTS: Tuberculous nodes frequently demonstrated displaced hilar vascularity or avascularity and the intranodal vascular resistance was low. Metastatic nodes from infraclavicular primaries demonstrated capsular or mixed vascularity and their intranodal resistance was significantly (P < 0.05) higher. In general, metastatic nodes from infraclavicular primaries had a higher intranodal vascular resistance compared to metastatic nodes from NPC, but this was not statistically significant. CONCLUSION: In the supraclavicular region, the presence of displaced low resistance hilar vascularity or avascularity in nodes is suggestive of tuberculous nodes. Metastatic nodes from infraclavicular primaries have a capsular or mixed vascularity with high resistance. Ahuja, A. et al. (2001)

  18. Transcranial Doppler velocimetry in aneurysmal subarachnoid haemorrhage

    DEFF Research Database (Denmark)

    Staalsø, J M; Edsen, T; Romner, B

    2013-01-01

    -coded transcranial Doppler (TCCD), with the secondary aim of describing prediction of angiographic vasospasm and mortality. METHODS: /st>Sixty patients and 70 healthy controls were each examined in duplicate by alternating operators. A total of 939 measurements divided on 201 examination sets were conducted by four...

  19. Investigations of Near-Zone Doppler Effects.

    Science.gov (United States)

    Prouty, Dale Austen

    Far away from an electromagnetic source the normal Doppler shifts in frequency occur--a red shift for receding and a blue shift for approaching. As indicated by previous work with an infinitesimal dipole, different frequency shifts occur when the source and observer move closer together, into the near-zone. These "near-zone Doppler effects" are investigated for general sources and subsequently two specific examples are presented. The general results show that near-zone shifts are similar to far-zone shifts, but the local phase velocity must be used, i.e. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI). In the far zone the phase velocity is the speed of light; in the near zone it differs. Fundamentally, the distance between surfaces of constant phase in the near zone is changed. The surfaces of constant phase for the waves are no longer spherical, but more ellipsoidal or spheroidal, so that a moving observer sees a different frequency shift. Two specific examples are presented to indicate the actual magnitude of near-zone effects. The examples include a prolate spheroidal antenna and a circular aperture. Once the magnitude of the effects is determined, the measurability of near-zone Doppler effects is discussed. The investigation concentrates on Fresnel zone effects due to the measurement problem. Finally, it is shown that for an electrically large wire antenna (the spheroidal example) near-zone Doppler effects are measurable.

  20. Spectroscopic observation of the rotational Doppler effect.

    Science.gov (United States)

    Barreiro, S; Tabosa, J W R; Failache, H; Lezama, A

    2006-09-15

    We report on the first spectroscopic observation of the rotational Doppler shift associated with light beams carrying orbital angular momentum. The effect is evidenced as the broadening of a Hanle electromagnetically induced transparency coherence resonance on Rb vapor when the two incident Laguerre-Gaussian laser beams have opposite topological charges. The observations closely agree with theoretical predictions.

  1. Method for Canceling Ionospheric Doppler Effect

    Science.gov (United States)

    Vessot, R. F. C.

    1982-01-01

    Unified transponder system with hydrogen-maser oscillators at both stations can compensate for both motional and ionospheric components of Doppler shift. Appropriate choices of frequency shift in output of mixer m3. System exploits proportionality between dispersive component of frequency shift and reciprocal of frequency to achieve cancellation of dispersive component at output.

  2. Calculating "g" from Acoustic Doppler Data

    Science.gov (United States)

    Torres, Sebastian; Gonzalez-Espada, Wilson J.

    2006-01-01

    Traditionally, the Doppler effect for sound is introduced in high school and college physics courses. Students calculate the perceived frequency for several scenarios relating a stationary or moving observer and a stationary or moving sound source. These calculations assume a constant velocity of the observer and/or source. Although seldom…

  3. [Phlegmasia alba dolens diagnosed with Doppler ultrasonography].

    Science.gov (United States)

    Wulff, C; Lorentzen, T; Christensen, E; Pedersen, E B

    1996-11-11

    Differential diagnostic problems may occur in a patient with a cold, pale and swollen leg. Especially when the peripheral blood pressure is reduced, it is particularly difficult to distinguish cases caused by venous thrombosis from those caused by arterial embolism. Colour-Doppler ultra-sonography might be helpful for establishing the correct diagnosis. A case history is presented.

  4. On acceleration dependence of Doppler effect in light

    Indian Academy of Sciences (India)

    Sanjay M Wagh

    2013-09-01

    Using only the geometric relationships of suitable locations, we analyse Doppler effect in light to show how the acceleration of the source also contributes to the Doppler shift. We further propose that an experiment be performed using cyclotron-type devices to determine the acceleration dependence of the Doppler shift.

  5. Radar micro-doppler signatures processing and applications

    CERN Document Server

    Chen, Victor C; Miceli, William J

    2014-01-01

    Radar Micro-Doppler Signatures: Processing and applications concentrates on the processing and application of radar micro-Doppler signatures in real world situations, providing readers with a good working knowledge on a variety of applications of radar micro-Doppler signatures.

  6. Musculoskeletal colour/power Doppler in sports medicine

    DEFF Research Database (Denmark)

    Boesen, M I; Boesen, M; Langberg, Henning

    2010-01-01

    guidelines and recommendations are based on personal experience since no evidence in literature exists. The basic technical background of Doppler ultrasound and typical artefacts will be discussed, in order to understand and interpret the Doppler result. Recommendations for the Doppler settings are given...

  7. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines the features of continuous wave doppler-effect technology with pulsed-echo effect technology and is intended...

  8. Solid breast neoplasms: Differential diagnosis with pulsed Doppler ultrasound

    NARCIS (Netherlands)

    T.J.A. Kuijpers (T. J A); A.I.M. Obdeijn (Inge-Marie); Ph.M. Kruyt (Philip); M. Oudkerk (Matthijs)

    1994-01-01

    textabstractIn this prospective study, duplex Doppler ultrasound was used in 95 consecutive patients with solid breast masses to evaluate the presence of neovascular flow. A positive Doppler signal, i.e., a Doppler shift frequency of more than 1 kHz using a 5 MHz insonating frequency, was found in 3

  9. Rubidium atomic line filtered (RALF) Doppler velocimetry

    Science.gov (United States)

    Fajardo, Mario E.; Molek, Christopher D.; Vesely, Annamaria L.

    2017-01-01

    We report recent improvements to our Rubidium Atomic Line Filtered (RALF) Doppler velocimetry apparatus [M.E. Fajardo, C.D. Molek, and A.L. Vesely, J. Appl. Phys. 118, 144901 (2015)]. RALF is a high-velocity and high-acceleration adaptation of the Doppler Global Velocimetry method for measuring multi-dimensional velocity vector flow fields, which was developed in the 1990s by aerodynamics researchers [H. Komine, U.S. Patent #4,919,536]. Laser velocimetry techniques in common use within the shock physics community (e.g. VISAR, Fabry-Pérot, PDV) decode the Doppler shift of light reflected from a moving surface via interference phenomena. In contrast, RALF employs a completely different physical principle: the frequency-dependent near-resonant optical transmission of a Rb/N2 gas cell, to encode the Doppler shift of reflected λ0 ≈ 780.24 nm light directly onto the transmitted light intensity. Thus, RALF is insensitive to minor changes to the optical pathlengths and transit times of the Doppler shifted light, which promises a number of practical advantages in imaging velocimetry applications. The single-point RALF proof-of-concept apparatus described here is fiber optic based, and our most recent modifications include the incorporation of a larger bandwidth detection system, and a second 780 nm laser for simultaneous upshifted-PDV (UPDV) measurements. We report results for the laser driven launch of a 10-μm-thick aluminum flyer which show good agreement between the RALF and UPDV velocity profiles, within the limitations of the admittedly poor signal:noise ratio (SNR) RALF data.

  10. A MAGNETIC CALIBRATION OF PHOTOSPHERIC DOPPLER VELOCITIES

    Energy Technology Data Exchange (ETDEWEB)

    Welsch, Brian T.; Fisher, George H. [Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 (United States); Sun, Xudong [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2013-03-10

    The zero point of measured photospheric Doppler shifts is uncertain for at least two reasons: instrumental variations (from, e.g., thermal drifts); and the convective blueshift, a known correlation between intensity and upflows. Accurate knowledge of the zero point is, however, useful for (1) improving estimates of the Poynting flux of magnetic energy across the photosphere, and (2) constraining processes underlying flux cancellation, the mutual apparent loss of magnetic flux in closely spaced, opposite-polarity magnetogram features. We present a method to absolutely calibrate line-of-sight (LOS) velocities in solar active regions (ARs) near disk center using three successive vector magnetograms and one Dopplergram coincident with the central magnetogram. It exploits the fact that Doppler shifts measured along polarity inversion lines (PILs) of the LOS magnetic field determine one component of the velocity perpendicular to the magnetic field, and optimizes consistency between changes in LOS flux near PILs and the transport of transverse magnetic flux by LOS velocities, assuming that ideal electric fields govern the magnetic evolution. Previous calibrations fitted the center-to-limb variation of Doppler velocities, but this approach cannot, by itself, account for residual convective shifts at the limb. We apply our method to vector magnetograms of AR 11158, observed by the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory, and find clear evidence of offsets in the Doppler zero point in the range of 50-550 m s{sup -1}. In addition, we note that a simpler calibration can be determined from an LOS magnetogram and Dopplergram pair from the median Doppler velocity among all near-disk-center PIL pixels. We briefly discuss shortcomings in our initial implementation, and suggest ways to address these. In addition, as a step in our data reduction, we discuss the use of temporal continuity in the transverse magnetic field direction to correct apparently

  11. Practicability of intraoperative microvascular Doppler sonography in aneurysm surgery.

    Science.gov (United States)

    Firsching, R; Synowitz, H J; Hanebeck, J

    2000-09-01

    Inadvertent narrowing of parent or branching vessels is one major cause of unfavorable outcome from aneurysm surgery. Intraoperative micro-Doppler sonography of arterial brain vessels during surgery for cerebral aneurysms of the anterior circulation was performed in 50 patients and compared retrospectively with 50 patients, who were operated upon without micro-Doppler sonography. Intraoperative micro-Doppler sonography demonstrated the need for repositioning of the clip in 12 instances. Outcome after surgery with micro-Doppler sonography appeared slightly better than without. Micro-Doppler sonography is concluded to be a practicable adjunct to routine aneurysm surgery.

  12. Exact classical Doppler effect derived from the photon emission process

    CERN Document Server

    Lin, Chyi-Lung; Hsieh, Shang-Lin; Tsai, Chun-Ming

    2016-01-01

    The concept of photon is not necessary only applied to the relativistic Doppler theory. It may also work well for classical theory. As conservation of momentum and energy are physical laws, if applying these laws gives the exact relativistic Doppler effect, it should also give the exact classical Doppler effect. So far the classical Doppler effect is only obtained by using some approximation, as derived by Fermi in 1932. We show that the exact classical Doppler effect can be derived from the photon emission process in the exact treatment and reveal that these results are the same as those derived from the wave theory of light.

  13. Micro-Doppler Frequency Comb Generation by Axially Rotating Scatterers

    CERN Document Server

    Kozlov, Vitali; Yankelevich, Yefim; Ginzburg, Pavel

    2016-01-01

    Electromagnetic scattering in accelerating reference frames inspires a variety of phenomena, requiring employment of general relativity for their description. While the quasi-stationary field analysis could be applied to slowly-accelerating bodies as a first-order approximation, the scattering problem remains fundamentally nonlinear in boundary conditions, giving rise to multiple frequency generation (micro-Doppler shifts). Here a frequency comb, generated by an axially rotating subwavelength (cm-range) wire and split ring resonator (SRR), is analyzed theoretically and observed experimentally by illuminating the system with a 2GHz carrier wave. Highly accurate lock in detection scheme enables factorization of the carrier and observation of more than ten peaks in a comb. The Hallen integral equation is employed for deriving the currents induced on the scatterer at rest and a set of coordinate transformations, connecting laboratory and rotating frames, is applied in order to predict the spectral positions and a...

  14. ESTIMATION OF DOPPLER CENTROID FREQUENCY IN SPACEBORNE SCANSAR

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Doppler centroid frequency is an essential parameter in the imaging processing of the Scanning mode Synthetic Aperture Radar(ScanSAR).Inaccurate Doppler centroid frequency will result in ghost images in imaging result.In this letter,the principle and algorithms of Doppler centroid frequency estimation are introduced.Then the echo data of ScanSAR system is analyzed.Based on the algorithms of energy balancing and correlation Doppler estimator in the estimation of Doppler centroid fequency in strip mode SAR,an improved method for Doppler centroid frequency estimation in ScanSAR is proposed.The method has improved the accuracy of Doppler centroid fequency estimation in ScanSAR by zero padding between burst data.Finally,the proposed method is validated with the processing of ENVironment SATellite Advanced Synthetic Aperture Radar(ENVISAT ASAR)wide swath raw data.

  15. Power and color Doppler ultrasound settings for inflammatory flow

    DEFF Research Database (Denmark)

    Torp-Pedersen, Søren; Christensen, Robin; Szkudlarek, Marcin

    2015-01-01

    OBJECTIVE: To determine how settings for power and color Doppler ultrasound sensitivity vary on different high- and intermediate-range ultrasound machines and to evaluate the impact of these changes on Doppler scoring of inflamed joints. METHODS: Six different types of ultrasound machines were used....... On each machine, the factory setting for superficial musculoskeletal scanning was used unchanged for both color and power Doppler modalities. The settings were then adjusted for increased Doppler sensitivity, and these settings were designated study settings. Eleven patients with rheumatoid arthritis (RA......) with wrist involvement were scanned on the 6 machines, each with 4 settings, generating 264 Doppler images for scoring and color quantification. Doppler sensitivity was measured with a quantitative assessment of Doppler activity: color fraction. Higher color fraction indicated higher sensitivity. RESULTS...

  16. Superharmonic microbubble Doppler effect in ultrasound therapy

    Science.gov (United States)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104-5  ×  107 microbubbles ml-1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s-1, prior to the onset of

  17. Note: A sub-sampling technique for frequency locking in Doppler wind lidar.

    Science.gov (United States)

    Yao, Yuan; Li, Feng; Chen, Lian; Jin, Ge

    2016-05-01

    Double-edge technique is employed in Doppler wind lidar for detecting the Doppler frequency shift. A dedicated locking channel, employing one channel of a triple Fabry-Perot etalon, is designed to compensate for the effects caused by the frequency drift of outgoing laser. Agilent Oscilloscopes, with a sampling rate of 2.5 GSPS, are employed to obtain accurate amplitudes of the narrow pulses in existing experiments. In order to achieve the requirement of real-time ability and integration, a sub-sampling technique based on the theory of statistics is presented. With the technique, the drift can be acquired at a sub-sampling rate, 250 MSPS. A prototype is designed and the test results show that the prototype, providing real-time ability and better integration, has a comparable performance as the oscilloscope for frequency locking.

  18. Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space

    Science.gov (United States)

    Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul; Modlin, Edward A.; Barnes, Bruce W.; Demoz, Belay B.

    2010-01-01

    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1

  19. Color Doppler US of the penis

    Energy Technology Data Exchange (ETDEWEB)

    Bertolotto, Michele (ed.) [Trieste Univ. Ospedale di Cattinara (Italy). Dept. Radiology

    2008-07-01

    This book provides a comprehensive reference and practical guide on the application of US to penile diseases and conditions. After introductory chapters on technical requirements and penile anatomy, subsequent chapters offer a systematic overview of the diverse applications of color Doppler US. The topics covered include erectile dysfunction, Peyronie's disease, priapism, trauma, tumors, the postoperative penis, inflammation, and fibrosis. Each topic is introduced by a clinical overview with the purpose of clarifying the problems and elucidating what the urologist may expect from color Doppler US. Thereafter, performance of the US study is explained and the pathological anatomy reviewed. High-quality images obtained with high-end US equipment are included. Each chapter also contains a section on the diagnostic information provided by other imaging modalities, and in particular MRI. (orig.)

  20. Renal duplex Doppler ultrasound findings in diabetics

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hyang Yee; Kim, Young Geun; Kook, Cheol Keu; Yoon, Chong Hyun; Lee, Shin Hyung; Lee, Chang Joon [National Medical Center, Seoul (Korea, Republic of)

    1993-12-15

    The correlation between clinical-laboratory findings and renal duplex Doppler ultrasound findings was studied in 45 patients with diabetes mellitus to see the role of duplex Doppler ultrasound in the detection of diabetic nephropathy. The resistive indices in patients with elevated serum creatinine, BUN, proteinuria, and systolic blood pressure levels were statistically significantly higher than those in patients with normal levels (p<0.05). Also resistive indics in patients with retinopathy were higher than that in patients without retinopathy (p<0.05). But the ultrasound morphologic changes of kidney such as renal length, cortical eye-catching, and corticomedullarycontrast were not well correlated with clinical-laboratory data and resistive index. The resistive index of the kidney in conjunction with clinical-laboratory data in diabetics may be helpful in the evaluation of diabetic nephropathy

  1. [Color-Doppler semiology in transplanted kidney].

    Science.gov (United States)

    Rivolta, R; Castagnone, D; Burdick, L; Mandelli, C; Mangiarotti, R

    1993-05-01

    Color-encoded duplex ultrasonography (CEDU) makes a more accurate technique in kidney graft monitoring by combining real-time US with pulsed Doppler studies of renal vasculature. It is a non-invasive and easy technique. Suitable to study the whole renal artery and vein, CEDU also allows the qualitative and quantitative assessment of the intrarenal vasculature and therefore the easy diagnosis of such vessel dysfunctions as arteriovenous fistulas following biopsy. Moreover, Doppler spectral analysis can be used to distinguish among different causes of renal allograft dysfunction--i.e. rejection, cyclosporine nephrotoxicity or acute tubular necrosis. The value of the resistive index for the differential diagnosis is discussed. CEDU allows a more reliable measurement of renal blood flow thanks to the more precise evaluation of renal artery diameter and mean flow velocity.

  2. Transcranial Doppler sonography in familial hemiplegic migraine

    Energy Technology Data Exchange (ETDEWEB)

    Pierelli, F.; Pauri, F.; Cupini, L.M.; Fiermonte, G.; Rizzo, P.A. (Universita la Sapienza, Roma (Italy))

    1991-02-01

    A patient affected by familial hemiplegic migraine underwent transcranial Doppler sonography twice: the first during a spontaneous attack with right hemiparesis and aphasia, the second during a headachefree period. During the attack the following haemodynamic changes were seen: (a) bilateral increase in the middle cerebral artery and anterior cerebral artery blood flow velocities (this increase was more pronounced on the left side), (b) decreased systo-diastolic ratio and pulsatility index on the right side, (c) increased systo-diastolic ratio and pulsatility index on the left side. The results indicate that during the attack in this familial hemiplegic migraine patient, a diffuse vasoconstriction of the basal cerebral arteries developed. Moreover, transcranial Doppler sonography data suggest that a prolonged vasoconstriction of the peripheral arterioles could play a role in determining the neurological symptoms in this syndrome. 13 refs., 1 figs., 1 tab.

  3. Analysis and compensation for code Doppler effect of BDS II signal under high dynamics

    Science.gov (United States)

    Ouyang, Xiaofeng; Zeng, Fangling

    2016-01-01

    In high dynamic circumstances, the acquisition of BDS (BeiDou Navigation Satellite System) signal would be affected by the pseudo-code Doppler. The pseudo-code frequency shift is more prominent and complex when BOC modulation has been adopted by BDS-II, but is not yet involved in current compensation algorithm. In addition, the most frequently used code Doppler compensation algorithm is modifying the sampling rate or local bit rate, which not only increases the complexity of the acquisition and tracking, but also is barely realizable for the hardware receiver to modify the local frequency. Therefore, this paper proposes a code Doppler compensation method based on double estimator receiver, which simultaneously controls NCO delay of code tracking loop and subcarrier tracking loop to compensate for pseudo-code frequency shift. The simulation and test are implemented with BDS-II BOC signal. The test results demonstrate that the proposed algorithm can effectively compensate for pseudo-code Doppler of BOC signal and has detection probability 3dB higher than the uncompensated situation when the false alarm rate is under 0.01 and the coherent integration time is 1ms.

  4. Doppler Lidar Wind Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, R. K. [DOE ARM Climate Research Facility, Washington, DC (United States); Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States); Shippert, T. R. [DOE ARM Climate Research Facility, Washington, DC (United States); Riihimaki, L. D. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2015-07-01

    Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.

  5. Colour Doppler ultrasound of the penis

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, C.J.; Sriprasad, S.; Sidhu, P.S. E-mail: paulsidhu@compuserve.com

    2003-07-01

    Because it is a superficial structure, the penis is ideally suited to ultrasound imaging. A number of disease processes, including Peyronie's disease, penile fractures and penile tumours, are clearly visualized with ultrasound. An assessment of priapism can also be made using spectral Doppler waveform technology. Furthermore, dynamic assessment of cavernosal arterial changes after pharmaco-stimulation allows diagnosis of arterial and venogenic causes for impotence. This pictorial review illustrates the range of diseases encountered with ultrasound of the penis.

  6. Precise Doppler Monitoring of Barnard's Star

    CERN Document Server

    Choi, Jieun; Marcy, Geoffrey W; Howard, Andrew W; Fischer, Debra A; Johnson, John A; Isaacson, Howard; Wright, Jason T

    2012-01-01

    We present 248 precise Doppler measurements of Barnard's Star (Gl 699), the second nearest star system to Earth, obtained from Lick and Keck Observatories during 25 years between 1987 and 2012. The early precision was 20 \\ms{} but was 2 \\ms{} during the last 8 years, constituting the most extensive and sensitive search for Doppler signatures of planets around this stellar neighbor. We carefully analyze the 136 Keck radial velocities spanning 8 years by first applying a periodogram analysis to search for nearly circular orbits. We find no significant periodic Doppler signals with amplitudes above $\\sim$2 \\ms{}, setting firm upper limits on the minimum mass (\\msini) of any planets with orbital periods from 0.1 to 1000 days. Using a Monte Carlo analysis for circular orbits, we determine that planetary companions to Barnard's Star with masses above 2 \\mearth{} and periods below 10 days would have been detected. Planets with periods up to 2 years and masses above 10 \\mearth{} (0.03 \\mjup) are also ruled out. A sim...

  7. Doppler Lidar for Wind Measurements on Venus

    Science.gov (United States)

    Singh, Upendra N.; Emmitt, George D.; Yu, Jirong; Kavaya, Michael J.

    2010-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented.

  8. [Doppler effect on width of characteristic line in plasma induced by pulsed laser ablating Al].

    Science.gov (United States)

    Song, Yi-Zhong; He, An-Zhi

    2005-05-01

    Aluminum (Al) plasma was induced with a pulsed Nd: YAG laser beam ablating Al target in Ar. Time-resolved information of the plasma radiation was taken with time-resolved technique, and the spectra of the radiation were recorded with an optical multi-path analyzer (OMA III ), whereupon, time-resolved spectra of the plasma radiation induced by pulsed laser were acquired. Based on the experiment data, Al resonant double lines, Al I 396.15 nm, Al I 394.40 nm, were respectively fitted with Lorentz, Gauss and their linear integrated function (abbr. Integrated function), whereupon, Lorentz and Gauss elements were separated from the experiment data profile curve. By contrasting Lorentz with Gauss curve separated, it was found that the experiment curve mainly consisted of Lorentz element, a with little Gauss. By contrasting Lorentz with Integrated fitting curve for experiment data, a visual picture of the characteristic lines broadened by Doppler effect was exhibited. According to the visual picture, the increase of full half-high width of the characteristic line broadened by Doppler effect was estimated. It was about 2 x 10(-)3 -8 x 10(-3) nm, approximating the theoretical value 6.7 x 10(-)3 nm. As a result, Doppler effect on the width of characteristic lines in the plasma could be reasonably explained by curve fitting analysis and theoretical calculation.

  9. Doppler effect in resonant photoemission from SF6: correlation between Doppler profile and Auger emission anisotropy.

    Science.gov (United States)

    Kitajima, M; Ueda, K; De Fanis, A; Furuta, T; Shindo, H; Tanaka, H; Okada, K; Feifel, R; Sorensen, S L; Gel'mukhanov, F; Baev, A; Agren, H

    2003-11-21

    Fragmentation of the SF6 molecule upon F 1s excitation has been studied by resonant photoemission. The F atomiclike Auger line exhibits the characteristic Doppler profile that depends on the direction of the photoelectron momentum relative to the polarization vector of the radiation as well as on the photon energy. The measured Doppler profiles are analyzed by the model simulation that takes account of the anisotropy of the Auger emission in the molecular frame. The Auger anisotropy extracted from the data decreases with an increase in the F-SF5 internuclear distance.

  10. Photoacoustic perfusion measurements: a comparison with power Doppler in phantoms

    Science.gov (United States)

    Heres, H. M.; Arabul, M. Ü.; Tchang, B. C.; van de Vosse, F. N.; Rutten, M. C.; Lopata, R. G.

    2015-03-01

    Ultrasound-based measurements using Doppler, contrast, and more recently photoacoustics (PA), have emerged as techniques for tissue perfusion measurements. In this study, the feasibility of in vitro perfusion measurements with a fully integrated, hand-held, photoacoustic probe was investigated and compared to Power Doppler (PD). Three cylindrical polyvinyl alcohol (PVA) phantoms were made (diameter = 15 mm) containing 100, 200 and 400 parallel polysulfone tubes (diameter = 0.2 mm), resulting in a perfused cross-sectional area of 1.8, 3.6 and 7.1% respectively. Each phantom was perfused with porcine blood (15 mL/min). Cross-sectional PA images (λ = 805nm, frame rate = 10Hz) and PD images (PRF = 750Hz) were acquired with a MyLab One and MyLab 70 scanner (Esaote, NL), respectively. Data were averaged over 70 frames. The average PA signal intensity was calculated in a region-of-interest of 4 mm by 6 mm. The percentage of colored PD pixels was measured in the entire phantom region. The average signal intensity of the PA images increased linearly with perfusion density, being 0.54 (+/- 0.01), 0.56 (+/- 0.01), 0.58 (+/- 0.01) with an average background signal of 0.53 in the three phantoms, respectively. For PD, the percentage of colored pixels in the phantom area (1.5% (+/- 0.2%), 4.4% (+/- 0.2%), 13.7% (+/- 0.8%)) also increased linearly. The preliminary results suggest that PA, like PD, is capable of detecting an increase of blood volume in tissue. In the future, in vivo measurements will be explored, although validation will be more complex.

  11. Self-mixing dual-frequency laser Doppler velocimeter.

    Science.gov (United States)

    Cheng, Chih-Hao; Lin, Lyu-Chih; Lin, Fan-Yi

    2014-02-10

    A self-mixing (SM) dual-frequency (DF) laser Doppler velocimeter (LDV) (SM DF-LDV) is proposed and studied, which integrates the advantages of both the SM-LDV and the DF-LDV. An optically injected semiconductor laser operated in a dual-frequency period-one (P1) dynamical state is used as the light source. By probing the target with the light-carried microwave generated from the beat of the two optical frequency components, the spectral broadening in the Doppler signal due to the speckle noise can be significantly reduced. Together with an SM configuration, the SM DF-LDV has the advantages of direction discriminability, self-alignment, high sensitivity, and compact setup. In this study, speckle noise reduction and direction discriminability with an SM DF-LDV are demonstrated. The signal-to-noise ratios (SNRs) at different feedback powers are investigated. Benefiting from the high sensitivity of the SM configuration, an SNR of 23 dB is achieved without employing an avalanched photodetector or photomultiplier tube. The velocity resolution and the SNR under different speckle noise conditions are studied. Average velocity resolution of 0.42 mm/s and SNR of 22.1 dB are achieved when a piece of paper is rotating at a transverse velocity of 5 m/s. Compared with a conventional single-frequency LDV (SF-LDV), the SM DF-LDV shows improvements of 20-fold in the velocity resolution and 8 dB in the SNR.

  12. A micro-Doppler sonar for acoustic surveillance in sensor networks

    Science.gov (United States)

    Zhang, Zhaonian

    Wireless sensor networks have been employed in a wide variety of applications, despite the limited energy and communication resources at each sensor node. Low power custom VLSI chips implementing passive acoustic sensing algorithms have been successfully integrated into an acoustic surveillance unit and demonstrated for detection and location of sound sources. In this dissertation, I explore active and passive acoustic sensing techniques, signal processing and classification algorithms for detection and classification in a multinodal sensor network environment. I will present the design and characterization of a continuous-wave micro-Doppler sonar to image objects with articulated moving components. As an example application for this system, we use it to image gaits of humans and four-legged animals. I will present the micro-Doppler gait signatures of a walking person, a dog and a horse. I will discuss the resolution and range of this micro-Doppler sonar and use experimental results to support the theoretical analyses. In order to reduce the data rate and make the system amenable to wireless sensor networks, I will present a second micro-Doppler sonar that uses bandpass sampling for data acquisition. Speech recognition algorithms are explored for biometric identifications from one's gait, and I will present and compare the classification performance of the two systems. The acoustic micro-Doppler sonar design and biometric identification results are the first in the field as the previous work used either video camera or microwave technology. I will also review bearing estimation algorithms and present results of applying these algorithms for bearing estimation and tracking of moving vehicles. Another major source of the power consumption at each sensor node is the wireless interface. To address the need of low power communications in a wireless sensor network, I will also discuss the design and implementation of ultra wideband transmitters in a three dimensional

  13. Doppler-compensated three-photon electromagnetically induced transparency

    CERN Document Server

    Carr, Christopher; Sargsyan, Armen; Sarkisyan, David; Adams, Charles S; Weatherill, Kevin J

    2012-01-01

    We demonstrate Doppler-compensated bright and dark states in a resonant four-level atomic system. The spectral features are the result of electromagnetically induced transparency (EIT) and absorption (EIA) and are sub-Doppler due to the compensation of Doppler shifts with AC Stark shifts. We demonstrate the effect using a three-photon cascade system to Rydberg states in Cs vapor, however, the results apply to any four-level cascade or N-type system.

  14. Influence of Doppler Bin Width on GNSS Detection Probabilities

    CERN Document Server

    Geiger, Bernhard C

    2011-01-01

    The acquisition stage in GNSS receivers determines Doppler shifts and code phases of visible satellites. Acquisition is thus a search in two continuous dimensions, where the digital algorithms require a partitioning of the search space into cells. We present analytic expressions for the acquisition performance depending on the partitioning of the Doppler frequency domain. In particular, the impact of the number and width of Doppler bins is analyzed. The presented results are verified by simulations.

  15. New insights from inside-out Doppler tomography

    CERN Document Server

    Kotze, Enrico J

    2015-01-01

    We present preliminary results from our investigation into using an 'inside-out' velocity space for creating a Doppler tomogram. The aim is to transpose the inverted appearance of the Cartesian velocity space used in normal Doppler tomography. In a comparison between normal and inside-out Doppler tomograms of cataclysmic variables, we show that the inside-out velocity space has the potential to produce new insights into the accretion dynamics in these systems.

  16. Analysis on rotational Doppler Effect based on modal expansion method

    CERN Document Server

    Zhou, Hailong; Zhang, Pei; Zhang, Xinliang

    2015-01-01

    We theoretically investigate the optical rotational Doppler Effect using modal expansion method. We find that the frequency shift content is only determined by the surface of spinning object and the reduced Doppler shift is linear to the change of mode index. The theoretical model makes us better understand the physical processes of rotational Doppler Effect. It can provide theoretical guidance for many related applications, such as detection of rotating bodies, detection of OAM and frequency shift.

  17. Range-instantaneous Doppler imaging of inverse synthetic aperture sonar

    Institute of Scientific and Technical Information of China (English)

    XU Jia; JIANG Xingzhou; TANG Jingsong

    2003-01-01

    Because the existing range-Doppler algorithm in inverse synthetic aperture sonar (ISAS) is based on target model of uniform motion, it may be invalidated for maneuvering targets due to the time-varying changes of both individual scatter′s Doppler and imaging projection plane. To resolve the problem, a new range-instantaneous Doppler imaging method is proposed for imaging maneuvering targets based on time-frequency analysis. The proposed approach is verified using real underwater acoustic data.

  18. Evaluating Peripheral Vascular Injuries: Is Color Doppler Enough for Diagnosis?

    Directory of Open Access Journals (Sweden)

    Mohd Lateef Wani

    2014-03-01

    Full Text Available Background:: Vascular injury poses a serious threat to limb and life. Thus, diagnosis should be made immediately with minimally invasive methods. Doppler is a good aid in diagnosis of vascular injury. Methods:: The present prospective study was conducted on 150 patients who presented with soft signs (the signs which are suggestive but not confirmatory of vascular injury. They were subjected to color Doppler examination before exploration. The patients with the features of vascular injury on color Doppler were subjected to exploration. On the other hand, those who had normal Doppler were subjected to CT- angiography. Then, the findings of the exploration were matched with those of color Doppler. The data were analyzed using the SPSS statistical software. Results:: Out of the 150 Doppler examinations, 110 (73.33% were reported as positive, while 40 were reported as negative for vascular injury. These were subjected to CT-angiography and seven of them had the features of vascular injury on CT-angiography. All the patients with positive Doppler or CT angiography findings were subjected to exploration. Doppler had a sensitivity of 94% and specificity of 82.5% in diagnosis of vascular injury using Binary classification test. Conclusions:: Color Doppler is an easily available, reliable, and handy method of diagnosing a vascular injury. It has a very high sensitivity and specificity in diagnosis of vascular injuries.

  19. EUV Doppler Imaging for CubeSat Platforms Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mature the design and fabricate the Flare Initiation Doppler Imager (FIDI) instrument to demonstrate low-spacecraft-resource EUV technology (most notably,...

  20. Reexamination of the Doppler effect through Maxwell's equations.

    Science.gov (United States)

    Guo, Wei; Aktas, Yildirim

    2012-08-01

    In this work, the electric field emitted from a moving source, an electric point dipole, is analyzed for the purpose of illustrating the physics behind the Doppler effect. It is found that if the (translational) motion of the source is nonrelativistic, the Doppler effect is realized in two steps: the motion of the source first causes the dyadic Green function associated with the electric field to acquire an oscillation frequency in the far-field region of the source, and then the frequency leads to the Doppler effect. It is also demonstrated that the Doppler effect is observable only in the far-field region of the source.

  1. Burst Format Design for Optimum Joint Estimation of Doppler-Shift and Doppler-Rate in Packet Satellite Communications

    Directory of Open Access Journals (Sweden)

    Luca Giugno

    2007-05-01

    Full Text Available This paper considers the problem of optimizing the burst format of packet transmission to perform enhanced-accuracy estimation of Doppler-shift and Doppler-rate of the carrier of the received signal, due to relative motion between the transmitter and the receiver. Two novel burst formats that minimize the Doppler-shift and the Doppler-rate Cramér-Rao bounds (CRBs for the joint estimation of carrier phase/Doppler-shift and of the Doppler-rate are derived, and a data-aided (DA estimation algorithm suitable for each optimal burst format is presented. Performance of the newly derived estimators is evaluated by analysis and by simulation, showing that such algorithms attain their relevant CRBs with very low complexity, so that they can be directly embedded into new-generation digital modems for satellite communications at low SNR.

  2. Applications of Doppler optical coherence tomography

    Science.gov (United States)

    Xu, Zhiqiang

    A major development in biomedical imaging in the last decade has been optical coherence tomography (OCT). This technique enables microscale resolution, depth resolved imaging of the detailed morphology of transparent and nontransparent biological tissue in a noncontact and quasi-noninvasive way. In the first part of this dissertation, we will describe the development and the performance of our home-made OCT systems working with different wavelength regions based on free-space and optical fiber Michelson interferometers. The second part will focus on Doppler OCT (DOCT), an important extension of OCT, which enables the simultaneous evaluation of the structural information and of the fluid flow distribution at a localized position beneath the sample surface. Much effort has been spent during the past few years in our laboratory aimed at providing more accurate velocity measurements with an extended dynamic range. We also applied our technique in different research areas such as microfluidics and hemodynamics. Investigations on the optical properties of the biological tissues (such as absorption and scattering) corresponding to different center wavelengths, have been performed in our laboratory. We used a 10 femtosecond Ti:sapphire laser centered at about 810 nm associated with a free-space Michelson interferometer. The infrared sources were centered at about 1310 and 1560 nm with all-fiber interferometers. Comparative studies using three different sources for several in vitro biological tissues based on a graphical method illustrated how the optical properties affect the quality of the OCT images in terms of the penetration depth and backscattering intensity. We have shown the advantage of working with 810-nm emission wavelength for good backscattering amplitude and contrast, while sources emitting at 1570 nm give good penetration depth. The 1330-nm sources provide a good compromise between the two. Therefore, the choice of the source will ultimately determine the

  3. [Color Doppler sonography of focal abdominal lesions].

    Science.gov (United States)

    Licanin, Zoran; Lincender, Lidija; Djurović, V; Salihefendić, Nizama; Smajlović, Fahrudin

    2004-01-01

    Color Doppler sonography (CDS--spectral, color and power), harmonic imaging techniques (THI, PHI), possibility of 3D analysis of picture, usage of contrast agents, have raised the values of ultrasound as a diagnostic method to a very high level. THI--non-linear gray scale modality, is based on the processing of higher reflected frequencies, that has improved a picture resolution, which is presented with less artifacts and limiting effects of obesity and gases. Ultrasound contrast agents improve analysis of micro and macro circulation of the examined area, and with the assessment of velocity of supply in ROI (wash in), distribution and time of signal weakening (wash out), are significantly increasing diagnostic value of ultrasound. Besides the anatomical and topographic presentation of examined region (color, power), Color Doppler sonography gives us haemodynamic-functional information on vascularisation of that region, as well as on pathologic vascularisation if present. Avascular aspect of a focal pathologic lesion corresponds to a cyst or haematoma, while coloration and positive spectral curve discover that anechogenic lesions actually represents aneurysms, pseudoaneurysms or AVF. In local inflammatory lesion, abscess in an acute phase, CDS shows first increased, and then decreased central perfusion, while in a chronic phase, a pericapsular vascularisation is present. Contribution of CDS in differentiation of hepatic tumors (hemangioma, HCC and metastasis) is very significant. Central color dots along the peripheral blood vessels and the blush phenomenon are characteristics of capillary hemangioma, peritumoral vascular ring "basket" of HCC, and "detour" sign of metastasis. The central artery, RI from 0.45 to 0.60 and radial spreading characterize FNH. Hepatic adenoma is characterized by an intratumoral vein, and rarely by a vascular hallo. Further on, blood velocity in tumor defined by Color Doppler, distinguishes malignant from benign lesion, where 40 cm/s is a

  4. Neutral wind results from TIMED Doppler interferometer

    Science.gov (United States)

    Killeen, T.; Gablehouse, R.; Gell, D.; Johnson, R.; Niciejewski, R.; Ortland, D.; Wu, Q.; Skinner, W.; Solomon, S.; Kafkalidis, J.

    2003-04-01

    Since the launch of the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite in December 2001, the TIMED Doppler Interferometer (TIDI) has been collecting lower thermosphere and mesospheric data for over a year. After adjustments to the spectral sampling scheme and operational mode, the instrument has been optimized. Efforts have also been made to improve the instrument performance. Preliminary neutral winds from O2 (0-0) have been analyzed. Tidal features and their seasonal variation are shown clearly in the wind data, which are quantitatively consistent with model prediction. We will report our progress on these efforts.

  5. Mobile fiber-optic laser Doppler anemometer.

    Science.gov (United States)

    Stieglmeier, M; Tropea, C

    1992-07-20

    A laser Doppler anemometer (LDA) has been developed that combines the compactness and low power consumption of laser diodes and avalanche photodiodes with the flexibility and possibility of miniaturization by using fiber-optic probes. The system has been named DFLDA for laser diode fiber LDA and is especially suited for mobile applications, for example, in trains, airplanes, or automobiles. Optimization considerations of fiber-optic probes are put forward and several probe examples are described in detail. Measurement results from three typical applications are given to illustrate the use of the DFLDA. Finally, a number of future configurations of the DFLDA concept are discussed.

  6. Doppler coherence imaging of ion dynamics in VINETA.II and ASDEX-upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gradic, Dorothea; Ford, Oliver; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Lunt, Tilmann [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    2016-07-01

    In magnetically confining plasma experiments, diagnosis of ion flows is of great importance to measure the plasma response to the magnetic field or the exhaust particle flows in the divertor areas. Doppler coherence imaging spectroscopy (CIS) is a relatively new technique for the observation of plasma bulk ion dynamics. It is a passive optical diagnostic enabling line-integrated measurements to obtain 2D images of the ion flow and ion temperature. The general principle is similar to traditional Doppler spectroscopy, however CIS uses an imaging interferometer to perform narrow-bandwidth Fourier spectroscopy. A major advantage of the coherence imaging technique is the large amount of spatial information recovered. This allows tomographic inversion of the line-integrated measurements. With existing CIS setups, scrape-off-layer and high field side edge impurity flows could be observed in the MAST, core and edge poloidal He II flows in the WEGA stellarator and divertor impurity flows in DIII-D. The main objective of this study is the research of ion dynamics in the small linear plasma experiment VINETA.II and ASDEX-Upgrade. First Doppler CIS measurements from Ar-II plasma discharges in VINETA.II and He-II, C-III divertor flows in ASDEX-Upgrade and their preliminary interpretation will be presented.

  7. Check list Doppler and duplex sonography. 4. rev. ed.; Checkliste Doppler- und Duplexsonografie

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Helmut [MED-Facharztzentrum, Mainz (Germany). Praxis fuer Gefaessmedizin; Ludwig, Malte [Benedictus Krankenhaus Tutzing (Germany). Gefaesszentrum

    2012-11-01

    Check list Doppler and duplex sonography includes 4 parts: (1) Basic information: technical fundamentals, equipment premises, hemodynamics. (2) Flow schemata and pitfalls. (3) Special vascular regions: arteries in the upper and lower extremities, veins in the upper and lower extremities, abdominal arteries, abdominal veins, ex-cranial brain sustaining arteries, intra-cranial brain sustaining arteries. (4) Attachment: diagnostic criteria and case studies.

  8. Evaluation of late radiation-induced changes of the superficial microcirculation. I. clinical benefit of the cutaneous Doppler laser; Evaluation des modifications radio-induites tardives de la microcirculation superficielle. I. apport clinique du laser doppler cutane

    Energy Technology Data Exchange (ETDEWEB)

    Delanian, S. [Hopital Saint-Louis, Service d' Oncologie-Radiotherapie, 75 - Paris (France); Lefaix, J.L. [CEA/DAM-Ile de France, DSV-DRR, 91 - Bruyeres-Le-Chatel (France)

    2000-12-01

    Objective. - The changes that occur in the tissular microcirculation after therapeutic irradiation (RT) account for some of the late effects of irradiation, especially on the cutaneous level. As a rule, the methods of exploring the superficial microcirculation only measure blood flow indirectly. Only the Doppler laser can provide direct measurements of blood parameters in vivo in man. Methods. -Thirty women who had been irradiated with 45 + 20 Gy of locoregional fractionated adjuvant RT for breast cancer developed local radiation-induced fibrosis six years later ({+-}5). The local microcirculation was measured in the resting state and during thermal stimulation at 42 deg. C, using a Periflux cutaneous Doppler laser with p413 probes. Three periods of six minutes each were continuously recorded: period 1 (P1) represented basal resting cutaneous perfusion, with the slope p corresponding to the increase in perfusion when two minutes of thermal stimulation at 42 deg. C began; P2 to plateau perfusion during this stimulation; and P3 to perfusion on the return to equilibrium. Each individual was its own control. Results. - In the women treated by RT, the resting microcirculation in the skin underlying an area of late fibrosis rose by a factor of 2 during P1 (p < 0.001), and the P2/P1 ratio decreased by a factor of 2 (p < 0.001), compared to the control area. After thermal stimulation, there was no change in p, P2 or P3. Conclusion. -Although a hypo-vascularization is frequently found in late sequelae of RT, we observed an increase of the cutaneous microcirculation associated with a maladjustment of the endothelial response to a thermal stimulation. These observations seem to reflect the presence of dilated new capillaries of the telangiectatic type, which are macroscopically undetectable. (authors)

  9. Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique: A test case of the Mars Express Phobos fly-by

    Science.gov (United States)

    Duev, D. A.; Pogrebenko, S. V.; Cimò, G.; Molera Calvés, G.; Bocanegra Bahamón, T. M.; Gurvits, L. I.; Kettenis, M. M.; Kania, J.; Tudose, V.; Rosenblatt, P.; Marty, J.-C.; Lainey, V.; de Vicente, P.; Quick, J.; Nickola, M.; Neidhardt, A.; Kronschnabl, G.; Ploetz, C.; Haas, R.; Lindqvist, M.; Orlati, A.; Ipatov, A. V.; Kharinov, M. A.; Mikhailov, A. G.; Lovell, J. E. J.; McCallum, J. N.; Stevens, J.; Gulyaev, S. A.; Natush, T.; Weston, S.; Wang, W. H.; Xia, B.; Yang, W. J.; Hao, L.-F.; Kallunki, J.; Witasse, O.

    2016-09-01

    Context. The closest ever fly-by of the Martian moon Phobos, performed by the European Space Agency's Mars Express spacecraft, gives a unique opportunity to sharpen and test the Planetary Radio Interferometry and Doppler Experiments (PRIDE) technique in the interest of studying planet-satellite systems. Aims: The aim of this work is to demonstrate a technique of providing high precision positional and Doppler measurements of planetary spacecraft using the Mars Express spacecraft. The technique will be used in the framework of Planetary Radio Interferometry and Doppler Experiments in various planetary missions, in particular in fly-by mode. Methods: We advanced a novel approach to spacecraft data processing using the techniques of Doppler and phase-referenced very long baseline interferometry spacecraft tracking. Results: We achieved, on average, mHz precision (30 μm/s at a 10 s integration time) for radial three-way Doppler estimates and sub-nanoradian precision for lateral position measurements, which in a linear measure (at a distance of 1.4 AU) corresponds to ~50 m.

  10. Planetary Radio Interferometry and Doppler Experiment (PRIDE) technique: A test case of the Mars Express Phobos fly-by

    CERN Document Server

    Duev, Dmitry A; Cimò, Giuseppe; Calvés, Guifré Molera; Bahamón, Tatiana M Bocanegra; Gurvits, Leonid I; Kettenis, Mark M; Kania, Joseph; Tudose, Valeriu; Rosenblatt, Pascal; Marty, Jean-Charles; Lainey, Valery; de Vicente, Pablo; Quick, Jonathan; Nickola, Marisa; Neidhardt, Alexander; Kronschnabl, Gerhard; Plötz, Christian; Haas, Rüdiger; Lindqvist, Michael; Orlati, Andrea; Ipatov, Alexander V; Kharinov, Mikhail A; Mikhailov, Andrey G; Lovell, Jim; McCallum, Jamie; Stevens, Jamie; Gulyaev, Sergei A; Natush, Tim; Weston, Stuart; Wang, Weihua; Xia, Bo; Yang, Wenjun; Hao, Long-Fei; Kallunki, Juha; Witasse, Olivier

    2016-01-01

    The closest ever fly-by of the Martian moon Phobos, performed by the European Space Agency's Mars Express spacecraft, gives a unique opportunity to sharpen and test the Planetary Radio Interferometry and Doppler Experiments (PRIDE) technique in the interest of studying planet - satellite systems. The aim of this work is to demonstrate a technique of providing high precision positional and Doppler measurements of planetary spacecraft using the Mars Express spacecraft. The technique will be used in the framework of Planetary Radio Interferometry and Doppler Experiments in various planetary missions, in particular in fly-by mode. We advanced a novel approach to spacecraft data processing using the techniques of Doppler and phase-referenced very long baseline interferometry spacecraft tracking. We achieved, on average, mHz precision (30 {\\mu}m/s at a 10 seconds integration time) for radial three-way Doppler estimates and sub-nanoradian precision for lateral position measurements, which in a linear measure (at a d...

  11. Doppler term in the galaxy two-point correlation function: wide-angle, velocity, Doppler lensing and cosmic acceleration effects

    OpenAIRE

    Raccanelli, Alvise; Bertacca, Daniele; Jeong, Donghui; Neyrinck, Mark C.; Szalay, Alexander S.

    2016-01-01

    We study the parity-odd part (that we shall call Doppler term) of the linear galaxy two-point correlation function that arises from wide-angle, velocity, Doppler lensing and cosmic acceleration effects. As it is important at low redshift and at large angular separations, the Doppler term is usually neglected in the current generation of galaxy surveys. For future wide-angle galaxy surveys such as Euclid, SPHEREx and SKA, however, we show that the Doppler term must be included. The effect of t...

  12. Offshore Wind Measurements Using Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center

    Science.gov (United States)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-01-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  13. TIMED Doppler Interferometer on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite: Data product overview

    Science.gov (United States)

    Niciejewski, R.; Wu, Q.; Skinner, W.; Gell, D.; Cooper, M.; Marshall, A.; Killeen, T.; Solomon, S.; Ortland, D.

    2006-11-01

    The TIMED Doppler Interferometer (TIDI) performs the measurement of upper atmospheric winds on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite. This is an optimized single etalon Fabry Perot interferometer that records the slight Doppler shift of individual emission features of the O2 (0,0) atmospheric band. The interferometer operates at a 100% duty cycle obtaining neutral wind altitude profiles on a global basis. The measurements are synoptic and provide an uninterrupted long-term climatological record of the dynamics in the mesosphere and lower thermosphere regions. The data products from TIDI include (1) apparent line of sight winds and integrated brightness, (2) inverted line of sight winds and volume emission rate, and (3) inverted horizontal neutral wind fields on an evenly spaced track angle/altitude grid. The data products demonstrate an interannual variability in the tidal structure of the mesosphere and the lower thermosphere and an inherent daily geophysical variance.

  14. Nonlinear Doppler - Free comb-spectroscopy in counter-propagating fields

    CERN Document Server

    Pulkin, S A; Arnautov, V; Uvarova, S V; Savel'eva, S

    2014-01-01

    The method of Doppler - free comb - spectroscopy for dipole transitions was proposed. The calculations for susceptibility spectrum for moving two-level atoms driving by strong counter propagating combs have been done. The used theoretical method based on the Fourier expansion of the components of density matrix on two rows on kv (v-velocity of group of atoms, k-projection of wave vector) and {\\Omega} (frequency between comb components). For testing of validity of this method the direct numerical integration was done. The narrow peaks with homogeneous width arise on the background of Doppler counter. The contrast of these peaks is large for largest amplitudes of comb-components. Power broadening is increasing with increase of field amplitudes. The spectral range of absorption spectrum is determined by the spectral range of comb generator and all homogeneous lines arise simultaneously. The spectral resolution is determined by the width of homogeneously-broadening lines. The physical nature of narrow peaks is in...

  15. Magnetic Doppler imaging considering atmospheric structure modifications due to local abundances: a luxury or a necessity?

    CERN Document Server

    Kochukhov, O; Shulyak, D

    2012-01-01

    Magnetic Doppler imaging is currently the most powerful method of interpreting high-resolution spectropolarimetric observations of stars. This technique has revealed the presence of unexpected small-scale magnetic fields on the surfaces of Ap stars. These studies were recently criticisied by Stift et al. (2012), who claimed that magnetic inversions are not robust and are undermined by neglecting a feedback on the Stokes line profiles from the local atmospheric structure in the regions of enhanced metal abundance. We show that Stift et al. misinterpreted published magnetic Doppler imaging results and neglected some of the most fundamental principles behind magnetic mapping. We demonstrate that the variation of atmospheric structure across the surface of a star with chemical spots affects the local continuum intensity but is negligible for the normalised local Stokes profiles. For the disk-integrated spectra of an Ap star with extreme abundance variations, we find that the assumption of a mean model atmosphere ...

  16. Offshore wind measurements using Doppler aerosol wind lidar (DAWN) at NASA Langley Research Center

    Science.gov (United States)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-06-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  17. Doppler ultrasound scan during normal gestation: umbilical circulation; Ecografia Doppler en la gestacion normal: circulacion umbilical

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, T.; Sabate, J.; Martinez-Benavides, M. M.; Sanchez-Ramos, J. [Hospital Virgen Macarena. Sevilla (Spain)

    2002-07-01

    To determine normal umbilical circulation patterns by means of Doppler ultrasound scan in a healthy gestating population without risk factors and with normal perinatal results, and to evaluate any occurring modifications relative to gestational age by obtaining records kept during pregnancy. One hundred and sixteen pregnant women carrying a single fetus have been studied. These women had no risk factors, with both clinical and analytical controls, as well as ultrasound scans, all being normal. There were performed a total of 193 Doppler ultrasound scans between weeks 15 and 41 of gestation, with blood-flow analysis in the arteries and vein of the umbilical cord. The obtained information was correlated with parameters that evaluate fetal well-being (fetal monitoring and/or oxytocin test) and perinatal result (delivery type, birth weight, Apgar score). Statistical analysis was performed with the programs SPSS 6.0.1 for Windows and EPIINFO 6.0.4. With pulsed Doppler, the umbilical artery in all cases demonstrated a biphasic morphology with systolic and diastolic components and without retrograde blood flow. As the gestation period increased, there was observed a progressive decrease in resistance along with an increase in blood-flow velocity during the diastolic phase. The Doppler ultrasound scan is a non-invasive method that permits the hemodynamic study of umbilical blood circulation. A knowledge of normal blood-flow signal morphology, as well as of the normal values for Doppler indices in relation to gestational age would permit us to utilize this method in high-risk pregnancies. (Author) 30 refs.

  18. Initial Results from the XUV Doppler Telescope

    Science.gov (United States)

    Kano, R.; Hara, H.; Kobayashi, K.; Kumagai, K.; Nagata, S.; Sakao, T.; Shimizu, T.; Tsuneta, S.; Yoshida, T.

    We developed a unique telescope to obtain simultaneous XUV images and the velocity maps by measuring the line-of-sight Doppler shifts of the Fe XIV 211A&ring line (T = 1.8 MK): the Solar XUV Doppler Telescope (hereafter XDT). The telescope was launched by the Institute of Space and Astronautical Science with the 22nd S520 rocket on January 31, 1998, and took 14 XUV whole sun images during 5 minutes. Simultaneous observations of XDT with Yohkoh (SXT), SOHO (EIT, CDS, LASCO and MDI) were successfully carried out. The images taken with EIT, XDT and SXT are able to cover the wide temperature ranging from 1 to 10 MK, and clearly show the multi-temperature nature of the solar corona. Indeed, we notice that both the cool (1-2 MK) loops observed with EIT and XDT, and the hot (>3 MK) loops observed with SXT exist in the same active regions but in a spatially exclusive way. The XDT red-blue ratio between longer- and shorter-wavelength bands of Fe XIV 211A&ring line indicates a possible down-flow of 1.8 MK plasma near the footpoints of multiple cool loops

  19. Functional Doppler optical coherence tomography for cortical blood flow imaging

    Science.gov (United States)

    Yu, Lingfeng; Liu, Gangjun; Nguyen, Elaine; Choi, Bernard; Chen, Zhongping

    2010-02-01

    Optical methods have been widely used in basic neuroscience research to study the cerebral blood flow dynamics in order to overcome the low spatial resolution associated with magnetic resonance imaging and positron emission tomography. Although laser Doppler imaging and laser speckle imaging can map out en face cortical hemodynamics and columns, depth resolution is not available. Two-photon microscopy has been used for mapping cortical activity. However, flow measurement requires fluorescent dye injection, which can be problematic. The noninvasive and high resolution tomographic capabilities of optical coherence tomography make it a promising technique for mapping depth resolved cortical blood flow. Here, we present a functional Doppler optical coherence tomography (OCT) imaging modality for quantitative evaluation of cortical blood flow in a mouse model. Fast, repeated, Doppler OCT scans across a vessel of interest were performed to record flow dynamic information with a high temporal resolution of the cardiac cycles. Spectral Doppler analysis of continuous Doppler images demonstrates how the velocity components and longitudinally projected flow-volume-rate change over time, thereby providing complementary temporal flow information to the spatially distributed flow information of Doppler OCT. The proposed functional Doppler OCT imaging modality can be used to diagnose vessel stenosis/blockage or monitor blood flow changes due to pharmacological agents/neuronal activities. Non-invasive in-vivo mice experiments were performed to verify the capabilities of function Doppler OCT.

  20. Measurement of depth of burns by laser Doppler perfusion imaging

    NARCIS (Netherlands)

    Droog, E.J.; Droog, E.J.; Steenbergen, Wiendelt; Sjöberg, F.

    2001-01-01

    Laser Doppler perfusion imaging (LDPI), is a further development in laser Doppler flowmetry (LDF). Its advantage is that it enables assessment of microvascular blood flow in a predefined skin area rather than, as for LDF, in one place. In many ways this method seems to be more promising than LDF in

  1. Micro-Doppler classification of riders and riderless horses

    Science.gov (United States)

    Tahmoush, David

    2014-05-01

    Micro-range Micro-Doppler can be used to isolate particular parts of the radar signature, and in this case we demonstrate the differences in the signature between a walking horse versus a walking horse with a rider. Using micro-range micro-Doppler, we can distinguish the radar returns from the rider as separate from the radar returns of the horse.

  2. A Rayleigh Doppler Frequency Estimator Derived from Maximum Likelihood Theory

    DEFF Research Database (Denmark)

    Hansen, Henrik; Affes, Sofiene; Mermelstein, Paul

    1999-01-01

    Reliable estimates of Rayleigh Doppler frequency are useful for the optimization of adaptive multiple access wireless receivers.The adaptation parameters of such receivers are sensitive to the amount of Doppler and automatic reconfiguration to the speed of terminalmovement can optimize cell...

  3. Measurement of depth of burns by laser Doppler perfusion imaging

    NARCIS (Netherlands)

    Droog, E.J.; Steenbergen, W.; Sjöberg, F.

    2001-01-01

    Laser Doppler perfusion imaging (LDPI), is a further development in laser Doppler flowmetry (LDF). Its advantage is that it enables assessment of microvascular blood flow in a predefined skin area rather than, as for LDF, in one place. In many ways this method seems to be more promising than LDF in

  4. Compressive sensing for high resolution profiles with enhanced Doppler performance

    NARCIS (Netherlands)

    Anitori, L.; Hoogeboom, P.; Chevalier, F. Le; Otten, M.P.G.

    2012-01-01

    In this paper we demonstrate how Compressive Sensing (CS) can be used in pulse-Doppler radars to improve the Doppler performance while preserving range resolution. We investigate here two types of stepped frequency waveforms, the coherent frequency bursts and successive frequency ramps, which can be

  5. An elementary approach to the gravitational Doppler shift

    Science.gov (United States)

    Wörner, C. H.; Rojas, Roberto

    2017-01-01

    In college physics courses, treatment of the Doppler effect is usually done far from the first introduction to kinematics. This paper aims to apply a graphical treatment to describe the gravitational redshift, by considering the Doppler effect in two accelerated reference frames and exercising the equivalence principle. This approach seems appropriate to discuss with beginner students and could serve to enrich the didactic processes.

  6. Detection and visualization to Doppler sensitive sonar pulses

    NARCIS (Netherlands)

    Bertrand, D.B.; IJsselmuide, S.P. van; Beerens, S.P.

    2006-01-01

    In anti-submarine warfare, the use of Doppler sensitive sonar pulses is common practice. In particular, the wideband Doppler sensitive PTFM pulse (Pulse Train Frequency Modulation) is a powerful tool for detection in reverberation limited conditions. Nevertheless, this pulse is not operationally

  7. The value of Doppler ultrasound in cirrhosis and portal hypertension

    NARCIS (Netherlands)

    Kok, T; van der Jagt, EJ; Haagsma, EB; Bijleveld, CMA; Jansen, PLM; Boeve, WJ

    1999-01-01

    Background: Cirrhosis and portal hypertension affect the flow profile of the liver vasculature. In these conditions Doppler ultrasound can provide important information on the hemodynamics of the portal venous system, the hepatic artery and the hepatic veins. Methods: The value of Doppler ultrasound

  8. A Rayleigh Doppler frequency estimator derived from maximum likelihood theory

    DEFF Research Database (Denmark)

    Hansen, Henrik; Affes, Sofiéne; Mermelstein, Paul

    1999-01-01

    Reliable estimates of Rayleigh Doppler frequency are useful for the optimization of adaptive multiple access wireless receivers. The adaptation parameters of such receivers are sensitive to the amount of Doppler and automatic reconfiguration to the speed of terminal movement can optimize cell cap...

  9. Use of GPS network data for HF Doppler measurements interpretation

    CERN Document Server

    Petrova, Inna R; Latypov, Ruslan R

    2014-01-01

    The method of measurement of Doppler frequency shift of ionospheric signal - HF Doppler technique - is one of well-known and widely used methods of ionosphere research. It allows to research various disturbances in the ionosphere. There are some sources of disturbances in the ionosphere. These are geomagnetic storms, solar flashes, metrological effects, atmospheric waves. This method allows to find out the influence of earthquakes, explosions and other processes on the ionosphere, which occur near to the Earth. HF Doppler technique has the high sensitivity to small frequency variations and the high time resolution, but interpretation of results is difficult. In this work we make an attempt to use GPS data for Doppler measurements interpretation. Modeling of Doppler frequency shift variations with use of TEC allows to separate ionosphere disturbances of medium scale.

  10. Embolic Doppler ultrasound signal detection via fractional Fourier transform.

    Science.gov (United States)

    Gençer, Merve; Bilgin, Gökhan; Aydın, Nizamettin

    2013-01-01

    Computerized analysis of Doppler ultrasound signals can aid early detection of asymptomatic circulating emboli. For analysis, physicians use informative features extracted from Doppler ultrasound signals. Time -frequency analysis methods are useful tools to exploit the transient like signals such as Embolic signals. Detection of discriminative features would be the first step toward automated analysis of embolic Doppler ultrasound signals. The most problematic part of setting up emboli detection system is to differentiate embolic signals from confusing similar wave-like patterns such as Doppler speckle and artifacts caused by tissue movement, probe tapping, speaking etc. In this study, discrete version of fractional Fourier transform is presented as a solution in the detection of emboli in digitized Doppler ultrasound signals. An accurate set of parameters are extracted using short time Fourier transform and fractional Fourier transform and the results are compared to reveal detection quality. Experimental results prove the efficiency of fractional Fourier transform in which discriminative features becomes more evident.

  11. One way Doppler extractor. Volume 1: Vernier technique

    Science.gov (United States)

    Blasco, R. W.; Klein, S.; Nossen, E. J.; Starner, E. R.; Yanosov, J. A.

    1974-01-01

    A feasibility analysis, trade-offs, and implementation for a One Way Doppler Extraction system are discussed. A Doppler error analysis shows that quantization error is a primary source of Doppler measurement error. Several competing extraction techniques are compared and a Vernier technique is developed which obtains high Doppler resolution with low speed logic. Parameter trade-offs and sensitivities for the Vernier technique are analyzed, leading to a hardware design configuration. A detailed design, operation, and performance evaluation of the resulting breadboard model is presented which verifies the theoretical performance predictions. Performance tests have verified that the breadboard is capable of extracting Doppler, on an S-band signal, to an accuracy of less than 0.02 Hertz for a one second averaging period. This corresponds to a range rate error of no more than 3 millimeters per second.

  12. Doppler-cancelled response to VLF gravitational waves

    Science.gov (United States)

    Caporali, A.

    1981-01-01

    The interaction of long periodic gravitational waves with a three link microwave system known as the Doppler Cancelling System is discussed. This system, which was developed for a gravitational redshift experiment, uses one-way and two-way Doppler informatin to construct the beat signal of two reference oscillators moving with respect to each other. The geometric optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational wave space-time. The signature left on the Doppler-cancelled beat by burst and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler Cancelling System and that of a Doppler tracking system which employs two-way, round-trip radio waves. A three-fold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences.

  13. Limits on Planetary Companions from Doppler Surveys of Nearby Stars

    CERN Document Server

    Howard, Andrew W

    2016-01-01

    Most of our knowledge of planets orbiting nearby stars comes from Doppler surveys. For spaced-based, high-contrast imaging missions, nearby stars with Doppler-discovered planets are attractive targets. The known orbits tell imaging missions where and when to observe, and the dynamically-determined masses provide important constraints for the interpretation of planetary spectra. Quantifying the set of planet masses and orbits that could have been detected will enable more efficient planet discovery and characterization. We analyzed Doppler measurements from Lick and Keck Observatories collected by the California Planet Survey. We focused on stars that are likely targets for three space-based planet imaging mission concepts studied by NASA--WFIRST-AFTA, Exo-C, and Exo-S. The Doppler targets are primarily F8 and later main sequence stars, with observations spanning 1987-2014. We identified 76 stars with Doppler measurements from the prospective mission target lists. We developed an automated planet search and a ...

  14. Doplerovi brodski navigacioni brzinomjeri / Maritime navigational Doppler logs

    Directory of Open Access Journals (Sweden)

    Milovan Unković

    2006-01-01

    Full Text Available Doplerovi navigacioni brodski brzinomjeri rade na principu Doplerovog efekta. Doplerov predajni projektor emituje snop ultrazvučnih vibracija u vodi, a drugi (ili isti projektor prima odbijeni signal od dna ili od sloja vode. U ovom radu opisana je teorija Doplerovog efekta, primjena te teorije na brodskim brzinomjerima, konstrukcija i karakteristike savremenih Doplerovih brzinomjera. / The Doppler maritime navigational logs are based on measurement of the Doppler effect. A Doppler log transmitting transducer emits beam of sound vibration in the water, and a second (or the same transducer receives the echo from the sea bed or -water layer. In this article describes theory of Doppler effect, using this theory in maritime logs, construction and performance of modern Doppler logs.

  15. TIMED Doppler Interferometer: Overview and recent results

    Science.gov (United States)

    Killeen, T. L.; Wu, Q.; Solomon, S. C.; Ortland, D. A.; Skinner, W. R.; Niciejewski, R. J.; Gell, D. A.

    2006-10-01

    The Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite carries a limb-scanning Fabry-Perot interferometer designed to perform remote-sensing measurements of upper atmosphere winds and temperatures globally. This instrument is called the TIMED Doppler Interferometer, or TIDI. This paper provides an overview of the TIDI instrument design, on-orbit performance, operational modes, data processing and inversion procedures, and a summary of wind results to date. Daytime and nighttime neutral winds in the mesosphere and lower thermosphere/ionosphere (MLTI) are measured on TIDI using four individual scanning telescopes that collect light from various upper atmosphere airglow layers on both the cold and warm sides of the high-inclination TIMED spacecraft. The light is spectrally analyzed using an ultrastable plane etalon Fabry-Perot system with sufficient spectral resolution to determine the Doppler line characteristics of atomic and molecular emissions emanating from the MLTI. The light from all four telescopes and from an internal calibration field passes through the etalon and is combined on a single image plane detector using a Circle-to-Line Interferometer Optic (CLIO). The four geophysical fields provide orthogonal line-of-sight measurements to either side of the satellite's path and these are analyzed to produce altitude profiles of vector winds in the MLTI. The TIDI wind measurements presented here are from the molecular oxygen (0-0) band, covering the altitude region 85-105 km. The unique TIDI design allows for more extended local time coverage of wind structures than previous wind-measuring instruments from high-inclination satellites. The TIDI operational performance has been nominal except for two anomalies: (1) higher than expected background white light caused by a low-level light leak and (2) ice deposition on cold optical surfaces. Both anomalies are well understood and the instrumental modes and data analysis techniques have been

  16. Avaliação dos tumores hepáticos ao Doppler Doppler evaluation of liver tumors

    Directory of Open Access Journals (Sweden)

    Márcio Martins Machado

    2004-10-01

    Full Text Available Os avanços recentes na ultra-sonografia têm ampliado a possibilidade de detecção de tumores hepáticos. Isto tem auxiliado na perspectiva de melhora do prognóstico destes pacientes, à medida que novas técnicas terapêuticas têm surgido. Neste artigo os autores relatam achados ao Doppler que podem auxiliar na identificação e caracterização dos tumores hepáticos, avaliando dados do Doppler colorido, pulsado e do Doppler de amplitude ("power Doppler". Fazem, também, referência a novas modalidades de imagem, como o uso da harmônica.Recent advances in ultrasound have optimized the detection of liver tumors and helped to improve the prognosis of patients with this condition as newly developed and improved therapeutic modalities have been established. The authors review important Doppler findings which may help in the identification and characterization of some hepatic tumors through the evaluation of color Doppler, pulsed Doppler and power Doppler features. New imaging methods such as the use of harmonics imaging are also reviewed.

  17. Universal miniaturized signal evaluation for laser doppler anemometers; Universelle Miniatur-Signalauswertung fuer die Laser Doppler Anemometrie

    Energy Technology Data Exchange (ETDEWEB)

    Wnuck, J. von; Strunck, V.; Dopheide, D.

    1994-01-01

    A laser doppler anemometer (LDA) is a contactless optical sensor for flow rate measurement. Interference of two laser beams generates a measuring volume with interference lines in the point of intersection. A particle moving through the measuring volume with a current scatters light modulated wiith the doppler frequency, which is received by a detector. The frequency of the doppler-modulated light is proportional to the velocity of the particle. The report describes the technical details of an electronic evaluation system for laser doppler signals in the time range using programmable gate arrays by Xilinix. (orig.) [Deutsch] Ein Laser Doppler Anemometer (LDA) ist ein beruehrungsloser optischer Sensor, der Stroemungsgeschwindigkeiten misst. Die Ueberlagerung zweier Laserstrahlen erzeugt im Schnittpunkt ein Messvolumen mit Inferenzstreifen. Ein Teilchen, das sich mit einer Stroemung durch das Messvolumen bewegt, streut mit der Doppelfrequenz des Doppler moduliertes Licht, das von einem Detektor empfangen wird. Die Frequenz des Doppler-modulierten Lichts ist der Geschwindigkeit des Teilchens proportional. Hier wird die technische Realisierung einer Auswerteelektronik fuer Laser Doppler Signale im Zeitbereich mit programmierbaren Gate-Arrays von Xilinx beschrieben. (orig.)

  18. Color Doppler US of superficial adenopathies; Il color Doppler nelle adenopatie superficiali

    Energy Technology Data Exchange (ETDEWEB)

    Giovagnorio, F. [Rome Univ. (Italy). 1. Cattedra di Radiologia

    1999-03-01

    Superficial lymph node are frequently involved in different diseases. Their location makes them suitable for effective assessment with high-resolution US and color Doppler has been recently suggested as a tool for increasing sensitivity in lymph node studies. Thus the author investigated the main vascular patterns detectable in abnormal superficial lymph nodes. [Italian] Numerosa malattie con natura differente coinvolgono i linfonodi superficiali: la localizzazione ne consente l'esplorazione con ecografia con alta risoluzione e lo studio mediante eco color Doppler e' stato proposto negli ultimi anni incontrando notevole sviluppo in tempi recenti. Scopo del lavoro e' illustrare il contributo personale nella definizione dei principali quadri riscontrabili nelle diverse adenopatie superficiali.

  19. Fractal fluctuations in transcranial Doppler signals

    Science.gov (United States)

    West, B. J.; Zhang, R.; Sanders, A. W.; Miniyar, S.; Zuckerman, J. H.; Levine, B. D.

    1999-03-01

    Cerebral blood flow (CBF) velocity measured using transcranial Doppler ultrasonography (TCD) is not strictly constant, but has both a systematic and random component. This behavior may indicate that the axial blood flow in the middle cerebral artery is a chaotic process. Herein we use the relative dispersion, the ratio of the standard deviation to the mean, to show by systematically aggregating the data that the correlation in the beat-to-beat CBF time series is a modulated inverse power law. This scaling of the CBF time series indicates the existence of long-time memory in the underlying control process. We argue herein that the control system has allometric properties that enable it to maintain a relatively constant brain perfusion.

  20. Role of transcranial Doppler in cerebrovascular disease

    Directory of Open Access Journals (Sweden)

    Amit A Kulkarni

    2016-01-01

    Full Text Available Transcranial Doppler (TCD is the only noninvasive modality for the assessment of real-time cerebral blood flow. It complements various anatomic imaging modalities by providing physiological-flow related information. It is relatively cheap, easily available, and can be performed at the bedside. It has been suggested as an essential component of a comprehensive stroke centre. In addition to its importance in acute cerebrovascular ischemia, its role is expanding in the evaluation of cerebral hemodynamics in various disorders of the brain. The “established” clinical indications for the use of TCD include cerebral ischemia, sickle cell disease, detection of right-to-left shunts, subarachnoid hemorrhage, periprocedural or surgical monitoring, and brain death. We present the role of TCD in acute cerebrovascular ischemia, sonothrombolysis, and intracranial stenosis.

  1. The Doppler peaks from a generic defect

    CERN Document Server

    Magueijo, J

    1996-01-01

    We investigate which of the exotic Doppler peak features found for textures and cosmic strings are generic novelties pertaining to defects. We find that the ``out of phase'' texture signature is an accident. Generic defects, when they generate a secondary peak structure similar to inflation, apply to it an additive shift. It is not necessary for this shift to be ``out of phase''. We also show which factors are responsible for the absence of secondary oscillations found for cosmic strings. Within this general analysis we finally consider the conditions under which topological defects and inflation can be confused. It is argued that only \\Omega=1 inflation and a defect with a horizon size coherence length have a chance to be confused. Any other inflationary or defect model always differ distinctly. (To appear in the proceedings of the XXXIth Moriond meeting, ``Microwave Background Anisotropies'')

  2. Laser Doppler vibrometry: new ENT applications

    Science.gov (United States)

    Stasche, Norbert; Baermann, M.; Kempe, C.; Hoermann, Karl; Foth, Hans-Jochen

    1996-12-01

    Common audiometry often does not really allow a reliable and objective differential diagnosis of hearing disorders such as otosclerosis, adhesive otitis, ossicular interruption or tinnitus, even though several methods might be used complementarily. In recent years, some experimental studies on middle ear mechanics established laser Doppler vibrometry (LDV) as a useful method allowing objective measurement of human tympanic membrane displacement. The present study on LDV investigated the clinical use of this new method under physiological conditions. LDV proved to be a fast, reproducible, non-invasive and very sensitive instrument to characterize ear-drum vibrations in various middle ear dysfunctions, except in tinnitus patients. For future applications, improved optical characteristics of the vibrometer might result in a better differential diagnosis of subjective and objective tinnitus, otoacoustic emissions or Morbus Meniere.

  3. Heartrate variation of umbilical artery Doppler waveforms.

    Science.gov (United States)

    Hoskins, P R; Johnstone, F D; Chambers, S E; Haddad, N G; White, G; McDicken, W N

    1989-01-01

    Umbilical artery Doppler waveforms from 20 patients were used to investigate the dependence of resistance index and pulsatility index on beat to beat pulse length over short time periods for individual patients, and on the usefulness of a common normalisation formula. For individual patients the resistance index and pulsatility index were only partially correlated with pulse length. Changes in both indices occurred independently of pulse length. Use of a common normalisation formula resulted in no significant reduction of the coefficient of variation of the resistance index (p greater than 0.1), and a reduction in the coefficient of variation of the pulsatility index of 10% (p greater than 0.001). It is concluded that short term changes in resistance index and pulsatility index cannot be corrected by a common normalisation formula.

  4. Correlation and Sequential Filtering with Doppler Measurements

    Institute of Scientific and Technical Information of China (English)

    WANGJianguo; HEPeikun; HANYueqiu; WUSiliang

    2004-01-01

    Two sequential filters are developed for Doppler radar measurements in the presence of correlation between range and range rate measurement errors. Two ideal linear measurement equations with the pseudo measurements are constructed via block-partitioned Cholesky factorization and the practical measurement equationswith the pseudo measurements are obtained through the direction cosine estimation and error compensation. The resulting sequential filters make the position measurement be possibly processed before the pseudo measurement and hence the more accurate direction cosine estimate can be obtained from the filtered position estimate rather than the predicted state estimate. The numerical simulations with different rangerange rate correlation coefficients show thatthe proposed two sequential filters are almost equivalent in performance but both superior to the conventional extended Kalman filter for different correlation coefficients.

  5. Doppler cooling and trapping on forbidden transitions.

    Science.gov (United States)

    Binnewies, T; Wilpers, G; Sterr, U; Riehle, F; Helmcke, J; Mehlstäubler, T E; Rasel, E M; Ertmer, W

    2001-09-17

    Ultracold atoms at temperatures close to the recoil limit have been achieved by extending Doppler cooling to forbidden transitions. A cloud of (40)Ca atoms has been cooled and trapped to a temperature as low as 6 microK by operating a magnetooptical trap on the spin-forbidden intercombination transition. Quenching the long-lived excited state with an additional laser enhanced the scattering rate by a factor of 15, while a high selectivity in velocity was preserved. With this method, more than 10% of precooled atoms from a standard magnetooptical trap have been transferred to the ultracold trap. Monte Carlo simulations of the cooling process are in good agreement with the experiments.

  6. Phase Doppler anemometry as an ejecta diagnostic

    Science.gov (United States)

    Bell, D. J.; Chapman, D. J.

    2017-01-01

    When a shock wave is incident on a free surface, micron sized pieces of the material can be ejected from that surface. Phase Doppler Anemometry (PDA) is being developed to simultaneously measure the sizes and velocities of the individual shock induced ejecta particles; providing an important insight into ejecta phenomena. The results from experiments performed on the 13 mm bore light gas gun at the Institute of Shock Physics, Imperial College London are presented. Specially grooved tin targets were shocked at pressures of up to 14 GPa, below the melt on release pressure, to generate ejecta particles. These experiments are the first time that PDA has been successfully fielded on dynamic ejecta experiments. The results and current state of the art of the technique are discussed along with the future improvements required to optimise performance and increase usability.

  7. Calibration of a cw infrared Doppler lidar.

    Science.gov (United States)

    Schwiesow, R L; Cupp, R E

    1980-09-15

    A moving scattering target used as a transfer standard allows absolute calibration of the response of a cw Doppler lidar to an atmospheric target. The lidar in this study operated at a 10.6-microm wavelength. Consideration of the distribution of radiant energy density near the focus of the lidar transceiver permits measurement of a backscatter coefficient from a distributed array of scatterers, such as atmospheric aerosols, based on the diffuse reflectance of the surface of the transfer standard. The minimum detectable signal for our system with a 5-sec averaging time corresponds to a backscatter coefficient of 2.4 x 10(-12) m (-1) sr (-1) +/- 2.5 dB, which is ~ 9 dB greater than the theoretical threshold. Calibration shows that the lidar response is 5+/-1 dB less than the ideal limit for signal powers well above the minimum detectable signal.

  8. The recondite intricacies of Zeeman Doppler mapping

    CERN Document Server

    Stift, M J; Cowley, C R

    2011-01-01

    We present a detailed analysis of the reliability of abundance and magnetic maps of Ap stars obtained by Zeeman Doppler mapping (ZDM). It is shown how they can be adversely affected by the assumption of a mean stellar atmosphere instead of appropriate "local" atmospheres corresponding to the actual abundances in a given region. The essenceof the difficulties was already shown by Chandrasekhar's picket-fence model. The results obtained with a suite of Stokes codes written in the Ada programming language and based on modern line-blanketed atmospheres are described in detail. We demonstrate that the high metallicity values claimed to have been found in chemically inhomogeneous Ap star atmospheres would lead to local temperature structures, continuum and line intensities, and line shapes that differ significantly from those predicted by a mean stellar atmosphere. Unfortunately, past applications of ZDM have consistently overlooked the intricate aspects of metallicity with their all-pervading effects. The erroneou...

  9. Position finding using simple Doppler sensors

    Science.gov (United States)

    Schelkshorn, S.; Detlefsen, J.

    2007-06-01

    An increasing number of modern applications and services is based on the knowledge of the users actual position. Depending on the application a rough position estimate is sufficient, e. g. services in cellular networks that use the information about the users actual cell. Other applications, e. g. navigation systems use the GPS-System for accurate position finding. Beyond these outdoor applications a growing number of indoor applications requires position information. The previously mentioned methods for position finding (mobile cell, GPS) are not usable for these indoor applications. Within this paper we will present a system that relies on the simultaneous measurement of doppler signals at four different positions to obtain position and velocity of an unknown object. It is therefore suiteable for indoor usage, extendig already existing wireless infrastructure.

  10. Microscale Heat Conduction Models and Doppler Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Hawari, Ayman I. [North Carolina State Univ., Raleigh, NC (United States); Ougouag, Abderrafi [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-22

    The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperature rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.

  11. Doppler time-of-flight imaging

    KAUST Repository

    Heidrich, Wolfgang

    2017-02-16

    Systems and methods for imaging object velocity are provided. In an embodiment, at least one Time-of-Flight camera is used to capture a signal representative of an object in motion over an exposure time. Illumination and modulation frequency of the captured motion are coded within the exposure time. A change of illumination frequency is mapped to measured pixel intensities of the captured motion within the exposure time, and information about a Doppler shift in the illumination frequency is extracted to obtain a measurement of instantaneous per pixel velocity of the object in motion. The radial velocity information of the object in motion can be simultaneously captured for each pixel captured within the exposure time. In one or more aspects, the illumination frequency can be coded orthogonal to the modulation frequency of the captured motion. The change of illumination frequency can correspond to radial object velocity.

  12. Analytic radar micro-Doppler signatures classification

    Science.gov (United States)

    Oh, Beom-Seok; Gu, Zhaoning; Wang, Guan; Toh, Kar-Ann; Lin, Zhiping

    2017-06-01

    Due to its capability of capturing the kinematic properties of a target object, radar micro-Doppler signatures (m-DS) play an important role in radar target classification. This is particularly evident from the remarkable number of research papers published every year on m-DS for various applications. However, most of these works rely on the support vector machine (SVM) for target classification. It is well known that training an SVM is computationally expensive due to its nature of search to locate the supporting vectors. In this paper, the classifier learning problem is addressed by a total error rate (TER) minimization where an analytic solution is available. This largely reduces the search time in the learning phase. The analytically obtained TER solution is globally optimal with respect to the classification total error count rate. Moreover, our empirical results show that TER outperforms SVM in terms of classification accuracy and computational efficiency on a five-category radar classification problem.

  13. Widefield laser doppler velocimeter: development and theory.

    Energy Technology Data Exchange (ETDEWEB)

    Hansche, Bruce David; Reu, Phillip L.; Massad, Jordan Elias

    2007-03-01

    The widefield laser Doppler velocimeter is a new measurement technique that significantly expands the functionality of a traditional scanning system. This new technique allows full-field velocity measurements without scanning, a drawback of traditional measurement techniques. This is particularly important for tests in which the sample is destroyed or the motion of the sample is non-repetitive. The goal of creating ''velocity movies'' was accomplished during the research, and this report describes the current functionality and operation of the system. The mathematical underpinnings and system setup are thoroughly described. Two prototype experiments are then presented to show the practical use of the current system. Details of the corresponding hardware used to collect the data and the associated software to analyze the data are presented.

  14. Doppler spectral characteristics of infrainguinal vein bypasses

    DEFF Research Database (Denmark)

    Nielsen, Tina G; von Jessen, F; Sillesen, H

    1993-01-01

    With the aim of assessing the velocity profile of femoropopliteal and femorocrural vein bypasses, 128 patients undergoing infrainguinal vein bypass surgery entered a postoperative Duplex surveillance protocol, which included clinical assessment and Duplex scanning, using Doppler spectral analysis...... of arteriovenous fistulas the initially antegrade diastolic velocity was replaced by a retrograde flow within 3 months, whereas a forward flow in diastole was sustained in grafts with patent fistulas. Abnormal Duplex findings in 31 patients led to angiography and revision in 13 cases. Four revised grafts failed......, while nine remained patent at follow-up 1-12 months later. Ten (56%) of 18 non-revised bypasses with abnormal Duplex findings failed within 9 months compared to 1 (1%) of 76 bypasses with a normal velocity profile (p analysis provides...

  15. Ultrasonic intrusion sensor using the Doppler effect; Choonpa Doppler hoshiki shinnyu sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kani, H.; Iwasaki, N.; Goto, M. [Nippon Soken, Inc., Tokyo (Japan); Tsuzuki, T.; Nakamura, T. [Denso Corp., Aichi (Japan)

    1997-10-01

    For vehicle anti-theft alarm systems which cope with vehicle and car component theft, EU initiated vehicle security regulations from Jan 1997. Also, the insurance industry has instituted the insurance certification of vehicle anti-theft alarm systems. We have developed an ultrasonic intrusion sensor using the doppler effect for vehicle anti-theft alarm systems specifically for these EU regulations and insurance certification. 2 refs., 7 figs., 1 tab.

  16. Laser Doppler flowmetry in endodontics: a review.

    Science.gov (United States)

    Jafarzadeh, H

    2009-06-01

    Vascular supply is the most accurate marker of pulp vitality. Tests for assessing vascular supply that rely on the passage of light through a tooth have been considered as possible methods for detecting pulp vitality. Laser Doppler flowmetry (LDF), which is a noninvasive, objective, painless, semi-quantitative method, has been shown to be reliable for measuring pulpal blood flow. The relevant literature on LDF in the context of endodontics up to March 2008 was reviewed using PubMed and MEDLINE database searches. This search identified papers published between June 1983 and March 2008. Laser light is transmitted to the pulp by means of a fibre optic probe. Scattered light from moving red blood cells will be frequency-shifted whilst that from the static tissue remains unshifted. The reflected light, composed of Doppler-shifted and unshifted light, is returned by afferent fibres and a signal is produced. This technique has been successfully employed for estimating pulpal vitality in adults and children, differential diagnosis of apical radiolucencies (on the basis of pulp vitality), examining the reactions to pharmacological agents or electrical and thermal stimulation, and monitoring of pulpal responses to orthodontic procedures and traumatic injuries. Assessments may be highly susceptible to environmental and technique-related factors. Nonpulpal signals, principally from periodontal blood flow, may contaminate the signal. Because this test produces no noxious stimuli, apprehensive or distressed patients accept it more readily than current methods of pulp vitality assessment. A review of the literature and a discussion of the application of this system in endodontics are presented.

  17. UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry in the diagnostics of alopecia

    Science.gov (United States)

    Skomorokha, Diana P.; Pigoreva, Yulia N.; Salmin, Vladimir V.

    2016-04-01

    Development of optical biopsy methods has a great interest for medical diagnostics. In clinical and experimental studies it is very important to analyze blood circulation quickly and accurately, thereby laser Doppler flowmetry (LDF) is widely used. UV laser-induced fluorescence spectroscopy (UV LIFS) is express highly sensitive and widely-spread method with no destructive impact, high excitation selectivity and the possibility to use in highly scattering media. The goal of this work was to assess a correlation of UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry parameters, and a possibility to identify or to differentiate various types of pathological changes in tissues according to their autofluorescence spectra. Three groups of patients with diffuse (symptomatic) alopecia, androgenic alopecia, and focal alopecia have been tested. Each groups consisted of not less than 20 persons. The measurements have been done in the parietal and occipital regions of the sculls. We used the original automated spectrofluorimeter to record autofluorescence spectra, and standard laser Doppler flowmeter BLF-21 (Transonic Systems, Inc., USA) to analyze the basal levels of blood circulation. Our results show that UV LIFS accurately distinguishes the zones with different types of alopecia. We found high correlation of the basal levels of blood circulation and the integrated intensity of autofluorescence in the affected tissue.

  18. Use of Doppler ultrasound for non-invasive urodynamic diagnosis

    Directory of Open Access Journals (Sweden)

    Hideo Ozawa

    2009-01-01

    Full Text Available Objectives: A totally non-invasive transperineal urodynamic technique using Doppler ultrasonography has been developed. Methods: Since normal urine does not have blood cells, urine was thought not to produce the Doppler effects. However, basic studies confirmed that the decrease of pressure at high velocity (Bernouilli effect caused dissolved gas to form microbubbles, which are detected by Doppler ultrasonography. Subjects sat and the probe was advanced via remote control to achieve gentle contact with the perineal skin. The digital uroflow data signals and the color Doppler ultrasound video images were processed on a personal computer. The flow-velocity curves from two sites; the distal prostatic urethra just above the external sphincter (V1 and the sphincteric urethra (V2 were plotted against time. The parameters of both the pressure-flow studies and the Doppler ultrasound urodynamic studies were compared in men who had various degrees of obstruction. Results: Functional cross-sectional area at prostatic urethra (A1, calculated by Q max /V1, was lower in the group of bladder outlet obstruction (BOO vs. control group. Velocity ratio (VR, which was calculated by V1/V2, was the parameter having the best correlation with BOO index, though A1 had a similar correlation. This method is viable to diagnose the degree of BOO. Conclusions: The development of non-invasive Doppler ultrasound videourodynamics (Doppler UDS will dramatically expand the information on voiding function.

  19. Doppler sensitivity and its effect on transatlantic TWSTFT links

    Science.gov (United States)

    Zhang, Shengkang; Parker, Thomas; Zhang, Victor

    2017-02-01

    Some investigations have concluded that the diurnal pattern in the time comparison results of present two way satellite time and frequency transfer (TWSTFT) links may come mainly from Doppler dependent errors in the time of arrival (TOA) measurements made by the receivers of the TWSTFT modems. In this paper, several experiments were carried out to test if there is a Doppler dependent error in the ‘delay’ measurements of the receivers currently used. By simulating quantitative Doppler effects in the time transfer signal both on the carrier and the code, a type of Doppler sensitivity on the code was observed in the receivers, which has about  -0.49 ns offset in ‘delay’ measurement for a 1  ×  10-9 fractional Doppler shift. This sensitivity is basically the same for modems with different serial numbers from the same manufacture. We calculated this Doppler caused diurnal pattern in the time comparison results of the transatlantic TWSTFT link between NIST and PTB and found that it is very small and negligible, because the Doppler dependent error is almost identical in the NIST and PTB measurements and therefore it is nearly canceled in the TWSTFT difference. Commercial products are identified for technical completeness only, and no endorsement by NIST is implied.

  20. Ionospheric observations made by a time-interleaved Doppler ionosonde

    Science.gov (United States)

    Lynn, Kenneth J. W.

    2008-10-01

    Mid-latitude HF observations of ionospheric Doppler velocity as a function of frequency are reported here as observed over a quiet 24-h period by a KEL IPS71 ionosonde operating at a 5-min sampling rate. The unique time-interleaving technique used in this ionosonde provided a Doppler resolution of 0.04 Hz over a Doppler range of ±2.5 Hz at each sounding frequency via FFT processing and is described here for the first time. The time-interleaving technique can be applied to other types of ionosonde as well as to other applications. The measurements described were made at a middle latitude site (Salisbury, South Australia). Doppler variations (rate-of-change of foF2 as predicted by a simple parabolic layer model. The descending cusp in short-period TIDs is shown to mark an abrupt change with increasing frequency from negative towards positive Doppler shift with the greatest change in Doppler shift being observed below the cusp. The “smilergram” is introduced as observed in both F2 and Sporadic E. The characteristic curve in Doppler versus group height at a single frequency is described and related to changes in reflection symmetry, velocity and depth of moving ionospheric inhomogeneities.

  1. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler

    Energy Technology Data Exchange (ETDEWEB)

    Sellar, Brian [Univ. of Edinburgh, Scotland (United Kingdom); Harding, Samuel F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, Marshall C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-07-16

    An array of convergent acoustic Doppler velocimeters has been developed and tested for the high resolution measurement of three-dimensional tidal flow velocities in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use diverging acoustic beams emanating from a single instrument. This is achieved using converging acoustic beams with a sample volume at the focal point of 0.03 m3. The array is also able to simultaneously measure three-dimensional velocity components in a profile throughout the water column, and as such is referred to herein as a converging-beam acoustic Doppler profiler (CADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational Alstom 1MW DeepGen-IV Tidal Turbine. This proof-of-concept paper outlines system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of CADP to standard ADP velocity measurements reveals a mean difference of 8 mm/s, standard deviation of 18 mm/s, and order-of-magnitude reduction in realizable length-scale. CADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the CADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved turbulence, resource and structural loading quantification and validation of numerical simulations. Alternative modes of operation have been implemented including noise-reducing bi-static sampling. Since waves are simultaneously measured it is expected that derivatives of this system will be a powerful tool in wave-current interaction studies.

  2. Pulsed Doppler echocardiographic analysis of mitral regurgitation after myocardial infarction.

    Science.gov (United States)

    Loperfido, F; Biasucci, L M; Pennestri, F; Laurenzi, F; Gimigliano, F; Vigna, C; Rossi, E; Favuzzi, A; Santarelli, P; Manzoli, U

    1986-10-01

    In 72 patients with previous myocardial infarction (MI), mitral regurgitation (MR) was assessed by pulsed-wave Doppler echocardiography and compared with physical and 2-dimensional echocardiographic findings. MR was found by Doppler in 29 of 42 patients (62%) with anterior MI, 11 of 30 (37%) with inferior MI (p less than 0.01) and in none of 20 normal control subjects. MR was more frequent in patients who underwent Doppler study 3 months after MI than in those who underwent Doppler at discharge (anterior MI = 83% vs 50%, p less than 0.01; inferior MI = 47% vs 27%, p = not significant). Of 15 patients who underwent Doppler studies both times, 3 (all with anterior MI) had MR only on the second study. Of the patients with Doppler MR, 12 of 27 (44%) with a left ventricular (LV) ejection fraction (EF) greater than 30% and 1 of 13 (8%) with an EF of 30% or less (p less than 0.01) had an MR systolic murmur. Mitral prolapse or eversion and papillary muscle fibrosis were infrequent in MI patients, whether or not Doppler MR was present. The degree of Doppler MR correlated with EF (r = -0.61), LV systolic volume (r = 0.47), and systolic and diastolic mitral anulus circumference (r = 0.52 and 0.51, respectively). Doppler MR was present in 24 of 28 patients (86%) with an EF of 40% or less and in 16 of 44 (36%) with EF more than 40% (p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Limits on Planetary Companions from Doppler Surveys of Nearby Stars

    Science.gov (United States)

    Howard, Andrew W.; Fulton, Benjamin J.

    2016-11-01

    Most of our knowledge of planets orbiting nearby stars comes from Doppler surveys. For spaced-based, high-contrast imaging missions, nearby stars with Doppler-discovered planets are attractive targets. The known orbits tell imaging missions where and when to observe, and the dynamically determined masses provide important constraints for the interpretation of planetary spectra. Quantifying the set of planet masses and orbits that could have been detected will enable more efficient planet discovery and characterization. We analyzed Doppler measurements from Lick and Keck Observatories by the California Planet Survey. We focused on stars that are likely targets for three space-based planet imaging mission concepts studied by NASA—WFIRST-AFTA, Exo-C, and Exo-S. The Doppler targets are primarily F8 and later main sequence stars, with observations spanning 1987-2014. We identified 76 stars with Doppler measurements from the prospective mission target lists. We developed an automated planet search and a methodology to estimate the pipeline completeness using injection and recovery tests. We applied this machinery to the Doppler data and computed planet detection limits for each star as a function of planet minimum mass and semimajor axis. For typical stars in the survey, we are sensitive to approximately Saturn-mass planets inside of 1 au, Jupiter-mass planets inside of ˜3 au, and our sensitivity declines out to ˜10 au. For the best Doppler targets, we are sensitive to Neptune-mass planets in 3 au orbits. Using an idealized model of Doppler survey completeness, we forecast the precision of future surveys of non-ideal Doppler targets that are likely targets of imaging missions. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time has been granted by NASA, the University of California, and the University of Hawaii.

  4. Carotid Doppler and transcranial Doppler in diagnosing transient ischemic attack: A healthy control

    Institute of Scientific and Technical Information of China (English)

    Huiling Chen; Jinhua Qiu; Hongying Liu

    2006-01-01

    BACKGROUND: If changes of hemodynamics in internal or external cranial artery and stenosis of atherosclerosis are found early, patients with transient ischemic attack (TIA) may be treated at an early phase so as to prevent and decrease the onset of cerebral infarction. Carotid Doppler can analyze carotid canal wall, hemodynamic properties and stenosis, and changes of plaque morphology; however, transcranial Doppler (TCD)can evaluate vascular stenosis and occlusion and judge collateral circulation in cranium through detecting velocity and direction of blood flow. Can the association of them increase the diagnostic rate of TIA?OBJECTIVE: To evaluate the effect of the association of carotid Doppler and TCD on TIA in internal carotid artery.DESIGN: Contrast observational study.SETTING: Department of Neuroelectrophysiology, Central People's Hospital of Huizhou.PARTICIPANTS: A total of 54 patients with TIA in internal carotid artery were selected from the Department of Neurology of Huizhou Central People's Hospital from May 2004 to June 2005. There were 35 males and 24 females aged 46-81 years. The clinical situation was asthenia of single limb, hemiplegia, anaesthesia of single upper or lower limb, hemianesthesia, sensory disorder and aphasia. The symptoms lasted for less than 2 hours. All cases were diagnosed with CT, and those who had pathological changes of acute cerebral infarction and history of cardiac disease were excluded. Additionally, 50 healthy subjects who were regarded as control group were selected from the Department of Neurology of Huizhou Central People's Hospital. There were 30 males and 20 females aged 45-80 years. All subjects were consent.METHODS: HD15000 color Doppler ultrasound (Philips Company, USA) and Muliti-DopX2 TCD (DWL Company, Germany) were used to detect hemodynamics, stenosis and distribution of atherosclerosis in carotid artery and internal carotid artery. Evaluation of marker: Stenosis was calculated by the ratio between the minimal

  5. Ultrasonic Doppler measurement of renal artery blood flow

    Science.gov (United States)

    Freund, W. R.; Beaver, W. L.; Meindl, J. D.

    1976-01-01

    Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra.

  6. Interferometric millimeter wave and THz wave doppler radar

    Science.gov (United States)

    Liao, Shaolin; Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Elmer, Thomas

    2015-08-11

    A mixerless high frequency interferometric Doppler radar system and methods has been invented, numerically validated and experimentally tested. A continuous wave source, phase modulator (e.g., a continuously oscillating reference mirror) and intensity detector are utilized. The intensity detector measures the intensity of the combined reflected Doppler signal and the modulated reference beam. Rigorous mathematics formulas have been developed to extract bot amplitude and phase from the measured intensity signal. Software in Matlab has been developed and used to extract such amplitude and phase information from the experimental data. Both amplitude and phase are calculated and the Doppler frequency signature of the object is determined.

  7. Processor operated correlator with applications to laser Doppler signals

    DEFF Research Database (Denmark)

    Bisgaard, C.; Johnsen, B.; Hassager, Ole

    1984-01-01

    A 64-channel correlator is designed with application to the processing of laser Doppler anemometry signals in the range 200 Hz to 250 kHz. The correlator is processor operated to enable the consecutive sampling of 448 correlation functions at a rate up to 500 Hz. Software is described to identify...... a Doppler frequency from each correlation and the system is especially designed for transient flow signals. Doppler frequencies are determined with an accuracy of about 0.1%. Review of Scientific Instruments is copyrighted by The American Institute of Physics....

  8. Mitigating Doppler shift effect in HF multitone data modem

    Science.gov (United States)

    Sonlu, Yasar

    1989-09-01

    Digital communications over High Frequency (HF) radio channels are getting important in recent years. Current HF requirements are for data transmission at rates 2.4 kbps or more to accommodate computer data links and digital secure voice. HF modems which were produced to meet these speeds are, serial modems and parallel modems. On the other hand, the HF sky-wave communication medium, the ionosphere, has some propagation problems such as multipath and Doppler shift. The effect of Doppler shift in a parallel modem which employs Differential Quadrature Phase Shift Keying (DQPSK) modulation is considered and a correction method to mitigate the Doppler Shift effect is introduced.

  9. Computer simulation studies of pulsed Doppler signals from vortices

    Institute of Scientific and Technical Information of China (English)

    CHEN Sizhong; WANG Yuanyuan; WANG Weiqi

    2001-01-01

    A computer simulation method for pulsed Doppler signals from vortices was proposed to generate simulated vortex Doppler signals under various given circumstances. The relative waveforms, such as the maximum frequency waveform, the mean frequency waveform and the bandwidth waveform, were obtained using the short time Fourier analysis of those simulated signals. The relations were studied between several spectrum parameters obtained from these waveforms and given simulation conditions, such as the position and the size of the sample volume, the distance between two vortices, the free stream velocity and the maximum tangent velocity of the vortex. The sensitive parameters were found to detect vortices using the pulsed Doppler techniques.

  10. Automatic extraction of disease-specific features from Doppler images

    Science.gov (United States)

    Negahdar, Mohammadreza; Moradi, Mehdi; Parajuli, Nripesh; Syeda-Mahmood, Tanveer

    2017-03-01

    Flow Doppler imaging is widely used by clinicians to detect diseases of the valves. In particular, continuous wave (CW) Doppler mode scan is routinely done during echocardiography and shows Doppler signal traces over multiple heart cycles. Traditionally, echocardiographers have manually traced such velocity envelopes to extract measurements such as decay time and pressure gradient which are then matched to normal and abnormal values based on clinical guidelines. In this paper, we present a fully automatic approach to deriving these measurements for aortic stenosis retrospectively from echocardiography videos. Comparison of our method with measurements made by echocardiographers shows large agreement as well as identification of new cases missed by echocardiographers.

  11. Development of semiconductor laser based Doppler lidars for wind-sensing applications

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Hu, Qi; Pedersen, Christian

    2015-01-01

    We summarize the progress we have made in the development of semiconductor laser (SL) based Doppler lidar systems for remote wind speed and direction measurements. The SL emitter used in our wind-sensing lidar is an integrated diode laser with a tapered (semiconductor) amplifier. The laser source...... based wind sensors have a strong potential in a number of applications such as wind turbine control, wind resource assessment, and micrometeorology (e.g. as alternative to the construction of meteorological towers with anemometers and wind vanes)....

  12. The Next Generation Airborne Polarimetric Doppler Radar

    Science.gov (United States)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  13. A Compact High Frequency Doppler Radio Scatterometer for Coastal Oceanography

    Science.gov (United States)

    Flament, P. J.; Harris, D.; Flament, M.; Fernandez, I. Q.; Hlivak, R.; Flores-vidal, X.; Marié, L.

    2016-12-01

    A low-power High Frequency Doppler Radar has been designed for large series production. The use of commercial-off-the-shelf components is maximized to minimize overall cost. Power consumption is reduced to 130W in full duty and 20W in stand-by under 20-36 V-DC, thus enabling solar/wind and/or fuel cell operation by default. For 8 channels, commercial components and sub-assemblies cost less than k20 excluding coaxial antenna cables, and less than four man-weeks of technician suffice for integration, testing and calibration, suggesting a final cost of about k36, based on production batches of 25 units. The instrument is integrated into passively-cooled 90x60x20 cm3 field-deployable enclosures, combining signal generation, transmitter, received, A/D converter and computer, alleviating the need for additional protection such as a container or building. It uses frequency-ramped continuous wave signals, and phased-array transmissions to decouple the direct path to the receivers. Five sub-assemblies are controlled by a Linux embedded computer: (i) direct digital synthesis of transmit and orthogonal local oscillator signals, derived from a low phase noise oven-controlled crystal; (ii) distributed power amplifiers totaling 5 W, integrated into λ/8 passive transmit antenna monopoles; (iii) λ/12 compact active receive antenna monopoles with embedded out-of-band rejection filters; (iv) analog receivers based on complex demodulation by double-balanced mixers, translating the HF spectrum to the audio band; (v) 24-bit analog-to-digital sigma-delta conversion at 12 kHz with 512x oversampling, followed by decimation to a final sampling frequency of 750 Hz. Except for the HF interference rejection filters, the electronics can operate between 3 and 50 MHz with no modification. At 13.5 MHz, 5 W transmit power, 15 min integration time, the high signal-to-noise ratio permits a typical range of 120 km for currents measurements with 8-antenna beam-forming. The University of Hawaii HFR

  14. Estimation of amputation level with a laser Doppler flowmeter

    DEFF Research Database (Denmark)

    Gebuhr, Peter Henrik; Jørgensen, J P; Vollmer-Larsen, B;

    1989-01-01

    Leg amputation levels were decided in 24 patients suffering from atherosclerosis, using the conventional techniques of segmental blood pressure and radioisotope skin clearance. The skin microcirculation was measured and recorded before operation with a laser doppler flowmeter. A high correlation ...

  15. Doppler Signatures of the Atmospheric Circulation on Hot Jupiters

    CERN Document Server

    Showman, Adam P; Lewis, Nikole K; Shabram, Megan

    2013-01-01

    The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation--and Doppler signature--of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows toward Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blue- and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps...

  16. Doppler bubble detection and decompression sickness: a prospective clinical trial.

    Science.gov (United States)

    Bayne, C G; Hunt, W S; Johanson, D C; Flynn, E T; Weathersby, P K

    1985-09-01

    Decompression sickness in human beings exposed to high ambient pressure is thought to follow from gas bubble formation and growth in the body during return to low pressure. Detection of Doppler-shifted ultrasonic reflections in major blood vessels has been promoted as a noninvasive and sensitive indicator of the imminence of decompression sickness. We have conducted a double-blind, prospective clinical trial of Doppler ultrasonic bubble detection in simulated diving using 83 men, of whom 8 were stricken and treated for the clinical disease. Diagnosis based only on the Doppler signals had no correlation with clinical diagnosis. Bubble scores were only slightly higher in the stricken group. The Doppler technique does not appear to be of diagnostic value in the absence of other clinical information.

  17. Doppler electron velocimetry : notes on creating a practical tool.

    Energy Technology Data Exchange (ETDEWEB)

    Reu, Phillip L.; Milster, Tom (University of Arizona)

    2008-11-01

    The Doppler electron velocimeter (DEV) has been shown to be theoretically possible. This report attempts to answer the next logical question: Is it a practical instrument? The answer hinges upon whether enough electrons are available to create a time-varying Doppler current to be measured by a detector with enough sensitivity and bandwidth. The answer to both of these questions is a qualified yes. A target Doppler frequency of 1 MHz was set as a minimum rate of interest. At this target a theoretical beam current signal-to-noise ratio of 25-to-1 is shown for existing electron holography equipment. A detector is also demonstrated with a bandwidth of 1-MHz at a current of 10 pA. Additionally, a Linnik-type interferometer that would increase the available beam current is shown that would offer a more flexible arrangement for Doppler electron measurements over the traditional biprism.

  18. Aliasing-tolerant color Doppler quantification of regurgitant jets.

    Science.gov (United States)

    Stewart, S F

    1998-07-01

    Conservation of momentum transfer in regurgitant cardiac jets can be used to calculate the flow rate from color Doppler velocities. In this study, turbulent jets were simulated by finite elements; pseudocolor Doppler images were interpolated from the computations, with aliasing introduced artificially. Jets were also imaged by color Doppler in an in vitro flow system. To suppress aliasing errors, jet velocities were fitted iteratively to a fluid mechanical model constrained to match the orifice velocity (measured without aliasing by continuous-wave Doppler). At each iteration, the model was used to detect aliased velocities, which were excluded during the next iteration. Iteration continued until the flow rate calculated by the model and number of calculated nonaliased pixels were unchanged. The good correlations between measured and calculated flow rates in the experimental (R2 = 0.933) and computational studies (R2 = 0.990) suggest that this may be a clinically useful approach even in aliased images. Published by Elsevier Science Inc.

  19. Micro-Doppler processing for ultra-wideband radar data

    Science.gov (United States)

    Smith, Graeme E.; Ahmad, Fauzia; Amin, Moeness G.

    2012-06-01

    In this paper, we describe an operational pulse Doppler radar imaging system for indoor target localization and classification, and show how a target's micro-Doppler signature (μDS) can be processed when ultra-wideband (UWB) waveforms are employed. Unlike narrowband radars where time-frequency signal representations can be applied to reveal the target time-Doppler frequency signatures, the UWB system permits joint range-time-frequency representation (JRTFR). JRTFR outputs the data in a 3D domain representing range, frequency, and time, allowing both the μDS and high range resolution (HRR) signatures to be observed. We delineate the relationship between the μDS and the HRR signature, showing how they would form a complimentary joint feature for classification. We use real-data to demonstrate the effectiveness of the UWB pulse-Doppler radar, combined with nonstationary signal analyses, in gaining valuable insights into human positioning and motions.

  20. Millimeter-wave micro-Doppler measurements of small UAVs

    Science.gov (United States)

    Rahman, Samiur; Robertson, Duncan A.

    2017-05-01

    This paper discusses the micro-Doppler signatures of small UAVs obtained from a millimeter-wave radar system. At first, simulation results are shown to demonstrate the theoretical concept. It is illustrated that whilst the propeller rotation rate of the small UAVs is quite high, millimeter-wave radar systems are capable of capturing the full micro-Doppler spread. Measurements of small UAVs have been performed with both CW and FMCW radars operating at 94 GHz. The CW radar was used for obtaining micro-Doppler signatures of individual propellers. The field test data of a flying small UAV was collected with the FMCW radar and was processed to extract micro-Doppler signatures. The high fidelity results clearly reveal features such as blade flashes and propeller rotation modulation lines which can be used to classify targets. This work confirms that millimeter-wave radar is suitable for the detection and classification of small UAVs at usefully long ranges.

  1. Extracting and analyzing micro-Doppler from ladar signatures

    Science.gov (United States)

    Tahmoush, Dave

    2015-05-01

    Ladar and other 3D imaging modalities have the capability of creating 3D micro-Doppler to analyze the micro-motions of human subjects. An additional capability to the recognition of micro-motion is the recognition of the moving part, such as the hand or arm. Combined with measured RCS values of the body, ladar imaging can be used to ground-truth the more sensitive radar micro-Doppler measurements and associate the moving part of the subject with the measured Doppler and RCS from the radar system. The 3D ladar signatures can also be used to classify activities and actions on their own, achieving an 86% accuracy using a micro-Doppler based classification strategy.

  2. The Doppler Effect: A Consideration of Quasar Redshifts.

    Science.gov (United States)

    Gordon, Kurtiss J.

    1980-01-01

    Provides information on the calculation of the redshift to blueshift ratio introduced by the transverse Doppler effect at relativistic speeds. Indicates that this shift should be mentioned in discussions of whether quasars are "local" rather than "cosmological" objects. (GS)

  3. Doppler Ambiguity Resolution Based on Random Sparse Probing Pulses

    Directory of Open Access Journals (Sweden)

    Yunjian Zhang

    2015-01-01

    Full Text Available A novel method for solving Doppler ambiguous problem based on compressed sensing (CS theory is proposed in this paper. A pulse train with the random and sparse transmitting time is transmitted. The received signals after matched filtering can be viewed as randomly sparse sampling from the traditional fixed-pulse repetition frequency (PRF echo signals. The whole target echo could be reconstructed via CS recovery algorithms. Through refining the sensing matrix, which is equivalent to increase the sampling frequency of target characteristic, the Doppler unambiguous range is enlarged. In particular, Complex Approximate Message Passing (CAMP algorithm is developed to estimate the unambiguity Doppler frequency. Cramer-Rao lower bound expressions are derived for the frequency. Numerical simulations validate the effectiveness of the proposed method. Finally, compared with traditional methods, the proposed method only requires transmitting a few sparse probing pulses to achieve a larger Doppler frequency unambiguous range and can also reduce the consumption of the radar time resources.

  4. [Postpartal ovarian thrombophlebitis. Value of Doppler ultrasonograph y].

    Science.gov (United States)

    Renaud-Giono, A; Giraud, J R; Poulain, P; Proudhon, J F; Grall, J Y; Moquet, P Y; Darnault, J P

    1996-01-01

    Thrombophlebitis of the ovarian vein is a well recognized but uncommon complication during the postpartum period. We report a small series and emphasize the contribution of color Doppler and the basic therapeutic measures.

  5. Doppler ultrasound exam of an arm or leg

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003775.htm Doppler ultrasound exam of an arm or leg To use ... this page, please enable JavaScript. This test uses ultrasound to look at the blood flow in the ...

  6. Analysis of multiple scattering effects in optical Doppler tomography

    DEFF Research Database (Denmark)

    Yura, H.T.; Thrane, L.; Andersen, Peter E.

    2005-01-01

    Optical Doppler tomography (ODT) combines Doppler velocimetry and optical coherence tomography (OCT) to obtain high-resolution cross-sectional imaging of particle flow velocity in scattering media such as the human retina and skin. Here, we present the results of a theoretical analysis of ODT where...... multiple scattering effects are included. The purpose of this analysis is to determine how multiple scattering affects the estimation of the depth-resolved localized flow velocity. Depth-resolved velocity estimates are obtained directly from the corresponding mean or standard deviation of the observed...... Doppler frequency spectrum. Thus, in the present analysis, the dependence of the mean and standard deviation of the Doppler shift on the scattering properties of the flowing medium are obtained. Taking the multiple scattering effects into account, we are able to explain previous measurements of depth...

  7. Multiplexed sub-Doppler spectroscopy with an optical frequency comb

    CERN Document Server

    Long, David A; Plusquellic, David F; Hodges, Joseph T

    2016-01-01

    An optical frequency comb generated with an electro-optic phase modulator and a chirped radiofrequency waveform is used to perform saturation and pump-probe spectroscopy on the $D_1$ and $D_2$ transitions of atomic potassium. With a comb tooth spacing of 200 kHz and an optical bandwidth of 2 GHz the hyperfine transitions can be simultaneously observed. Interferograms are recorded in as little as 5 $\\mu$s (a timescale corresponding to the inverse of the comb tooth spacing). Importantly, the sub-Doppler features can be measured as long as the laser carrier frequency lies within the Doppler profile, thus removing the need for slow scanning or a priori knowledge of the frequencies of the sub-Doppler features. Sub-Doppler optical frequency comb spectroscopy has the potential to dramatically reduce acquisition times and allow for rapid and accurate assignment of complex molecular and atomic spectra which are presently intractable.

  8. COLOR DOPPLER ULTRASOUND IN EVALUATION OF SCROTAL LESIONS

    Directory of Open Access Journals (Sweden)

    Desai Sanjay

    2015-11-01

    Full Text Available : Color Doppler ultrasound is a non-invasive, non-ionising and rapid method for scrotal examination. The present study is carried out to evaluate clinically suspected cases of scrotal lesions, the sensitivity, specificity of color doppler. MATERIAL AND METHODS: This prospective study comprises 120 patients of different age groups with clinical suspicion of scrotal lesions. Color doppler ultrasound was done with 7.5MHz transducer. RESULTS: Of the total 120 cases, benign conditions 111 (92.5% is more common than malignant 9 (7.5%. In benign group commonest diagnoses were hydrocele, epididymo-orchitis, varicocele and epididymal cyst. In malignant group teratocarcinoma, choriocarcinoma, seminoma, lymphoma, embryonal cell carcinoma, yolk sac tumor with teratocarcinoma. The sensitivity for diagnosing extratesticular lesions was 83.14% and for testicular lesions 88.57%. CONCLUSION: Color doppler ultrasound is helpful in differentiating extratesticular and intratesticular lesions. It should be performed in all patients with suspected scrotal lesions

  9. The Doppler Effect: A Consideration of Quasar Redshifts.

    Science.gov (United States)

    Gordon, Kurtiss J.

    1980-01-01

    Provides information on the calculation of the redshift to blueshift ratio introduced by the transverse Doppler effect at relativistic speeds. Indicates that this shift should be mentioned in discussions of whether quasars are "local" rather than "cosmological" objects. (GS)

  10. Design of new seismometer based on laser Doppler effect

    Institute of Scientific and Technical Information of China (English)

    Zhenhui Du(杜振辉); Fuxiang Huang(黄福祥); Chengzhi Jiang(蒋诚志); Zhifei Tao(陶知非); Hua Gao(高华); Lina Lü(吕丽娜)

    2004-01-01

    In order to improve the resolution of seismic acquisition, a new seismic acquisition system based on tangential laser Doppler effect with an optimized differential optical configuration is proposed. The relative movement of the inertia object and the immobile frame is measured by laser Doppler effect, which can avoid the electromagnetic and thermometric interference, and the adoption of frequency-modulated (FM)transmission can improve the ability of anti-jamming. The frequency bandwidth is properly determined by analyzing the frequency of the Doppler signal. The velocity, displacement, acceleration, and frequency to be measured can be real-time acquired by frequency/velocity (F/V) converting the FM Doppler signal.A 100-dB dynamic range and the linear frequency range of 1.0 to 1000 Hz are realized.

  11. Doppler Compensation by using of Segmented Match Filter

    Directory of Open Access Journals (Sweden)

    Nader Ghadimi

    2008-09-01

    Full Text Available Match filter is one of the important parts of radar receiver. By using of Match Filter, the signal to noise ratio can be maximized so that the probability of detection is increased. Match Filter can be used as a pulse compression filter in radar receiver. Binary phase code is one of the pulse compression methods that, the compression can be down with a Match Filter in the receiver. Doppler effect is one of the problems that degrade the performance of Match Filter. In this paper, two methods “Mixer Array” and “Segmented Match Filter” are proposed for Doppler compensation. The operation of these two methods as Doppler compensation techniques are considered theoretically. The simulation is used to demonstrate the Doppler compensation performance of new techniques compared to conventional methods.

  12. Methodology for obtaining wind gusts using Doppler lidar

    DEFF Research Database (Denmark)

    Suomi, Irene; Gryning, Sven-Erik; O'Connor, Ewan J.

    2017-01-01

    . This novel method also provides estimates for wind gusts at arbitrary gust durations, including those shorter than the temporal resolution of the Doppler lidar measurements. The input parameters for the scaling method are the measured wind-gust speed as well as the mean and standard deviation...... of the horizontal wind speed. The method was tested using WindCube V2 Doppler lidar measurements taken next to a 100 m high meteorological mast. It is shown that the method can provide realistic Doppler lidar estimates of the gust factor, i.e. the ratio of the wind-gust speed to the mean wind speed. The method...... speed. To assure the data quality in this study, we applied a filtering technique based on spike detection to remove possible outliers in the Doppler lidar data. We found that the spike detection-removal method clearly improved the wind-gust measurements, both with and without the scaling method. Spike...

  13. Detection of Site-Specific Blood Flow Variation in Humans during Running by a Wearable Laser Doppler Flowmeter

    OpenAIRE

    Wataru Iwasaki; Hirofumi Nogami; Satoshi Takeuchi; Masutaka Furue; Eiji Higurashi; Renshi Sawada

    2015-01-01

    Wearable wireless physiological sensors are helpful for monitoring and maintaining human health. Blood flow contains abundant physiological information but it is hard to measure blood flow during exercise using conventional blood flowmeters because of their size, weight, and use of optic fibers. To resolve these disadvantages, we previously developed a micro integrated laser Doppler blood flowmeter using microelectromechanical systems technology. This micro blood flowmeter is wearable and cap...

  14. Doppler ultrasound in obstetrics and gynecology. 2. rev. and enl. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Maulik, D. [Winthrop Univ. Hospital, Mineola, NY (United States). Dept. of Obstetrics and Gynecology; Zalud, I. (eds.) [Kapiolani Medical Center for Women and Children, Honolulu, HI (United States)

    2005-07-01

    The second edition of Doppler Ultrasound in Obstetrics and Gynecology has been expanded and comprehensively updated to present the current standards of practice in Doppler ultrasound and the most recent developments in the technology. Doppler Ultrasound in Obstetrics and Gynecology encompasses the full spectrum of clinical applications of Doppler ultrasound for the practicing obstetrician-gynecologist, including the latest advances in 3D and color Doppler and the newest techniques in 4D fetal echocardiography. Written by preeminent experts in the field, the book covers the basic and physical principles of Doppler ultrasound; the use of Doppler for fetal examination, including fetal cerebral circulation; Doppler echocardiography of the fetal heart; and the use of Doppler for postdated pregnancy and in cases of multiple gestation. Chapters on the use of Doppler for gynecologic investigation include ultrasound in ectopic pregnancy, for infertility, for benign disorders and for gynecologic malignancies. (orig.)

  15. Development of a mobile Doppler lidar system for wind and temperature measurements at 30-70 km

    Science.gov (United States)

    Yan, Zhaoai; Hu, Xiong; Guo, Wenjie; Guo, Shangyong; Cheng, Yongqiang; Gong, Jiancun; Yue, Jia

    2017-02-01

    A mobile Doppler lidar system has been developed to simultaneously measure zonal and meridional winds and temperature from 30 to 70 km. Each of the two zonal and meridional wind subsystems employs a 15 W power, 532 nm laser and a 1 m diameter telescope. Iodine vapor filters are used to stabilize laser frequency and to detect the Doppler shift of backscattered signal. The integration method is used for temperature measurement. Experiments were carried out using the mobile Doppler lidar in August 2014 at Qinghai, China (91°E, 38°N). The zonal wind was measured from 20 to 70 km at a 3 km spatial resolution and 2 h temporal resolution. The measurement error is about 0.5 m/s at 30 km, and 10 m/s at 70 km. In addition, the temperature was measured from 30 to 70 km at 1 km spatial resolution and 1 h temporal resolution. The temperature measurement error is about 0.4 K at 30 km, and 8.0 K at 70 km. Comparison of the lidar results with the temperature of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER), the zonal wind of the Modern-Era Retrospective Analysis for Re-search and Applications (MERRA), and radiosonde zonal wind shows good agreement, indicating that the Doppler lidar results are reliable.

  16. Doppler method leak detection for LMFBR steam generators. Pt. 1. Experimental results of bubble detection using small models

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab

    1999-05-01

    To prevent the expansion of the tube damage and to maintain structural integrity in the steam generators (SGs) of fast breeder reactors (FBRs), it is necessary to detect precisely and immediately the leakage of water from heat transfer tubes. Therefore, an active acoustic method was developed. Previous studies have revealed that in practical steam generators the active acoustic method can detect bubbles of 10 l/s within 10 seconds. To prevent the expansion of damage to neighboring tubes, it is necessary to detect smaller leakages of water from the heat transfer tubes. The Doppler method is designed to detect small leakages and to find the source of the leak before damage spreads to neighboring tubes. To evaluate the relationship between the detection sensitivity of the Doppler method and the bubble volume and bubble size, the structural shapes and bubble flow conditions were investigated experimentally, using a small structural model. The results show that the Doppler method can detect the bubbles under bubble flow conditions, and it is sensitive enough to detect small leakages within a short time. The doppler method thus has strong potential for the detection of water leakage in SGs. (author)

  17. Monitoring and Analysis of Respiratory Patterns Using Microwave Doppler Radar

    Science.gov (United States)

    Pathirana, Pubudu N.; Steinfort, Christopher Louis; Caelli, Terry

    2014-01-01

    Noncontact detection characteristic of Doppler radar provides an unobtrusive means of respiration detection and monitoring. This avoids additional preparations, such as physical sensor attachment or special clothing, which can be useful for certain healthcare applications. Furthermore, robustness of Doppler radar against environmental factors, such as light, ambient temperature, interference from other signals occupying the same bandwidth, fading effects, reduce environmental constraints and strengthens the possibility of employing Doppler radar in long-term respiration detection, and monitoring applications such as sleep studies. This paper presents an evaluation in the of use of microwave Doppler radar for capturing different dynamics of breathing patterns in addition to the respiration rate. Although finding the respiration rate is essential, identifying abnormal breathing patterns in real-time could be used to gain further insights into respiratory disorders and refine diagnostic procedures. Several known breathing disorders were professionally role played and captured in a real-time laboratory environment using a noncontact Doppler radar to evaluate the feasibility of this noncontact form of measurement in capturing breathing patterns under different conditions associated with certain breathing disorders. In addition to that, inhalation and exhalation flow patterns under different breathing scenarios were investigated to further support the feasibility of Doppler radar to accurately estimate the tidal volume. The results obtained for both experiments were compared with the gold standard measurement schemes, such as respiration belt and spirometry readings, yielding significant correlations with the Doppler radar-based information. In summary, Doppler radar is highlighted as an alternative approach not only for determining respiration rates, but also for identifying breathing patterns and tidal volumes as a preferred nonwearable alternative to the conventional

  18. Radar target recognition based on micro-Doppler effect

    Institute of Scientific and Technical Information of China (English)

    DONG Wei-guang; LI Yan-jun

    2008-01-01

    Mechanical vibration of target structures will modulate the phase function of radar backscattering, and will induce thefrequency modulation of returned signals from the target. It generates a side bands of the target body Doppler frequencyshift, which is helpful for target recognition. Based on this.a micro-Doppler atomic storehouse is built for the targetrecognition, and four kinds of common classifiers are used separately to perform the classified recognition. The simulationexperimental results show that this method has high recognition rate above 90%.

  19. Using doppler radar images to estimate aircraft navigational heading error

    Science.gov (United States)

    Doerry, Armin W [Albuquerque, NM; Jordan, Jay D [Albuquerque, NM; Kim, Theodore J [Albuquerque, NM

    2012-07-03

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  20. Doppler visibility of coherent random noise radar systems

    Science.gov (United States)

    Li, Zhixi; Narayanan, Ram M.

    2005-05-01

    Random noise radar has recently been used in a variety of imaging and surveillance applications. These systems can be made phase coherent using the technique of heterodyne correlation. Phase coherence has been exploited to measure Doppler and thereby the velocity of moving targets. The Doppler visibility, i.e., the ability to extract Doppler information over the inherent clutter spectra, is constrained by system parameters, especially the phase noise generated by microwave components. Our paper proposes a new phase noise model for the heterodyne mixer as applicable for ultrawideband (UWB) random noise radar and for the local oscillator in the time domain. The Doppler spectra are simulated by including phase noise contamination effects and compared to our previous experimental results. A Genetic Algorithm (GA) optimization routine is applied to synthesize the effects of a variety of parameter combinations to derive a suitable empirical formula for estimating the Doppler visibility in dB. According to the phase noise analysis and the simulation results, the Doppler visibility of UWB random noise radar depends primarily on the following parameters: (a) the local oscillator (LO) drive level of the receiver heterodyne mixer; (b) the saturation current in the receiver heterodyne mixer; (c) the bandwidth of the transmit noise source, and; (d) the target velocity. Other parameters such as the carrier frequency of the receiver LO and the loaded quality factor of the LO have a small effect over the range of applicability of the model and are therefore neglected in the model formulation. The Doppler visibility curves generated from this formula match the simulation results very well over the applicable parameter range within 1 dB. Our model may therefore be used to quickly estimate the Doppler visibility of random noise radars for trade-off analysis.

  1. Single mode, extreme precision Doppler spectrographs

    CERN Document Server

    Schwab, Christian; Betters, Christopher H; Bland-Hawthorn, Joss; Mahadevan, Suvrath

    2012-01-01

    The 'holy grail' of exoplanet research today is the detection of an earth-like planet: a rocky planet in the habitable zone around a main-sequence star. Extremely precise Doppler spectroscopy is an indispensable tool to find and characterize earth-like planets; however, to find these planets around solar-type stars, we need nearly one order of magnitude better radial velocity (RV) precision than the best current spectrographs provide. Recent developments in astrophotonics (Bland-Hawthorn & Horton 2006, Bland-Hawthorn et al. 2010) and adaptive optics (AO) enable single mode fiber (SMF) fed, high resolution spectrographs, which can realize the next step in precision. SMF feeds have intrinsic advantages over multimode fiber or slit coupled spectrographs: The intensity distribution at the fiber exit is extremely stable, and as a result the line spread function of a well-designed spectrograph is fully decoupled from input coupling conditions, like guiding or seeing variations (Ihle et al. 2010). Modal noise, a...

  2. Satellite Doppler Fixation and International Boundaries

    Science.gov (United States)

    Leppard, N. A. G.

    1980-01-01

    International boundaries have seldom been completely defined in geodetic terms. The existence of natural resources, which ignore the arbitrary boundaries of man, assume considerable importance when division of those resources becomes a point of issue between potential owners. This is particularly so when the boundary is illdefined in a geodetic sense. World-wide satellite reference systems, like natural resources, also have little regard for the internally less precise national or international systems. When the one is used to define the location of the other, great care must be taken to ensure equitable division, for financial gain and loss can be considerable. The definition of position is complicated by the existence of the two ephemerides for the N.N.S.S. satellites and the number of alternative reduction procedures available. The definition of the position of the Frigg Gas Field in the North Sea is an example of how the United Kingdom and Norway resolved the geodetic problem of reconciling geodetic and Doppler data.

  3. Doppler time-of-flight imaging

    KAUST Repository

    Heide, Felix

    2015-07-30

    Over the last few years, depth cameras have become increasingly popular for a range of applications, including human-computer interaction and gaming, augmented reality, machine vision, and medical imaging. Many of the commercially-available devices use the time-of-flight principle, where active illumination is temporally coded and analyzed on the camera to estimate a per-pixel depth map of the scene. In this paper, we propose a fundamentally new imaging modality for all time-of-flight (ToF) cameras: per-pixel velocity measurement. The proposed technique exploits the Doppler effect of objects in motion, which shifts the temporal frequency of the illumination before it reaches the camera. Using carefully coded illumination and modulation frequencies of the ToF camera, object velocities directly map to measured pixel intensities. We show that a slight modification of our imaging system allows for color, depth, and velocity information to be captured simultaneously. Combining the optical flow computed on the RGB frames with the measured metric axial velocity allows us to further estimate the full 3D metric velocity field of the scene. We believe that the proposed technique has applications in many computer graphics and vision problems, for example motion tracking, segmentation, recognition, and motion deblurring.

  4. Doppler cooling of a Coulomb crystal

    CERN Document Server

    Morigi, G; Morigi, Giovanna; Eschner, Juergen

    2001-01-01

    We study theoretically Doppler laser-cooling of a cluster of 2-level atoms confined in a linear ion trap. Using several consecutive steps of averaging we derive, from the full quantum mechanical master equation, an equation for the total mechanical energy of the one dimensional crystal, defined on a coarse-grained energy scale whose grid size is smaller than the linewidth of the electronic transition. This equation describes the cooling dynamics for an arbitrary number of ions and in the quantum regime. We discuss the validity of the ergodic assumption (i.e. that the phase space distribution is only a function of energy). From our equation we derive the semiclassical limit (i.e. when the mechanical motion can be treated classically) and the Lamb-Dicke limit (i.e. when the size of the mechanical wave function is much smaller than the laser wavelength). We find a Fokker-Planck equation for the total mechanical energy of the system, whose solution is in agreement with previous analytical calculations which were ...

  5. MEMS characterization using Laser Doppler Vibrometry

    Science.gov (United States)

    Lawrence, Eric M.; Speller, Kevin E.; Yu, Duli

    2003-01-01

    The use of Laser Doppler Vibrometry (LDV) technology has been at the forefront of Micro-Electro-Mechanical Systems (MEMS) research since the early 1990"s. By its nature as a sensitive laser optical technique, it is well suited for non-contact dynamic response measurements of microscopic structures. The art of the technology has culminated into the latest micro-scanning vibrometer for automated scan measurement and display of deflection shapes with sub-nanometer resolution. To exemplify the use of this technology, Polytec PI presents characterization measurements in collaboration with Applied MEMS on two of their devices used in commercial applications. LDV characterization measurements are used for validating the design of the Applied MEMS two-axis micro mirror. Scan measurements reveal distinct, isolated rotation modes about x- and y- axes that can be used to promote the mirror motion in either direction. Settling time performance is evaluated from impulse response and optimized using Input Shaping techniques. Scan measurements of a low-noise accelerometer device from Applied MEMS reveals spurious high frequency modes of support spring causing unwanted response effects. Further use of a new time domain animation feature shows ringing response of the accelerometer to step motions.

  6. Muscle activity characterization by laser Doppler Myography

    Science.gov (United States)

    Scalise, Lorenzo; Casaccia, Sara; Marchionni, Paolo; Ercoli, Ilaria; Primo Tomasini, Enrico

    2013-09-01

    Electromiography (EMG) is the gold-standard technique used for the evaluation of muscle activity. This technique is used in biomechanics, sport medicine, neurology and rehabilitation therapy and it provides the electrical activity produced by skeletal muscles. Among the parameters measured with EMG, two very important quantities are: signal amplitude and duration of muscle contraction, muscle fatigue and maximum muscle power. Recently, a new measurement procedure, named Laser Doppler Myography (LDMi), for the non contact assessment of muscle activity has been proposed to measure the vibro-mechanical behaviour of the muscle. The aim of this study is to present the LDMi technique and to evaluate its capacity to measure some characteristic features proper of the muscle. In this paper LDMi is compared with standard superficial EMG (sEMG) requiring the application of sensors on the skin of each patient. sEMG and LDMi signals have been simultaneously acquired and processed to test correlations. Three parameters has been analyzed to compare these techniques: Muscle activation timing, signal amplitude and muscle fatigue. LDMi appears to be a reliable and promising measurement technique allowing the measurements without contact with the patient skin.

  7. Doppler effect induced spin relaxation boom

    Science.gov (United States)

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-03-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures.

  8. Zeeman Doppler Maps: Always Unique, Never Spurious?

    Science.gov (United States)

    Stift, Martin J.; Leone, Francesco

    2017-01-01

    Numerical models of atomic diffusion in magnetic atmospheres of ApBp stars predict abundance structures that differ from the empirical maps derived with (Zeeman) Doppler mapping (ZDM). An in-depth analysis of this apparent disagreement investigates the detectability by means of ZDM of a variety of abundance structures, including (warped) rings predicted by theory, but also complex spot-like structures. Even when spectra of high signal-to-noise ratio are available, it can prove difficult or altogether impossible to correctly recover shapes, positions, and abundances of a mere handful of spots, notwithstanding the use of all four Stokes parameters and an exactly known field geometry; the recovery of (warped) rings can be equally challenging. Inversions of complex abundance maps that are based on just one or two spectral lines usually permit multiple solutions. It turns out that it can by no means be guaranteed that any of the regularization functions in general use for ZDM (maximum entropy or Tikhonov) will lead to a true abundance map instead of some spurious one. Attention is drawn to the need for a study that would elucidate the relation between the stratified, field-dependent abundance structures predicted by diffusion theory on the one hand, and empirical maps obtained by means of “canonical” ZDM, i.e., with mean atmospheres and unstratified abundances, on the other hand. Finally, we point out difficulties arising from the three-dimensional nature of the atomic diffusion process in magnetic ApBp star atmospheres.

  9. Intrahepatic portosystemic venous shunts: diagnosis by Doppler ultrasound; Cortocircuitos venosos portosistemicos intrahepaticos: diagnostico mediante ecografia Doppler

    Energy Technology Data Exchange (ETDEWEB)

    Garofano, M. P.; Medina, A.; Lopez, G.; Garrido, C. [Hospital Universitario Virgen de las Nieves. Granada (Spain)

    2001-07-01

    Intrahepatic portosystemic venous shunts are venous vascular lesions that allow intrahepatic portal vessels to communicate with hepatic veins. They may present in patients with portal hypertension or b discovered incidentally; it is considered that the latter may be congenital or acquired. A noninvasive methods. Doppler ultrasound aids in the diagnosis of these anomalous communications by providing images of the vessels and the direction, velocity and volume of the blood flow through the shunt. We present four cases of intrahepatic portosystemic venous shunt. (Author) 8 refs.

  10. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Directory of Open Access Journals (Sweden)

    Armstrong J. W.

    2006-01-01

    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  11. Doppler Monitoring of the WASP-47 Multiplanet System

    CERN Document Server

    Dai, Fei; Arriagada, Pamela; Butler, R Paul; Crane, Jeffrey D; Johnson, John Asher; Shectman, Stephen A; Teske, Johanna K; Thompson, Ian B; Vanderburg, Andrew; Wittenmyer, Robert A

    2015-01-01

    We present precise Doppler observations of WASP-47, a transiting planetary system featuring a hot Jupiter with both inner and outer planetary companions. This system has an unusual architecture and also provides a rare opportunity to measure planet masses in two different ways: the Doppler method, and the analysis of transit-timing variations (TTV). Based on the new Doppler data, obtained with the Planet Finder Spectrograph on the Magellan/Clay 6.5m telescope, the mass of the hot Jupiter is $370 \\pm 29~M_{\\oplus}$. This is consistent with the previous Doppler determination as well as the TTV determination. For the inner planet WASP-47e, the Doppler data lead to a mass of $12.2\\pm 3.7~ M_{\\oplus}$, in agreement with the TTV-based upper limit of $<$22~$M_{\\oplus}$ ($95\\%$ confidence). For the outer planet WASP-47d, the Doppler mass constraint of $10.4\\pm 8.4~M_{\\oplus}$ is consistent with the TTV-based measurement of $15.2^{+6.7}_{-7.6}~ M_{\\oplus}$.

  12. Analysis of Radar Doppler Signature from Human Data

    Directory of Open Access Journals (Sweden)

    M. ANDRIĆ

    2014-04-01

    Full Text Available This paper presents the results of time (autocorrelation and time-frequency (spectrogram analyses of radar signals returned from the moving human targets. When a radar signal falls on the human target which is moving toward or away from the radar, the signals reflected from different parts of his body produce a Doppler shift that is proportional to the velocity of those parts. Moving parts of the body causes the characteristic Doppler signature. The main contribution comes from the torso which causes the central Doppler frequency of target. The motion of arms and legs induces modulation on the returned radar signal and generates sidebands around the central Doppler frequency, referred to as micro-Doppler signatures. Through analyses on experimental data it was demonstrated that the human motion signature extraction is better using spectrogram. While the central Doppler frequency can be determined using the autocorrelation and the spectrogram, the extraction of the fundamental cadence frequency using the autocorrelation is unreliable when the target is in the clutter presence. It was shown that the fundamental cadence frequency increases with increasing dynamic movement of people and simultaneously the possibility of its extraction is proportional to the degree of synchronization movements of persons in the group.

  13. Model experiments on imaging subsurface fracture permeability by pulsed Doppler borehole televiewer; Pulse doppler borehole televiewer ni yoru kiretsu tosuisei hyoka ni kansuru model jikken

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Y.; Niitsuma, H. [Tohoku University, Sendai (Japan). Faculty of Engineering

    1996-05-01

    This paper reports model experiments to evaluate flow rates of fluids passing through a fracture by using a Doppler borehole televiewer (DBHTV). A supersonic transducer disposed on a well axis transmits transmission pulses, and a transducer receives scattered waves generated by particulates in water and waves reflected on a well wall. This signal is applied with time gating to extract only the scattered waves from particulates in the vicinity of the well wall. Deriving spectra in the recorded Doppler signal obtains flow velocity components in the direction of the well radius. A model was made with a polyvinylchloride pipe with a diameter of 14.6 cm to simulate a well, to which an aluminum pipe with an inner diameter of 2 mm is connected to be used as a simulated fracture, and mud water is circulated in the pipe. The result of deriving a passed flow volume in this model by integrating flow rate distribution derived by using the above method to a predetermined range in the vicinity of the fracture showed a good proportional relationship with actual flow rate in the simulated fracture. 1 ref., 7 figs.

  14. Longitudinal study of aortic isthmus Doppler in appropriately grown and small-for-gestational-age fetuses with normal and abnormal umbilical artery Doppler.

    LENUS (Irish Health Repository)

    Kennelly, M M

    2012-04-01

    To establish reference ranges using longitudinal data for aortic isthmus (AoI) Doppler indices in appropriate-for-gestational-age (AGA) fetuses and to document the longitudinal trends in a cohort of small-for-gestational-age (SGA) fetuses with normal umbilical artery Doppler and in fetuses with intrauterine growth restriction (IUGR) and abnormal umbilical artery Doppler.

  15. Intraoperative Micro-Doppler in Cerebral Arteriovenous Malformations.

    Science.gov (United States)

    Burkhardt, Till; Siasios, Giannis; Schmidt, Nils Ole; Reitz, Mathias; Regelsberger, Jan; Westphal, Manfred

    2015-11-01

    Intraoperative micro-Doppler (IOMD), intraoperative digital substraction angiography (DSA), and microscope-integrated indocyanine green angiography are methods that guide neurosurgical resection of arteriovenous malformations (AVMs) in the brain and minimize the trauma of healthy tissue. In this study we emphasize the use of IOMD in AVM surgery, analyzing the advantages and the limitations of this method. Patients and A total of 32 patients were diagnosed with an AVM. Supplying arteries and draining veins were analyzed regarding hemodynamic profiles, flow velocities, pulsatility index (PI), and resistance index (RI). Venous drainages were accompanied by arterial blood flow disturbances that showed typical characteristics in all cases. We set an angle of 60 degrees between the examined vessel and the probe to achieve a more reliable and comparable measurement. Postoperative DSA was performed in all patients. Supplying arterial blood vessels of AVMs could be identified by their characteristic blood flow profiles with PI < 0.7 and RI < 0.55. Drainage veins in all 32 cases showed normalized venous flow patterns without arterial flow turbulences at the end of the surgical procedure. Postoperative DSA revealed a residual AVM in one patient. IOMD constitutes a safe, accurate, and low-cost imaging modality for evaluating blood flow velocities and for optimal stepwise AVM elimination without unnecessary sacrifice of veins. PI and RI are reliable parameters in diagnosing cerebrovascular malformations, but systolic and diastolic flow velocities may vary to a greater extent. This phenomenon has never been elucidated previously and therefore needs to be emphasized when using this technique intraoperatively. Georg Thieme Verlag KG Stuttgart · New York.

  16. Rapid Detection of Small Movements with GNSS Doppler Observables

    Science.gov (United States)

    Hohensinn, Roland; Geiger, Alain

    2017-04-01

    High-alpine terrain reacts very sensitively to varying environmental conditions. As an example, increasing temperatures cause thawing of permafrost areas. This, in turn causes an increasing threat by natural hazards like debris flow (e.g. rock glaciers) or rockfalls. The Institute of Geodesy and Photogrammetry is contributing to alpine mass-movement monitoring systems in different project areas in the Swiss Alps. A main focus lies on providing geodetic mass-movement information derived from GNSS static solutions on a daily and a sub-daily basis, obtained with low-cost and autonomous GNSS stations. Another focus is set on rapidly providing reliable geodetic information in real-time i.e. for an integration in early warning systems. One way to achieve this is the estimation of accurate station velocities from observations of range rates, which can be obtained as Doppler observables from time derivatives of carrier phase measurements. The key for this method lies in a precise modeling of prominent effects contributing to the observed range rates, which are satellite velocity, atmospheric delay rates and relativistic effects. A suitable observation model is then devised, which accounts for these predictions. The observation model, combined with a simple kinematic movement model forms the basis for the parameter estimation. Based on the estimated station velocities, movements are then detected using a statistical test. To improve the reliablity of the estimated parameters, another spotlight is set on an on-line quality control procedure. We will present the basic algorithms as well as results from first tests which were carried out with a low-cost GPS L1 phase receiver. With a u-blox module and a sampling rate of 5 Hz, accuracies on the mm/s level can be obtained and velocities down to 1 cm/s can be detected. Reliable and accurate station velocities and movement information can be provided within seconds.

  17. ADEPT - Abnormal Doppler Enteral Prescription Trial

    Directory of Open Access Journals (Sweden)

    McCormick Kenny

    2009-10-01

    Full Text Available Abstract Background Pregnancies complicated by abnormal umbilical artery Doppler blood flow patterns often result in the baby being born both preterm and growth-restricted. These babies are at high risk of milk intolerance and necrotising enterocolitis, as well as post-natal growth failure, and there is no clinical consensus about how best to feed them. Policies of both early milk feeding and late milk feeding are widely used. This randomised controlled trial aims to determine whether a policy of early initiation of milk feeds is beneficial compared with late initiation. Optimising neonatal feeding for this group of babies may have long-term health implications and if either of these policies is shown to be beneficial it can be immediately adopted into clinical practice. Methods and Design Babies with gestational age below 35 weeks, and with birth weight below 10th centile for gestational age, will be randomly allocated to an "early" or "late" enteral feeding regimen, commencing milk feeds on day 2 and day 6 after birth, respectively. Feeds will be gradually increased over 9-13 days (depending on gestational age using a schedule derived from those used in hospitals in the Eastern and South Western Regions of England, based on surveys of feeding practice. Primary outcome measures are time to establish full enteral feeding and necrotising enterocolitis; secondary outcomes include sepsis and growth. The target sample size is 400 babies. This sample size is large enough to detect a clinically meaningful difference of 3 days in time to establish full enteral feeds between the two feeding policies, with 90% power and a 5% 2-sided significance level. Initial recruitment period was 24 months, subsequently extended to 38 months. Discussion There is limited evidence from randomised controlled trials on which to base decisions regarding feeding policy in high risk preterm infants. This multicentre trial will help to guide clinical practice and may also

  18. Doppler ultrasound and giant cell arteritis

    Directory of Open Access Journals (Sweden)

    Ana Marina Suelves

    2010-11-01

    Full Text Available Ana Marina Suelves1, Enrique España-Gregori1,2, Jose Tembl3, Stephanie Rohrweck1, Jose Maria Millán4, Manuel Díaz-Llopis1,4,51Service of Ophthalmology, La Fe University Hospital, Valencia, Spain; 2Department of Optics, University of Valencia, Valencia, Spain; 3Service of Neurology, La Fe University Hospital, Valencia, Spain; 4CIBERER, Ciber de Enfermedades Raras, Valencia, Spain; 5Faculty of Medicine, University of Valencia, Valencia, SpainObjective: To evaluate the utility of ultrasound in aiding the diagnosis of giant cell arteritis (GCA, in monitoring the response to corticotherapy, and in detecting early relapses.Methods: A pilot study, prospective, included 10 patients with suspected GCA. All patients underwent ultrasound examination of both temporal arteries before temporal artery biopsy (TAB, 3 weeks after starting treatment, and 3 months after diagnosis. For this study, the histological findings alone were used to define if patients were suffering from GCA. The findings on ultrasound were compared with the results of biopsy. The best place to perform TAB was observed by ultrasound.Results: All patients with positive biopsy were detected with ultrasound. No false positives were observed on ultrasound. The results presented give a sensibility, specificity, and positive predictive value of 100% for the use of ultrasound in the diagnosis of GCA. Two relapses were detected early by ultrasound during the follow-up.Conclusions: This pilot study suggests that eco-doppler may be a useful tool in diagnosis and clinic follow-up in patients with suspected GCA.Keywords: giant cell arteritis, ultrasound, temporal artery biopsy, optic nerve

  19. Single Mode, Extreme Precision Doppler Spectrographs

    Science.gov (United States)

    Schwab, Christian; Leon-Saval, Sergio G.; Betters, Christopher H.; Bland-Hawthorn, Joss; Mahadevan, Suvrath

    2014-04-01

    The `holy grail' of exoplanet research today is the detection of an earth-like planet: a rocky planet in the habitable zone around a main-sequence star. Extremely precise Doppler spectroscopy is an indispensable tool to find and characterize earth-like planets; however, to find these planets around solar-type stars, we need nearly one order of magnitude better radial velocity (RV) precision than the best current spectrographs provide. Recent developments in astrophotonics (Bland-Hawthorn & Horton 2006, Bland-Hawthorn et al. 2010) and adaptive optics (AO) enable single mode fiber (SMF) fed, high resolution spectrographs, which can realize the next step in precision. SMF feeds have intrinsic advantages over multimode fiber or slit coupled spectrographs: The intensity distribution at the fiber exit is extremely stable, and as a result the line spread function of a well-designed spectrograph is fully decoupled from input coupling conditions, like guiding or seeing variations (Ihle et al. 2010). Modal noise, a limiting factor in current multimode fiber fed instruments (Baudrand & Walker 2001), can be eliminated by proper design, and the diffraction limited input to the spectrograph allows for very compact instrument designs, which provide excellent optomechanical stability. A SMF is the ideal interface for new, very precise wavelength calibrators, like laser frequency combs (Steinmetz et al. 2008, Osterman et al. 2012), or SMF based Fabry-Perot Etalons (Halverson et al. 2013). At near infrared wavelengths, these technologies are ready to be implemented in on-sky instruments, or already in use. We discuss a novel concept for such a spectrograph.

  20. Interpreting laser Doppler recordings from free flaps.

    Science.gov (United States)

    Svensson, H; Holmberg, J; Svedman, P

    1993-01-01

    Although the transfer of free flaps is nowadays accomplished with an increasing degree of safety, thrombosis of the microvascular anastomoses is still a problem. In order to avoid delay in re-operating, various methods for objective blood flow monitoring have been tried, among them Laser Doppler Flowmetry (LDF). When one reviews the literature, it is apparent that opinions differ about whether or not LDF is a reliable technique for this purpose. To focus on the need to interpret continuous recordings, this paper reports our findings in six latissimus dorsi free flaps chosen from our series of LDF monitoring procedures. One uneventful flap, no. 1, had an immediate postoperative LDF value of 4.5 perfusion units (PU). LDF values improved during the recovery period and the graphic recording showed fluctuations due to normal physiological variations of the blood flow in the flap. Another uneventful flap, no. 4, showed the same pattern, though at an appreciably lower level, 2 PU, on average. Flap no. 2 had an acceptably high value of 3.5 PU despite suffering a venous thrombosis. However, the LDF recording showed no fluctuations and the value declined gradually. Another flap, no. 3, showed fluctuations and blood flow was normal although the value decreased to 2.5 PU. In flap no. 5, any value between 2 and 3.5 PU could be obtained merely by adjusting the position of the probe in the holder. In no. 6, the LDF value suddenly dropped, accompanied by a decrease in the total amount of backscattered light, indicating venous obstruction which was confirmed at re-operation.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

    Science.gov (United States)

    Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan

    2014-09-08

    Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.

  2. DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS

    Energy Technology Data Exchange (ETDEWEB)

    Showman, Adam P.; Lewis, Nikole K. [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Boulevard, Tucson, AZ 85721 (United States); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Shabram, Megan, E-mail: showman@lpl.arizona.edu [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611-2055 (United States)

    2013-01-01

    The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation-and Doppler signature-of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows toward Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ 436b lie in the first regime, HD 189733b is transitional, while planets hotter than HD 209458b lie in the second regime. Moreover, we show how the amplitude of the Doppler shifts constrains the strength of frictional drag in the upper atmospheres of hot Jupiters. If due to winds, the {approx}2 km s{sup -1} blueshift inferred on HD 209458b may require drag time constants as short as 10{sup 4}-10{sup 6} s, possibly the result of Lorentz-force braking on this planet's hot dayside.

  3. The value of micro-Doppler in stereotactic brain biopsy.

    Science.gov (United States)

    Hertel, F; Feiden, W; Bettag, M

    2005-06-01

    The aim of this study was to analyse the value of intraoperative micro-Doppler in stereotactic brain biopsy (SBB). So far, only a few studies have reported about the usefulness of micro-Doppler in stereotactic brain biopsy. Between 1998 and 2003, 155 SBBs were performed in 153 patients with micro-Doppler (81 males, 72 females, mean age: 59 years). All operations were performed using a ZD-frame and a multiplanar computer tomography-guided trajectory planning system (Leibinger SPP). A 16 MHz micro-Doppler probe (diameter 1 mm, DWL) was used in all cases to explore the area of biopsy before the tissue probes were taken. Serial biopsies (mean, 6 samples) were taken with the Sedan side-cutting cannula (n = 145) or the small forceps (n = 10). We evaluated the number of intraoperative detectable vessel signals by micro-Doppler, intraoperative bleedings as well as bleedings detected by postoperative CT (which was performed in all cases). We compared our results according to bleeding-related complications with the data of stereotactic biopsy series from the recent literature. A conclusive histopathological diagnosis was achieved in 150/153 patients (98 %). A re-biopsy had to be undertaken in 2 cases. In 98 biopsies (63 %), no vessel could be detected with the micro-Doppler. In the remainder, a signal of arterial vessels was detected in 22 (14 %) and a signal of venous vessels in 35 cases (23 %). Detection of a vessel in the micro-Doppler led to a change of the biopsy site in each case within the same trajectory. Biopsy-related bleedings were detected in 4 cases (2.6 %). Among these, the only bleeding which occurred without any signs of vessels in the micro-Doppler happened in a case of a melanoma. The overall biopsy-related permanent morbidity was 0.6 % (n = 1). The biopsy-related mortality was 0. Despite the overall high security of SBB, the use of intraoperative micro-Doppler may lead to an additional reduction of the risk for a biopsy-related bleeding without enormous

  4. Comparison of numerical hindcasted severe waves with Doppler radar measurements in the North Sea

    Science.gov (United States)

    Ponce de León, Sonia; Bettencourt, João H.; Dias, Frederic

    2017-01-01

    Severe sea states in the North Sea present a challenge to wave forecasting systems and a threat to offshore installations such as oil and gas platforms and offshore wind farms. Here, we study the ability of a third-generation spectral wave model to reproduce winter sea states in the North Sea. Measured and modeled time series of integral wave parameters and directional wave spectra are compared for a 12-day period in the winter of 2013-2014 when successive severe storms moved across the North Atlantic and the North Sea. Records were obtained from a Doppler radar and wave buoys. The hindcast was performed with the WAVEWATCH III model (Tolman 2014) with high spectral resolution both in frequency and direction. A good general agreement was obtained for integrated parameters, but discrepancies were found to occur in spectral shapes.

  5. Variance of discharge estimates sampled using acoustic Doppler current profilers from moving boats

    Science.gov (United States)

    Garcia, Carlos M.; Tarrab, Leticia; Oberg, Kevin; Szupiany, Ricardo; Cantero, Mariano I.

    2012-01-01

    This paper presents a model for quantifying the random errors (i.e., variance) of acoustic Doppler current profiler (ADCP) discharge measurements from moving boats for different sampling times. The model focuses on the random processes in the sampled flow field and has been developed using statistical methods currently available for uncertainty analysis of velocity time series. Analysis of field data collected using ADCP from moving boats from three natural rivers of varying sizes and flow conditions shows that, even though the estimate of the integral time scale of the actual turbulent flow field is larger than the sampling interval, the integral time scale of the sampled flow field is on the order of the sampling interval. Thus, an equation for computing the variance error in discharge measurements associated with different sampling times, assuming uncorrelated flow fields is appropriate. The approach is used to help define optimal sampling strategies by choosing the exposure time required for ADCPs to accurately measure flow discharge.

  6. Laser Doppler perfusion monitoring and imaging of blood microcirculation

    Science.gov (United States)

    Nilsson, Gert E.; Wardell, Karin

    1994-07-01

    Laser Doppler perfusion monitoring is a method of assessing tissue perfusion based on measurements performed using Doppler broadening of monochromatic light scattered in moving blood cells. Ever since laser Doppler perfusion monitors became available about 15 years ago they have been used in numerous applications in both clinical and laboratory settings. The high spatial resolution has in practice manifested itself as one of the main limitations of the method. The reason for this is the difficulty in attaining reproducible values at successive measurement sites because most skin tissue possesses a substantial variation in blood flow even at adjacent measurement sites. In order to overcome this difficulty the laser Doppler perfusion imager was developed. In this camera-like device, the laser beam successively scans the tissue and the Doppler components of the backscattered light are detected by a remote photodiode. After a scanning procedure is complete, a color-coded perfusion map showing the spatial variation of skin blood flow is displayed on a monitor. The operating principle and early applications of this emerging technology are addressed in further detail.

  7. Short period ionospheric perturbations from continuous Doppler sounding

    Science.gov (United States)

    Fiser, Jiri; Chum, Jaroslav; Lastovicka, Jan; Buresova, Dalia

    2017-04-01

    Results of recent observations of ionospheric perturbations on short time scales obtained by international network (Czech Republic, Argentina, Taiwan and South Africa) of multipoint continuous Doppler sounders with time resolution about 10 s are presented. Examples of observation and analysis of propagation of gravity waves (GWs), equatorial spread F (ESF), infrasound from earthquake and large convective systems, as well as ionospheric perturbations caused by solar flares will be shown. It is documented that roughly poleward propagation of GWs dominates in the local summer, whereas mainly equatorward propagation is observed in the local winter. The analysis of occurrences and zonal drifts of ESF based on Doppler sounding are consistent with optical and satellite measurements. The observations of co-seismic perturbations by Doppler sounders in the vicinity of ionosondes and seismic sensors proved that the co-seismic perturbations are caused by approximately vertically propagating infrasound waves triggered by vertical motion of the ground surface. Numerical simulations and Doppler measurements confirmed that in the vicinity (up to about 1000 km) from epicenters of strong earthquake, the infrasound propagates in nonlinear regime in the upper atmosphere, which results in the formation of N-shaped pulse. Solar flares are observed both as sudden frequency deviations and amplitude attenuations of Doppler signal.

  8. Detector resolution in positron annihilation Doppler broadening experiments

    Science.gov (United States)

    Heikinheimo, J.; Ala-Heikkilä, J.; Tuomisto, F.

    2017-09-01

    Positron annihilation Doppler broadening spectroscopy characterizes lattice point defects and is sensitive to very small vacancy densities. High-purity germanium detectors are generally used for recording the Doppler broadening spectrum because they provide good energy resolution and stability. However, the energy resolution of a germanium detector is somewhat dependent on the photon absorption geometry in the detector crystal. This change in the energy resolution changes also the Doppler broadening parameters. To observe the dependency of the resolution function and the Doppler broadening parameters, we performed experiments on Si samples in standard sandwich configuration with a Na-22 source. We changed the radiation geometry of the incident gamma photons via altering the distance of the sample-source package from the detector and by adding steel between the source and the detector. We observed the change of the absorption geometry in the germanium detector crystal by doing Monte Carlo simulations. The aim of this study is to help understand and decide what is the best way to compare the Doppler broadening parameters obtained with different measurement setups and even with the same setup when the geometry in the measurements has changed.

  9. Color Doppler US in the acute scrotal disease

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Yoo Mi; Yang, Dal Mo; Kang, Sook Wook; Kim, Hyung Sik; Lee, Young Seok; Kim, Hyeon Hoe [Chung Ang Gil Hospital, Incheon (Korea, Republic of)

    1993-12-15

    To evaluate the utility of Color doppler US in the patients with acute scrotal pain, we retrospectively analyzed 37 patients referred for Color Doppler US of the scrotum. The diagnosis was confirmed by means of appropriate response to antibiotic treatment (31 cases) or surgery (6 cases). Thirty one of 37 patients were diagnosed as inflammatory disease (24 cases of epididymitis, 7 cases of epididymo-orchitis). Twenty three of 24cases of epididymitis had increased epididymal flow, while 6 of 7 cases of epididymo-orchitis had increased epididymal and testicular flow. Five patients were confirmed as testicular torsion, and in all cases nointratesticular blood flow was identified on the symptomatic side. In one case of torsion of appendix testis, epididymis was enlarged and there were increased signals suggesting epididymitis on Color Doppler US, but was confirmed by surgery as torsion of appendix testis. Therefore, the differentiation between torsion and inflammatory disease was possible by using Color Doppler US of the scrotum in 34 of 37 cases in our study. On the basis of our results, we may conclude that Color Doppler US can simultaneously display blood flow and detailed anatomic images, and function as an effective means of evaluating patients with acute scrotal disease

  10. Influence of speckle effect on doppler velocity measurement

    Science.gov (United States)

    Zheng, Zheng; Changming, Zhao; Haiyang, Zhang; Suhui, Yang; Dehua, Zhang; Xingyuan, Zheng; Hongzhi, Yang

    2016-06-01

    In a coherent Lidar system, velocity measurement of a target is achieved by measuring Doppler frequency shift between the echo and local oscillator (LO) signals. The measurement accuracy is proportional to the spectrum width of Doppler signal. Actually, the speckle effect caused by the scattering of laser from a target will broaden the Doppler signal's spectrum and bring uncertainty to the velocity measurement. In this paper, a theoretical model is proposed to predict the broadening of Doppler spectrum with respect to different target's surface and motion parameters. The velocity measurement uncertainty caused by the broadening of spectrum is analyzed. Based on the analysis, we design a coherent Lidar system to measure the velocity of the targets with different surface roughness and transverse velocities. The experimental results are in good agreement with theoretical analysis. It is found that the target's surface roughness and transverse velocity can significantly affect the spectrum width of Doppler signal. With the increase of surface roughness and transverse velocity, the measurement accuracy becomes worse. However, the influence of surface roughness becomes weaker when the spot size of laser beam on the target is smaller.

  11. Response of a Doppler canceling system to plane gravitational waves

    Science.gov (United States)

    Caporali, A.

    1982-01-01

    This paper discusses the interaction of long periodic gravitational waves with a three-link microwave system known as the Doppler canceling system. This system, which was developed for a gravitational red-shift experiment, uses one-way and two-way Doppler information to construct the beat signal of two reference oscillators moving with respect to each other. The geometric-optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational-wave space-time. The signature left on the Doppler-cancelled beat by bursts and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler canceling system and that of a (NASA) Doppler tracking system which employs two-way, round-trip radio waves. A threefold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences.

  12. Renal Power Doppler Ultrasonographic Evaluation of Children With Acute Pyelonephritis

    Directory of Open Access Journals (Sweden)

    Ali Pahlusi

    2011-10-01

    Full Text Available Urinary tract infections are common in children. The available gold standard method for diagnosis, Tc-99m dimercaptosuccinic acid scan is expensive and exposes patients to considerable amount of radiation. This study was performed to compare and assess the efficacy of Power Doppler Ultrasound versus Tc-99m DMSA scan for diagnosis of acute pyelonephritis. A quasi experimental study was conducted on 34 children with mean age of 2.82.7 years who were hospitalized with their first episode of febrile urinary tract infection. All children were evaluated in the first 3 days of admission by Doppler Ultrasound and Tc-99m DMSA scan. Patients with congenital structural anomalies were excluded. Each kidney was divided into three zones. The comparison between efficacy of Doppler Ultrasound and DMSA scan was carried out based on number of patients and on classified renal units. Based on the number of patients enrolled; the sensitivity, specificity, positive and negative predictive values and accuracy of Doppler Ultrasound were 89%, 53%, 70%, 80% and 74%, respectively but based on the renal units, it was 66%, 81%, 46%, 91% and 79% , respectively. Although Doppler Ultrasound has the potential for identifying acute pyelonephritis in children, but it is still soon to replace DMSA scan.

  13. Research on integrated navigation method for AUV

    Institute of Scientific and Technical Information of China (English)

    GUO Zhen; SUN Feng

    2005-01-01

    The principles of the SINS/DVL integrated navigation system are introduced, and the compass status accuracy is compared. When the heading is changed, the dead reckoning algorithm using the heading information of the SINS (Strapdown inertial navigation systems) and DVL (doppler velocity log) is adopted to substitute the SINS/DVL integrated system. The simulation results show that the method can improve the accuracy of integrated navigation system when AUV (autonomous underwater vehicle) is in motion.

  14. Laboratory and field tests on photo-electric probes and ultrasonic Doppler flow switch for remote control of turbidity and flowrate of a water-sand mixture flow

    Science.gov (United States)

    Pellegrini, M.; Saccani, C.

    2017-08-01

    The paper describes the experimental apparatus and field tests carried on to remotely control through non-invasive and non-intrusive instruments turbidity and flowrate of a water-sand mixture flow conveyed by a pipeline. The mixture flow was produced by an innovative plant for seabed management. The turbidity was monitored by thru-beam infra-red photo-electric sensors, while flowrate was monitored by an ultrasonic Doppler flow switch. In a first phase, a couple of photo-electric sensors and a mechanical flow switch were preliminary tested in laboratory to verify installations concerns and measurement repeatability and precision. After preliminary test completion, photo-electric sensors and mechanical flow switch were installed in the real scale plant. Since the mechanical flow switch did not reach high reliability, an ultrasonic Doppler flow switch was identified and tested as alternative. Then, two couple of photo-electric sensors and ultrasonic Doppler flow switch were installed and tested on two pipelines of the plant. Turbidity and minimum flow signals produced by the instruments were integrated in the PLC logic for the automatic management of the plant. The paper also shows how ultrasonic Doppler flow switch measurement repeatability was negatively affected by the presence of the other ultrasonic Doppler flow switch working in a close pipeline and installed inside a steel casing.

  15. Selection functions in doppler planet searches

    Science.gov (United States)

    O'Toole, S. J.; Tinney, C. G.; Jones, H. R. A.; Butler, R. P.; Marcy, G. W.; Carter, B.; Bailey, J.

    2009-01-01

    We present a preliminary analysis of the sensitivity of Anglo-Australian Planet Search data to the orbital parameters of extrasolar planets. To do so, we have developed new tools for the automatic analysis of large-scale simulations of Doppler velocity planet search data. One of these tools is the two-dimensional Keplerian Lomb-Scargle (LS) periodogram that enables the straightforward detection of exoplanets with high eccentricities (something the standard LS periodogram routinely fails to do). We used this technique to redetermine the orbital parameters of HD20782b, with one of the highest known exoplanet eccentricities (e = 0.97 +/- 0.01). We also derive a set of detection criteria that do not depend on the distribution functions of fitted Keplerian orbital parameters (which we show are non-Gaussian with pronounced, extended wings). Using these tools, we examine the selection functions in orbital period, eccentricity and planet mass of Anglo-Australian Planet Search data for three planets with large-scale Monte Carlo like simulations. We find that the detectability of exoplanets declines at high eccentricities. However, we also find that exoplanet detectability is a strong function of epoch-to-epoch data quality, number of observations and period sampling. This strongly suggests that simple parametrizations of the detectability of exoplanets based on `whole-of-survey' metrics may not be accurate. We have derived empirical relationships between the uncertainty estimates for orbital parameters that are derived from least-squares Keplerian fits to our simulations and the true 99 per cent limits for the errors in those parameters, which are larger than equivalent Gaussian limits by the factors of 5-10. We quantify the rate at which false positives are made by our detection criteria, and find that they do not significantly affect our final conclusions. And finally, we find that there is a bias against measuring near-zero eccentricities, which becomes more significant

  16. Musculoskeletal colour/power Doppler in sports medicine: image parameters, artefacts, image interpretation and therapy

    DEFF Research Database (Denmark)

    Boesen, M I; Boesen, Mikael; Kønig, Merete Juhl;

    2010-01-01

    This review article discusses the aspects of sports medicine where musculoskeletal Doppler ultrasound has valuable contribution in diagnosis and/or treatment of some of the typical musculoskeletal sports injuries. Also, conditions where the Doppler ultrasound has no value are discussed. Some...... guidelines and recommendations are based on personal experience since no evidence in literature exists. The basic technical background of Doppler ultrasound and typical artefacts will be discussed, in order to understand and interpret the Doppler result. Recommendations for the Doppler settings are given...... in relevant sections. Ultrasound guided treatments where the Doppler result is used as a guide are mentioned and discussed....

  17. Ecocardiografia modo Doppler pulsado em gatos clinicamente sadios Pulsed wave Doppler echocardiography in clinically healthy cats

    Directory of Open Access Journals (Sweden)

    R.O. Carvalho

    2006-06-01

    Full Text Available Estudou-se o fluxo sangüíneo através das quatro valvas cardíacas em 30 gatos clinicamente sadios, com idade entre um e cinco anos e peso médio de 4,08kg, por meio da ecocardiografia modo Doppler pulsado. Foram medidas a velocidade máxima e a velocidade média dos fluxos, e realizou-se uma análise qualitativa dos seus perfis. Os animais foram sedados pela combinação de quetamina (12mg/kg e acepromazina (0,04mg/kg, aplicados por via intramuscular. Observou-se correlação positiva entre os parâmetros avaliados e a freqüência cardíaca, com exceção daqueles medidos no fluxo da valva aórtica. Não se observou correlação entre velocidades máxima e média e freqüência cardíaca e entre aquelas e peso corporal, e não houve diferença entre sexos.Pulsed wave Doppler echocardiography was used to study blood flow across the cardiac valves in 30 five-year-old cats (average body weight = 4.08kg. Animals were sedated using a combination of ketamin (12mg/kg, IM and acepromazin (0.04mg/kg, IM. Peak and mean velocities were determined, and blood flow patterns were recorded at the four cardiac valves. All variables, except those characterizing aortic valve flow, were positively correlated with heart rate. Blood flow variables were not correlated, however, with body weight; and there were no differences between males and females.

  18. Multipurpose Pressure Vessel Scanner and Photon Doppler Velocimetry

    Science.gov (United States)

    Ellis, Tayera

    2015-01-01

    Critical flight hardware typically undergoes a series of nondestructive evaluation methods to screen for defects before it is integrated into the flight system. Conventionally, pressure vessels have been inspected for flaws using a technique known as fluorescent dye penetrant, which is biased to inspector interpretation. An alternate method known as eddy current is automated and can detect small cracks better than dye penetrant. A new multipurpose pressure vessel scanner has been developed to perform internal and external eddy current scanning, laser profilometry, and thickness mapping on pressure vessels. Before this system can be implemented throughout industry, a probability of detection (POD) study needs to be performed to validate the system’s eddy current crack/flaw capabilities. The POD sample set will consist of 6 flight-like metal pressure vessel liners with defects of known size. Preparation for the POD includes sample set fabrication, system operation, procedure development, and eddy current settings optimization. For this, collaborating with subject matter experts was required. This technical paper details the preparation activities leading up to the POD study currently scheduled for winter 2015/2016. Once validated, this system will be a proven innovation for increasing the safety and reliability of necessary flight hardware.Additionally, testing of frangible joint requires Photon Doppler Velocimetry (PDV) and Digital Image Correlation instrumentation. There is often noise associated with PDV data, which necessitates a frequency modulation (FM) signal-to-noise pre-test. Generally, FM radio works by varying the carrier frequency and mixing it with a fixed frequency source, creating a beat frequency which is represented by audio frequency that can be heard between about 20 to 20,000 Hz. Similarly, PDV reflects a shifted frequency (a phenomenon known as the Doppler Effect) from a moving source and mixes it with a fixed source frequency, which results in

  19. Joint Channel Estimation and Data Detection for Multihop OFDM Relaying System under Unknown Channel Orders and Doppler Frequencies

    CERN Document Server

    Min, Rui

    2012-01-01

    In this paper, channel estimation and data detection for multihop relaying orthogonal frequency division multiplexing (OFDM) system is investigated under time-varying channel. Different from previous works, which highly depend on the statistical information of the doubly-selective channel (DSC) and noise to deliver accurate channel estimation and data detection results, we focus on more practical scenarios with unknown channel orders and Doppler frequencies. Firstly, we integrate the multilink, multihop channel matrices into one composite channel matrix. Then, we formulate the unknown channel using generalized complex exponential basis expansion model (GCE-BEM) with a large oversampling factor to introduce channel sparsity on delay-Doppler domain. To enable the identification of nonzero entries, sparsity enhancing Gaussian distributions with Gamma hyperpriors are adopted. An iterative algorithm is developed under variational inference (VI) framework. The proposed algorithm iteratively estimate the channel, re...

  20. Non-Gaussianity and CMB aberration and Doppler

    CERN Document Server

    Catena, Riccardo; Notari, Alessio; Renzi, Alessandro

    2013-01-01

    The peculiar motion of an observer with respect to the CMB rest frame induces a deflection in the arrival direction of the observed photons (also known as CMB aberration) and a Doppler shift in the measured photon frequencies. As a consequence, aberration and Doppler effects induce non trivial correlations between the harmonic coefficients of the observed CMB temperature maps. In this paper we investigate whether these correlations generate a bias on Non-Gaussianity estimators $f_{NL}$. We perform this analysis simulating a large number of temperature maps with Planck-like resolution (lmax $= 2000$) as different realizations of the same cosmological fiducial model (WMAP7yr). We then add to these maps aberration and Doppler effects employing a modified version of the HEALPix code. We finally evaluate a generalization of the Komatsu, Spergel and Wandelt Non-Gaussianity estimator for all the simulated maps, both when peculiar velocity effects have been considered and when these phenomena have been neglected. Usi...

  1. Doppler Spectrum from Moving Scatterers in a Random Environment

    DEFF Research Database (Denmark)

    Andersen, Jørgen Bach; Nielsen, Jesper Ødum; Pedersen, Gert Frølund

    2009-01-01

    as well as sharply peaked distributions are considered in the theory. The Doppler spectra are in all cases sharply peaked at zero frequency due to forward scattering, but the actually measured distribution depends on the degree and type of activity in the environment, as well as the spectrum estimation......A random non-line-of-sight environment with stationary transmitter and receiver is considered. In such an environment movement of a scatterer will lead to perturbations of the otherwise static channel with a resulting Doppler spectrum. This is quite a general situation in outdoor environments...... with moving traffic or indoor situations with moving people. Here we study the latter situation in detail with experimental results from a large office environment. A general theory of Doppler spectra is developed. The impact of a scatterer depends on the angular distribution of scattered energy, and uniform...

  2. One way Doppler Extractor. Volume 2: Digital VCO technique

    Science.gov (United States)

    Nossen, E. J.; Starner, E. R.

    1974-01-01

    A feasibility analysis and trade-offs for a one-way Doppler extractor using digital VCO techniques is presented. The method of Doppler measurement involves the use of a digital phase lock loop; once this loop is locked to the incoming signal, the precise frequency and hence the Doppler component can be determined directly from the contents of the digital control register. The only serious error source is due to internally generated noise. Techniques are presented for minimizing this error source and achieving an accuracy of 0.01 Hz in a one second averaging period. A number of digitally controlled oscillators were analyzed from a performance and complexity point of view. The most promising technique uses an arithmetic synthesizer as a digital waveform generator.

  3. Micro-range micro-doppler for dismount classification

    Science.gov (United States)

    Tahmoush, Dave

    2013-05-01

    This paper presents a processing technique that can be used to detect and classify pedestrians group based on the micro- Doppler signature gathered with a millimeter wave radar. The evaluation of the number of pedestrians moving in a group can be a difficult task using a traditional micro-Doppler spectrogram because of a tendency for people to partially synchronize their steps when walking together. The new approach, based on multi-range variation as well as the micro-Doppler variations, provides promising results. The range-spectrogram processing technique was developed and tested using a database composed of hundreds of pedestrian and vehicle signatures gathered in an urban test site over a two year period in a variety of weather conditions. We associate image detections with radar detections through motion extracted from both radar and imagery. We also explain how radar and video together can produce an inexpensive alternative to 3-D imaging.

  4. Automatic human micro-Doppler signature separation by Hough transform

    Science.gov (United States)

    Zhang, Jun; Jin, Tian; Qiu, Lei; Zhou, Zhimin

    2015-12-01

    The micro-Doppler signature is one of the most prominent information for target classification and identification. As Hough transform (HT) is an efficient tool for detecting weak straight target traces in the image, an HT based algorithm is proposed for micro-Doppler signature separation of multiple persons. Few seconds data is processed at one time to ensure human motion traces approximate to straight lines in the radar slow time-range image. Taking HT to the slow time-range image, each human's motion trace can be recovered through recursively searching the peaks in HT space. Applying time-frequency transform to the range cells around each recovered line, the human micro-Doppler signature can be achieved and separated. Experimental results are given to illustrate the validity of the proposed algorithm.

  5. Holographic laser Doppler imaging of microvascular blood flow

    CERN Document Server

    Magnain, C; Boucneau, T; Simonutti, M; Ferezou, I; Rancillac, A; Vitalis, T; Sahel, J A; Paques, M; Atlan, M

    2014-01-01

    We report on local superficial blood flow monitoring in biological tissue from laser Doppler holographic imaging. In time averaging recording conditions, holography acts as a narrowband bandpass filter, which, combined with a frequency shifted reference beam, permits frequency selective imaging in the radiofrequency range. These Doppler images are acquired with an off axis Mach Zehnder interferometer. Microvascular hemodynamic components mapping is performed in the cerebral cortex of the mouse and the eye fundus of the rat with near-infrared laser light without any exogenous marker. These measures are made from a basic inverse method analysis of local first order optical fluctuation spectra at low radiofrequencies, from 0 Hz to 100 kHz. Local quadratic velocity is derived from Doppler broadenings induced by fluid flows, with elementary diffusing wave spectroscopy formalism in backscattering configuration. We demonstrate quadratic mean velocity assessment in the 0.1 to 10 millimeters per second range in vitro ...

  6. Improved technique for blood flow velocity measurement using Doppler effect

    Science.gov (United States)

    Valadares Oliveira, Eduardo J.; Nantes Button, Vera L. d. S.; Maia, Joaquim M.; Costa, Eduardo T.

    2002-04-01

    The Doppler velocimeter developed allows to determine the angle between the ultrasonic beam and the velocity vector of the flow, and to calculate the precise blood flow in a vessel. Four piezoelectric transducers constitute the Doppler velocimeter. Three of these transducers are positioned to form an equilateral triangle (base of a pyramid). When these transducers move simultaneously, backward or forward from the initial position, the emitted ultrasonic beams focalize on a position (peak of the pyramid) closer or farther from the transducers faces, according to the depth of the vessel where we intend to measure de flow. The angle between the transducers allows adjusting the height of this pyramid and the position of the focus (where the three beams meet). A forth transducer is used to determine the diameter of the vessel and monitor the position of the Doppler velocimeter relative to the vessel. Simulation results showed that with this technique is possible to accomplish precise measurement of blood flow.

  7. Curvelet Transform-Based Denoising Method for Doppler Frequency Extraction

    Institute of Scientific and Technical Information of China (English)

    HOU Shu-juan; WU Si-liang

    2007-01-01

    A novel image denoising method based on curvelet transform is proposed in order to improve the performance of Doppler frequency extraction in low signal-noise-ratio (SNR) environment. The echo can be represented as a gray image with spectral intensity as its gray values by time-frequency transform. And the curvelet coefficients of the image are computed. Then an adaptive soft-threshold scheme based on dual-median operation is implemented in curvelet domain. After that, the image is reconstructed by inverse curvelet transform and the Doppler curve is extracted by a curve detection scheme. Experimental results show the proposed method can improve the detection of Doppler frequency in low SNR environment.

  8. Theoretical analysis and experimental verification on optical rotational Doppler effect

    CERN Document Server

    Zhou, Hailong; Dong, Jianji; Zhang, Pei; Zhang, Xinliang

    2016-01-01

    We present a theoretical model to sufficiently investigate the optical rotational Doppler effect based on modal expansion method. We find that the frequency shift content is only determined by the surface of spinning object and the reduced Doppler shift is linear to the difference of mode index between input and output orbital angular momentum (OAM) light, and linear to the rotating speed of spinning object as well. An experiment is carried out to verify the theoretical model. We explicitly suggest that the spatial spiral phase distribution of spinning object determines the frequency content. The theoretical model makes us better understand the physical processes of rotational Doppler effect, and thus has many related application fields, such as detection of rotating bodies, imaging of surface and measurement of OAM light.

  9. Doppler-like effect and doubtful expansion of universe

    CERN Document Server

    Szaraniec, E

    2003-01-01

    The distance contraction, as observed in electrical soundings over horizontally stratified earth (static system), is identified as a counterpart of Doppler shift in dynamical systems. Identification of Doppler-like effect in a stock-still systems makes it possible to give an al-ternative answer to the question about an effective cause of the Doppler shift, which sounds: the inhomogeneities. This answer opens different static as well as kinematic possibilities, which challenge established theories of expanding universe and energizing big bang.The energy propagating in stratified universe of layers exhibits a shift which could be at-tributed not only to the expansion (Hubble's theory) but alternatively to fluctuations in material properties (inhomogeneities).

  10. It's all in the past: Deconstructing the temporal Doppler effect.

    Science.gov (United States)

    Aksentijevic, Aleksandar; Treider, John Melvin Gudnyson

    2016-10-01

    A recent study reported an asymmetry between subjective estimates of future and past distances with passive estimation and virtual movement. The temporal Doppler effect refers to the contraction of future distance judgments relative to past ones. We aimed to replicate the effect using real and imagined motion in both directions as well as different temporal perspectives. To avoid the problem of subjective anchoring, we compared real- and imagined-, ego- and time-moving conditions to a control group. Generally, Doppler-like distortion was only observed in conditions in which the distance between the participant and a frontal target increased. No effects of temporal perspective were observed. The "past-directed temporal Doppler effect" presents a challenge for the current theories of temporal cognition by demonstrating absence of psychological movement into the future. The effect could open new avenues in memory research and serve as a starting point in a systematic examination of how the humans construct future.

  11. Rotational Doppler Effect: A Probe for Molecular Orbitals Anisotropy.

    Science.gov (United States)

    Miao, Quan; Travnikova, Oksana; Gel'mukhanov, Faris; Kimberg, Victor; Sun, Yu-Ping; Thomas, T Darrah; Nicolas, Christophe; Patanen, Minna; Miron, Catalin

    2015-05-01

    The vibrationally resolved X-ray photoelectron spectra of X2Σg+(3σg−1) and B2Σu+(2σu−1) states of N2+ were recorded for different photon energies and orientations of the polarization vector. Clear dependencies of the spectral line widths on the X-ray polarization as well as on the symmetry of the final electronic states are observed. Contrary to the translational Doppler, the rotational Doppler broadening is sensitive to the photoelectron emission anisotropy. On the basis of theoretical modeling, we suggest that the different rotational Doppler broadenings observed for gerade and ungerade final states result from a Young's double-slit interference phenomenon.

  12. Theoretical analysis and experimental verification on optical rotational Doppler effect

    Science.gov (United States)

    Zhou, Hailong; Fu, Dongzhi; Dong, Jianji; Zhang, Pei; Zhang, Xinliang

    2016-05-01

    We present a theoretical model to sufficiently investigate the optical rotational Doppler effect based on modal expansion method. We find that the frequency shift content is only determined by the surface of spinning object and the reduced Doppler shift is linear to the difference of mode index between input and output orbital angular momentum (OAM) light, and linear to the rotating speed of spinning object as well. An experiment is carried out to verify the theoretical model. We explicitly suggest that the spatial spiral phase distribution of spinning object determines the frequency content. The theoretical model makes us better understand the physical processes of rotational Doppler effect, and thus has many related application fields, such as detection of rotating bodies, imaging of surface and measurement of OAM light.

  13. The Doppler paradigm and the APEX-EPOS-ORANGE quandary

    CERN Document Server

    Griffin, J J

    1996-01-01

    The experimental detection of the sharp lines of the \\ee Puzzle is viewed as a struggle against Doppler broadening. Gedanken experiments which are realistic in zeroth order of detail are analyzed to show that the ORANGE and EPOS/I geometries select narrower slices of a Doppler broadened line than spherically inclusive (APEX and EPOS/II --like) apparati. Roughly speaking, the latter require event-by-event Doppler reconstruction simply to regain an even footing with the former. This suggests that APEX' or EPOS/II's coincident pair distributions must be statistically superior to those of EPOS/I or ORANGE in order to support a comparable inference about sharp structure. Under present circumstances, independent alternative data is invaluable. Therefore, a corroboration of Sakai's 330.1 keV (< 3 keV wide) electron line in few MeV e^+ or e^- bombardments of U and Th targets could prove crucial.

  14. The US color Doppler in acute renal failure.

    Science.gov (United States)

    Nori, G; Granata, A; Leonardi, G; Sicurezza, E; Spata, C

    2004-12-01

    Imaging techniques, especially ultrasonography and Doppler, can give an effective assistance in the differential diagnosis of acute renal failure (ARF). An resistance Index (RI) value >0.75 is reported as optimal in attempting differential diagnosis between acute tubular necrosis (ANT) and prerenal ARF. In hepatorenal syndrome (HRS) RIs is very increased. In some renal vasculitis, as nodose panarteritis (PN), hemolytic-uremic syndrome (HUS), thrombotic thrombocytopenic purpura (TTP), parenchymal perfusion is reduced and RI increased. In lupus nephritis the RI values are correlated with creatinine level and normal RI are considered as a good prognostic tool. In acute primitive or secondary glomerulonephritis (GN), RI value is normal, with diffuse parenchymal hypervascularization. In acute crescentic and proliferative GN and tubulo-interstitial disease, color Doppler (CD) and power Doppler (PD) reveal a decreased renal parenchymal perfusion, which correlates with increased RI values. In acute thrombosis of renal artery, US color Doppler (DUS) reveals either an absence of Doppler signal or a tardus-parvus pulse distal to the vascular obstruction. In this situation it is possible to visualize hyperthropic perforating vessels that redirect their flow from the capsular plexus to the renal parenchyma. In acute thrombosis of the renal vein Doppler analysis of parenchymal vessels reveals remarkable RI values, sometimes with reversed diastolic flow. In postrenal ARF an adjunct to the differentiation between obstruction and non obstructive dilatation can be found through RIs. Diagnostic criteria of obstruction as reported by literature are: RI>0.70 in the obstructed kidney and, mostly, a difference in RI between the 2 kidneys >0.06-0.1.

  15. UltraFast Doppler ultrasonography for hepatic vessels of liver recipients: preliminary experiences

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Bo Yun; Lee, Jae Young; Chu, A Jung; Kim, Se Hyung; Han, Joon Koo; Choi, Byung Ihn [Seoul National University Hospital, Seoul (Korea, Republic of)

    2015-01-15

    The purpose of this study was to investigate the value of UltraFast Doppler ultrasonography (US) for evaluating hepatic vessels in liver recipients. Thirty-nine liver Doppler US sessions were conducted in 20 liver recipients. Each session consisted of UltraFast and conventional liver Doppler US in a random order. We compared the velocities and phasicities of the hepatic vessels, duration of each Doppler study, occurrence of technical failures, and differences in clinical decisions. The velocities and resistive index values of hepatic vessels showed a strong positive correlation between the two Doppler studies (mean R=0.806; range, 0.710 to 0.924). The phasicities of the hepatic vessels were the same in both Doppler US exams. With respect to the duration of the Doppler US exam, there was no significant difference between the UltraFast (251±99 seconds) and conventional (231±117 seconds) Doppler studies (P=0.306). In five poor breath-holders, in whom the duration of conventional Doppler US was longer, UltraFast Doppler US (272±157 seconds) required a shorter time than conventional Doppler US (381±133 seconds; P=0.005). There was no difference between the two techniques with respect to technical failures and clinical decisions. UltraFast Doppler US is clinically equivalent to conventional Doppler US with advantages for poor breath-holders during the post-liver transplantation work-up.

  16. A review of Doppler ultrasound quality assurance protocols and test devices.

    Science.gov (United States)

    Browne, Jacinta E

    2014-11-01

    In this paper, an overview of Doppler ultrasound quality assurance (QA) testing will be presented in three sections. The first section will review the different Doppler ultrasound parameters recommended by professional bodies for use in QA protocols. The second section will include an evaluation and critique of the main test devices used to assess Doppler performance, while the final section of this paper will discuss which of the wide range of test devices have been found to be most suitable for inclusion in Doppler QA programmes. Pulsed Wave Spectral Doppler, Colour Doppler Imaging QA test protocols have been recommended over the years by various professional bodies, including the UK's Institute of Physics and Engineering in Medicine (IPEM), the American Institute for Ultrasound in Medicine (AIUM), and the International Electrotechnical Commission (IEC). However, despite the existence of such recommended test protocols, very few commercial or research test devices exist which can measure the full range of both PW Doppler ultrasound and colour Doppler imaging performance parameters, particularly quality control measurements such as: (i) Doppler sensitivity (ii) colour Doppler spatial resolution (iii) colour Doppler temporal resolution (iv) colour Doppler velocity resolution (v) clutter filter performance and (vi) tissue movement artefact suppression. In this review, the merits of the various commercial and research test devices will be considered and a summary of results obtained from published studies which have made use of some of these Doppler test devices, such as the flow, string, rotating and belt phantom, will be presented.

  17. Miniature Laser Doppler Velocimeter for Measuring Wall Shear

    Science.gov (United States)

    Gharib, Morteza; Modarress, Darius; Forouhar, Siamak; Fourguette, Dominique; Taugwalder, Federic; Wilson, Daniel

    2005-01-01

    A miniature optoelectronic instrument has been invented as a nonintrusive means of measuring a velocity gradient proportional to a shear stress in a flow near a wall. The instrument, which can be mounted flush with the wall, is a variant of a basic laser Doppler velocimeter. The laser Doppler probe volume can be located close enough to the wall (as little as 100 micron from the surface) to lie within the viscosity-dominated sublayer of a turbulent boundary layer. The instrument includes a diode laser, the output of which is shaped by a diffractive optical element (DOE) into two beams that have elliptical cross sections with very high aspect ratios.

  18. Aerial ultrasonic micro Doppler sonar detection range in outdoor environments.

    Science.gov (United States)

    Bradley, Marshall; Sabatier, James M

    2012-03-01

    Current research demonstrates that micro Doppler sonar has the capability to uniquely identify the presence of a moving human, making it an attractive component in surveillance systems for border security applications. Primary environmental factors that limit sonar performance are two-way spreading losses, ultrasonic absorption, and backscattered energy from the ground that appears at zero Doppler shift in the sonar signal processor. Spectral leakage from the backscatter component has a significant effect on sonar performance for slow moving targets. Sonar performance is shown to rapidly decay as the sensor is moved closer to the ground due to increasing surface backscatter levels.

  19. Optical Doppler tomography based on a field programmable gate array

    DEFF Research Database (Denmark)

    Larsen, Henning Engelbrecht; Nilsson, Ronnie Thorup; Thrane, Lars

    2008-01-01

    We report the design of and results obtained by using a field programmable gate array (FPGA) to digitally process optical Doppler tomography signals. The processor fits into the analog signal path in an existing optical coherence tomography setup. We demonstrate both Doppler frequency and envelope...... extraction using the Hilbert transform, all in a single FPGA. An FPGA implementation has certain advantages over general purpose digital signal processor (DSP) due to the fact that the processing elements operate in parallel as opposed to the DSP. which is primarily a sequential processor....

  20. Experimental Verification of Doppler Effect with the Refraction Method

    Institute of Scientific and Technical Information of China (English)

    Lie FENG; Jia-bi CHEN; Jing-bin HU; Song-lin ZHUANG

    2010-01-01

    The traditional methad of measuring Dopplr Effect is either reflection or dispersion.This article clarifies that it can also verify the Doppler Effect with the refraction method.We have designed the experimental system with the method of optical heterodyne,using the refraction light beam from a prism,and made the experiment.The experimental results are in accordance with the theoreticai calculation.It is very useful in some particular case,such as in Negative-Index Materials(NIM),to verify the Doppler Effect with this method.

  1. Single pass Doppler positioning for Search and Rescue satellite missions

    Science.gov (United States)

    Schmid, P. E.; Vonbun, F. O.; Lynn, J. J.

    1976-01-01

    This paper describes the implementation of beacon location experiments involving the NASA Nimbus-6 and the Amateur Satellite Corporation (AMSAT) Oscar-6 and Oscar-7 spacecraft. The purpose of these experiments is to demonstrate the feasibility of determining the geographical location of a low power VHF 'distress beacon' via satellite. Doppler data collected during satellite passes is reduced in a mini-computer by means of a simple algorithm resulting in the simultaneous recovery of the unknown receiver coordinates and the unknown Doppler bias frequency. Results indicate point positioning to within a few kilometers - which is within the required accuracies for the positioning of downed aircraft for Search/Rescue missions.

  2. ANALYSIS ABOUT TRANSVERSE DOPPLER EFFECT OF ELECTROMAGNETIC WAVE%有关电磁波横向多普勒效应的辨析

    Institute of Scientific and Technical Information of China (English)

    曹春梅

    2015-01-01

    电磁波既有纵向多普勒效应,也存在横向多普勒效应,一般电动力学教科书中对纵向多普勒效应多有讨论,易于理解且无争议,但对横向多普勒效应则少见详细、正确的报道。本文基于普遍的电磁波多普勒效应表达式,结合光行差公式,对电磁波多普勒效应进行了全面的辨析,指出对横向多普勒效应,波源的运动与探测器的运动是等价的,无论源静止、接收器运动还是源运动、接收器静止,横向多普勒效应都应只存在红移,不可能出现蓝移,并对横向多普勒效应蓝移错误的原因进行了分析。%The electromagnetic wave not only has longitudinal Doppler effect,but also has transverse Doppler effect.Longitudinal Doppler effect is discussed in many electrodynamics textbooks,which is easy to understand and has no dispute about it.But there is little correct and detailed report about transverse Doppler effect.Based on the ordinary formula of Doppler effect for electromagnetic wave,and integrated with aberration formula,a thorough analysis and discussion on Doppler effect for electromagnetic wave is given in this paper.It is pointed out that the movement of the source and the receiver are equivalent in electromagnetic wave Doppler effect.Transverse Doppler effect only has red shift no matter when the source moves or the receiver moves.Blue shift in transverse Doppler effect is impossible,and the reason of that is explained.

  3. A STUDY TO DETERMINE THE REFERENCE VALUES FOR TWO MINUTE WALK DISTANCE IN HEALTHY INDIAN ADULTS

    Directory of Open Access Journals (Sweden)

    T. Krishna Priya

    2015-10-01

    Full Text Available Background: The use of functional scales to assess the prognosis of the individuals is widely being encouraged by the International classification of Functioning, Disability and Health. Two, six and twelve minute walk tests are the existing functional walk tests, among which 6MWT is being considered as the gold standard. Patients in acute stages of illnesses and early stages of recovery, it is difficult and tiring to accomplish a 6MWT. 2MWT is presently being used as a pre and post-test. To comment on the status of the patient and the test results in the first attempt, it is necessary to look at the reference values of 2MWT. Purpose of the study: This study aims to establish reference values for 2MWT in healthy Indian adults. Objective of the study: To establish reference values for 2 minute walk distance in healthy Indian adults of 20-80 years age. Methods: Three hundred subjects met the inclusion criteria through convenience sampling. Two trials of 2MWT were administered. Instructions for the test were adopted from American Thoracic Society guidelines for 6MWT. Out of the two trials, the one in which more distance was covered by the subject was taken for the analysis. Descriptive statistics were used to analyse the data. Results: The mean 2MWD was 182.69 + 32.40 meters. 2MWD had shown moderate significant negative correlation with age (r = -0.58 and weak but significant positive correlation with height (r = 0.35. The correlations with weight (r= 0.1 and BMI (r= -0.13 were found to be negligible. It was also found that males walked 21.55 + 3.5 meters more than females and aye2MWD during the second trial was found to be 3.011 + 1.44 meters greater than the first trial. Conclusion: The average distance covered by a healthy Indian individual is approximately 182.69 + 32.40 meters in 2 minutes duration. Implication: Patients in early stages of rehabilitation, early post-operative period and patients with severe disability, found 6MWT difficult, intolerable, time consuming and too fatiguing. So, 2MWT is being used as an outcome scale of priority in these populations recently. It is clinically more useful when compared to 6MWT.

  4. Whole left ventricular functional assessment from two minutes free breathing multi-slice CINE acquisition

    Science.gov (United States)

    Usman, M.; Atkinson, D.; Heathfield, E.; Greil, G.; Schaeffter, T.; Prieto, C.

    2015-04-01

    Two major challenges in cardiovascular MRI are long scan times due to slow MR acquisition and motion artefacts due to respiratory motion. Recently, a Motion Corrected-Compressed Sensing (MC-CS) technique has been proposed for free breathing 2D dynamic cardiac MRI that addresses these challenges by simultaneously accelerating MR acquisition and correcting for any arbitrary motion in a compressed sensing reconstruction. In this work, the MC-CS framework is combined with parallel imaging for further acceleration, and is termed Motion Corrected Sparse SENSE (MC-SS). Validation of the MC-SS framework is demonstrated in eight volunteers and three patients for left ventricular functional assessment and results are compared with the breath-hold acquisitions as reference. A non-significant difference (P > 0.05) was observed in the volumetric functional measurements (end diastolic volume, end systolic volume, ejection fraction) and myocardial border sharpness values obtained with the proposed and gold standard methods. The proposed method achieves whole heart multi-slice coverage in 2 min under free breathing acquisition eliminating the time needed between breath-holds for instructions and recovery. This results in two-fold speed up of the total acquisition time in comparison to the breath-hold acquisition.

  5. The College Audition: Coaching Your Students on How To Tell a Two-Minute Story.

    Science.gov (United States)

    Miller, Bruce

    2002-01-01

    Offer a strategy that can help make the work acting instructors do with their students as they prepare for college auditions as effective as possible. Looks at the process of finding an appropriate monologue. Established some ground rules for preparation and apply them to the monologue's development. Reviews suggestions to help students present…

  6. Acoustic doppler methods for remote measurements of ocean flows - a review

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.

    The evolution of acoustic doppler methods for remote measurements of ocean flows has been briefly reviewed in historical perspective. Both Eulerian and profiling methods have been discussed. Although the first acoustic Doppler current meter has been...

  7. High-resolution velocimetry in energetic tidal currents using a convergent-beam acoustic Doppler profiler

    Science.gov (United States)

    Sellar, Brian; Harding, Samuel; Richmond, Marshall

    2015-08-01

    An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the water column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1 MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation. Comparison of C-ADP to standard divergent ADP (D-ADP) velocity measurements reveals a mean difference of 8 mm s-1, standard deviation of 18 mm s-1, and an order of magnitude reduction in realisable length scale. C-ADP focal point measurements compared to a proximal single-beam reference show peak cross-correlation coefficient of 0.96 over 4.0 s averaging period and a 47% reduction in Doppler noise. The dual functionality of the C-ADP as a profiling instrument with a high resolution focal point make this configuration a unique and valuable advancement in underwater velocimetry enabling improved quantification of flow turbulence. Since waves are simultaneously measured via profiled velocities, pressure measurements and surface detection, it is expected that derivatives of this system will be a powerful tool in

  8. Doppler-shift attenuation lifetime measurement of the 36Ar21+ level

    Science.gov (United States)

    Voss, P.; Drake, T. E.; Starosta, K.; Andreoiu, C.; Ashley, R.; Ball, G. C.; Bender, P. C.; Chester, A.; Churchman, R.; Cross, D. S.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Henderson, R.; Jigmeddorj, B.; Ketelhut, S.; Krücken, R.; Laffoley, A. T.; Leach, K. G.; Miller, D.; Orlandi, R.; Pearson, C. J.; Pore, J.; Rajabali, M. M.; Rand, E. T.; Svensson, C. E.; Tardiff, E.; Unsworth, C.; Wang, Z.-M.; Signoracci, A.

    2017-08-01

    At TRIUMF, the TIGRESS Integrated Plunger device and its suite of ancillary detector systems have been implemented for charged-particle tagging and light-ion identification in coincidence with γ -ray spectroscopy for Doppler-shift lifetime studies and low-energy Coulomb excitation measurements. As a test of the device, the lifetime of the first 2+ excited state in 36Ar was measured from the γ -ray line shape of the 21+→0g.s . + transition using the Doppler-shift attenuation technique following Coulomb excitation. The line-shape signatures, vital for precision lifetime measurements, were significantly improved by enhanced reaction-channel selectivity using a complementary approach of kinematic gating and digital rise-time discrimination of recoiling charged particles in a silicon PIN diode array. The lifetime was determined by comparisons between the data and simulated line shapes generated using our TIGRESS Coulomb excitation code as an input to the Lindhard method, which was then extended and included as a class in geant4. The model-independent lifetime result of 490 ±50 fs corresponds to a reduced quadrupole transition strength of B (E 2 ;21+→0g.s . +) =56 ±6 e2fm4 and agrees well with previous intermediate energy Coulomb excitation measurements, thereby resolving reported discrepancies in the 21+ level lifetime in this self-conjugate nucleus.

  9. Search for Doppler-shifted gamma-ray emission from SS 433 using the SMM spectrometer

    Science.gov (United States)

    Geldzahler, B. J.; Share, G. H.; Kinzer, R. L.; Magura, J.; Chupp, E. L.

    1989-01-01

    Data accumulated from 1980 to 1983 with the Gamma Ray Spectrometer aboard NASA's Solar Maximum Mission (SMM) satellite were searched for evidence of red and blue Doppler-shifted 1.37 MeV Mg-24 nuclear lines from SS 433. The SMM data base covers 270 days when SS 433 was in the field of view and includes periods of radio flaring and quiescence. No evidence was found for Doppler-shifted line emission in any of the spectra. The range of 3-sigma upper limits for individual 9 day integration periods was 0.0008-0.0023 photons/sq cm per sec for the blue beam, encompassing the reported about 1.5 MeV line, and 0.0008-0.002 photons/sq cm per sec for the red beam, encompassing the reported about 1.2 MeV line; the average 3-sigma upper limit in each beam for shifted about 1.37 MeV lines is 0.0015 photons/sq cm per sec for single 9 day integrations. The 3-sigma upper limit on 1.37 MeV gamma-ray emission over 23 9-day integration intervals for the red beam and 28 intervals for the blue beam is 0.0002 photons/sq cm per sec. These new limits from SMM can be reconciled with the HEAO 3 results only if SS 433 emits gamma radiation at or above the SMM sensitivity limit on rare occasions due to variable physical conditions in the system.

  10. Doppler echocardiographic criteria in patency assessment of composite grafts from left internal thoracic artery

    Directory of Open Access Journals (Sweden)

    Maria Claudia A. Leitão

    2013-06-01

    Full Text Available OBJECTIVES: The purpose of our study was to establish, with an entirely noninvasive method, transthoracic Doppler echocardiography, criteria for patency of composite left internal thoracic artery grafts when placed on the left anterior descending artery and other branches of the left coronary system. METHODS: The control group comprised 20 patients with single graft and 20 patients with composite graft; all forty having their patency confirmed by coronary angiogram (CA. In this control group, two Doppler echocardiographic variables, diastolic mean velocity-time and integral diastolic peak velocity to systolic peak velocity ratio were recorded. For each variable, established cut-off points were established, using the ROC (Receiver Operator Characteristic curves, to identify criteria which could differentiate the composite grafts. Only patients with composite grafts were included in the 159-patients study group. The criteria established by the cut-off points in the control group were then applied to detect patency using a diastolic fraction of > 0.5 as the gold standard. The sensitivity, specificity, and positive and negative predictive values of these two criteria were determined. RESULTS: In the control group, cut-off points of 0.71 and 0.09m were established for the diastolic peak velocity/systolic peak velocity ratio and for diastolic mean velocity-time integral, respectively. In the study group phase, the sensitivity and negative predictive value of the diastolic peak velocity/systolic peak velocity > 0.71 criterion were 36% and 11%, respectively. Diastolic mean velocity-time integral > 0.09m criterion, were 40% and 10.48%. The specificities and positive predictive values of each criterion were 100%. CONCLUSION: Values reaching the criteria established for each variable indicate high probability of composite graft patency. Lower values have a large proportion of false negatives and are not conclusive as patency criteria.

  11. Wind turbine wake characterization using long-range Doppler lidar

    Science.gov (United States)

    Aitken, M.; Lundquist, J. K.; Hestmark, K.; Banta, R. M.; Pichugina, Y.; Brewer, A.

    2012-12-01

    Wind turbines extract energy from the freestream flow, resulting in a waked region behind the rotor which is characterized by reduced wind speed and increased turbulence. The velocity deficit in the wake diminishes with distance, as faster-moving air outside is gradually entrained. In a concentrated group of turbines, then, downwind machines experience very different inflow conditions compared to those in the front row. As utility-scale turbines rarely exist in isolation, detailed knowledge of the mean flow and turbulence structure inside wakes is needed to correctly model both power production and turbine loading at modern wind farms. To this end, the Turbine Wake and Inflow Characterization Study (TWICS) was conducted in the spring of 2011 to determine the reduction in wind speeds downstream from a multi-MW turbine located at the National Renewable Energy Laboratory's National Wind Technology Center (NWTC) near Boulder, Colorado. Full-scale measurements of wake dynamics are hardly practical or even possible with conventional sensors, such as cup anemometers mounted on meteorological (met) masts. Accordingly, the High Resolution Doppler Lidar (HRDL) developed by the National Oceanic and Atmospheric Administration's Earth System Research Laboratory was employed to investigate the formation and propagation of wakes under varying levels of ambient wind speed, shear, atmospheric stability, and turbulence. HRDL remotely senses line-of-sight wind velocities and has been used in several previous studies of boundary layer aerodynamics. With a fully steerable beam and a maximum range up to about 5 km, depending on atmospheric conditions, HRDL performed a comprehensive survey of the wind flow in front of and behind the turbine to study the shape, meandering, and attenuation of wakes. Due in large part to limited experimental data availability, wind farm wake modeling is still subject to an unacceptable amount of uncertainty, particularly in complex terrain. Here, analytical

  12. Anomaly Detection In Additively Manufactured Parts Using Laser Doppler Vibrometery

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Carlos A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-29

    Additively manufactured parts are susceptible to non-uniform structure caused by the unique manufacturing process. This can lead to structural weakness or catastrophic failure. Using laser Doppler vibrometry and frequency response analysis, non-contact detection of anomalies in additively manufactured parts may be possible. Preliminary tests show promise for small scale detection, but more future work is necessary.

  13. Radar Micro-Doppler classification of Mini-UAVs

    NARCIS (Netherlands)

    Harmanny, R.L.A.; Prémel-Cabic, G.; Wit, J.J.M.

    2015-01-01

    The radar micro-Doppler signature of a target depends on its micro-motion, i.e., the motion of parts of a target relative to the motion of the target as a whole. These micro-motions are very characteristic considering different target classes, e.g., the slow pendulum-like motion of a bird’s wings ve

  14. High-resolution kinetic energy distributions via doppler shift measurements

    Science.gov (United States)

    Xu, Z.; Koplitz, B.; Buelow, S.; Baugh, D.; Wittig, C.

    1986-07-01

    In photolysis/probe experiments using pulsed sources, time delay produces both spatial and directional bias in the fragment distributions, thus enabling well-resolved kinetic energy distributions to be obtained from Doppler shift measurements. Data are presented for H-atoms detected using two-photon ionization, and high S/N and laser-limited kinetic energy resolution are demonstrated.

  15. ATTITUDE RATE ESTIMATION BY GPS DOPPLER SIGNAL PROCESSING

    Institute of Scientific and Technical Information of China (English)

    He Side; Milos Doroslovacki; Guo Zhenyu; Zhang Yufeng

    2003-01-01

    A method is presented for near-Earth spacecraft or aviation vehicle's attitude rate estimation by using relative Doppler frequency shift of the Global Positioning System (GPS)carrier. It comprises two GPS receiving antennas, a signal processing circuit and an algorithm.The whole system is relatively simple, the cost and wcight, as well as power consumption, are very low.

  16. New Type of 2-D Laser Doppler Vibrometer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fundamentals and method of 2-D laser Doppler vibrometer are introduced.The factors influencing the measuring accuracy are analyzed. Moreover, the circuit for signal processing is designed. The vibrating amplitude and frequency of 2-D vibration in wider range can be measured simultaneously in non-contact means,the measuring results are accurate.

  17. Diagnostic sensitivity and specificity of Doppler ultrasound in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Terslev, L.; Recke, P. von der; Torp-Pedersen, S.

    2008-01-01

    Objective. To evaluate the sensitivity and specificity of Doppler ultrasound (DUS) in diagnosing arthritis in the wrist and hands, and, if possible, to define a cutoff level for our ultrasound measures for inflammation, resistive index (RI), and color fraction. Methods. Using DUS, 88 patients...

  18. Noise Studies of Externally Dispersed Interferometry for Doppler Velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D J; Edelstein, J; Lloyd, J; Muirhead, P

    2006-05-04

    Externally Dispersed Interferometry (EDI) is the series combination of a fixed-delay field-widened Michelson interferometer with a dispersive spectrograph. This combination boosts the spectrograph performance for both Doppler velocimetry and high resolution spectroscopy. The interferometer creates a periodic comb that multiplies against the input spectrum to create moire fringes, which are recorded in combination with the regular spectrum. Both regular and high-frequency spectral components can be recovered from the data--the moire component carries additional information that increases the signal to noise for velocimetry and spectroscopy. Here we present simulations and theoretical studies of the photon limited Doppler velocity noise in an EDI. We used a model spectrum of a 1600K temperature star. For several rotational blurring velocities 0, 7.5, 15 and 25 km/s we calculated the dimensionless Doppler quality index (Q) versus wavenumber v. This is the normalized RMS of the derivative of the spectrum and is proportional to the photon-limited Doppler signal to noise ratio.

  19. Excitonic Doppler-Rabi Oscillations in a Moving Organic Slab

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    It is theoretically shown that excitonic Doppler-Rabi oscillations can occur in an organic slab moving along the axis of a high-Q cavity. Due to the √N enhancement of the vacuum Rabi frequency, this effect can be more easily observed than that in a moving two-level atom.

  20. Color Doppler in the Assessment of Uteroplacental Circulation Insufficiency

    Directory of Open Access Journals (Sweden)

    Ahmad Soltani Shirazi

    2010-05-01

    Full Text Available Usage of color Doppler ultrasound in the diagnosis of uteroplacental or fetal-placental vascular insufficiency is based on the theory that many of these insufficiencies are due to small vessel disease in the uteroplacental or fetal-placental vasculature which ultimately results in fetal intrauterine growth retardation, increase in prenatal mortality and morbidity and fetal neurological development. "nIn a prospective study on patients who were sus-pected for developing uteroplacental insufficiency, color Doppler ultrasound was done and the results were compared with neonatal weight (one of the most important criteria for IUGR determination which was measured just after delivery."nDirect significant relation was showed to be present between prepartum vascular changes detected in Doppler ultrasound and prognosis of IUGR. "nThree vessel types were assessed in this study:"n1. Umbilical-middle cerebral arteries"n2. Uterine arteries"n3.Venous system (umbilical, ductus venosus, IVC, which is used to assess the compensation process in fetal circulation."nThree Doppler indices of vascular resistance were studied and their abnormalities according to the age of pregnancy were assessed.

  1. Tethered acoustic doppler current profiler platforms for measuring streamflow

    Science.gov (United States)

    Rehmel, Michael S.; Stewart, James A.; Morlock, Scott E.

    2003-01-01

    The U.S. Geological Survey tested and refined tethered-platform designs for measuring streamflow. Platform specifications were developed, radio-modem telemetry of acoustic Doppler current profiler (ADCP) data and potential platform-hull sources were investigated, and hulls were tested and evaluated.

  2. Study of an airborne Doppler radar: Project Asterix

    Science.gov (United States)

    Testud, Jacques; Baudin, F.; Amayenc, P.

    Specifications for an airborne Doppler radar for meteorological applications are given. The following areas are covered: (1) principle for measuring three-dimensional speed field; (2) pulse pattern and detectability; (3) antenna; (4) processing of data; (5) analog system; (6) data control and recording; (7) attitude control and vibrations; and (8) logistics.

  3. Airborne Wind Profiling Algorithm for Doppler Wind LIDAR

    Science.gov (United States)

    Beyon, Jeffrey Y. (Inventor); Koch, Grady J. (Inventor); Kavaya, Michael J. (Inventor)

    2015-01-01

    Systems, methods, and devices of the present invention enable airborne Doppler Wind LIDAR system measurements and INS/GPS measurements to be combined to estimate wind parameters and compensate for instrument misalignment. In a further embodiment, the wind speed and wind direction may be computed based on two orthogonal line-of-sight LIDAR returns.

  4. Radar Micro-Doppler classification of Mini-UAVs

    NARCIS (Netherlands)

    Harmanny, R.L.A.; Prémel-Cabic, G.; Wit, J.J.M.

    2015-01-01

    The radar micro-Doppler signature of a target depends on its micro-motion, i.e., the motion of parts of a target relative to the motion of the target as a whole. These micro-motions are very characteristic considering different target classes, e.g., the slow pendulum-like motion of a bird’s wings

  5. Asymmetric micro-Doppler frequency comb generation via magnetoelectric coupling

    Science.gov (United States)

    Filonov, Dmitry; Steinberg, Ben Z.; Ginzburg, Pavel

    2017-06-01

    Electromagnetic scattering from moving bodies, being an inherently time-dependent phenomenon, gives rise to a generation of new frequencies, which can be used to characterize the motion. Whereas an ordinary motion along a linear path produces a constant Doppler shift, an accelerated scatterer can generate a micro-Doppler frequency comb. The spectra produced by rotating objects were studied and observed in a bistatic lock-in detection scheme. The internal geometry of a scatterer was shown to determine the spectrum, and the degree of structural asymmetry was suggested to be identified via signatures in the micro-Doppler comb. In particular, hybrid magnetoelectric particles, showing an ultimate degree of asymmetry in forward and backward scattering directions, were investigated. It was shown that the comb in the backward direction has signatures at the fundamental rotation frequency and its odd harmonics, whereas the comb of the forward scattered field has a prevailing peak at the doubled frequency and its multiples. Additional features of the comb were shown to be affected by the dimensions of the particle and by the strength of the magnetoelectric coupling. Experimental verification was performed with a printed circuit board antenna based on a wire and a split ring, while the structure was illuminated at a 2 GHz carrier frequency. Detailed analysis of micro-Doppler combs enables remote detection of asymmetric features of distant objects and could find use in a span of applications, including stellar radiometry and radio identification.

  6. A simplified study of trans-mitral Doppler patterns

    Directory of Open Access Journals (Sweden)

    Thomas George

    2008-11-01

    Full Text Available Abstract Background Trans-mitral Doppler produces complex patterns with a great deal of variability. There are several confusing numerical measures and indices to study these patterns. However trans-mitral Doppler produces readymade data visualization by pattern generation which could be interpreted by pattern analysis. By following a systematic approach we could create an order and use this tool to study cardiac function. Presentation of the hypothesis In this new approach we eliminate the variables and apply pattern recognition as the main criterion of study. Proper terminologies are also devised to avoid confusion. In this way we can get some meaningful information. Testing the hypothesis Trans-mitral Doppler should be seen as patterns rather than the amplitude. The hypothesis can be proven by logical deduction, extrapolation and elimination of variables. Trans-mitral flow is also analyzed vis-à-vis the Starling's Law applied to the left atrium. Implications of the hypothesis Trans-mitral Doppler patterns are not just useful for evaluating diastolic function. They are also useful to evaluate systolic function. By following this schema we could get useful diagnostic information and therapeutic options using simple pattern recognition with minimal measurements. This simplified but practical approach will be useful in day to day clinical practice and help in understanding cardiac function better. This will also standardize research and improve communication.

  7. A compact differential laser Doppler velocimeter using a semiconductor laser

    NARCIS (Netherlands)

    Jentink, H.W.; Beurden, van J.A.J.; Helsdingen, M.A.; Mul, de F.F.M.; Suichies, H.E.; Aarnoudse, J.G.; Greve, J.

    1987-01-01

    A small differential laser Doppler velocimeter which uses a semiconductor laser and a small number of optical components is described. In this device the light from the laser diode is split into coherent beams by means of a diffraction grating. The two first-order beams are crossed in a probe volume

  8. UTEROPLACENTAL DOPPLER VELOCIMETRY DURING BRAXTON-HICKS CONTRACTIONS

    NARCIS (Netherlands)

    DIJKSTRA, K; AARNOUDSE, JG; Oosterhof, H.

    1992-01-01

    Pulsed-wave Doppler ultrasound was used to evaluate the influence of Braxton Hicks' contractions on flow velocity waveforms in the uterine arteries. Flow velocity waveforms were obtained from a standardized site, at the crossing of the uterine artery with the external iliac artery near the uterine w

  9. Transcranial Doppler for detection of cerebral ischaemia during carotid endarterectomy

    DEFF Research Database (Denmark)

    Jørgensen, L G; Schroeder, T V

    1992-01-01

    We evaluated transcranial Doppler sonography (TCD) for the detection of cerebral ischaemia during carotid endarterectomy in 30 male and 14 female patients with ipsilateral focal cerebro-vascular symptoms. Surgery was performed during halothane-nitrous oxide anaesthesia with moderate hypocapnia...

  10. Color M-mode and pulsed wave tissue Doppler echocardiography

    DEFF Research Database (Denmark)

    Møller, J E; Søndergaard, E; Poulsen, S H;

    2001-01-01

    To assess the association between color M-mode flow propagation velocity and the early diastolic mitral annular velocity (E(m)) obtained with tissue Doppler echocardiography and to assess the prognostic implications of the indexes, echocardiography was performed on days 1 and 5, and 1 and 3 months...

  11. Ultrasonography and color Doppler in juvenile idiopathic arthritis

    DEFF Research Database (Denmark)

    Laurell, Louise; Court-Payen, Michel; Nielsen, Susan;

    2012-01-01

    The wrist region is one of the most complex joints of the human body. It is prone to deformity and functional impairment in juvenile idiopathic arthritis (JIA), and is difficult to examine clinically. The aim of this study was to evaluate the role of ultrasonography (US) with Doppler in diagnosis...

  12. Review of methodological developments in laser Doppler flowmetry

    NARCIS (Netherlands)

    Rajan, Vinayakrishnan; Varghese, Babu; van Leeuwen, Ton; Steenbergen, Wiendelt

    2009-01-01

    Laser Doppler flowmetry is a non-invasive method of measuring microcirculatory blood flow in tissue. In this review the technique is discussed in detail. The theoretical and experimental developments to improve the technique are reviewed. The limitations of the method are elaborated upon, and the re

  13. Venstre ventrikels diastoliske funktion vurderet med transtorakal Doppler-ekkokardiografi

    DEFF Research Database (Denmark)

    Poulsen, S H; Jensen, S E; Gøtzsche, O;

    1996-01-01

    Left ventricular diastolic dysfunction is currently recognized in patients with different heart diseases. Three abnormal filling patterns of the left ventricle detected by pulsed-Doppler echocardiography are observed in patients with heart disease. Each filling pattern is characterised by differe...

  14. Color doppler in diagnosis of pathological changes in blood vessels

    Directory of Open Access Journals (Sweden)

    Mladenović Saša

    2014-01-01

    Full Text Available Color Doppler ultrasound is a method that allows noninvasive imaging of blood flow through a blood vessel and analysis of blood vessels, which can be made to flow disturbance and the presence of plaque and narrowing of the blood vessel. Color Doppler ultrasonography allows early detection of pathological changes in blood vessels, which contributes to adequate preventive and therapeutic procedures in the prevention of cerebrovascular disorders. The aim of this paper is to demonstrate the importance of color Doppler ultrasound blood vessels in the diagnosis of pathological changes in the blood vessels of the neck. To create a work used the material of the Cabinet of color Doppler ultrasonography of the Health Center in Donja Gusterica in a prospective study of a random sample of 60 patients were reviewed in January 2014. Gender analysis examined patients, women were 32 (53.33% and 28 men (46.67%. Looking at the age of examined patients, we have found that most of them 43 (71.67% over the age of 50 years, while we found 17 (28.33% patients under 50 years. Atherosclerotic plaques were diagnosed in 36, a change in the shape of the carotid arteries in 29 patients. Atherosclerotic plaque, we usually find the bifurcation ACC and the Origin ACI in 23 (63.89%. Duplex sonography shows what angioneurologists and vascular surgeons are most interested in: the morphology of arterial lesions and hemodynamic effects.

  15. A Reference Optical System of Laser Doppler Longitudinal Displacement Measurement

    Institute of Scientific and Technical Information of China (English)

    张存满; 赵洋; 李达成

    2001-01-01

    In this paper, a new reference optical system is put forward to achieve longitudinal displacement measurement. An optical grating is used for frequency mixing and getting high SNR signals in the measurement. Conditions and methods for getting Doppler beat signals are presented.The experiments indicate that this optical syetem can be used to measure the longitudinal displacement with high accuracy.

  16. Doppler velocimetry with emphasis on the fetal cerebral circulation

    NARCIS (Netherlands)

    M.J. Noordam (Marja)

    1996-01-01

    textabstractIn this thesis the following questions were addressed: 1. Are changes in placental vascular resistance associated with alterations in arterial down stream impedance at fetal level? To this purpose placental embolization was carried-out in the fetal lamb with subsequent Doppler velocimetr

  17. Complex Doppler effect in left-handed metamaterials

    CERN Document Server

    Ziemkiewicz, David

    2014-01-01

    The Doppler shift is investigated in one-dimensional system with moving source. Theoretical findings are confirmed in numerical simulations of optical and acoustical waves propagation in simple metamaterial model, showing the reversed shift and the existence of multiple frequency modes. The properties of these waves are discussed. The effect of absorption on the phenomenon is outlined.

  18. Augmented Reality Based Doppler Lidar Data Visualization: Promises and Challenges

    Directory of Open Access Journals (Sweden)

    Cherukuru N. W.

    2016-01-01

    As a proof of concept, we used the lidar data from a recent field campaign and developed a smartphone application to view the lidar scan in augmented reality. In this paper, we give a brief methodology of this feasibility study, present the challenges and promises of using AR technology in conjunction with Doppler wind lidars.

  19. Usefulness of Doppler Parameter in Patients with Renal Transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yeo Chang; Shin, Byung Seok; Ohm, Joon Young; Ahn, Moon Sang [Chungnam National University Hospital, Daejeon (Korea, Republic of); Park, Mi Hyun [Dept. of Radiology, Dankook University Hospital, Cheonan (Korea, Republic of); Kim, Ho Jun [Dept. of Radiology, Konyang University Hospital, Daejeon (Korea, Republic of)

    2012-08-15

    The purpose of this study is to assess the usefulness of Doppler parameters in transplanted kidney function. Doppler parameters, including resistive index (RI), pulsatility index (PI), peak systolic velocity (PSV), and end diastolic velocity (EDV) were measured in the interlobar artery of 55 transplant recipients. Patients were grouped according to glomerular filtration rate (GFR): Group A (GFR < 30 ml / min / 1.73 m2, n = 27) and group B (GFR {>=}30 ml / min / 1.73 m2, n = 28). Doppler parameters were compared between groups and correlated with the GFR. GFR (40.1 {+-} 26.9) showed a significant negative correlation with RI (0.69{+-}.08) (p = .002, r = -.414). RI (0.72 vs. 0.67), PI (1.42 vs. 1.23), and EDV (10.5 vs. 15.3) differed significantly between groups (p < .05), however, PSV was not (36.9 vs. 47.1). Patients in group A (n = 11) with a lower RI than the mean had significantly lower PSV (31.7 vs. 45.1; p = .027) and EDV (11.1 vs. 16.7; p .017), compared with such patients in group B (n = 21). Doppler parameters are useful for evaluation of function of transplanted kidney. Even if the RI is normal, PSV and EDV may be used as hemodynamic indicators.

  20. A range-rate extraction unit for determining Doppler effect

    Science.gov (United States)

    1970-01-01

    Active ranging technique devised for VHF or S-band radar systems divides target Doppler frequency by counter-generated number that is proportional to transmitting frequency, thus producing target velocity data in terms of speed and distance relative to target transponder.

  1. How to Study the Doppler Effect with Audacity Software

    Science.gov (United States)

    Dias, Marco Adriano; Carvalho, Paulo Simeão; Ventura, Daniel Rodrigues

    2016-01-01

    The Doppler effect is one of the recurring themes in college and high school classes. In order to contextualize the topic and engage the students in their own learning process, we propose a simple and easily accessible activity, i.e. the analysis of the videos available on the internet by the students. The sound of the engine of the vehicle…

  2. Unidirectional Rotation of Molecules Measured by the Rotational Doppler Effect

    Directory of Open Access Journals (Sweden)

    Prior Yehiam

    2013-03-01

    Full Text Available A pair of linearly polarized pump pulses induce field-free unidirectional molecular rotation, which is detected by a delayed circularly polarized probe. The polarization and spectrum of the probe are modified by the interaction with the molecules, in accordance with the Rotational Doppler Effect.

  3. Determining the Speed of Sound Using the Doppler Effect.

    Science.gov (United States)

    Gagne, Richard.

    1996-01-01

    Presents a simple but effective experiment that uses ultrasonic transducers and some basic electronics to study the speed of sound using the Doppler effect. Eliminates the noise problems associated with most sound experiments. Discusses the theory, and describes the apparatus and procedure. (JRH)

  4. Maternal and fetal Doppler velocimetry in women diagnosed with ...

    African Journals Online (AJOL)

    2016-03-16

    Mar 16, 2016 ... Aim: This study aimed to investigate maternal and fetal Doppler flow parameters in term pregnant women diagnosed with fear of ... [3] A strong association was found between FOC ... and it includes 33 items about women's cognitive appraisal .... acute emotional reactivity during pregnancy can influence.

  5. Doppler Lidar in the Wind Forecast Improvement Projects

    Directory of Open Access Journals (Sweden)

    Pichugina Yelena

    2016-01-01

    Full Text Available This paper will provide an overview of some projects in support of Wind Energy development involving Doppler lidar measurement of wind flow profiles. The high temporal and vertical resolution of these profiles allows the uncertainty of Numerical Weather Prediction models to be evaluated in forecasting dynamic processes and wind flow phenomena in the layer of rotor-blade operation.

  6. Doppler Lidar in the Wind Forecast Improvement Projects

    Science.gov (United States)

    Pichugina, Yelena; Banta, Robert; Brewer, Alan; Choukulkar, Aditya; Marquis, Melinda; Olson, Joe; Hardesty, Mike

    2016-06-01

    This paper will provide an overview of some projects in support of Wind Energy development involving Doppler lidar measurement of wind flow profiles. The high temporal and vertical resolution of these profiles allows the uncertainty of Numerical Weather Prediction models to be evaluated in forecasting dynamic processes and wind flow phenomena in the layer of rotor-blade operation.

  7. High-Energy 2-Micrometers Doppler Lidar for Wind Measurements

    Science.gov (United States)

    Koch, Grady J.; Beyon, Jeffrey Y.; Barnes, Bruce W.; Petros, Mulugeta; Yu, Jirong; Amzajerdian, Farzin; Kavaya, Michael J.; Singh, Upendra N.

    2006-01-01

    High-energy 2-micrometer wavelength lasers have been incorporated in a prototype coherent Doppler lidar to test component technologies and explore applications for remote sensing of the atmosphere. Design of the lidar is presented including aspects in the laser transmitter, receiver, photodetector, and signal processing. Calibration tests and sample atmospheric data are presented on wind and aerosol profiling.

  8. Validar: a testbed for advanced 2-micron Doppler lidar

    Science.gov (United States)

    Koch, Grady J.; Petros, Mulugeta; Barnes, Bruce W.; Beyon, Jeffrey Y.; Amzajerdian, Farzin; Yu, Jirong; Kavaya, Michael J.; Singh, Upendra N.

    2004-09-01

    High-energy 2-micron lasers have been incorporated in a breadboard coherent Doppler lidar to test component technologies and explore applications for remote sensing of the atmosphere. Design of the lidar is presented including aspects in the laser transmitter, receiver, photodetector, and signal processing. Sample data is presented on wind profiling and CO2 concentration measurements.

  9. Estimation of amputation level with a laser Doppler flowmeter

    DEFF Research Database (Denmark)

    Gebuhr, Peter Henrik; Jørgensen, J P; Vollmer-Larsen, B

    1989-01-01

    Leg amputation levels were decided in 24 patients suffering from atherosclerosis, using the conventional techniques of segmental blood pressure and radioisotope skin clearance. The skin microcirculation was measured and recorded before operation with a laser doppler flowmeter. A high correlation...... was found between the successful amputation levels and the maximal blood perfusion of the skin measured in this way....

  10. Path-length-resolved optical Doppler perfusion monitoring

    NARCIS (Netherlands)

    Varghese, Babu; Rajan, Vinayakrishnan; Leeuwen, van Ton G.; Steenbergen, Wiendelt

    2007-01-01

    We report the first path-length-resolved perfusion measurements on human skin measured with a phase-modulated low-coherence Mach-Zehnder interferometer with spatially separated fibers for illumination and detection. Optical path lengths of Doppler shifted and unshifted light and path-length-dependen

  11. Predictable progressive Doppler deterioration in IUGR: does it really exist?

    LENUS (Irish Health Repository)

    Unterscheider, Julia

    2013-12-01

    An objective of the Prospective Observational Trial to Optimize Pediatric Health in IUGR (PORTO) study was to evaluate multivessel Doppler changes in a large cohort of intrauterine growth restriction (IUGR) fetuses to establish whether a predictable progressive sequence of Doppler deterioration exists and to correlate these Doppler findings with respective perinatal outcomes.

  12. Radar micro-Doppler of wind turbines: Simulation and analysis using rotating linear wire structures

    NARCIS (Netherlands)

    Krasnov, O.A.; Yarovoy, A.

    2015-01-01

    A simple electromagnetic model of wind-turbine's main structural elements as the linear wired structures is developed to simulate the temporal patterns of observed radar return Doppler spectra (micro-Doppler). Using the model, the micro-Doppler for different combinations of the turbines rotation

  13. Classification of Small UAVs and Birds by Micro-Doppler Signatures

    NARCIS (Netherlands)

    Molchanov, P.; Egiazarian, K.; Astola, J.; Harmanny, R.I.A.; Wit, J.J.M. de

    2013-01-01

    The problem of unmanned aerial vehicles classification using continuous wave radar is considered in this paper. Classification features are extracted from micro-Doppler signature. Before the classification, the micro-Doppler signature is filtered and aligned to compensate the Doppler shift caused by

  14. Musculoskeletal colour/power Doppler in sports medicine: image parameters, artefacts, image interpretation and therapy

    DEFF Research Database (Denmark)

    Boesen, M I; Boesen, Mikael; Kønig, Merete Juhl

    2011-01-01

    guidelines and recommendations are based on personal experience since no evidence in literature exists. The basic technical background of Doppler ultrasound and typical artefacts will be discussed, in order to understand and interpret the Doppler result. Recommendations for the Doppler settings are given...

  15. Color Doppler Ultrasonography in Evaluation of the Postoperative Penis

    Directory of Open Access Journals (Sweden)

    M. Ghafouri

    2005-08-01

    Full Text Available Introduction & Background: Color Doppler ultrasonography (US is the imaging modality of choice in patients with penile diseases. Ultrasonography has a well-established role in evaluating erectile dysfunction as well as penile trauma, scarring, deformity, and tumors. The normal postoperative anatomy and the pathologic changes that can occur in cases of surgical complications can be successfully investigated with US. Gray Scale (B Mode and Color Doppler US clearly depicts the normal penile anatomy and postoperative changes. It is also effective in evaluating surgery-related complications and determining the causes of erectile dysfunction and other un-satisfactory long¬term results. Color Doppler US is the imaging modality of choice in evaluating patients who have undergone penile surgery. Here we aim to illustrate the gray-scale and color Doppler US appearance of normal penis, discuss the main penile surgical procedures, recognize the typical US features of the postopera-tive penis, and describe the US appearance of various postoperative complications. Patients & Methods: This article is the result of evaluating 42 patients referred to the radiology ward of Hashemi-Nejad Hospital, Iran University of Medical Sciences in the years 2002 to 2005 for ultrasonography of penis to assess the penis after different penile surgical procedures (urethral surgery, correction of penile mal-formations, prosthesis implantation, vascular surgery for impotence, surgical management of priapism, phallic reconstruction. The US apparatus was Esaote Technos MP, with linear multifrequency 5-8.5MHz. transducer. Results: A variety of early and late surgical complications could be identified, such as extraalbugineal patho-logic fluid collections and fibrosis. Moreover, Doppler US of the penile vessels and vascular anastomoses fol-lowing revascularization allowed direct evaluation of flow characteristics, shunt patency, and venous en-gorgement. Color Doppler US was also

  16. Role of Doppler Velocimetry in growth restricted fetuses

    Directory of Open Access Journals (Sweden)

    Dr. Khushali Gandhi

    2015-01-01

    Full Text Available Background Intra Uterine Growth Restriction (IUGR is an important and particularly challenging problem for obstetricians and pediatricians. IUGR is a leading contributor in perinatal morbidity and mortality affecting 23.8% newborns around the world and 75% are born in Asia alone. In India the incidence of low birth weight varies from 15 to 25% and more than 50% of them are IUGR. Methods The present article consists of a study of 100 cases of intrauterine growth restriction with periodic color Doppler during the period of 1st July 2011 to 30 th August, 2013 in Obstetrics and Gynecology Department of a tertiary care center. Detail history taken. General and obstetrical examination was done along with routine hematological and urine investigations. Ultrasound examination was done for growth, liquor and placental localization. Fetal well- being was assessed with Doppler studies and daily fetal movement count. Results In present study moderate to severe pregnancy induced hypertension (53.9% and lack of proper weight gain (23% are found to be the commonest causes of IUGR. Out of 69 IUGR cases having abnormal Doppler, about 63.8% had abnormality in uterine artery flow, 85.5% had abnormality in umbilical artery flow, 88.4% had abnormality in middle cerebral artery flow, 55% had abnormality in uterine and umbilical artery and 75.4% had abnormality in umbilical artery and MCA. Incidence of fetal demise (13% was higher in patients with abnormal Doppler flow compared to normal flow (3.2%. Surgical intervention in form of caesarean was required in 69.6% of patients with abnormal Doppler flow. Cerebro-placental ratio (CPR 1 where fetal demise is 2.6%. Incidence of AEDF/REDF ( Absent End Diastolic flow/Reversed End diastolic flow in IUGR was 8% that resulted in 50% loss of fetus. Conclusions Color Doppler is a useful mode to predict fetal outcome in IUGR. Color Doppler allows better understandings of hemodynamic changes in feto- placental and utero

  17. Hydronephrosis and pregnancy: study with Doppler echography. Hidronefrosis y embarazo: estudio mediante ecografia Doppler

    Energy Technology Data Exchange (ETDEWEB)

    Ripolles Gonzalez, T.R.; Ambit Capdevilla, S.; Sanguesa Nebot, C.; Lazaro, S. de; Garcia Vila, J.H.; Belloch Ugarte, V.

    1993-01-01

    An 18-month study was performed to establish the normal intrarenal resistance index during pregnancy, in order to determine whether it differed significantly depending on the week of gestation or the degree of hydronephrosis. For this purpose , the flow velocity waves obtained in right kidney were analyzed in a group of 112 patients on the basis of 209 explorations. The kidneys were classified as grade 0,I,II, or III according to the degree of hydronephrosis. Doppler signal sampling was carried out at the level of the corticomedullary junction. From the results of the study it can be deduced that the index of intrarenal resistance during pregnancy is similar to that of the general population, that there are no significant differences among the groups with different degree of hydronephrosis and that the index does not vary according to the different weeks of gestation. These findings suggest that, during pregnancy, a pathological resistance index in a kidney should not be attributed to the physiological changes associated with normal gestation. (Author) 21 refs.

  18. Active control of passive acoustic fields: passive synthetic aperture/Doppler beamforming with data from an autonomous vehicle.

    Science.gov (United States)

    D'Spain, Gerald L; Terrill, Eric; Chadwell, C David; Smith, Jerome A; Lynch, Stephen D

    2006-12-01

    The maneuverability of autonomous underwater vehicles (AUVs) equipped with hull-mounted arrays provides the opportunity to actively modify received acoustic fields to optimize extraction of information. This paper uses ocean acoustic data collected by an AUV-mounted two-dimensional hydrophone array, with overall dimension one-tenth wavelength at 200-500 Hz, to demonstrate aspects of this control through vehicle motion. Source localization is performed using Doppler shifts measured at a set of receiver velocities by both single elements and a physical array. Results show that a source in the presence of a 10-dB higher-level interferer having exactly the same frequency content (as measured by a stationary receiver) is properly localized and that white-noise-constrained adaptive beamforming applied to the physical aperture data in combination with Doppler beamforming provides greater spatial resolution than physical-aperture-alone beamforming and significantly lower sidelobes than single element Doppler beamforming. A new broadband beamformer that adjusts for variations in vehicle velocity on a sample by sample basis is demonstrated with data collected during a high-acceleration maneuver. The importance of including the cost of energy expenditure in determining optimal vehicle motion is demonstrated through simulation, further illustrating how the vehicle characteristics are an integral part of the signal/array processing structure.

  19. A gel-based skin and blood flow model for a Doppler optical coherence tomography (DOCT) imaging system

    Science.gov (United States)

    Lawlor, Kate; O'Connell, Marie-Louise; Jonathan, Enock; Leahy, Martin J.

    2010-02-01

    Since its discovery in 1842 by Christian Johann Doppler, the Doppler Effect has had many applications in the scientific world. In recent years, the phenomenon has been integrated with Optical Coherence Tomography (OCT) yielding Doppler Optical Coherence Tomography (DOCT), a technique that is useful for high-resolution imaging of the skin microcirculation. However, interpretation of DOCT images is rather challenging. Thus, our study aims to aid understanding of DOCT images with respect to parameters of microcirculation components such as blood vessel size, depth and angular position. To this end, we have constructed a gel-based tissue and blood-flow model for performing DOCT studies under well controlled conditions. We present results from a pilot study using a gel-based tissue and blood flow model. Human blood was pumped through the model at various velocities from a commercial calibrated syringe pump, serving as a standard reference point for all velocity measurements. The range of velocity values was chosen to coincide with that found in the human vasculature. Simultaneous DOCT imaging at different flow rates contributed to establishing the capabilities and limitations of the DOCT system under investigation. We present preliminary results as first step to developing a robust validation protocol with which to aid future research in this area.

  20. Field testing of a convergent array of acoustic Doppler profilers for high-resolution velocimetry in energetic tidal currents

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Samuel F.; Sellar, Brian; Richmond, Marshall C.

    2016-04-25

    An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the water column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation.

  1. Ambulatory blood pressure and Doppler echocardiographic indexes of borderline hypertensive men presenting an exaggerated blood pressure response during dynamic exercise

    Directory of Open Access Journals (Sweden)

    Herkenhoff F.L.

    2001-01-01

    Full Text Available Borderline hypertension (BH has been associated with an exaggerated blood pressure (BP response during laboratory stressors. However, the incidence of target organ damage in this condition and its relation to BP hyperreactivity is an unsettled issue. Thus, we assessed the Doppler echocardiographic profile of a group of BH men (N = 36 according to office BP measurements with exaggerated BP in the cycloergometric test. A group of normotensive men (NT, N = 36 with a normal BP response during the cycloergometric test was used as control. To assess vascular function and reactivity, all subjects were submitted to the cold pressor test. Before Doppler echocardiography, the BP profile of all subjects was evaluated by 24-h ambulatory BP monitoring. All subjects from the NT group presented normal monitored levels of BP. In contrast, 19 subjects from the original BH group presented normal monitored BP levels and 17 presented elevated monitored BP levels. In the NT group all Doppler echocardiographic indexes were normal. All subjects from the original BH group presented normal left ventricular mass and geometrical pattern. However, in the subjects with elevated monitored BP levels, fractional shortening was greater, isovolumetric relaxation time longer, and early to late flow velocity ratio was reduced in relation to subjects from the original BH group with normal monitored BP levels (P<0.05. These subjects also presented an exaggerated BP response during the cold pressor test. These results support the notion of an integrated pattern of cardiac and vascular adaptation during the development of hypertension.

  2. A Novel INS and Doppler Sensors Calibration Method for Long Range Underwater Vehicle Navigation

    Directory of Open Access Journals (Sweden)

    Wenqi Wu

    2013-10-01

    Full Text Available Since the drifts of Inertial Navigation System (INS solutions are inevitable and also grow over time, a Doppler Velocity Log (DVL is used to aid the INS to restrain its error growth. Therefore, INS/DVL integration is a common approach for Autonomous Underwater Vehicle (AUV navigation. The parameters including the scale factor of DVL and misalignments between INS and DVL are key factors which limit the accuracy of the INS/DVL integration. In this paper, a novel parameter calibration method is proposed. An iterative implementation of the method is designed to reduce the error caused by INS initial alignment. Furthermore, a simplified INS/DVL integration scheme is employed. The proposed method is evaluated with both river trial and sea trial data sets. Using 0.03°/h(1σ ring laser gyroscopes, 5 × 10−5 g(1σ quartz accelerometers and DVL with accuracy 0.5% V ± 0.5 cm/s, INS/DVL integrated navigation can reach an accuracy of about 1‰ of distance travelled (CEP in a river trial and 2‰ of distance travelled (CEP in a sea trial.

  3. A novel INS and Doppler sensors calibration method for long range underwater vehicle navigation.

    Science.gov (United States)

    Tang, Kanghua; Wang, Jinling; Li, Wanli; Wu, Wenqi

    2013-10-28

    Since the drifts of Inertial Navigation System (INS) solutions are inevitable and also grow over time, a Doppler Velocity Log (DVL) is used to aid the INS to restrain its error growth. Therefore, INS/DVL integration is a common approach for Autonomous Underwater Vehicle (AUV) navigation. The parameters including the scale factor of DVL and misalignments between INS and DVL are key factors which limit the accuracy of the INS/DVL integration. In this paper, a novel parameter calibration method is proposed. An iterative implementation of the method is designed to reduce the error caused by INS initial alignment. Furthermore, a simplified INS/DVL integration scheme is employed. The proposed method is evaluated with both river trial and sea trial data sets. Using 0.03°/h(1σ) ring laser gyroscopes, 5 × 10-5 g(1σ) quartz accelerometers and DVL with accuracy 0.5% V ± 0.5 cm/s, INS/DVL integrated navigation can reach an accuracy of about 1‰ of distance travelled (CEP) in a river trial and 2‰ of distance travelled (CEP) in a sea trial.

  4. Taking laser Doppler vibrometry off the tripod: correction of measurements affected by instrument vibration

    Science.gov (United States)

    Halkon, Ben J.; Rothberg, Steve J.

    2017-04-01

    Laser Doppler vibrometers (LDVs) are now well-established as an effective non-contact alternative to traditional contacting transducers. Despite 30 years of successful applications, however, very little attention has been given to sensitivity to vibration of the instrument itself. In this paper, the sensitivity to instrument vibration is confirmed before development theoretically and experimentally of a practical scheme to enable correction of measurements for arbitrary instrument vibration. The scheme requires a pair of correction sensors with appropriate orientation and relative location, while using frequency domain processing to accommodate inter-channel time delay and signal integrations. Error reductions in excess of 30 dB are delivered in laboratory tests with simultaneous instrument and target vibration over a broad frequency range. Ultimately, application to measurement on a vehicle simulator experiencing high levels of vibration demonstrates the practical nature of the correction technique and its robustness in a challenging measurement environment.

  5. Sub-Doppler temperature measurements of laser-cooled atoms using optical nanofibres

    Science.gov (United States)

    Russell, Laura; Deasy, Kieran; Daly, Mark J.; Morrissey, Michael J.; Chormaic, Síle Nic

    2012-01-01

    We present a method for measuring the average temperature of a cloud of cold 85Rb atoms in a magneto-optical trap using an optical nanofibre. A periodic spatial variation is applied to the magnetic fields generated by the trapping coils and this causes the trap centre to oscillate, which, in turn, causes the cloud of cold atoms to oscillate. The optical nanofibre is used to collect the fluorescence emitted by the cold atoms, and the frequency response between the motion of the centre of the oscillating trap and the cloud of atoms is determined. This allows us to make measurements of cloud temperature both above and below the Doppler limit, thereby paving the way for nanofibres to be integrated with ultracold atoms for hybrid quantum devices.

  6. A digital open-loop Doppler processing prototype for deep-space navigation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A prototype based on digital radio technology with associated open-loop Doppler signal processing techniques has been developed to measure a spacecraft’s line-of-sight velocity. The prototype was tested in China’s Chang’E-1 lunar mission relying on S-band telemetry signals transmitted by the sat-ellite,with results showing that the residuals had a RMS value of ~3 mm/s (1σ ) using 1-sec integration,which is consistent with the Chinese conventional USB (Unified S-Band) tracking system. Such preci-sion is mainly limited by the short-term stability of the atomic (e.g. rubidium) clock at the uplink ground station. It can also be improved with proper calibration to remove some effects of the transmission media (such as solar plasma,troposphere and ionosphere),and a longer integration time (e.g. down to 0.56 mm/s at 34 seconds) allowed by the spacecraft dynamics. The tracking accuracy can also be in-creased with differential methods that may effectively remove most of the long-term drifts and some of the short-term uncertainties of the uplink atomic clock,thereby further reducing the residuals to the 1 mm/s level. Our experimental tracking data have been used in orbit determination for Chang’E-1,while other applications (such as the upcoming YH-1 Mars orbiter) based on open-loop Doppler tracking will be initiated in the future. Successful application of the prototype to the Chang’E-1 mission in 2008 is believed to have great significance for China’s future deep space exploration.

  7. Rotating blade vibration analysis using photogrammetry and tracking laser Doppler vibrometry

    Science.gov (United States)

    Gwashavanhu, Benjamin; Oberholster, Abrie J.; Heyns, P. Stephan

    2016-08-01

    Online structural dynamic analysis of turbomachinery blades is conventionally done using contact techniques such as strain gauges for the collection of data. To transfer the captured data from the sensor to the data logging system, installation of telemetry systems is required. This is usually complicated, time consuming and may introduce electrical noise into the data. In addition, contact techniques are intrusive by definition and can introduce significant local mass loading. This affects the integrity of the captured measurements. Advances in technology now allow for the use of optical non-contact methods to analyse the dynamics of rotating structures. These include photogrammetry and tracking laser Doppler vibrometry (TLDV). Various investigations to establish the integrity of photogrammetry measurements for rotating structures involved a comparison to data captured using accelerometers. Discrepancies that were noticed were attributed to the intrusive nature of the contact measurement technique. As an extended investigation, the presented work focuses on the validation of photogrammetry applied to online turbomachinery blade measurements, using TLDV measurements. Through a frequency based characterisation approach of the dynamics of the two scanning mirrors inside the scanning head of a scanning laser Doppler vibrometer (SLDV), TLDV is employed in developing a system that can be used to achieve a perfect circular scan with a Polytec SLDV, (PSV 300). Photogrammetry out-of-plane displacements of a laser dot focused on a specific point on a rotating blade are compared to displacements captured by the laser scanning system. It is shown that there is good correlation between the two measurement techniques when applied to rotating structures, both in the time and frequency domains. The presence of slight discrepancies between the two techniques after elimination of accelerometer based errors illustrated that the optical system noise floor of photogrammetry does

  8. A digital open-loop Doppler processing prototype for deep-space navigation

    Institute of Scientific and Technical Information of China (English)

    JIAN NianChuan; QIU Shi; FUNG Lai-Wo; ZHANG Hua; WANG Zhen; GOU Wei; SHANG Kun; ZHANG SuJun; WANG MingYuan; SHI Xian; PING JingSong; YAN JianGuo; TANG GeShi; LIU JunZe

    2009-01-01

    A prototype based on digital radio technology with associated open-loop Doppler signal processing techniques has been developed to measure a spacecraft's line-of-sight velocity. The prototype was tested in China's Chang'E-1 lunar mission relying on S-band telemetry signals transmitted by the satellite, with results showing that the residuals had a RMS value of ~3 mm/s (1 σ ) using 1-sec integration, which is consistent with the Chinese conventional USB (Unified S-Band) tracking system. Such precision is mainly limited by the short-term stability of the atomic (e.g. Rubidium) clock at the uplink ground station. It can also be improved with proper calibration to remove some effects of the transmission media (such as solar plasma, troposphere and ionosphere), and a longer integration time (e.g. Down to 0.56 mm/s at 34 seconds) allowed by the spacecraft dynamics. The tracking accuracy can also be increased with differential methods that may effectively remove most of the long-term drifts and some of the short-term uncertainties of the uplink atomic clock, thereby further reducing the residuals to the 1 mm/s level. Our experimental tracking data have been used in orbit determination for Chang'E-1, while other applications (such as the upcoming YH-1 Mars orbiter) based on open-loop Doppler tracking will be initiated in the future. Successful application of the prototype to the Chang'E-1 mission in 2008 is believed to have great significance for China's future deep space exploration.

  9. Tissue Doppler Findings in Patients with Pulmonary Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Firoozeh Abtahi

    2016-09-01

    Full Text Available In conclusion, our results suggested that increasing degrees of pulmonary artery systolic pressure affected timing of some tissue Doppler-derived intervals within the cardiac cycle, including IVC time, time to peak systolic myocardial velocity (Sm, and time to peak strain. Therefore, tissue Doppler imaging could be used in assessment of patients with suspected pulmonary arterial hypertension. Background: Pulmonary hypertension is an untreatable condition with poor prognosis and factors such as more elevated pulmonary arterial systolic pressure and right ventricular dysfunction are associated with a worse outcome. Objectives: Considering the limitations of the current modalities, this study aimed to find the relationship between tissue Doppler-derived systolic and diastolic parameters and elevated pulmonary arterial pressure in order to assess the routine application of tissue Doppler imaging in evaluation of pulmonary arterial hypertension. Patients and Methods: This study was conducted on 100 inpatient and outpatient individuals referred to the Department of Echocardiography in Shahid Faghihi hospital, Shiraz, Iran from July 2012 to March 2013. The individuals who had preserved right ventricular function in the presence of pulmonary arterial hypertension were included in the case group. On the other hand, the patients who did not have echocardiographic signs of pulmonary arterial hypertension were enrolled into the control group. All the patients underwent a complete transthoracic echocardiogram including 2-dimensional, color flow, and spectral Doppler as well as tissue Doppler imaging using a vivid E9 system, and the desired systolic and diastolic parameters were recorded. The relationship among these parameters was evaluated by independent sample t-test using the SPSS statistical software, version 16. Besides, P < 0.05 was considered to be statistically significant. Results: The mean time to peak strain was significantly longer in the case

  10. Particle Filter Based Fault-tolerant ROV Navigation using Hydro-acoustic Position and Doppler Velocity Measurements

    DEFF Research Database (Denmark)

    Zhao, Bo; Blanke, Mogens; Skjetne, Roger

    2012-01-01

    This paper presents a fault tolerant navigation system for a remotely operated vehicle (ROV). The navigation system uses hydro-acoustic position reference (HPR) and Doppler velocity log (DVL) measurements to achieve an integrated navigation. The fault tolerant functionality is based on a modied...... particle lter. This particle lter is able to run in an asynchronous manner to accommodate the measurement drop out problem, and it overcomes the measurement outliers by switching observation models. Simulations with experimental data show that this fault tolerant navigation system can accurately estimate...

  11. Associations between abnormal ultrasound color Doppler measures and tendon pain symptoms in badminton players during a season

    DEFF Research Database (Denmark)

    Boesen, Anders Ploug; Boesen, Morten Ilum; Torp-Pedersen, Soren

    2012-01-01

    Color Doppler ultrasound is widely used to examine intratendinous flow in individuals with overuse tendon problems, but the association between color Doppler and pain is still unclear.......Color Doppler ultrasound is widely used to examine intratendinous flow in individuals with overuse tendon problems, but the association between color Doppler and pain is still unclear....

  12. Gravity theories, Transverse Doppler and Gravitational Redshifts in Galaxy Clusters

    CERN Document Server

    Zhao, Hongsheng; Li, Baojiu

    2012-01-01

    There is growing interest in testing alternative gravity theories using the subtle Gravitational Redshifts in clusters of galaxies. However, current models all neglect a Transverse Doppler redshift of similar magnitude, and some models are not self-consistent. An equilibrium model would fix the Gravitational and Transverse Doppler velocity shifts to be about 6\\sigma^2/c and 3\\sigma^2/2c in order to fit the observed velocity dispersion \\sigma self-consistently. This result is from the Virial Theorem for a spherical isotropic cluster, and is insensitive to the theory of gravity. In any case, a gravitational redshift signal cannot directly distinguish between the Einsteinian and f(R) gravity theories, because the mass of the cluster dark halo must be treated as an unknown fitting parameter, whose value must vary according to the theory adopted, otherwise the system would be in equilibrium in one gravity theory and out of equilibrium in another.

  13. Multipath-dominant, pulsed doppler analysis of rotating blades

    CERN Document Server

    Robinson, Michael

    2012-01-01

    We present a novel angular fingerprinting algorithm for detecting changes in the direction of rotation of a target with a monostatic, stationary sonar platform. Unlike other approaches, we assume that the target's centroid is stationary, and exploit doppler multipath signals to resolve the otherwise unavoidable ambiguities that arise. Since the algorithm is based on an underlying differential topological theory, it is highly robust to distortions in the collected data. We demonstrate performance of this algorithm experimentally, by exhibiting a pulsed doppler sonar collection system that runs on a smartphone. The performance of this system is sufficiently good to both detect changes in target rotation direction using angular fingerprints, and also to form high-resolution inverse synthetic aperature images of the target.

  14. High Frequency Color Doppler Image of Choroidal Detachment

    Institute of Scientific and Technical Information of China (English)

    Jinghong Wu; Lijuan Zou; Zhongyao Wu; Lixun Cheng

    2000-01-01

    Purpose: To study the Color Doppler Image (CDI) characteristics of choroidal detachment and the applied value of CDI.Methods: Seventy-two cases (74 eyes) of choroidal detachment were studied retrospectively.Results: The typical ultragraph of chroridal detachment displayed one or several smooth hemispherical or lobuler circular thick bands, with convex side toward vitreous cavity. Most of the choroidal detachments were located before the equator, a few of them were beyond the equator. CDI displayed blood flow singnal in the band. Pulse Doppler showed the frequency spectrum features of retinal detachment band were similar to those of central retinal vessels, whereas the frequency spectum features of choroidal detachment bend resembled those of ciliary artery in some cases of retinal detachment (RD) accompanied by choroidal detachment.Conclusion: CDI could make a correct and precise diagnosis of choroidal detachment.Eye Science 2000; 16. 61 ~ 64.

  15. An ideal blood mimicking fluid for doppler ultrasound phantoms.

    Science.gov (United States)

    Samavat, H; Evans, J A

    2006-10-01

    In order to investigate the problems of detecting tumours by ultrasound it is very important to have a portable Doppler flow test object to use as a standardising tool. The flow Doppler test objects are intended to mimic the flow in human arteries. To make the test meaningful, the acoustic properties of the main test object components (tissue and blood mimic) should match closely the properties of the corresponding human tissues, while the tube should ideally have little influence. The blood mimic should also represent the haemodynamic properties of blood. An acceptable flow test object has been designed to closely mimic blood flow in arteries. We have evaluated the properties of three blood mimicking fluid: two have been described recently in the literature, the third is a local design. One of these has emerged as being particularly well matched to the necessary characteristics for in-vitro work.

  16. An ideal blood mimicking fluid for doppler ultrasound phantoms

    Directory of Open Access Journals (Sweden)

    Samavat H

    2006-01-01

    Full Text Available In order to investigate the problems of detecting tumours by ultrasound it is very important to have a portable Doppler flow test object to use as a standardising tool. The flow Doppler test objects are intended to mimic the flow in human arteries. To make the test meaningful, the acoustic properties of the main test object components (tissue and blood mimic should match closely the properties of the corresponding human tissues, while the tube should ideally have little influence. The blood mimic should also represent the haemodynamic properties of blood. An acceptable flow test object has been designed to closely mimic blood flow in arteries. We have evaluated the properties of three blood mimicking fluid: two have been described recently in the literature, the third is a local design. One of these has emerged as being particularly well matched to the necessary characteristics for in-vitro work.

  17. Assessment of right ventricular systolic function by tissue Doppler echocardiography

    DEFF Research Database (Denmark)

    Kjærgaard, Jesper

    2012-01-01

    is a promising tool for improving our understanding of right ventricular hemodynamics, several aspects of the technology must be evaluated. The accuracy and reproducibility of the technology is evaluated in vitro, and normal values, impact of changes in loading of the right ventricle, response to exercise...... gained from other quantitative echocardiographic measures of LV and RV function and pressure [VI]. Changes in tissue Doppler based measures of RV systolic function can be used to monitor the effect of selective vasodilation by phosphodiestares-5 inhibition in hypoxic pulmonary hypertension and exercise...... in normal individuals. Phosphodiestares-5 inhibition by sildenafil may predominantly be effective during hypoxia in resting conditions, and may improve the blunted response in RV contractility seen with exercise in hypoxia [VII]. Reduced RV free wall deformation can be quantified by tissue Doppler...

  18. Coronary Flow Velocity Reserve Assessed by Transthoracic Doppler

    DEFF Research Database (Denmark)

    Michelsen, Marie M; Peña, Adam; Mygind, Naja D

    2016-01-01

    the feasibility and factors associated with the quality of CFVR obtained in a large prospective study of women suspected of having microvascular disease. METHODS: Women with angina-like chest pain and no obstructive coronary artery disease on coronary angiography (stenosis) were consecutively examined......BACKGROUND: Coronary flow velocity reserve (CFVR) measured by transthoracic Doppler echocardiography is a noninvasive measure of microvascular function, but it has not achieved widespread use, mainly because of concerns of validity and feasibility. The aim of this study was to describe...... by transthoracic Doppler echocardiography of the left anterior descending coronary artery to measure CFVR (n = 947). Quality was evaluated on the basis of (1) identification of the left anterior descending coronary artery, (2) maintained probe position throughout the examination, (3) visibility and configuration...

  19. Aircraft Wake Vortex Measurement with Coherent Doppler Lidar

    Science.gov (United States)

    Wu, Songhua; Liu, Bingyi; Liu, Jintao

    2016-06-01

    Aircraft vortices are generated by the lift-producing surfaces of the aircraft. The variability of near-surface conditions can change the drop rate and cause the cell of the wake vortex to twist and contort unpredictably. The pulsed Coherent Doppler Lidar Detection and Ranging is an indispensable access to real aircraft vortices behavior which transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. Experiments for Coherent Doppler Lidar measurement of aircraft wake vortices has been successfully carried out at the Beijing Capital International Airport (BCIA). In this paper, the authors discuss the Lidar system, the observation modes carried out in the measurements at BCIA and the characteristics of vortices.

  20. The structure of Doppler peaks induced by active perturbations

    CERN Document Server

    Magueijo, J; Ferreira, P; Coulson, D; Magueijo, Joao; Albrecht, Andreas; Ferreira, Pedro; Coulson, David

    1996-01-01

    We investigate how the qualitative structure of Doppler peaks in the angular power spectrum of the cosmic microwave anisotropy is affected by basic assumptions going into theories of structure formation. We define the concepts of ``coherent'' and ``incoherent'' fluctuations, and also of ``active'' and ``passive'' fluctuations. In these terms inflationary fluctuations are passive and coherent while topological defects are active incoherent fluctuations. Causality and scale invariance are shown to have different implementations in theories differing in the above senses. We then extend the formalism of Hu and Sugiyama to treat models with cosmic defects. Using this formalism we show that the existence or absence of secondary Doppler peaks and the rough placing of the primary peak are very sensitive to the fundamental properties defined. We claim therefore that even a rough measurement of the angular power spectrum C_l shape at 100

  1. Performance evaluation of a thermal Doppler Michelson interferometer system.

    Science.gov (United States)

    Mani, Reza; Dobbie, Steven; Scott, Alan; Shepherd, Gordon; Gault, William; Brown, Stephen

    2005-11-20

    The thermal Doppler Michelson interferometer is the primary element of a proposed limb-viewing satellite instrument called SWIFT (Stratospheric Wind Interferometer for Transport studies). SWIFT is intended to measure stratospheric wind velocities in the altitude range of 15-45 km. SWIFT also uses narrowband tandem etalon filters made of germanium to select a line out of the thermal spectrum. The instrument uses the same technique of phase-stepping interferometry employed by the Wind Imaging Interferometer onboard the Upper Atmosphere Research Satellite. A thermal emission line of ozone near 9 microm is used to detect the Doppler shift due to winds. A test bed was set up for this instrument that included the Michelson interferometer and the etalon filters. For the test bed work, we investigate the behavior of individual components and their combination and report the results.

  2. Doppler Lidar Vertical Velocity Statistics Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Newsom, R. K. [DOE ARM Climate Research Facility, Washington, DC (United States); Sivaraman, C. [DOE ARM Climate Research Facility, Washington, DC (United States); Shippert, T. R. [DOE ARM Climate Research Facility, Washington, DC (United States); Riihimaki, L. D. [DOE ARM Climate Research Facility, Washington, DC (United States)

    2015-07-01

    Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosis from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.

  3. Cerebrovascular reactivity in migraineurs as measured by transcranial Doppler

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, T.D.; Harpold, G.J. (Alabama Univ., Birmingham, AL (USA). School of Medicine); Troost, B.T. (Bowman Gray School of Medicine, Winston-Salem, NC (USA))

    1990-04-01

    Transcranial Doppler ultrasound is a relatively new diagnostic modality which allows the non-invasive assessment of intracranial circulation. A total of 10 migraine patients were studied and compared to healthy controls without headaches. Migraineurs during the headache-free interval demonstrated excessive cerebrovascular reactivity to CO{sub 2}, evidenced by an increase in middle cerebral artery blood flow velocity of 47% {plus minus} 15% compared to 28% {plus minus} 14% in controls. Differences between the two study groups revealed no significant decrease in middle cerebral artery blood flow velocity with hypocapnia. However, the differences between middle cerebral artery blood flow velocity during hyperventilation and CO{sub 2} inhalation were significantly different comparing migraineurs and controls. Instability of the baseline blood flow velocities was also noted in migraineurs during the interictal period. Characteristics which may allow differentiation of migraineurs from other headache populations could possibly be obtained from transcranial Doppler ultrasound flow studies. 24 refs., 2 tabs.

  4. Study on cerebral microcirculation by Optical Doppler Tomography

    Institute of Scientific and Technical Information of China (English)

    MENG Jie; DING ZhiHua; YANG Yong; GUO ZhouYi

    2008-01-01

    Optical Doppler Tomography (ODT) provides a novel method to measure the blood flow velocity in vessels with the diameter at micrometer scale.Rats with cranial window are used as a model,and the changes in the blood flow velocity of cerebral arterioles in sensory cortex are measured in real time with an established ODT system,under electrical stimulation and drug administration.The results show significant differences in the blood flow velocity between experimental groups and control groups,demonstrating the feasibility of ODT in the cerebral microcircula-tion study.Compared with the conventional Doppler ultrasound,ODT provides much higher spatial resolution,and thus holds a promising future in the application of the cerebral microcirculation study,especially in the observation of the blood flow velocity in micrometer scale vessels.

  5. Doppler radar fall activity detection using the wavelet transform.

    Science.gov (United States)

    Su, Bo Yu; Ho, K C; Rantz, Marilyn J; Skubic, Marjorie

    2015-03-01

    We propose in this paper the use of Wavelet transform (WT) to detect human falls using a ceiling mounted Doppler range control radar. The radar senses any motions from falls as well as nonfalls due to the Doppler effect. The WT is very effective in distinguishing the falls from other activities, making it a promising technique for radar fall detection in nonobtrusive inhome elder care applications. The proposed radar fall detector consists of two stages. The prescreen stage uses the coefficients of wavelet decomposition at a given scale to identify the time locations in which fall activities may have occurred. The classification stage extracts the time-frequency content from the wavelet coefficients at many scales to form a feature vector for fall versus nonfall classification. The selection of different wavelet functions is examined to achieve better performance. Experimental results using the data from the laboratory and real inhome environments validate the promising and robust performance of the proposed detector.

  6. Aircraft Wake Vortex Measurement with Coherent Doppler Lidar

    Directory of Open Access Journals (Sweden)

    Wu Songhua

    2016-01-01

    Full Text Available Aircraft vortices are generated by the lift-producing surfaces of the aircraft. The variability of near-surface conditions can change the drop rate and cause the cell of the wake vortex to twist and contort unpredictably. The pulsed Coherent Doppler Lidar Detection and Ranging is an indispensable access to real aircraft vortices behavior which transmitting a laser beam and detecting the radiation backscattered by atmospheric aerosol particles. Experiments for Coherent Doppler Lidar measurement of aircraft wake vortices has been successfully carried out at the Beijing Capital International Airport (BCIA. In this paper, the authors discuss the Lidar system, the observation modes carried out in the measurements at BCIA and the characteristics of vortices.

  7. Using Doppler Shifts of GPS Signals To Measure Angular Speed

    Science.gov (United States)

    Campbell, Charles E., Jr.

    2006-01-01

    A method has been proposed for extracting information on the rate of rotation of an aircraft, spacecraft, or other body from differential Doppler shifts of Global Positioning System (GPS) signals received by antennas mounted on the body. In principle, the method should be capable of yielding low-noise estimates of rates of rotation. The method could eliminate the need for gyroscopes to measure rates of rotation. The method is based on the fact that for a given signal of frequency ft transmitted by a given GPS satellite, the differential Doppler shift is attributable to the difference between those components of the instantaneous translational velocities of the antennas that lie along the line of sight from the antennas to the GPS satellite.

  8. [The value of Doppler ultrasound studies in threatened premature labor].

    Science.gov (United States)

    Jörn, H; Funk, A; Fendel, H

    1993-01-01

    95 patients were investigated using Doppler ultrasound to evaluate its usefulness during the clinical management of patients with preterm labor, preterm rupture of membranes and incompetent cervix. Cases with additional pregnancy complications as preeclampsia or intrauterine growth retardation or infection of the amnion or the birth canal were excluded from our study. We examined the umbilical artery and the uterine arteries. Predicting preterm birth we found a sensitivity of 31.4% and a specificity of 70% for the former and a sensitivity of 34.3% and a specificity of 83.3% for the latter. As a result of our investigation we have to conclude that Doppler ultrasound is not able to predict sufficiently reliable preterm birth to use it in clinical management. Normal uterine blood flow in cases with preterm labor seems to indicate birth at term in a high degree.

  9. Curvature affects Doppler investigation of vessels: implications for clinical practice.

    Science.gov (United States)

    Balbis, S; Roatta, S; Guiot, C

    2005-01-01

    In clinical practice, blood velocity estimations from Doppler examination of curved vascular segments are normally different from those of nearby straight segments. The observed "accelerations," sometimes considered as a sort of stochastic disturbances, can actually be related to very specific physical effects due to vessel curvature (i.e., the development of nonaxial velocity [NAV] components) and the spreading of the axial velocity direction in the Doppler sample volume with respect to the insonation axis. The relevant phenomena and their dependence on the radius of curvature of the vessels and on the insonation angle are investigated with a beam-vessel geometry as close as possible to clinical setting, with the simplifying assumptions of steady flow, mild vessel curvature, uniform ultrasonic beam and complete vessel insonation. The insonation angles that minimize the errors are provided on the basis of the study results.

  10. Study on cerebral microcirculation by Optical Doppler Tomography

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Optical Doppler Tomography (ODT) provides a novel method to measure the blood flow velocity in vessels with the diameter at micrometer scale. Rats with cranial window are used as a model, and the changes in the blood flow velocity of cerebral arterioles in sensory cortex are measured in real time with an established ODT system, under electrical stimulation and drug administration. The results show significant differences in the blood flow velocity between experimental groups and control groups, demonstrating the feasibility of ODT in the cerebral microcircula- tion study. Compared with the conventional Doppler ultrasound, ODT provides much higher spatial resolution, and thus holds a promising future in the application of the cerebral microcirculation study, especially in the observation of the blood flow velocity in micrometer scale vessels.

  11. Ballistic Missile Warhead Recognition based on Micro-Doppler Frequency

    Directory of Open Access Journals (Sweden)

    Sun Hui-Xia

    2008-11-01

    Full Text Available To elucidate the spinning-precession signatures of ballistic warhead, the model of spinning precessionfor ballistic missile warhead is established and the mathematics of micro-Doppler signatures caused by spinning-precession is derived. Then the micro-Doppler features are analysed using high-resolution time-frequencytransform, and the model predictions match the experimental data well. Based on  different mass of warheadsand decoys, the feature, which can reflect the mass of the targets, is extracted from the time-frequency plane,proving a new method for recognising warheads and discriminating these from decoys. Finally the validityof the feature extracted in this study is verified by computer simulations even with low signal-to-noise ratio.Defence Science Journal, 2008, 58(6, pp.705-709, DOI:http://dx.doi.org/10.14429/dsj.58.1697

  12. Method of target tracking with Doppler blind zone constraint

    Institute of Scientific and Technical Information of China (English)

    Wei Han; Ziyue Tang; Zhenbo Zhu

    2013-01-01

    Doppler blind zone (DBZ) has a bad influence on the airborne early warning radar, although it has good detection per-formance for low altitude targets with pulse Doppler (PD) techno-logy. In target tracking, the blind zone can cause target tracking breakage easily. In order to solve this problem, a paral el parti-cle filter (PF) algorithm based on multi-hypothesis motion models (MHMMs) is proposed. The algorithm produces multiple possible target motion models according to the DBZ constraint. Particles are updated with the constraint in each motion model. Once the first measurement from the target which reappears from DBZ fal s into the particle cloud formed by any model, the measurement-track association succeeds and track breakage is avoided. The simulation results show that on the condition of different DBZ ranges, a high association ratio can be got for targets with different maneuverability levels, which accordingly improves the tracking quality.

  13. Scanning laser Doppler vibrometry of the middle ear ossicles.

    Science.gov (United States)

    Ball, G R; Huber, A; Goode, R L

    1997-04-01

    This paper describes measurements of the vibratory modes of the middle ear ossicles made with a scanning laser Doppler vibrometer. Previous studies of the middle ear ossicles with single-point laser Doppler measurements have raised questions regarding the vibrational modes of the ossicular chain. Single-point analysis methods do not have the ability to measure multiple points on the ossicles and, consequently, have limited ability to simultaneously record relative phase information at these points. Using a Polytec Model PSV-100, detailed measurements of the ossicular chain have been completed in the human temporal bone model. This model, when driven with a middle ear transducer, provides detailed three-dimensional data of the vibrational patterns of the middle ear ossicles. Implications for middle ear implantable devices are discussed.

  14. Laser Doppler anemometer studies in unsteady ventricular flows.

    Science.gov (United States)

    Phillips, W M; Furkay, S S; Pierce, W S

    1979-01-01

    The laser Doppler technique was employed to obtain intraventricular velocity distributions on the basis of in vivo confirmation of previous in vitro flow visualization predictions. The quasi-steady assumption required for quantification of flow visualization results is unsatisfactory in regions of high acceleration and fluctuating velocities are unavailable via such techniques. Mean and fluctuating velocity profiles were obtained in a pneumatically driven prosthetic ventricle with the laser Doppler anemometer and stress levels estimated. The preliminary data presented here illustrates that the technique can be applied to such flows. The measurement and data reduction schemes are applicable to a wide range of simulated cardiovascular flows. The particular application to prosthetic ventricle design should minimize the number of in vivo experiments required to develop a satisfactory blood pump and aid in tailoring pump actuation protocols for minimum thromboembolic complications.

  15. All semiconductor laser Doppler anemometer at 1.55 microm.

    Science.gov (United States)

    Hansen, René Skov; Pedersen, Christian

    2008-10-27

    We report to our best knowledge the first all semiconductor Laser Doppler Anemometer (LIDAR) for wind speed determination. We will present the design and first experimental results on a focusing coherent cw laser Doppler anemometer for measuring atmospheric wind velocities in the 10 meters to 300 meters distance range. Especially, we will demonstrate that both the output power as well as the demanding coherence properties required from the laser source can be accomplished by an all semiconductor laser. Preliminary tests at a distance of 40 meters indicate a typical signal to noise ratio of 9 dB. This result is obtained at a clear day with an up-date rate of 12 Hz.

  16. Assessment of right ventricular systolic function by tissue Doppler echocardiography

    DEFF Research Database (Denmark)

    Kjærgaard, Jesper

    2012-01-01

    myocardial velocities, but no changes in SR, strain or isovolumic acceleration could be observed [II and III]. Tissue Doppler echocardiography of the RV free wall in non-massive pulmonary embolism quantifies degree of RV dysfunction, and supports the existence of the McConnell sign of mid-ventricular RV...... structure including significant dilatation, but is well tolerated with only mild reduction in measures of global RV systolic function as estimated by 2D echocardiography in an experimental animal model. Regional RV myocardial function is also only mildly reduced. Also no differences in global or regional RV......This thesis summarizes a series of studies performed in order to assess the clinical usefulness of a novel echocardiographic technology that allows non-invasive assessment of regional right ventricular myocardial velocities and deformation: tissue Doppler echocardiography. While the technology...

  17. Dynamic Navigation Method with Multisubstations Based on Doppler Shift

    Directory of Open Access Journals (Sweden)

    Jianyang Zhao

    2015-01-01

    Full Text Available The mobile terminals must be compensated for the Doppler effect in their moving communication. This special characteristic of mobile communication can be developed in some new applications. This paper proposes methods to realize mobile navigation calculation via Doppler shifts. It gives the theory of relationship between the motion parameters, like directions and speed, and frequency shifts caused by multibase stations. The simulation illustrates how to compute the movement parameters of numerical calculation and what should be care for the problem near angle 90 degree. It also gives an application with Google map and dynamical locating position and direction on a mobile phone by public wireless network. Given the simulation analysis and navigation test, the results show that this method has a good effect.

  18. Distribution of Doppler Redshifts of Associated Absorbers of SDSS Quasars

    Indian Academy of Sciences (India)

    Cai-Juan Pan; Zhi-Fu Chen

    2013-12-01

    Doppler redshifts of a sample of Mg II associated absorbers of SDSS DR7 quasars are analysed. We find that there might be three Gaussian components in the distribution of the Doppler redshift. The first Gaussian component, with the peak being located at Dopp = -0.0074, probably arises from absorbers with outflow histories observed in the direction close to jets of quasars. The second Gaussian component, with the peak being located at Dopp = -0.0017, possibly arises from absorbers with outflow histories observed in the direction far away from jets of quasars. Whereas, the third Gaussian component, with the peak being located at Dopp = -0.0004, might arise from the random motion of absorbers with respect to quasars.

  19. Augmented Reality Based Doppler Lidar Data Visualization: Promises and Challenges

    Science.gov (United States)

    Cherukuru, N. W.; Calhoun, R.

    2016-06-01

    Augmented reality (AR) is a technology in which the enables the user to view virtual content as if it existed in real world. We are exploring the possibility of using this technology to view radial velocities or processed wind vectors from a Doppler wind lidar, thus giving the user an ability to see the wind in a literal sense. This approach could find possible applications in aviation safety, atmospheric data visualization as well as in weather education and public outreach. As a proof of concept, we used the lidar data from a recent field campaign and developed a smartphone application to view the lidar scan in augmented reality. In this paper, we give a brief methodology of this feasibility study, present the challenges and promises of using AR technology in conjunction with Doppler wind lidars.

  20. Normal Doppler velocimetry of renal vasculature in Persian cats.

    Science.gov (United States)

    Carvalho, Cibele F; Chammas, Maria C

    2011-06-01

    Renal diseases are common in older cats. Decreased renal blood flow may be the first sign of dysfunction and can be evaluated by Doppler ultrasound. But previous studies suggest that the resistive index (RI) has a low sensitivity for detecting renal disease. Doppler waveforms of renal and intrarenal arteries demonstrate decreased blood flow before there are any changes in the RI. The purpose of this study was to evaluate the normal Doppler flowmetrics parameters of renal arteries (RAs), interlobar arteries (IAs) and abdominal aorta (AO) in adult healthy, Persian cats. Twenty-five Persian cats (13 females and 12 males with mean age of 30 months and an age range 12-60 months) with normal clinical examinations and biochemical tests and normal systemic blood pressure were given B-mode ultrasonographies in order to exclude all nephropathies, including polycystic kidney disease. All measurements were performed on both kidneys. Both kidneys (n=50) were examined by color mapping of the renal vasculature. Pulsed Doppler was used to examine both RAs, the IAs at cranial, middle and caudal sites, and the AO. The RI was calculated for all of the vessels. Early systolic acceleration (ESA) of RA and IA was obtained with Doppler spectral analysis. Furthermore, the ratio indices between RA/AO, and IA/RA velocities were calculated. The mean values of peak systolic velocity (PSV) and the diameter for AO were 53.17±13.46 cm/s and 0.38±0.08 cm, respectively. The mean RA diameter for all 50 kidneys was 0.15±0.02 cm. Considering the velocimetric values in both RAs, the mean PSV and RI that were obtained were 41.17±9.40 cm/s and 0.54±0.07. The RA had a mean ESA of 1.12±1.14 m/s(2) and the calculated upper limit of the reference value was 3.40 m/s(2). The mean renal-aortic ratio was 0.828±0.296. The IA showed PSV and RI values of 32.16±9.33 cm/s and 0.52±0.06, respectively. The mean ESA of all IAs was 0.73±0.61 m/s(2). The calculated upper limit of the reference value was 2.0m

  1. How to study the Doppler effect with Audacity software

    Science.gov (United States)

    Adriano Dias, Marco; Simeão Carvalho, Paulo; Rodrigues Ventura, Daniel

    2016-05-01

    The Doppler effect is one of the recurring themes in college and high school classes. In order to contextualize the topic and engage the students in their own learning process, we propose a simple and easily accessible activity, i.e. the analysis of the videos available on the internet by the students. The sound of the engine of the vehicle passing by the camera is recorded on the video; it is then analyzed with the free software Audacity by measuring the frequency of the sound during approach and recede of the vehicle from the observer. The speed of the vehicle is determined due to the application of Doppler effect equations for acoustic waves.

  2. Japanese sounding rocket experiment with the solar XUV Doppler telescope

    Science.gov (United States)

    Sakao, Taro; Tsuneta, Saku; Hara, Hirohisa; Kano, Ryouhei; Yoshida, Tsuyoshi; Nagata, Shin'ichi; Shimizu, Toshifumi; Kosugi, Takeo; Murakami, Katsuhiko; Wasa, Wakuna; Inoue, Masao; Miura, Katsuhiro; Taguchi, Koji; Tanimoto, Kazuo

    1996-11-01

    We present an overview of an ongoing Japanese sounding rocket project with the Solar XUV Doppler telescope. The telescope employs a pair of normal incidence multilayer mirrors and a back-thinned CCD, and is designed to observe coronal velocity field of the whole sun by measuring line- of-sight Doppler shifts of the Fe XIV 211 angstroms line. The velocity detection limit is estimated to be better than 100 km/s. The telescope will be launched by the Institute of Space and Astronautical Science in 1998, when the solar activity is going to be increasing towards the cycle 23 activity maximum. Together with the overview of the telescope, the current status of the development of each telescope components including multilayer mirrors, telescope structure, image stabilization mechanism, and focal plane assembly, are reviewed. The observation sequence during the flight is also briefly described.

  3. Doppler method leak detection for LMFBR steam generators. Pt. 2. Detection characteristics of bubble in-water using large scale SG model

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab

    2000-06-01

    To prevent the expansion of tube damage and to maintain structural integrity in the steam generators (SGs) of a fast breeder reactor (FBR), it is necessary to detect precisely and immediately the leakage of water from heat transfer tubes. Therefore, an active acoustic method was developed. Previous studies have revealed that, in practical steam generators, the active acoustic method can detect bubbles of 10 l/s within 10 seconds. However to prevent the expansion of damage to neighboring tubes, it is necessary to detect smaller leakages of water from the heat transfer tubes. The Doppler method is designed to detect small leakages and to find the source of a leak before damage spreads to neighboring tubes. The detection sensitivity of the Doppler method and the influence of background noise were investigated experimentally. In-water experiments were performed using an SG full-sector model that simulates actual SGs. The results show that the Doppler method can detect bubbles of 0.1 l/s (equivalent to a water leak rate of about 0.1 g/s) within a few seconds and that the background noise has little effect on water leak detection performance. The Doppler method thus has great potential for the detection of water leakage in SGs. (author)

  4. Laser Doppler flowmetry in diagnoses of chronic tonsillitis

    Science.gov (United States)

    Mareew, Gleb O.; Mareew, Oleg V.; Maslyakova, Galina N.; Ivliev, Igor I.; Fedosov, Ivan V.; Lychagov, Vladislav V.; Tuchin, Valery V.

    2005-06-01

    Chronic tonsillitis is one of the most common diseases in ENT all over the world. There are two ways of treatment-surgical tonsillectomy and conservative therapeutically treatment. But still doctors have no possibility to make objective decisions for this painful and tonsil-destructive operation. In this article we try to research how the degree of sclerosis in tonsillar tissue affects the blood flow in tonsils, by using laser Doppler flowmetry.

  5. Michelson interferometer null may confirm transverse Doppler Effect

    CERN Document Server

    Woodruff, Robert A

    2014-01-01

    We analyze fringe formation within Michelson-like experiments as viewed by relativistic inertial observers. Our analysis differs from previous work because we include optical misalignment of the beamsplitter of the interferometer due to the anamorphic geometry of relativistic Lorentz contraction. We conclude that inertial frame equivalence of Michelson-like experiments provide verification of the transverse Doppler Effect and exclude any model incorporating the relativistic Lorentz contraction effect.

  6. Isometric exercise in the denervated heart: a Doppler echocardiographic study.

    OpenAIRE

    Robson, S C; Furniss, S.S.; Heads, A; Boys, R J; McGregor, C.; Bexton, R S

    1989-01-01

    The haemodynamic responses to isometric exercise of eight recipients of orthotopic heart transplants and eight healthy controls were studied. Each performed sustained exercise at 30% of maximal voluntary contraction for three minutes on a handgrip dynamometer. Cardiac output was measured by combined Doppler and cross sectional echocardiography before exercise and every 30 seconds during and after exercise. In the controls cardiac output and blood pressure increased significantly owing to an i...

  7. Detection of small UAV helicopters using micro-Doppler

    Science.gov (United States)

    Tahmoush, David

    2014-05-01

    The detection of small unmanned aerial vehicles (UAVs) using radar can be challenging due to the small radar cross section and the presence of false targets such as birds. We present the initial results of micro-Doppler radar data collected on a small helicopter at G-band and compare the results to previously measured birds. The resulting signature differences can be used to help discriminate small UAVs from naturally occurring moving clutter such as birds.

  8. Three-dimensional Doppler anemometer using a holographic optical element.

    Science.gov (United States)

    Schneider, F; Windein, W

    1988-11-01

    A new simple 3-D laser Doppler system has been developed for simultaneous measurement of the instantaneous velocity vector of a scattering particle. The system is based on the reference beam method. It uses a hologram to generate the reference beams. Only one laser operating in single mode is required as the light source. The system has been tested by measuring all the components of the Reynolds stress tensor in a round cold air jet. The results are presented.

  9. Development of Photon Doppler Velocimeter for Explosives Research

    Science.gov (United States)

    2013-01-01

    to competing methods such as VISAR and Fabry- Perot interferometry . This report describes the development of a PDV and an application of it to the...He worked in Electronic Warfare and Radar Division at DSTO on the development of fibre lasers. Shayne is currently undertaking his PhD studies in...Heterodyne theory A concept schematic demonstrating in- principle operation of a Photon Doppler Velocimeter is shown in Figure 3. Source waveguide

  10. Phase-referenced Doppler optical coherence tomography in scattering media.

    Science.gov (United States)

    Pedersen, Cameron J; Yazdanfar, Siavash; Westphal, Volker; Rollins, Andrew M

    2005-08-15

    We present a fiber-based, low-coherence interferometer that significantly reduces phase noise by incorporating a second, narrowband, continuous-wave light source as a phase reference. By incorporating this interferometer into a Doppler OCT system, we demonstrate significant velocity noise reduction in reflective and scattering samples using processing techniques amenable to real-time implementation. We also demonstrate 90% suppression of velocity noise in a flow phantom.

  11. How to Create and Manipulate Radar Range-Doppler Plots

    Science.gov (United States)

    2014-12-01

    set of wave fronts with constant wavelength, direction, and relative phase. Electromagnetic waves produced by radar transmitters and lasers are... radars . The Matlab function fft orders its DFT amplitudes in a way that renders negative frequencies positive and greater than the Nyquist frequency. I...UNCLASSIFIED How to Create and Manipulate Radar Range–Doppler Plots Don Koks Cyber & Electronic Warfare Division Defence Science and Technology

  12. Color Doppler sonography and angioscintigraphy in hepatic Hodgkin's lymphoma

    Institute of Scientific and Technical Information of China (English)

    Mirjana V Stojkovi(c); Vera M Artiko; Irena B Radoman; Slavko J Kne(z)evi(c); Snezana M Luki(c); Mirko D Kerkez; Nebojsa S Leki(c); Andrija A Anti(c); Marinko M (Z)vela; Vitomir I Rankovi(c); Milorad N Petrovi(c); Dragana P (S)obi(c); Vladimir B Obradovi(c)

    2009-01-01

    AIM: To estimate the characteristics of Color Doppler findings and the results of hepatic radionuclide angiography (HRA) in secondary Hodgkin's hepatic lymphoma.METHODS: The research included patients with a diagnosis of Hodgkin's lymphoma with metastatic focal lesions in the liver and controls. Morphologic characteristics of focal liver lesions and hemodynamic parameters were examined by pulsed and Color Doppler in the portal, hepatic and splenic veins were examined. Hepatic perfusion index (HPI) estimated by HRA was calculated.RESULTS: In the majority of patients, hepatomegaly was observed. Lesions were mostly hypoechoic and mixed, solitary or multiple. Some of the patients presented with dilated splenic veins and hepatofugal blood flow. A pulse wave was registered in the centre and at the margins of lymphoma. The average velocity of the pulse wave was higher at the margins ( P >0.05). A continuous venous wave was found only at the margins of lymphoma. There was no linear correlation between lymphoma size and velocity of pulse and continuous wave ( r = 390, P < 0.01). HPI was significantly lower in patients with lymphomas than in controls ( P < 0.05), pointing out increased arterial perfusion in comparison to portal perfusion.CONCLUSION: Color Doppler ultrasonography is a sensitive method for the detection of neovascularization in Hodgkin's hepatic lymphoma and estimation of its intensity. Hepatic radionuclide angiography can additionally help in the assesment of vascularisation of liver lesions.

  13. Doppler shifts in a tornado in the solar corona

    Science.gov (United States)

    Schmieder, B.; Mein, P.; Mein, N.; Levens, P. J.; Labrosse, N.; Ofman, L.

    2017-01-01

    Context. High resolution movies in 193 Å from the Atmospheric Imaging Assembly (AIA) on the Solar Dynamic Observatory (SDO) show apparent rotation in the leg of a prominence observed during a coordinated campaign. Such structures are commonly referred to as tornadoes. Time-distance intensity diagrams of the AIA data show the existence of oscillations suggesting that the structure is rotating. Aims: The aim of this paper is to understand if the cool plasma at chromospheric temperatures inside the tornado is rotating around its central axis. Methods: The tornado was also observed in Hα with a cadence of 30 s by the MSDP spectrograph, operating at the Solar Tower in Meudon. The MSDP provides sequences of simultaneous spectra in a 2D field of view from which a cube of Doppler velocity maps is retrieved. Results: The Hα Doppler maps show a pattern with alternatively blueshifted and redshifted areas of 5 to 10'' wide. Over time the blueshifted areas become redshifted and vice versa, with a quasi-periodicity of 40 to 60 min. Weaker amplitude oscillations with periods of 4 to 6 min are superimposed onto these large period oscillations. Conclusions: The Doppler pattern observed in Hα cannot be interpreted as rotation of the cool plasma inside the tornado. The Hα velocity observations give strong constraints on the possible interpretations of the AIA tornado.

  14. Advances in precision Doppler spectroscopy on cool stars

    Directory of Open Access Journals (Sweden)

    Anglada-Escudé Guillem

    2013-04-01

    Full Text Available I describe recent advances made in Doppler spectroscopy of low mass star and discuss how they perform on public observations ontained with the HARPS spectrograph. This work is possible thanks to the recent development of the HARPS-TERRA software (Template Enhanced Radial velocity Re-analysis Application, which obtains precision RV measurements by least-squares matching each spectrum to a high SNR template built from the same observations. As a result, we obtain a substantial increase in precision compared to the traditional cross-correlation methods. The increase in precision is demonstrated with RV measurements on stable M dwarfs (80 cm/s over time-scales of years and the early detection of several very low mass candidates. Moreover, the ability of HARPS-TERRA in reproducing the observed spectra at high fidelity allows us to explore new effects including : wavelength dependence of activity induced Doppler signals, simultaneous measurement of orbital obliquities and stellar rotation profiles and, when combined with advanced Bayesian data analysis techniques, small Doppler signals likely caused by new super-Earth mass candidates in the habitable zones of nearby stars.

  15. Adaptive clutter rejection for ultrasound color Doppler imaging

    Science.gov (United States)

    Yoo, Yang Mo; Managuli, Ravi; Kim, Yongmin

    2005-04-01

    We have developed a new adaptive clutter rejection technique where an optimum clutter filter is dynamically selected according to the varying clutter characteristics in ultrasound color Doppler imaging. The selection criteria have been established based on the underlying clutter characteristics (i.e., the maximum instantaneous clutter velocity and the clutter power) and the properties of various candidate clutter filters (e.g., projection-initialized infinite impulse response and polynomial regression). We obtained an average improvement of 3.97 dB and 3.27 dB in flow signal-to-clutter-ratio (SCR) compared to the conventional and down-mixing methods, respectively. These preliminary results indicate that the proposed adaptive clutter rejection method could improve the sensitivity and accuracy in flow velocity estimation for ultrasound color Doppler imaging. For a 192 x 256 color Doppler image with an ensemble size of 10, the proposed method takes only 57.2 ms, which is less than the acquisition time. Thus, the proposed method could be implemented in modern ultrasound systems, while providing improved clutter rejection and more accurate velocity estimation in real time.

  16. On the Fly Doppler Broadening Using Multipole Representation

    Energy Technology Data Exchange (ETDEWEB)

    Khassenov, Azamat; Choi, Sooyoung; Lee, Deokjung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2015-05-15

    On the Fly Doppler broadening is the technique to avoid pre-generation of the microscopic cross section, in other words, reduce the amount of storage. Currently, there are different types of formalisms used by NJOY code to generate reaction cross section and accomplish its Doppler broadening. Single-Level Breit-Wigner (SLBW) formalism is limited to well-separated resonances, in other words, it does not consider interference between energy levels. Multi-Level Breit- Wigner formalism (MLBW) was tested as the candidate for the cross section generation in the Monte Carlo code, which is under development in UNIST. According to the results, MLBW method requires huge amount of computational time to produce cross section at certain energy point. Reich-Moore (RM) technique can generate only 0K cross section, which means that it cannot produce broaden cross section directly from resonance parameters. The first step was to convert resonance parameters given in nuclear data file into multipoles. MPR shows very high potential to be used as the formalism in the on-the-fly Doppler broadening module of MCS. One of the main reasons is that comparison of the time cost shown in Table IV supports application of multipole representation.

  17. Robust population transfer in atomic beams induced by Doppler shifts

    Science.gov (United States)

    Unanyan, R. G.

    2016-10-01

    The influence of photon momentum recoil on adiabatic population transfer in an atomic three-level lambda system is studied. It is shown that the Doppler frequency shifts, due to atomic motion, can play an important role in adiabatic population transfer processes of atomic internal states by a pair of laser fields. For the limiting case of slow atoms (Doppler shift much smaller than the photon recoil energy), the atoms occupy the same target state regardless of the order of switching of laser fields, while for the case of fast atoms interacting with the intuitive sequence of pulses, the target state is the intermediate atomic state. Furthermore, it is shown that this novel technique for adiabatic population transfer is related to a level crossing in the bright-intermediate state basis (rather than in the original atomic basis). It is shown that these processes are robust with respect to parameter fluctuations, such as the laser pulse area and the relative spatial offset (delay) of the laser beams. The obtained results can be used for the control of temporal evolution of atomic populations in cold atomic beams by externally adjustable Doppler shifts.

  18. Lab Demonstration of the Hybrid Doppler Wind Lidar (HDWL) Transceiver

    Science.gov (United States)

    Marx, Catherine T.; Gentry, Bruce; Jordan, Patrick; Dogoda, Peter; Faust, Ed; Kavaya, Michael

    2013-01-01

    The recommended design approach for the 3D Tropospheric Winds mission is a hybrid Doppler lidar which combines the best elements of both a coherent aerosol Doppler lidar operating at 2 microns and a direct detection molecular Doppler lidar operating at 0.355 microns. In support of the mission, we built a novel, compact, light-weighted multi-field of view transceiver where multiple telescopes are used to cover the required four fields of view. A small mechanism sequentially selects both the "transmit" and "receive" fields of view. The four fields are combined to stimulate both the 0.355 micron receiver and the 2 micron receiver. This version is scaled (0.2 m diameter aperture) from the space-based version but still demonstrates the feasibility of the hybrid approach. The primary mirrors were conventionally light-weighted and coated with dielectric, high reflectivity coatings with high laser damage thresholds at both 2 microns and 0.355 microns. The mechanical structure and mounts were fabricated from composites to achieve dimensional stability while significantly reducing the mass. In the laboratory, we demonstrated the system level functionality at 0.355 microns and at 2 microns, raising the Technology Readiness Level (TRL) from 2 to 4.

  19. Experiences using laser Doppler vibrometers at Chernobyl Nuclear Power Plant

    Science.gov (United States)

    Yarovoi, Leonid K.; Robur, Lubomir I.; Siegmund, Georg; Tushev, Dmitry

    2000-05-01

    The implementation of laser vibrometers into various branches of industry solves complex technical problems as well as raising the authority of laser vibrometry as unique measurement tool. From this point of view, the nuclear industry is an interesting and attractive application field with specific and rigorous exploitation conditions of measuring systems. The objective of this work was to evaluate all advantages and disadvantages of the laser Doppler vibrometry with respect to nuclear power plant (NPP) equipment examination. The Chernobyl NPP is the ideal place for these purposes. The diagnostic ability on different Chernobyl NPP systems (e.g. third power unit main circulators, bearing shaft of fifth turbo-generator and various pipelines) has been demonstrated using laser Doppler vibrometers. The measurements performed by laser vibrometers were checked by standard Chernobyl NPP vibration measurement tools. The laser Doppler vibrometers (CLV, Polytec GmbH and LDV, Kiev University) have been tested and have shown full functionality in NPP zone at 0.5 sievert/hour radiation levels, high electromagnetic fields (magnetic component up to 5 kA/m) and significant vibrations.

  20. Thermal tests for laser Doppler perfusion measurements in Raynaud's syndrome

    Science.gov (United States)

    Kacprzak, Michal; Skora, A.; Obidzinska, J.; Zbiec, A.; Maniewski, Roman; Staszkiewicz, W.

    2004-07-01

    The laser Doppler method offers a non-invasive, real time technique for monitoring of blood perfusion in microcirculation. In practical measurements the perfusion index is given only in relative values. Thus, accurate and reproducible results can be only obtained when using a well controlled stimulation test. The aim of this study was evaluation of the thermal stimulation test, which is frequently used to investigate microcirculation in patients with Raynaud's syndrome. Three types of thermal tests, in which air or water with temperature in range 5°C - 40°C were used. Ten normal volunteers and fifteen patients with clinical symptoms of the primary Raynaud's syndrome were enrolled in this study. To estimate skin microcirculation changes during the thermal test, the multichannel laser Doppler system and laser Doppler scanner were used. The obtained results were analyzed from the point of view of the efficiency of these methods and the thermal provocative tests in differentiation of normal subjects and patient with Raynaud's syndrome.

  1. The Doppler Effect and Spectral Energy Distribution of Blazars

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The relativistic beaming model is adopted to discuss quantitatively the observational differences between radio-selected BL Lac objects (RBLs) and X-ray-selected BL Lac objects (XBLs), and between BL Lac objects and fiat spectrum radio quasars (FSRQs). The main results are the following: (1) In the Doppler cor-rected color-color (αin ro-αin ox -αox) diagram, XBLs and FSRQs occupy separated regions,while RBLs bridge the gap between them. These properties suggest that similar in- trinsic physical processes operate in all the objects under a range of intrinsic physical conditions. (2) Our results are consistent with the results of Sambruna, Maraschi and Urry (1996) from other methods. We show the αxox introduced by Sambruna to be a good index for describing the energy distribution because it represents the intrinsic energy distribution and includes the Doppler correction. (3) The Doppler effect of relativistic beaming is the main mechanism, and the physical differences (such as magnetic fields, electron energies) are also important complementary fac-tors for understanding the relation between XBLs and RBLs;

  2. Gestational trophoblastic neoplasia: efficacy of color doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sun Wha; Jee, Won Hee; Choe, Bo Young; Byun, Jae Young; Choi, Byung Gil; Shinn, Kyung Sub [Catholic Univ. College of Medicine, Seoul (Korea, Republic of)

    1997-04-01

    To evaluate the efficacy of color Doppler ultrasound (US) in the diagnosis of gestational trophoblastic neoplasia (GTN). Intralesional color flows and resistive index (RI) on color Doppler US were prospectively analyzed in 21 consecutive suspected GTN cases. RI of the intralesional artery was investigated on the basis of the presence or absence of mass and metastasis. Correlation between RI of intralesional artery and urinary {beta}-hCG was also investigated. Intralesional color flows were identified in 15 patients with GTN. On operation, intralesional color flows were observed in one of two patients in whom the presence of completely necrotic tissue was confirmed. Intralesional color flows, however, were not detected in four patients who were proved not to be GTN sufferers. Sensitivity, specificity, accuracy, positive and negative predictive values, and accuracy were 100%, 83%, 95%, 94% and 100%, respectively. Significant correlation between RI of the intralesional artery and urinary {beta}-hCG was not established (p=0.49, r=0.19). RI of this artery was not substantially different between groups with and without mass, and between groups with and without metastasis (p=0.32, p=0.82). The current study demonstrates that color Doppler US is a sensitive and useful method for the diagnosis of GTN.

  3. Doppler Monitoring of five K2 Transiting Planetary Systems

    CERN Document Server

    Dai, Fei; Albrecht, Simon; Arriagada, Pamela; Bieryla, Allyson; Butler, R Paul; Crane, Jeffrey D; Hirano, Teriyuki; Johnson, John Asher; Kiilerich, Amanda; Latham, David W; Narita, Norio; Nowak, Grzegorz; Palle, Enric; Ribas, Ignasi; Rogers, Leslie A; Sanchis-Ojeda, Roberto; Shectman, Stephen A; Teske, Johanna K; Thompson, Ian B; Van Eylen, Vincent; Vanderburg, Andrew; Wittenmyer, Robert A; Yu, Liang

    2016-01-01

    In an effort to measure the masses of planets discovered by the NASA {\\it K2} mission, we have conducted precise Doppler observations of five stars with transiting planets. We present the results of a joint analysis of these new data and previously published Doppler data. The first star, an M dwarf known as K2-3 or EPIC~201367065, has three transiting planets ("b", with radius $2.1~R_{\\oplus}$; "c", $1.7~R_{\\oplus}$; and "d", $1.5~R_{\\oplus}$). Our analysis leads to the mass constraints: $M_{b}=8.1^{+2.0}_{-1.9}~M_{\\oplus}$ and $M_{c}$ < $ 4.2~M_{\\oplus}$~(95\\%~conf.). The mass of planet d is poorly constrained because its orbital period is close to the stellar rotation period, making it difficult to disentangle the planetary signal from spurious Doppler shifts due to stellar activity. The second star, a G dwarf known as K2-19 or EPIC~201505350, has two planets ("b", $7.7~R_{\\oplus}$; and "c", $4.9~R_{\\oplus}$) in a 3:2 mean-motion resonance, as well as a shorter-period planet ("d", $1.1~R_{\\oplus}$). We f...

  4. Doppler findings in chronic ectopic pregnancy: case report.

    Science.gov (United States)

    Abramov, Y; Nadjari, M; Shushan, A; Prus, D; Anteby, S O

    1997-05-01

    Chronic ectopic pregnancy is an uncommon form of tubal pregnancy manifested as a pelvic mass with minimal symptoms and a low or absent titer of human chorionic gonadotropin. For this reason, most of the reported cases have been diagnosed only after explorative laparotomy. The value of Doppler ultrasonography for preoperative diagnosis of this entity has not yet been established. We report on a 36-year-old patient who was admitted for intermittent right lower quadrant abdominal pain of 3 months' duration, and a right adnexal mass found on pelvic examination. On Doppler ultrasonography, a right complex adnexal mass was demonstrated, characterized by extensive external vascularization, aberrant vessels and arteriovenous shunting, but with no internal blood flow. Explorative laparotomy revealed a right tubal mass adherent to the omentum, and covered by numerous enlarged and tortuous blood vessels originating in the omentum. Pathological examination of the mass revealed a chronic ectopic pregnancy. The possible contribution of Doppler-specific characteristics for the diagnosis of chronic ectopic pregnancy is described and discussed.

  5. Sevoflurane Used for Color Doppler Ultrasound Examination in Children.

    Science.gov (United States)

    Fan, Conghai; Zhang, Fengchao; Huang, Xiaomei; Wen, Cheng; Shan, Chengjing

    2015-05-01

    The objective of this study is to investigate the feasibility of sevoflurane inhalation in pediatric color doppler ultrasound examination. In this study, 30 cases of children under 1 year were selected. They were all I or II levels according to American Society of Anesthesiology. Children with severe cyanotic congenital heart disease or severe pneumonia were excluded. All the children received anesthesia with sevoflurane. The University of Michigan Sedation Scale was assessed and bispectral index (BIS) was recorded before induction (T0), after induction (T1), when maintaining (T2), and when waking-up (T3). Blood pressure and heart rate were monitored during the color doppler ultrasound examination, the time to receive sedation examination and anesthesia recovery time were also recorded. (1) Score for UMSS was zero at T0 and 3 at T1; (2) BIS value was 93.18 ± 2.94 at T0 and decreased to 87.6 ± 3.9 at T1; (3) Blood pressure or heart rate did not decline obviously; (4) The time to receive sedation examination was 46.4 ± 13.1 s and anesthesia recovery time was 7.8 ± 5.3 min. In conclusion, sevoflurane can be used in pediatric color doppler ultrasound examination safely and effectively.

  6. The role of Doppler ultrasound in rheumatic diseases.

    Science.gov (United States)

    Porta, Francesco; Radunovic, Goran; Vlad, Violeta; Micu, Mihaela C; Nestorova, Rodina; Petranova, Tzvetanka; Iagnocco, Annamaria

    2012-06-01

    The use of Doppler techniques, including power, colour and spectral Doppler, has greatly increased in rheumatology in recent years. This is due to the ability of Doppler US (DUS) to detect pathological vascularization within joints and periarticular soft tissues, thereby demonstrating the presence of active inflammation, which has been reported to be correlated with the local neo-angiogenesis. In synovitis, DUS showed a high correlation with histological and MRI findings, thus it is considered a valid tool to detect pathological synovial vascularization. Moreover, it is more sensitive than clinical examination in detecting active joint inflammation and in the evaluation of response to treatment. In addition, DUS may be considered as a reference imaging modality in the assessment of enthesitis, MRI being not sensitive and histology not feasible. Moreover, it has been demonstrated to be able to detect changes in asymptomatic enthesis. In conclusion, DUS is a useful and sensitive tool in the evaluation and monitoring of active inflammation. Its widespread use in clinical rheumatological practice is recommended. The aim of this article is to review the current literature about the role of DUS in rheumatic diseases, analysing its validity, reliability and feasibility.

  7. Laser Doppler interferometer for vibration of rotating curved surfaces

    Science.gov (United States)

    Wu, Giin-Yuan; Lee, Chih-Kung; Lin, San; Wakabayashi, Takenori; Ono, K.

    1999-10-01

    With the rapid advancement of today's ultra-high performance mechanical or mechatronic system such as magnetic or optical disk drives, improving metrology capabilities to examine the performance characteristics of these system are growing ever more important. The primary tested studied in this paper is an ultra-high precision ball-bearing spindle that possesses non-repeatable runout of less than 100nm. The metrology tool adopted is laser Doppler interferometer system that has Megahertz bandwidth and nanometer resolutions. Experimental data obtained clearly indicates that measuring vertical runout of a spindle motor is a straightforward process. However, a fundamental effect was identified, where the radial runout data was found to drift upward or downward with time, when using the laser Doppler system to measure the radial runout of ultra-high precision rotational systems whose surface profile is not flat. All of the underlying reasons that cause this undesirable effect were proposed and verified. Approaches that can be adopted to circumvent this apparent limitation on adopting the laser Doppler interferometer systems to measure rotational curved surface were implemented to further extend its application horizon. The experimental data realized and the application experience obtained were shown to further advance our measurement capabilities.

  8. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE): An Airborne Direct Detection Doppler Lidar Instrument Development Program

    Science.gov (United States)

    Gentry, Bruce; McGill, Matthew; Schwemmer, Geary; Hardesty, Michael; Brewer, Alan; Wilkerson, Thomas; Atlas, Robert; Sirota, Marcos; Lindemann, Scott

    2006-01-01

    Global measurement of tropospheric winds is a key measurement for understanding atmospheric dynamics and improving numerical weather prediction. Global wind profiles remain a high priority for the operational weather community and also for a variety of research applications including studies of the global hydrologic cycle and transport studies of aerosols and trace species. In addition to space based winds, a high altitude airborne system flown on UAV or other advanced platforms would be of great interest for studying mesoscale dynamics and hurricanes. The Tropospheric Wind Lidar Technology Experiment (TWiLiTE) project was selected in 2005 by the NASA Earth Sun Technology Office as part of the Instrument Incubator Program. TWiLiTE will leverage significant research and development investments in key technologies made in the past several years. The primary focus will be on integrating these sub-systems into a complete molecular direct detection Doppler wind lidar system designed for autonomous operation on a high altitude aircraft, such as the NASA WB57, so that the nadir viewing lidar will be able to profile winds through the full troposphere. TWiLiTE is a collaboration involving scientists and technologists from NASA Goddard, NOAA ESRL, Utah State University Space Dynamics Lab and industry partners Michigan Aerospace Corporation and Sigma Space Corporation. NASA Goddard and it's partners have been at the forefront in the development of key lidar technologies (lasers, telescopes, scanning systems, detectors and receivers) required to enable spaceborne global wind lidar measurement. The TWiLiTE integrated airborne Doppler lidar instrument will be the first demonstration of a airborne scanning direct detection Doppler lidar and will serve as a critical milestone on the path to a fixture spaceborne tropospheric wind system. The completed system will have the capability to profile winds in clear air from the aircraft altitude of 18 h to the surface with 250 m vertical

  9. Doppler ultrasound study of penis in men with systemic sclerosis: a correlation with Doppler indices of renal and digital arteries.

    Science.gov (United States)

    Rosato, E; Barbano, B; Gigante, A; Cianci, R; Molinaro, I; Quarta, S; Digiulio, M A; Messineo, D; Pisarri, S; Salsano, F

    2013-01-01

    Erectile dysfunction (ED) prevalence in male systemic sclerosis (SSc) is high and its pathogenesis is unclear. The aim of the study is to assess correlation between Doppler ultrasound indices of penis and kidneys or digital arteries in male systemic sclerosis. Fourteen men with systemic sclerosis were enrolled in this study. Erectile function was investigated by the International Index of Erectile Function-5. Peak systolic velocity, end diastolic velocity, resistive index, pulsative index, and systolic/diastolic ratio were measured on the cavernous arteries at the peno-scrotal junction in the flaccid state, on the interlobar artery of both kidneys and all ten proper palmar digital arteries. Ten (71 percent) patients have an International Index of Erectile Function-5 less than 21. Reduction of penis peak systolic velocity was observed in all SSc subjects. Doppler indices of cavernous arteries correlate with the International Index of Erectile Function-5. The renal and digital arteries resistive index demonstrated a good correlation (p less than 0.0001) with International Index of Erectile Function-5. A positive correlation exists between penis and kidney arteries Doppler indices: end diastolic velocity (p less than 0.05, r=0.54), resistive index (p less than 0.0001, r=0.90), systolic/diastolic ratio (p less than 0.01, r=0.69). A positive correlation was observed between penis and digital arteries Doppler indices: peak systolic velocity (p less than 0.01, r=0.68), end diastolic velocity (p less than 0.01, r=0.75), resistive index (p less than 0.001, r=0.79), systolic/diastolic ratio (p less than 0.05, r=0.59). A correlation exists between arterial impairment of penis and renal or digital arteries.

  10. Power Doppler US patterns of vascularity and spectral Doppler US parameters in predicting malignancy in thyroid nodules

    Energy Technology Data Exchange (ETDEWEB)

    Tamsel, S. [Departments of Radiology, Ege University School of Medicine, Bornova, Izmir (Turkey)]. E-mail: sadiktamsel@yahoo.com; Demirpolat, G. [Departments of Radiology, Ege University School of Medicine, Bornova, Izmir (Turkey); Erdogan, M. [Endocrinology, Ege University School of Medicine, Bornova, Izmir (Turkey); Nart, D. [Pathology, Ege University School of Medicine, Bornova, Izmir (Turkey); Karadeniz, M. [Endocrinology, Ege University School of Medicine, Bornova, Izmir (Turkey); Uluer, H. [Biostatistics, Ege University School of Medicine, Bornova, Izmir (Turkey); Ozgen, A.G. [Endocrinology, Ege University School of Medicine, Bornova, Izmir (Turkey)

    2007-03-15

    Aim: The purpose of this study was to determine whether spectral Doppler ultrasound (US) parameters, including resistive index (RI) and maximal systolic velocity (MSV), or vascular pattern can be used to distinguish malignant from benign thyroid nodules. Materials and methods: We prospectively examined 169 thyroid nodules in 134 patients undergoing sonographically guided fine-needle aspiration biopsy (FNAB). Vascularity as determined by power Doppler US imaging was defined as absent, perinodular alone, or intranodular. For each nodule, the RI and MSV values were recorded as the average of the recordings obtained. Results of the FNAB and surgical pathological examination, if available, were used as a proof of final diagnosis to categorize all nodules as benign or malignant. Results: Seven nodules were excluded from study because of non-diagnostic FNAB results due to hypocellular or insufficient cytological material. Of the remaining nodules, nine were malignant (all confirmed at surgery) and 153 were benign. Of the 145 nodules with intranodular vascularity, nine (6.2%) were malignant and the remaining 136 (93.8%) were benign. The malignant nodules had a mean RI of 0.60 on intranodular and 0.58 on perinodular arteries. These values were not significantly higher than those associated with benign nodules (RI = 0.57 and RI = 0.56, respectively). Malignant nodules had a mean MSV of 20.4 cm/s on intranodular and 35.3 cm/s on perinodular arteries that were also not significantly different from those associated with benign nodules (p > 0.05). Conclusion: The results of this study indicate that Doppler US characteristics including vascular pattern, RI and MSV are not useful parameters for distinguishing malignant from benign thyroid nodules. Therefore, Doppler US characteristics including vascular pattern, RI and MSV values of thyroid nodules can not be used as a diagnostic method to determine which nodules should undergo FNAB.

  11. Dynamic color Doppler sonography in the assessment of erectile dysfunctions; Utilizzazione dell'eco color Doppler dinamico del pene nello studio delle disfunzioni erettili

    Energy Technology Data Exchange (ETDEWEB)

    Aversa, A.; Bonifacio, V.; Isidori, A.; Fabbri, A. [Rome Univ. (Italy). Cattedra di Andrologia. Dipt. di Fisiopatologia Medica; Bertucci, B. [Azienda Ospedaliera Pugliese Ciaccio, Catanzaro (Italy). Servizio di Radiologia

    1999-06-01

    The authors investigated the diagnostic accuracy of dynamic color Doppler sonography (D-CDS) in men with erectile dysfunctions (ED). Terminal microcirculation alterations and their correlation with erectile response after drug testing were investigated with power Doppler energy. Penile sonography in the flaccid state can show calcificic plaques and/or fibrosis of the corpora. Redosing of PGE{sub 1} plus phentolamine during D-CDS is a safe procedure and improves diagnostic accuracy in erectile dysfunctions, with significantly fewer non-responders than redosing of PGE{sub 1} alone. Power Doppler energy shows altered morphology of helicine arterioles otherwise missed at color Doppler and is thus recommended to make an accurate diagnosis in some men with erectile dysfunctions. [Italian] Scopo dello studio e' quello di valutare l'accuratezza diagnostica dell'eco color Doppler dinamico del pene nei soggetti affetti da disfunzione erettile. Inoltre si e' voluto verificale la presenza di alterazioni della vascolarizzazione arteriosa terminale con modulo power Doppler e come la presenza di queste alterazioni del microcircolo si correlino con la risposta erettiva della farmacoinfusione intracavernosa. Con l'eco color Doppler penieno basale e' possibile identificare placche calcifiche e/o fibrosi nei corpi cavernosi. Durante la fase dinamica con color Doppler , la re-iniezione con PGE{sub 1} e fentolamina si e' dimostrata sicura e ha migliorato l'accuratezza diagnostica riducendo il numero di soggetti con mancata risposta erettiva rispetto alla sola PGE{sub 1}. Con power Doppler sono state identificate alterazioni morfologiche delle arterioleelicine non visibili con il color Doppler consentendo la diagnosi piu' precisain alcuni casi di disfunzione erettile.

  12. Magnetic Doppler imaging considering atmospheric structure modifications due to local abundances: a luxury or a necessity?

    Science.gov (United States)

    Kochukhov, O.; Wade, G. A.; Shulyak, D.

    2012-04-01

    Magnetic Doppler imaging is currently the most powerful method of interpreting high-resolution spectropolarimetric observations of stars. This technique has provided the very first maps of stellar magnetic field topologies reconstructed from time series of full Stokes vector spectra, revealing the presence of small-scale magnetic fields on the surfaces of Ap stars. These studies were recently criticised by Stift et al., who claimed that magnetic inversions are not robust and are seriously undermined by neglecting a feedback on the Stokes line profiles from the local atmospheric structure in the regions of enhanced metal abundance. We show that Stift et al. misinterpreted published magnetic Doppler imaging results and consistently neglected some of the most fundamental principles behind magnetic mapping. Using state-of-the-art opacity sampling model atmosphere and polarized radiative transfer codes, we demonstrate that the variation of atmospheric structure across the surface of a star with chemical spots affects the local continuum intensity but is negligible for the normalized local Stokes profiles except for the rare situation of a very strong line in an extremely Fe-rich atmosphere. For the disc-integrated spectra of an Ap star with extreme abundance variations, we find that the assumption of a mean model atmosphere leads to moderate errors in Stokes I but is negligible for the circular and linear polarization spectra. Employing a new magnetic inversion code, which incorporates the horizontal variation of atmospheric structure induced by chemical spots, we reconstructed new maps of magnetic field and Fe abundance for the bright Ap star α2 CVn. The resulting distribution of chemical spots changes insignificantly compared to the previous modelling based on a single model atmosphere, while the magnetic field geometry does not change at all. This shows that the assertions by Stift et al. are exaggerated as a consequence of unreasonable assumptions and

  13. The 3 December 2015 paroxysm of Voragine crater at Etna: insights from Doppler radar measurements

    Science.gov (United States)

    Donnadieu, Franck; Freret-Lorgeril, Valentin; Gouhier, Mathieu; Coltelli, Mauro; Scollo, Simona; Fréville, Patrick; Hervier, Claude; Prestifilippo, Michele

    2016-04-01

    After a progressive intensification of Strombolian activity inside the Voragine crater in the evening of December 2 2015, Mount Etna produced a short but violent paroxysm in the night of 3 December 2015, the most intense of the last two decades at Voragine. Lava fountains, observed with the network of thermal and visible cameras of INGV-OE, reached well over 1 km in height with some jets of incandescent material reaching 3 km. A tephra column several kilometers high was produced and pyroclastic material was dispersed by winds in altitude to the NE, causing ash fallouts to affect many towns in Sicily and Reggio Calabria. A 23 cm-wavelength Doppler radar (VOLDORAD 2B), located about 3 km from NSEC at the Montagnola station and integrated into the INGV-OE instrumental network, has been continuously monitoring the explosive activity of Mt. Etna's summit craters since 2009. The radar beam probes 13 successive volumes 150 m deep aligned northward above the summit craters, providing two sets of parameters (echo power and velocity) at a rate of 0.2 s. We analyze the paroxysmal event of Voragine using the radar echoes and Doppler signals coming from volumes inside the lava fountain feeding the tephra column in combination with thermal and visible imagery and satellite data. The radar range gating allowed us to immediately discriminate the central craters as the source of the tephra emission and to estimate the lava fountain width between 300 and 450 m. The backscattered power, which is related to the erupted tephra mass load in the beam, and Doppler velocities help to mark the transition from Strombolian activity to lava fountaining, providing onset and end times of the fountain. The tephra flux into the radar beam started to increase after 02:00 UTC with a strong increase at 02:20 UTC marking the transition to continuous lava fountaining. The climax was reached between ca. 02:35 and 03:15 UTC with maintained high echo power and ejection velocities of 190 m/s in average

  14. Contrast biases the autocorrelation phase shift estimation in Doppler tissue imaging.

    Science.gov (United States)

    Ressner, Marcus; Jansson, Tomas; Cedefamn, Jonny; Ask, Per; Janerot-Sjoberg, Birgitta

    2009-03-01

    Quantitative assessment of regional myocardial function at rest and during stress with Doppler tissue imaging (DTI) plays an important role in daily routine echocardiography. However, reliable visual analysis is largely dependent on image quality and adequate border delineation, which still remains a challenge in a significant number of patients. In this respect, an ultrasound contrast agent (UCA) is often used to improve visualization in patients with suboptimal image quality. The knowledge of how DTI measurements will be affected by UCA present in the tissue is therefore of significant importance for an accurate interpretation of local myocardial motion. The aim of this paper was to investigate how signal contribution from UCA and nonlinear wave propagation influence the performance of the autocorrelation phase shift estimator used for DTI applications. Our results are based on model experiments with a clinical 2-D grayscale scanner and computational simulations of the DTI velocity estimator for synthetically-derived pulses, simulated bubble echoes and experimentally-sampled RF data of transmitted pulses and backscattered contrast echoes. The results show that destruction of UCA present in the tissue will give rise to an apparent bidirectional velocity bias of individual velocity estimates, but that spatial averaging of individual velocity measurements within a region-of-interest will result in a negative bias (away from the transducer) of the estimated mean or mean peak velocity. The UCA destruction will also have a significant impact on the measured integrated mean velocity over time, i.e., displacement. To achieve improved visualization with UCA during DTI-examinations, we either recommend that it is performed at low acoustic powers, mechanical index Doppler pulse package is preceded by a destruction burst similar to "Flash imaging" to clear the target area of contrast microbubbles.

  15. Constraining hot Jupiter’s atmospheric structure and dynamics through Doppler shifted emission spectra

    Science.gov (United States)

    Zhang, Jisheng; Kempton, Eliza; Rauscher, Emily

    2017-01-01

    In recent years, astronomers have begun successfully observing the atmospheres of extrasolar planets using ground-based telescopes equipped with spectrographs capable of observing at high spectral resolution (R~105). Such studies are capable of diagnosing the atmospheric structure, composition, and dynamics (winds and rotation) of both transiting and non-transiting exoplanets. However, few studies have examined how the 3-D atmospheric dynamics could alter the emitted light of hot Jupiters at such high spectral resolution. Here, we present a model to explore such influence on the hot Jupiters’ thermal emission spectra. Our aim is to investigate the extent to which the effects of 3-D atmospheric dynamics are imprinted on planet-averaged thermal emission spectra. We couple together a 3-D general circulation model of hot Jupiter atmospheric dynamics (Rauscher & Menou, 2012) with a radiative transfer solver to predict the planet’s disk-integrated emission spectrum as a function of its orbital phase. For the first time, we self-consistently include the effects of the line-of-sight atmospheric motions (resulting from winds and rotation) in the calculation to produce Doppler-shifted spectral line profiles that result from the atmospheric dynamics. We focus our study on three benchmark hot Jupiters, HD 189733b, HD 209458b, and WASP-43b which have been the focus of previous detailed observational studies. We find that the high-resolution Doppler shifted thermal emission spectra can be used to diagnose key properties of the dynamical atmosphere - the planet’s longitudinal temperature and wind structure, and its rotation rate.

  16. Precision orbit determination for TOPEX/Poseidon using TDRSS Doppler tracking data

    Science.gov (United States)

    Lerch, F. J.; Doll, C. E.; Marshall, J. A.; Luthcke, S. B.; Williamson, R. G.; Klosko, S. M.; McCarthy, J. J.; Eddy, W. F.

    1995-08-01

    Precision orbit determination on the TOPEX/Poseidon (T/P) altimeter satellite is now being routinely achieved with sub-5cm radial and sub-15 cm total positioning accuracy using state-of-the-art modeling with precision tracking provided by a combination of: (a) global Satellite Laser Ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), or (b) the Global Positioning System (GPS) Constellation which provides pseudo-range and carrier phase observations. The geostationary Tracking and Data Relay Satellite System (TDRSS) satellites are providing the operational tracking and communication support for this mission. The TDRSS Doppler data are of high precision (0.3 mm/s nominal noise levels). Unlike other satellite missions supported operationally by TDRSS, T/P has high quality independent tracking which enables absolute orbit accuracy assessments. In addition, the T/P satellite provides extensive geometry for positioning a satellite at geostationary altitude, and thus the TDRSS-T/P data provides an excellent means for determining the TDRS orbits. Arc lengths of 7 and 10 days with varying degrees of T/P spacecraft attitude complexity are studied. Sub-meter T/P total positioning error is achieved when using the TDRSS range-rate data, with radial orbit errors of 10.6 cm and 15.5 cm RMS for the two arcs studied. Current limitations in the TDRSS precision orbit determination capability include mismodeling of numerous TDRSS satellite-specific dynamic and electronic effects, and in the inadequate treatment of the propagation delay and bending arising from the wet troposphere and ionosphere.

  17. Realizing Tunable Inverse and Normal Doppler Shifts in Reconfigurable RF Metamaterials

    Science.gov (United States)

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Sun, Yong; Chen, Hong

    2015-06-01

    The Doppler effect has well-established applications in astronomy, medicine, radar and metrology. Recently, a number of experimental demonstrations of the inverse Doppler effect have begun to appear. However, the inverse Doppler effect has never been observed on an electronically reconfigurable system with an external electromagnetic wave source at radio frequencies (RF) in experiment. Here we demonstrate an experimental observation of the inverse Doppler shift on an electronically reconfigurable RF metamaterial structure, which can exhibit anomalous dispersion, normal dispersion or a stop band, depending on an applied bias voltage. Either inverse or normal Doppler shift is realized by injecting an external RF signal into the electronically reconfigurable metamaterial, on which an electronically controllable moving reflective boundary is formed. The effective velocity of this boundary and the resulting frequency shift can be tuned over a wide range by a digital switching circuit. This work is expected to open up possibilities in applying the inverse Doppler effect in wireless communications, radar and satellite navigation.

  18. Blood flow measurements during hemodialysis vascular access interventions - Catheter-based thermodilution or Doppler ultrasound?

    DEFF Research Database (Denmark)

    Heerwagen, Søren T; Hansen, Marc A; Schroeder, Torben V

    2012-01-01

    Purpose: To test the clinical performance of catheter-based thermodilution and Doppler ultrasound of the feeding brachial artery for blood flow measurements during hemodialysis vascular access interventions.Methods: Thirty patients with arteriovenous fistulas who underwent 46 interventions had...... access blood flow measured before and after every procedure. Two methods, catheter-based thermodilution and Doppler ultrasound, were compared to the reference method of ultrasound dilution. Catheter-based thermodilution and Doppler ultrasound were performed during the endovascular procedures while flow...

  19. Micro-Doppler Frequency Estimation Based on Radon-Wigner Transform

    Directory of Open Access Journals (Sweden)

    Sun Huixia

    2014-01-01

    Full Text Available A nonparametric computationally efficient algorithm is proposed for micro-Doppler frequency estimation, assuming that this non-linear micro-Doppler frequency is approximate linear frequency in short-time intervals. In this algorithm, we use Radon-Wigner transform in short-time intervals to estimate micro-Doppler frequency. Simulation results confirm the effectiveness of the proposed method.Defence Science Journal, Vol. 64, No. 1, January 2014, DOI:10.14429/dsj.64.2980

  20. Coherent Doppler Lidar for Wind and Cloud Measurements on Venus from an Orbiting or Floating/Flying Platform

    Science.gov (United States)

    Singh, Upendra; Limaye, Sanjay; Emmitt, George; Kavaya, Michael; Yu, Jirong; Petros, Mulugeta

    Abstract Given the presence of clouds and haze in the upper portion of the Venus atmosphere, it is reasonable to consider a Doppler wind lidar (DWL) for making remote measurements of the 3D winds within the tops of clouds and the overlying haze layer. Assuming an orbit altitude of 250 km and cloud tops at 60km (within the “upper cloud layer”), an initial performance assessment of an orbiting DWL was made using a numerical instrument and atmospheres model developed for both Earth and Mars. The threshold aerosol backscatter for 2-micron was taken to be 1.0*10-6 msr-1. This backscatter value is between 1 and 2 orders of magnitude lower than that expected for clouds with optical depths greater than 2.0. Cloud composition was assumed to be mixture of dust, frozen CO2 and sulfuric acid. Based on the DWL assessment and simulation, it is reasonable to expect vertical profiles of the 3D wind speed with 1 km vertical resolution and horizontal spacing of 25 km to several 100 kms depending upon the desired integration times. These profiles would begin somewhere just below the tops of the highest clouds and extend into the overlying haze layer to some TBD height. Getting multiple layers of cloud returns is also possible with no negative impact on velocity measurement accuracy. With support from the NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed 2-micron coherent Doppler lidar system for wind measurement in the Earth’s atmosphere [1-3]. The knowledge and expertise for developing coherent Doppler wind lidar technologies and techniques for Earth related mission at NASA LaRC is being leveraged to develop an appropriate system suitable for wind measurement around Venus. We are considering a fiber laser based lidar system of high efficiency and smaller size and advancing the technology level to meet the requirements for DWL system for Venus from

  1. Doppler ultrasonography of the lower extremity arteries: anatomy and scanning guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ji Young [Dept. of Radiology, Ewha Womans University School of Medicine, Seoul (Korea, Republic of)

    2017-04-15

    Doppler ultrasonography of the lower extremity arteries is a valuable technique, although it is less frequently indicated for peripheral arterial disease than for deep vein thrombosis or varicose veins. Ultrasonography can diagnose stenosis through the direct visualization of plaques and through the analysis of the Doppler waveforms in stenotic and poststenotic arteries. To perform Doppler ultrasonography of the lower extremity arteries, the operator should be familiar with the arterial anatomy of the lower extremities, basic scanning techniques, and the parameters used in color and pulsed-wave Doppler ultrasonography.

  2. A New Underwater Acoustic Navigation Method Based on the Doppler Principle

    Directory of Open Access Journals (Sweden)

    Jinsong Tang

    2013-07-01

    Full Text Available In this paper, a new underwater acoustic navigation method is proposed, which is named from Doppler Acoustic Omnirange Beacon (DAOB. It is borrowed from the idea of Doppler VHF Omnirange (DVOR and based on the Doppler principle. The cause of Doppler effect in the received signal is the motion or position change of one or two sources. The effect of multipath is analyzed, and an improved signal form is presented to solve the rigorous multipath environment underwater. Some simulation is presented to verify the performance.    

  3. Dispersed single-phase-step Michelson interferometer for Doppler imaging using sunlight.

    Science.gov (United States)

    Wan, Xiaoke; Ge, Jian

    2012-09-15

    A Michelson interferometer is dispersed with a fiber array-fed spectrograph, providing 59 Doppler sensing channels using sunlight in the 510-570 nm wavelength region. The interferometer operates at a single-phase-step mode, which is particularly advantageous in multiplexing and data processing compared to the phase-stepping mode of other interferometer spectrometer instruments. Spectral templates are prepared using a standard solar spectrum and simulated interferometer modulations, such that the correlation function with a measured 1D spectrum determines the Doppler shift. Doppler imaging of a rotating cylinder is demonstrated. The average Doppler sensitivity is ~12 m/s, with some channels reaching ~5 m/s.

  4. Suspected Fetal Growth Restriction at 37 Weeks: A Comparison of Doppler and Placental Pathology.

    Science.gov (United States)

    Curtin, William M; Millington, Karmaine A; Ibekwe, Tochi O; Ural, Serdar H

    2017-01-01

    Objective. Our objective was determining if abnormal Doppler evaluation had a higher prevalence of placental pathology compared to normal Doppler in suspected fetal growth restriction (FGR) of cases delivered at 37 weeks. Study Design. This retrospective cohort study of suspected FGR singletons with antenatal Doppler evaluation delivered at 37 weeks had a primary outcome of the prevalence of placental pathology related to FGR. Significance was defined as p ≤ 0.05. Results. Of 100 pregnancies 46 and 54 were in the abnormal and normal Doppler cohorts, respectively. Placental pathology was more prevalent with any abnormal Doppler, 84.8% versus 55.6%, odds ratio (OR) 4.46, 95% confidence interval (CI): 1.55, 13.22, and p = 0.002. Abnormal middle cerebral artery (MCA) Doppler had a higher prevalence: 96.2% versus 54.8%, OR 20.7, 95% CI: 2.54, 447.1, and p < 0.001. Conclusion. Abnormal Doppler was associated with more placental pathology in comparison to normal Doppler in fetuses with suspected FGR. Abnormal MCA Doppler had the strongest association.

  5. Suspected Fetal Growth Restriction at 37 Weeks: A Comparison of Doppler and Placental Pathology

    Directory of Open Access Journals (Sweden)

    William M. Curtin

    2017-01-01

    Full Text Available Objective. Our objective was determining if abnormal Doppler evaluation had a higher prevalence of placental pathology compared to normal Doppler in suspected fetal growth restriction (FGR of cases delivered at 37 weeks. Study Design. This retrospective cohort study of suspected FGR singletons with antenatal Doppler evaluation delivered at 37 weeks had a primary outcome of the prevalence of placental pathology related to FGR. Significance was defined as p≤0.05. Results. Of 100 pregnancies 46 and 54 were in the abnormal and normal Doppler cohorts, respectively. Placental pathology was more prevalent with any abnormal Doppler, 84.8% versus 55.6%, odds ratio (OR 4.46, 95% confidence interval (CI: 1.55, 13.22, and p=0.002. Abnormal middle cerebral artery (MCA Doppler had a higher prevalence: 96.2% versus 54.8%, OR 20.7, 95% CI: 2.54, 447.1, and p<0.001. Conclusion. Abnormal Doppler was associated with more placental pathology in comparison to normal Doppler in fetuses with suspected FGR. Abnormal MCA Doppler had the strongest association.

  6. Real-time and interactive virtual Doppler ultrasound

    Science.gov (United States)

    Hirji, Samira; Downey, Donal B.; Holdsworth, David W.; Steinman, David A.

    2005-04-01

    This paper describes our "virtual" Doppler ultrasound (DUS) system, in which colour DUS (CDUS) images and DUS spectrograms are generated on-the-fly and displayed in real-time in response to position and orientation cues provided by a magnetically tracked handheld probe. As the presence of complex flow often confounds the interpretation of Doppler ultrasound data, this system will serve to be a fundamental tool for training sonographers and gaining insight into the relationship between ambiguous DUS images and complex blood flow dynamics. Recently, we demonstrated that DUS spectra could be realistically simulated in real-time, by coupling a semi-empirical model of the DUS physics to a 3-D computational fluid dynamics (CFD) model of a clinically relevant flow field. Our system is an evolution of this approach where a motion-tracking device is used to continuously update the origin and orientation of a slice passing through a CFD model of a stenosed carotid bifurcation. After calibrating our CFD model onto a physical representation of a human neck, virtual CDUS images from an instantaneous slice are then displayed at a rate of approximately 15 Hz by simulating, on-the-fly, an array of DUS spectra and colour coding the resulting spectral mean velocity using a traditional Doppler colour scale. Mimicking a clinical examination, the operator can freeze the CDUS image on-screen, and a spectrogram corresponding to the selected sample volume location is rendered at a higher frame rate of at least 30 Hz. All this is achieved using an inexpensive desktop workstation and commodity graphics card.

  7. [Doppler flowmetric fetal indices in low-risk pregnancies].

    Science.gov (United States)

    Romero Gutiérrez, G; Ponce de León, A L; Ramos Palma, S

    1999-10-01

    In order to measure the umbilical resistance and pulsatility Doppler indexes 60 pregnant women with low risk pregnancies were studied in a descriptive, observational and prospective study carried out at the Hospital de Gineco-Pediatria numero 48 del Instituto Mexicano del Seguro Social. Umbilical Doppler measurements were done of the fetal umbilical cord from the week 30 at the 40 of gestation. We carried out a total of 337 measurements and 178 (52.8%) corresponded to the resistance index and 159 (47.2%) to the pulsatility index. The average of the resistance index was 0.64 with a range average (average plus two standard deviations was 0.48-0.79) and the pulsatility index had an average value of 0.94 with an average range of 0.58-1.30. The percentil values of the resistance index were 0.52, 0.66 and 0.79 respectively in the percentil 5, 50 and 95 whereas the percentil values of the pulsatility index were 0.64, 0.94 and 1.28 respectively in the percentil 5, 50 and 95. The analysis of variance with the Bonferroni test for multiple comparisons showed that our found indexes can be applied from the week 31 to the 40 of gestation. Our findings are in according to reported by other authors and it should be kept in mind that the concept of normality of the Doppler velocimetry indexes is strictly statistical and that only its judicious use will offer the benefit to our pregnant patients to obtain products under good conditions of health.

  8. Coupling Between Doppler Radar Signatures and Tornado Damage Tracks

    Science.gov (United States)

    Jedlovec, Gary J.; Molthan, Andrew L.; Carey, Lawrence; Carcione, Brian; Smith, Matthew; Schultz, Elise V.; Schultz, Christopher; Lafontaine, Frank

    2011-01-01

    On April 27, 2011, the southeastern United States was raked with several episodes of severe weather. Numerous tornadoes caused extensive damage, and tragically, the deaths of over 300 people. In Alabama alone, there were 61 confirmed tornados, 4 of them produced EF5 damage, and several were on the ground an hour or more with continuous damage tracks exceeding 80km. The use of Doppler radars covering the region provided reflectivity and velocity signatures that allowed forecasters to monitors the severe storms from beginning to end issuing hundreds of severe weather warnings throughout the day. Meteorologists from the the NWS performed extensive surveys to assess the intensity, duration, and ground track of tornadoes reported during the event. Survey activities included site visits to the affected locations, analysis of radar and satellite data, aerial surveys, and interviews with eyewitnesses. Satellite data from NASA's MODIS and ASTER instruments played a helpful role in determining the location of tornado damage paths and in the assessment. High resolution multispectral and temporal composites helped forecasters corroborate their damage assessments, determine starting and ending points for tornado touchdowns, and helped to provide forecasters with a better big-picture view of the damage region. The imagery also helped to separate damage from the April 27th tornados from severe weather that occurred earlier that month. In a post analysis of the outbreak, tornado damage path signatures observed in the NASA satellite data have been correlated to "debris ball" signatures in the NWS Doppler radars and a special ARMOR dual-polarization radar operated by the University of Alabama Huntsville during the event. The Doppler radar data indicates a circular enhanced reflectivity signal and rotational couplet in the radial velocity likely associated with the tornado that is spatially correlated with the damage tracks in the observed satellite data. An algorithm to detect and

  9. Corrections to sodar Doppler winds due to wind drift

    Directory of Open Access Journals (Sweden)

    Stuart Bradley

    2015-11-01

    Full Text Available Refraction of the acoustic beam from a sodar, or translation of the beam due to the wind (known as wind drift, both affect the scattering angle and hence the Doppler shift of the return signal. Wind drift has been the subject of a number of previous studies, which have shown that errors increase with wind speed, giving about 6 % error in the estimated wind speed when the actual wind speed is 7 ms−1. Since previous studies have not treated the general case of finite angular beam width, a new analytic treatment is given here for monostatic sodars. Surprisingly, it is found that the Doppler error contributed by the transmitted beam is exactly compensated by the Doppler error contributed by the received beam, if the two beam widths are the same. If the transmitter beam width is not equal to the receiver beam width, then either over-estimation or under-estimation of wind speed results, depending on which beam is wider. This has implications for bi-static sodars, in which it is not possible to match beam widths. Contrary to this new theory, examples of field comparisons with mast instrumentation show a non-linear relationship between wind speeds measured by a sodar and wind speeds measured by mast-mounted instruments. It is proposed that this is due to the acoustic baffle clipping the received beam and changing its width, since the received beam must return at lower elevations from scattering downwind. This is shown to be feasible for a Metek sodar. The sign and magnitude of the observed non-linear dependence of estimated wind speed on actual wind speed are consistent with this proposed mechanism.

  10. Duplex Doppler ultrasound study of the temporomandibular joint.

    Science.gov (United States)

    Stagnitti, A; Marini, A; Impara, L; Drudi, F M; Lo Mele, L; Lillo Odoardi, G

    2012-06-01

    Sommario INTRODUZIONE: La fisiologia articolare dell’articolazione temporo-mandibolare (ATM) può essere esaminata sia dal punto di vista clinico che strumentale. La diagnostica per immagini ha da tempo contribuito con la risonanza magnetica (RM) e anche con la radiografia (Rx) e la tomografia computerizzata (TC) all’analisi della morfologia dei capi articolari e della cinetica condilare. L’esame duplex-ecodoppler è una metodica di largo impiego nello studio delle strutture in movimento in particolar modo a livello delle strutture del sistema vascolare. MATERIALI E METODI: È stata utilizzata un’apparecchiatura Toshiba APLIO SSA-770A, con l’uso di tecnica duplex-ecodoppler multi display, che consente la visualizzazione contemporanea dell’immagine ecografica e dei segnali Doppler utilizzando una sonda lineare del tipo phased array con cristalli trasduttori funzionanti ad una frequenza fondamentale di 6 MHz per gli spettri Doppler pulsati e 7.5 MHz per l’imaging ecografico. Sono stati esaminati nel Dipartimento di Scienze Radiologiche, Oncologiche e Anatomo-patologiche dell’Università “Sapienza” di Roma, 30 pazienti del reparto di Ortognatodonzia dell’Istituto di Odontoiatria della stessa Università. RISULTATI: Nei pazienti normali si è ottenuta un’alternanza regolare degli spettri Doppler, mentre nei soggetti con disfunzioni del complesso condilo-meniscale, si è persa la regolarità della sommatoria degli spettri di Fourier, con altezze incostanti in relazione a spostamenti irregolari del complesso condilo-meniscale. CONCLUSIONI: L’esame ecodoppler si è dimostrato, in tutti i pazienti, capace di discriminare quelli normali dai patologici e tra questi ultimi ha permesso di identificare gli aspetti più significativi delle patologie disfunzionali.

  11. From HARPS to CODEX: exploring the limits of Doppler measurements

    Science.gov (United States)

    Pepe, F. A.; Lovis, C.

    2008-08-01

    Only 3 6 years ago, the Doppler technique was believed to have reached its final limitations in measuring stellar velocities and finding extra-solar planets. The 3 4 m s-1 precision level achieved, at that time, by various teams, was certainly limited by instrumental performances, but also constrained, as believed by a part of the community, by intrinsic stellar limitations. The advent of HARPS drastically changed this view. The instrument demonstrated, through its recent discoveries, that stars more 'stable' than 1 m s-1 actually exist, and that their radial velocity (RV) can be measured at that level of precision. Short-term precision of 20 cm s-1 rms and long-term precision of the order of 30 60 cm s-1 rms have been actually achieved on real stars, showing that RVs still harbor a great potential, and not only in the domain of extra-solar planets. Indeed, HARPS inspired the CODEX@ELT experiment for the direct determination of the expansion of the Universe, measuring the Doppler shift of Ly-α forest lines as a function of time. This experiment calls for a Doppler precision as low as 1 cm s-1, which in turn inspires new possibilities in the domain of extra-solar planets. We will investigate the obstacles on the way to cm s-1 precision. The discussion presented here will be based on our experience with HARPS and what we consider to be the current limitations set by the instrument, telescope, atmosphere and star. Finally, we will also provide an outlook on possible improvements and expected performances, which will finally define new scientific opportunities.

  12. From HARPS to CODEX: exploring the limits of Doppler measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pepe, F A; Lovis, C [Observatoire Astronomique, Universite de Geneve, CH-1290 Sauverny (Switzerland)], E-mail: Francesco.Pepe@obs.unige.ch

    2008-08-15

    Only 3-6 years ago, the Doppler technique was believed to have reached its final limitations in measuring stellar velocities and finding extra-solar planets. The 3-4 m s{sup -1} precision level achieved, at that time, by various teams, was certainly limited by instrumental performances, but also constrained, as believed by a part of the community, by intrinsic stellar limitations. The advent of HARPS drastically changed this view. The instrument demonstrated, through its recent discoveries, that stars more 'stable' than 1 m s{sup -1} actually exist, and that their radial velocity (RV) can be measured at that level of precision. Short-term precision of 20 cm s{sup -1} rms and long-term precision of the order of 30-60 cm s{sup -1} rms have been actually achieved on real stars, showing that RVs still harbor a great potential, and not only in the domain of extra-solar planets. Indeed, HARPS inspired the CODEX at ELT experiment for the direct determination of the expansion of the Universe, measuring the Doppler shift of Ly-{alpha} forest lines as a function of time. This experiment calls for a Doppler precision as low as 1 cm s{sup -1}, which in turn inspires new possibilities in the domain of extra-solar planets. We will investigate the obstacles on the way to cm s{sup -1} precision. The discussion presented here will be based on our experience with HARPS and what we consider to be the current limitations set by the instrument, telescope, atmosphere and star. Finally, we will also provide an outlook on possible improvements and expected performances, which will finally define new scientific opportunities.

  13. On the Doppler distortion of the sea-wave spectra

    Science.gov (United States)

    Korotkevich, A. O.

    2008-11-01

    Discussions on a form of a frequency spectrum of wind-driven sea waves just above the spectral maximum have continued for the last three decades. In 1958 Phillips made a conjecture that wave breaking is the main mechanism responsible for the spectrum formation [O.M. Phillips, J. Fluid Mech. 4 (1958) 426]. That leads to the spectrum decay ˜ω-5, where ω is the frequency of waves. There is a contradiction between the numerous experimental data and this spectrum. Experiments frequently show decay ˜ω-4 [Y. Toba, J. Oceanogr. Soc. Japan 29 (1973) 209; M.A. Donelan, J. Hamilton, W.H. Hui, Phil. Trans. R. Soc. London A315 (1985) 509; P.A. Hwang, et al., J. Phys. Oceanogr. 30 (1999) 2753]. There are several ways of the explanation of this phenomenon. One of them (proposed by Banner [M.L. Banner, J. Phys. Oceanogr. 20 (1990) 966]) takes into account the Doppler effect due to surface circular currents generated by underlying waves in the Phillips model. In this article the influence of the Doppler effect on an arbitrary averaged spectrum is considered using both analytic and numerical approaches. Although we mostly concentrated on the very important case of Phillips model, the developed technique and general formula can be used for the analysis of other spectra. For the particular case of Phillips spectra we got analytic asymptotics in the vicinity of spectral maximum and for high frequencies. Results were obtained for two most important angular dependences of the spectra: isotropic and strongly anisotropic. Together with the analytic investigation we performed numerical calculations in a wide range of frequencies. Both high and low frequency asymptotics are in very good agreement with the numerical results. It was shown that at least at low frequencies, the correction to the spectrum due to the Doppler shift is negligible. At high frequencies there is an asymptotic with tail ˜ω-3.

  14. [Doppler ultrasound diagnosis in post-term pregnancy].

    Science.gov (United States)

    Jörn, H; Funk, A; Fendel, H

    1993-09-01

    The capability of Doppler flow velocimetry to predict intrauterine growth retardation is well known. The increased morbidity and mortality rate of postterm newborns is also well known. The aim of our study was to examine if Doppler flow velocimetry is able to indicate foetal jeopardy in the postterm period. Flow velocimetry of the foetal descending aorta, the umbilical artery, the uterine arteries and in 59 cases also the foetal middle cerebral artery was obtained from 167 pregnancies after 40 completed weeks of gestation. We found significant changes of normal values in prolonged pregnancy compared to third trimester normal values, examining the mean velocity of the foetal descending aorta and the S/D-ratio of the umbilical artery. No clinically significant changes were found examining the S/D-ratio of the uterine arteries and the pulsatility index of the foetal middle cerebral artery. Daily examinations of the foetal descending aorta were carried out in 23 and of the umbilical artery in 19 cases during the last four days before delivery, and in 11 cases of the foetal middle cerebral artery during the last three days before delivery. We did not find significant changes in the medians of the mean velocity of the foetal aorta, of the S/D-ratio of the umbilical artery and of the pulsatility index of the foetal middle cerebral artery. Measurement of sensitivity and positive predictive value of the four arteries examined showed, that Doppler ultrasound could not predict small for date infants or Caesarean section because of foetal distress.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Coherent Doppler Laser Radar: Technology Development and Applications

    Science.gov (United States)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  16. Colour doppler ultrasound assessment of the normal neonatal hip

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Neira, C.L. [Dept. of Diagnostic Imaging, Alberta Children' s Hospital, Calgary, Alberta (Canada)], E-mail: clara.ortiz@calgaryhealthregion.ca; Laffan, E.; Daneman, A. [Dept. of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario (Canada); Fong, K. [Dept. of Diagnostic Imaging, Mount Sinai Hospital, Toronto, Ontario (Canada); Roposch, A. [Dept. of Orthopedic Surgery, The Hospital for Sick Children, Toronto, Ontario (Canada); Great Ormond Street Hospital, Inst. of Child Health, Univ. College London, London (United Kingdom)

    2009-04-15

    To determine the morphology and hemodynamic characteristics of the arterial vessels of the proximal femur according to specific anatomic regions in asymptomatic neonates in 2 pediatric-based health care institutions. Forty-three neonates (29 female, 14 male; age range, 2 d-3 mo; median age, 3 d) were enrolled in the study. Thirty-two (37%) of 86 hips were classified as Graf type IIA joints (mean alpha angle, 56.0{sup o} {+-} 2.7{sup o}), and 54 (63%) were classified as type I joints (mean alpha angle, 65.0{sup o} {+-} 4.6{sup o}). Colour and spectral Doppler imaging identified vessels running along the acetabular labrum, epiphyseal vessels, and femoral neck. We showed 4 different patterns of vascularity of the hips: radial, parallel, mixed radial-parallel, and indeterminate, however, they were not related to the hip maturity (P = .3, coronal plane; P = .62, transverse plane) or to the amount of colour pixels identified in each region (P = .35). The mean number of pixels in the ligamentum teres region was significantly higher than that in other regions of interest (P =.03). Except for the acetabular labrum arteries, Doppler spectrum waveforms of proximal femur arteries presented with low resistivity. There was a tendency towards females' acetabular arteries presenting with lower peak systolic velocities than males' acetabular arteries (P =.06). Colour Doppler spectrum waveforms and intensity of vascularity in normal neonatal hips differ according to the anatomic region under evaluation. This observation deserves further investigation on its role on the physiopathogenesis of neonatal hip disorders. (author)

  17. Color doppler energy (CDE) : initial ten-months experience

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Young Jin; Son, Hyun Ju; Lee, Suck Hong; Kim, Byung Soo [Pusan National Univ. College of Medicine, Pusan (Korea, Republic of); Han, Kook Sang; Nam, SAng Hwa; Lee, Keum Seob [Haedong Hospital, Pusan (Korea, Republic of); Shin Se Kwon [Daedong Hospital, Pusan (Korea, Republic of)

    1996-06-01

    Color Doppler imaging(CDI) has shortcomings, including random noise, aliasing, and angle dependence. To overcome these, a method using CD US, termed power doppler or Color Doppler Energy(CDE), has recently been introduced. The purpose of this study was to show the clinical usefulness of CDE. We retrospectively analyzed the CDI and CDE of 61 cases(20 renal pseudotumors, 8 musculoskeletal inflammations, 17 epididymitis or epididymo-orchitis, 3 varicoceles, 1 normal testis, 1 hepatocellualr carcinoma, 7 renal cell carcinoma, 1 renal angiomyolipoma, and 3 splenic varices). CDI and CDE scans were obtained at the same region with constant scan plane. The color gain was increased until noise first became perceptible, and scans were always obtained in such a way that the maximum amount of vascularity was shown. Thereafter, the vascularity, vascular displacement, and the vascular relationship between CDI and CDE were compared. In 17 of 20 cases of pseudotumor in the kidney, normal vascularity was identified in CDI and CDE, but was more cleary visible in CDE. In three cases, there was no visible vascularity in CDI, but normal vascularity in CDE. In eight cases of musculoskeletal inflammation and 17 cases of epididymitis with or without orchitis, the vascularity was increased due to hyperemia, which was more prominently seen in CDE than in CDI. In three varicoceles, CDE appeared to be better in demonstrating low velocity flow. In one patient who was suspected of having acute testicular torsion, CDE was helpful in excluding this suspicion. In one case of hepatocellualr carcinoma, seven cases of renal cell carcinoma, one case of renal angiomyolipoma, and three cases of splenic varices, CDE was better than CDI in showing the vascularity, vascular relationship, and vascular displacement.

  18. Observing crosswind over urban terrain using scintillometer and Doppler lidar

    Directory of Open Access Journals (Sweden)

    D. van Dinther

    2014-07-01

    Full Text Available In this study, the crosswind (wind component perpendicular to a path, U⊥ is measured by a scintillometer and Doppler lidar above the urban environment of Helsinki, Finland, for 3 weeks. The scintillometer allows acquisition of a path-averaged value of U⊥ (U⊥, while the Doppler lidar allows acquisition of path-resolved U⊥ (U⊥ (x, where x is the position along the path. The goal of this study is to evaluate the applicability of scintillometer U⊥-measurements for conditions where U⊥ (x is variable. If the scintillometer is applicable in such variable-wind conditions, it can also be used in the urban environment. Two methods were applied to obtain U⊥ from the scintillometer signal; the cumulative spectrum method (relies on scintillation spectra, and the lookup table method (relies on time-lagged correlation functions. Both methods compared reasonably well with the Doppler lidar measurements, especially considering the challenging urban environment in which they were measuring; with RMSE of 0.71 and 0.73 m s−1. This indicates that both measurement technologies are able to obtain U⊥ in the complex urban environment. The in detail investigation of four cases indicate that the cumulative spectrum method is less susceptible to a variable U⊥ (x than the lookup table method. However, the lookup table method can be adjusted to improve its capabilities to obtain U⊥ for conditions where U⊥ (x is variable.

  19. Radio wave phase scintillation and precision Doppler tracking of spacecraft

    Science.gov (United States)

    Armstrong, J. W.

    Phase scintillation caused by propagation through solar wind, ionospheric, and tropospheric irregularities is a noise process for many spacecraft radio science experiments. In precision Doppler tracking observations, scintillation can be the dominant noise process. Scintillation statistics are necessary for experiment planning and in design of signal processing procedures. Here high-precision tracking data taken with operational spacecraft (Mars Observer, Galileo, and Mars Global Surveyor) and ground systems are used to produce temporal statistics of tropospheric and plasma phase scintillation. The variance of Doppler frequency fluctuations is approximately decomposed into two propagation processes. The first, associated with distributed scattering along the sight line in the solar wind, has a smooth spectrum. The second, associated principally with localized tropospheric scattering for X-band experiments, has a marked autocorrelation peak at the two-way light time between the Earth and the spacecraft (thus a cosine-squared modulation of the fluctuation power spectrum). For X-band data taken in the antisolar hemisphere the average noise levels of this process are in good agreement with average tropospheric noise levels determined independently from water vapor radiometer observations and radio interferometic data. The variance of the process having a smooth spectrum is consistent with plasma noise levels determined independently from dual-frequency observations of the Viking spacecraft made at comparable Sun-Earth-spacecraft angles. The observations reported here are used to refine the propagation noise model for Doppler tracking of deep space probes. In particular, they can be used to predict propagation noise levels for high-precision X- and Ka-band tracking observations (e.g., atmosphere/ionosphere/ring occultations, celestial mechanics experiments, and gravitational wave experiments) to be done using the Cassini spacecraft.

  20. Microembolus Detection by Transcranial Doppler Sonography: Review of the Literature

    Directory of Open Access Journals (Sweden)

    Vlasta Vuković-Cvetković

    2012-01-01

    Full Text Available Transcranial Doppler can detect microembolic signals which are characterized by unidirectional high intensity increase, short duration, random occurrence, and a “whistling” sound. Microembolic signals have been detected in a number of clinical settings: carotid artery stenosis, aortic arch plaques, atrial fibrillation, myocardial infarction, prosthetic heart valves, patent foramen ovale, valvular stenosis, during invasive procedures (angiography, percutaneous transluminal angioplasty, surgery (carotid, cardiopulmonary bypass, orthopedic, and in certain systemic diseases. Microembolic signals are frequent in large artery disease, less commonly detected in cardioembolic stroke, and infrequent in lacunar stroke. This article provides an overview about the current state of technical and clinical aspects of microembolus detection.