WorldWideScience

Sample records for two-metal ion mechanism

  1. Single sensor for two metal ions: Colorimetric recognition of Cu 2+ and fluorescent recognition of Hg 2+

    Science.gov (United States)

    Tang, Lijun; Li, Fangfang; Liu, Minghui; Nandhakumar, Raju

    2011-03-01

    The first novel rhodamine B based sensor, rhodamine B hydrazide methyl 5-formyl-1 H-pyrrole-2-carboxylate Schiff base ( 2) capable of detecting both Cu 2+ and Hg 2+ using two different detection modes has been designed and synthesized. The metal ion induced optical changes of 2 were investigated in MeOH:H 2O (3:1) HEPES buffered solution at pH 7.4. Sensor 2 exhibits selective colorimetric recognition of Cu 2+ and fluorogenic recognition of Hg 2+ with UV-vis and fluorescence spectroscopy, respectively. Moreover, both of the Cu 2+ and Hg 2+ recognition processes are proven to be hardly influenced by other coexisting metal ions.

  2. Negative hydrogen ion production mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bacal, M. [UPMC, LPP, Ecole Polytechnique, UMR CNRS 7648, Palaiseau (France); Wada, M. [School of Science and Engineering, Doshisha University, Kyoto 610-0321 (Japan)

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  3. Negative hydrogen ion production mechanisms

    Science.gov (United States)

    Bacal, M.; Wada, M.

    2015-06-01

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  4. Lithium Ion Battery Anode Aging Mechanisms

    Directory of Open Access Journals (Sweden)

    Victor Agubra

    2013-03-01

    Full Text Available Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed.

  5. Lithium Ion Battery Anode Aging Mechanisms

    OpenAIRE

    Victor Agubra; Jeffrey Fergus

    2013-01-01

    Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed.

  6. Mechanical Design of Carbon Ion Optics

    Science.gov (United States)

    Haag, Thomas

    2005-01-01

    Carbon Ion Optics are expected to provide much longer thruster life due to their resistance to sputter erosion. There are a number of different forms of carbon that have been used for fabricating ion thruster optics. The mechanical behavior of carbon is much different than that of most metals, and poses unique design challenges. In order to minimize mission risk, the behavior of carbon must be well understood, and components designed within material limitations. Thermal expansion of the thruster structure must be compatible with thermal expansion of the carbon ion optics. Specially designed interfaces may be needed so that grid gap and aperture alignment are not adversely affected by dissimilar material properties within the thruster. The assembled thruster must be robust and tolerant of launch vibration. The following paper lists some of the characteristics of various carbon materials. Several past ion optics designs are discussed, identifying strengths and weaknesses. Electrostatics and material science are not emphasized so much as the mechanical behavior and integration of grid electrodes into an ion thruster.

  7. Metal Ion Modeling Using Classical Mechanics.

    Science.gov (United States)

    Li, Pengfei; Merz, Kenneth M

    2017-02-08

    Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems.

  8. Metal Ion Modeling Using Classical Mechanics

    Science.gov (United States)

    2017-01-01

    Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems. PMID:28045509

  9. A single-ion nonlinear mechanical oscillator

    CERN Document Server

    Akerman, Nitzan; Glickamn, Yinnon; Dallal, Yehonatan; Keselman, Anna; Ozeri, Roee

    2010-01-01

    We study the steady state motion of a single trapped ion oscillator driven to the nonlinear regime. Damping is achieved via Doppler laser-cooling. The ion motion is found to be well described by the Duffing oscillator model with an additional nonlinear damping term. We demonstrate a unique ability of tuning both the linear as well as the nonlinear damping coefficients by controlling the cooling laser parameters. Our observations open a way for the investigation of nonlinear dynamics on the quantum-to-classical interface as well as mechanical noise squeezing in laser-cooling dynamics.

  10. Dissociation mechanisms of photoexcited molecular ions

    CERN Document Server

    Inglis, L C

    2003-01-01

    Photoionisation of gas phase molecules, in the energy range 8 - 40 eV, and the subsequent dissociation mechanisms have been investigated using threshold photoelectron spectroscopy and ion time-of-flight mass spectrometry. The excitation source used was monochromatic radiation, delivered by station 3.2 at the Daresbury Laboratory Synchrotron Radiation Source. These two techniques have also been combined in threshold photoelectron-photoion coincidence experiments, in order to record coincidence time-of-flight mass spectra and thereby determine breakdown curves. Such curves display the ion fragmentation as a function of internal energy. In addition, computer modelling techniques have been employed to gain some understanding of the unimolecular dissociations of energy selected molecular ions by establishing theoretical breakdown graphs, appearance energies, fragmentation pathways and dissociation rates. Ab initio quantum chemistry calculations have been carried out, generating ionisation and appearance energies, ...

  11. Reaction mechanisms in heavy ion fusion

    Directory of Open Access Journals (Sweden)

    Lubian J.

    2011-10-01

    Full Text Available We discuss the reaction mechanisms involved in heavy ion fusion. We begin with collisions of tightly bound systems, considering three energy regimes: energies above the Coulomb barrier, energies just below the barrier and deep sub-barrier energies. We show that channel coupling effects may influence the fusion process at above-barrier energies, increasing or reducing the cross section predicted by single barrier penetration model. Below the Coulomb barrier, it enhances the cross section, and this effect increases with the system’s size. It is argued that this behavior can be traced back to the increasing importance of Coulomb coupling with the charge of the collision partners. The sharp drop of the fusion cross section observed at deep sub-barrier energies is addressed and the theoretical approaches to this phenomenon are discussed. We then consider the reaction mechanisms involved in fusion reactions of weakly bound systems, paying particular attention to the calculations of complete and incomplete fusion available in the literature.

  12. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino,J.; Tetenbaum-Novatt, J.; White, A.; Berkovitch, F.; Ringe, D.

    2005-01-01

    The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10{sup -7}, binding site 2 (primary) is a low-affinity binding site with a binding constant of 6.3 x 10{sup -4}. These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A, C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.

  13. An entropic mechanism of generating selective ion binding in macromolecules.

    Directory of Open Access Journals (Sweden)

    Michael Thomas

    Full Text Available Several mechanisms have been proposed to explain how ion channels and transporters distinguish between similar ions, a process crucial for maintaining proper cell function. Of these, three can be broadly classed as mechanisms involving specific positional constraints on the ion coordinating ligands which arise through: a "rigid cavity", a 'strained cavity' and 'reduced ligand fluctuations'. Each operates in subtly different ways yet can produce markedly different influences on ion selectivity. Here we expand upon preliminary investigations into the reduced ligand fluctuation mechanism of ion selectivity by simulating how a series of model systems respond to a decrease in ligand thermal fluctuations while simultaneously maintaining optimal ion-ligand binding distances. Simple abstract-ligand models, as well as simple models based upon the ion binding sites in two amino acid transporters, show that limiting ligand fluctuations can create ion selectivity between Li(+, Na(+ and K(+ even when there is no strain associated with the molecular framework accommodating the different ions. Reducing the fluctuations in the position of the coordinating ligands contributes to selectivity toward the smaller of two ions as a consequence of entropic differences.

  14. Capillarity ion concentration polarization as spontaneous desalting mechanism

    Science.gov (United States)

    Park, Sungmin; Jung, Yeonsu; Son, Seok Young; Cho, Inhee; Cho, Youngrok; Lee, Hyomin; Kim, Ho-Young; Kim, Sung Jae

    2016-04-01

    To overcome a world-wide water shortage problem, numerous desalination methods have been developed with state-of-the-art power efficiency. Here we propose a spontaneous desalting mechanism referred to as the capillarity ion concentration polarization. An ion-depletion zone is spontaneously formed near a nanoporous material by the permselective ion transportation driven by the capillarity of the material, in contrast to electrokinetic ion concentration polarization which achieves the same ion-depletion zone by an external d.c. bias. This capillarity ion concentration polarization device is shown to be capable of desalting an ambient electrolyte more than 90% without any external electrical power sources. Theoretical analysis for both static and transient conditions are conducted to characterize this phenomenon. These results indicate that the capillarity ion concentration polarization system can offer unique and economical approaches for a power-free water purification system.

  15. Capillarity ion concentration polarization as spontaneous desalting mechanism.

    Science.gov (United States)

    Park, Sungmin; Jung, Yeonsu; Son, Seok Young; Cho, Inhee; Cho, Youngrok; Lee, Hyomin; Kim, Ho-Young; Kim, Sung Jae

    2016-04-01

    To overcome a world-wide water shortage problem, numerous desalination methods have been developed with state-of-the-art power efficiency. Here we propose a spontaneous desalting mechanism referred to as the capillarity ion concentration polarization. An ion-depletion zone is spontaneously formed near a nanoporous material by the permselective ion transportation driven by the capillarity of the material, in contrast to electrokinetic ion concentration polarization which achieves the same ion-depletion zone by an external d.c. bias. This capillarity ion concentration polarization device is shown to be capable of desalting an ambient electrolyte more than 90% without any external electrical power sources. Theoretical analysis for both static and transient conditions are conducted to characterize this phenomenon. These results indicate that the capillarity ion concentration polarization system can offer unique and economical approaches for a power-free water purification system.

  16. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Haseroth, Helmut [European Organization for Nuclear Research, Geneva (Switzerland); Hora, Heinrich [New South Wales Univ., Kensington, NSW (Australia)]|[Regensburg Inst. of Tech. (Germany). Anwenderzentrum

    1996-12-31

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10{sup 11} C{sup 4+} ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ``hot`` electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author).

  17. Extraction mechanism of monovalent ion-pairs by polyurethane foams.

    Science.gov (United States)

    Fong, P; Chow, A

    1992-07-01

    The extractability sequence of K(+) approximately Rb(+) > Cs(+) > Na(+) > Li(+) for the extraction with polyether foam suggests that the cation chelation mechanism might be operative. However, the same order was obtained for the extraction with 100% polypropylene oxide polyether foam which does not normally adopt a helical structure to form oxygen-rich cavities as easily or as effectively as polyethylene oxide to accommodate alkali metal ions. This result indicates that a hole-size/cation-diameter relationship may not be required for the high extraction of K(+). The extraction of alkali metal DPAs and hydroxides from methanol demonstrates the importance of the solvent effect. It indicates that the water-structure enforced ion-pairing (WSEIP) is the driving force for extraction of the ion-pairs. The extraction mechanism for ionic species can be described as an ion-pair extraction process. The overall effect of ion-pair formation in water and interaction of the extracted ions with foam appears to determine the extractability of the ions of the extractable ion-pair.

  18. On the microscopic mechanism of ion-extraction of a gridded ion propulsion thruster

    CERN Document Server

    Kirmse, Danny

    2013-01-01

    The following paper includes a physical microscopic particle-description of the phenomena and mechanisms that lead to the extraction of ions with the aim to generate thrust. This theoretical treatise arose from the intention to visualize the behavior of the involved particles under effect of the involved electrical fields. By this way, an underlying basis for experimental investigations of the work of an ion thruster should be formed. So a foundation was created, which explains the ion extracting and so thrust generating function of an ion thruster. The theoretical work was related to the Radio-frequency Ion Thruster (RIT). But the model worked out can be generalized for all thruster types that use electrostatic fields to extract positively charged ions.

  19. Ion Selectivity Mechanism in a Bacterial Pentameric Ligand-Gated Ion Channel

    Energy Technology Data Exchange (ETDEWEB)

    Fritsch, Sebastian M [ORNL; Ivanov, Ivaylo N [ORNL; Wang, Hailong [Mayo Clinic College of Medicine; Cheng, Xiaolin [ORNL

    2011-01-01

    The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential of mean force (PMF) profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a ~10 kcal/mol free energy barrier for a chloride ion, which arises primarily from the unfavorable interactions with a ring of negatively charged glutamate residues (E-2 ) at the intracellular end and a ring of hydrophobic residues (I9 ) in the middle of the transmembrane domain. Our collective findings further suggest that the charge selection mechanism can, to a large extent, be attributed to the narrow intracellular end and a ring of glutamate residues in this position their strong negative electrostatics and ability to bind cations. By contrast, E19 at the extracellular entrance only plays a minor role in ion selectivity of GLIC. In addition to electrostatics, both ion hydration and protein dynamics are found to be crucial for ion conduction as well, which explains why a chloride ion experiences a much greater barrier than a sodium ion in the hydrophobic region of the pore.

  20. ION EXCHANGE MECHANISM OF Cr+3 ON NATURALLY OCCURRING CLINOPTILOLITE

    Directory of Open Access Journals (Sweden)

    M.A.S.D. de Barros

    1997-09-01

    Full Text Available Ion exchange isotherms are very important tools to achieve a better comprehension of cation removal by means of zeolite treatment. In this work, three isotherms were obtained (at 298K, at 313K and at 333K from natural pretreated Na+ clinoptilolite. The ion exchange was carried out with Cr+3 ions. The isotherms’ shape is similar to the classical type "b" isotherm, according to the arrangement proposed by Breck (1984. Mathematical fitting was applied to the experimental points (Table Curve software to obtain a representative curve thereof. From such fittings, points were simulated and then used to construct the Kielland plots, whose shape was associated with an ion exchange mechanism. Straight lines were obtained as an indication that, although the zeolite used is of natural occurrence and presents impurities such as mordenite and clays, only one site is involved in the ion exchange process

  1. Electrochemical/mechanical coupling in ion-conducting soft matter.

    Science.gov (United States)

    Kusoglu, Ahmet; Weber, Adam Z

    2015-11-19

    Mechanical and electrochemical phenomena exhibit many interesting multidirectional couplings in ion-exchange soft matter due to their intrinsic material physiochemical states and responses to environmental stressors. In this Perspective, such coupling is explored in terms of recent studies with a focus on the degradation of polymer-electrolyte fuel-cell membranes. In addition, (electro)chemical-mechanical coupling of ion-conducting polymers in other applications is also introduced, as there is a research need to explore the interactions between these often wrongly assumed disparate fields in order to optimize, exploit, and discover new technologies and applications.

  2. Ecton mechanism of ion flow generation in vacuum arc

    CERN Document Server

    Mesyats, G A

    2001-01-01

    The basic characteristics of cathode plasma generation in vacuum arc (ion erosion, ion average charge) were studied from the point of an ecton model of a cathode spot in vacuum arc. The estimates of ion parameters obtained for a single cell of a cathode spot show qualitative conformity with the experimental data. One introduces the following mechanism of cathode plasma generation in vacuum arc. In case of explosion-like destruction of a cathode segment under the effect of the Joule heating the cathode matter changes sequentially its state: condensed one, nonideal and ideal plasma ones. During this change one observes formation of plasma charge composition and ion acceleration under the effect of plasma pressure gradient

  3. Ion Permeation and Mechanotransduction Mechanisms of Mechanosensitive Piezo Channels.

    Science.gov (United States)

    Zhao, Qiancheng; Wu, Kun; Geng, Jie; Chi, Shaopeng; Wang, Yanfeng; Zhi, Peng; Zhang, Mingmin; Xiao, Bailong

    2016-03-16

    Piezo proteins have been proposed as the long-sought-after mechanosensitive cation channels in mammals that play critical roles in various mechanotransduction processes. However, the molecular bases that underlie their ion permeation and mechanotransduction have remained functionally undefined. Here we report our finding of the miniature pore-forming module of Piezo1 that resembles the pore architecture of other trimeric channels and encodes the essential pore properties. We further identified specific residues within the pore module that determine unitary conductance, pore blockage and ion selectivity for divalent and monovalent cations and anions. The non-pore-containing region of Piezo1 confers mechanosensitivity to mechano-insensitive trimeric acid-sensing ion channels, demonstrating that Piezo1 channels possess intrinsic mechanotransduction modules separate from their pore modules. In conclusion, this is the first report on the bona fide pore module and mechanotransduction components of Piezo channels, which define their ion-conducting properties and gating by mechanical stimuli, respectively.

  4. Mechanisms of Ions Adsorption by Nanodiamonds in Aqueous Suspensions

    Directory of Open Access Journals (Sweden)

    K.A. Laptinskiy

    2013-12-01

    Full Text Available This work is devoted to the study of adsorption properties and adsorption mechanisms of the original (I6, modified (I6COOH nanodiamonds and charcoal dispersed in water, with respect to dissolved ions (Cu2 +, Pb2 +, NO3 –, CH3COO – using optical spectroscopy methods: Raman and IR spectroscopies, absorption, dynamic light scattering. Mechanisms of anions and cations adsorption were studied.

  5. Quantized conductance in atom-sized wires between two metals

    DEFF Research Database (Denmark)

    Brandbyge, Mads; Schiøtz, Jakob; Sørensen, Mads Reinholdt

    1995-01-01

    We present experimental and theoretical results for the conductance and mechanical properties of atom-sized wires between two metals. The experimental part is based on measurements with a scanning tunneling microscope (STM) where a point contact is created by indenting the tip into a gold surface...... to observe more than up to four quanta in these experiments. A detailed discussion is given of the statistical methods used in the analysis of the experimental data. The theoretical part of the paper addresses some questions posed by the experiment: Why can conductance quantization be observed, what...... is the origin of the scatter in the experimental data, and what is the origin of the scaling of the scattering with the number of conductance quanta? The theoretical discussion is based on a free-electron-like model where scattering from the boundary of the nanowire is included. The configurations...

  6. Ion Channels and Zinc: Mechanisms of Neurotoxicity and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Deborah R. Morris

    2012-01-01

    Full Text Available Ionotropic glutamate receptors, such as NMDA, AMPA and kainate receptors, are ligand-gated ion channels that mediate much of the excitatory neurotransmission in the brain. Not only do these receptors bind glutamate, but they are also regulated by and facilitate the postsynaptic uptake of the trace metal zinc. This paper discusses the role of the excitotoxic influx and accumulation of zinc, the mechanisms responsible for its cytotoxicity, and a number of disorders of the central nervous system that have been linked to these neuronal ion channels and zinc toxicity including ischemic brain injury, traumatic brain injury, and epilepsy.

  7. Coupled Mechanical and Electrochemical Phenomena in Lithium-Ion Batteries

    Science.gov (United States)

    Cannarella, John

    Lithium-ion batteries are complee electro-chemo-mechanical systems owing to a number of coupled mechanical and electrochemical phenomena that occur during operation. In this thesis we explore these phenomena in the context of battery degradation, monitoring/diagnostics, and their application to novel energy systems. We begin by establishing the importance of bulk stress in lithium-ion batteries through the presentation of a two-year exploratory aging study which shows that bulk mechanical stress can significantly accelerate capacity fade. We then investigate the origins of this coupling between stress and performance by investigating the effects of stress in idealized systems. Mechanical stress is found to increase internal battery resistance through separator deformation, which we model by considering how deformation affects certain transport properties. When this deformation occurs in a spatially heterogeneous manner, local hot spots form, which accelerate aging and in some cases lead to local lithium plating. Because of the importance of separator deformation with respect to mechanically-coupled aging, we characterize the mechanical properties of battery separators in detail. We also demonstrate that the stress state of a lithium-ion battery cell can be used to measure the cell's state of health (SOH) and state of charge (SOC)--important operating parameters that are traditionally difficult to measure outside of a laboratory setting. The SOH is shown to be related to irreversible expansion that occurs with degradation and the SOC to the reversible strains characteristic of the cell's electrode materials. The expansion characteristics and mechanical properties of the constituent cell materials are characterized, and a phenomenological model for the relationship between stress and SOH/SOC is developed. This work forms the basis for the development of on-board monitoring of SOH/SOC based on mechanical measurements. Finally we study the coupling between mechanical

  8. Dual mechanism of ion permeation through VDAC revealed with inorganic phosphate ions and phosphate metabolites.

    Science.gov (United States)

    Krammer, Eva-Maria; Vu, Giang Thi; Homblé, Fabrice; Prévost, Martine

    2015-01-01

    In the exchange of metabolites and ions between the mitochondrion and the cytosol, the voltage-dependent anion channel (VDAC) is a key element, as it forms the major transport pathway for these compounds through the mitochondrial outer membrane. Numerous experimental studies have promoted the idea that VDAC acts as a regulator of essential mitochondrial functions. In this study, using a combination of molecular dynamics simulations, free-energy calculations, and electrophysiological measurements, we investigated the transport of ions through VDAC, with a focus on phosphate ions and metabolites. We showed that selectivity of VDAC towards small anions including monovalent phosphates arises from short-lived interactions with positively charged residues scattered throughout the pore. In dramatic contrast, permeation of divalent phosphate ions and phosphate metabolites (AMP and ATP) involves binding sites along a specific translocation pathway. This permeation mechanism offers an explanation for the decrease in VDAC conductance measured in the presence of ATP or AMP at physiological salt concentration. The binding sites occur at similar locations for the divalent phosphate ions, AMP and ATP, and contain identical basic residues. ATP features a marked affinity for a central region of the pore lined by two lysines and one arginine of the N-terminal helix. This cluster of residues together with a few other basic amino acids forms a "charged brush" which facilitates the passage of the anionic metabolites through the pore. All of this reveals that VDAC controls the transport of the inorganic phosphates and phosphate metabolites studied here through two different mechanisms.

  9. Mechanical and tribological properties of ion beam-processed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kodali, Padma [Univ. of Maryland, College Park, MD (United States)

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness.

  10. Voltage hysteresis of lithium ion batteries caused by mechanical stress.

    Science.gov (United States)

    Lu, Bo; Song, Yicheng; Zhang, Qinglin; Pan, Jie; Cheng, Yang-Tse; Zhang, Junqian

    2016-02-14

    The crucial role of mechanical stress in voltage hysteresis of lithium ion batteries in charge-discharge cycles is investigated theoretically and experimentally. A modified Butler-Volmer equation of electrochemical kinetics is proposed to account for the influence of mechanical stresses on electrochemical reactions in lithium ion battery electrodes. It is found that the compressive stress in the surface layer of active materials impedes lithium intercalation, and therefore, an extra electrical overpotential is needed to overcome the reaction barrier induced by the stress. The theoretical formulation has produced a linear dependence of the height of voltage hysteresis on the hydrostatic stress difference between lithiation and delithiation, under both open-circuit conditions and galvanostatic operation. Predictions of the electrical overpotential from theoretical equations agree well with the experimental data for thin film silicon electrodes.

  11. Thermo-mechanical design aspects of mercury bombardment ion thrusters.

    Science.gov (United States)

    Schnelker, D. E.; Kami, S.

    1972-01-01

    The mechanical design criteria are presented as background considerations for solving problems associated with the thermomechanical design of mercury ion bombardment thrusters. Various analytical procedures are used to aid in the development of thruster subassemblies and components in the fields of heat transfer, vibration, and stress analysis. Examples of these techniques which provide computer solutions to predict and control stress levels encountered during launch and operation of thruster systems are discussed. Computer models of specific examples are presented.

  12. Optimal charging profiles for mechanically constrained lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Suthar, B; Ramadesigan, V; De, S; Braatz, RD; Subramanian, VR

    2014-01-01

    The cost and safety related issues of lithium-ion batteries require intelligent charging profiles that can efficiently utilize the battery. This paper illustrates the application of dynamic optimization in obtaining the optimal current profile for charging a lithium-ion battery using a single-particle model while incorporating intercalation-induced stress generation. In this paper, we focus on the problem of maximizing the charge stored in a given time while restricting the development of stresses inside the particle. Conventional charging profiles for lithium-ion batteries (e.g., constant current followed by constant voltage) were not derived by considering capacity fade mechanisms. These charging profiles are not only inefficient in terms of lifetime usage of the batteries but are also slower since they do not exploit the changing dynamics of the system. Dynamic optimization based approaches have been used to derive optimal charging and discharging profiles with different objective functions. The progress made in understanding the capacity fade mechanisms has paved the way for inclusion of that knowledge in deriving optimal controls. While past efforts included thermal constraints, this paper for the first time presents strategies for optimally charging batteries by guaranteeing minimal mechanical damage to the electrode particles during intercalation. In addition, an executable form of the code has been developed and provided. This code can be used to identify optimal charging profiles for any material and design parameters.

  13. Molecular Mechanism of Ion-Ion and Ion-Substrate Coupling in the Na+-Dependent Leucine Transporter LeuT

    OpenAIRE

    Caplan, David A.; Subbotina, Julia O.; Noskov, Sergei Yu.

    2008-01-01

    Ion-coupled transport of neurotransmitter molecules by neurotransmitter:sodium symporters (NSS) play an important role in the regulation of neuronal signaling. One of the major events in the transport cycle is ion-substrate coupling and formation of the high-affinity occluded state with bound ions and substrate. Molecular mechanisms of ion-substrate coupling and the corresponding ion-substrate stoichiometry in NSS transporters has yet to be understood. The recent determination of a high-resol...

  14. [Mechanically gated cardiac ion channels and their regulation by cytokines].

    Science.gov (United States)

    Kamkin, A G; Makarenko, E Iu

    2012-01-01

    The publication presents discussion of the modern vision of mechanisms of mechanoelectric feedback in heart as well as most recent findings regarding possible regulation of cardiomyocyte mechanically gated ion channels by endogenous compounds of immune origin--cytokines. Special attention is devoted to description of cytokine action on cardiac cells, in particular to nitrogen oxide effects on ionic currents, which contribute to generation of the action potential of the cardiomyocyte. We hypothesize that cytokines can potentially trigger such mechano-dependent cardiac pathologies as arrhythmias and fibrillation.

  15. Fragmentation mechanism and energetics of some alkyl halide ions

    Energy Technology Data Exchange (ETDEWEB)

    Rosenstock, H.M.; Buff, R.; Ferreira, M.A.; Lias, S.G.; Parr, A.C.; Stockbauer, R.L.; Holmes, J.L.

    1982-05-05

    Halogen loss from iodoethane, 1-bromopropane, 2-bromopropane, 1-iodopropane, and 2-iodopropane has been studied by means of electron-ion coincidence techniques and by observation of metastable transition. Analysis of the breakdown curves and the study of residence times gave the zero-kelvin thresholds for halogen loss and indicated the size of the kinetic shift. The fragmentation onset for iodoethane was located in a Franck-Condon gap. The zero-kelvin thresholds for the propyl halides were found to lie at or just above the upper spin-orbit level of the parent ion. All of the propyl halides exhibited a unimolecular metastable transition. At fragmentation onset the 2-halopropane ions have negligible fragment kinetic energy while the 1-halopropane produce secondary propyl ions wih 100-200 meV of kinetic energy. It was established that a potential barrier must be surmounted in this fragmentation-isomerization process and analysis suggests a dynamic mechanism other than conventional QET, for example, weak couplings of vibrational modes. Analysis of the 2-halopropane fragmentation thresholds leads to an accurate, absolute value for the proton affinity of propylene, 751.4 +/- 2.9 kJ/mol at room temperature. This value reconciles some differences inherent in the proton affinity scale based on various relative measurements.

  16. Mechanisms of Stochastic Diffusion of Energetic Ions in Spherical Tori

    Energy Technology Data Exchange (ETDEWEB)

    Ya.I. Kolesnichenko; R.B. White; Yu.V. Yakovenko

    2001-01-18

    Stochastic diffusion of the energetic ions in spherical tori is considered. The following issues are addressed: (I) Goldston-White-Boozer diffusion in a rippled field; (ii) cyclotron-resonance-induced diffusion caused by the ripple; (iii) effects of non-conservation of the magnetic moment in an axisymmetric field. It is found that the stochastic diffusion in spherical tori with a weak magnetic field has a number of peculiarities in comparison with conventional tokamaks; in particular, it is characterized by an increased role of mechanisms associated with non-conservation of the particle magnetic moment. It is concluded that in current experiments on National Spherical Torus eXperiment (NSTX) the stochastic diffusion does not have a considerable influence on the confinement of energetic ions.

  17. Lithium Ion Storage Characteristics of Mechanically Fractured Titanate Nanotubes

    Directory of Open Access Journals (Sweden)

    Jeongeun Kim

    2012-01-01

    Full Text Available The effect of mechanical milling on the formation of short titanate nanotube and structural change induced is investigated. Mechanical milling produces the short nanotubes with the length of 30–160 nm. The lithium ion intercalation characteristics of the obtained short titanate nanotube were studied to verify the effect of the newly formed cross-sections of nanotubes. It was found that the protonated titanate nanotubes maintained long shapes until 30 min of mechanical milling and were transformed into agglomerated nanosheets and finally anatase granules depending on the treatment duration. Through galvanostatic investigation, the nanotubes with milling of 15 min exhibited the highest discharge capacity of 336 mAh·g−1 in first cycle, 12.4% larger than pristine.

  18. Study of the negative ion extraction mechanism from a double-ion plasma in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Goto, I.; Nishioka, S.; Hatayama, A. [Graduate school of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan)

    2015-04-08

    We have developed a 2D3V-PIC model of the extraction region, aiming to clarify the basic extraction mechanism of H{sup −} ions from the double-ion plasma in H{sup −} negative ion sources. The result shows the same tendency of the H{sup −} ion density n{sub H{sup −}} as that observed in the experiments, i.e.,n{sub H{sup −}} in the upstream region away from the plasma meniscus (H{sup −} emitting surface) has been reduced by applying the extraction voltage. At the same time, relatively slow temporal oscillation of the electric potential compared with the electron plasma frequency has been observed in the extraction region. Results of the systematic study using a 1D3V-PIC model with the uniform magnetic field confirm the result that the electrostatic oscillation is identified to be lower hybrid wave. The effect of this oscillation on the H{sup −} transport will be studied in the future.

  19. Differential genotoxicity mechanisms of silver nanoparticles and silver ions.

    Science.gov (United States)

    Li, Yan; Qin, Taichun; Ingle, Taylor; Yan, Jian; He, Weiwei; Yin, Jun-Jie; Chen, Tao

    2017-01-01

    In spite of many reports on the toxicity of silver nanoparticles (AgNPs), the mechanisms underlying the toxicity are far from clear. A key question is whether the observed toxicity comes from the silver ions (Ag(+)) released from the AgNPs or from the nanoparticles themselves. In this study, we explored the genotoxicity and the genotoxicity mechanisms of Ag(+) and AgNPs. Human TK6 cells were treated with 5 nM AgNPs or silver nitrate (AgNO3) to evaluate their genotoxicity and induction of oxidative stress. AgNPs and AgNO3 induced cytotoxicity and genotoxicity in a similar range of concentrations (1.00-1.75 µg/ml) when evaluated using the micronucleus assay, and both induced oxidative stress by measuring the gene expression and reactive oxygen species in the treated cells. Addition of N-acetylcysteine (NAC, an Ag(+) chelator) to the treatments significantly decreased genotoxicity of Ag(+), but not AgNPs, while addition of Trolox (a free radical scavenger) to the treatment efficiently decreased the genotoxicity of both agents. In addition, the Ag(+) released from the highest concentration of AgNPs used for the treatment was measured. Only 0.5 % of the AgNPs were ionized in the culture medium and the released silver ions were neither cytotoxic nor genotoxic at this concentration. Further analysis using electron spin resonance demonstrated that AgNPs produced hydroxyl radicals directly, while AgNO3 did not. These results indicated that although both AgNPs and Ag(+) can cause genotoxicity via oxidative stress, the mechanisms are different, and the nanoparticles, but not the released ions, mainly contribute to the genotoxicity of AgNPs.

  20. Real single ion solvation free energies with quantum mechanical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Duignan, Timothy TS; Baer, Marcel D.; Schenter, Gregory K.; Mundy, Christopher J.

    2017-09-01

    Single ion solvation free energies are one of the most important properties of electrolyte solution and yet there is ongoing debate about what these values are. Experimental methods can only determine the values for neutral ion pairs. Here, we use DFT interaction potentials with molecular dynamics simulation (DFT-MD) combined with a modified version of the quasi chemical theory (QCT) to calculate these energies for the lithium and fluoride ions. A new method to rigorously correct for the error in the DFT functional is developed and very good agreement with the experimental value for the lithium fluoride pair is obtained. Moreover, this method partitions the energies into physically intuitive terms such as surface potential, cavity and charging energies which are amenable to descriptions with reduced models. Our research suggests that lithium’s solvation energy is dominated by the free energetics of a charged hard sphere, whereas fluoride exhibits significant quantum mechanical behavior that cannot be simply described with a reduced model. We would like to thank Thomas Beck, Shawn Kathmann and Sotiris Xantheas for helpful discussions. Computing resources were generously allocated by PNNLs Institutional Computing program. This research also used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. TTD, GKS and CJM were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated by Battelle for the U.S. Department of Energy.

  1. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@thep-center.org [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Phanchaisri, B. [Institute of Science and Technology Research, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Singkarat, S. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-05-01

    Highlights: • Ion bombardment could induce DNA transfer into E. coli cells. • The DNA transfer induction depended on ion energy and fluence. • The mechanism was associated with the bacterial cell envelope structure. • A mechanism phase diagram was proposed to summarize the mechanism. - Abstract: As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10–20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence.

  2. Beam loss mechanisms in relativistic heavy-ion colliders

    CERN Document Server

    Bruce, Roderik; Gilardoni, S; Wallén, E

    2009-01-01

    The Large Hadron Collider (LHC), the largest particle accelerator ever built, is presently under commissioning at the European Organization for Nuclear Research (CERN). It will collide beams of protons, and later Pb82+ ions, at ultrarelativistic energies. Because of its unprecedented energy, the operation of the LHC with heavy ions will present beam physics challenges not encountered in previous colliders. Beam loss processes that are harmless in the presently largest operational heavy-ion collider, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, risk to cause quenches of superconducting magnets in the LHC. Interactions between colliding beams of ultrarelativistic heavy ions, or between beam ions and collimators, give rise to nuclear fragmentation. The resulting isotopes could have a charge-to-mass ratio different from the main beam and therefore follow dispersive orbits until they are lost. Depending on the machine conditions and the ion species, these losses could occur in loca...

  3. Coupled Mechanical-Electrochemical-Thermal Analysis of Failure Propagation in Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad

    2016-07-28

    This is a presentation given at the 12th World Congress for Computational Mechanics on coupled mechanical-electrochemical-thermal analysis of failure propagation in lithium-ion batteries for electric vehicles.

  4. Interpretation of Simultaneous Mechanical-Electrical-Thermal Failure in a Lithium-Ion Battery Module: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Stock, Mark J.; Brunhart-Lupo, Nicholas; Gruchalla, Kenny

    2016-12-01

    Lithium-ion batteries are currently the state-of- the-art power sources for electric vehicles, and their safety behavior when subjected to abuse, such as a mechanical impact, is of critical concern. A coupled mechanical-electrical-thermal model for simulating the behavior of a lithium-ion battery under a mechanical crush has been developed. We present a series of production-quality visualizations to illustrate the complex mechanical and electrical interactions in this model.

  5. Mechanism of negative hydrogen ion emission from heated saline hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Hiroyuki; Serizawa, Naoshi; Takeda, Makiko; Hasegawa, Seiji [Ehime Univ., Matsuyama (Japan). Faculty of Science

    1997-02-01

    To find a clue to the mechanism of negative hydrogen ion emission from a heated sample ({approx}10 mg) of powdery saline hydride (LiH or CaH{sub 2}) deposited on a molybdenum ribbon ({approx}0.1 cm{sup 2}), both the ionic and electronic emission currents were measured as a function of sample temperature ({approx}700 - 800 K), thereby yielding {approx}10{sup -15} - 10{sup -12} A of H{sup -} after mass analysis and {approx}10{sup -7} - 10{sup -5} A of thermal electron. Thermophysical analysis of these data indicates that the desorption energy (E{sup -}) of H{sup -} and work function ({phi}) of the emitting sample surface are 5.1 {+-} 0.3 and 3.1 {+-} 0.2 eV for LiH, respectively, while E{sup -} is 7.7 {+-} 0.3 eV and {phi} is 5.0 {+-} 0.2 eV for CaH{sub 2}. Thermochemical analysis based on our simple model on the emissions indicates that the values of E{sup -} - {phi} are 2.35 and 2.31 eV for LiH and CaH{sub 2}, respectively, which are in fair agreement with the respective values (2.1 {+-} 0.3 and 2.6 {+-} 0.3 eV) determined experimentally. This agreement indicates that the emission of H{sup -} is reasonably explained by our model from the viewpoint of reaction energy. (author)

  6. Mechanism of unassisted ion transport across membrane bilayers

    Science.gov (United States)

    Wilson, M. A.; Pohorille, A.

    1996-01-01

    To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.

  7. Passive Mechanisms of Surfaces Produced by Ion Beam Mixing and Ion Implantation

    Science.gov (United States)

    1990-05-01

    34 evaporated thin film of several hundreds to thousands angstroms thickness is induced to intermix with the substrate using the collisional cascades...behavior of the ion implanted samples was silar to that of Al and the pitting potentials of the ion implanted samples ere 115 to 155 mV higher than that of...state so that the desired mixed oxide films were not formed. Ion beam mixing did impart additional stability compared to as-deposited samples since the

  8. Electrolyte and Cathode Degradation Mechanisms in Lithium Ion Batteries

    Science.gov (United States)

    Tebbe, Jonathon

    Lithium ion battery technologies suffer from limitations in performance, such as capacity fading, due in part to degradation of the cathode and electrolyte materials. Quantum chemical simulations were employed to investigate the reactions leading to degradation of LiCoO2 cathodes and the electrolyte molecules. Formation of HF in the electrolyte resulting from reaction between PF5 and H2O impurities was first investigated. This research predicts HF is produced as a result of PF5 complexing with H2O, then reacting through ligand exchange to form HF and PF4OH with an activation barrier of 1.18 eV and reaction enthalpy of 0.15 eV. HF undergoes dissociative adsorption at that the (101¯4) surface of LiCoO2 without a barrier, leading to formation of LiF-Li+ precipitates and H 2O on the surface with a reaction energy of -2.41 eV. The formation of H2O is of particular concern because H2O drives further formation of HF in the electrolyte, resulting in an autocatalytic cycle of degradation. These findings indicate that HF initially occurs in low concentrations rapidly increases due to H2O generation upon HF attack. Reduction in capacity fading is observed in alumina ALD coated LiCoO2 cathodes and we have investigated a monolayer alumina coating on the LiCoO2 (101¯4) surface to identify the mechanism by which the alumina coating protects the cathode surface. We have found that HF will preferentially dissociate at the alumina coating with a reaction energy of -2.84 eV and without any resolvable barrier to dissociation. Additionally, our calculations predict that H2O does not form as a result of HF dissociation at the alumina monolayer; instead HF dissociation produces neighboring hydroxyl sites on the alumina surface. Consequently, the alumina coating prevents the autocatalytic degradation of the cathode by sequestering HF impurities in the alumina film. Finally, we found that Lewis acid-base complexation between ethylene carbonate (EC) electrolyte molecules and PF5 or the Li

  9. Scanning-electron-microscopy observations and mechanical characteristics of ion-beam-sputtered surgical implant alloys

    Science.gov (United States)

    Weigand, A. J.; Meyer, M. L.; Ling, J. S.

    1977-01-01

    An electron bombardment ion thruster was used as an ion source to sputter the surfaces of orthopedic prosthetic metals. Scanning electron microscopy photomicrographs were made of each ion beam textured surface. The effect of ion texturing an implant surface on its bond to bone cement was investigated. A Co-Cr-W alloy and surgical stainless steel were used as representative hard tissue implant materials to determine effects of ion texturing on bulk mechanical properties. Work was done to determine the effect of substrate temperature on the development of an ion textured surface microstructure. Results indicate that the ultimate strength of the bulk materials is unchanged by ion texturing and that the microstructure will develop more rapidly if the substrate is heated prior to ion texturing.

  10. Ion yields for some salts in MALDI: mechanism for the gas-phase ion formation from preformed ions.

    Science.gov (United States)

    Moon, Jeong Hee; Shin, Young Sik; Bae, Yong Jin; Kim, Myung Soo

    2012-01-01

    Preformed ion emission is the main assumption in one of the prevailing theories for peptide and protein ion formation in matrix-assisted laser desorption ionization (MALDI). Since salts are in preformed ion forms in the matrix-analyte mixture, they are ideal systems to study the characteristics of preformed ion emission. In this work, a reliable method to measure the ion yield (IY) in MALDI was developed and used for a solid salt benzyltriphenylphosphonium chloride and two room-temperature ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate and trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate. IY for the matrix (α-cyano-4-hydroxycinnamic acid, CHCA) was also measured. Taking 1 pmol salts in 25 nmol CHCA as examples, IYs for three salts were similar, (4-8) × 10(-4), and those for CHCA were (0.8-1.2) × 10(-7). Even though IYs for the salts and CHCA remained virtually constant at low analyte concentration, they decreased as the salt concentrations increased. Two models, Model 1 and Model 2, were proposed to explain low IYs for the salts and the concentration dependences. Both models are based on the fact that the ion-pair formation equilibrium is highly shifted toward the neutral ion pair. In Model 1, the gas-phase analyte cations were proposed to originate from the same cations in the solid that were dielectrically screened from counter anions by matrix neutrals. In Model 2, preformed ions were assumed to be released from the solid sample in the form of neutral ion pairs and the anions in the ion pairs were assumed to be eliminated via reactions with matrix-derived cations.

  11. Effect of ion irradiation on the surface, structural and mechanical properties of brass

    Science.gov (United States)

    Ahmad, Shahbaz; Bashir, Shazia; Ali, Nisar; Umm-i-Kalsoom; Yousaf, Daniel; Faizan-ul-Haq; Naeem, Athar; Ahmad, Riaz; Khlaeeq-ur-Rahman, M.

    2014-04-01

    Modifications to the surface, structural and mechanical properties of brass after ion irradiation have been investigated. Brass targets were bombarded by carbon ions of 2 MeV energy from a Pelletron linear accelerator for various fluences ranging from 56 × 1012 to 26 × 1013 ions/cm2. A scanning electron microscope and X-ray diffractometer were utilized to analyze the surface morphology and crystallographic structure respectively. To explore the mechanical properties e.g., yield stress, ultimate tensile strength and microhardness of irradiated brass, an universal tensile testing machine and Vickers microhardness tester were used. Scanning electron microscopy results revealed an irregular and randomly distributed sputter morphology for a lower ion fluence. With increasing ion fluence, the incoherently shaped structures were transformed into dendritic structures. Nano/micro sized craters and voids, along with the appearance of pits, were observed at the maximum ion fluence. From X-ray diffraction results, no new phases were observed to be formed in the brass upon irradiation. However, a change in the peak intensity and higher and lower angle shifting were observed, which represents the generation of ion-induced defects and stresses. Analyses confirmed modifications in the mechanical properties of irradiated brass. The yield stress, ultimate tensile strength and hardness initially decreased and then increased with increasing ion fluence. The changes in the mechanical properties of irradiated brass are well correlated with surface and crystallographic modifications and are attributed to the generation, augmentation, recombination and annihilation of the ion-induced defects.

  12. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Goto, I., E-mail: goto@ppl.appi.keio.ac.jp; Nishioka, S.; Abe, S.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Mattei, S.; Lettry, J. [CERN, 1211 Geneva 23 (Switzerland)

    2016-02-15

    To improve the H{sup −} ion beam optics, it is necessary to understand the energy relaxation process of surface produced H{sup −} ions in the extraction region of Cs seeded H{sup −} ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H{sup −} extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H{sup −} ions has been greatly increased. The mean kinetic energy of the surface produced H{sup −} ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H{sup −} ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  13. Conduction Mechanisms and Structure of Ionomeric Single-Ion Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Ralph H. [Pennsylvania State Univ., University Park, PA (United States); Maranas, Janna K. [Pennsylvania State Univ., University Park, PA (United States); Mueller, Karl T. [Pennsylvania State Univ., University Park, PA (United States); Runt, James [Pennsylvania State Univ., University Park, PA (United States); Winey, Karen I. [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2015-03-01

    Our team has designed using DFT (Gaussian) and synthesized low glass transition temperature single-ion conductors that are either polyanions that conduct small cations Li+, Na+, Cs+ or polycations that conduct small anions F-, OH-, Br-. We utilize a wide range of complimentary experimental materials characterization tools to understand ion transport; differential scanning calorimetry, dielectric relaxation spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, linear viscoelasticity, X-ray scattering and molecular dynamics simulations. The glass transition temperature Tg needs to be as low as possible to facilitate ion transport, so the nonionic parts of the polymer need to be polar, flexible and have strong solvation interactions with the ions. The lowest Tg we have managed for polyanions conducting Li+ is -60 °C. In contrast, polysiloxanes with PEO side chains and tetrabutylphosphonium cationic side groups have Tg ≈ -75 °C that barely increases with ion content, as anticipated by DFT. A survey of all polyanions in the literature suggests that Tg < -80 °C is needed to achieve the 10-4 S/cm conductivity needed for battery separators.

  14. Conduction Mechanisms and Structure of Ionomeric Single-Ion Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Colby, Ralph H.; Maranas, Janna K; Mueller, Karl T; Runt, James; Winey, Karen I

    2015-03-05

    Our team has designed using DFT (Gaussian) and synthesized low glass transition temperature single-ion conductors that are either polyanions that conduct small cations Li, Na, Cs or polycations that conduct small anions F, OH, Br. We utilize a wide range of complimentary experimental materials charactization tools to understand ion transport; differential scanning calorimetry, dielectric relaxation spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, linear viscoelasticity, X-ray scattering and molecular dynamics simulations. The glass transition temperature Tg needs to be as low as possible to facilitate ion transport, so the nonionic parts of the polymer need to be polar, flexible and have strong solvation interactions with the ions. The lowest Tg we have managed for polyanions conducting Li is -60 C. In contrast, polysiloxanes with PEO side chains and tetrabutylphosphonium cationic side groups have Tg ~ -75C that barely increases with ion content, as anticipated by DFT. A survey of all polyanions in the literature suggests that Tg < -80C is needed to achieve the 10-4 S/cm conductivity needed for battery separators.

  15. New Ion-Nucleation Mechanism Relevant for the Earth's Atmosphere

    DEFF Research Database (Denmark)

    Enghoff, Martin Andreas Bødker; Svensmark, Henrik; Pedersen, Jens Olaf Pepke

    An experiment has been set up in order to investigate the role of ionization in Earth's climate. We have chosen to start our investigation at the smallest scales, namely by studying the effect of cosmic ray produced ions on atmospheric aerosol nucleation and growth processes. This experiment...... is conducted at the Danish National Space Center, Center for Sun-Climate Research. It comprises a 7 m3 reaction chamber where atmospheric conditions can be simulated. The number of ions can be increased by exposure to radioactive sources and decreased by applying an electric field; this will enable experiments...

  16. Effect of ion irradiation on the surface, structural and mechanical properties of brass

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Shahbaz; Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk; Ali, Nisar; Umm-i-Kalsoom,; Yousaf, Daniel; Faizan-ul-Haq,; Naeem, Athar; Ahmad, Riaz; Khlaeeq-ur-Rahman, M.

    2014-04-01

    Highlights: • Brass targets were exposed to carbon ions of energy 2 MeV. • The effect of ion dose has been investigated. • The surface morphology is investigated by SEM analysis. • XRD analysis is performed to reveal structural modification. • Mechanical properties were investigated by tensile testing and microhardness testing. - Abstract: Modifications to the surface, structural and mechanical properties of brass after ion irradiation have been investigated. Brass targets were bombarded by carbon ions of 2 MeV energy from a Pelletron linear accelerator for various fluences ranging from 56 × 10{sup 12} to 26 × 10{sup 13} ions/cm{sup 2}. A scanning electron microscope and X-ray diffractometer were utilized to analyze the surface morphology and crystallographic structure respectively. To explore the mechanical properties e.g., yield stress, ultimate tensile strength and microhardness of irradiated brass, an universal tensile testing machine and Vickers microhardness tester were used. Scanning electron microscopy results revealed an irregular and randomly distributed sputter morphology for a lower ion fluence. With increasing ion fluence, the incoherently shaped structures were transformed into dendritic structures. Nano/micro sized craters and voids, along with the appearance of pits, were observed at the maximum ion fluence. From X-ray diffraction results, no new phases were observed to be formed in the brass upon irradiation. However, a change in the peak intensity and higher and lower angle shifting were observed, which represents the generation of ion-induced defects and stresses. Analyses confirmed modifications in the mechanical properties of irradiated brass. The yield stress, ultimate tensile strength and hardness initially decreased and then increased with increasing ion fluence. The changes in the mechanical properties of irradiated brass are well correlated with surface and crystallographic modifications and are attributed to the generation

  17. Nanometer structure and conductor mechanism of polymer modified by metal ion implantation

    Institute of Scientific and Technical Information of China (English)

    吴瑜光; 张通和; 张燕文; 张荟星; 张孝吉; 周固

    2001-01-01

    Polyethylene terephthalate (PET) has been modified by Ag, Ti, Cu and Si ion implanta-tion with a dose ranging from 1 × l016 to 2 x 1017 ions/cm2 using a metal vapor vacuum arc (MEVVA)source. The electrical properties of PET have been improved by metal ion implantation. The resistivityof implanted PET decreased obviously with an increase in ion dose. The results show that the conduc-tive behavior of a metal ion implanted sample is different from Si-implantation samples. In order to un-derstant the mechanism of electrical conduction, the structures of implanted layer were observed in de-tail by XRD and TEM. The nano carbon particles were dispersed in implanted PET. The nano metallicparticles were built up in metallic ion implanted layers with dose range from 1 × 1016 to 1 x 1017 ions/cm2. The nanometer metal net structure was formed in implanted layer when a dose of 2 x 1017ions/cm2 is reached. Anomalous fractal growths were observed. These surface structure changes revealedconducting mechanism evolution, lt is believed that the change would result in an improvement of theconductive properties. The conducting mechanism will be changed with increasing metal ion dose.

  18. The effect of metal ion implantation on the surface mechanical properties of Mylar (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, W.; Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia); Yao, X.; Brown, I.G. [California Univ., Berkeley, CA (United States). Lawrence Berkeley Lab.

    1993-12-31

    Ion implantation of polymers leads to the formation of new carbonaceous materials, the revolution during implantation of various species consists of (1) ion beam induced damage: chain scission, crosslinking, molecular emission of volatile elements and compounds, stoichiometric change in the surface layer of pristine polymers; and (2) chemical effect between ion and target materials: microalloying and precipitation. Literature regarding ion implanted polymers shows that the reorganisation of the carbon network after implantation can dramatically modify several properties of pristine polymers solubility, molecular weight, and electrical, optical and mechanical properties. However, ion implantation of polymers is actually a very complex interaction which depends on not only ion species, implantation condition, but also polymer type and specific structure. In this paper the effect of Ag or Ti ions implantation on surface mechanical properties of PET (polyethylenne terephthalate) polymer is reported. There was a clear deterioration in wear resistance after implantation of both Ag and Ti ions. It is suggested that the increment of wear after implantation may result from not only ion damage but also chemical effect between ion and target material. 3 refs., 1 tab., 2 figs.

  19. On novel mechanisms of slow ion induced electron emission

    CERN Document Server

    Eder, H

    2000-01-01

    impact of singly and doubly charged ions on poly- and monocrystalline aluminum surfaces were performed. From the results we conclude that direct plasmon excitation by slow ions occurs due to the potential energy of the projectile in a quasi-resonant fashion. The highest relative plasmon intensities were found for impact of 5 keV Ne+ on Al(111) with 5 % of the total yield. For impact of H + and H sub 2 + characteristical differences were observed for Al(111) and polycrystalline aluminum. We show that structures in the spectrum for monocrystalline aluminum arise from diffraction of ejected electrons instead of plasmon excitation as previously assumed. The present work has contributed in new ways to the field of slow ion induced electron emission. First, measurements of the total electron yield gamma for impact of slow singly and multiply charged ions on atomically clean polycrystalline gold and graphite have been made. The respective yields were determined by current measurements and measurements of the electro...

  20. Desensitization mechanism in prokaryotic ligand-gated ion channel.

    Science.gov (United States)

    Velisetty, Phanindra; Chakrapani, Sudha

    2012-05-25

    Crystal structures of Gloeobacter violaceus ligand-gated ion channel (GLIC), a proton-gated prokaryotic homologue of pentameric ligand-gated ion channel (LGIC) from G. violaceus, have provided high-resolution models of the channel architecture and its role in selective ion conduction and drug binding. However, it is still unclear which functional states of the LGIC gating scheme these crystal structures represent. Much of this uncertainty arises from a lack of thorough understanding of the functional properties of these prokaryotic channels. To elucidate the molecular events that constitute gating, we have carried out an extensive characterization of GLIC function and dynamics in reconstituted proteoliposomes by patch clamp measurements and EPR spectroscopy. We find that GLIC channels show rapid activation upon jumps to acidic pH followed by a time-dependent loss of conductance because of desensitization. GLIC desensitization is strongly coupled to activation and is modulated by voltage, permeant ions, pore-blocking drugs, and membrane cholesterol. Many of these properties are parallel to functions observed in members of eukaryotic LGIC. Conformational changes in loop C, measured by site-directed spin labeling and EPR spectroscopy, reveal immobilization during desensitization analogous to changes in LGIC and acetylcholine binding protein. Together, our studies suggest conservation of mechanistic aspects of desensitization among LGICs of prokaryotic and eukaryotic origin.

  1. Mechanical and structural properties of fluorine-ion-implanted boron suboxide

    CSIR Research Space (South Africa)

    Machaka, R

    2011-09-01

    Full Text Available Results on a systematic study on the effects of ion implantation on the near-surface mechanical and structural properties of boron suboxide (B6 O) prepared by uniaxial hot pressing are reviewed. 150 keV fluorine ions at fluences of up to 5.0 × 1016...

  2. Ion-selective electrodes: historical, mechanism of response, selectivity and concept review

    Directory of Open Access Journals (Sweden)

    Fernandes Julio Cesar Bastos

    2001-01-01

    Full Text Available This paper presents a review of the concepts involved in the working mechanism of the ion-selective electrodes, searching a historical overview, moreover to describe the new advances in the area.

  3. Shock Formation in Electron-Ion Plasmas: Mechanism and Timing

    Science.gov (United States)

    Bret, Antoine; Stockem Novo, Anne; Ricardo, Fonseca; Luis, Silva

    2016-10-01

    We analyze the formation of a collisionless shock in electron-ion plasmas in theory and simulations. In initially un-magnetized relativistic plasmas, such shocks are triggered by the Weibel instability. While in pair plasmas the shock starts forming right after the instability saturates, it is not so in electron-ion plasmas because the Weibel filaments at saturation are too small. An additional merging phase is therefore necessary for them to efficiently stop the flow. We derive a theoretical model for the shock formation time, taking into account filament merging in the nonlinear phase of the Weibel instability. This process is much slower than in electron-positron pair shocks, and so the shock formation is longer by a factor proportional to √{mi /me } ln(mi /me).

  4. Effect of Aging on the Mechanical Properties of Li-Ion Cell Components - A Preliminary Look

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei; Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad

    2016-05-03

    DOE/VTO/ES initiated the Computer Aided Engineering for Batteries (CAEBAT) in 2010. CAEBAT had a strong focus on building electrochemical-thermal models that simulate the performance of lithium-ion batteries. Since the start of CAEBAT-2 projects in FY14, our emphasis has been on safety aspects -- mechanical deformation in particular. This presentation gives a preliminary look at the effect of aging on the mechanical properties of lithium-ion cell components.

  5. Auger decay mechanism in photon-stimulated desorption of ions from surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Parks, C.C.

    1983-11-01

    Photon-stimulated desorption (PSD) of positive ions was studied with synchrotron radiation using an angle-integrating time-of-flight mass spectrometer. Ion yields as functions of photon energy near core levels were measured from condensed gases, alkali fluorides, and other alkali and alkaline earth halides. These results are compared to bulk photoabsorption measurements with emphasis on understanding fundamental desorption mechanisms. The applicability of the Auger decay mechanism, in which ion desorption is strictly proportional to surface absorption, is discussed in detail. The Auger decay model is developed in detail to describe Na/sup +/ and F/sup +/ desorption from NaF following Na(1s) excitation. The major decay pathways of the Na(1s) hole leading to desorption are described and equations for the energetics of ion desorption are developed. Ion desorption spectra of H/sup +/, Li/sup +/, and F/sup +/ are compared to bulk photoabsorption near the F(2s) and Li(1s) edges of LiF. A strong photon beam exposure dependence of ion yields from alkali fluorides is revealed, which may indicate the predominance of metal ion desorption from defect sites. The large role of indirect mechanisms in ion desorption condensed N/sub 2/-O/sub 2/ multilayers is demonstrated and discussed. Ion desorption spectra from several alkali halides and alkaline earth halides are compared to bulk photoabsorption spectra. Relative ion yields from BaF/sub 2/ and a series of alkali halides are discussed in terms of desorption mechanisms.

  6. Mechanism of radiosensitizing effect of chloride ion on E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Shih-Chen, S.J.; Kitayama, S.; Matsuyama, A.; Arai, S.; Masuda, T.

    1986-05-01

    Cells of E. coli capable of repairing DNA damage are sensitized to radiation in the presence of NaCl. However, the enhanced radiolethality was suppressed by the addition of compounds such as an amino acid to the irradiation buffer. The protective efficiencies of these compounds depend on their reactivities with Cl/sub 2/ion radical or OH radical. ATP synthesis in the cells irradiated in the presence of NaCl was severely inhibited depending on the dose of irradiation. This reduced rate of ATP synthesis can account for the inhibition of protein, RNA and DNA synthesis in the irradiated cells with NaCl.

  7. Mechanism of Long-Range Penetration of Low-Energy Ions in Botanic Samples

    Institute of Scientific and Technical Information of China (English)

    刘峰; 王宇钢; 薛建明; 王思学; 杜广华; 颜莎; 赵渭江

    2002-01-01

    We present experimental evidence to reveal the mechanism of long-range penetration of low-energy ions in botanic samples. In the 100keV Ar+ ion transmission measurement, the result confirmed that low-energy ions could penetrate at least 60μm thick kidney bean slices with the probability of about 1.0 × 10-5. The energy spectrum of 1 MeV He+ ions penetrating botanic samples has shown that there is a peak of the count of ions with little energy loss. The probability of the low-energy ions penetrating the botanic sample is almost the same as that of the high-energy ions penetrating the same samples with little energy loss. The results indicate that there are some micro-regions with mass thickness less than the projectile range of low-energy ions in the botanic samples and they result in the long-range penetration of low-energy ions in botanic samples.

  8. Mechanism of interaction of monovalent ions with phosphatidylcholine lipid membranes.

    Science.gov (United States)

    Vácha, Robert; Jurkiewicz, Piotr; Petrov, Michal; Berkowitz, Max L; Böckmann, Rainer A; Barucha-Kraszewska, Justyna; Hof, Martin; Jungwirth, Pavel

    2010-07-29

    Interactions of different anions with phospholipid membranes in aqueous salt solutions were investigated by molecular dynamics simulations and fluorescence solvent relaxation measurements. Both approaches indicate that the anion-membrane interaction increases with the size and softness of the anion. Calculations show that iodide exhibits a genuine affinity for the membrane, which is due to its pairing with the choline group and its propensity for the nonpolar region of the acyl chains, the latter being enhanced in polarizable calculations showing that the iodide number density profile is expanded toward the glycerol level. Solvent relaxation measurements using Laurdan confirm the influence of large soft ions on the membrane organization at the glycerol level. In contrast, chloride exhibits a peak at the membrane surface only in the presence of a surface-attracted cation, such as sodium but not potassium, suggesting that this behavior is merely a counterion effect.

  9. Mechanisms involved in the transport of mercuric ions in target tissues.

    Science.gov (United States)

    Bridges, Christy C; Zalups, Rudolfs K

    2017-01-01

    Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells.

  10. Li ion diffusion mechanisms in LiFePO4: an ab initio molecular dynamics study.

    Science.gov (United States)

    Yang, Jianjun; Tse, John S

    2011-11-17

    The mechanisms for thermal (self) diffusion of Li ions in fully lithiated LiFePO(4) have been investigated with spin polarized ab initio molecular dynamics calculations. The effect of electron correlation is taken into account with the GGA+U formalism. It was found that Li ion diffusion is not a continuous process but through a series of jumps from one site to another. A dominant process is the hopping between neighboring Li sites around the PO(4) groups, which results in a zigzag pathway along the crystallographic b-axis. This observation is in agreement with a recent neutron diffraction experiment. A second process involves the collaborative movements of the Fe ions leading to the formation of antisite defects and promotes Li diffusion across the Li ion channels. The finding of the second mechanism demonstrates the benefit of ab initio molecular dynamics simulation in sampling diffusion pathways that may not be anticipated.

  11. Investigation of peptide based surface functionalization for copper ions detection using an ultrasensitive mechanical microresonator

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Fischer, Lee MacKenzie; Rasmussen, Jakob Lyager

    2011-01-01

    In the framework of developing a portable label-free sensor for multi arrayed detection of heavy metals in drinking water, we present a mechanical resonator-based copper ions sensor, which uses a recently synthesized peptide Cysteine–Glycine–Glycine–Histidine (CGGH) and the l-Cysteine (Cys) peptide...... devices to detect a concentration of 10μM of copper in water, we regenerate the surface by removing the copper ions from the functionalization layer using EDTA....

  12. A Review on Fault Mechanism and Diagnosis Approach for Li-Ion Batteries

    OpenAIRE

    Chao Wu; Chunbo Zhu; Yunwang Ge; Yongping Zhao

    2015-01-01

    Li-ion battery has attracted more and more attention as it is a promising storage device which has long service life, higher energy, and power density. However, battery ageing always occurs during operation and leads to performance degradation and system fault which not only causes inconvenience, but also risks serious consequences such as thermal runaway or even explosion. This paper reviews recent research and development of ageing mechanisms of Li-ion batteries to understand the origins an...

  13. THE TESTS AND MECHANISM ABOUT SODIUM IONS FROM AN ANION EXCHANGER

    Institute of Scientific and Technical Information of China (English)

    ZhuXingbao; YuJinchun; 等

    1996-01-01

    There exists a universal phenomena that sodium ions are leaked from the strong basic anion exdchanger in operation,which has been puzzling the researchers working in the field of water treatment for years.It is well known that the leakage of sodium ions will seriously affect the pruity of effluent.On the basis of lots of laboratory and industrial experiments,the mechanism of the sodium ions leaked from an anion exchanger has been preliminarily made out and some new chemical reaction equations as well as some improving measures have been put forward in this article.

  14. Neurological channelopathies: new insights into disease mechanisms and ion channel function

    Science.gov (United States)

    Kullmann, Dimitri M; Waxman, Stephen G

    2010-01-01

    Inherited mutations of ion channels provide unique insights into the mechanisms of many neurological diseases. However, they also provide a wealth of new information on the fundamental biology of ion channels and on neuron and muscle function. Ion channel genes are continuing to be discovered by positional cloning of disease loci. And some mutations provide unique tools to manipulate signalling cascades, which cannot be achieved by pharmacological intervention. Here we highlight some unanswered questions, and some promising areas for research that will likely lead to a fuller understanding of the link from molecular lesion to disease. PMID:20375141

  15. Evaluation of mechanical abuse techniques in lithium ion batteries

    Science.gov (United States)

    Lamb, Joshua; Orendorff, Christopher J.

    2014-02-01

    Mechanical tests are a commonly used method for evaluating the safety performance of batteries. The mechanical blunt rod testing method, as well as sharp nail penetration, was performed on commercially available cells. Evaluation was carried out on different cell constructions as well as varying test conditions. Results obtained at ambient conditions were found to differ little from traditional sharp nail penetration testing. When tested at elevated temperatures it was observed that the results became heavily dependent upon the internal construction of the cell. Computed Tomography (CT) imaging confirmed this, showing differences in behavior depending on whether or not a solid core was used in the cylindrical cell construction. Pouch cells were tested as well, showing that a full penetration of the cell was necessary to initiate a failure event within the cell.

  16. The Mechanism of Negative-ion Generation of Natural Fiber Fabrics

    Institute of Scientific and Technical Information of China (English)

    BI Peng-yu; CHEN Yue-hua; LI Ru-qin

    2007-01-01

    Generally there are three kinds of substances used as negative-ion generator in textiles, natural silicate minerals (ceramic/tourmaline), natural rare-earth minerals and natural sediment with ultra-fine pores. Based on different additive, the mechanism of negative-ion generation is largely divided into three kinds, the piezoelectricity and pyroelectricity of tourmaline crystal, air ionization caused by low-level radiation and breaking up of the clusters of moisture in air when going through the ultra-fine pores of natural sediment. In this paper, the negative-ion generating properties of natural fiber fabrics-cotton, wool, silk and linen were first proposed. By some kind of physical stimulation, rubbing or vibrating, natural fiber fabrics without any additive could also emit negative ions. Considering that the piezoelectric effect was observed in wool fibers, silk fibers and cellulose fibers, the piezoelectricity was studied as a mechanism of negative-ion generation of natural fiber fabrics. Another possible mechanism was the triboelectricity produced by the sense of rubbing or vibrating and tip discharge of hairiness. The final experiment results verified that the latter would be the main reason, and the electrolytic dissociation of moisture was also ontributing to negative-ion generation.

  17. Control of ion selectivity in LeuT: two Na+ binding sites with two different mechanisms.

    Science.gov (United States)

    Noskov, Sergei Y; Roux, Benoît

    2008-03-28

    The x-ray structure of LeuT, a bacterial homologue of Na(+)/Cl(-)-dependent neurotransmitter transporters, provides a great opportunity to better understand the molecular basis of monovalent cation selectivity in ion-coupled transporters. LeuT possesses two ion binding sites, NA1 and NA2, which are highly selective for Na(+). Extensive all-atom free-energy molecular dynamics simulations of LeuT embedded in an explicit membrane are performed at different temperatures and various occupancy states of the binding sites to dissect the molecular mechanism of ion selectivity. The results show that the two binding sites display robust selectivity for Na(+) over K(+) or Li(+), the competing ions of most similar radii. Of particular interest, the mechanism primarily responsible for selectivity for each of the two binding sites appears to be different. In NA1, selectivity for Na(+) over K(+) arises predominantly from the strong electrostatic field arising from the negatively charged carboxylate group of the leucine substrate coordinating the ion directly. In NA2, which comprises only neutral ligands, selectivity for Na(+) is enforced by the local structural restraints arising from the hydrogen-bonding network and the covalent connectivity of the polypeptide chain surrounding the ion according to a "snug-fit" mechanism.

  18. Reduction Mechanism of Scandium Ion in Fluoride Salt Melt

    Institute of Scientific and Technical Information of China (English)

    孙本良; 李成威; 翟玉春; 田彦文

    2004-01-01

    The electrochemical behavior of Sc3+ in LiF-NaF system was investigated. The cyclic voltammetry and chronopotentiometry were used to investigate the reduction mechanism of the electrochemical deposition of Sc3+ to Sc on Ag electrode in LiF-NaF system at 1043 K. Experimental results indicate that the electroreduction of Sc3+ to Sc is a reversible process with simple 3-electron transfer in one step controlled by diffusion.

  19. State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-ion Batteries

    OpenAIRE

    Jun Xu; Binghe Liu; Dayong Hu

    2016-01-01

    Understanding the mechanism of mechanical deformation/stress-induced electrical failure of lithium–ion batteries (LIBs) is important in crash-safety design of power LIBs. The state of charge (SOC) of LIBs is a critical factor in their electrochemical performance; however, the influence of SOC with mechanical integrity of LIBs remains unclear. This study investigates the electrochemical failure behaviors of LIBs with various SOCs under both compression and bending loadings, underpinned by the ...

  20. Fractal structures in two-metal electrodeposition systems I: Pb and Zn

    Science.gov (United States)

    Nakouzi, Elias; Sultan, Rabih

    2011-12-01

    Pattern formation in two-metal electrochemical deposition has been scarcely explored in the chemical literature. In this paper, we report new experiments on zinc-lead fractal co-deposition. Electrodeposits are grown in special cells at a fixed large value of the zinc ion concentration, while that of the lead ion is increased gradually. A very wide diversity of morphologies are obtained and classified. Most of the deposited domains are almost exclusively Pb or Zn. But certain regions originating at the base cathode, ranging from a short grass alley to dense, grown-up bushes or shrubs, manifest a combined Pb-Zn composition. Composition is determined using scanning electron microscopy/energy dispersive x ray measurements as well atomic absorption spectroscopy. Pb domains are characterized by shiny leaf-like and dense deposits as well as flowers with round, balloon-like corollas. The Zn zones display a greater variety of morphologies such as thick trunks and thin and fine branching, in addition to minute "cigar flower" structures. The various morphologies are analyzed and classified from the viewpoint of fractal nature, characterized by the box-count fractal dimension. Finally, macroscopic spatial alternation between two different characteristic morphologies is observed under certain conditions.

  1. Surface, electrical and mechanical modifications of PMMA after implantation with laser produced iron plasma ions

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Qazi Salman; Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk; Jalil, Sohail Abdul; Shabbir, Muhammad Kaif; Mahmood, Khaliq; Akram, Mahreen; Khalid, Ayesha; Yaseen, Nazish; Arshad, Atiqa

    2016-07-01

    Laser Produced Plasma (LPP) was employed as an ion source for the modifications in surface, electrical and mechanical properties of poly methyl (methacrylate) PMMA. For this purpose Nd:YAG laser (532 nm, 6 ns, 10 Hz) at a fluence of 12.7 J/cm{sup 2} was employed to generate Fe plasma. The fluence and energy measurements of laser produced Fe plasma ions were carried out by employing Thomson Parabola Technique in the presence of magnetic field strength of 0.5 T, using CR-39 as Solid State Nuclear Track Detector (SSNTD). It has been observed that ion fluence ejecting from ablated plasma was maximum at an angle of 5° with respect to the normal to the Fe target surface. PMMA substrates were irradiated with Fe ions of constant energy of 0.85 MeV at various ion fluences ranging from 3.8 × 10{sup 6} ions/cm{sup 2} to 1.8 × 10{sup 8} ions/cm{sup 2} controlled by varying laser pulses from 3000 to 7000. Optical microscope and Scanning Electron Microscope (SEM) were utilized for the analysis of surface features of irradiated PMMA. Results depicted the formation of chain scission, crosslinking, dendrites and star like structures. To explore the electrical behavior, four probe method was employed. The electrical conductivity of ion irradiated PMMA was increased with increasing ion fluence. The surface hardness was measured by shore D hardness tester and results showed the monotonous increment in surface hardness with increasing ion fluence. The increasing trend of surface hardness and electrical conductivity with increasing Fe ion fluence has been well correlated with the surface morphology of ion implanted PMMA. The temperature rise of PMMA surface due to Fe ion irradiation is evaluated analytically and comes out to be in the range of 1.72 × 10{sup 4} to 1.82 × 10{sup 4} K. The values of total Linear Energy Transfer (LET) or stopping power of 0.8 MeV Fe ions in PMMA is 61.8 eV/Å and their range is 1.34 μm evaluated by SRIM simulation.

  2. A Change in the Ion Selectivity of Ligand-Gated Ion Channels Provides a Mechanism to Switch Behavior.

    Directory of Open Access Journals (Sweden)

    Jennifer K Pirri

    Full Text Available Behavioral output of neural networks depends on a delicate balance between excitatory and inhibitory synaptic connections. However, it is not known whether network formation and stability is constrained by the sign of synaptic connections between neurons within the network. Here we show that switching the sign of a synapse within a neural circuit can reverse the behavioral output. The inhibitory tyramine-gated chloride channel, LGC-55, induces head relaxation and inhibits forward locomotion during the Caenorhabditis elegans escape response. We switched the ion selectivity of an inhibitory LGC-55 anion channel to an excitatory LGC-55 cation channel. The engineered cation channel is properly trafficked in the native neural circuit and results in behavioral responses that are opposite to those produced by activation of the LGC-55 anion channel. Our findings indicate that switches in ion selectivity of ligand-gated ion channels (LGICs do not affect network connectivity or stability and may provide an evolutionary and a synthetic mechanism to change behavior.

  3. A unifying mechanism for cancer cell death through ion channel activation by HAMLET.

    Science.gov (United States)

    Storm, Petter; Klausen, Thomas Kjaer; Trulsson, Maria; Ho C S, James; Dosnon, Marion; Westergren, Tomas; Chao, Yinxia; Rydström, Anna; Yang, Henry; Pedersen, Stine Falsig; Svanborg, Catharina

    2013-01-01

    Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na(+) and K(+) concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.

  4. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Motoyuki; Gouaux, Eric (Oregon HSU)

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  5. Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram; Zhang, Chao; Sprague, Michael A.; Pesaran, Ahmad

    2016-06-01

    Models capture the force response for single-cell and cell-string levels to within 15%-20% accuracy and predict the location for the origin of failure based on the deformation data from the experiments. At the module level, there is some discrepancy due to poor mechanical characterization of the packaging material between the cells. The thermal response (location and value of maximum temperature) agrees qualitatively with experimental data. In general, the X-plane results agree with model predictions to within 20% (pending faulty thermocouples, etc.); the Z-plane results show a bigger variability both between the models and test-results, as well as among multiple repeats of the tests. The models are able to capture the timing and sequence in voltage drop observed in the multi-cell experiments; the shapes of the current and temperature profiles need more work to better characterize propagation. The cells within packaging experience about 60% less force under identical impact test conditions, so the packaging on the test articles is robust. However, under slow-crush simulations, the maximum deformation of the cell strings with packaging is about twice that of cell strings without packaging.

  6. A Review on Fault Mechanism and Diagnosis Approach for Li-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2015-01-01

    Full Text Available Li-ion battery has attracted more and more attention as it is a promising storage device which has long service life, higher energy, and power density. However, battery ageing always occurs during operation and leads to performance degradation and system fault which not only causes inconvenience, but also risks serious consequences such as thermal runaway or even explosion. This paper reviews recent research and development of ageing mechanisms of Li-ion batteries to understand the origins and symptoms of Li-ion battery faults. Common ageing factors are covered with their effects and consequences. Through ageing tests, relationship between performance and ageing factors, as well as cross-dependence among factors can be quantified. Summary of recent research about fault diagnosis technology for Li-ion batteries is concluded with their cons and pros. The suggestions on novel fault diagnosis approach and remaining challenges are provided at the end of this paper.

  7. Adsorption Mechanisms of Heavy Metal Ions from Drinking Water by Weakly Basic Anion Exchange Resins

    Institute of Scientific and Technical Information of China (English)

    赵璇; 何仕均; 杨磊

    2002-01-01

    Heavy metal micro-contaminants can be removed from water sources technologies. Weakly basic anion exchange resins offer the best ability to remove trace amounts of heavy metals with high selectivity. This paper discusses how weakly basic resins adsorb heavy metals using two different approaches. The removal of mercury, cadmium, and lead ions is based on the fundamental theory of coordination chemistry. The mechanism is not ion exchange but extractive adsorption of heavy metal salts. However, the marked preferential adsorption of chromate by weakly basic anion exchange can be explained using the traditional theory of ion exchange. A lab-scale study produced positive results for the removal of trace amounts of heavy metal ions from drinking water.

  8. Removal of heavy metal ions by biogenic hydroxyapatite: Morphology influence and mechanism study

    Science.gov (United States)

    Wang, Dandan; Guan, Xiaomei; Huang, Fangzhi; Li, Shikuo; Shen, Yuhua; Chen, Jun; Long, Haibo

    2016-08-01

    Based on the synthesis of hydroxyapatite (HA) with different morphologies, such as nanorod-like, flower-like and sphere-like assembled HA nanorods, a new strategy has been developed for the removal of heavy metal ions such as Pb2+, Cu2+, Mn2+, Zn2+. The dependence of removal efficiency on the morphology and the suspended concentration of trapping agent, the removal time and selectivity were evaluated and discussed. The experimental results proved that the removal capacity of flower-like assembled HA nanorods (NAFL-HA) was the best, and the maximum removal ratio for Pb2+ ion was 99.97%. The mechanism of Pb2+ removal was studied in detail, noting that some metal ions were completely incorporated into hydroxyapatitie to produce Pb-HA. It reveals that the metal ions capture by HA is mainly controlled by sample surface adsorption and co-precipitation, which are directly controlled by sample morphology.

  9. Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes

    Science.gov (United States)

    Reddy, Arava Leela Mohana; Nagarajan, Subbiah; Chumyim, Porramate; Gowda, Sanketh R.; Pradhan, Padmanava; Jadhav, Swapnil R.; Dubey, Madan; John, George; Ajayan, Pulickel M.

    2012-12-01

    Current lithium batteries operate on inorganic insertion compounds to power a diverse range of applications, but recently there is a surging demand to develop environmentally friendly green electrode materials. To develop sustainable and eco-friendly lithium ion batteries, we report reversible lithium ion storage properties of a naturally occurring and abundant organic compound purpurin, which is non-toxic and derived from the plant madder. The carbonyl/hydroxyl groups present in purpurin molecules act as redox centers and reacts electrochemically with Li-ions during the charge/discharge process. The mechanism of lithiation of purpurin is fully elucidated using NMR, UV and FTIR spectral studies. The formation of the most favored six membered binding core of lithium ion with carbonyl groups of purpurin and hydroxyl groups at C-1 and C-4 positions respectively facilitated lithiation process, whereas hydroxyl group at C-2 position remains unaltered.

  10. Separations of Metal Ions Using Ionic Liquids:The Challenges of Multiple Mechanisms

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Ionic liquids are a distinct sub-set of liquids, comprising only of cations and anions, often with negligible vapor pressure. As a result of the low or non-volatility of these fluids, ionic liquids are often considered in liquid/liquid separation schemes where the goal is to replace volatile organic solvents. Unfortunately,it is often not yet recognized that the ionic nature of these solvents can result in a variety of extraction mechanisms, including solvent ion-pair extraction, ion exchange, and simultaneous combinations of these.This paper discusses current ionic liquid-based separations research where the effects of the nature of the solvent ions, ligands, and metal ion species were studied in order to be able to understand the nature of the challenges in utilizing ionic liquids for practical applications.

  11. Lithium storage mechanisms in purpurin based organic lithium ion battery electrodes.

    Science.gov (United States)

    Reddy, Arava Leela Mohana; Nagarajan, Subbiah; Chumyim, Porramate; Gowda, Sanketh R; Pradhan, Padmanava; Jadhav, Swapnil R; Dubey, Madan; John, George; Ajayan, Pulickel M

    2012-01-01

    Current lithium batteries operate on inorganic insertion compounds to power a diverse range of applications, but recently there is a surging demand to develop environmentally friendly green electrode materials. To develop sustainable and eco-friendly lithium ion batteries, we report reversible lithium ion storage properties of a naturally occurring and abundant organic compound purpurin, which is non-toxic and derived from the plant madder. The carbonyl/hydroxyl groups present in purpurin molecules act as redox centers and reacts electrochemically with Li-ions during the charge/discharge process. The mechanism of lithiation of purpurin is fully elucidated using NMR, UV and FTIR spectral studies. The formation of the most favored six membered binding core of lithium ion with carbonyl groups of purpurin and hydroxyl groups at C-1 and C-4 positions respectively facilitated lithiation process, whereas hydroxyl group at C-2 position remains unaltered.

  12. Influence of ion nitriding regime on mechanical properties and fracture mechanism of austenitic steel subjected to different thermomechanical treatments

    Science.gov (United States)

    Moskvina, Valentina; Astafurova, Elena; Ramazanov, Kamil; Melnikov, Eugene; Maier, Galina; Budilov, Vladimir

    2016-11-01

    The effect of thermomechanical treatments and low-temperature ion nitriding on mechanical properties and a fracture mechanism of stable austenitic stainless steel Fe-17Cr-13Ni-1.7Mn-2.7Mo-0.5Si-0.01C (in wt %, 316L-type) was investigated. Irrespective of initial heat treatments of steel and the regime of nitrogen saturation, traditional ion nitriding and nitriding with hollow cathode effect do not influence the stages of plastic flow and strain hardening; instead, they contribute to surface hardening of steel samples and reduce their plastic properties due to formation of a brittle surface layer. Ion nitriding leads to formation of a hardened surface layer with the microhardness of 12 GPa. Formation of a high-defective grain/subgrain structure with high dislocation density contributes to strengthening of steel samples under ion nitriding and formation of a thicker strengthened layer in comparison with fine-crystalline and coarse-crystalline samples.

  13. Investigation of ion acceleration mechanism through laser-matter interaction in femtosecond domain

    Energy Technology Data Exchange (ETDEWEB)

    Altana, C., E-mail: altana@lns.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania (Italy); Muoio, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina, Viale F.S. D’Alcontres 31, 98166 Messina (Italy); Lanzalone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Enna “Kore”, Via delle Olimpiadi, 94100 Enna (Italy); Tudisco, S. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Brandi, F. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Cirrone, G.A.P. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Cristoforetti, G. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Fazzi, A. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Ferrara, P.; Fulgentini, L. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Giove, D. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Koester, P. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Labate, L. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); and others

    2016-09-01

    An experimental campaign aiming to investigate the ion acceleration mechanisms through laser-matter interaction in the femtosecond domain has been carried out at the ILIL facility at a laser intensity of up to 2×10{sup 19} W/cm{sup 2}. A Thomson Parabola Spectrometer was used to identify different ion species and measure the energy spectra and the corresponding temperature parameters. We discuss the dependence of the protons spectra upon the structural characteristics of the targets (thickness and atomic mass) and the role of surface versus target bulk during acceleration process. - Highlights: • Ion acceleration mechanism in TNSA regime was investigated. • The energy spectra and the corresponding temperature parameters were measured. • Dependence of the spectra upon the target structural characteristics was discussed.

  14. Mechanisms for covalent immobilization of horseradish peroxi-dase on ion beam treated polyethylene

    CERN Document Server

    Kondyurin, Alexey V; Tilley, Jennifer M R; Nosworthy, Neil J; Bilek, Marcela M M; McKenzie, David R

    2011-01-01

    The mechanism that provides the observed strong binding of biomolecules to polymer sur-faces modified by ion beams is investigated. The surface of polyethylene (PE) was modified by plasma immersion ion implantation with nitrogen ions. Structure changes including car-bonization and oxidation were observed in the modified surface layer of PE by Raman spec-troscopy, FTIR ATR spectroscopy, atomic force microscopy, surface energy measurement and XPS spectroscopy. An observed high surface energy of the modified polyethylene was attributed to the presence of free radicals on the surface. The surface energy decay with stor-age time after PIII treatment was explained by a decay of the free radical concentration while the concentration of oxygen-containing groups increased with storage time. Horseradish per-oxidase was covalently attached onto the modified PE surface. The enzymatic activity of co-valently attached protein remained high. A mechanism based on the covalent attachment by the reaction of protein with free r...

  15. An ion gating mechanism of gastric H,K-ATPase based on molecular dynamics simulations.

    Science.gov (United States)

    Law, Richard J; Munson, Keith; Sachs, George; Lightstone, Felice C

    2008-09-15

    Gastric H,K-ATPase is an electroneutral transmembrane pump that moves protons from the cytoplasm of the parietal cell into the gastric lumen in exchange for potassium ions. The mechanism of transport against the established electrochemical gradients includes intermediate conformations in which the transferred ions are trapped (occluded) within the membrane domain of the pump. The pump cycle involves switching between the E1 and E2P states. Molecular dynamics simulations on homology models of the E2P and E1 states were performed to investigate the mechanism of K(+) movement in this enzyme. We performed separate E2P simulations with one K(+) in the luminal channel, one K(+) ion in the occlusion site, two K(+) ions in the occlusion site, and targeted molecular dynamics from E2P to E1 with two K(+) ions in the occlusion site. The models were inserted into a lipid bilayer system and were stable over the time course of the simulations, and K(+) ions in the channel moved to a consistent location near the center of the membrane domain, thus defining the occlusion site. The backbone carbonyl oxygen from residues 337 through 342 on the nonhelical turn of M4, as well as side-chain oxygen from E343, E795, and E820, participated in the ion occlusion. A single water molecule was stably bound between the two K(+) ions in the occlusion site, providing an additional ligand and partial shielding the positive charges from one another. Targeted molecular dynamics was used to transform the protein from the E2P to the E1 state (two K(+) ions to the cytoplasm). This simulation identified the separation of the water column in the entry channel as the likely gating mechanism on the luminal side. A hydrated exit channel also formed on the cytoplasmic side of the occlusion site during this simulation. Hence, water molecules became available to hydrate the ions. The movement of the M1M2 transmembrane segments, and the displacement of residues Q159, E160, Q110, and T152 during the

  16. Insights into the ion-coupling mechanism in the MATE transporter NorM-VC

    Science.gov (United States)

    Krah, Alexander; Zachariae, Ulrich

    2017-08-01

    Bacteria have developed a variety of different mechanisms to defend themselves from compounds that are toxic to them, such as antibiotics. One of these defence mechanisms is the expulsion of drugs or other noxious compounds by multidrug efflux pumps. Multidrug and toxic compound extrusion (MATE) transporters are efflux pumps that extrude metabolic waste and a variety of antibiotics out of the cell, using an ion gradient as energy source. They function via an alternating-access mechanism. When ions bind in the outward facing conformation, a large conformational change to the inward facing conformation is induced, from which the ion is released and the extruded chemical compound is bound. NorM proteins, which are usually coupled to a Na+ gradient, are members of the MATE family. However, for NorM-VC from Vibrio cholerae, it has been shown that this MATE transporter is additionally coupled to protons. How H+ and Na+ binding are coupled mechanistically to enable drug antiport is not well understood. In this study, we use molecular dynamics simulations to illuminate the sequence of ion binding events that enable efflux. Understanding this antiport mechanism is important to support the development of novel compounds that specifically inhibit the functional cycle of NorM transporters.

  17. STUDIES ON THE INITIATION MECHANISM OF CERIC ION AND ACETYLACETONE REDOX SYSTEM IN VINYL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; GUO Xinqiu; ZHANG Dong; FENG Xinde

    1991-01-01

    The initiation mechanism of acrylamide (AAM)polymerization using ceric ion/acetylacetone system as an initiator has been studied. The redox polymerization was revealed by the low value of overall activation energy ofAAm polymerization. The structure of free radicals formed from above-mentioned initiation sytem were detected by radical trapping and ESR spectra techniques and the end groups of polymers obtained were determined by FT-IR spectra analysis method. Based on these results the initiation mechanism is proposed.

  18. The molecular mechanism of multi-ion conduction in K{sup +} channels

    Energy Technology Data Exchange (ETDEWEB)

    Gwan, J.F.

    2007-01-19

    Steered molecular dynamics (SMD) simulation method is applied to a fully solvated membrane-channel model for studying the ion permeation process in potassium channels. The channel model is based on the crystallographic structure of a prokaryotic K{sup +} channel- the KcsA channel, which is a representative of most known eukaryotic K{sup +} channels. It has long been proposed that the ion transportation in a conventional K{sup +}-channel follows a multi-ion fashion: permeating ions line in a queue in the channel pore and move in a single file through the channel. The conventional view of multi-ion transportation is that the electrostatic repulsion between ions helps to overcome the attraction between ions and the channel pore. In this study, we proposed two SMD simulation schemes, referred to 'the single-ion SMD' simulations and 'the multi-ion SMD' simulations. Concerted movements of a K-W-K sequence in the selectivity filter were observed in the single-ion SMD simulations. The analysis of the concerted movement reveals the molecular mechanism of the multi-ion transportation. It shows that, rather than the long range electrostatic interaction, the short range polar interaction is a more dominant factor in the multi-ion transportation. The polar groups which play a role in the concerted transportation are the water molecules and the backbone carbonyl groups of the selectivity filter. The polar interaction is sensitive to the relative orientation of the polar groups. By changing the orientation of a polar group, the interaction may switch from attractive to repulsive or vice versa. By this means, the energy barrier between binding sites in the selectivity filter can be switched on and off, and therefore the K{sup +} may be able to move to the neighboring binding site without an external driving force. The concerted transportation in the selectivity filter requires a delicate cooperation between K{sup +}, waters, and the backbone carbonyl groups. To

  19. Ion sputtering erosion mechanisms of h-BN composite ceramics with textured microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Xiaoming, E-mail: dxm_hit@126.com [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Ding, Yongjie [School of Energy Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); Jia, Dechang; Jing, Nan; Yang, Zhihua; He, Peigang; Tian, Zhuo; Wang, Shengjin; Wang, Yujin; Zhou, Yu [Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin 150001 (China); Yu, Daren [School of Energy Science and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2014-11-15

    Highlights: • Textured h-BN ceramics were made by hot press sintering using mullite as additives. • Sintering pressures play important role on ions sputtering resistance properties. • Textured microstructures lead to various surface morphologies by ion sputtering. • Sputtering erosion mechanisms include B–N bonds breaking and BN layers delamination. - Abstract: Since the hexagonal boron nitride (h-BN) grain shows typical lamellar structures, textured materials can be obtained by arranging h-BN grains along one direction. In this work, textured h-BN composite ceramics with the c-axis orientation arranged along the pressure direction are manufactured by hot-press sintering using mullite as the sintering additive. The results show that sintering pressures not only play a major role in the density and the textured degrees of composite ceramics, but also influence Xe ion erosion resistance performances. After Xe ion sputtering, compositions of both h-BN and mullite stay stable, while the elemental compositions have changed due to the so-called “preferential sputtering”. Sputtered surfaces along different orientations show diverse morphologies attributed to the textured microstructures. The erosion mechanisms of h-BN grains during Xe ion sputtering are breaking of B–N bonds and delamination of BN layers. While the mass loss of composite ceramics is due to the erosion of h-BN grains and mullite coupled with partial detachment of h-BN grains from the surface.

  20. Mechanism of Ion Permeation in Mammalian Voltage-Gated Sodium Channels.

    Directory of Open Access Journals (Sweden)

    Somayeh Mahdavi

    Full Text Available Recent determination of the crystal structures of bacterial voltage-gated sodium (NaV channels have raised hopes that modeling of the mammalian counterparts could soon be achieved. However, there are substantial differences between the pore domains of the bacterial and mammalian NaV channels, which necessitates careful validation of mammalian homology models constructed from the bacterial NaV structures. Such a validated homology model for the NaV1.4 channel was constructed recently using the extensive mutagenesis data available for binding of μ-conotoxins. Here we use this NaV1.4 model to study the ion permeation mechanism in mammalian NaV channels. Linking of the DEKA residues in the selectivity filter with residues in the neighboring domains is found to be important for keeping the permeation pathway open. Molecular dynamics simulations and potential of mean force calculations reveal that there is a binding site for a Na+ ion just inside the DEKA locus, and 1-2 Na+ ions can occupy the vestibule near the EEDD ring. These sites are separated by a low free energy barrier, suggesting that inward conduction occurs when a Na+ ion in the vestibule goes over the free energy barrier and pushes the Na+ ion in the filter to the intracellular cavity, consistent with the classical knock-on mechanism. The NaV1.4 model also provides a good description of the observed Na+/K+ selectivity.

  1. Adsorption of hydrated hydroxide and hydronium ions on Ag(1 1 1). A quantum mechanical investigation

    Science.gov (United States)

    Patrito, E. M.; Paredes-Olivera, P.

    2003-03-01

    In this paper we have studied comparatively the adsorption of hydroxide and hydronium ions, extending our previous study on hydronium adsorption [J. Phys. Chem. B. 105 (2001) 7227] and emphasizing the adsorption of hydroxide. The calculations were performed on the 111 surface of silver using ab initio quantum mechanical methods (Hartree-Fock+Moller-Plesset second order perturbation theory). The adsorption was investigated for the bare and the hydrated ions (up to three water molecules). Binding energies, equilibrium structures and charge transfer processes were investigated. While the successive hydration of hydronium detaches the ion from the surface, the hydrated hydroxide anion remains specifically adsorbed. Charge transfer processes between the adsorbates and the surface were studied using electron density difference plots and effective charges obtained from Mulliken populations and from surface-dipole moment curves. The energetics of the surface reactions leading to the formation of the hydrated hydronium and hydroxide ions from the bare adsorbed ions and water molecules was also investigated. Both reactions are exothermic mainly due to the formation of strong hydrogen bonds. The effect of an external homogeneous electric field perpendicular to the surface on different adsorbate properties was investigated for the bare and hydrated hydroxide ion in order to model the environment of the electrical double layer. The electric field affects the orientation of the water molecules on the surface and the hydroxide surface distance.

  2. Evaluation of Cu Ion Concentration Effects on Cu Etching Rate in Chemical-Mechanical Polishing Slurry

    Science.gov (United States)

    Nishizawa, Hideaki; Sugiura, Osamu; Matsumura, Yoshiyuki; Kinoshita, Masaharu

    2007-04-01

    The effects of Cu ion concentration of the different solutions on Cu etching rate were investigated. From the dipping experiment of Cu substrates in different solutions of malic acid, hydrogen peroxide (H2O2), benzotriazole (BTA), and Cu ions, it was revealed that Cu etching rate is increased if the concentration of Cu(II) ions added in the solution is high. This is considered to be caused by the effect of Cu(II) ions on H2O2 molecules. In the solution of pH 7, the Cu etching rate increased markedly between 1.7× 10-4 and 3.4× 10-4 M Cu(II) ion concentrations. The maximum increase in the etching rate was from 990 to 2200 nm/min at a H2O2 concentration of 2 wt %. In the solution of pH 3, a marked change in the etching rate was not observed. Our results show that the concentration of Cu ions on the polishing pad in chemical-mechanical polishing (CMP) process is very important.

  3. Green synthesis of magnesium ion incorporated nanocrystalline hydroxyapatite and their mechanical, dielectric and photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Arul, K. Thanigai; Kolanthai, Elayaraja [Crystal Growth Centre, Anna University, Chennai 600 025 (India); Manikandan, E. [Nanosciences African Network (NANO-AFNET), iThemba LABS-National Research Foundation (NRF), Materials Research Department, Cape Town, South Africa. (South Africa); Bhalerao, G.M. [University Grants Commission – Department of Atomic Energy, Consortium for Scientific Research, Kalpakkam 603 104 (India); Chandra, V. Sarath; Ramya, J. Ramana [Crystal Growth Centre, Anna University, Chennai 600 025 (India); Mudali, U. Kamachi [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Nair, K.G.M. [Accelerator Material Science Section, Material Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kalkura, S.Narayana, E-mail: kalkurasn@annauniv.edu [Crystal Growth Centre, Anna University, Chennai 600 025 (India)

    2015-07-15

    Highlights: • Rapid technique to synthesize nanorods of magnesium ion incorporated hydroxyapatite. • Enhanced electrical and mechanical properties. • Improved photoluminescence and wettability on magnesium incorporation. • Increased in vitro bioactivity. - Abstract: Nanocrystalline hydroxyapatite (HAp-Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2,} 35 nm) and magnesium (Mg{sup 2+}) ion incorporated HAp were synthesized by microwave technique. XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), FE-HRTEM (Field emission high resolution transmission electron microscopy), DLS (dynamic light scattering), EDXRF (energy dispersive X-ray fluorescence spectrometry), microhardness, permittivity and alternating current (ac) conductivity, besides the PL (photoluminescence), wettability and in vitro bioactivity of the samples were analysed. EDXRF revealed the Mg{sup 2+} ion incorporation in HAp. The Mg{sup 2+} ion incorporation did not alter the phase but drastically reduced the crystallite size and particle size respectively by 48% and 32%. There was enhanced microhardness (24%) at low level (<13%) and decreased zeta potential of Mg{sup 2+} ion incorporation. The permittivity, ac conductivity, PL, wettability and in vitro bioactivity were enhanced on Mg{sup 2+} ion incorporation. These properties enable them to be a promising candidate for wound healing, bone replacement applications and also as a biosensor.

  4. Conformational cycle and ion-coupling mechanism of the Na+/hydantoin transporter Mhp1.

    Science.gov (United States)

    Kazmier, Kelli; Sharma, Shruti; Islam, Shahidul M; Roux, Benoît; Mchaourab, Hassane S

    2014-10-14

    Ion-dependent transporters of the LeuT-fold couple the uptake of physiologically essential molecules to transmembrane ion gradients. Defined by a conserved 5-helix inverted repeat that encodes common principles of ion and substrate binding, the LeuT-fold has been captured in outward-facing, occluded, and inward-facing conformations. However, fundamental questions relating to the structural basis of alternating access and coupling to ion gradients remain unanswered. Here, we used distance measurements between pairs of spin labels to define the conformational cycle of the Na(+)-coupled hydantoin symporter Mhp1 from Microbacterium liquefaciens. Our results reveal that the inward-facing and outward-facing Mhp1 crystal structures represent sampled intermediate states in solution. Here, we provide a mechanistic context for these structures, mapping them into a model of transport based on ion- and substrate-dependent conformational equilibria. In contrast to the Na(+)/leucine transporter LeuT, our results suggest that Na(+) binding at the conserved second Na(+) binding site does not change the energetics of the inward- and outward-facing conformations of Mhp1. Comparative analysis of ligand-dependent alternating access in LeuT and Mhp1 lead us to propose that different coupling schemes to ion gradients may define distinct conformational mechanisms within the LeuT-fold class.

  5. Comparison of Wear Resistance Mechanisms of Die Steel Implanted with C and mo Ions

    Science.gov (United States)

    Cheng, M. F.; Yang, J. H.; Luo, X. D.; Zhang, T. H.

    Mo and C ions extracted from a metal vapor vacuum arc ion source were implanted into the surface of die steel (H13) to compare the wear resistance mechanisms of the implanted samples, respectively. The concentration depth profiles of implanted ions were measured using Rutherford backscattering spectroscopy and calculated by a code called TRIDYN. The structures of the implanted steel were observed by X-ray photoelectron spectroscopy and grazing-angle X-ray diffraction, respectively. It was found that the conventional heat-treated H13 steel could not be further hardened by the subsequent implanted C ions, and the thickness of the implanted layer was not an important factor for the Mo and C ion implantation to improve the wear resistance of the H13 steel. Mo ion implantation could obviously improve the wear resistance of the steel at an extraction voltage of 48 kV and a dose of 5 × 1017cm-2 due to formation of a modification layer of little oxidation with Mo2C in the implanted surface.

  6. Modifications in surface, structural and mechanical properties of brass using laser induced Ni plasma as an ion source

    Directory of Open Access Journals (Sweden)

    Shahbaz Ahmad

    2016-03-01

    Full Text Available Laser induced Ni plasma has been employed as source of ion implantation for surface, structural and mechanical properties of brass. Excimer laser (248 nm, 20 ns, 120mJ and 30 Hz was used for the generation of Ni plasma. Thomson parabola technique was employed to estimate the energy of generated ions using CR39 as a detector. In response to stepwise increase in number of laser pulses from 3000 to 12000, the ion dose varies from 60 × 1013 to 84 × 1016 ions/cm2 with constant energy of 138 KeV. SEM analysis reveals the growth of nano/micro sized cavities, pores, pits, voids and cracks for the ion dose ranging from 60 × 1013 to 70 × 1015 ions/cm2. However, at maximum ion dose of 84 × 1016 ions/cm2 the granular morphology is observed. XRD analysis reveals that new phase of CuZnNi (200 is formed in the brass substrate after ion implantation. However, an anomalous trend in peak intensity, crystallite size, dislocation line density and induced stresses is observed in response to the implantation with various doses. The increase in ion dose causes to decrease the Yield Stress (YS, Ultimate Tensile Strength (UTS and hardness. However, for the maximum ion dose the highest values of these mechanical properties are achieved. The variations in the mechanical properties are correlated with surface and crystallographical changes of ion implanted brass.

  7. The mechanism of the NH4 ion oscillatory transport across the excitable cell membrane

    Directory of Open Access Journals (Sweden)

    Radenović Čedomir N.

    2005-01-01

    Full Text Available This paper presents results on typical oscillations of the membrane potential induced by the excitation of the cell membrane by different concentrations of the NH4Cl solution. The existence of four classes of oscillations of the membrane potential and several different single and local impulses rhythmically occurring were determined. It is known that the oscillatory processes of the membrane potential are in direct dependence on oscillatory transport processes of NH4 and Cl ions across the excitable cell membrane. A hypothesis on a possible mechanism of oscillatory transport processes of NH4 and Cl ions across the excitable cell membrane is also presented.

  8. Quantum Zeno Effect Underpinning the Radical-Ion-Pair Mechanism of Avian Magnetoreception

    CERN Document Server

    Kominis, I K

    2008-01-01

    The intricate biochemical processes underlying avian magnetoreception, the sensory ability of migratory birds to navigate using earths magnetic field, have been narrowed down to spin-dependent recombination of radical-ion pairs to be found in avian species retinal proteins. The avian magnetic field detection is governed by the interplay between magnetic interactions of the radicals unpaired electrons and the radicals recombination dynamics. Critical to this mechanism is the long lifetime of the radical-pair spin coherence, so that the weak geomagnetic field will have a chance to signal its presence. It is here shown that a fundamental quantum phenomenon, the quantum Zeno effect, is at the basis of the radical-ion-pair magnetoreception mechanism. The quantum Zeno effect naturally leads to long spin coherence lifetimes, without any constraints on the systems physical parameters, ensuring the robustness of this sensory mechanism. Basic experimental observations regarding avian magnetic sensitivity are seamlessly...

  9. Physical Mechanism of the Transverse Instability in Radiation Pressure Ion Acceleration

    Science.gov (United States)

    Wan, Y.; Pai, C.-H.; Zhang, C. J.; Li, F.; Wu, Y. P.; Hua, J. F.; Lu, W.; Gu, Y. Q.; Silva, L. O.; Joshi, C.; Mori, W. B.

    2016-12-01

    The transverse stability of the target is crucial for obtaining high quality ion beams using the laser radiation pressure acceleration (RPA) mechanism. In this Letter, a theoretical model and supporting two-dimensional (2D) particle-in-cell (PIC) simulations are presented to clarify the physical mechanism of the transverse instability observed in the RPA process. It is shown that the density ripples of the target foil are mainly induced by the coupling between the transverse oscillating electrons and the quasistatic ions, a mechanism similar to the oscillating two stream instability in the inertial confinement fusion research. The predictions of the mode structure and the growth rates from the theory agree well with the results obtained from the PIC simulations in various regimes, indicating the model contains the essence of the underlying physics of the transverse breakup of the target.

  10. Physical mechanism of the transverse instability in radiation pressure ion acceleration

    CERN Document Server

    Wan, Y; Zhang, C J; Li, F; Wu, Y P; Hua, J F; Lu, W; Gu, Y Q; Silva, L O; Joshi, C; Mori, W B

    2016-01-01

    The transverse stability of the target is crucial for obtaining high quality ion beams using the laser radiation pressure acceleration (RPA) mechanism. In this letter, a theoretical model and supporting two-dimensional (2D) Particle-in-Cell (PIC) simulations are presented to clarify the physical mechanism of the transverse instability observed in the RPA process. It is shown that the density ripples of the target foil are mainly induced by the coupling between the transverse oscillating electrons and the quasi-static ions, a mechanism similar to the transverse two stream instability in the inertial confinement fusion (ICF) research. The predictions of the mode structure and the growth rates from the theory agree well with the results obtained from the PIC simulations in various regimes, indicating the model contains the essence of the underlying physics of the transverse break-up of the target.

  11. A mechanism of catalyzed GTP hydrolysis by Ras protein through magnesium ion

    Science.gov (United States)

    Lu, Qiang; Nassar, Nicolas; Wang, Jin

    2011-11-01

    The hydrolysis by Ras plays pivotal roles in the activation of signaling pathways that lead to cell growth, proliferation, and differentiation. Despite their significant role in human cancer, the hydrolysis mechanism remains unclear. In the present Letter, we propose a GTP hydrolysis mechanism in which the γ phosphate is cut off primarily by magnesium ion. We studied both normal and mutated Ras and the cause of the malfunction of these mutants, compared the effect of Mg2+ and Mn2+. The simulation results are consistent with the experiments and support the new hydrolysis mechanism. This work will benefit both GTPases and ATPases hydrolysis studies.

  12. Characteristics and Mechanisms in Ion-Conducting Polymer Films as Chemical Sensors

    Energy Technology Data Exchange (ETDEWEB)

    HUGHES,ROBERT C.; YELTON,WILLIAM G.; PFEIFER,KENT B.; PATEL,SANJAY V.

    2000-07-12

    Solid Polymer Electrolytes (SPE) are widely used in batteries and fuel cells because of the high ionic conductivity that can be achieved at room temperature. The ions are usually Li or protons, although other ions can be shown to conduct in these polymer films. There has been very little published work on SPE films used as chemical sensors. The authors have found that thin films of polymers like polyethylene oxide (PEO) are very sensitive to low concentrations of volatile organic compounds (VOCs) such as common solvents. Evidence of a new sensing mechanism involving the percolation of ions through narrow channels of amorphous polymer is presented. They present impedance spectroscopy of PEO films in the frequency range 0.0001 Hz to 1 MHz for different concentrations of VOCs and relative humidity. They find that the measurement frequency is important for distinguishing ionic conductivity from the double layer capacitance and the parasitic capacitance.

  13. Influence of implantation of three metallic ions on the mechanical properties of two polymers

    Energy Technology Data Exchange (ETDEWEB)

    Swain, M.V. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics; Perry, A.J. [Australian National Univ., Canberra, ACT (Australia); Treglio, J.R.

    1996-12-31

    Ion implantation of poly ethylene terephthalate (PET) and polystyrene (PS) with various high energy metallic ions at 70 kV to dose of 3 x 10{sup 16} ions/cm 2 have been made. Measurements of the mechanical properties of the polymers before and after implantation have been made with an ultra microindentation system using both pointed and a small (2 nm) radiused spherical tipped indenter. Significant differences have been observed between the Ti-B dual implanted surfaces and those of the Au and W implanted surfaces. For both the PET and PS the resistance to indenter penetration at very low loads was much greater for the Ti-B dual implanted surfaces. The estimated hardness and modulus versus depth of penetration for both indenters shows that the spherical indenter produces more consistent and less controversial values that are somewhat lower than the optimistic estimates from pointed indenters. 8 refs., 2 fig.

  14. A unifying mechanism for cancer cell death through ion channel activation by HAMLET.

    Directory of Open Access Journals (Sweden)

    Petter Storm

    Full Text Available Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2, preventing the changes in free cellular Na(+ and K(+ concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.

  15. CORONAL SOURCES, ELEMENTAL FRACTIONATION, AND RELEASE MECHANISMS OF HEAVY ION DROPOUTS IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Weberg, Micah J. [PhD Candidate in Space Science, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2134A Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Lepri, Susan T. [Associate Professor, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2429 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States); Zurbuchen, Thomas H., E-mail: mjweberg@umich.edu, E-mail: slepri@umich.edu, E-mail: thomasz@umich.edu [Professor, Space Science and Aerospace Engineering, Associate Dean for Entrepreneurship Senior Counselor of Entrepreneurship Education, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, 2431 Space Research Building, 2455 Hayward Street, Ann Arbor, MI 48109-2143, USA. (United States)

    2015-03-10

    The elemental abundances of heavy ions (masses larger than He) in the solar wind provide information about physical processes occurring in the corona. Additionally, the charge state distributions of these heavy ions are sensitive to the temperature profiles of their respective source regions in the corona. Heavy ion dropouts are a relatively new class of solar wind events identified by both elemental and ionic charge state distributions. We have shown that their origins lie in large, closed coronal loops where processes such as gravitational settling dominate and can cause a mass-dependent fractionation pattern. In this study we consider and attempt to answer three fundamental questions concerning heavy ion dropouts: (1) 'where are the source loops located in the large-scale corona?'; (2) 'how does the interplay between coronal processes influence the end elemental abundances?'; and (3) 'what are the most probable release mechanisms'? We begin by analyzing the temporal and spatial variability of heavy ion dropouts and their correlation with heliospheric plasma and magnetic structures. Next we investigate the ordering of the elements inside dropouts with respect to mass, ionic charge state, and first ionization potential. Finally, we discuss these results in the context of the prevailing solar wind theories and the processes they posit that may be responsible for the release of coronal plasma into interplanetary space.

  16. Transduction mechanism of carbon nanotubes in solid-contact ion-selective electrodes.

    Science.gov (United States)

    Crespo, Gastón A; Macho, Santiago; Bobacka, Johan; Rius, F Xavier

    2009-01-15

    Porous carbon materials and carbon nanotubes were recently used as solid contacts in ion-selective electrodes (ISE), and the signal transduction mechanism of these carbon-based materials is therefore of great interest. In this work the ion-to-electron transduction mechanism of carbon nanotubes is studied by using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Single-walled carbon nanotubes (SWCNT) are deposited on glassy carbon (GC) disk electrodes by repetitive spraying, resulting in SWCNT layers with thicknesses of 10, 35, and 50 mum. The impedance spectra of these GC/SWCNT electrodes in contact with aqueous electrolyte solution show a very small resistance and a large bulk capacitance that is related to a large effective double layer at the SWCNT/electrolyte interface. Interestingly, the impedance response of GC/SWCNT is very similar to that of poly(3,4-ethylenedioxythiophene) (PEDOT) film electrodes studied earlier under the same experimental conditions. The same equivalent circuit is valid for both types of materials. The reason is that both materials can be described schematically as an asymmetric capacitor where one side is formed by electronic charge (electrons/holes) in the SWCNT wall or along the conjugated polymer chain of PEDOT and the other side is formed by ions (anions/cations) in the solution (or in the ion-selective membrane when used as a solid contact in ISE).

  17. Ion Transport Properties of Mechanically Stable symmetric ABCBA Pentablock Copolymers with Quaternary Ammonium Functionalized Midblock

    Energy Technology Data Exchange (ETDEWEB)

    Ertem, S. Piril; Caire, Benjamin R.; Tsai, Tsung-Han; Zeng, Di; Vandiver, Melissa A.; Kusoglu, Ahmet; Seifert, Soenke; Hayward, Ryan C.; Weber, Adam Z.; Herring , Andrew M.; Coughlin, E. Bryan; Liberatore, Matthew W.

    2017-01-01

    Anion exchange membranes (AEMs) are a promising class of materials for applications that require selective ion transport, such as fuel cells, water purification, and electrolysis devices. Studies of structure–morphology–property relationships of ion-exchange membranes revealed that block copolymers exhibit improved ion conductivity and mechanical properties due to their microphase-separated morphologies with well-defined ionic domains. While most studies focused on symmetric diblock or triblock copolymers, here, the first example of a midblock quaternized pentablock AEM is presented. A symmetric ABCBA pentablock copolymer was functionalized to obtain a midblock brominated polymer. Solution cast films were then quaternized to obtain AEMs with resulting ion exchange capacities (IEC) ranging from 0.4 to 0.9 mmol/g. Despite the relatively low IEC, the polymers were highly conductive (up to 60 mS/cm Br2 at 90 8C and 95%RH) with low water absorption (<25 wt %) and maintained adequate mechanical properties in both dry and hydrated conditions. Xray scattering and transmission electron microscopy (TEM) revealed formation of cylindrical non-ionic domains in a connected ionic phase.

  18. A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries

    Science.gov (United States)

    Hendricks, Christopher; Williard, Nick; Mathew, Sony; Pecht, Michael

    2015-11-01

    Lithium-ion batteries are popular energy storage devices for a wide variety of applications. As batteries have transitioned from being used in portable electronics to being used in longer lifetime and more safety-critical applications, such as electric vehicles (EVs) and aircraft, the cost of failure has become more significant both in terms of liability as well as the cost of replacement. Failure modes, mechanisms, and effects analysis (FMMEA) provides a rigorous framework to define the ways in which lithium-ion batteries can fail, how failures can be detected, what processes cause the failures, and how to model failures for failure prediction. This enables a physics-of-failure (PoF) approach to battery life prediction that takes into account life cycle conditions, multiple failure mechanisms, and their effects on battery health and safety. This paper presents an FMMEA of battery failure and describes how this process enables improved battery failure mitigation control strategies.

  19. Exothermic behaviors of mechanically abused lithium-ion batteries with dibenzylamine

    Science.gov (United States)

    Shi, Yang; Noelle, Daniel J.; Wang, Meng; Le, Anh V.; Yoon, Hyojung; Zhang, Minghao; Meng, Ying Shirley; Qiao, Yu

    2016-09-01

    A thermal-runaway retardant (TRR) of lithium-ion batteries (LIBs), dibenzylamine (DBA), is investigated. In a TRR-modified LIB, DBA can be encapsulated in packages made of inert materials. When the LIB is subjected to mechanical abuse, the packages would be broken apart and the TRR is released. In nail penetration and impact tests, addition of 4 wt% DBA reduces the temperature increase of fully charged LIR-2450 cells by nearly 50%. The influence of TRR packages on the cycling performance of LIBs is negligible. The working mechanism of DBA is associated with the decrease in electrolyte conductivity, the increase in charge transfer resistance, and the reduction in lithium ion (Li+) transference numbers.

  20. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse

    Science.gov (United States)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-09-01

    In order to better understand the behavior of lithium-ion batteries under mechanical abuse, a coupled modeling methodology encompassing the mechanical, electrical and thermal response is presented for predicting short-circuit under external crush. The combined mechanical-electrical-thermal response is simulated in a commercial finite element software LS-DYNA® using a representative-sandwich finite-element model, where electrical-thermal modeling is conducted after an instantaneous mechanical crush. The model includes an explicit representation of each individual component such as the active material, current collector, separator, etc., and predicts their mechanical deformation under quasi-static indentation. Model predictions show good agreement with experiments: the fracture of the battery structure under an indentation test is accurately predicted. The electrical-thermal simulation predicts the current density and temperature distribution in a reasonable manner. Whereas previously reported models consider the mechanical response exclusively, we use the electrical contact between active materials following the failure of the separator as a criterion for short-circuit. These results are used to build a lumped representative sandwich model that is computationally efficient and captures behavior at the cell level without resolving the individual layers.

  1. Quantum Zeno Effect Underpinning the Radical-Ion-Pair Mechanism of Avian Magnetoreception

    OpenAIRE

    Kominis, I. K.

    2008-01-01

    The intricate biochemical processes underlying avian magnetoreception, the sensory ability of migratory birds to navigate using earths magnetic field, have been narrowed down to spin-dependent recombination of radical-ion pairs to be found in avian species retinal proteins. The avian magnetic field detection is governed by the interplay between magnetic interactions of the radicals unpaired electrons and the radicals recombination dynamics. Critical to this mechanism is the long lifetime of t...

  2. Process for improving mechanical properties of epoxy resins by addition of cobalt ions

    Science.gov (United States)

    Stoakley, D. M.; St.clair, A. K. (Inventor)

    1984-01-01

    A resin product useful as an adhesive, composite or casting resin is described as well as the process used in its preparation to improve its flexural strength mechanical property characteristics. Improved flexural strength is attained with little or no change in density, thermal stability or moisture resistance by chemically incorporating 1.2% to 10.6% by weight Co(3) ions in an epoxidized resin system.

  3. Are clusters important in understanding the mechanisms in atmospheric pressure ionization? Part 1: Reagent ion generation and chemical control of ion populations.

    Science.gov (United States)

    Klee, Sonja; Derpmann, Valerie; Wißdorf, Walter; Klopotowski, Sebastian; Kersten, Hendrik; Brockmann, Klaus J; Benter, Thorsten; Albrecht, Sascha; Bruins, Andries P; Dousty, Faezeh; Kauppila, Tiina J; Kostiainen, Risto; O'Brien, Rob; Robb, Damon B; Syage, Jack A

    2014-08-01

    It is well documented since the early days of the development of atmospheric pressure ionization methods, which operate in the gas phase, that cluster ions are ubiquitous. This holds true for atmospheric pressure chemical ionization, as well as for more recent techniques, such as atmospheric pressure photoionization, direct analysis in real time, and many more. In fact, it is well established that cluster ions are the primary carriers of the net charge generated. Nevertheless, cluster ion chemistry has only been sporadically included in the numerous proposed ionization mechanisms leading to charged target analytes, which are often protonated molecules. This paper series, consisting of two parts, attempts to highlight the role of cluster ion chemistry with regard to the generation of analyte ions. In addition, the impact of the changing reaction matrix and the non-thermal collisions of ions en route from the atmospheric pressure ion source to the high vacuum analyzer region are discussed. This work addresses such issues as extent of protonation versus deuteration, the extent of analyte fragmentation, as well as highly variable ionization efficiencies, among others. In Part 1, the nature of the reagent ion generation is examined, as well as the extent of thermodynamic versus kinetic control of the resulting ion population entering the analyzer region.

  4. The molecular mechanism of ion-dependent gating in secondary transporters.

    Directory of Open Access Journals (Sweden)

    Chunfeng Zhao

    2013-10-01

    Full Text Available LeuT-like fold Na-dependent secondary active transporters form a large family of integral membrane proteins that transport various substrates against their concentration gradient across lipid membranes, using the free energy stored in the downhill concentration gradient of sodium ions. These transporters play an active role in synaptic transmission, the delivery of key nutrients, and the maintenance of osmotic pressure inside the cell. It is generally believed that binding of an ion and/or a substrate drives the conformational dynamics of the transporter. However, the exact mechanism for converting ion binding into useful work has yet to be established. Using a multi-dimensional path sampling (string-method followed by all-atom free energy simulations, we established the principal thermodynamic and kinetic components governing the ion-dependent conformational dynamics of a LeuT-like fold transporter, the sodium/benzyl-hydantoin symporter Mhp1, for an entire conformational cycle. We found that inward-facing and outward-facing states of Mhp1 display nearly the same free energies with an ion absent from the Na2 site conserved across the LeuT-like fold transporters. The barrier separating an apo-state from inward-facing or outward-facing states of the transporter is very low, suggesting stochastic gating in the absence of ion/substrate bound. In contrast, the binding of a Na2 ion shifts the free energy stabilizing the outward-facing state and promoting substrate binding. Our results indicate that ion binding to the Na2 site may also play a key role in the intracellular thin gate dynamics modulation by altering its interactions with the transmembrane helix 5 (TM5. The Potential of Mean Force (PMF computations for a substrate entrance displays two energy minima that correspond to the locations of the main binding site S1 and proposed allosteric S2 binding site. However, it was found that substrate's binds to the site S1 ∼5 kcal/mol more favorable

  5. The molecular mechanism of ion-dependent gating in secondary transporters.

    Science.gov (United States)

    Zhao, Chunfeng; Noskov, Sergei Yu

    2013-10-01

    LeuT-like fold Na-dependent secondary active transporters form a large family of integral membrane proteins that transport various substrates against their concentration gradient across lipid membranes, using the free energy stored in the downhill concentration gradient of sodium ions. These transporters play an active role in synaptic transmission, the delivery of key nutrients, and the maintenance of osmotic pressure inside the cell. It is generally believed that binding of an ion and/or a substrate drives the conformational dynamics of the transporter. However, the exact mechanism for converting ion binding into useful work has yet to be established. Using a multi-dimensional path sampling (string-method) followed by all-atom free energy simulations, we established the principal thermodynamic and kinetic components governing the ion-dependent conformational dynamics of a LeuT-like fold transporter, the sodium/benzyl-hydantoin symporter Mhp1, for an entire conformational cycle. We found that inward-facing and outward-facing states of Mhp1 display nearly the same free energies with an ion absent from the Na2 site conserved across the LeuT-like fold transporters. The barrier separating an apo-state from inward-facing or outward-facing states of the transporter is very low, suggesting stochastic gating in the absence of ion/substrate bound. In contrast, the binding of a Na2 ion shifts the free energy stabilizing the outward-facing state and promoting substrate binding. Our results indicate that ion binding to the Na2 site may also play a key role in the intracellular thin gate dynamics modulation by altering its interactions with the transmembrane helix 5 (TM5). The Potential of Mean Force (PMF) computations for a substrate entrance displays two energy minima that correspond to the locations of the main binding site S1 and proposed allosteric S2 binding site. However, it was found that substrate's binds to the site S1 ∼5 kcal/mol more favorable than that to the

  6. Intra-pulse transition between ion acceleration mechanisms in intense laser-foil interactions

    Science.gov (United States)

    Padda, Hersimerjit; King, Martin; Gray, Ross; Powell, Haydn; Gonzalez-Izquierdo, Bruno; Stockhausen, Luca; Wilson, Robbie; Carroll, David; Dance, Rachel; MacLellan, David; Yuan, Xiaohui; Butler, Nick; Capdessus, Remi; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-10-01

    Laser-driven sheath acceleration of ions has been widely studied and the recent move to ultra thin foil interactions enables promising new acceleration mechanisms. However, the acceleration dynamics in this regime are complex and over the course of the laser-foil interaction multiple ion acceleration mechanisms can occur, resulting in the dominant mechanism changing throughout the interaction. Measuring the spatial intensity distribution of the accelerated proton beam we investigate the transition from radiation pressure acceleration to transparency-driven processes. Using PIC simulations, the radiation pressure drives an increased expansion of the target ions, which results in a radial deflection of low MeV protons to form an annular distribution. By varying the thickness of the target, the opening angle of the ring is shown to be correlated to the point in time that transparency occurs and is maximised at the peak of the laser intensity profile. Measurements of the ring size as a function of target thickness are found to be in good agreement with the simulation results.

  7. Mechanism of Silicon Electrode Aging upon Cycling in Full Lithium-Ion Batteries.

    Science.gov (United States)

    Delpuech, Nathalie; Dupre, Nicolas; Moreau, Philippe; Bridel, Jean-Sebastian; Gaubicher, Joel; Lestriez, Bernard; Guyomard, Dominique

    2016-04-21

    Understanding the aging mechanism of silicon-based negative electrodes for lithium-ion batteries upon cycling is essential to solve the problem of low coulombic efficiency and capacity fading and further to implement this new high-capacity material in commercial cells. Nevertheless, such studies have so far focused on half cells in which silicon is cycled versus an infinite reservoir of lithium. In the present work, the aging mechanism of silicon-based electrodes is studied upon cycling in a full Li-ion cell configuration with LiCoO2 as the positive electrode. Postmortem analyses of both electrodes clearly indicate that neither one of them contains lithium and that no discernible degradation results from the cycling. The aging mechanism can be explained by the reduction of solvent molecules. Electrons extracted from the positive electrode are responsible for an internal imbalance in the cell, which results in progressive slippage of the electrodes and reduces the compositional range of cyclable lithium ions for both electrodes.

  8. Efficient Simulation and Abuse Modeling of Mechanical-Electrochemical-Thermal Phenomena in Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Smith, Kandler A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Graf, Peter A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pesaran, Ahmad A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Chao [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lamb, Joshua [Sandia National Laboratories; Abraham, Daniel [Argonne National Laboratory; Dees, Dennis [Argonne National Laboratory; Yao, Pierre [Argonne National Laboratory

    2017-08-08

    NREL's Energy Storage team is exploring the effect of mechanical crush of lithium ion cells on their thermal and electrical safety. PHEV cells, fresh as well as ones aged over 8 months under different temperatures, voltage windows, and charging rates, were subjected to destructive physical analysis. Constitutive relationship and failure criteria were developed for the electrodes, separator as well as packaging material. The mechanical models capture well, the various modes of failure across different cell components. Cell level validation is being conducted by Sandia National Laboratories.

  9. Mechanical and Thermal Properties of Compression Molded Poly (acrylic acid) Salts with Multivalent Metal Ions

    OpenAIRE

    Gotoh, Y.; Ohkoshi, Y; Nagura, M

    1999-01-01

    Films of zinc, calcium and aluminum salts of poly (acrylic acid) (PAA) were prepared from their powdery salts by compression molding at 190_??_200°C, 600MPa for 0.5hr and their mechanical and thermal properties were investigated. From the results of the dynamic mechanical thermal analysis the storage modulus of each PAA salts exhibited about 20GPa at room temperature because of highly intermolecular crosslinking of PAA by metal ions. Modulus of PAA calcium salt was 7GPa even at 400°C, while m...

  10. Study of energy transfer mechanism from ZnO nanocrystals to Eu(3+) ions.

    Science.gov (United States)

    Mangalam, Vivek; Pita, Kantisara; Couteau, Christophe

    2016-12-01

    In this work, we investigate the efficient energy transfer occurring between ZnO nanocrystals (ZnO-nc) and europium (Eu(3+)) ions embedded in a SiO2 matrix prepared using the sol-gel technique. We show that a strong red emission was observed at 614 nm when the ZnO-nc were excited using a continuous optical excitation at 325 nm. This emission is due to the radiative (5)D0 → (7)F2 de-excitation of the Eu(3+) ions and has been conclusively shown to be due to the energy transfer from the excited ZnO-nc to the Eu(3+) ions. The photoluminescence excitation spectra are also examined in this work to confirm the energy transfer from ZnO-nc to the Eu(3+) ions. Furthermore, we study various de-excitation processes from the excited ZnO-nc and their contribution to the energy transfer to Eu(3+) ions. We also report the optimum fabrication process for maximum red emission at 614 nm from the samples where we show a strong dependence on the annealing temperature and the Eu(3+) concentration in the sample. The maximum red emission is observed with 12 mol% Eu(3+) annealed at 450 °C. This work provides a better understanding of the energy transfer mechanism from ZnO-nc to Eu(3+) ions and is important for applications in photonics, especially for light emitting devices.

  11. Li-ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts

    Science.gov (United States)

    Zhang, Xiaowei; Sahraei, Elham; Wang, Kai

    2016-09-01

    Separator integrity is an important factor in preventing internal short circuit in lithium-ion batteries. Local penetration tests (nail or conical punch) often produce presumably sporadic results, where in exactly similar cell and test set-ups one cell goes to thermal runaway while the other shows minimal reactions. We conducted an experimental study of the separators under mechanical loading, and discovered two distinct deformation and failure mechanisms, which could explain the difference in short circuit characteristics of otherwise similar tests. Additionally, by investigation of failure modes, we provided a hypothesis about the process of formation of local “soft short circuits” in cells with undetectable failure. Finally, we proposed a criterion for predicting onset of soft short from experimental data.

  12. Transduction of Repetitive Mechanical Stimuli by Piezo1 and Piezo2 Ion Channels

    Directory of Open Access Journals (Sweden)

    Amanda H. Lewis

    2017-06-01

    Full Text Available Several cell types experience repetitive mechanical stimuli, including vein endothelial cells during pulsating blood flow, inner ear hair cells upon sound exposure, and skin cells and their innervating dorsal root ganglion (DRG neurons when sweeping across a textured surface or touching a vibrating object. While mechanosensitive Piezo ion channels have been clearly implicated in sensing static touch, their roles in transducing repetitive stimulations are less clear. Here, we perform electrophysiological recordings of heterologously expressed mouse Piezo1 and Piezo2 responding to repetitive mechanical stimulations. We find that both channels function as pronounced frequency filters whose transduction efficiencies vary with stimulus frequency, waveform, and duration. We then use numerical simulations and human disease-related point mutations to demonstrate that channel inactivation is the molecular mechanism underlying frequency filtering and further show that frequency filtering is conserved in rapidly adapting mouse DRG neurons. Our results give insight into the potential contributions of Piezos in transducing repetitive mechanical stimuli.

  13. Finite element simulation of the gating mechanism of mechanosensitive ion channels

    Science.gov (United States)

    Bavi, Navid; Qin, Qinghua; Martinac, Boris

    2013-08-01

    In order to eliminate limitations of existing experimental or computational methods (such as patch-clamp technique or molecular dynamic analysis) a finite element (FE) model for multi length-scale and time-scale investigation on the gating mechanism of mechanosensitive (MS) ion channels has been established. Gating force value (from typical patch clamping values) needed to activate Prokaryotic MS ion channels was applied as tensional force to the FE model of the lipid bilayer. Making use of the FE results, we have discussed the effects of the geometrical and the material properties of the Escherichia coli MscL mechanosensitive ion channel opening in relation to the membrane's Young's modulus (which will vary depending on the cell type or cholesterol density in an artificial membrane surrounding the MscL ion channel). The FE model has shown that when the cell membrane stiffens the required channel activation force increases considerably. This is in agreement with experimental results taken from the literature. In addition, the present study quantifies the relationship between the membrane stress distribution around a `hole' for modeling purposes and the stress concentration in the place transmembrane proteins attached to the hole by applying an appropriate mesh refinement as well as well defining contact condition in these areas.

  14. Detailed analysis of the cell-inactivation mechanism by accelerated protons and light ions

    Energy Technology Data Exchange (ETDEWEB)

    Kundrat, Pavel [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-182 21 Praha 8 (Czech Republic)

    2006-03-07

    A detailed study of the biological effects of diverse quality radiations, addressing their biophysical interpretation, is presented. Published survival data for V79 cells irradiated by monoenergetic protons, helium-3, carbon and oxygen ions and for CHO cells irradiated by carbon ions have been analysed using the probabilistic two-stage model of cell inactivation. Three different classes of DNA damage formed by traversing particles have been distinguished, namely severe single-track lesions which might lead to cell inactivation directly, less severe lesions where cell inactivation is caused by their combinations and lesions of negligible severity that can be repaired easily. Probabilities of single ions forming these lesions have been assessed in dependence on their linear energy transfer (LET) values. Damage induction probabilities increase with atomic number and LET. While combined lesions play a crucial role at lower LET values, single-track damage dominates in high-LET regions. The yields of single-track lethal lesions for protons have been compared with Monte Carlo estimates of complex DNA lesions, indicating that lethal events correlate well with complex DNA double-strand breaks. The decrease in the single-track damage probability for protons of LET above approximately 30 keV {mu}m{sup -1}, suggested by limited experimental evidence, is discussed, together with the consequent differences in the mechanisms of biological effects between protons and heavier ions. Applications of the results in hadrontherapy treatment planning are outlined.

  15. Degradation Mechanisms and Lifetime Prediction for Lithium-Ion Batteries -- A Control Perspective: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kandler; Shi, Ying; Santhanagopalan, Shriram

    2015-07-29

    Predictive models of Li-ion battery lifetime must consider a multiplicity of electrochemical, thermal, and mechanical degradation modes experienced by batteries in application environments. To complicate matters, Li-ion batteries can experience different degradation trajectories that depend on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. We present a generalized battery life prognostic model framework for battery systems design and control. The model framework consists of trial functions that are statistically regressed to Li-ion cell life datasets wherein the cells have been aged under different levels of stress. Degradation mechanisms and rate laws dependent on temperature, storage, and cycling condition are regressed to the data, with multiple model hypotheses evaluated and the best model down-selected based on statistics. The resulting life prognostic model, implemented in state variable form, is extensible to arbitrary real-world scenarios. The model is applicable in real-time control algorithms to maximize battery life and performance. We discuss efforts to reduce lifetime prediction error and accommodate its inevitable impact in controller design.

  16. MECHANICAL PROPERTIES OF PVA NANOFIBER TEXTILES WITH INCORPORATED NANODIAMONDS, COPPER AND SILVER IONS

    Directory of Open Access Journals (Sweden)

    Kateřina Indrová

    2015-02-01

    Full Text Available The unique properties of nanotextiles based on poly(vinyl-alcohol (PVA manufactured using electrospinning method have been known and exploited for many years. Recently, the enrichment of nanofiber textiles with nanoparticles, such as ions or nanodiamond particles (NDP, has become a popular way to modify the textile mechanical, chemical and physical properties. The aim of our study is to investigate the macromechanical properties of PVA nanotextiles enriched with NDP, silver (Ag and copper (Cu ions. The nanofiber textiles of a various surface weight were prepared from 16% PVA solution, while glyoxal and phosphoric acid were used as cross-linking agents. The copper and silver ions were diluted in aqueous solution and NDP were dispersed into the fibers by ultrasound homogenization. All but one set of samples were exposed to the temperature of 140 °C for 10 minutes. The samples without thermal stabilization exhibited significantly lower elastic stiffness and tensile strength. Moreover, the results of tensile testing indicate that the addition of dispersed nanoparticles has a minor effect on the mechanical properties of textiles and contributes rather to their reinforcement. On the other hand, the lack of thermal stabilization results in a poor interconnection of individual nanofiber layers and the non-stabilized textiles exhibit a lower elastic stiffness and reduced tensile strength.

  17. Degradation mechanism of sulfonated poly(ether ether ketone) (SPEEK) ion exchange membranes under vanadium flow battery medium.

    Science.gov (United States)

    Yuan, Zhizhang; Li, Xianfeng; Hu, Jinbo; Xu, Wanxing; Cao, Jingyu; Zhang, Huamin

    2014-10-07

    The degradation mechanism of hydrocarbon ion exchange membranes under vanadium flow battery (VFB) medium was investigated and clarified for the first time. This work will be highly beneficial for improving the chemical stability of hydrocarbon ion exchange membranes, which is one of the most challenging issues for VFB application.

  18. Fragmentation Mechanism of Fullerenes in the Positive and Negative Ion Channels

    Institute of Scientific and Technical Information of China (English)

    孔庆宇; 赵利; 庄军; 钱士雄; 李郁芬

    2001-01-01

    We have performed the photofragmentation studies of pristine C60 and C60/C70 composites on the reflectron time-of-flight mass spectrometer (RTOF MS) in the positive and negative ion channels. The mechanism of the formation of daughter fullerenes in the negative ion channel and the enhancement of fullerene coalescence reactions have been discussed and compared to our previous studies on the linear TOF. The 5 cm free expansion path in the RTOF experiments provides sufficient time and a favourable environment for the electrons to attach to the neutral daughter species, so it is thought to play a key role for the appearance of strong mass peaks of anionic fragmentation and aggregation fullerene products. The appearance of odd-numbered "fullerene" fragments is briefly discussed.

  19. MODIFICATION OF SURFACE MECHANICAL PROPERTIES OF POLYCARBONATE BY B+ AND O+ IONS IMPLANTATION

    Institute of Scientific and Technical Information of China (English)

    S.D.Yao; C.Sun; S.Q.Zhou; C.C.Sun; Y.H.Lu; L.Huang; A.Vantomme; Q.Zhao; G.Langouche

    2002-01-01

    By implanting B+ and O+ ions respectively into polycarbonate (PC) plates, the sur-face mechanical properties of PC have been improved. Measurement by Nano IndenterⅡ showed that the hardness of samples increased 7-25 times than that before implan-tation; and the modulus of elasticity raised 2-5 times. The wear-resistance was testedby ball crusher; the width and depth of the wear-streak decreased by 1/3-1/2 or evenmore. The structure, deformation and appearance were analyzed by using Micro-FTIR Spectra, ESCA method and the steps instrument. These analyses showed thatthe structure of PC had been modified: a series of new cross-linking yielded, it de-pends on the Linear Energy Transition (LET) of implanted ions in the high polymercompounds.

  20. State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-ion Batteries

    Science.gov (United States)

    Xu, Jun; Liu, Binghe; Hu, Dayong

    2016-02-01

    Understanding the mechanism of mechanical deformation/stress-induced electrical failure of lithium–ion batteries (LIBs) is important in crash-safety design of power LIBs. The state of charge (SOC) of LIBs is a critical factor in their electrochemical performance; however, the influence of SOC with mechanical integrity of LIBs remains unclear. This study investigates the electrochemical failure behaviors of LIBs with various SOCs under both compression and bending loadings, underpinned by the short circuit phenomenon. Mechanical behaviors of the whole LIB body, which is regarded as an intact structure, were analyzed in terms of structure stiffness. Results showed that the mechanical behaviors of LIBs depend highly on SOC. Experimental verification on the cathode and anode sheet compression tests show that higher SOC with more lithium inserted in the anode leads to higher structure stiffness. In the bending tests, failure strain upon occurrence of short circuit has an inverse linear relationship with the SOC value. These results may shed light on the fundamental physical mechanism of mechanical integrity LIBs in relation to inherent electrochemical status.

  1. State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-ion Batteries

    Science.gov (United States)

    Xu, Jun; Liu, Binghe; Hu, Dayong

    2016-01-01

    Understanding the mechanism of mechanical deformation/stress-induced electrical failure of lithium–ion batteries (LIBs) is important in crash-safety design of power LIBs. The state of charge (SOC) of LIBs is a critical factor in their electrochemical performance; however, the influence of SOC with mechanical integrity of LIBs remains unclear. This study investigates the electrochemical failure behaviors of LIBs with various SOCs under both compression and bending loadings, underpinned by the short circuit phenomenon. Mechanical behaviors of the whole LIB body, which is regarded as an intact structure, were analyzed in terms of structure stiffness. Results showed that the mechanical behaviors of LIBs depend highly on SOC. Experimental verification on the cathode and anode sheet compression tests show that higher SOC with more lithium inserted in the anode leads to higher structure stiffness. In the bending tests, failure strain upon occurrence of short circuit has an inverse linear relationship with the SOC value. These results may shed light on the fundamental physical mechanism of mechanical integrity LIBs in relation to inherent electrochemical status. PMID:26911922

  2. Interaction mechanisms and kinetics of ferrous ion and hexagonal birnessite in aqueous systems.

    Science.gov (United States)

    Gao, Tianyu; Shen, Yougang; Jia, Zhaoheng; Qiu, Guohong; Liu, Fan; Zhang, Yashan; Feng, Xionghan; Cai, Chongfa

    2015-12-01

    In soils and sediments, manganese oxides and oxygen usually participate in the oxidation of ferrous ions. There is limited information concerning the interaction process and mechanisms of ferrous ions and manganese oxides. The influence of air (oxygen) on reaction process and kinetics has been seldom studied. Because redox reactions usually occur in open systems, the participation of air needs to be further investigated. To simulate this process, hexagonal birnessite was prepared and used to oxidize ferrous ions in anoxic and aerobic aqueous systems. The influence of pH, concentration, temperature, and presence of air (oxygen) on the redox rate was studied. The redox reaction of birnessite and ferrous ions was accompanied by the release of Mn(2+) and K(+) ions, a significant decrease in Fe(2+) concentration, and the formation of mixed lepidocrocite and goethite during the initial stage. Lepidocrocite did not completely transform into goethite under anoxic condition with pH about 5.5 within 30 days. Fe(2+) exhibited much higher catalytic activity than Mn(2+) during the transformation from amorphous Fe(III)-hydroxide to lepidocrocite and goethite under anoxic conditions. The release rates of Mn(2+) were compared to estimate the redox rates of birnessite and Fe(2+) under different conditions. Redox rate was found to be controlled by chemical reaction, and increased with increasing Fe(2+) concentration, pH, and temperature. The formation of ferric (hydr)oxides precipitate inhibited the further reduction of birnessite. The presence of air accelerated the oxidation of Fe(2+) to ferric oxides and facilitated the chemical stability of birnessite, which was not completely reduced and dissolved after 18 days. As for the oxidation of aqueous ferrous ions by oxygen in air, low and high pHs facilitated the formation of goethite and lepidocrocite, respectively. The experimental results illustrated the single and combined effects of manganese oxide and air on the transformation

  3. EFFECT OF FLUORINE AND CHLORINE IONS ON THE REACTION SINTERING OF MECHANICALLY ACTIVATED ZIRCON-ALUMINA MIXTURE

    Directory of Open Access Journals (Sweden)

    R. Zamani Foroshani

    2015-09-01

    Full Text Available The aim of this work was to study the effect of fluorine and chlorine ions on the formation of mullite during the reaction sintering of mechanically activated zircon-alumina powder mixture. The results showed that mechanical activation of zirconalumina powder mixture for 20 h led to grain refinement and partial amorphization. In the presence of fluorine and chlorine ions, complete formation of mullite in the mechanically activated sample occurred after 2 h of reaction sintering at 1300oC and 1400oC, respectively. In the sample lacking fluorine and chlorine ions, mullitization was not completed even after 2 h of reaction sintering at 1400oC. It was concluded that presence of fluorine and chlorine ions enhance the dissociation of zircon and formation of mullite during the reaction sintering of mechanically activated zircon-alumina mixture.

  4. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    Science.gov (United States)

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-06-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.

  5. Microstructure evolution and degradation mechanisms of reactor internal steel irradiated with heavy ions

    Science.gov (United States)

    Borodin, O. V.; Bryk, V. V.; Kalchenko, A. S.; Parkhomenko, A. A.; Shilyaev, B. A.; Tolstolutskaya, G. D.; Voyevodin, V. N.

    2009-03-01

    Structure evolution and degradation mechanisms during irradiation of 18Cr-10Ni-Ti steel (material of VVER-1000 reactor internals are investigated). Using accelerator irradiations with Cr3+ and Ar+ ions allowed studying effects of dose rate, different initial structure state and implanted ions on features of structure evolution and main mechanisms of degradation including low temperature swelling and embrittlement of the 18Cr-10Ni-Ti steel. It is shown that differences in dose rate at most irradiation temperatures mainly exert their influence on the duration of the swelling transient regime. Calculations of possible transmutation products during irradiation of this steel in a VVER-1000 spectrum were performed. It is shown that gaseous atoms (He and H), which are generated simultaneously with radiation defects, stabilize the elements of radiation microstructure and influence the swelling. The nature of deformation under different temperatures of irradiation and of mechanical testing is investigated. It is shown that the temperature sensitivity of swelling behaviour in the investigated steel, with different initial structures can be connected with the dynamic behaviour of point defect sinks.

  6. Mechanisms of material removal and mass transport in focused ion beam nanopore formation

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kallol, E-mail: das7@illinois.edu; Johnson, Harley T., E-mail: htj@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, MC-244, Urbana, Illinois 61801 (United States); Freund, Jonathan B., E-mail: jbfreund@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 West Green Street, MC-244, Urbana, Illinois 61801 (United States); Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 306 Talbot Laboratory, MC-236, 104 South Wright Street Urbana, Illinois 61801 (United States)

    2015-02-28

    Despite the widespread use of focused ion beam (FIB) processing as a material removal method for applications ranging from electron microscope sample preparation to nanopore processing for DNA sequencing, the basic material removal mechanisms of FIB processing are not well understood. We present the first complete atomistic simulation of high-flux FIB using large-scale parallel molecular dynamics (MD) simulations of nanopore fabrication in freestanding thin films. We focus on the root mechanisms of material removal and rearrangement and describe the role of explosive boiling in forming nanopores. FIB nanopore fabrication is typically understood to occur via sputter erosion. This can be shown to be the case in low flux systems, where individual ion impacts are sufficiently separated in time that they may be considered as independent events. But our detailed MD simulations show that in high flux FIB processing, above a threshold level at which thermal effects become significant, the primary mechanism of material removal changes to a significantly accelerated, thermally dominated process. Under these conditions, the target is heated by the ion beam faster than heat is conducted away by the material, leading quickly to melting, and then continued heating to nearly the material critical temperature. This leads to explosive boiling of the target material with spontaneous bubble formation and coalescence. Mass is rapidly rearranged at the atomistic scale, and material removal occurs orders of magnitude faster than would occur by simple sputtering. While the phenomenology is demonstrated computationally in silicon, it can be expected to occur at lower beam fluxes in other cases where thermal conduction is suppressed due to material properties, geometry, or ambient thermal conditions.

  7. Resistance and biosorption mechanism of silver ions by Bacillus cereus biomass

    Institute of Scientific and Technical Information of China (English)

    Li Li; Qing Hu; Jinghai Zeng; Hongyan Qi; Guoqiang Zhuang

    2011-01-01

    Biosorption of silver ions onto Bacillus cereus biomass was investigated.Overall kinetic experiments were performed for the determination of the necessary contact time for the attainment of equilibrium.It was found that the overall biosorption process was best described by pseudo second-order kinetic model.The crystals detected by scanning electron microscope and X-ray photoelectron spectroscopy suggested the precipitation was a possible mechanism of biosorption.The molecular genetics of silver resistance of B.cereus biomass was also detected and illustrated by a whole cell sensor tool.

  8. Diverse mechanisms underlying the regulation of ion channels by carbon monoxide.

    Science.gov (United States)

    Peers, C; Boyle, J P; Scragg, J L; Dallas, M L; Al-Owais, M M; Hettiarachichi, N T; Elies, J; Johnson, E; Gamper, N; Steele, D S

    2015-03-01

    Carbon monoxide (CO) is firmly established as an important, physiological signalling molecule as well as a potent toxin. Through its ability to bind metal-containing proteins, it is known to interfere with a number of intracellular signalling pathways, and such actions can account for its physiological and pathological effects. In particular, CO can modulate the intracellular production of reactive oxygen species, NO and cGMP levels, as well as regulate MAPK signalling. In this review, we consider ion channels as more recently discovered effectors of CO signalling. CO is now known to regulate a growing number of different ion channel types, and detailed studies of the underlying mechanisms of action are revealing unexpected findings. For example, there are clear areas of contention surrounding its ability to increase the activity of high conductance, Ca(2+) -sensitive K(+) channels. More recent studies have revealed the ability of CO to inhibit T-type Ca(2+) channels and have unveiled a novel signalling pathway underlying tonic regulation of this channel. It is clear that the investigation of ion channels as effectors of CO signalling is in its infancy, and much more work is required to fully understand both the physiological and the toxic actions of this gas. Only then can its emerging use as a therapeutic tool be fully and safely exploited.

  9. Ion-beam modifications of mechanical and dimensional properties of silicon carbide

    Science.gov (United States)

    Costantini, Jean-Marc; Kerbiriou, Xavier; Sauzay, Maxime; Thomé, Lionel

    2012-11-01

    3C-SiC single crystal epitaxial layers, 6H-SiC single crystal plates and α-SiC Hexoloy sinters were irradiated with 4.0 MeV Xe or 4.0 MeV Au ions at room temperature. Mechanical and dimensional evolutions of silicon carbide are studied by means of nano-indentation and step-height measurements which are correlated with Rutherford backscattering spectrometry and channelling (RBS/C) data in single crystals. Irradiation with Xe ions induces a total lattice disorder related to amorphization for a fluence of 1 × 1015 cm-2 in both polytypes. When complete amorphization is reached, around the same values of Young's modulus (˜350 GPa) and Berkovich hardness (˜27 GPa) are found in both polytypes. The out-of-plane expansion increases with irradiation dose and the saturation value measured in the amorphous layer (normalized to the projected range of the ions) is close to 20-25%. Modifications of macroscopic properties are mainly governed by the disordered fraction of the material in a two-step damage process. A similar behaviour of material evolution is found for the cubic and hexagonal polytypes, either in single crystals or sintered polycrystalline samples. Calculations of Young's modulus and volume swelling are carried out using the analytical (Reuss and Voigt) models of homogenization.

  10. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness.

    Science.gov (United States)

    Blakely, E A; Kronenberg, A

    1998-11-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  11. High-Energy Ion Acceleration Mechanisms in a Dense Plasma Focus Z-Pinch

    Science.gov (United States)

    Higginson, D. P.; Link, A.; Schmidt, A.; Welch, D.

    2016-10-01

    The compression of a Z-pinch plasma, specifically in a dense plasma focus (DPF), is known to accelerate high-energy electrons, ions and, if using fusion-reactant ions (e.g. D, T), neutrons. The acceleration of particles is known to coincide with the peak constriction of the pinch, however, the exact physical mechanism responsible for the acceleration remains an area of debate and uncertainty. Recent work has suggested that this acceleration is linked to the growth of an m =0 (sausage) instability that evacuates a region of low-density, highly-magnetized plasma and creates a strong (>MV/cm) electric field. Using the fully kinetic particle-in-cell code LSP in 2D-3V, we simulate the compression of a 2 MA, 35 kV DPF plasma and investigate in detail the formation of the electric field. The electric field is found to be predominantly in the axial direction and driven via charge-separation effects related to the resistivity of the kinetic plasma. The strong electric and magnetic fields are shown to induce non-Maxwellian distributions in both the ions and electrons and lead to the acceleration of high-energy tails. We compare the results in the kinetic simulations to assumptions of magnetohydrodynamics (MHD). Prepared by LLNL under Contract DE-AC52-07NA27344.

  12. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    Science.gov (United States)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  13. Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries

    Science.gov (United States)

    Venugopal, Ganesh

    Lithium-ion (Li-ion) cells that are subjected to electrical abuse, overcharge and external short-circuit in particular, exhibit a rapid increase in cell temperature that could potentially lead to catastrophic disassembly of the cell. For this reason these cells are integrated or combined with one or more safety components that are designed to restrict or even prevent current flow through the cell under abusive conditions. In this work, the characteristics of these components in several prismatic Li-ion cells are studied by monitoring the impedance ( Z) at 1 kHz and the open circuit voltage (OCV) of the discharged cells as a function of temperature. All the cells studied were found to use polyethylene-based shutdown (SD) separators that were irreversibly activated within a narrow temperature range between 130 and 135°C. In some cells irreversible cut-off was also provided by a current interrupt device (CID) or a thermal fuse. Both these devices had a circuit-breaker effect, causing the impedance of the cell to rise infinitely and the OCV to drop to zero. In addition to these irreversible cut-off mechanisms, some cells also contained internal or external positive-temperature-coefficient (PTC) devices that could provide current-limiting capability over a very wide temperature range. The interdependence of the thermal behavior of these components on each other and on other thermally dependant processes like cell venting, separator meltdown and weld joint failure are also discussed.

  14. INTERACTION OF AMINO ACID WITH ION EXCHANGE RESIN Ⅲ.FURTHER INVESTIGA TION OF SUPEREQUIVALENT ADSORPTION MECHANISM OF AMINO ACID ON ION EXCHANGE RESIN

    Institute of Scientific and Technical Information of China (English)

    ZHANGHui; SHAOTong; 等

    1994-01-01

    The adsorption isotherms of glycine,alanine and oxidized glutathion on strong acid cation and strong base anion exchange resins from aqueous solutions were measured and the superequivalent adsorptions of glycine and alanine observed.The infrared spectra of glycine adsorbed on the cation and the anion exchange resins,001×7 and 201×7,were measured.From these results,it is concluded that the amino acid adsorption on the ion exchange resin proceeds not only through ion exchange and proton transfer mechanisms,but also through aminecarboxylate interaction between the adsorbed amino acid molecules,and the formation of second layer of amino acid molecules is the mechanism of superequivalent adsorption of amino acid,the carboxylate or amine groups of the first layer of amino acid molecules on the ion exchange resin act as the exchange sites for the second layer of amino acid molecules.

  15. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries.

    Science.gov (United States)

    Ebner, Martin; Marone, Federica; Stampanoni, Marco; Wood, Vanessa

    2013-11-08

    High-energy-density materials that undergo conversion and/or alloying reactions hold promise for next-generation lithium (Li) ion batteries. However, these materials experience substantial volume change during electrochemical operation, which causes mechanical fracture of the material and structural disintegration of the electrode, leading to capacity loss. In this work, we use x-ray tomography during battery operation to visualize and quantify the origins and evolution of electrochemical and mechanical degradation. Tomography provides the time-resolved, three-dimensional chemical composition and morphology within individual particles and throughout the electrode. In the model material tin(II) oxide, we witness distributions in onset and rate of core-shell lithiation, crack initiation and growth along preexisting defects, and irreversible distortion of the electrode, highlighting tomography as a tool to guide the development of durable materials and strain-tolerant electrodes.

  16. Simultaneously Coupled Mechanical-Electrochemical-Thermal Simulation of Lithium-Ion Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2016-08-01

    Understanding the combined electrochemical-thermal and mechanical response of a system has a variety of applications, for example, structural failure from electrochemical fatigue and the potential induced changes of material properties. For lithium-ion batteries, there is an added concern over the safety of the system in the event of mechanical failure of the cell components. In this work, we present a generic multi-scale simultaneously coupled mechanical-electrochemical-thermal model to examine the interaction between mechanical failure and electrochemical-thermal responses. We treat the battery cell as a homogeneous material while locally we explicitly solve for the mechanical response of individual components using a homogenization model and the electrochemical-thermal responses using an electrochemical model for the battery. A benchmark problem is established to demonstrate the proposed modeling framework. The model shows the capability to capture the gradual evolution of cell electrochemical-thermal responses, and predicts the variation of those responses under different short-circuit conditions.

  17. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries

    Science.gov (United States)

    Zhang, Chao; Xu, Jun; Cao, Lei; Wu, Zenan; Santhanagopalan, Shriram

    2017-07-01

    The electrodes of lithium-ion batteries (LIB) are known to be brittle and to fail earlier than the separators during an external crush event. Thus, the understanding of mechanical failure mechanism for LIB electrodes (anode and cathode) is critical for the safety design of LIB cells. In this paper, we present experimental and numerical studies on the constitutive behavior and progression of failure in LIB electrodes. Mechanical tests were designed and conducted to evaluate the constitutive properties of porous electrodes. Constitutive models were developed to describe the stress-strain response of electrodes under uniaxial tensile and compressive loads. The failure criterion and a damage model were introduced to model their unique tensile and compressive failure behavior. The failure mechanism of LIB electrodes was studied using the blunt rod test on dry electrodes, and numerical models were built to simulate progressive failure. The different failure processes were examined and analyzed in detail numerically, and correlated with experimentally observed failure phenomena. The test results and models improve our understanding of failure behavior in LIB electrodes, and provide constructive insights on future development of physics-based safety design tools for battery structures under mechanical abuse.

  18. The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity.

    Science.gov (United States)

    Martinac, Boris

    2014-02-01

    As biological force-sensing systems mechanosensitive (MS) ion channels present the best example of coupling molecular dynamics of membrane proteins to the mechanics of the surrounding cell membrane. In animal cells MS channels have over the past two decades been very much in focus of mechanotransduction research. In recent years this helped to raise awareness of basic and medical researchers about the role that abnormal MS channels may play in the pathophysiology of diseases, such as cardiac hypertrophy, atrial fibrillation, muscular dystrophy or polycystic kidney disease. To date a large number of MS channels from organisms of diverse phylogenetic origins have been identified at the molecular level; however, the structure of only few of them has been determined. Although their function has extensively been studied in a great variety of cells and tissues by different experimental approaches it is, with exception of bacterial MS channels, very little known about how these channels sense mechanical force and which cellular components may contribute to their function. By focusing on MS channels found in animal cells this article discusses the ways in which the connections between cytoskeleton and ion channels may contribute to mechanosensory transduction in these cells. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.

  19. Mechanical damage in a lithium-ion pouch cell under indentation loads

    Science.gov (United States)

    Luo, Hailing; Xia, Yong; Zhou, Qing

    2017-07-01

    The short circuit of lithium-ion batteries induced by mechanical abuse is a great concern in electric vehicle design. It remains a challenge to fully understand the nature of the mechanical damage process with the aim of improving battery crash safety. The present paper investigates the evolution of the damage process for a lithium-ion pouch cell under indentation by loading the cell to various force levels. A significant inflection point on the force-indentation curve is observed before the force peak. Post-mortem examinations indicate that the characteristic change in the local slope of the curve is related to the change occurring at the local interfaces, including three phenomena - formation of tight adhesion on the anode-separator interfaces, delamination in the separators and decoating of graphite particles from the anodes. Analysis of the fracture sequence at the onset of short circuit clearly shows that the number of short-circuited electrode pairs is equal to the number of anode layers adhered with delaminated separator material before fracture occurs. The experimental study in the present paper implies that the inflection point on the force-indentation curve may be an indicator of damage initiation inside pouch cells under indentation.

  20. Mechanical abuse simulation and thermal runaway risks of large-format Li-ion batteries

    Science.gov (United States)

    Wang, Hsin; Lara-Curzio, Edgar; Rule, Evan T.; Winchester, Clinton S.

    2017-02-01

    Internal short circuit of large-format Li-ion pouch cells induced by mechanical abuse was simulated using a modified mechanical pinch test. A torsion force was added manually at ∼40% maximum compressive loading force during the pinch test. The cell was twisted about 5° to the side by horizontally pulling a wire attached to the anode tab. The combined torsion-compression force created small failure at the separator yet allowed testing of fully charged large format Li-ion cells without triggering thermal runaway. Two types of commercial cells were tested using 4-6 cells at each state-of-charge (SOC). Commercially available 18 Ahr LiFePO4 (LFP) and 25 Ahr Li(NiMnCo)1/3O2 (NMC) cells were tested, and a thermal runaway risk (TRR) score system was used to evaluate the safety of the cells under the same testing conditions. The aim was to provide the cell manufacturers and end users with a tool to compare different designs and safety features.

  1. Intra-pulse transition between ion acceleration mechanisms in intense laser-foil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Padda, H.; King, M.; Gray, R. J.; Powell, H. W.; Gonzalez-Izquierdo, B.; Wilson, R.; Dance, R. J.; MacLellan, D. A.; Butler, N. M. H.; Capdessus, R.; McKenna, P., E-mail: paul.mckenna@strath.ac.uk [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Stockhausen, L. C. [Centro de Laseres Pulsados (CLPU), Parque Cientifico, Calle del Adaja s/n. 37185 Villamayor, Salamanca (Spain); Carroll, D. C. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Yuan, X. H. [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Borghesi, M. [Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Neely, D. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom)

    2016-06-15

    Multiple ion acceleration mechanisms can occur when an ultrathin foil is irradiated with an intense laser pulse, with the dominant mechanism changing over the course of the interaction. Measurement of the spatial-intensity distribution of the beam of energetic protons is used to investigate the transition from radiation pressure acceleration to transparency-driven processes. It is shown numerically that radiation pressure drives an increased expansion of the target ions within the spatial extent of the laser focal spot, which induces a radial deflection of relatively low energy sheath-accelerated protons to form an annular distribution. Through variation of the target foil thickness, the opening angle of the ring is shown to be correlated to the point in time transparency occurs during the interaction and is maximized when it occurs at the peak of the laser intensity profile. Corresponding experimental measurements of the ring size variation with target thickness exhibit the same trends and provide insight into the intra-pulse laser-plasma evolution.

  2. Evaluation of copper ion of antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori and optical, mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Hwan [School of Materials Science and Engineering, University of Yonsei, Seoul (Korea, Republic of); Choi, Yu-ri; Kim, Kwang-Mahn [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, University of Yonsei, Seoul (Korea, Republic of); Choi, Se-Young, E-mail: sychoi@yonsei.ac.kr [School of Materials Science and Engineering, University of Yonsei, Seoul (Korea, Republic of)

    2012-02-01

    Antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori of copper ion was researched. Also, additional effects of copper ion coating on optical and mechanical properties were researched as well. Copper ion was coated on glass substrate as a thin film to prevent bacteria from growing. Cupric nitrate was used as precursors for copper ion. The copper ion contained sol was deposited by spin coating process on glass substrate. Then, the deposited substrates were heat treated at the temperature range between 200 Degree-Sign C and 250 Degree-Sign C. The thickness of deposited copper layer on the surface was 63 nm. The antibacterial effect of copper ion coated glass on P. aeruginosa, S. typhimurium and H. pylori demonstrated excellent effect compared with parent glass. Copper ion contained layer on glass showed a similar value of transmittance compared with value of parent glass. The 3-point bending strength and Vickers hardness were 209.2 MPa, 540.9 kg/mm{sup 2} which were about 1.5% and 1.3% higher than the value of parent glass. From these findings, it is clear that copper ion coating on glass substrate showed outstanding effect not only in antibacterial activity but also in optical and mechanical properties as well.

  3. Evaluation of copper ion of antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori and optical, mechanical properties

    Science.gov (United States)

    Kim, Young-Hwan; Choi, Yu-ri; Kim, Kwang-Mahn; Choi, Se-Young

    2012-02-01

    Antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori of copper ion was researched. Also, additional effects of copper ion coating on optical and mechanical properties were researched as well. Copper ion was coated on glass substrate as a thin film to prevent bacteria from growing. Cupric nitrate was used as precursors for copper ion. The copper ion contained sol was deposited by spin coating process on glass substrate. Then, the deposited substrates were heat treated at the temperature range between 200 °C and 250 °C. The thickness of deposited copper layer on the surface was 63 nm. The antibacterial effect of copper ion coated glass on P. aeruginosa, S. typhimurium and H. pylori demonstrated excellent effect compared with parent glass. Copper ion contained layer on glass showed a similar value of transmittance compared with value of parent glass. The 3-point bending strength and Vickers hardness were 209.2 MPa, 540.9 kg/mm2 which were about 1.5% and 1.3% higher than the value of parent glass. From these findings, it is clear that copper ion coating on glass substrate showed outstanding effect not only in antibacterial activity but also in optical and mechanical properties as well.

  4. Diagnostic examination of Generation 2 lithium-ion cells and assessment ofperformance degradation mechanisms.

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, D. P.; Dees, D. W.; Knuth, J.; Reynolds, E.; Gerald, R.; Hyung,Y.-E.; Belharouak, I.; Stoll, M.; Sammann, E.; MacLaren, S.; Haasch, R.; Twesten,R.; Sardela, M.; Battaglia, V.; Cairns, E.; Kerr, J.; Kerlau, M.; Kostecki, R.; Lei,J.; McCarthy, K.; McLarnon, F.; Reimer, J.; Richardson, T.; Ross, P.; Sloop,S.; Song, X.; Zhuang, V.; Balasubramanian, M.; McBreen, J.; Chung, K.-Y.; Yang, X.Q.; Yoon, W.-S.; Norin, L.

    2005-07-15

    The Advanced Technology Development (ATD) Program is a multilaboratory effort to assist industrial developers of high-power lithium-ion batteries overcome the barriers of cost, calendar life, abuse tolerance, and low-temperature performance so that this technology may be rendered practical for use in hybrid electric vehicles (HEVs). Included in the ATD Program is a comprehensive diagnostics effort conducted by researchers at Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), and Lawrence Berkeley National Laboratory (LBNL). The goals of this effort are to identify and characterize processes that limit lithium-ion battery performance and calendar life, and ultimately to describe the specific mechanisms that cause performance degradation. This report is a compilation of the diagnostics effort conducted since spring 2001 to characterize Generation 2 ATD cells and cell components. The report is divided into a main body and appendices. Information on the diagnostic approach, details from individual diagnostic techniques, and details on the phenomenological model used to link the diagnostic data to the loss of 18650-cell electrochemical performance are included in the appendices. The main body of the report includes an overview of the 18650-cell test data, summarizes diagnostic data and modeling information contained in the appendices, and provides an assessment of the various mechanisms that have been postulated to explain performance degradation of the 18650 cells during accelerated aging. This report is intended to serve as a ready reference on ATD Generation 2 18650-cell performance and provide information on the tools for diagnostic examination and relevance of the acquired data. A comprehensive account of our experimental procedures and resulting data may be obtained by consulting the various references listed in the text. We hope that this report will serve as a roadmap for the diagnostic analyses of other lithium-ion technologies being

  5. Influence of low energy ion implantation on mechanical properties of magnetron sputtered metastable (Cr,Al)N thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, S.; Holleck, H.; Ye, J.; Leiste, H.; Loos, R.; Stueber, M.; Pesch, P.; Sattel, S

    2003-08-01

    Metastable, nanocrystalline, ternary chromium aluminum nitride thin films have been deposited by reactive unbalanced magnetron sputtering of a chromium aluminum nitride target in a pure nitrogen atmosphere. The film constitution has been examined by X-ray microanalysis, X-ray reflectivity, X-ray diffraction, transmission electron microscopy and high-resolution electron microscopy. The mechanical properties such as Vickers hardness, elastic modulus and internal stress have been determined as a function of ion energy of bombarding particles during film growth. It was possible to show that the dependence of these properties on ion energy can be described by two physical mechanisms, both subsurface nitrogen ion implantation and nitrogen ion bombardment induced relaxation processes, whereas chemical composition is not affected in the case of our reactive deposition conditions.

  6. Bio-synthesis participated mechanism of mesoporous LiFePO4/C nanocomposite microspheres for lithium ion battery

    DEFF Research Database (Denmark)

    Zhang, X.D.; He, W.; Yue, Yuanzheng

    2012-01-01

    -assembly mechanisms of iron phosphate by means of the Langmuir biosorption isotherms of the yeast biomass in iron ion solution and by applying the model of heterogeneous nucleation of iron phosphate in yeast cell. The MP-LFP/C-NC-MS show a uniform size distribution (4.76 μm), high tap density (1.74 g cm-3) and large......-active materials for making high-power Li-ion batteries....

  7. Thermo-mechanical design of the Plasma Driver Plate for the MITICA ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pavei, Mauro, E-mail: mauro.pavei@igi.cnr.it [Consorzio RFX, EURATOM-ENEA Association, Corso Stati Uniti 4, I-35127 Padova (Italy); Palma, Mauro Dalla; Marcuzzi, Diego [Consorzio RFX, EURATOM-ENEA Association, Corso Stati Uniti 4, I-35127 Padova (Italy)

    2010-12-15

    In the framework of the activities for the development of the Neutral Beam Injector (NBI) for ITER, the detailed design of the Radio-Frequency (RF) negative ion source has been carried out. One of the most heated components of the RF source is the rear vertical plate, named Plasma Driver Plate (PDP), where the Back-Streaming positive Ions (BSI+) generated from stripping losses in the accelerator and back scattered on the plasma source impinge on. The heat loads that result are huge and concentrated, with first estimate of the power densities up to 60 MW/m{sup 2}. The breakdowns that occur into the accelerator cause such heat loads to act cyclically, so that the PDP is thermo-mechanically fatigue loaded. Moreover, the surface of the PDP facing the plasma is functionally required to be temperature controlled and to be molybdenum or tungsten coated. The thermo-hydraulic design of the plate has been carried out considering active cooling with ultra-pure water. Different heat sink materials, hydraulic circuit layout and manufacturing processes have been considered. The heat exhaust has been optimized by changing the channels geometry, the path of the heat flux in the heat sink, the thickness of the plate and maximizing the Heat Transfer Coefficient. Such optimization has been carried out by utilizing 3D Finite Element (FE) models. Afterwards all the suitable mechanical (aging, structural monotonic and cyclic) verifications have been carried out post-processing the results of the thermo-mechanical 3D FE analyses in accordance to specific procedures for nuclear components exposed to high temperature. The effect of sputtering phenomenon due to the high energy BSI+ impinging on the plate has been considered and combined with fatigue damage for the mechanical verification of the PDP. Alternative solutions having molybdenum (or tungsten coatings) facing the plasma, aiming to reduce the sputtering rate and the consequent plasma pollution, have been evaluated and related 3D FE

  8. Mechanical response of UO{sub 2} single crystals submitted to low-energy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tien-Hien [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Univ. Paris-Sud – CNRS/IN2P3, Université Paris-Saclay, Bâtiment 108, 91405 Orsay Cedex (France); Department of Physics, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi (Viet Nam); Debelle, Aurélien, E-mail: aurelien.debelle@u-psud.fr [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Univ. Paris-Sud – CNRS/IN2P3, Université Paris-Saclay, Bâtiment 108, 91405 Orsay Cedex (France); Boulle, Alexandre [Science des Procédés Céramiques et de Traitements de Surface CNRS UMR 7315, Centre Européen de la Céramique, 12 rue Atlantis, 87068 Limoges (France); Garrido, Frédérico; Thomé, Lionel [Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Univ. Paris-Sud – CNRS/IN2P3, Université Paris-Saclay, Bâtiment 108, 91405 Orsay Cedex (France); Demange, Valérie [Institut des Sciences Chimiques de Rennes, CNRS UMR 6226, 263 avenue du Général Leclerc, Campus de Beaulieu – Bâtiment 10B, 35042 Rennes Cedex (France)

    2015-12-15

    {111}- and {100}-oriented UO{sub 2} single crystals were irradiated with 500-keV Ce{sup 3+} ions in the 10{sup 14}–9 × 10{sup 14} cm{sup −2} fluence range. The irradiation-induced strain was monitored using high-resolution X-ray diffraction. A mechanical modelling dedicated to thin irradiated layers was applied to account for the reaction of the unirradiated part of the crystals. The elastic strain, which is confined along the surface normal of the samples, increases with ion fluence until it is dramatically relieved. This behaviour is observed for both orientations. While the measured elastic strain depends on the crystallographic direction, the strain due to irradiation defects only is found to be equal for both directions, with a maximum value of ∼0.5%. Strain relaxation takes place at the damage peak, but the in-plane lattice parameter of the irradiated layer remains unchanged and equal to that of the pristine material. Meanwhile, the strain at the damaged/pristine interface continues to increase.

  9. Surfactant and metal ion effects on the mechanical properties of alginate hydrogels.

    Science.gov (United States)

    Kaygusuz, Hakan; Evingür, Gülşen Akın; Pekcan, Önder; von Klitzing, Regine; Erim, F Bedia

    2016-11-01

    This paper addresses the controlled variation of the mechanical properties of alginate gel beads by changing the alginate concentration or by adding different surfactants or cross-linking cations. Alginate beads containing nonionic Brij 35 or anionic sodium dodecyl sulfate (SDS) surfactants were prepared with two different types of cations (Ca(2+), Ba(2+)) as crosslinkers. Compression measurements were performed to investigate the effect of the surfactant and cation types and their concentrations on the Young's modulus of alginate beads. The Young's modulus was determined by using Hertz theory. For all types of alginate gel beads the Young's modulus showed an increasing value for increasing alginate contents. Addition of the anionic surfactant SDS increases the Young's modulus of the alginate beads while the addition of non-ionic surfactant Brij 35 leads to a decrease in Young's modulus. This opposite behavior is related to the contrary effect of both surfactants on the charge of the alginate beads. When Ba(2+) ions were used as crosslinker cation, the Young's modulus of the beads with the surfactant SDS was found to be approximately two times higher than the modulus of beads with the surfactant Brij 35. An ion specific effect was found for the crosslinking ability of divalent cations.

  10. Mechanism study of selective heavy metal ion removal with polypyrrole-functionalized polyacrylonitrile nanofiber mats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianqiang; Luo, Chao [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Qi, Genggeng [Department of Materials Science and Engineering, Cornell University, Ithaca, NY (United States); Pan, Kai, E-mail: pankai@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Department of Materials Science and Engineering, Cornell University, Ithaca, NY (United States); Cao, Bing, E-mail: bcao@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China)

    2014-10-15

    Graphical abstract: - Highlights: • PAN/PPy core/shell nanofiber used for Cr(VI) removal. • Adsorption mechanisms were investigated. • Selective adsorption performances were investigated. - Abstract: Polyacrylonitrile/polypyrrole (PAN/PPy) core/shell nanofiber mat was prepared through electrospinning followed by a simple chemical oxidation method. The polypyrrole-functionalized nanofiber mats showed selective adsorption performance for anions. The interaction between heavy metal anions and polypyrrole (especially the interaction between Cr{sub 2}O{sub 7}{sup 2−} and polypyrrole) during the adsorption process was studied. The results showed that the adsorption process included two steps: one was the anion exchange process between the Cl{sup −} and Cr(VI), and the other was the redox process for the Cr(VI) ions. The adsorption amount was related to the protonation time of the PAN/PPy nanofiber mat and increased as protonation time increased. Meanwhile, the Cr(VI) ions were reduced to Cr(III) through the reaction with amino groups of polypyrrole (from secondary amines to tertiary amines). PAN/PPy nanofiber mat showed high selectivity for Cr(VI), and the adsorption performance was nearly unaffected by other co-existing anions (Cl{sup −}, NO{sub 3}{sup −}, and SO{sub 4}{sup 2−}) except for PO{sub 4}{sup 3−} for the pH change.

  11. Freestanding bacterial cellulose-graphene oxide composite membranes with high mechanical strength for selective ion permeation

    Science.gov (United States)

    Fang, Qile; Zhou, Xufeng; Deng, Wei; Zheng, Zhi; Liu, Zhaoping

    2016-09-01

    Graphene oxide (GO) based membranes have been widely applied in molecular separation based on the size exclusion effect of the nanochannels formed by stacked GO sheets. However, it’s still a challenge to prepare a freestanding GO-based membrane with high mechanical strength and structural stability which is prerequisite for separation application in aqueous solution. Here, a freestanding composite membrane based on bacterial cellulose (BC) and GO is designed and prepared. BC network provides a porous skeleton to spread GO sheets and uniformly incorporates into the GO layers, which endows the BC + GO composite membrane with well water-stability, excellent tensile strength, as well as improved toughness, guaranteeing its separation applicability in water environment. The resulting BC + GO membrane exhibits obviously discrepant permeation properties for different inorganic/organic ions with different size, and in particular, it can quickly separate ions in nano-scale from angstrom-scale. Therefore, this novel composite membrane is considered to be a promising candidate in the applications of water purification, food industry, biomedicine, and pharmaceutical and fuel separation.

  12. NATO Advanced Research Workshop on Methods and Mechanisms for Producing Ions from Large Molecules

    CERN Document Server

    Ens, Werner

    1991-01-01

    A NATO Advanced Research Workshop on Methods and Mechanisms for Producing Ions from Large Molecules was held at Minaki Lodge, Minaki, Ontario, Canada, from 24 to 28 June 1990. The workshop was hosted by the time-of-flight group of the Department of Physics at the University of Manitoba, and was attended by 64 invited participants from around the world. Twenty-nine invited talks were given and 19 papers were presented as posters. Of the 48 contributions, 38 are included in these proceedings. The conference was organized to study the rapidly changing field of mass spectrometry of biomolecules. Particle-induced desorption (especially with MeV particles) has been the most effective method of producing molecular ions from biomolecules. An important part of the workshop was devoted to recent developments in this field, particularly to progress in understanding the fundamentals of the desorption process. In this respect, the meeting was similar to previous conferences in Marburg, FRG (1978); Paris, F (1980); Uppsala...

  13. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction.

    Science.gov (United States)

    Bachman, John Christopher; Muy, Sokseiha; Grimaud, Alexis; Chang, Hao-Hsun; Pour, Nir; Lux, Simon F; Paschos, Odysseas; Maglia, Filippo; Lupart, Saskia; Lamp, Peter; Giordano, Livia; Shao-Horn, Yang

    2016-01-13

    This Review is focused on ion-transport mechanisms and fundamental properties of solid-state electrolytes to be used in electrochemical energy-storage systems. Properties of the migrating species significantly affecting diffusion, including the valency and ionic radius, are discussed. The natures of the ligand and metal composing the skeleton of the host framework are analyzed and shown to have large impacts on the performance of solid-state electrolytes. A comprehensive identification of the candidate migrating species and structures is carried out. Not only the bulk properties of the conductors are explored, but the concept of tuning the conductivity through interfacial effects-specifically controlling grain boundaries and strain at the interfaces-is introduced. High-frequency dielectric constants and frequencies of low-energy optical phonons are shown as examples of properties that correlate with activation energy across many classes of ionic conductors. Experimental studies and theoretical results are discussed in parallel to give a pathway for further improvement of solid-state electrolytes. Through this discussion, the present Review aims to provide insight into the physical parameters affecting the diffusion process, to allow for more efficient and target-oriented research on improving solid-state ion conductors.

  14. Hydration of the cyanide ion: an ab initio quantum mechanical charge field molecular dynamics study.

    Science.gov (United States)

    Moin, Syed Tarique; Hofer, Thomas S

    2014-12-21

    This paper presents an ab initio quantum mechanical charge field molecular dynamics simulation study of the cyanide anion (CN(-)) in aqueous solution where hydrogen bond formation plays a dominant role in the hydration process. Preferential orientation of water hydrogens compared to oxygen atoms was quantified in terms of radial, angular as well as coordination number distributions. All structural results indicate that the water hydrogens are attracted towards CN(-) atoms, thus contributing to the formation of the hydration layer. Moreover, a clear picture of the local arrangement of water molecules around the ellipsoidal CN(-) ion is provided via angular-radial distribution and spatial distribution functions. Apart from the structural analysis, the evaluation of water dynamics in terms of ligand mean residence times and H-bond correlation functions indicates the weak structure making capacity of the CN(-) ion. The similar values of H-bond lifetimes obtained for the NHwat and CHwat bonds indicate an isokinetic behaviour of these H-bonds, since there is a very small difference in the magnitude of the lifetimes. On the other hand, the H-bond lifetimes between water molecules of the hydration shell, and between solute and solvent evidence the slightly stable hydration of the CN(-). Overall, the H-bonding dominates in the hydration process of the cyanide anion enabling it to become soluble in the aqueous environment associated to chemical and biological processes.

  15. Freestanding bacterial cellulose-graphene oxide composite membranes with high mechanical strength for selective ion permeation

    Science.gov (United States)

    Fang, Qile; Zhou, Xufeng; Deng, Wei; Zheng, Zhi; Liu, Zhaoping

    2016-01-01

    Graphene oxide (GO) based membranes have been widely applied in molecular separation based on the size exclusion effect of the nanochannels formed by stacked GO sheets. However, it’s still a challenge to prepare a freestanding GO-based membrane with high mechanical strength and structural stability which is prerequisite for separation application in aqueous solution. Here, a freestanding composite membrane based on bacterial cellulose (BC) and GO is designed and prepared. BC network provides a porous skeleton to spread GO sheets and uniformly incorporates into the GO layers, which endows the BC + GO composite membrane with well water-stability, excellent tensile strength, as well as improved toughness, guaranteeing its separation applicability in water environment. The resulting BC + GO membrane exhibits obviously discrepant permeation properties for different inorganic/organic ions with different size, and in particular, it can quickly separate ions in nano-scale from angstrom-scale. Therefore, this novel composite membrane is considered to be a promising candidate in the applications of water purification, food industry, biomedicine, and pharmaceutical and fuel separation. PMID:27615451

  16. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy.

    Science.gov (United States)

    Xiao, Jiefeng; Li, Jia; Xu, Zhengming

    2017-09-15

    The large-batch application of lithium ion batteries leads to the mass production of spent batteries. So the enhancement of disposal ability of spent lithium ion batteries is becoming very urgent. This study proposes an integrated process to handle bulk spent lithium manganese (LiMn2O4) batteries to in situ recycle high value-added products without any additives. By mechanical separation, the mixed electrode materials mainly including binder, graphite and LiMn2O4 are firstly obtained from spent batteries. Then, the reaction characteristics for the oxygen-free roasting of mixed electrode materials are analyzed. And the results show that mixed electrode materials can be in situ converted into manganese oxide (MnO) and lithium carbonate (Li2CO3) at 1073K for 45min. In this process, the binder is evaporated and decomposed into gaseous products which can be collected to avoid disposal cost. Finally, 91.30% of Li resource as Li2CO3 is leached from roasted powders by water and then high value-added Li2CO3 crystals are further gained by evaporating the filter liquid. The filter residues are burned in air to remove the graphite and the final residues as manganous-manganic oxide (Mn3O4) is obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Helium effects on mechanical properties and microstructure of high fluence ion-irradiated RAFM steel

    Science.gov (United States)

    Ogiwara, H.; Kohyama, A.; Tanigawa, H.; Sakasegawa, H.

    2007-08-01

    Reduced-activation ferritic/martensitic steels, RAFS, are leading candidates for the blanket and first wall of fusion reactors, and effects of displacement damage and helium production on mechanical properties and microstructures are important to these applications. Because it is the most effective way to obtain systematic and accurate information about microstructural response under fusion environment, single-(Fe 3+) and dual-(Fe 3+ + He +) irradiations were performed followed by TEM observation and nano-indentation hardness measurement. Dual-ion irradiation at 420 °C induced finer defect clusters compared to single-ion irradiation. These fine defect clusters caused large differences in the hardness increase between these irradiations. TEM analysis clarified that radiation induced precipitates were MX precipitates (M: Ta, W). Small defects invisible to TEM possibly caused the large increase in hardness, in addition to the hardness increment produced by radiation induced MX. In this work, radiation hardening and microstructural evolution accompanied by the synergistic effects to high fluences are discussed.

  18. Interstitial positions of tin ions in alpha-(FerichSn)(2)O-3 solid solutions prepared by mechanical alloying

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Lin, Rong; Nielsen, Kurt

    1997-01-01

    The microstructure of samples of 91, 85, and 71 mol % alpha-Fe-2-O-3-SnO2. prepared by mechanical alloying, has been studied by x-ray diffraction with Rietveld structure refinements, On the basis of the structure refinements to the whole x-ray diffraction patterns for the four as-milled samples......, it is found that tin ions do not substitute iron ions in the solid solution, although this model is generally assumed in the literature. The Sn4+ ions occupy the empty octahedral holes in the lattice of the alpha-Fe2O3 phase....

  19. Mechanism of influence of ferric ion on electrogenerative leaching of sulfide minerals with FeCl3

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-fen; FANG Zheng

    2006-01-01

    A dual cell system was used to study the influence of ferric ion on the electrogenerative leaching of sulfide minerals.Reaction mechanisms for the ferric chloride electrogenerative leaching of a series of sulfide minerals were proposed based on the data collected from the dual cell experiments. The influences of ferric ion on the electrogenerative leaching of sulfide minerals are similar. Ferric ion plays an important role on limiting the electrogenerative leaching rate at a relatively low concentration of FeCl3(about less than 0.15 mol/L). The mathematical models based on the Butler-Volmer relation were delineated, and kinetic equations with respect to ferric ions for each sulfide mineral were obtained. The kinetic equations show that when the concentration of ferric ion is relatively low, the electrogenerative leaching rates are predicted to be proportional to 6/7, 4/5, 2/3 and 2/3 order of ferric ion for nickel concentrate, chalcopyrite concentrate, sphalerite and galena respectively. As the concentration of ferric ion increase, the correlative dependence between electrogenerative leaching rate and concentration of ferric ion becomes weak. The above conclusions are in agreement with the experimental results.

  20. Mechanism of lithium insertion into NiSi2 anode material for lithium ion batteries

    Institute of Scientific and Technical Information of China (English)

    WEN Zhongsheng; JI Shijun; SUN Juncai; TIAN Feng; TIAN Rujin; XIE Jingying

    2006-01-01

    As a promising high capacity anode material for lithium ion batteries, the lithium insertion performance and possible insertion mechanism of binary alloy of NiSi2 were discussed. The initial lithium insertion of crystal NiSi2 can reach up to 600 mAh·g-1 , but large irreversible capacity occurrs simultaneously for serious structure transformation and the irreversible phase forms. XRD and XPS were employed to detect the crystal structure and composition changes produced by lithium insertion. The lithium insertion-extraction behavior of NiSi2 electrode is similar to that of silicon after the first discharge. The structure stability seems related to the non-stoichimometric Ni-Si compound formed by lithium insertion into NiSi2.

  1. Reactive Ion Etching as Cleaning Method Post Chemical Mechanical Polishing for Phase Change Memory Device

    Institute of Scientific and Technical Information of China (English)

    ZHONG Min; SONG Zhi-Tang; LIU Bo; FENG Song-Lin; CHEN Bomy

    2008-01-01

    In order to improve nano-scale phase change memory performance,a super-clean interface should be obtained after chemical mechanical polishing (CMP) of Ge2Sb2Te5 phase change films.We use reactive ion etching (RIE) as the cleaning method.The cleaning effect is analysed by scanning electron microscopy and an energy dispersive spectrometer.The results show that particle residue on the surface has been removed.Meanwhile,Ge2 Sb2 Te5 material stoichiometric content ratios are unchanged.After the top electrode is deposited,currentvoltage characteristics test demonstrates that the set threshold voltage is reduced from 13 V to 2.7V and the threshold current from 0.1 mA to 0.025 mA.Furthermore,we analyse the RIE cleaning principle and compare it with the ultrasonic method.

  2. Model investigation on the mechanism of QGP formation in relativistic heavy ion collisions

    Institute of Scientific and Technical Information of China (English)

    邓胜华; 李家荣

    1995-01-01

    On the basis of the nontopological soliton bag model, it is proposed that the quark decon-finement may be indicated by the unstability and disappearance of solition solutions at finite-temperature and finite-density. The thermal effects on the vacuum structure of strongly interacting matter are investigated, and the soliton field equation of the model is solved directly in the whole range of temperature via a numerical method. The phase structure of the system and the features of deconfining phase transition are analysed in detail. In addition, the collective excitations in the vacuum caused by thermal effects are investigated by making use of an order parameter which is given to describe the vacuum condensation at finite temperature. A physical mechanism and an intuitive picture are presented for the formation of QGP from both deconfined hardon matter and the vacuum excitation in relativistic heavy ion collisions.

  3. A mathematical model for mechanically-induced deterioration of the binder in lithium-ion electrodes

    CERN Document Server

    Foster, Jamie M; Richardson, Giles; Protas, Bartosz

    2016-01-01

    This study is concerned with modeling detrimental deformations of the binder phase within lithium-ion batteries that occur during cell assembly and usage. A two-dimensional poroviscoelastic model for the mechanical behavior of porous electrodes is formulated and posed on a geometry corresponding to a thin rectangular electrode, with a regular square array of microscopic circular electrode particles, stuck to a rigid base formed by the current collector. Deformation is forced both by (i) electrolyte absorption driven binder swelling, and; (ii) cyclic growth and shrinkage of electrode particles as the battery is charged and discharged. The governing equations are upscaled in order to obtain macroscopic effective-medium equations. A solution to these equations is obtained, in the asymptotic limit that the height of the rectangular electrode is much smaller than its width, that shows the macroscopic deformation is one-dimensional. The confinement of macroscopic deformations to one dimension is used to obtain boun...

  4. Enantiomerization mechanism of thalidomide and the role of water and hydroxide ions.

    Science.gov (United States)

    Tian, Chuanjin; Xiu, Peng; Meng, Yan; Zhao, Wenyan; Wang, Zhigang; Zhou, Ruhong

    2012-11-05

    The significance of the molecular chirality of drugs has been widely recognized due to the thalidomide tragedy. Most of the new drugs reaching the market today are single enantiomers, rather than racemic mixtures. However, many optically pure drugs, including thalidomide, undergo enantiomerization in vivo, thus negating the single enantiomers' benefits or inducing unexpected effects. A detailed atomic level understanding of chiral conversion, which is still largely lacking, is thus critical for drug development. Herein, we use first-principle density function theory (DFT) to explore the mechanism of enantiomerization of thalidomide. We have identified the two most plausible interconversion pathways for isolated thalidomide: 1) proton transfer from the chiral carbon center to an adjacent carbonyl oxygen atom, followed by isomerization and rotation of the glutarimide ring (before the proton hops back to the chiral carbon atom); and 2) a pathway that is the same as "1", but with the isomerization of the glutarimide ring occurring ahead of the initial proton transfer reaction. There are two remarkable energy barriers, 73.29 and 23.59 kcal mol(-1), corresponding to the proton transfer and the rotation of the glutarimide ring, respectively. Furthermore, we found that water effectively catalyzes the interconversion by facilitating the proton transfer with the highest energy barrier falling to approximately 30 kcal mol(-1), which, to our knowledge, is the first time that this important role of water in chiral conversion has been demonstrated. Finally, we show that the hydroxide ion can further lower the enantiomerization energy barrier to approximately 24 kcal mol(-1) by facilitating proton abstraction, which agrees well with recent experimental data under basic conditions. Our current findings highlight the importance of water and hydroxide ions in the enantiomerization of thalidomide and also provide new insights into the mechanism of enantiomerization at

  5. Structural and mechanical characterization of ion-irradiated glassy polymeric carbon for TRISO fuel nuclear application

    Science.gov (United States)

    Abunaemeh, Malek; Seif, Mohamed; Elsamadicy, Abdalla; Ila, Daryush

    2012-08-01

    Tristructural isotropic (TRISO) fuel is considered as the fuel design of choice for the next generation of nuclear reactors (Generation IV). Its design consists of a fuel kernel of UO x coated with several layers having different functions. One of these functions is a containment shell/diffusion barrier for the fission fragments. Normally, the material of choice for this shell is pyrolytic carbon (PyC). The material does not offer a perfect barrier, due to its inherent crystalline structure, which is planar (like graphite) and therefore impossible to mold in one continuous sheet around the spherical fuel bead. Plane boundaries allow fragment diffusion at a much higher rate than through the plane. In this study, we investigate the possibility of replacing PyC with a different form of carbon, glassy polymeric carbon (GPC). We prepared samples of GPC and studied the evolution of their physical properties and structure as a function of the radiation environment that they were exposed to. The temperature at which the samples were held during irradiation was very similar to the Generation IV nuclear reactor (∼1000°C). During the fission of U235, the fission fragment mass distribution has two maxima around 98 and 137 amu, which would best correspond to elements Rb and Cs, respectively. However, both ions are hard to produce from our SNICS ion source at the Center for Irradiation of Materials; therefore, we used 107Ag and 197Au as best replacements. The irradiation sessions consisted in various fluences of 5 MeV Ag, and 5 MeV Au. For elemental sample analysis, we used transmission electron microscopy. For mechanical analysis, we used nano-indentation. It is of prime importance to measure the penetration of the implanted 107Ag.and 197Au and the evolution of mechanical properties of GPC irradiated with these ions. A procedure for manufacturing GPC with analysis is presented. This will show how the GPC structure differs as the temperature that it is prepared at increases

  6. Investigation of the mechanism of impurity assisted nanoripple formation on Si induced by low energy ion beam erosion

    Energy Technology Data Exchange (ETDEWEB)

    Koyiloth Vayalil, Sarathlal, E-mail: sarathlal.koyilothvayalil@desy.de [Photon Science, DESY, Notkestr. 85, D-22607 Hamburg (Germany); UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017 (India); Gupta, Ajay [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201313 (India); Roth, Stephan V. [Photon Science, DESY, Notkestr. 85, D-22607 Hamburg (Germany); Ganesan, V. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017 (India)

    2015-01-14

    A detailed mechanism of the nanoripple pattern formation on Si substrates generated by the simultaneous incorporation of pure Fe impurities at low energy (1 keV) ion beam erosion has been studied. To understand and clarify the mechanism of the pattern formation, a comparative analysis of the samples prepared for various ion fluence values using two complimentary methods for nanostructure analysis, atomic force microscopy, and grazing incidence small angle x-ray scattering has been done. We observed that phase separation of the metal silicide formed during the erosion does not precede the ripple formation. It rather concurrently develops along with the ripple structure. Our work is able to differentiate among various models existing in the literature and provides an insight into the mechanism of pattern formation under ion beam erosion with impurity incorporation.

  7. Representative-Sandwich Model for Mechanical-Crush and Short-Circuit Simulation of Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-07-28

    Lithium-ion batteries are currently the state-of-the-art power sources for a variety of applications, from consumer electronic devices to electric-drive vehicles (EDVs). Being an energized component, failure of the battery is an essential concern, which can result in rupture, smoke, fire, or venting. The failure of Lithium-ion batteries can be due to a number of external abusive conditions (impact/crush, overcharge, thermal ramp, etc.) or internal conditions (internal short circuits, excessive heating due to resistance build-up, etc.), of which the mechanical-abuse-induced short circuit is a very practical problem. In order to better understand the behavior of Lithium-ion batteries under mechanical abuse, a coupled modeling methodology encompassing the mechanical, thermal and electrical response has been developed for predicting short circuit under external crush.

  8. Reactivity of niobium-carbon cluster ions with hydrogen molecules in relation to formation mechanism of Met-Car cluster ions.

    Science.gov (United States)

    Miyajima, Ken; Fukushima, Naoya; Mafuné, Fumitaka

    2008-07-03

    It is known that a niobium-carbon Met-Car cluster ion (Nb 8C 12 (+)) and its intermediates (Nb 4C 4 (+), Nb 6C 7 (+), etc.) are selectively formed by the aggregation of the Nb atoms in the presence of hydrocarbons. To elucidate the formation mechanism, we prepared Nb n C m (+) with every combination of n and m in the gas phase by the laser vaporization technique. The reactivity of Nb n C m (+) with H 2 was examined under the multiple collision condition, finding that Nb n C m (+) between Nb 2C 3 (+) and Nb 8C 12 (+) are not reactive with H 2. On the basis of the H 2 affinity of Nb n C m (+) experimentally obtained, we propose a dehydrogenation-controlled formation mechanism of niobium-carbon Met-Car cluster ions.

  9. Vulnerability of the retinal microvasculature to oxidative stress: ion channel-dependent mechanisms.

    Science.gov (United States)

    Fukumoto, Masanori; Nakaizumi, Atsuko; Zhang, Ting; Lentz, Stephen I; Shibata, Maho; Puro, Donald G

    2012-05-01

    Although oxidative stress is a hallmark of important vascular disorders such as diabetic retinopathy, it remains unclear why the retinal microvasculature is particularly vulnerable to this pathophysiological condition. We postulated that redox-sensitive ion channels may play a role. Using H(2)O(2) to cause oxidative stress in microvascular complexes freshly isolated from the adult rat retina, we assessed ionic currents, cell viability, intracellular oxidants, and cell calcium by using perforated-patch recordings, trypan blue dye exclusion, and fura-2 fluorescence, respectively. Supporting a role for the oxidant-sensitive ATP-sensitive K (K(ATP)) channels, we found that these channels are activated during exposure of retinal microvessels to H(2)O(2). Furthermore, their inhibition by glibenclamide significantly lessened H(2)O(2)-induced microvascular cell death. Additional experiments established that by increasing the influx of calcium into microvascular cells, the K(ATP) channel-mediated hyperpolarization boosted the vulnerability of these cells to oxidative stress. In addition to the K(ATP) channel-dependent mechanism for increasing the lethality of oxidative stress, we also found that the vulnerability of cells in the capillaries, but not in the arterioles, was further boosted by a K(ATP) channel-independent mechanism, which our experiments indicated involves the oxidant-induced activation of calcium-permeable nonspecific cation channels. Taken together, our findings support a working model in which both K(ATP) channel-independent and K(ATP) channel-dependent mechanisms render the capillaries of the retina particularly vulnerable to oxidative stress. Identification of these previously unappreciated mechanisms for boosting the lethality of oxidants may provide new targets for pharmacologically limiting damage to the retinal microvasculature during periods of oxidative stress.

  10. Decay mechanisms of protonated 4-quinolone antibiotics after electrospray ionization and ion activation.

    Science.gov (United States)

    Kovačević, Borislav; Schorr, Pascal; Qi, Yulin; Volmer, Dietrich A

    2014-11-01

    This study presents a detailed experimental investigation of charge isomers of protonated 4-quinolone antibiotics molecules formed during electrospray ionization (ESI) with proposed dissociation mechanisms after collisional activation. Piperazinyl quinolones have been previously shown to exhibit erratic behavior during tandem MS analyses of biological samples, which originated from varying ratios of two isomeric variants formed during ESI. Here, a combination of ESI-collision-induced dissociation (CID), differential ion mobility spectrometry (DMS), high resolution MS, and density functional theory (DFT) was used to investigate the underlying mechanisms of isomer formation and their individual dissociation behaviors. The study focused on ciprofloxacin; major findings were confirmed using structurally related 4-quinolones. DFT calculations showed a reversal of basicity for piperazinyl quinolones between liquid and gas phase. We provide an experimental comparison and theoretical treatment of factors influencing the formation ratio of the charge isomers during ESI, including solvent pH, protic/aprotic nature of solvent, and structural effects such as pK a and proton affinity. The actual dissociation mechanisms of the isomers of the protonated molecules were studied by separating the individual isomers via DMS-MS, which allowed type-specific CID spectra to be recorded. Both primary CID reactions of the two charge isomers originated from the same carboxyl group by charge-remote (CO(2) loss) and charge-mediated (H(2)O loss) fragmentation of the piperazinyl quinolones, depending on whether the proton resides on the more basic keto or the piperazinyl group, followed by a number of secondary dissociation reactions. The proposed mechanisms were supported by calculated energies of precursors, transition states, and products for competing pathways.

  11. Ion Channels Activated by Mechanical Forces in Bacterial and Eukaryotic Cells.

    Science.gov (United States)

    Sokabe, Masahiro; Sawada, Yasuyuki; Kobayashi, Takeshi

    2015-01-01

    Since the first discovery of mechanosensitive ion channel (MSC) in non-sensory cells in 1984, a variety of MSCs has been identified both in prokaryotic and eukaryotic cells. One of the central issues concerning MSCs is to understand the molecular and biophysical mechanisms of how mechanical forces activate/open MSCs. It has been well established that prokaryotic (mostly bacterial) MSCs are activated exclusively by membrane tension. Thus the problem to be solved with prokaryotic MSCs is the mechanisms how the MSC proteins receive tensile forces from the lipid bilayer and utilize them for channel opening. On the other hand, the activation of many eukaryotic MSCs crucially depends on tension in the actin cytoskeleton. By using the actin cytoskeleton as a force sensing antenna, eukaryotic MSCs have obtained sophisticated functions such as remote force sensing and force-direction sensing, which bacterial MSCs do not have. Actin cytoskeletons also give eukaryotic MSCs an interesting and important function called "active touch sensing", by which cells can sense rigidity of their substrates. The contractile actin cytoskeleton stress fiber (SF) anchors its each end to a focal adhesion (FA) and pulls the substrate to generate substrate-rigidity-dependent stresses in the FA. It has been found that those stresses are sensed by some Ca2+-permeable MSCs existing in the vicinity of FAs, thus the MSCs work as a substrate rigidity sensor that can transduce the rigidity into intracellular Ca2+ levels. This short review, roughly constituting of two parts, deals with molecular and biophysical mechanisms underlying the MSC activation process mostly based on our recent studies; (1) structure-function in bacterial MSCs activation at the atomic level, and (2) roles of actin cytoskeletons in the activation of eukaryotic MSCs.

  12. Growth of surface structures correlated with structural and mechanical modifications of brass by laser-induced Si plasma ions implantation

    Science.gov (United States)

    Ahmad, Shahbaz; Bashir, Shazia; Rafique, M. Shahid; Yousaf, Daniel

    2017-04-01

    Laser-produced Si plasma is employed as an ion source for implantation on the brass substrate for its surface, structural, and mechanical modifications. Thomson parabola technique is employed for the measurement of energy and flux of Si ions using CR-39. In response to stepwise increase in number of laser pulses from 3000 to 12000, four brass substrates were implanted by laser-induced Si plasma ions of energy 290 keV at different fluxes ranging from 45 × 1012 to 75 × 1015 ions/cm2. SEM analysis reveals the formation of nano/micro-sized irregular shaped cavities and pores for the various ion fluxes for varying numbers of laser pulses from 3000 to 9000. At the maximum ion flux for 12,000 pulses, distinct and organized grains with hexagonal and irregular shaped morphology are revealed. X-ray diffractometer (XRD) analysis exhibits that a new phase of CuSi (311) is identified which confirms the implantation of Si ions in brass substrate. A significant decrease in mechanical properties of implanted brass, such as Yield Stress (YS), Ultimate Tensile Strength (UTS), and hardness, with increasing laser pulses from 3000 to 6000 is observed. However, with increasing laser pulses from 9000 to a maximum value of 12,000, an increase in mechanical properties like hardness, YS, and UTS is observed. The generation as well as annihilation of defects, recrystallization, and intermixing of Si precipitates with brass matrix is considered to be responsible for variations in surface, structural, and mechanical modifications of brass.

  13. Effect of chloride ion on the kinetics and mechanism of the reaction between chlorite ion and hypochlorous acid.

    Science.gov (United States)

    Kormányos, Balázs; Nagypál, István; Peintler, Gábor; Horváth, Attila K

    2008-09-01

    The effect of chloride ion on the chlorine dioxide formation in the ClO 2 (-)-HOCl reaction was studied by following .ClO 2 concentration spectrophotometrically at pH 5-6 in 0.5 M sodium acetate. On the basis of the earlier experimental data collected without initially added chloride and on new experiments, the earlier kinetic model was modified and extended to interpret the two series of experiments together. It was found that the chloride ion significantly increases the initial rate of .ClO 2 formation. At the same time, the .ClO 2 yield is increased in HOCl but decreased in ClO 2 (-) excess by the increase of the chloride ion concentration. The two-step hydrolysis of dissolved chlorine through Cl 2 + H 2O left harpoon over right harpoon Cl 2OH (-) + H (+) and Cl 2OH (-) left harpoon over right harpoon HOCl + Cl (-) and the increased reactivity of Cl 2OH (-) compared to HOCl are proposed to explain these phenomena. It is reinforced that the hydrolysis of the transient Cl 2O 2 takes place through a HOCl-catalyzed step instead of the spontaneous hydrolysis. A seven-step kinetic model with six rate parameters (constants and/or ratio of constants) is proposed on the basis of the rigorous least-squares fitting of the parameters simultaneously to 129 absorbance versus time curves measured up to approximately 90% conversion. The advantage of this method of evaluation is briefly outlined.

  14. Reaction mechanism and thermal stability study on cathode materials for rechargeable lithium ion batteries

    Science.gov (United States)

    Fang, Jin

    Olivine-type lithium iron phosphate has been a very promising cathode material since it was proposed by Padhi in 1997, low-cost, environmental friendly and stable structure ensure the commercialization of LiFePO 4. In LiFePO4, during charge and discharge process, Li ions are transferred between two phases, Li-poor LialphaFePO 4 and Li-rich Li1-betaFePO4, which implies a significant energy barrier for the new phase nucleation and interface growth, contrary to the fast reaction kinetics experimentally observed. The understanding of the lithiation and delithiation mechanism of this material has spurred a lot of research interests. Many theory models have been proposed to explain the reaction mechanism of LiFePO4, among them, the single phase model claims that the reaction goes through a metastable single phase, and the over potential required to form this single phase is about 30mV, so we studied the driving force to transport lithium ions between Lialpha FePO4 and Li1-betaFePO4 phases and compared the particle sizes effect. Experiment results shows that, the nano-sized (30nm) LiFePO4 has wider solid solution range, lower solid solution formation temperature and faster kinetics than normal LiFePO4 (150nm). Also a 20mV over potential was observed in both samples, either after relaxing the FePO4/LiFePO4 system to equilibrium or transport lithium from one side to the other side, the experiment result is corresponding to theoretical calculation; indicates the reaction might go through single-phase reaction mechanism. The energy and power density of lithium ion battery largely depend on cathode materials. Mn substituted LiFePO4 has a higher voltage than LiFePO4, which results a higher theoretical energy density. Safety issue is one of the most important criterions for batteries, since cathode materials need to maintain stable structure during hundreds of charge and discharge cycles and ranges of application conditions. We have reported that iron-rich compound o-Fe1-yMnyPO4

  15. Progressive mechanical indentation of large-format Li-ion cells

    Science.gov (United States)

    Wang, Hsin; Kumar, Abhishek; Simunovic, Srdjan; Allu, Srikanth; Kalnaus, Sergiy; Turner, John A.; Helmers, Jacob C.; Rules, Evan T.; Winchester, Clinton S.; Gorney, Philip

    2017-02-01

    Large format Li-ion cells were used to study the mechanical responses of single cells of thickness 6.5 mm and stacks of three cells under compressive loading. Various sequences of increasing depth indentations were carried out using a 1.0 inch (25.4 mm) diameter steel ball with steel plate as a rigid support surface. The indentation depths were between 0.025″ and 0.250″ with main indentation increments tests of 0.025″ steps. Increment steps of 0.100″ and 0.005″ were used to pinpoint the onset of internal-short that occurred between 0.245″ and 0.250″. The indented cells were disassembled and inspected for internal damage. Load vs. time curves were compared with the developed computer models. Separator thinning leading to the short circuit was simulated using both isotropic and anisotropic mechanical properties. Our study show that separators behave differently when tested as a single layer vs. a stack in a typical pouch cell. The collective responses of the multiple layers must be taken into account in failure analysis. A model that resolves the details of the individual internal cell components was able to simulate the internal deformation of the large format cells and the onset of failure assumed to coincide with the onset of internal short circuit.

  16. Magnetic anisotropy and mechanism of magnetic relaxation in Er(III) single-ion magnets.

    Science.gov (United States)

    Singh, Saurabh Kumar; Gupta, Tulika; Rajaraman, Gopalan

    2014-10-20

    Magnetic anisotropy is a key component in the design of single-molecule magnets (SMMs) possessing a large barrier height for magnetization reversal. Lanthanide-based SMMs are the most promising candidates in this arena as they offer a large magnetic anisotropy due to the presence of strong spin-orbit coupling. Among lanthanides, Er(III) complexes are gaining attention in the area of SMMs, because of their intriguing magnetic properties and attractive blocking temperatures. Here, we have undertaken detailed ab initio calculations on four structurally diverse Er(III) SMMs to shed light on how the magnetic anisotropy is influenced by the role of symmetry and structural distortions. The employed CASSCF+RASSI calculations have offered rationale for the observed differences in the estimated Ueff values for the studied complexes and also offered hints to the mechanism of magnetic relaxation. The differences in the mechanism of magnetic relaxations are further analyzed based on the Er-ligand interactions, which is obtained by analyzing the charges, densities, luminescent behavior and the frontier molecular orbitals. Our calculations, for the first time, have highlighted the importance of high symmetry environment and ligand donor strength in obtaining large Ueff values for the Er(III) complexes. We have examined these possibilities by modeling several structures with variable coordination numbers and point group symmetry. These results signify the need of a detailed understanding on the shape of the anisotropy and the point group symmetry in order to achieve large Ueff values in Er(III) single-ion magnets.

  17. Homogenized mechanical properties for the jellyroll of cylindrical Lithium-ion cells

    Science.gov (United States)

    Wierzbicki, Tomasz; Sahraei, Elham

    2013-11-01

    A hybrid experimental/analytical approach was developed for extracting the average mechanical properties of cylindrical Li-ion cells. By using the principle of virtual work, and estimating the load transfer mechanism inside the cell, the stress-strain relation for the jellyroll was calculated for the case where the cell was crushed between two flat plates. The procedure was illustrated on an example of a commercial 18650 cell. A finite element model of the cell was then developed using the crushable foam material in LS Dyna. The model calibrated with this method closely predicts kinematic of the cell during two different load cases used for validation. These cases include local crush by a hemispherical punch and indentation by a rigid rod. The load and displacement during deformation, as well as onset of electric short circuit observed from experiments were closely predicted from simulations. It was found that the resistance of the cell comes primarily from the jellyroll. Additional analytical calculations showed that the shell casing and the end-caps provide little contribution to the overall crash resistance of the cell in the loading cases studied in this paper.

  18. Temperature dependent ageing mechanisms in Lithium-ion batteries - A Post-Mortem study

    Science.gov (United States)

    Waldmann, Thomas; Wilka, Marcel; Kasper, Michael; Fleischhammer, Meike; Wohlfahrt-Mehrens, Margret

    2014-09-01

    The effects of temperatures in the range of -20 °C to 70 °C on the ageing behaviour of cycled Lithium-ion batteries are investigated quantitatively by electrochemical methods and Post-Mortem analysis. Commercial 18650-type high-power cells with a LixNi1/3Mn1/3Co1/3O2/LiyMn2O4 blend cathode and graphite/carbon anode were used as test system. The cells were cycled at a rate of 1 C until the discharge capacity falls below 80% of the initial capacity. Interestingly, an Arrhenius plot indicates two different ageing mechanisms for the ranges of -20 °C to 25 °C and 25 °C to 70 °C. Below 25 °C, the ageing rates increase with decreasing temperature, while above 25 °C ageing is accelerated with increasing temperature. The aged 18650 cells are inspected via scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), inductively coupled plasma (ICP), measurements of electrode thickness and X-ray diffraction (XRD) after disassembly to learn more about the chemical reasons of the degradation. The effect of different temperatures on the electrode polarizations are evaluated by assembling electrodes in pouch cells with reference electrode as a model system. We find that the dominating ageing mechanism for T 25 °C the cathodes show degeneration and the anodes will be increasingly covered by SEI layers.

  19. XPS and micro-mechanical characterisation of nitrogen ion implanted low alloy steel

    Institute of Scientific and Technical Information of China (English)

    A.O.Olofinjana; Z.Chen; J.M.Bell

    2001-01-01

    The surface composition of low alloy steel after N2+ implantation was studied with X-rayphoto-electron spectroscopy (XPS). The effect of the implantation on the mechanical hardnesswas evaluated by ultra-micro hardness indentation. Chemical characterisation of the surface indi-cated that a thin layer rich in N, C and Si was formed. It is shown that Fe played little role in thechemical composition and the structure of the modified surface. The mechanical hardness of N2+implanted surface was 35-50 GPa compared with a value of 10 GPa for the untreated sample. Itis thought that the high hardness observed on the surface and in the sub-surface was as a resultof chemical modification to form a film of Si doped carbon nitride. There is strong evidence fromthe XPS and the nanoindentation studies that the bonding structure of the C-N in the near surfaceis essentially sp3 types expected in crystalline C3N4. The value of nitrogen ion implantation asprocess for improving the wear resistance of low alloy steels is emphasized.

  20. Elliptic flow as a probe for $\\psi(2S)$ production mechanism in relativistic heavy ion collisions

    CERN Document Server

    Chen, Baoyi

    2016-01-01

    I discuss the elliptic flows of $\\psi(2S)$ with different production mechanisms in the middle $p_T$ bin in $\\sqrt{s_{NN}}=2.76$ TeV Pb-Pb collisions. If the final $\\psi(2S)$s are mainly from the recombination of uncorrelated charm and anticharm quarks at $T\\approx T_c$, charm and anticharm quarks will carry large collective flows of the bulk medium, which will be inherited to the regenerated $\\psi(2S)$s. This indicates a larger elliptic flow of $\\psi(2S)$ than that of $J/\\psi$ which can be regenerated at $T\\ge T_c$, $v_2^{\\psi(2S)}>v_2^{J/\\psi}$. However, if the final $\\psi(2S)$s are mainly from the transitions of $J/\\psi\\rightarrow \\psi(2S)$ caused by the color screening of QGP, its elliptic flow should be close to the elliptic flow of $J/\\psi$, $v_2^{\\psi(2S)}\\lesssim v_2^{J/\\psi}$. Therefore, $\\psi(2S)$ elliptic flow is a sensitive probe for its production mechanisms in relativistic heavy ion collisions.

  1. Mechanisms for Covalent Immobilization of Horseradish Peroxidase on Ion-Beam-Treated Polyethylene

    Directory of Open Access Journals (Sweden)

    Alexey V. Kondyurin

    2012-01-01

    Full Text Available The surface of polyethylene was modified by plasma immersion ion implantation. Structure changes including carbonization and oxidation were observed. High surface energy of the modified polyethylene was attributed to the presence of free radicals on the surface. The surface energy decay with storage time after treatment was explained by a decay of the free radical concentration while the concentration of oxygen-containing groups increased with storage time. Horseradish peroxidase was covalently attached onto the modified surface by the reaction with free radicals. Appropriate blocking agents can block this reaction. All aminoacid residues can take part in the covalent attachment process, providing a universal mechanism of attachment for all proteins. The native conformation of attached protein is retained due to hydrophilic interactions in the interface region. The enzymatic activity of covalently attached protein remained high. The long-term activity of the modified layer to attach protein is explained by stabilisation of unpaired electrons in sp2 carbon structures. A high concentration of free radicals can give multiple covalent bonds to the protein molecule and destroy the native conformation and with it the catalytic activity. The universal mechanism of protein attachment to free radicals could be extended to various methods of radiation damage of polymers.

  2. Inherent dynamics of the acid-sensing ion channel 1 correlates with the gating mechanism.

    Directory of Open Access Journals (Sweden)

    Huaiyu Yang

    2009-07-01

    Full Text Available The acid-sensing ion channel 1 (ASIC1 is a key receptor for extracellular protons. Although numerous structural and functional studies have been performed on this channel, the structural dynamics underlying the gating mechanism remains unknown. We used normal mode analysis, mutagenesis, and electrophysiological methods to explore the relationship between the inherent dynamics of ASIC1 and its gating mechanism. Here we show that a series of collective motions among the domains and subdomains of ASIC1 correlate with its acid-sensing function. The normal mode analysis result reveals that the intrinsic rotation of the extracellular domain and the collective motions between the thumb and finger induced by proton binding drive the receptor to experience a deformation from the extracellular domain to the transmembrane domain, triggering the channel pore to undergo "twist-to-open" motions. The movements in the transmembrane domain indicate that the likely position of the channel gate is around Leu440. These motion modes are compatible with a wide body of our complementary mutations and electrophysiological data. This study provides the dynamic fundamentals of ASIC1 gating.

  3. Lithium-ion battery aging mechanisms and life model under different charging stresses

    Science.gov (United States)

    Gao, Yang; Jiang, Jiuchun; Zhang, Caiping; Zhang, Weige; Ma, Zeyu; Jiang, Yan

    2017-07-01

    The charging time-consuming and lifespan of lithium-ion batteries have always been the bottleneck for the tremendous application of electric vehicles. In this paper, cycle life tests are conducted to reveal the influence of different charging current rates and cut-off voltages on the aging mechanism of batteries. The long-term effects of charging current rates and cut-off voltages on capacity degradation and resistance increase are compared. The results show that there exists a critical charging current and a critical charging cut-off voltage. When the charging stress exceeds the critical value, battery degradation speed will be greatly accelerated. Furthermore, battery aging mechanisms at various charging currents and cut-off voltages are investigated using incremental capacity analysis. It is indicated that charging current and cut-off voltage should be reduced to retard battery degradation when the battery degrades to a certain extent. The time when the loss of electrode material accelerates is taken as the crisis to reduce charging current and the time when the loss of lithium inventory accelerates is taken as the crisis to reduce charging cut-off voltage. Moreover, an experiential model quantitatively describing the relationship between capacity degradation rate and charging stresses at different aging states is established.

  4. Aluminum work function: Effect of oxidation, mechanical scraping and ion bombardment

    Science.gov (United States)

    Vinet, P.; Lemogne, T.; Montes, H.

    1985-01-01

    Surface studies have been performed on aluminum polycrystalline surfaces which have been mechanically scraped. Such studies were initiated in order to understand surface effects occurring in tribological processes which involve rubbing surfaces and the effects of adsorption of oxygen. To characterize the surfaces, the following three different experimental approaches have been used: (1) X.P.S. (X-ray photoelectron spectroscopy), in order to check the cleanliness of the surfaces and follow the adsorption and oxidation kinetics; (2) Analysis of the work function changes by following the energy spectra of secondary electrons emitted under low energy electron bombardment; and (3) Analysis of photoemission intensities under U.V. excitation. The reference state being chosen to be the surface cleaned by ion bombardment and exposures to oxygen atmospheres have been shown to lower the work function of clean polycrystalline aluminum by 1.2 eV. The oxygen pressure is found to affect only the kinetics of these experiments. Mechanical scraping has been shown to induce a decrease ( 0.3 eV) in the work function, which could sharply modify the kinetics of adsorption on the surface.

  5. Techniques and mechanisms applied in electron cyclotron resonance sources for highly charged ions

    NARCIS (Netherlands)

    Drentje, AG

    2003-01-01

    Electron cyclotron resonance ion sources are delivering beams of highly charged ions for a wide range of applications in many laboratories. For more than two decades, the development of these ion sources has been to a large extent an intuitive and experimental enterprise. Much effort has been spent

  6. Techniques and mechanisms applied in electron cyclotron resonance sources for highly charged ions

    NARCIS (Netherlands)

    Drentje, AG

    Electron cyclotron resonance ion sources are delivering beams of highly charged ions for a wide range of applications in many laboratories. For more than two decades, the development of these ion sources has been to a large extent an intuitive and experimental enterprise. Much effort has been spent

  7. Molecular Mechanisms of ZnO Nanoparticle Dispersion in Solution: Modeling of Surfactant Association, Electrostatic Shielding and Counter Ion Dynamics.

    Directory of Open Access Journals (Sweden)

    Patrick Duchstein

    Full Text Available Molecular models of 5 nm sized ZnO/Zn(OH2 core-shell nanoparticles in ethanolic solution were derived as scale-up models (based on an earlier model created from ion-by-ion aggregation and self-organization and subjected to mechanistic analyses of surface stabilization by block-copolymers. The latter comprise a poly-methacrylate chain accounting for strong surfactant association to the nanoparticle by hydrogen bonding and salt-bridges. While dangling poly-ethylene oxide chains provide only a limited degree of sterical hindering to nanoparticle agglomeration, the key mechanism of surface stabilization is electrostatic shielding arising from the acrylates and a halo of Na+ counter ions associated to the nanoparticle. Molecular dynamics simulations reveal different solvent shells and distance-dependent mobility of ions and solvent molecules. From this, we provide a molecular rationale of effective particle size, net charge and polarizability of the nanoparticles in solution.

  8. Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action

    Directory of Open Access Journals (Sweden)

    Nagy A

    2011-09-01

    Full Text Available Amber Nagy1, Alistair Harrison2, Supriya Sabbani3, Robert S Munson, Jr2, Prabir K Dutta3, W James Waldman11Department of Pathology, The Ohio State University; 2Center for Microbial Pathogenesis, Research Institute at Nationwide Children's Hospital, 3Department of Chemistry, The Ohio State University, Columbus, OH, USABackground: The focus of this study is on the antibacterial properties of silver nanoparticles embedded within a zeolite membrane (AgNP-ZM.Methods and Results: These membranes were effective in killing Escherichia coli and were bacteriostatic against methicillin-resistant Staphylococcus aureus. E. coli suspended in Luria Bertani (LB broth and isolated from physical contact with the membrane were also killed. Elemental analysis indicated slow release of Ag+ from the AgNP-ZM into the LB broth. The E. coli killing efficiency of AgNP-ZM was found to decrease with repeated use, and this was correlated with decreased release of silver ions with each use of the support. Gene expression microarrays revealed upregulation of several antioxidant genes as well as genes coding for metal transport, metal reduction, and ATPase pumps in response to silver ions released from AgNP-ZM. Gene expression of iron transporters was reduced, and increased expression of ferrochelatase was observed. In addition, upregulation of multiple antibiotic resistance genes was demonstrated. The expression levels of multicopper oxidase, glutaredoxin, and thioredoxin decreased with each support use, reflecting the lower amounts of Ag+ released from the membrane. The antibacterial mechanism of AgNP-ZM is proposed to be related to the exhaustion of antioxidant capacity.Conclusion: These results indicate that AgNP-ZM provide a novel matrix for gradual release of Ag+.Keywords: silver nanoparticles, zeolite, antibacterial agent, oxidative stress

  9. Ion transport mechanisms linked to bicarbonate secretion in the esophageal submucosal glands.

    Science.gov (United States)

    Abdulnour-Nakhoul, Solange; Nakhoul, Hani N; Kalliny, Medhat I; Gyftopoulos, Alex; Rabon, Edd; Doetjes, Rienk; Brown, Karen; Nakhoul, Nazih L

    2011-07-01

    The esophageal submucosal glands (SMG) secrete HCO(3)(-) and mucus into the esophageal lumen, where they contribute to acid clearance and epithelial protection. This study characterized the ion transport mechanisms linked to HCO(3)(-) secretion in SMG. We localized ion transporters using immunofluorescence, and we examined their expression by RT-PCR and in situ hybridization. We measured HCO(3)(-) secretion by using pH stat and the isolated perfused esophagus. Using double labeling with Na(+)-K(+)-ATPase as a marker, we localized Na(+)-coupled bicarbonate transporter (NBCe1) and Cl(-)-HCO(3)(-) exchanger (SLC4A2/AE2) to the basolateral membrane of duct cells. Expression of cystic fibrosis transmembrane regulator channel (CFTR) was confirmed by immunofluorescence, RT-PCR, and in situ hybridization. We identified anion exchanger SLC26A6 at the ducts' luminal membrane and Na(+)-K(+)-2Cl(-) (NKCC1) at the basolateral membrane of mucous and duct cells. pH stat experiments showed that elevations in cAMP induced by forskolin or IBMX increased HCO(3)(-) secretion. Genistein, an activator of CFTR, which does not increase intracellular cAMP, also stimulated HCO(3)(-) secretion, whereas glibenclamide, a Cl(-) channel blocker, and bumetanide, a Na(+)-K(+)-2Cl(-) blocker, decreased it. CFTR(inh)-172, a specific CFTR channel blocker, inhibited basal HCO(3)(-) secretion as well as stimulation of HCO(3)(-) secretion by IBMX. This is the first report on the presence of CFTR channels in the esophagus. The role of CFTR in manifestations of esophageal disease in cystic fibrosis patients remains to be determined.

  10. Biosorption of cadmium(Ⅱ) and lead(Ⅱ) ions from aqueous solutions onto dried activated sludge

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-jiang; XIA Si-qing; CHEN Ling; ZHAO Jian-fu; CHOVELON Jean-marc; NICOLE Jaffrezic-renault

    2006-01-01

    The removal of heavy-metal ions from aqueous solutions by using dried activated sludge has been investigated in batch systems. Effect of solution pH, initial metal ion concentration, and temperature were determined. The results of the kinetic studies showed that the uptake processes of the two metal ions(Cd(Ⅱ) and Pb(Ⅱ)) followed the pseudo-second-order rate expression. The equilibrium data fitted very well to both the Langmuir and Freundlich adsorption models. The FT-IR analysis showed that the main mechanism of Cd(Ⅱ) and Pb(Ⅱ) biosorption onto dried activated sludge was their binding with amide I group.

  11. Reduction mechanisms of additives on Si anodes of Li-ion batteries.

    Science.gov (United States)

    Martínez de la Hoz, Julibeth M; Balbuena, Perla B

    2014-08-28

    Solid-electrolyte interphase (SEI) layers are films deposited on the surface of Li-ion battery electrodes during battery charge and discharge processes. They are due to electrochemical instability of the electrolyte which causes electron transfer from (to) the anode (cathode) surfaces. The films could have a protective passivating role and therefore understanding the detailed reduction (oxidation) processes is essential. Here density functional theory and ab initio molecular dynamics simulations are used to investigate the reduction mechanisms of vinylene carbonate (VC) and fluoroethylene carbonate (FEC) on lithiated silicon surfaces. These species are frequently used as "additives" to improve the SEI properties. It is found that on lithiated Si anodes (with low to intermediate degrees of lithiation) VC may be reduced via a 2e(-) mechanism yielding an opened VC(2-) anion. At higher degrees of lithiation, such a species receives two extra electrons from the surface resulting in an adsorbed CO(2-)(ads) anion and a radical anion ˙OC2H2O(2-). Additionally, in agreement with experimental observations, it is shown that CO2 can be generated from reaction of VC with the CO3(2-)anion, a product of the reduction of the main solvent, ethylene carbonate (EC). On the other hand, FEC reduction on LixSiy surfaces is found to be independent of the degree of lithiation, and occurs through three mechanisms. One of them leads to an adsorbed VC(2-) anion upon release from the FEC molecule and adsorption on the surface of F(-) and one H atom. Thus in some cases, the reduction of FEC may lead to the exact same reduction products as that of VC, which explains similarities in SEI layers formed in the presence of these additives. However, FEC may be reduced via two other multi-electron transfer mechanisms that result in formation of either CO2(2-), F(-), and ˙CH2CHO(-) or CO(2-), F(-), and ˙OCH2CHO(-). These alternative reduction products may oligomerize and form SEI layers with

  12. Preparation, Properties and Mechanism of Inhomogeneous Calcium Alginate Ion Cross-linking Gel Microspheres

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Inhomogeneous calcium alginate ion cross-linking gel microspheres, a novel ion absorbent, were prepared by dropping a sodium alginate solution to a calcium chloride solution via an electronic droplet generator. Calcium alginate microspheres have uniform particle sizes, a smooth surface and a microporous structure. The electrode probe reveals the inhomogeneous distribution of calcium ions with the highest concentration on the surface, and the lowest concentration in the cores of the spheres. As a novel ion adsorbent, calcium alginate gel microspheres have a lower limiting adsorption mass concentration, a higher enrichment capacity and a higher adsorption capacity for Pb2+ than usual ion exchange resins. The highest percentage of the adsorption is 99.79%. The limiting adsorption mass concentration is 0.0426 mg/L. The adsorption capacity for Pb2+ is 644 mg/g. Calcium alginate gel microspheres have a much faster ion exchange velocity than D418 chelating resin and D113 polyacrylate resin. The moving boundary model was employed to interpret the ion exchange kinetics process, which indicates that the ion exchange process is controlled by intraparticle diffusion of adsorbable ions. So the formation of inhomogeneous gel microspheres reduces the diffusion distance of adsorbable ions within the spheres and enhances the ion exchange velocity. Alginate has a higher selectivity for Pb2+ than for Ca2+ and the selectivity coefficient KPbCa is 316. As an ion cross-linking gel, calcium alginate inhomogeneous microspheres can effectively adsorb heavy metal Pb2+ at a higher selectivity and a higher adsorption velocity. It is a novel and good ion adsorbent.

  13. Fabrication of novel chemosensors composed of rhodamine derivative for the detection of ferric ion and mechanism studies on the interaction between sensor and ferric ion.

    Science.gov (United States)

    Shi, Dongjian; Ni, Ming; Luo, Jing; Akashi, Mitsuru; Liu, Xiaoya; Chen, Mingqing

    2015-02-21

    Although many rhodamine based fluorescence sensors were reported to detect metal ions with high sensitivity and selectivity, there are very few reports available to study the mechanisms of detection and the interaction between probe and metal ions. This paper aims to detect ferric ions by novel fluorescence chemosensors and study the mechanisms in detail. A novel probe AD-MAH-RhB was designed and synthesized from rhodamine B (RhB), adamantyl (AD), ethylene diamine and maleic anhydride (MAH). AD-MAH-RhB could detect Fe(3+) in aqueous solutions. The mechanism was explored by the HSAB principle, FTIR and mass spectra. The results suggested that Fe(3+) bound with amine and oxygen atoms in AD-MAH-RhB to form a complex composed of a 2 : 1 stoichiometry of Fe(3+) and the probe. Moreover, computational simulations were employed to further investigate the detection mechanism. The calculated results showed that Fe(3+) could conjugate with AD-MAH-RhB probe to form a stable complex, which was induced by synergetic effects of the suitable space and distance of van der Waals forces. However, Hg(2+) was found to disturb this detection and form a complex with 1 : 2 stoichiometry of Hg(2+) and AD-MAH-RhB. Then, another probe, β-cyclodextrin modified polymaleic anhydride (PMAH-CD) including AD-MAH-RhB (PMAH-CD/AD-MAH-RhB) was fabricated by inclusion interaction between CD and AD. PMAH-CD@AD-MAH-RhB showed high selectivity and sensitivity to Fe(3+) in the aqueous solution by eliminating the interruption of Hg(2+) possibly due to the high hydrogen interaction among the probes to inhibit the stable form complex with Hg(2+).

  14. A proposed OEIC circuit with two metal layer silicon waveguide and low power photonic receiver circuit

    Directory of Open Access Journals (Sweden)

    Shiraz Afazal

    2012-09-01

    Full Text Available Recent development in the field of optical communication have increased the need for Opto Electronic Integrated circuit used for the high speed data transmission with low power consuming, high bandwidth and compact size. Presented is the OEIC chip with two metal layer waveguide and low power receiver circuit using standard CMOS technology. The silicon dioxide waveguide is composed of two metal layer reducing metal layer make OEIC cost effective , The silicon LED is fabricated using nwell/p-substrate with p+ octagonal rings, the p+/nwell forms the series pn junction to increase the light emitting area which operates in reverse bias mode. Photo detector is made of multiple PN junction to increase the depletion region width with n+ active implantation/n-well fabricated on the p substrate .the photocurrent receiver circuit is made of MOSFET to perform the function of photo detection and preamplification

  15. Structural modifications of dicationic acetylcholinesterase reactivators studied under ion-pairing mechanism in reversed-phase liquid chromatography.

    Science.gov (United States)

    Radulescu, Medeea; Kuca, Kamil; Musilek, Kamil; David, Victor

    2014-11-01

    A study focused on the chromatographic behavior of several acetylcholinesterase reactivators under ion-pairing mechanism is reported. Among these reactivators, dicationic oximes and carbamoyl-based pyridinium congeners were studied, which form ion pairs with alkylsulfonate anions. This mechanism was studied for some major experimental parameters, such as the chain length of the ion-pairing agent added to the aqueous phase, its concentration, temperature, and nature of the organic modifier from mobile phase. Retention data showed one or two possibilities of forming ion pairs and the tautomerism of the studied reactivators, for different pH values of the aqueous component. Double sigmoid shapes were obtained for the studied compounds for the dependence between retention factor and pH, indicating the possibility of one or two tautomeric equilibria: at pH close to 7 these compounds are not stable as dicationic species and they participate in the retention process as nitroso forms, which are not able to form ion pairs with alkylsulfonates. The dependences of the retention factor on the organic modifier content from mobile phase were linear. Two complementary theoretical models were used to explain the functional dependences for the retention data on the experimental parameters.

  16. MECHANISMS CONTROLLING Ca ION RELEASE FROM SOL-GEL DERIVED IN SITU APATITE-SILICA NANOCOMPOSITE POWDER

    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Latifi

    2015-03-01

    Full Text Available Ca ion release from bioactive biomaterials could play an important role in their bioactivity and osteoconductivity properties. In order to improve hydroxyapatite (HA dissolution rate, in situ apatite-silica nanocomposite powders with various silica contents were synthesized via sol-gel method and mechanisms controlling the Ca ion release from them were investigated. Obtained powders were characterized by X-ray diffraction (XRD and transmission electron spectroscopy (TEM techniques, acid dissolution test, and spectroscopy by atomic absorption spectrometer (AAS. Results indicated the possible incorporation of (SiO44- into the HA structure and tendency of amorphous silica to cover the surface of HA particles. However, 20 wt. % silica was the lowest amount that fully covered HA particles. All of the nanocomposite powders showed more Ca ion release compared with pure HA, and HA - 10 wt. % silica had the highest Ca ion release. The crystallinity, the crystallite size, and the content of HA, along with the integrity, thickness, and ion diffusion possibility through the amorphous silica layer on the surface of HA, were factors that varied due to changes in the silica content and were affected the Ca ion release from nanocomposite powders.

  17. Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions

    Science.gov (United States)

    Sahraei, Elham; Campbell, John; Wierzbicki, Tomasz

    2012-12-01

    In this research a simple, yet accurate model of a single cell, needed for safety assessment of batteries under mechanical abuse conditions, was developed. Extensive testing was performed on a 18650 lithium ion cell, including indentation by a hemispherical punch, lateral indentation by a cylindrical rod, compression between two flat plates, and three-point bending. The batteries were tested in an environmental chamber at a 10% SOC. A finite element model was developed, composed of shell elements representing outside casing, and solid elements for the active material with a binder lumped together with the current collectors and the separator. The jelly roll is modeled as a homogenized and isotropic material. The homogenous model assumes different properties in tension and compression, but does not account for the effect of structural anisotropy caused by the layered nature of the jelly roll. Very good correlation was obtained between LS Dyna numerical simulation and test results in terms of load-displacement relations, deformed shape of the battery, and initiation and propagation of a crack in the shell casing. The FE model was also capable of predicting the onset of short circuit of the cell.

  18. Role of zinc and copper ions in the pathogenetic mechanisms of Alzheimer's and Parkinson's diseases.

    Science.gov (United States)

    Stelmashook, E V; Isaev, N K; Genrikhs, E E; Amelkina, G A; Khaspekov, L G; Skrebitsky, V G; Illarioshkin, S N

    2014-05-01

    Disbalance of zinc (Zn2+) and copper (Cu2+) ions in the central nervous system is involved in the pathogenesis of numerous neurodegenerative disorders such as multisystem atrophy, amyotrophic lateral sclerosis, Creutzfeldt-Jakob disease, Wilson-Konovalov disease, Alzheimer's disease, and Parkinson's disease. Among these, Alzheimer's disease (AD) and Parkinson's disease (PD) are the most frequent age-related neurodegenerative pathologies with disorders in Zn2+ and Cu2+ homeostasis playing a pivotal role in the mechanisms of pathogenesis. In this review we generalized and systematized current literature data concerning this problem. The interactions of Zn2+ and Cu2+ with amyloid precursor protein (APP), β-amyloid (Abeta), tau-protein, metallothioneins, and GSK3β are considered, as well as the role of these interactions in the generation of free radicals in AD and PD. Analysis of the literature suggests that the main factors of AD and PD pathogenesis (oxidative stress, structural disorders and aggregation of proteins, mitochondrial dysfunction, energy deficiency) that initiate a cascade of events resulting finally in the dysfunction of neuronal networks are mediated by the disbalance of Zn2+ and Cu2+.

  19. Mechanical Design of a Heavy Ion Beam Dump for the RIA Fragmentation Line

    CERN Document Server

    Stein, Werner; Conner, David L

    2005-01-01

    The RIA fragmentation line requires a beam stop for the primary beam downstream of the first dipole magnet. The beam may consist of U, Ca, Sn, Kr, or O ions. with a variety of power densities. The configuration with highest power density is for the U beam, with a spot size of 3 cm x 3 cm and a total power of up to 300 kW. The mechanical design of the dump that meets these criteria consists of a 50 cm diameter aluminum wheel with water coolant channels. A hollow drive shaft supplies the coolant water and connects the wheel to an electrical motor located in an air space in the floor above the dump. The beam strikes the wheel along the outer perimeter and passes through a thin window of aluminum where 10% of its power is absorbed and the remainder of the beam is absorbed in flowing water behind the window. Rotation of the wheel at 400 RPM results in maximum aluminum temperatures below 100 C and acceptably low thermal stresses of 5 ksi. Rotating the wheel also results in low radiation damage levels by spreading t...

  20. Ecton mechanism for the generation of ion flows in a vacuum arc

    CERN Document Server

    Mesyats, G A

    2001-01-01

    Physical substantiation of the parameters of the ion flow, generated by the vacuum arc cathode spots is given for the first time in this work. The main characteristics of the vacuum arc cathode plasma generation process (the ion erosion, the ions average charge) are considered within the frames, of the ecton model of the vacuum arc cathode spot. According to this model the vacuum arc cathode spot consists of separate cells, emitting ectons. The ions parameter evaluations, obtained within the frames of the ecton model, qualitatively and quantitatively agree with the experimental data

  1. Mechanisms of pattern formation in grazing-incidence ion bombardment of Pt(111)

    OpenAIRE

    Hansen, H; Redinger, A.; Messlinger, S.; Stoian, G.; Rosandi, Y.; Urbassek, H. M.; Linke, U.; Michely, T.

    2006-01-01

    Ripple patterns forming on Pt(111) due to 5 keV Ar+ grazing-incidence ion bombardment were investigated by scanning tunneling microscopy in a broad temperature range from 100 to 720 K and for ion fluences up to 3x10(20) ions/m(2). A detailed morphological analysis together with molecular dynamics simulations of single ion impacts allow us to develop atomic scale models for the formation of these patterns. The large difference in step edge versus terrace damage is shown to be crucial for rippl...

  2. Effective Extraction Mechanism of Volume-Produced Ions in the NIPPER I Device

    Directory of Open Access Journals (Sweden)

    Henry Ramos

    1993-12-01

    Full Text Available A mass spectrometer system is developed to extract and analyze hydrogen ions from a volume plasma hydrogen ion source. A 180° magnetic deflection-type mass analyzer is coupled to NIPPER I (National Institute of Physics Plasma Experimental Rig I, a negative ion source. Hydrogen plasma is produced from a low pressure gas (10-2 Torr with a transition of the glow discharge (254 volts, 75 mA to an arc plasma (78 volts, 14 amperes in a few seconds. The usually cylindrical plasma is converted into a sheet configuration using a pair of Sm-Co magnets. This optimizes ion current extraction by reducing (a the ion loss to the discharge anode and (b the decay of the ion current produced in the plasma. Negative hydrogen ions (H- are volume-produced by dissociative attachment of low energy electrons to highly vibrational excited hydrogen molecules.The extraction of H- ions from this volume source is optimized by the proper choice of apertures of the limiting electrodes and of the applied bias potential. A proper combination of extraction electrodes gives an optimum H- current extracted without the electrons. When one of the extraction electrodes is biased negatively near the value of the plasma floating potential, a maximum H- current is also obtained. The methods of effective extraction of H- are discussed.

  3. Mechanisms and rules of anion partition into ionic liquids: phenolate ions in ionic liquid/water biphasic systems.

    Science.gov (United States)

    Katsuta, Shoichi; Nakamura, Ko-ichi; Kudo, Yoshihiro; Takeda, Yasuyuki

    2012-01-19

    It is important to understand the mechanisms and general rules of ion partitioning in hydrophobic ionic liquid (IL)/water biphasic systems in order to predict the extractability of an ionic species with various ILs. In this study, we have investigated the partition of picrate ion (target anion, T(-)) from aqueous sodium picrate solutions into several ILs and the accompanying changes in aqueous concentrations of the IL component cation (C(+)) and anion (A(-)) at 298.2 K. The main ILs examined are 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide, 1-butyl-3-methylimidazolium hexafluorophosphate, and 1-methyl-3-octylimidazolium bis(trifluoromethanesulfonyl)amide. The aqueous concentrations of C(+) and A(-) decreased and increased, respectively, with the extraction of T(-) into the IL phase. From the standpoint of equilibrium, the partition behavior of T(-) can be explained both by the anion exchange with A(-) in the IL phase and by the ion pair extraction with C(+) in the aqueous phase. The aqueous concentrations of C(+) and A(-) are governed by the solubility product of the IL (K(sp)). The distribution ratio of T(-) is expressed as a function of Δ[T(-)](W), namely, the difference between the initial and equilibrium concentrations of T(-) in the aqueous phase; the distribution ratio of T(-) is nearly constant when Δ[T(-)](W) < K(sp)(1/2), but decreases with increasing Δ[T(-)](W) in the larger Δ[T(-)](W) region. The equilibrium constants of the ion pair extraction and the ion exchange extraction have been determined for picrate and other phenolate ions whose partition data were previously reported. The dependences of the extraction constants and extractability on the kinds of IL component ions can be quantitatively explained on the basis of the variations of K(sp).

  4. The Activation Mechanism of Bi3+ Ions to Rutile Flotation in a Strong Acidic Environment

    Directory of Open Access Journals (Sweden)

    Wei Xiao

    2017-07-01

    Full Text Available Lead hydroxyl compounds are known as rutile flotation of the traditional activated component, but the optimum pH range for flotation is 2–3 using styryl phosphoric acid (SPA as collector, without lead hydroxyl compounds in slurry solution. In this study, Bi3+ ions as a novel activator was investigated. The results revealed that the presence of Bi3+ ions increased the surface potential, due to the specific adsorption of hydroxyl compounds, which greatly increases the adsorption capacity of SPA on the rutile surface. Bi3+ ions increased the activation sites through the form of hydroxyl species adsorbing on the rutile surface and occupying the steric position of the original Ca2+ ions. The proton substitution reaction occurred between the hydroxyl species of Bi3+ ions (Bi(OHn+(3−n and the hydroxylated rutile surface, producing the compounds of Ti-O-Bi2+. The micro-flotation tests results suggested that Bi3+ ions could improve the flotation recovery of rutile from 61% to 90%, and from 61% to 64% for Pb2+ ions.

  5. Mechanical synthesis and structural properties of the fast fluoride-ion conductor PbSnF4

    Science.gov (United States)

    Fujisaki, Fumika; Mori, Kazuhiro; Yonemura, Masao; Ishikawa, Yoshihisa; Kamiyama, Takashi; Otomo, Toshiya; Matsubara, Eiichiro; Fukunaga, Toshiharu

    2017-09-01

    A fluoride-ion conductor, γ-PbSnF4, was synthesized by the mechanical milling. In addition, β-PbSnF4 was obtained by aging the γ-PbSnF4 at 473 K. The electrical conductivity of β-PbSnF4 is relatively higher than that of γ-PbSnF4 at 298 K. The crystal structure analysis of γ- and β-PbSnF4 was carried out using neutron diffraction data. From the obtained occupancies, fluoride ions were located at the Fγ(1) normal site (62%) and Fγ(2) interstitial site (38%) in γ-PbSnF4 and the Fβ(1) normal site (31%), Fβ(2) normal site (25%), and Fβ(3) interstitial site (44%) in β-PbSnF4. In particular, the number of fluoride ions at the F interstitial site increased after the γ-to-β phase transition: 38% at Fγ(2) to 44% at Fβ(3). It is most likely that the ratio of fluoride ions to vacancies (or the effective carrier concentration) was optimized in the ;-Fβ(1)-Fβ(3)-Fβ(3)-Fβ(1)-; conduction pathways of fluoride ions in β-PbSnF4.

  6. On the estimation of cooperativity in ion channel kinetics: activation free energy and kinetic mechanism of Shaker K+ channel.

    Science.gov (United States)

    Banerjee, Kinshuk; Das, Biswajit; Gangopadhyay, Gautam

    2013-04-28

    In this paper, we have explored generic criteria of cooperative behavior in ion channel kinetics treating it on the same footing with multistate receptor-ligand binding in a compact theoretical framework. We have shown that the characterization of cooperativity of ion channels in terms of the Hill coefficient violates the standard Hill criteria defined for allosteric cooperativity of ligand binding. To resolve the issue, an alternative measure of cooperativity is proposed here in terms of the cooperativity index that sets a unified criteria for both the systems. More importantly, for ion channel this index can be very useful to describe the cooperative kinetics as it can be readily determined from the experimentally measured ionic current combined with theoretical modelling. We have analyzed the correlation between the voltage value and slope of the voltage-activation curve at the half-activation point and consequently determined the standard free energy of activation of the ion channel using two well-established mechanisms of cooperativity, namely, Koshland-Nemethy-Filmer (KNF) and Monod-Wyman-Changeux (MWC) models. Comparison of the theoretical results for both the models with appropriate experimental data of mutational perturbation of Shaker K(+) channel supports the experimental fact that the KNF model is more suitable to describe the cooperative behavior of this class of ion channels, whereas the performance of the MWC model is unsatisfactory. We have also estimated the mechanistic performance through standard free energy of channel activation for both the models and proposed a possible functional disadvantage in the MWC scheme.

  7. Conversion Reaction Mechanisms in Lithium Ion Batteries: Study of the Binary Metal Fluoride Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng; Robert, Rosa; Chernova, Natasha A.; Pereira, Nathalie; Omenya, Fredrick; Badway, Fadwa; Hua, Xiao; Ruotolo, Michael; Zhang, Ruigang; Wu, Lijun; Volkov, Vyacheslav; Su, Dong; Key, Baris; Whittingham, M. Stanley; Grey, Clare P.; Amatucci, Glenn G.; Zhu, Yimei; Graetz, Jason (Binghamton); (Rutgers); (BNL); (Cambridge); (SBU)

    2015-10-15

    Materials that undergo a conversion reaction with lithium (e.g., metal fluorides MF{sub 2}: M = Fe, Cu, ...) often accommodate more than one Li atom per transition-metal cation, and are promising candidates for high-capacity cathodes for lithium ion batteries. However, little is known about the mechanisms involved in the conversion process, the origins of the large polarization during electrochemical cycling, and why some materials are reversible (e.g., FeF{sub 2}) while others are not (e.g., CuF{sub 2}). In this study, we investigated the conversion reaction of binary metal fluorides, FeF{sub 2} and CuF{sub 2}, using a series of local and bulk probes to better understand the mechanisms underlying their contrasting electrochemical behavior. X-ray pair-distribution-function and magnetization measurements were used to determine changes in short-range ordering, particle size and microstructure, while high-resolution transmission electron microscopy (TEM) and electron energy-loss spectroscopy (EELS) were used to measure the atomic-level structure of individual particles and map the phase distribution in the initial and fully lithiated electrodes. Both FeF{sub 2} and CuF{sub 2} react with lithium via a direct conversion process with no intercalation step, but there are differences in the conversion process and final phase distribution. During the reaction of Li{sup +} with FeF{sub 2}, small metallic iron nanoparticles (<5 nm in diameter) nucleate in close proximity to the converted LiF phase, as a result of the low diffusivity of iron. The iron nanoparticles are interconnected and form a bicontinuous network, which provides a pathway for local electron transport through the insulating LiF phase. In addition, the massive interface formed between nanoscale solid phases provides a pathway for ionic transport during the conversion process. These results offer the first experimental evidence explaining the origins of the high lithium reversibility in FeF{sub 2}. In contrast

  8. Relevance of quantum mechanics on some aspects of ion channel function.

    Science.gov (United States)

    Roy, Sisir; Llinás, Rodolfo

    2009-06-01

    Mathematical modeling of ionic diffusion along K ion channels indicates that such diffusion is oscillatory, at the weak non-Markovian limit. This finding leads us to derive a Schrödinger-Langevin equation for this kind of system within the framework of stochastic quantization. The Planck's constant is shown to be relevant to the Lagrangian action at the level of a single ion channel. This sheds new light on the issue of applicability of quantum formalism to ion channel dynamics and to the physical constraints of the selectivity filter.

  9. Mechanism of the catalytic ozonization of lignin in the presence of Mn(II) ions

    Science.gov (United States)

    Mitrofanova, A. N.; Khudoshin, A. G.; Lunin, V. V.

    2013-07-01

    The reaction between ozone and lignin in aqueous solutions catalyzed by Mn(II) ions is studied. The rate of destruction for aromatic structures of lignin is found to increase in the presence of Mn(II) ions. However, the greatest catalytic effect is observed upon the transformation of aliphatic acids that are difficult to oxidize with ozone. The introduction of catalyst raises the total consumption of ozone from 3 to 7 mol per each structural unit of lignin. A scheme is proposed for the transformation of phenol fragments of lignin using ozone with the participation of Mn(II) ions: at the initial stage, we observe the ozone oxidation of lignin and Mn(II) to Mn(III) ions stabilized with products of lignin oxidation and accompanied by the formation of chelate complexes, and the Mn(III) chelate complexes act as low-molecular mediators, attacking phenol structures and initiating radical processes.

  10. Ion transport mechanism in glasses: non-Arrhenius conductivity and nonuniversal features.

    Science.gov (United States)

    Murugavel, S; Vaid, C; Bhadram, V S; Narayana, C

    2010-10-28

    In this article, we report non-Arrhenius behavior in the temperature-dependent dc conductivity of alkali ion conducting silicate glasses well below their glass transition temperature. In contrast to the several fast ion-conducting and binary potassium silicate glasses, these glasses show a positive deviation in the Arrhenius plot. The observed non-Arrhenius behavior is completely reproducible in nature even after prolonged annealing close to the glass transition temperature of the respective glass sample. These results are the manifestation of local structural changes of the silicate network with temperature and give rise to different local environments into which the alkali ions hop, revealed by in situ high-temperature Raman spectroscopy. Furthermore, the present study provides new insights into the strong link between the dynamics of the alkali ions and different sites associated with it in the glasses.

  11. Thermo-electric-induced dichroism in ion-exchanged glasses: a candidate mechanism for the alignment of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nahal, Arashmid; Talebi, Razieh [University of Tehran, Photonic Materials Research Laboratory, Department of Physics, Tehran (Iran, Islamic Republic of); Miri, MirFaez [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of)

    2012-03-15

    In the present work, the alignment mechanism of silver nanoparticles on the surface of a heated ion-exchanged glass, in presence of an external uniform DC electric field (vector E{sub 0}) parallel to the surface of the sample, is studied. At high temperature, the ionic silver clusters reduce to neutral ones and move toward the surface. Simultaneously, due to the external electric field the clusters interact with other ones as induced electrical dipoles. This leads to alignment of nanoparticles along vector E{sub 0} and formation of a chain-like conductive structure, which makes the sample dichroic. Taking into account the matrix surface viscosity and using the method of image dipoles to model the influence of the substrate on the dipole interactions, we give an interpretation about the relative equilibrium positions of generated nanoclusters and consequently the formation mechanism of the chain-like structure on the surface of the ion-exchanged glass. (orig.)

  12. Thermo-electric-induced dichroism in ion-exchanged glasses: a candidate mechanism for the alignment of silver nanoparticles

    Science.gov (United States)

    Nahal, Arashmid; Talebi, Razieh; Miri, MirFaez

    2012-03-01

    In the present work, the alignment mechanism of silver nanoparticles on the surface of a heated ion-exchanged glass, in presence of an external uniform DC electric field (E0) parallel to the surface of the sample, is studied. At high temperature, the ionic silver clusters reduce to neutral ones and move toward the surface. Simultaneously, due to the external electric field the clusters interact with other ones as induced electrical dipoles. This leads to alignment of nanoparticles along E0 and formation of a chain-like conductive structure, which makes the sample dichroic. Taking into account the matrix surface viscosity and using the method of image dipoles to model the influence of the substrate on the dipole interactions, we give an interpretation about the relative equilibrium positions of generated nanoclusters and consequently the formation mechanism of the chain-like structure on the surface of the ion-exchanged glass.

  13. ION-PICKUP MECHANISM AND TWO-STREAM INSTABILITY IN COMET

    Institute of Scientific and Technical Information of China (English)

    Pang Yongjiang; Li Zhongyuan; Liu Yuan

    2000-01-01

    In this paper, we adopted a reasonable particle distribution function and used a simplified judgement to analyze the possibility of the ion-pickup caused by two-stream instibility in cometary tail. On calculation, we get an energy limitation(ΔE1, ΔE2) between the solar wind particles and the cometary particles .When the energy diffference is between ΔE1 and ΔE2, the pickup of ions in the cometary tail is more effective.

  14. Defective interactions of protein partner with ion channels and transporters as alternative mechanisms of membrane channelopathies.

    Science.gov (United States)

    Kline, Crystal F; Mohler, Peter J

    2014-02-01

    The past twenty years have revealed the existence of numerous ion channel mutations resulting in human pathology. Ion channels provide the basis of diverse cellular functions, ranging from hormone secretion, excitation-contraction coupling, cell signaling, immune response, and trans-epithelial transport. Therefore, the regulation of biophysical properties of channels is vital in human physiology. Only within the last decade has the role of non-ion channel components come to light in regard to ion channel spatial, temporal, and biophysical regulation in physiology. A growing number of auxiliary components have been determined to play elemental roles in excitable cell physiology, with dysfunction resulting in disorders and related manifestations. This review focuses on the broad implications of such dysfunction, focusing on disease-causing mutations that alter interactions between ion channels and auxiliary ion channel components in a diverse set of human excitable cell disease. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Functional characterization of the vertebrate primary ureter: Structure and ion transport mechanisms of the pronephric duct in axolotl larvae (Amphibia)

    DEFF Research Database (Denmark)

    Haugan, Birgitte M; Halberg, Kenneth Agerlin; Jespersen, Åse;

    2010-01-01

    whether the duct is involved in urine modification using larvae of the freshwater amphibian Ambystoma mexicanum (axolotl) as model. Results We investigated structural as well as physiological properties of the pronephric duct. The key elements of our methodology were: using histology, light...... duct system, which provides a model of cell structure and basic mechanisms for ion transport. Such information may be important in understanding the evolution of vertebrate kidney systems and human diseases associated with congenital malformations....

  16. Ionization Mechanism of the Ambient Pressure Pyroelectric Ion Source (APPIS) and Its Applications to Chemical Nerve Agent Detection

    OpenAIRE

    Neidholdt, Evan L.; Beauchamp, J. L.

    2009-01-01

    We present studies of the ionization mechanism operative in the ambient pressure pyroelectric ionization source (APPIS), along with applications that include detection of simulants for chemical nerve agents. It is found that ionization by APPIS occurs in the gas-phase. As the crystal is thermally cycled over a narrow temperature range, electrical discharges near the surface of the crystal produce energetic species which, through reactions with atmospheric molecules, result in reactant ions su...

  17. Oxygen Ion Conduction in Oxide Materials: Selected Examples and Basic Mechanisms

    Directory of Open Access Journals (Sweden)

    Traqueia, L. S. M.

    2006-06-01

    Full Text Available Oxygen ion conductors with most symmetrical structures such as fluorite- and perovskite-related phases, rely on the mobility of oxygen vacancies. High-performance electrolytes, namely with the apatite type structure, recently developed, show dominant interstitial transport. In order to assess basic composition-conductivity relationships in a fluorite-derived C-type cubic structure with high tolerance to different types of oxygen defects, a series of Y2O3-based materials were studied by impedance spectroscopy in air in the range 700-1000oC. Yttria doped with CaO exhibits reasonably high ionic conduction via the vacancy mechanism. Samples doped with ZrO2 and HfO2 possess oxygen interstitials as dominant defects, but show poor ionic conductivity when compared to Ca-doped materials. These tendencies, known for other fluorite-related phases such as pyrochlores, are opposite to those observed for apatite- and K2NiF4-type structures. Comparison of ionic conductivity levels in various oxide materials suggests that fast interstitial migration may be expected for complex multicomponent materials where the ion transport occurs in lattice fragments with high bond ionicity. Furthermore, conduction-affecting stereological parameters, to a great extent, depend on the relaxation of covalent fragments.

    Los conductores iónicos de oxígeno con estructuras más simétricas como fluorita y perovsquita dependen de la movilidad de las vacantes de oxígeno. Se han desarrollado recientemente electrolitos con elevadas prestaciones, los llamados de estructura tipo apatito, que muestran transporte intersticial dominante. Con el objeto de establecer las relaciones básicas entre composición y conductividad en una estructura cúbica tipo-C derivada de la fluorita con alta tolerancia a diferentes defectos de oxígeno, se han estudiado materiales basados en Y2O3 por espectroscopía de impedancia en el rango de temperaturas entre 700 y 1000ºC. La ytria dopada con Ca

  18. Electrochemical and Mechanical Failure of Graphite-Based Anode Materials in Li-Ion Batteries for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Cheng Lin

    2016-01-01

    Full Text Available Graphite-based anode materials undergo electrochemical reactions, coupling with mechanical degradation during battery operation, can affect or deteriorate the performance of Li-ion batteries dramatically, and even lead to the battery failure in electric vehicle. First, a single particle model (SPM based on kinetics of electrochemical reactions was built in this paper. Then the Li-ion concentration and evolution of diffusion induced stresses (DISs within the SPM under galvanostatic operating conditions were analyzed by utilizing a mathematical method. Next, evolution of stresses or strains in the SPM, together with mechanical degradation of anode materials, was elaborated in detail. Finally, in order to verify the hypothesis aforementioned surface and morphology of the graphite-based anode dismantled from fresh and degraded cells after galvanostatic charge/discharge cycling were analyzed by X-ray diffraction (XRD, field-emission scanning electron microscopy (SEM, and transmission electron microscopy (TEM. The results show that large volume changes of anode materials caused DISs during Li-ion insertion and extraction within the active particles. The continuous accumulations of DISs brought about mechanical failure of the anode eventually.

  19. Investigation of mechanism of anode plasma formation in ion diode with dielectric anode

    Science.gov (United States)

    Pushkarev, A.

    2015-10-01

    The results of investigation of the anode plasma formation in a diode with a passive anode in magnetic insulation mode are presented. The experiments have been conducted using the BIPPAB-450 ion accelerator (350-400 kV, 6-8 kA, 80 ns) with a focusing conical diode with Br external magnetic field (a barrel diode). For analysis of plasma formation at the anode and the distribution of the ions beam energy density, infrared imaging diagnostics (spatial resolution of 1-2 mm) is used. For analysis of the ion beam composition, time-of-flight diagnostics (temporal resolution of 1 ns) were used. Our studies have shown that when the magnetic induction in the A-C gap is much larger than the critical value, the ion beam energy density is close to the one-dimensional Child-Langmuir limit on the entire working surface of the diode. Formation of anode plasma takes place only by the flashover of the dielectric anode surface. In this mode, the ion beam consists primarily of singly ionized carbon ions, and the delay of the start of formation of the anode plasma is 10-15 ns. By reducing the magnetic induction in the A-C gap to a value close to the critical one, the ion beam energy density is 3-6 times higher than that calculated by the one-dimensional Child-Langmuir limit, but the energy density of the ion beam is non-uniform in cross-section. In this mode, the anode plasma formation occurs due to ionization of the anode material with accelerated electrons. In this mode, also, the delay in the start of the formation of the anode plasma is much smaller and the degree of ionization of carbon ions is higher. In all modes occurred effective suppression of the electronic component of the total current, and the diode impedance was 20-30 times higher than the values calculated for the mode without magnetic insulation of the electrons. The divergence of the ion beam was 4.5°-6°.

  20. Coupling of Mechanical Behavior of Lithium Ion Cells to Electrochemical-Thermal (ECT) Models for Battery Crush

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Santhanagopalan, Shriram; Pesaran, Ahmad; Sahraei, Elham; Wierzbicki, Tom

    2016-06-14

    Vehicle crashes can lead to crushing of the battery, damaging lithium ion battery cells and causing local shorts, heat generation, and thermal runaway. Simulating all the physics and geometries at the same time is challenging and takes a lot of effort; thus, simplifications are needed. We developed a material model for simultaneously modeling the mechanical-electrochemical-thermal behavior, which predicted the electrical short, voltage drop, and thermal runaway behaviors followed by a mechanical abuse-induced short. The effect of short resistance on the battery cell performance was studied.

  1. Effect of Oxide Nanoparticles on Thermal and Mechanical Properties of Electrospun Separators for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Marco Zaccaria

    2012-01-01

    Full Text Available This study reports the fabrication and characterization of poly(ethylene oxide (PEO and poly(vinylidenefluoride-co-chlorotrifluoroethylene (PVDF-CTFE nanofibrous separators for lithium-ion batteries loaded with different amounts of fumed-silica and tin oxide nanoparticles. Membrane morphological characterization (SEM, TEM showed the presence of good-quality nanofibres containing nanoparticles. Thermal degradation and membrane mechanical properties were also investigated, and a remarkable effect of nanoparticle addition on membrane mechanical properties was found. In particular, PEO membranes were strengthened by the addition of metal oxide, whereas PVDF-CTFE membranes acquired ductility.

  2. Differential localization of ion transporters suggests distinct cellular mechanisms for calcification and photosynthesis between two coral species.

    Science.gov (United States)

    Barott, Katie L; Perez, Sidney O; Linsmayer, Lauren B; Tresguerres, Martin

    2015-08-01

    Ion transport is fundamental for multiple physiological processes, including but not limited to pH regulation, calcification, and photosynthesis. Here, we investigated ion-transporting processes in tissues from the corals Acropora yongei and Stylophora pistillata, representatives of the complex and robust clades that diverged over 250 million years ago. Antibodies against complex IV revealed that mitochondria, an essential source of ATP for energetically costly ion transporters, were abundant throughout the tissues of A. yongei. Additionally, transmission electron microscopy revealed septate junctions in all cell layers of A. yongei, as previously reported for S. pistillata, as well as evidence for transcellular vesicular transport in calicoblastic cells. Antibodies against the alpha subunit of Na(+)/K(+)-ATPase (NKA) and plasma membrane Ca(2+)-ATPase (PMCA) immunolabeled cells in the calicoblastic epithelium of both species, suggesting conserved roles in calcification. However, NKA was abundant in the apical membrane of the oral epithelium in A. yongei but not S. pistillata, while PMCA was abundant in the gastroderm of S. pistillata but not A. yongei. These differences indicate that these two coral species utilize distinct pathways to deliver ions to the sites of calcification and photosynthesis. Finally, antibodies against mammalian sodium bicarbonate cotransporters (NBC; SLC4 family) resulted in strong immunostaining in the apical membrane of oral epithelial cells and in calicoblastic cells in A. yongei, a pattern identical to NKA. Characterization of ion transport mechanisms is an essential step toward understanding the cellular mechanisms of coral physiology and will help predict how different coral species respond to environmental stress. Copyright © 2015 the American Physiological Society.

  3. Hydroxy double salts loaded with bioactive ions: Synthesis, intercalation mechanisms, and functional performance

    Energy Technology Data Exchange (ETDEWEB)

    Kaassis, Abdessamad Y.A. [UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX (United Kingdom); Xu, Si-Min; Guan, Shanyue; Evans, David G. [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Wei, Min, E-mail: weimin@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Williams, Gareth R., E-mail: g.williams@ucl.ac.uk [UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX (United Kingdom)

    2016-06-15

    The intercalation of the anions of diclofenac (Dic), naproxen (Nap), and valproic acid (Val) into three hydroxy double salts (HDSs) has been explored in this work. Experiments were performed with [Co{sub 1.2}Zn{sub 3.8}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (CoZn-NO{sub 3}), [Ni{sub 2}Zn{sub 3}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (NiZn-NO{sub 3}) and [Zn{sub 5}(OH){sub 8}](NO{sub 3}){sub 2}·2H{sub 2}O (Zn-NO{sub 3}). It proved possible to intercalate diclofenac and naproxen into all three HDSs. In contrast, Val could be intercalated into CoZn-NO{sub 3} but when it was reacted with Zn-NO{sub 3} the HDS structure was destroyed, and the product comprised ZnO. Successful intercalation was verified by X-ray diffraction, IR spectroscopy, and elemental microanalysis. Molecular dynamics simulations showed the Dic and Nap ions to arrange themselves in an “X” shape in the interlayer space, forming a bilayer. Val was found to adopt a position with its aliphatic groups parallel to the HDS layer, again in a bilayer. In situ time resolved X-ray diffraction experiments revealed that intercalation of Dic and Nap into CoZn-NO{sub 3} and Zn-NO{sub 3} is mechanistically complex, with a number of intermediate phases observed. In contrast, the intercalation of all three guests into NiZn-NO{sub 3} and of Val into CoZn-NO{sub 3} are simple one step reactions proceeding directly from the starting material to the product. The HDS-drug composites were found to have sustained release profiles. - Graphical abstract: Seven new drug intercalates of hydroxy double salts (HDSs) have been prepared and characterised. The intercalation mechanisms have been explored, and the drug release properties of the HDS/drug composites quantified. Display Omitted.

  4. Molecular Dynamics Simulations of Ion Transport and Mechanisms in Polymer Nanocomposites

    Science.gov (United States)

    Mogurampelly, Santosh; Ganesan, Venkat

    2015-03-01

    Using all atom molecular dynamics and trajectory-extending kinetic Monte Carlo simulations, we study the influence of Al2O3 nanoparticles on the transport properties of Li+ ions in polymer electrolytes consisting of polyethylene oxide (PEO) melt solvated with LiBF4 salt. We observe that the nanoparticles have a strong influence on polymer segmental dynamics which in turn correlates with the mobility of Li+ ions. Explicitly, polymer segmental relaxation times and Li+ ion residence times around polymer were found to increase with the addition of nanoparticles. We also observe that increasing short range repulsive interactions between nanoparticles and polymer membrane leads to increasing polymer dynamics and ion mobility. Overall, our simulation results suggest that nanoparticle induced changes in conformational and dynamic properties of the polymer influences the ion mobilities in polymer electrolytes and suggests possible directions for using such findings to improve the polymer matrix conductivity. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing computing resources that have contributed to the research.

  5. Molecular mechanisms of decomposition of hydrated Na+Cl- ion pairs under planar nanopore conditions

    Science.gov (United States)

    Shevkunov, S. V.

    2017-02-01

    The decomposition of Na+Cl- ion pairs under the conditions of a nanoscopic planar pore with structureless walls in a material contact with water vapor at 298 K is simulated by Monte Carlo method. The transition from the state of a contact ion pair (CIP) to the state of solvent-separated ion pair (SSIP) is shown to occur as a result of an increase in the vapor pressure over a pore after exceeding the threshold number of molecules in a hydrate shell. It is found that the planar form of a molecular cluster under the conditions of a narrow pore does not level an abrupt structural transition and the formation of hydrogen bonds in the hydrate shell starts after three molecules are added. The hydrogen bond length under pore conditions is found to be resistant to variations in the hydrate shell size and coincides with that in water under normal conditions.

  6. Ion pair formation as a possible mechanism for the enhancement effect of lauric acid on the transdermal permeation of ondansetron.

    Science.gov (United States)

    Dimas, Dimitrios A; Dallas, Paraskevas P; Rekkas, Dimitrios M

    2004-08-01

    Transdermal application can be an alternative drug delivery route for ondansetron, an antiemetic drug. Previous studies found that fatty acids, namely oleic and lauric, were the most effective penetration enhancers. The aim of this study was to investigate the formation of an ion pair between ondansetron and lauric acid as a possible mechanism of its enhancing action. Several techniques were used to reveal the formation of an ion pair complex. Partitioning experiments, where the n-octanol/water coefficient was measured, showed an increase in the distribution coefficient in the presence of the acid, possibly as a result of the formation of more lipophilic ion pairs between the charged molecules of ondansetron and lauric acid. Further evidence of complex formation between ondansetron and lauric acid, was gained from the 13C-nuclear magnetic resonance (13C-NMR) spectra of ondansetron, lauric acid, and their mixture (molar ratio 1:1). The NMR spectra revealed alterations to the magnetic environment of the carbon atoms adjacent to the ionized group, which are the carbonyl group of the acid and the nitrogen of the imidazole ring of ondansetron. This evidence substantiates the theory of ion pair formation. Finally, thermal analysis of the binary mixtures of ondansetron and lauric acid revealed the formation of an additional compound, with different melting point from pure ondansetron and lauric acid, which is thermodynamically favored.

  7. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir.

    Science.gov (United States)

    Zhu, Hongli; Jia, Zheng; Chen, Yuchen; Weadock, Nicholas; Wan, Jiayu; Vaaland, Oeyvind; Han, Xiaogang; Li, Teng; Hu, Liangbing

    2013-07-10

    Sodium (Na)-ion batteries offer an attractive option for low cost grid scale storage due to the abundance of Na. Tin (Sn) is touted as a high capacity anode for Na-ion batteries with a high theoretical capacity of 847 mAh/g, but it has several limitations such as large volume expansion with cycling, slow kinetics, and unstable solid electrolyte interphase (SEI) formation. In this article, we demonstrate that an anode consisting of a Sn thin film deposited on a hierarchical wood fiber substrate simultaneously addresses all the challenges associated with Sn anodes. The soft nature of wood fibers effectively releases the mechanical stresses associated with the sodiation process, and the mesoporous structure functions as an electrolyte reservoir that allows for ion transport through the outer and inner surface of the fiber. These properties are confirmed experimentally and computationally. A stable cycling performance of 400 cycles with an initial capacity of 339 mAh/g is demonstrated; a significant improvement over other reported Sn nanostructures. The soft and mesoporous wood fiber substrate can be utilized as a new platform for low cost Na-ion batteries.

  8. Corrosion Inhibiting Mechanism of Nitrite Ion on the Passivation of Carbon Steel and Ductile Cast Iron for Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    K. T. Kim

    2015-01-01

    Full Text Available While NaNO2 addition can greatly inhibit the corrosion of carbon steel and ductile cast iron, in order to improve the similar corrosion resistance, ca. 100 times more NaNO2 addition is needed for ductile cast iron compared to carbon steel. A corrosion and inhibition mechanism is proposed whereby NO2- ion is added to oxidize. The NO2- ion can be reduced to nitrogen compounds and these compounds may be absorbed on the surface of graphite. Therefore, since nitrite ion needs to oxidize the surface of matrix and needs to passivate the galvanic corroded area and since it is absorbed on the surface of graphite, a greater amount of corrosion inhibitor needs to be added to ductile cast iron compared to carbon steel. The passive film of carbon steel and ductile cast iron, formed by NaNO2 addition showed N-type semiconductive properties and its resistance, is increased; the passive current density is thus decreased and the corrosion rate is then lowered. In addition, the film is mainly composed of iron oxide due to the oxidation by NO2- ion; however, regardless of the alloys, nitrogen compounds (not nitrite were detected at the outermost surface but were not incorporated in the inner oxide.

  9. Mechanisms and stability of oxide-ion transport in homogenous and heterogeneous ceramic membranes

    Science.gov (United States)

    Tichy, Robin Sarah

    Solid oxide-ion conductors are basic components of several modern technologies. Oxide-ion electrolytes are oxide-ion conductors and electronic insulators; they are used in oxygen sensors and solid oxide fuel cells. The required oxide-ion conductivity is only achieved at higher temperatures. Commercialization of this technology demands the development of a better oxide-ion electrolyte and/or the ability to fabricate a large area ceramic membrane with a thickness of L membranes and methane conversion reactors that produce syn-gas. Structural and chemical stability of mixed conductors are a major problem for ceramic-membrane reactors because the material must exhibit good mixed conduction in both high and very low oxygen partial pressures and at operating temperatures, 600°C ≤ Top. ≤ 900°C. The material SrMnO3 is a high-temperature, oxygen-deficient, perovskite that may be preserved at room temperature. Although this material exhibits good mixed conduction, it reverts to its stable stoichiometric phase under oxidizing operating conditions. La2NiO4+delta has a tetragonal crystal structure that is closely related to the cubic perovskite structure. The ionic conduction occurs via the migration of interstitial oxygen, which is lost in reducing atmospheres. The stability of mixed conduction within one material proved difficult to achieve in both reducing and oxidizing conditions at high temperatures. Several oxides are known to exhibit stable ionic conduction in membrane operating conditions. A noble metal can provide a pathway for electronic conduction while the oxide phase conducts the oxygen ions. This heterogeneous composite configuration improves stability, but the exact nature of the conduction processes has not been determined. The performance of two composite materials, Ce 0.8Sm0.2O1.9/Pd and (Bi1.75Y0.25 O3)0.95(CeO2)0.05/Ag, was assessed through permeation studies.

  10. Dispersive coupling between light and a rare-earth-ion-doped mechanical resonator

    Science.gov (United States)

    Mølmer, Klaus; Le Coq, Yann; Seidelin, Signe

    2016-11-01

    By spectrally hole burning an inhomogeneously broadened ensemble of ions while applying a controlled perturbation, one can obtain spectral holes that are functionalized for maximum sensitivity to different perturbations. We propose to use such hole-burned structures for the dispersive optical interaction with rare-earth-ion dopants whose frequencies are sensitive to crystal strain due to the bending motion of a crystal cantilever. A quantitative analysis shows that good optical sensitivity to the bending motion is obtained if a magnetic-field gradient is applied across the crystal during hole burning and that the resulting optomechanical coupling strength is sufficient for observing quantum features such as zero-point vibrations.

  11. Radiation damage mechanisms in CsI(Tl) studied by ion beam induced luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Quaranta, Alberto [Dipartimento di Ingegneria dei Materiali e delle Tecnologie Industriali - DIMTI, Universita di Trento, Via Mesiano 77, I-38050 Povo, Trento (Italy); Laboratori Nazionali di Legnaro - INFN, Via dell' Universita 2, I-35020 Legnaro, Padova (Italy)], E-mail: quaranta@ing.unitn.it; Gramegna, Fabiana; Kravchuk, Vladimir [Laboratori Nazionali di Legnaro - INFN, Via dell' Universita 2, I-35020 Legnaro, Padova (Italy); Scian, Carlo [Dipartimento di Ingegneria dei Materiali e delle Tecnologie Industriali - DIMTI, Universita di Trento, Via Mesiano 77, I-38050 Povo, Trento (Italy); Laboratori Nazionali di Legnaro - INFN, Via dell' Universita 2, I-35020 Legnaro, Padova (Italy)

    2008-06-15

    Ion beam induced luminescence (IBIL) has been used to study the kinetics of defect production under ion beam irradiation in CsI(Tl) crystals with different Tl{sup +} concentrations (250, 560, 3250 and 6500 ppm). The crystals have been irradiated with H{sup +} and {sup 4}He{sup +} at 1.8 MeV. Both the scintillator spectra after irradiation and the intensity decrease at different wavelengths as a function of the fluence have been measured. The emission bands shift to higher wavelengths after irradiation, and the light decrease has been interpolated following a saturation model for the point defect concentration. Crystals with low Tl{sup +} concentrations present the UV emission peak of pure CsI at 300 nm whose intensity during H{sup +} irradiation and reaches a maximum under He{sup +} irradiation. At low Tl{sup +} concentrations the damage rate depends on the ion stopping power, while at higher concentrations it depends on the activator concentration. The results can be interpreted by assuming that the defects affecting the light emission are point defects nearby Tl{sup +} ions.

  12. An organometallic sandwich lanthanide single-ion magnet with an unusual multiple relaxation mechanism.

    Science.gov (United States)

    Jeletic, Matthew; Lin, Po-Heng; Le Roy, Jennifer J; Korobkov, Ilia; Gorelsky, Serge I; Murugesu, Muralee

    2011-12-07

    A dysprosium(III) sandwich complex, [Dy(III)(COT″)(2)Li(THF)(DME)], was synthesized using 1,4-bis(trimethylsilyl)cyclooctatetraenyl dianion (COT″). The complex behaves as a single-ion magnet and demonstrates unusual multiple relaxation modes. The observed relaxation pathways strongly depend on the applied static dc fields.

  13. Collisionless Magnetic Reconnection as an Ion Acceleration Mechanism of Low- β Laboratory Plasmas

    Science.gov (United States)

    Cazzola, Emanuele; Curreli, Davide; Lapenta, Giovanni

    2016-10-01

    In this work we present the results from a series of fully-kinetic simulations of magnetic reconnection under typical laboratory plasma conditions. The highly-efficient energy conversion obtained from this process is of great interest for applications such as future electric propulsion systems and ion beam accelerators. We analysed initial configurations in low-beta conditions with reduced mass ratio of mi = 512me at magnetic fields between 200G and 5000G and electron temperatures between 0.5 and 10eV. The initial ion density and temperature are kept uniform and equal to 1019 m-3 and 0.0215eV (room temperature) respectively. The analysis has shown that the reconnection process under these conditions can accelerate ions up to velocities as high as a significant fraction of the inflow Alfven speed. The configuration showing the best scenario is further studied with a realistic mass ratio in terms of energetics and outflow ion momentum, with the latter featured by the traditionally used specific impulse. Finally, a more detailed analysis of the reconnection outflow has revealed the formation of different interesting set of shock structures, also recently seen from MHD simulations of relativistic plasmas and certainly subject of future more careful attention. The present work has been possible thanks to the Illinois-KULeuven Faculty/PhD Candidate Exchange Program. Computational resources provided by the PRACE Tier-0 machines.

  14. The Mechanism of the Copper Ion Catalyzed Autoxidation of Cysteine in Alkaline Medium

    NARCIS (Netherlands)

    Koningsberger, D.C.; Zwart, J.; Wolput, J.H.M.C. van

    1981-01-01

    Quantitative e.s.r. measurements carried out during the copper catalysed alkaline autoxidation of cysteine show that the Cu(II)-dicysteine complex represents almost the total amount of copper. Only a small fraction (<2%) of the copper ions might be present in a state which is not detectable by e.s.r

  15. Solid Sulphate Electrolytes The First Examples of a Strange Ion Transport Mechanism

    DEFF Research Database (Denmark)

    Aronsson, R.; Knape, H. E. G.; Lunden, A.

    1983-01-01

    Neutron and X-ray diffraction studies reveal that fcc Li//2SO//4, bcc LiNaSO//4, and bcc LiAgSO//4 are characterized by a strong rotational disorder of the sulfate ions which strongly enhances the mobility of the cations. Single crystal neutron scattering studies have been performed on fcc Li//2S...

  16. Fast self-diffusion of ions in CH 3 NH 3 PbI 3 : the interstiticaly mechanism versus vacancy-assisted mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji-Hui; Yin, Wan-Jian; Park, Ji-Sang; Wei, Su-Huai

    2016-01-01

    The stability of organic-inorganic halide perovskites is a major challenge for their applications and has been extensively studied. Among the possible underlying reasons, ion self-diffusion has been inferred to play important roles. While theoretical studies congruously support that iodine is more mobile, experimental studies only observe the direct diffusion of the MA ion and possible diffusion of iodine. The discrepancy may result from the incomplete understanding of ion diffusion mechanisms. With the help of first-principles calculations, we studied ion diffusion in CH3NH3PbI3 (MAPbI3) through not only the vacancy-assisted mechanisms presumed in previous theoretical studies, but also the neglected interstiticaly mechanisms. We found that compared to the diffusion through the vacancy-assisted mechanism, MA ion diffusion through the interstiticaly mechanism has a much smaller barrier which could explain experimental observations. For iodine diffusion, both mechanisms can yield relatively small barriers. Depending on the growth conditions, defect densities of vacancies and interstitials can vary and so do the diffusion species as well as diffusion mechanisms. Our work thus supports that both MA and iodine ion diffusion could contribute to the performance instability of MAPbI3. While being congruous with experimental results, our work fills the research gap by providing a full understanding of ion diffusion in halide perovskites.

  17. Theoretical Study on the Ion-pair Formation Mechanism for the Li + I2 → Li+ + I2- System

    Institute of Scientific and Technical Information of China (English)

    SUN Xiao-Min; FENG Da-Cheng; CAI Zheng-Ting

    2004-01-01

    For the Li + I2 →Li+ + I2- system, theoretical study has been performed on the QCISD(T) level by using the ab initio method. The collision complex in ion-pair formation process was found and optimized. These results show that the crossed molecule beam (CMB) experimental phenomenon is verified and the detailed geometry is given for the first time. A mechanism for ion-pair formation was proposed in detail. The position where the collision complex occurs affects the reaction path. Specifically, the process has threshold when the collision complex appeared before the crossing point between the covalent and ionic state potential energy surfaces. On the contrary, the process has no threshold after the crossing point. Theoretically, the title system belongs to the former case.

  18. Thermodynamics and Reaction Mechanisms of Decomposition of the Simplest Protonated Tripeptide, Triglycine: A Guided Ion Beam and Computational Study

    Science.gov (United States)

    Mookherjee, Abhigya; Van Stipdonk, Michael J.; Armentrout, P. B.

    2017-02-01

    We present a thorough characterization of fragmentations observed in threshold collision-induced dissociation (TCID) experiments of protonated triglycine (H+GGG) with Xe using a guided ion beam tandem mass spectrometer (GIBMS). Kinetic energy-dependent cross-sections for 10 ionic products are observed and analyzed to provide 0 K barriers for six primary products: [b2]+, [y1 + 2H]+, [b3]+, CO loss, [y2 + 2H]+, and [a1]+; three secondary products: [a2]+, [a3]+, and [y2 + 2H - CO]+; and two tertiary products: high energy [y1 + 2H]+ and [a2 - CO]+ after accounting for multiple ion-molecule collisions, internal energy of reactant ions, unimolecular decay rates, competition between channels, and sequential dissociations. Relaxed potential energy surface scans performed at the B3LYP-D3/6-311+G(d,p) level of theory are used to identify transition states (TSs) and intermediates of the six primary and one secondary products. Geometry optimizations and single point energy calculations were performed at several levels of theory. These theoretical energies are compared with experimental energies and are found to give reasonably good agreement, in particular for the M06-2X level of theory. This good agreement between experiment and theory validates the reaction mechanisms explored computationally here and elsewhere and allows identification of the product structures formed at threshold energies. The present work presents the first measurement of absolute experimental threshold energies of important sequence ions and non-sequence ions: [y1 + 2H]+, [b3]+, CO loss, [a1]+, and [a3]+, and refines those for [b2]+ and [y2 + 2H]+ previously measured.

  19. Force field development for actinyl ions via quantum mechanical calculations: an approach to account for many body solvation effects.

    Science.gov (United States)

    Rai, Neeraj; Tiwari, Surya P; Maginn, Edward J

    2012-09-06

    Advances in computational algorithms and methodologies make it possible to use highly accurate quantum mechanical calculations to develop force fields (pair-wise additive intermolecular potentials) for condensed phase simulations. Despite these advances, this approach faces numerous hurdles for the case of actinyl ions, AcO2(n+) (high-oxidation-state actinide dioxo cations), mainly due to the complex electronic structure resulting from an interplay of s, p, d, and f valence orbitals. Traditional methods use a pair of molecules (“dimer”) to generate a potential energy surface (PES) for force field parametrization based on the assumption that many body polarization effects are negligible. We show that this is a poor approximation for aqueous phase uranyl ions and present an alternative approach for the development of actinyl ion force fields that includes important many body solvation effects. Force fields are developed for the UO2(2+) ion with the SPC/Fw, TIP3P, TIP4P, and TIP5P water models and are validated by carrying out detailed molecular simulations on the uranyl aqua ion, one of the most characterized actinide systems. It is shown that the force fields faithfully reproduce available experimental structural data and hydration free energies. Failure to account for solvation effects when generating PES leads to overbinding between UO2(2+) and water, resulting in incorrect hydration free energies and coordination numbers. A detailed analysis of arrangement of water molecules in the first and second solvation shell of UO2(2+) is presented. The use of a simple functional form involving the sum of Lennard-Jones + Coulomb potentials makes the new force field compatible with a large number of available molecular simulation engines and common force fields.

  20. Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material

    KAUST Repository

    Ramadan, Khaled S.

    2013-02-08

    This work presents an SU-8 surface micromachining process using amorphous silicon as a sacrificial material, which also incorporates two metal layers for electrical excitation. SU-8 is a photo-patternable polymer that is used as a structural layer for MEMS and microfluidic applications due to its mechanical properties, biocompatibility and low cost. Amorphous silicon is used as a sacrificial layer in MEMS applications because it can be deposited in large thicknesses, and can be released in a dry method using XeF2, which alleviates release-based stiction problems related to MEMS applications. In this work, an SU-8 MEMS process was developed using ;-Si as a sacrificial layer. Two conductive metal electrodes were integrated in this process to allow out-of-plane electrostatic actuation for applications like MEMS switches and variable capacitors. In order to facilitate more flexibility for MEMS designers, the process can fabricate dimples that can be conductive or nonconductive. Additionally, this SU-8 process can fabricate SU-8 MEMS structures of a single layer of two different thicknesses. Process parameters were optimized for two sets of thicknesses: thin (5-10 m) and thick (130 m). The process was tested fabricating MEMS switches, capacitors and thermal actuators. © 2013 IOP Publishing Ltd.

  1. Signatures of Mechanically Interlocked Topology of Lasso Peptides by Ion Mobility-Mass Spectrometry: Lessons from a Collection of Representatives

    Science.gov (United States)

    Fouque, Kevin Jeanne Dit; Lavanant, Hélène; Zirah, Séverine; Hegemann, Julian D.; Zimmermann, Marcel; Marahiel, Mohamed A.; Rebuffat, Sylvie; Afonso, Carlos

    2016-11-01

    Lasso peptides are characterized by a mechanically interlocked structure, where the C-terminal tail of the peptide is threaded and trapped within an N-terminal macrolactam ring. Their compact and stable structures have a significant impact on their biological and physical properties and make them highly interesting for drug development. Ion mobility - mass spectrometry (IM-MS) has shown to be effective to discriminate the lasso topology from their corresponding branched-cyclic topoisomers in which the C-terminal tail is unthreaded. In fact, previous comparison of the IM-MS data of the two topologies has yielded three trends that allow differentiation of the lasso fold from the branched-cyclic structure: (1) the low abundance of highly charged ions, (2) the low change in collision cross sections (CCS) with increasing charge state and (3) a narrow ion mobility peak width. In this study, a three-dimensional plot was generated using three indicators based on these three trends: (1) mean charge divided by mass (ζ), (2) relative range of CCS covered by all protonated molecules (ΔΩ/Ω) and (3) mean ion mobility peak width (δΩ). The data were first collected on a set of twenty one lasso peptides and eight branched-cyclic peptides. The indicators were obtained also for eight variants of the well-known lasso peptide MccJ25 obtained by site-directed mutagenesis and further extended to five linear peptides, two macrocyclic peptides and one disulfide constrained peptide. In all cases, a clear clustering was observed between constrained and unconstrained structures, thus providing a new strategy to discriminate mechanically interlocked topologies.

  2. Signatures of Mechanically Interlocked Topology of Lasso Peptides by Ion Mobility-Mass Spectrometry: Lessons from a Collection of Representatives

    Science.gov (United States)

    Fouque, Kevin Jeanne Dit; Lavanant, Hélène; Zirah, Séverine; Hegemann, Julian D.; Zimmermann, Marcel; Marahiel, Mohamed A.; Rebuffat, Sylvie; Afonso, Carlos

    2017-02-01

    Lasso peptides are characterized by a mechanically interlocked structure, where the C-terminal tail of the peptide is threaded and trapped within an N-terminal macrolactam ring. Their compact and stable structures have a significant impact on their biological and physical properties and make them highly interesting for drug development. Ion mobility - mass spectrometry (IM-MS) has shown to be effective to discriminate the lasso topology from their corresponding branched-cyclic topoisomers in which the C-terminal tail is unthreaded. In fact, previous comparison of the IM-MS data of the two topologies has yielded three trends that allow differentiation of the lasso fold from the branched-cyclic structure: (1) the low abundance of highly charged ions, (2) the low change in collision cross sections (CCS) with increasing charge state and (3) a narrow ion mobility peak width. In this study, a three-dimensional plot was generated using three indicators based on these three trends: (1) mean charge divided by mass (ζ), (2) relative range of CCS covered by all protonated molecules (ΔΩ/Ω) and (3) mean ion mobility peak width (δΩ). The data were first collected on a set of twenty one lasso peptides and eight branched-cyclic peptides. The indicators were obtained also for eight variants of the well-known lasso peptide MccJ25 obtained by site-directed mutagenesis and further extended to five linear peptides, two macrocyclic peptides and one disulfide constrained peptide. In all cases, a clear clustering was observed between constrained and unconstrained structures, thus providing a new strategy to discriminate mechanically interlocked topologies.

  3. Evaluating the trade-off between mechanical and electrochemical performance of separators for lithium-ion batteries: Methodology and application

    Science.gov (United States)

    Plaimer, Martin; Breitfuß, Christoph; Sinz, Wolfgang; Heindl, Simon F.; Ellersdorfer, Christian; Steffan, Hermann; Wilkening, Martin; Hennige, Volker; Tatschl, Reinhard; Geier, Alexander; Schramm, Christian; Freunberger, Stefan A.

    2016-02-01

    Lithium-ion batteries are in widespread use in electric vehicles and hybrid vehicles. Besides features like energy density, cost, lifetime, and recyclability the safety of a battery system is of prime importance. The separator material impacts all these properties and requires therefore an informed selection. The interplay between the mechanical and electrochemical properties as key selection criteria is investigated. Mechanical properties were investigated using tensile and puncture penetration tests at abuse relevant conditions. To investigate the electrochemical performance in terms of effective conductivity a method based on impedance spectroscopy was introduced. This methodology is applied to evaluate ten commercial separators which allows for a trade-off analysis of mechanical versus electrochemical performance. Based on the results, and in combination with other factors, this offers an effective approach to select suitable separators for automotive applications.

  4. Characterization of Two Metal Binding Lipoproteins as Vaccine Candidates for Enterococcal Infections.

    Directory of Open Access Journals (Sweden)

    Felipe Romero-Saavedra

    Full Text Available Enterococcus faecium and faecalis are Gram-positive opportunistic pathogens that have become leading causes of nosocomial infections over the last decades. Especially multidrug resistant enterococci have become a challenging clinical problem worldwide. Therefore, new treatment options are needed and the identification of alternative targets for vaccine development has emerged as a feasible alternative to fight the infections caused by these pathogens.We extrapolate the transcriptomic data from a mice peritonitis infection model in E. faecalis to identify putative up-regulated surface proteins under infection conditions in E. faecium. After the bionformatic analyses two metal binding lipoproteins were identified to have a high homology (>72% between the two species, the manganese ABC transporter substrate-binding lipoprotein (PsaAfm, and the zinc ABC transporter substrate-binding lipoprotein (AdcAfm. These candidate lipoproteins were overexpressed in Escherichia coli and purified. The recombinant proteins were used to produce rabbit polyclonal antibodies that were able to induce specific opsonic antibodies that mediated killing of the homologous strain E. faecium E155 as well as clinical strains E. faecium E1162, Enterococcus faecalis 12030, type 2 and type 5. Mice were passively immunized with the antibodies raised against recombinant lipoproteins, showing significant reduction of colony counts in mice livers after the bacterial challenge and demonstrating the efficacy of these metal binding lipoproteins as promising vaccine candidates to treat infections caused by these enterococcal pathogens.Overall, our results demonstrate that these two metal binding lipoproteins elicited specific, opsonic and protective antibodies, with an extensive cross-reactivity and serotype-independent coverage among these two important nocosomial pathogens. Pointing these two protein antigens as promising immunogens, that can be used as single components or as carrier

  5. To understanding of the mechanisms of DNA deactivation in ion therapy of cancer cells

    CERN Document Server

    Piatnytskyi, D V; Perepelytsya, S M; Volkov, S N

    2015-01-01

    The changes of medium in the living cell during ion beam therapy are considered as the probable reason of disruption of the cancer cells functioning. As the most probable molecular product appeared in the cell after the passage of high energy ions, the hydrogen peroxide molecule is picked out. The possibility of the formation of stable complexes of hydrogen peroxide molecules with the sites of DNA nonspecific recognition (phosphate groups of the double helix backbone) is studied. Due to the negative charge on the oxygen atoms of PO$_{4}^{-}$ the counterions that under natural conditions neutralize the DNA double helix have been also taken into consideration. The complexes consisting of oxygen atoms of DNA phosphate group, H$_2$O$_2$ and H$_2$O molecules, and Na$^{+}$ counterion have been considered. The complex energies have been determined with accounting of electrostatic and van der Waals interactions in the framework of atom-atom potential functions. The stability of various configurations of molecular com...

  6. Diagnosis of power fade mechanisms in high-power lithium-ion cells

    Science.gov (United States)

    Abraham, D. P.; Liu, J.; Chen, C. H.; Hyung, Y. E.; Stoll, M.; Elsen, N.; MacLaren, S.; Twesten, R.; Haasch, R.; Sammann, E.; Petrov, I.; Amine, K.; Henriksen, G.

    Hybrid electric vehicles (HEV) need long-lived high-power batteries as energy storage devices. Batteries based on lithium-ion technology can meet the high-power goals but have been unable to meet HEV calendar-life requirements. As part of the US Department of Energy's Advanced Technology Development (ATD) Program, diagnostic studies are being conducted on 18650-type lithium-ion cells that were subjected to accelerated aging tests at temperatures ranging from 40 to 70 °C. This article summarizes data obtained by gas chromatography, liquid chromatography, electron microscopy, X-ray spectroscopy and electrochemical techniques, and identifies cell components that are responsible for the observed impedance rise and power fade.

  7. Identifying fade mechanisms in high-power lithium-ion cells.

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, D. P.; Knuth, J.; Dees, D. W.; Jansen, A. N.; Sammann, E.; Haasch, R.; Twesten, R. D.; MacLaren, S.; Chemical Engineering; Univ. of Illinois

    2004-01-01

    Hybrid electric vehicles (HEV) need long-lived high-power batteries as energy storage devices. Batteries based on lithium-ion technology can meet the high-power goals but have been unable to meet HEV calendar-life requirements. As part of the US Department of Energy's Advanced Technology Development (ATD) Program, diagnostic studies are being conducted on 18650-type lithium-ion cells that were subjected to accelerated aging tests at temperatures ranging from 40 to 70 C. This article summarizes data obtained by gas chromatography, liquid chromatography, electron microscopy, X-ray spectroscopy and electrochemical techniques, and identifies cell components that are responsible for the observed impedance rise and power fade.

  8. Solid Sulphate Electrolytes The First Examples of a Strange Ion Transport Mechanism

    DEFF Research Database (Denmark)

    Aronsson, R.; Knape, H. E. G.; Lunden, A.;

    1983-01-01

    Neutron and X-ray diffraction studies reveal that fcc Li//2SO//4, bcc LiNaSO//4, and bcc LiAgSO//4 are characterized by a strong rotational disorder of the sulfate ions which strongly enhances the mobility of the cations. Single crystal neutron scattering studies have been performed on fcc Li//2SO......//4 and the quasielastic scattering supports the previous conclusions, and more detailed information should be obtinable by this technique. The elastic constants of fcc Li//2SO//4 have been determined by Brillouin scattering. The information obtained so far by Raman scattering concerning the motion...... of lithium ions in fcc Li//2SO//4 supports earlier conclusions from conductivity measurements....

  9. Oxygenation mechanism of ions in dynamic reaction cell ICP-MS.

    Science.gov (United States)

    Narukawa, Tomohiro; Chiba, Koichi

    2013-01-01

    A dynamic reaction cell (DRC) is one of the most effective tools for eliminating spectral interferences caused by polyatomic molecules in inductively coupled plasma mass spectrometry (ICP-MS). Oxygen gas (O2), by producing oxygenated ions, is very effective in reducing some specific spectral interferences. In this study, the oxygenation of elemental ions (M(+)) in the DRC was investigated experimentally, and a new explanation for oxygenation based on the enthalpy changes in the oxygenating reactions is proposed. The enthalpy changes of each M(+) were calculated and the possibility of each reaction occurring was evaluated. The calculations were in good agreement with experimental observations. Theoretical and experimental results supported the hypothesis that the enthalpy changes (ΔH) of M(+)+ O2 → MO(+) + O and M(+) + O → MO(+) and the thermodynamic stability of M(+)-O are key factors controlling oxygenation of M(+) in the DRC.

  10. Improved Mechanical Integrity of ALD-Coated Composite Electrodes for Li-Ion Batteries

    Science.gov (United States)

    2011-01-01

    potential of these coatings for high-energy density Li-ion batteries suitable for vehicular applications. © 2010 The Electrochemical Society . DOI: 10.1149...and 80 mN, and the complete delami- * Electrochemical Society Student Member. ** Electrochemical Society Active member. z E-mail: Anne.dillon@nrel.gov...28.00 © The Electrochemical Society A29 Downloaded 23 Dec 2010 to 24.9.104.47. Redistribution subject to ECS license or copyright; see http

  11. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels.

    Science.gov (United States)

    Elinder, Fredrik; Liin, Sara I

    2017-01-01

    Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having significant physiological and pharmacological effects. In this review we summarize data from numerous PUFAs on voltage-gated ion channels containing one or several voltage-sensor domains, such as voltage-gated sodium (NaV), potassium (KV), calcium (CaV), and proton (HV) channels, as well as calcium-activated potassium (KCa), and transient receptor potential (TRP) channels. Some effects of fatty acids appear to be channel specific, whereas others seem to be more general. Common features for the fatty acids to act on the ion channels are at least two double bonds in cis geometry and a charged carboxyl group. In total we identify and label five different sites for the PUFAs. PUFA site 1: The intracellular cavity. Binding of PUFA reduces the current, sometimes as a time-dependent block, inducing an apparent inactivation. PUFA site 2: The extracellular entrance to the pore. Binding leads to a block of the channel. PUFA site 3: The intracellular gate. Binding to this site can bend the gate open and increase the current. PUFA site 4: The interface between the extracellular leaflet of the lipid bilayer and the voltage-sensor domain. Binding to this site leads to an opening of the channel via an electrostatic attraction between the negatively charged PUFA and the positively charged voltage sensor. PUFA site 5: The interface between the extracellular leaflet of the lipid bilayer and the pore domain. Binding to this site affects slow inactivation. This mapping of functional PUFA sites can form the basis for physiological and pharmacological modifications of voltage-gated ion channels.

  12. Actions and Mechanisms of Polyunsaturated Fatty Acids on Voltage-Gated Ion Channels

    Science.gov (United States)

    Elinder, Fredrik; Liin, Sara I.

    2017-01-01

    Polyunsaturated fatty acids (PUFAs) act on most ion channels, thereby having significant physiological and pharmacological effects. In this review we summarize data from numerous PUFAs on voltage-gated ion channels containing one or several voltage-sensor domains, such as voltage-gated sodium (NaV), potassium (KV), calcium (CaV), and proton (HV) channels, as well as calcium-activated potassium (KCa), and transient receptor potential (TRP) channels. Some effects of fatty acids appear to be channel specific, whereas others seem to be more general. Common features for the fatty acids to act on the ion channels are at least two double bonds in cis geometry and a charged carboxyl group. In total we identify and label five different sites for the PUFAs. PUFA site 1: The intracellular cavity. Binding of PUFA reduces the current, sometimes as a time-dependent block, inducing an apparent inactivation. PUFA site 2: The extracellular entrance to the pore. Binding leads to a block of the channel. PUFA site 3: The intracellular gate. Binding to this site can bend the gate open and increase the current. PUFA site 4: The interface between the extracellular leaflet of the lipid bilayer and the voltage-sensor domain. Binding to this site leads to an opening of the channel via an electrostatic attraction between the negatively charged PUFA and the positively charged voltage sensor. PUFA site 5: The interface between the extracellular leaflet of the lipid bilayer and the pore domain. Binding to this site affects slow inactivation. This mapping of functional PUFA sites can form the basis for physiological and pharmacological modifications of voltage-gated ion channels. PMID:28220076

  13. Lithium Storage Mechanisms in Purpurin Based Organic Lithium Ion Battery Electrodes

    Science.gov (United States)

    2012-12-11

    of the purpurin molecules from cyclic voltammogrammeasure- ments, another test cell was constructed and tested for their electrochemical performance... test cells were assembled in an argon-filled glove box using the active material (purpurin and CLP) as working electrode, lithium metal foil as the...Advances in Lithium-ion batteries (Kluwer Academic/Plenum, New York, 2002). 7. Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough , J. B. LixCoO2 (0

  14. Evolutionary analysis of Slc11 mechanism of proton-coupled metal-ion transmembrane import

    Directory of Open Access Journals (Sweden)

    Mathieu F. M. Cellier

    2016-06-01

    Full Text Available Determination of the crystal structure of ScaDMT, a member of the Slc11 family, provided opportunity to advance understanding of proton-dependent metal-ion uptake by interfacing Slc11 molecular evolution and structural biology. Slc11 carriers belong to the ancient and broadly distributed APC superfamily characterized by the pseudo-symmetric LeuT-fold. This fold comprises two topologically inverted repeats (protomers that exchange alternate configurations during carrier cycling. Examining ScaDMT molecule inserted within a model membrane allowed to pinpoint residues that may interact with surrounding lipid solvent molecules. Three-dimensional mapping of Slc11-specific sites demonstrated they distribute at the protomer interface, along the transmembrane ion-conduction pathway. Functional sites were predicted by modeling hypothetical ScaDMT alternate conformers based on APC templates; these candidate homologous sites were found to co-localize with Slc11-specific sites, a distribution pattern that fits the functional diversity in the APC superfamily. Sites that diverged among eukaryotic Slc11 (Nramp types were located in transmembrane helices that may participate in discrete steps during co-substrate translocation, suggesting these sites influence transport activity. Adding some functional dimension to Slc11 carrier evolution will inform molecular understanding of metal-ion transport selectivity and regulation, Slc11 physiological roles and contribution to host resistance to microbial infection.

  15. Ion implantation in conjugated polymers: mechanisms for generation of charge carriers

    Energy Technology Data Exchange (ETDEWEB)

    Moliton, A.; Lucas, B.; Moreau, C. (Limoges Univ., 87 (France)); Friend, R.H. (Cambridge Univ. (United Kingdom). Cavendish Lab.); Francois, B. (Institut Charles-Sandron (CNRS), Strasbourg (France))

    1994-06-01

    Ion implantation in conjugated polymers can produce both doping (with suitable choice of ions) and damage in the form of broken covalent bonds. We consider the electronic and transport properties as assessed from measurements on poly(paraphenylene) of d.c. conductivity, thermopower and a.c. conductivity studied against temperature for various implantation parameters. Damage is produced at high implantation energies and high doses, and we find that transport phenomena occur mainly in degenerate states near the Fermi energy, exhibiting a p-type thermopower. We propose a model in which the sp[sup 2] [sigma]-dangling-bond states formed as a result of bond scission are filled from the [pi] valence band. This partial emptying of the valence band is consistent with the transport properties. Lower implantation doses at lower energies induce doping in polaronic bands, with both p-type and n-type thermopower, depending on the ion implanted, although the effects of the defects present can appear, especially at low temperatures. (Author).

  16. Ion-conduction mechanisms in NaSICON-type membranes for energy storage and utilization

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Anthony H. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sandia National Laboratories, Albuquerque, NM (United States); Ihlefeld, Jon F. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sandia National Laboratories, Albuquerque, NM (United States); Bartelt, Norman Charles [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sandia National Laboratories, Albuquerque, NM (United States)

    2015-10-01

    Next generation metal-ion conducting membranes are key to developing energy storage and utilization technologies like batteries and fuel ce lls. Sodium super-ionic conductors (aka NaSICON) are a class of compounds with AM 1 M 2 (PO 4 ) 3 stoichiometry where the choice of "A" and "M" cation varies widely. This report, which de scribes substitutional derivatives of NZP (NaZr 2 P 3 O 12 ), summarizes the accomplishments of a Laboratory D irected Research and Development (LDRD) project to analyze transport mec hanisms using a combination of in situ studies of structure, composition, and bonding, com bined with first principles theory and modeling. We developed an experimental platform and applied methods, such as synchrotron- based X-ray spectroscopies, to probe the electronic structure of compositionally well-controlled NaSICON films while in operation ( i.e ., conducting Na ions exposed to oxygen or water va por atmospheres). First principles theory and modeling were used to interpret the experimental observations and develop an enhanced understanding of atomistic processes that give rise to, and affect, ion conduction.

  17. Structural Insight into the Ion-Exchange Mechanism of the Sodium/Calcium Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Jun; Li, Hua; Zeng, Weizhong; Sauer, David B.; Belmares, Ricardo; Jiang, Youxing (UTSMC)

    2012-06-19

    Sodium/calcium (Na{sup +}/Ca{sup 2+}) exchangers (NCX) are membrane transporters that play an essential role in maintaining the homeostasis of cytosolic Ca{sup 2+} for cell signaling. We demonstrated the Na{sup +}/Ca{sup 2+}-exchange function of an NCX from Methanococcus jannaschii (NCX{_}Mj) and report its 1.9 angstrom crystal structure in an outward-facing conformation. Containing 10 transmembrane helices, the two halves of NCX{_}Mj share a similar structure with opposite orientation. Four ion-binding sites cluster at the center of the protein: one specific for Ca{sup 2+} and three that likely bind Na{sup +}. Two passageways allow for Na{sup +} and Ca{sup 2+} access to the central ion-binding sites from the extracellular side. Based on the symmetry of NCX{_}Mj and its ability to catalyze bidirectional ion-exchange reactions, we propose a structure model for the inward-facing NCX{_}Mj.

  18. [Investigation of mechanisms of interaction between inulinase from Kluyveromyces marxianus and the matrices of ion-exchange resins and fiber].

    Science.gov (United States)

    Holyavka, M G; Kovaleva, T A; Karpov, S I; Seredin, P V; Artyukhov, V G

    2014-01-01

    It is established that ion exchange resins AV-17-2P, KU-2, AV-16-GS, AM 21A, IMAC-HP, PUROLITE and fiber VION KN-1 can be applied as carriers for inulinase immobilization. The analysis of IR spectra for an enzyme, carriers and heterogeneous enzyme preparations showed that inulinase binding to matrices of various carriers occurs in general through electrostatic interactions. It is assumed that the mechanisms of interaction between inulinase from Kluyveromyces marxianus and the matrices of cation- and anion exchange polymers differ essentially from each other: different sites of protein molecule take part in adsorption that causes various conformational reorganizations in an enzyme molecule.

  19. Gamma and ion-beam irradiation of DNA: Free radical mechanisms, electron effects, and radiation chemical track structure

    Science.gov (United States)

    Sevilla, Michael D.; Becker, David; Kumar, Anil; Adhikary, Amitava

    2016-11-01

    The focus of our laboratory's investigation is to study the direct-type DNA damage mechanisms resulting from γ-ray and ion-beam radiation-induced free radical processes in DNA which lead to molecular damage important to cellular survival. This work compares the results of low LET (γ-) and high LET (ion-beam) radiation to develop a chemical track structure model for ion-beam radiation damage to DNA. Recent studies on protonation states of cytosine cation radicals in the N1-substituted cytosine derivatives in their ground state and 5-methylcytosine cation radicals in ground as well as in excited state are described. Our results exhibit a radical signature of excitations in 5-methylcytosine cation radical. Moreover, our recent theoretical studies elucidate the role of electron-induced reactions (low energy electrons (LEE), presolvated electrons (epre-), and aqueous (or, solvated) electrons (eaq-)). Finally DFT calculations of the ionization potentials of various sugar radicals show the relative reactivity of these species.

  20. Ionization mechanism of the ambient pressure pyroelectric ion source (APPIS) and its applications to chemical nerve agent detection.

    Science.gov (United States)

    Neidholdt, Evan L; Beauchamp, J L

    2009-11-01

    We present studies of the ionization mechanism operative in the ambient pressure pyroelectric ionization source (APPIS), along with applications that include detection of simulants for chemical nerve agents. It is found that ionization by APPIS occurs in the gas-phase. As the crystal is thermally cycled over a narrow temperature range, electrical discharges near the surface of the crystal produce energetic species which, through reactions with atmospheric molecules, result in reactant ions such as protonated water clusters or clusters of hydroxide and water. Reactant ions can be observed directly in the mass spectrometer. These go on to react with trace neutrals via proton transfer reactions to produce the ions observed in mass spectra, which are usually singly protonated or deprotonated species. Further implicating gas-phase ionization, observed product distributions are highly dependent on the composition of ambient gases, especially the concentration of water vapor and oxygen surrounding the source. For example, basic species such as triethylamine are observed as singly protonated cations at a water partial pressure of 10 torr. At a water pressure of 4 torr, reactive oxygen species are formed and lead to observation of protonated amine oxides. The ability of the APPIS source to detect basic molecules with high proton affinities makes it highly suited for the detection of chemical nerve agents. We demonstrate this application using simulants corresponding to VX and GA (Tabun). With the present source configuration pyridine is detected readily at a concentration of 4 ppm, indicating ultimate sensitivity in the high ppb range.

  1. Improvement of L(+)-Lactic Acid Production of Rhizopus Oryzae by Low-Energy Ions and Analysis of Its Mechanism

    Science.gov (United States)

    Ge, Chunmei; Yang, Yingge; Fan, Yonghong; Li, Wen; Pan, Renrui; Zheng, Zhiming; Yu, Zengliang

    2008-02-01

    The wild type strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion implantation (15 keV, 7.8 × 1014 ~ 2.08 × 1015 ions/cm2) to find an industrial strain with a higher L(+)-lactic acid yield, and two mutants RE3303 and RF9052 were isolated. In order to discuss the mechanism primarily, Lactate Dehydrogenase of Rhizopus oryzae was studied. While the two mutants produced L(+)-lactic acid by 75% more than the wild strain did, their specific activity of Lactate Dehydrogenase was found to be higher than that in the wild strain. The optimum temperature of Lactate Dehydrogenase in Rhizopus oryzae RF9052 was higher. Compared to the wild strain, the Michaelis constant (Km) value of Lactate Dehydrogenase in the mutants was changed. All these changes show that L(+)-lactic acid production has a correlation with the specific activity of Lactate Dehydrogenase. The low-energy ions, implanted into the strain, may improve the specific activity of Lactate Dehydrogenase by influencing its gene structure and protein structure.

  2. Improvement of L(+)-Lactic Acid Production of Rhizopus Oryzae by Low-Energy Ions and Analysis of Its Mechanism

    Institute of Scientific and Technical Information of China (English)

    GE Chunmei; YANG Yingge; FAN Yonghong; LI Wen; PAN Renrui; ZHENG Zhiming; YU Zengliang

    2008-01-01

    The wild type strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion implantation (15 keV, 7.8 × 104 ~ 2.08 × 105 ions/cm2) to find an industrial strain with a higher L(+)-lactic acid yield, and two mutants RE3303 and RF9052 were isolated. In order to discuss the mechanism primarily,Lactate Dehydrogenase of Rhizopus oryzae was studied. While the two mutants produced L(+)-lactic acid by 75% more than the wild strain did, their specific activity of Lactate Dehydrogenase was found to be higher than that in the wild strain. The optimum temperature of Lactate Dehydrogenase in Rhizopus oryzae RF9052 was higher. Compared to the wild strain, the Michaelis constant (Km) value of Lactate Dehydrogenase in the mutants was Changed. All these changes show that L(+)-lactic acid production has a correlation with the specific activity of Lactate Dehydrogenase. The low-energy ions, implanted into the strain, may improve the specific activity of Lactate Dehydrogenase by influencing its gene structure and protein structure.

  3. Ocean warming and acidification modulate energy budget and gill ion regulatory mechanisms in Atlantic cod (Gadus morhua).

    Science.gov (United States)

    Kreiss, C M; Michael, K; Lucassen, M; Jutfelt, F; Motyka, R; Dupont, S; Pörtner, H-O

    2015-10-01

    Ocean warming and acidification are threatening marine ecosystems. In marine animals, acidification is thought to enhance ion regulatory costs and thereby baseline energy demand, while elevated temperature also increases baseline metabolic rate. Here we investigated standard metabolic rates (SMR) and plasma parameters of Atlantic cod (Gadus morhua) after 3-4 weeks of exposure to ambient and future PCO2 levels (550, 1200 and 2200 µatm) and at two temperatures (10, 18 °C). In vivo branchial ion regulatory costs were studied in isolated, perfused gill preparations. Animals reared at 18 °C responded to increasing CO2 by elevating SMR, in contrast to specimens at 10 °C. Isolated gills at 10 °C and elevated PCO2 (≥1200 µatm) displayed increased soft tissue mass, in parallel to increased gill oxygen demand, indicating an increased fraction of gill in whole animal energy budget. Altered gill size was not found at 18 °C, where a shift in the use of ion regulation mechanisms occurred towards enhanced Na(+)/H(+)-exchange and HCO3 (-) transport at high PCO2 (2200 µatm), paralleled by higher Na(+)/K(+)-ATPase activities. This shift did not affect total gill energy consumption leaving whole animal energy budget unaffected. Higher Na(+)/K(+)-ATPase activities in the warmth might have compensated for enhanced branchial permeability and led to reduced plasma Na(+) and/or Cl(-) concentrations and slightly lowered osmolalities seen at 18 °C and 550 or 2200 µatm PCO2 in vivo. Overall, the gill as a key ion regulation organ seems to be highly effective in supporting the resilience of cod to effects of ocean warming and acidification.

  4. Role of aqueous sulfide and sulfate-reducing bacteria in the kinetics and mechanisms of the reduction of uranyl ion

    Energy Technology Data Exchange (ETDEWEB)

    Mohagheghi, A.

    1985-01-01

    Formation of sedimentary rock-hosted uranium ore deposits is thought to have resulted from the reduction by aqueous sulfide species of relatively soluble uranyl ion (U(VI)) to insoluble uranium(IV) oxides and silicates. The origin of this H/sub 2/S in such deposits can be either biogenic or abiogenic. Therefore, the kinetics and mechanism of uranyl ion reduction by aqueous sulfide, and the effect of several key variables on the reduction process in non-bacterial (sterile) systems was studied. The role of both pure and mixed cultures of sulfate-reducing bacteria on the reduction process was also investigated. In sterile systems the reduction reaction generally occurred by a two step reaction sequence. Uranium(V) (as UO/sub 2//sup +/) and U(IV) (as UO/sub 2/ the mineral uraninite) were the intermediate and final products, respectively. The initial concentration of uranyl ion required for reaction initiation had a minimum value of 0.8 ppm at pH 7, and was higher at pH values less than or greater than 7. An induction period was observed in all experiments. No reduction was observed after 8 hours at pH 8. Although increasing ionic strength increased the length of the induction period, it also increased the rate of the reduction of UO/sub 2//sup +/ in the second step. No reaction was observed under any experimental conditions with initial UO/sub 2//sup 2 +/ concentration less than 0.1 ppm, which is thought to be typical for ore forming solutions. However, by absorbing uranyl ion onto kaolinite, the reduction by H/sub 2/S occurred at lower UO/sub 2//sup 2 +/ concentrations (approx. 0.1 ppm) in that in the homogeneous system. Thus, adsorption may play a significant role in the reduction and therefore in the formation of ore deposits.

  5. Insight toward epithelial Na+ channel mechanism revealed by the acid-sensing ion channel 1 structure.

    Science.gov (United States)

    Stockand, James D; Staruschenko, Alexander; Pochynyuk, Oleh; Booth, Rachell E; Silverthorn, Dee U

    2008-09-01

    The epithelial Na(+) channel/degenerin (ENaC/DEG) protein family includes a diverse group of ion channels, including nonvoltage-gated Na(+) channels of epithelia and neurons, and the acid-sensing ion channel 1 (ASIC1). In mammalian epithelia, ENaC helps regulate Na(+) and associated water transport, making it a critical determinant of systemic blood pressure and pulmonary mucosal fluidity. In the nervous system, ENaC/DEG proteins are related to sensory transduction. While the importance and physiological function of these ion channels are established, less is known about their structure. One hallmark of the ENaC/DEG channel family is that each channel subunit has only two transmembrane domains connected by an exceedingly large extracellular loop. This subunit structure was recently confirmed when Jasti and colleagues determined the crystal structure of chicken ASIC1, a neuronal acid-sensing ENaC/DEG channel. By mapping ENaC to the structural coordinates of cASIC1, as we do here, we hope to provide insight toward ENaC structure. ENaC, like ASIC1, appears to be a trimeric channel containing 1alpha, 1beta, and 1gamma subunit. Heterotrimeric ENaC and monomeric ENaC subunits within the trimer possibly contain many of the major secondary, tertiary, and quaternary features identified in cASIC1 with a few subtle but critical differences. These differences are expected to have profound effects on channel behavior. In particular, they may contribute to ENaC insensitivity to acid and to its constitutive activity in the absence of time- and ligand-dependent inactivation. Experiments resulting from this comparison of cASIC1 and ENaC may help clarify unresolved issues related to ENaC architecture, and may help identify secondary structures and residues critical to ENaC function.

  6. Final Report: Mechanisms of sputter ripple formation: coupling among energetic ions, surface kinetics, stress and composition

    Energy Technology Data Exchange (ETDEWEB)

    Chason, Eric; Shenoy, Vivek

    2013-01-22

    Self-organized pattern formation enables the creation of nanoscale surface structures over large areas based on fundamental physical processes rather than an applied template. Low energy ion bombardment is one such method that induces the spontaneous formation of a wide variety of interesting morphological features (e.g., sputter ripples and/or quantum dots). This program focused on the processes controlling sputter ripple formation and the kinetics controlling the evolution of surfaces and nanostructures in high flux environments. This was done by using systematic, quantitative experiments to measure ripple formation under a variety of processing conditions coupled with modeling to interpret the results.

  7. Double-scattering mechanism of production of two $\\rho^0$ mesons in ultraperipheral, ultrarelativistic heavy ion collisions

    CERN Document Server

    Szczurek, Antoni

    2015-01-01

    We study, for the first time, differential distributions for two $\\rho^0$ meson production in exclusive ultraperipheral, ultrarelativistic heavy ion collisions via a double-scattering mechanism. The calculations are done in the impact parameter space. The cross section for $\\gamma A \\to \\rho^0 A$ is parametrized based on an existing model. Smearing of $\\rho^0$ masses is taken into account. The results of calculations for single and double-$\\rho^0$ production are compared to experimental data at the RHIC and LHC energies. The mechanism considered gives a significant contribution to the $AA \\to AA \\pi^+\\pi^-\\pi^+\\pi^-$ reaction. Some observables related to charged pions are presented too. We compare results of our calculations with the STAR collaboration results for four charged pion production.

  8. Strong dependency of lithium diffusion on mechanical constraints in high-capacity Li-ion battery electrodes

    Institute of Scientific and Technical Information of China (English)

    Yi-Fan Gao; Min Zhou

    2012-01-01

    The effect of external constraints on Li diffusion in high-capacity Li-ion battery electrodes is investigated using a coupled finite deformation theory.It is found that thinfilm electrodes on rigid substrates experience much slower diffusion rates compared with free-standing films with the same material properties and geometric dimensions.More importantly,the study reveals that mechanical driving forces tend to retard diffusion in highly-constrained thin films when lithiation-induced softening is considered,in contrast to the fact that mechanical driving forces always enhance diffusion when deformation is fully elastic.The results provide further proof that nano-particles are a better design option for nextgeneration alloy-based electrodes compared with thin films.

  9. Therapeutic ion-releasing bioactive glass ionomer cements with improved mechanical strength and radiopacity

    Science.gov (United States)

    Fuchs, Maximilian; Gentleman, Eileen; Shahid, Saroash; Hill, Robert; Brauer, Delia

    2015-10-01

    Bioactive glasses (BG) are used to regenerate bone, as they degrade and release therapeutic ions. Glass ionomer cements (GIC) are used in dentistry, can be delivered by injection and set in situ by a reaction between an acid-degradable glass and a polymeric acid. Our aim was to combine the advantages of BG and GIC, and we investigated the use of alkali-free BG (SiO2-CaO-CaF2-MgO) with 0 to 50% of calcium replaced by strontium, as the beneficial effects of strontium on bone formation are well documented. When mixing BG and poly(vinyl phosphonic-co-acrylic acid), ions were released fast (up to 90% within 15 minutes at pH 1), which resulted in GIC setting, as followed by infrared spectroscopy. GIC mixed well and set to hard cements (compressive strength up to 35 MPa), staying hard when in contact with aqueous solution. This is in contrast to GIC prepared with poly(acrylic acid), which were shown previously to become soft in contact with water. Strontium release from GIC increased linearly with strontium for calcium substitution, allowing for tailoring of strontium release depending on clinical requirements. Furthermore, strontium substitution increased GIC radiopacity. GIC passed ISO10993 cytotoxicity test, making them promising candidates for use as injectable bone cements.

  10. Failure Mechanisms of Ni-H2 and Li-Ion Batteries Under Hypervelocity Impacts

    Science.gov (United States)

    Miller, J. E.; Lyons, F.; Christiansen, E. L.; Lear, D. M.

    2017-01-01

    Lithium-Ion (Li-Ion) batteries have yielded significant performance advantages for many industries, including the aerospace industry, and have been selected to replace nickel hydrogen (Ni-H2) batteries for the International Space Station (ISS) program to meet the energy storage demands. As the ISS uses its vast solar arrays to generate its power, the solar ar-rays meet their sunlit power demands and supply excess power to battery packs for power de-livery on the sun obscured phase of the approximate 90 minute low Earth orbit. These large battery packs are located on the exterior of the ISS, and as such, the battery packs are ex-posed to external environment threats like naturally occurring meteoroids and artificial orbital debris (MMOD). While the risks from these solid particle environments has been known and addressed to an acceptable risk of failure through shield design, it is not possible to completely eliminate the risk of loss of these assets on orbit due to MMOD, and as such, failure consequences to the ISS have been considered.

  11. Density Functional Theory Research into the Reduction Mechanism for the Solvent/Additive in a Sodium-Ion Battery.

    Science.gov (United States)

    Liu, Qi; Mu, Daobin; Wu, Borong; Wang, Lei; Gai, Liang; Wu, Feng

    2017-02-22

    The solid-electrolyte interface (SEI) film in a sodium-ion battery is closely related to capacity fading and cycling stability of the battery. However, there are few studies on the SEI film of sodium-ion batteries and the mechanism of SEI film formation is unclear. The mechanism for the reduction of ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), ethylene sulfite (ES), 1,3-propylene sulfite (PS), and fluorinated ethylene carbonate (FEC) is studied by DFT. The reaction activation energies, Gibbs free energies, enthalpies, and structures of the transition states are calculated. It is indicated that VC, ES, and PS additives in the electrolyte are all easier to form organic components in the anode SEI film by one-electron reduction. The priority of one-electron reduction to produce organic SEI components is in the order of VC>PC>EC; two-electron reduction to produce the inorganic Na2 CO3 component is different and follows the order of EC>PC>VC. Two-electron reduction for sulfites ES and PS to form inorganic Na2 SO3 is harder than that of carbonate ester reduction. It is also suggested that the one- and two-electron reductive decomposition pathway for FEC is more feasible to produce inorganic NaF components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Elucidating the structures and cooperative binding mechanism of cesium salts to the multitopic ion-pair receptor through density functional theory calculations.

    Science.gov (United States)

    Sadhu, Biswajit; Sundararajan, Mahesh; Velmurugan, Gunasekaran; Venuvanalingam, Ponnambalam

    2015-09-21

    Designing new and innovative receptors for the selective binding of radionuclides is central to nuclear waste management processes. Recently, a new multi-topic ion-pair receptor was reported which binds a variety of cesium salts. Due to the large size of the receptor, quantum chemical calculations on the full ion-pair receptors are restricted, thus the binding mechanisms are not well understood at the molecular level. We have assessed the binding strengths of various cesium salts to the recently synthesized multi-topic ion-pair receptor molecule using density functional theory based calculations. Our calculations predict that the binding of cesium salts to the receptor predominantly occurs via the cooperative binding mechanism. Cesium and the anion synergistically assist each other to bind favorably inside the receptor. Energy decomposition analysis on the ion-pair complexes shows that the Cs salts are bound to the receptor mainly through electrostatic interactions with small contribution from covalent interactions for large ionic radius anions. Further, QTAIM analysis characterizes the importance of different inter-molecular interactions between the ions and the receptor inside the ion-pair complexes. The role of the crystallographic solvent molecule contributes significantly by ~10 kcal mol(-1) to the overall binding affinities which is quite significant. Further, unlike the recent molecular mechanics (MM) calculations, our calculated binding affinity trends for various Cs ion-pair complexes (CsF, CsCl and CsNO3) are now in excellent agreement with the experimental binding affinity trends.

  13. Study on the antibacterial mechanism of copper ion- and neodymium ion-modified α-zirconium phosphate with better antibacterial activity and lower cytotoxicity.

    Science.gov (United States)

    Cai, Xiang; Zhang, Bin; Liang, Yuanyuan; Zhang, Jinglin; Yan, Yinghui; Chen, Xiaoyin; Wu, Zhimin; Liu, Hongxi; Wen, Shuiping; Tan, Shaozao; Wu, Ting

    2015-08-01

    To improve the antibacterial activity of Cu(2+), a series of Cu(2+) and/or Nd(3+)-modified layered α-zirconium phosphate (ZrP) was prepared and characterized, and the antibacterial activities of the prepared Cu(2+) and/or Nd(3+)-modified ZrP on Gram-negative Escherichia coli were investigated. The results showed that the basal spacing of ZrP was not obviously affected by the incorporation of Cu(2+), but the basal spacing of the modified ZrP changed into an amorphous state with increasing additions of Nd(3+). An antibacterial mechanism showed that Cu(2+) and Nd(3+) could enter into E. coli cells, leading to changes in ion concentrations and leakage of DNA, RNA and protein. The Cu(2+)- and Nd(3+)-modified ZrP, combining the advantages of Cu(2+) and Nd(3+), displayed excellent additive antibacterial activity and lower cytotoxicity, suggesting the great potential application as an antibacterial powder for microbial control.

  14. New Detections of Arsenic, Selenium, and Other Heavy Elements in Two Metal-Poor Stars

    CERN Document Server

    Roederer, Ian U; Lawler, James E; Beers, Timothy C; Cowan, John J; Frebel, Anna; Ivans, Inese I; Sneden, Christopher; Sobeck, Jennifer S

    2014-01-01

    We use the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope to obtain new high-quality spectra covering the 1900 to 2360 Angstrom wavelength range for two metal-poor stars, HD 108317 and HD 128279. We derive abundances of Cu II, Zn II, As I, Se I, Mo II, and Cd II, which have not been detected previously in either star. Abundances derived for Ge I, Te I, Os II, and Pt I confirm those derived from lines at longer wavelengths. We also derive upper limits from the non-detection of W II, Hg II, Pb II, and Bi I. The mean [As/Fe] ratio derived from these two stars and five others in the literature is unchanged over the metallicity range -2.8 = +0.28 +/- 0.14 (std. dev. = 0.36 dex). The mean [Se/Fe] ratio derived from these two stars and six others in the literature is also constant, = +0.16 +/- 0.09 (std. dev. = 0.26 dex). The As and Se abundances are enhanced relative to a simple extrapolation of the iron-peak abundances to higher masses, suggesting that this mass region (75 = +0.56 +/- ...

  15. Understanding the Photoluminescence Mechanism of Nitrogen-Doped Carbon Dots by Selective Interaction with Copper Ions.

    Science.gov (United States)

    Ganiga, Manjunatha; Cyriac, Jobin

    2016-08-04

    Doped fluorescent carbon dots (CDs) have drawn widespread attention because of their diverse applications and attractive properties. The present report focusses on the origin of photoluminescence in nitrogen-doped CDs (NCDs), which is unraveled by the interaction with Cu(2+) ions. Detailed spectroscopic and microscopic studies reveal that the broad steady-state photoluminescence emission of the NCDs originates from the direct recombination of excitons (high energy) and the involvement of defect states (low energy). In addition, highly selective detection of Cu(2+) is achieved, with a detection limit of 10 μm and a dynamic range of 10 μm-0.4 mm. The feasibility of the present sensor for the detection of Cu(2+) in real water samples is also presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom

    Science.gov (United States)

    Lee, Seok-Yong; MacKinnon, Roderick

    2004-07-01

    Venomous animals produce small protein toxins that inhibit ion channels with high affinity. In several well-studied cases the inhibitory proteins are water-soluble and bind at a channel's aqueous-exposed extracellular surface. Here we show that a voltage-sensor toxin (VSTX1) from the Chilean Rose Tarantula (Grammostola spatulata) reaches its target by partitioning into the lipid membrane. Lipid membrane partitioning serves two purposes: to localize the toxin in the membrane where the voltage sensor resides and to exploit the free energy of partitioning to achieve apparent high-affinity inhibition. VSTX1, small hydrophobic poisons and anaesthetic molecules reveal a common theme of voltage sensor inhibition through lipid membrane access. The apparent requirement for such access is consistent with the recent proposal that the sensor in voltage-dependent K+ channels is located at the membrane-protein interface.

  17. Quasi in situ XPS investigations on intercalation mechanisms in Li-ion battery materials

    Energy Technology Data Exchange (ETDEWEB)

    Oswald, S.; Nikolowski, K.; Ehrenberg, H. [IFW Dresden, Dresden (Germany)

    2009-04-15

    New concepts for Li-ion batteries are of growing interest for high-performance applications. One aim is the search for new electrode materials with superior properties and their detailed characterization. We demonstrate the application of X-ray photoelectron spectroscopy (XPS) to investigate electrode materials (LiCoO{sub 2}, LiCrMnO{sub 4}) during electrochemical cycling. The optimization of a 'quasi in situ' analysis, by transferring the samples with a transport chamber from the glove box to the XPS chamber, and the reliability of the experiments performed are shown. The behavior of characteristic chemical species at the electrodes and the changes in oxidation states of LiCrMnO{sub 4} during cycling is discussed. The formation of Cr{sup 6+} is suspected as a possible reason for irreversible capacity loss during charging up to complete Li deintercalation (approximately 5.2 V). (orig.)

  18. Mechanical properties of UO2 thin films under heavy ion irradiation using nanoindentation and finite element modeling

    Science.gov (United States)

    Elbakhshwan, Mohamed S.; Miao, Yinbin; Stubbins, James F.; Heuser, Brent J.

    2016-10-01

    The mechanical response of UO2 to irradiation is becoming increasingly important due to the shift to higher burn-up rates in the next generation of nuclear reactors. In the current study, thin films of UO2 were deposited on YSZ substrates using reactive-gas magnetron sputtering. Nanoindentation was used to measure the mechanical properties of the as-grown and irradiated films. Finite element modeling was used to account for the substrate effect on the measurements. In order to study the effect of displacement cascades accompanying gas bubbles, 5000 Å UO2 films were irradiated with 600 keV Kr+ ions at 25 °C and 600 °C. These irradiation conditions were used to confine radiation damage effects and implanted gas within the film. Results showed an increase in the film hardness and yield strength with dose, while elastic modulus initially decreased with irradiation and then kept increasing with dose. The change in hardness and elastic modulus is attributed to the introduction of gas bubbles and displacement cascade damage. Irradiation at 600 °C resulted in a decrease in the hardness and elastic modulus after irradiation using 600 keV Kr+ at a dose of 1E14 ions/cm2. Both hardness and elastic modulus then increased with irradiation dose. This behavior is attributed to recrystallization during irradiation at 600 °C and the formation of nanocrystallite regions with diameter and density that increase with dose. The calculation of the critical resolved shear stress (CRSS) demonstrated that nanocrystals are the primary cause for film hardening based on the Orowan hardening mechanism.

  19. Unique kinase catalytic mechanism of AceK with a single magnesium ion.

    Directory of Open Access Journals (Sweden)

    Quanjie Li

    Full Text Available Isocitrate dehydrogenase kinase/phosphatase (AceK is the founding member of the protein phosphorylation system in prokaryotes. Based on the novel and unique structural characteristics of AceK recently uncovered, we sought to understand its kinase reaction mechanism, along with other features involved in the phosphotransfer process. Herein we report density functional theory QM calculations of the mechanism of the phosphotransfer reaction catalysed by AceK. The transition states located by the QM calculations indicate that the phosphorylation reaction, catalysed by AceK, follows a dissociative mechanism with Asp457 serving as the catalytic base to accept the proton delivered by the substrate. Our results also revealed that AceK prefers a single Mg(2+-containing active site in the phosphotransfer reaction. The catalytic roles of conserved residues in the active site are discussed.

  20. Experimental and Quantum-mechanical Investigation of the Vinylsilane-Iminium Ion Cyclization

    DEFF Research Database (Denmark)

    Kværnø, Lisbet; Norrby, Per-Ola; Tanner, David Ackland

    2003-01-01

    be obtained for iminium species derived from 7. Quantum-mechanical investigations of the general reaction mechanism underlined the lack of reactivity of ketiminium species and also convincingly explained the observed diastereoselectivities of aldiminium species. The calculations further revealed that (Z......)-vinylsilanes cyclize via a silicon-stabilized b-carbocation, and that any formal aza-Cope rearrangement of the starting material to an allylsilane-iminium species does not take place in a concerted fashion. However, the calculations show that the aza-Cope rearrangement precedes cyclization for the corresponding (E......)-vinylsilanes, the overall reaction being energetically slightly less favoured than cyclization of the (Z)-isomers....

  1. Ion-Ion Neutralization.

    Science.gov (United States)

    1980-12-31

    plasma were identified using a downstream quadrupole mass spectrometer. In these experimento it is a simple matter to establish H+(H 2 0):f as the...pressure as predicted by the Thomson t2rnary mechanism whicK hzr been suownr to be valid experimentally at hiTh rrsurs (,han and Peron, 1:EI4 hereafter t...of NO , NO2 ions in various gases and the ternary recombination coefficients of these ions in the higher pres:;ure ( Thomson ) re"ie. Equation (5) cr>n

  2. Notes on a "printomere" mechanism of cellular memory and ion regulation of chromatin configurations.

    Science.gov (United States)

    Olovnikov, A M

    1999-12-01

    According to the proposed hypothesis, the memory of a cell about the achieved state of cytodifferentiation is based on the existence of a postulated genetic structure termed here as a "printomere". A printomere is a relatively small linear DNA fragment which is laterally located on the chromosomal body and armed at its termini with peculiar analogs of chromosomal telomeres, which in this case are designated as "acromeres". The printomere locates along its chromosomal original--protoprintomere--and is bound to this chromosomal segment via proteins. The printomere codes for so-called fountain RNAs (fRNAs). Molecules of fRNAs as a part of ribonucleoproteins, or fRNPs, specifically bind to the complementary for them DNA sites, or "fions", that are dispersed nearby many structural genes. fRNP--fion complexes help to open, for a very short time, closed ion channels in the inner nuclear membrane, and this occurs strictly nearby corresponding genes. Dosed and local entry of the specific ions from the perinuclear cistern of the nucleus modifies the local pattern of the chromatin decompaction and modulates the expression level of the corresponding genes. The implied role of the fRNAs was considered in the so-called "fountain theory" (A. M. Olovnikov (1997) Int. J. Dev. Biol., 41: 923-931; A. M. Olovnikov (1999) J. Anti-Aging Medicine, 2: 57-71; A. M. Olovnikov (1999) Advances in Gerontology (St. Petersburg), 3: 54-64). Transcripts (fRNAs) coded by printomeres participate in the creation and maintenance of the specific patterns of decompaction and compaction of chromatin, which are characteristic for corresponding cytodifferentiations. Printomeres of various differentiations differ in their nucleotide sequences. The printomere and its chromosomal original, the protoprintomere, located co-linearly, side by side with it, have their own ori. Their length may vary from several thousands of base pairs to tens of thousands of b.p. Printomere bound by its arms to the chromosomal DNA

  3. Selective recovery of Pd(II) from extremely acidic solution using ion-imprinted chitosan fiber: Adsorption performance and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shuo [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Wei, Wei [School of Chemical Engineering, Chonbuk National University, Jeonbuk 561-756 (Korea, Republic of); Wu, Xiaohui; Zhou, Tao [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Mao, Juan, E-mail: monicamao45@hust.edu.cn [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yun, Yeoung-Sang, E-mail: ysyun@jbnu.ac.kr [School of Chemical Engineering, Chonbuk National University, Jeonbuk 561-756 (Korea, Republic of)

    2015-12-15

    Highlights: • An acid-resisting chitosan fiber was prepared by ion-imprinting technique. • Pd(II) and ECH were as template and two-step crosslinking agent, respectively. • IIF showed a good adsorption and selectivity performance on Pd(II) solutions. • Selectivity was due to the electrostatic attraction between −NH{sub 3}{sup +} and [PdCl{sub 4}]{sup 2−}. • Stable sorption/desorption performance shows a potential in further application. - Abstract: A novel, selective and acid-resisting chitosan fiber adsorbent was prepared by the ion-imprinting technique using Pd(II) and epichlorohydrin as the template and two-step crosslinking agent, respectively. The resulting ion-imprinted chitosan fibers (IIF) were used to selectively adsorb Pd(II) under extremely acidic synthetic metal solutions. The adsorption and selectivity performances of IIF including kinetics, isotherms, pH effects, and regeneration were investigated. Pd(II) rapidly adsorbed on the IIF within 100 min, achieving the adsorption equilibrium. The isotherm results showed that the maximum Pd(II) uptake on the IIF was maintained as 324.6–326.4 mg g{sup −1} in solutions containing single and multiple metals, whereas the Pd(II) uptake on non-imprinted fibers (NIF) decreased from 313.7 to 235.3 mg g{sup −1} in solution containing multiple metals. Higher selectivity coefficients values were obtained from the adsorption on the IIF, indicating a better Pd(II) selectivity. The amine group, supposedly the predominant adsorption site for Pd(II), was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The pH value played a significant role on the mechanism of the selective adsorption in the extremely acidic conditions. Furthermore, the stabilized performance for three cycles of sorption/desorption shows a potential for further large-scale applications.

  4. THE MECHANISM STUDY OF EFFECT OF CALCIUM AND ALUMINIUM IONS ON FLOCCULATING PROCESS OF KAOLIN

    Institute of Scientific and Technical Information of China (English)

    何绪文; 狄平宽; 单忠健

    1995-01-01

    The effects of Ca2+and Al3+ious on flocculating process of kaolin using ployacrylamide as flocculant was studied. Mechanism of the effects was investigated and discussed through molecularorbit (MO) theory, solution chemistry calculation and electronic probe examination in this article.

  5. Some aspects of surfactant action mechanism in the organic reagents - metal ions systems

    Energy Technology Data Exchange (ETDEWEB)

    Chernova, R.K.; Shtykov, S.N.; Beloliptseva, G.M.; Sukhova, L.K.; Amelin, V.G.; Kulapina, E.G. (Saratovskij Gosudarstvennyj Univ. (USSR))

    1984-06-01

    Results are reviewed of investigations into the interaction of ions of Mo(6), W, Zr, Be, Sc, Nb, Ta, J, rare earths, a. o. with organic reagents of triphenylmethane class in the 8M H/sub 2/SO/sub 4/-pH14 acidity range and the 1x10/sup -3/-5x10/sup -6/ M concentration range both in the presence and absence of different surfactant type (cetylpyridine, methyltrimethylammonium, synthanols, etc). Three types of effects, determining enhancement of the sensitivity and selectivity of reactions jn the Me-R-surfactant systems, were determined: an increase in the number of coordinated ligands, the activating effect of cation surfactants resulting in a potential complexing in acid media, multicenter interaction of polydentate ligands both via chelating groups and auxochrome groups in the presence of cation surfactants. Protolytic and flotation properties of ionic associates are considered. The observed effects are explained from the viewpoint of electrostatic and hydrophobic interactions in the R-surfactant systems, observed by the methods of NMR, polarography amperometry, conductometry. A possible use of the investigated M-R-surfactant systems as complexonometric indicators was evaluated. A possibility was shown of using them for direct titrimetric determination of hundredth milligram portions of Cu, Ga, In and Sc at a titrant concentratjon of less than 0.01 M. It follows from the estimation of basic optical parameters of the Me-R-surfactant systems that detection.

  6. Chloride-Ion Penetrability and Mechanical Analysis of High Strength Concrete with Copper Slag

    Directory of Open Access Journals (Sweden)

    Savaş Erdem

    2014-05-01

    Full Text Available The use of waste materials and industrial by-products in high-strength concrete could increase the sustainability of the construction industry. In this study, the potential of using copper slag as coarse aggregate in high-strength concrete was experimentally investigated. The effects of replacing gravel coarse aggregate by copper slag particles on the compressive strength, chloride ion- migration, water permeability and impact resistance of high-strength concretes were evaluated. Incorporating copper slag coarse particles resulted in a compressive strength increase of about 14 % on average partly due to the low Ca/Si ratio through the interface area of this concrete (more homogenous internal structure as confirmed by the energy dispersive X-ray micro chemical analysis. It was also found that the copper slag high-strength concrete provided better ductility and had much greater load carrying capacity compared to gravel high-strength concrete under dynamic conditions. Finally, it was observed that in comparison to the high strength concrete with slag, the chloride migration coefficient from non-steady state migration was approximately 30 % greater in the gravel high-strength concrete.

  7. Mechanisms of metal ion transfer into room-temperature ionic liquids: the role of anion exchange.

    Science.gov (United States)

    Jensen, Mark P; Neuefeind, Jörg; Beitz, James V; Skanthakumar, S; Soderholm, L

    2003-12-17

    The structure and stoichiometry of the lanthanide(III) (Ln) complexes with the ligand 2-thenoyltrifluoroacetone (Htta) formed in a biphasic aqueous room-temperature ionic liquid system have been studied by complementary physicochemical methods. Equilibrium thermodynamics, optical absorption and luminescence spectroscopies, high-energy X-ray scattering, EXAFS, and molecular dynamics simulations all support the formation of anionic Nd(tta)4(-) or Eu(tta)4(-) complexes with no water coordinated to the metal center in 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (C4mim+Tf2N(-)), rather than the hydrated, neutral complexes, M(tta)(3)(H2O)n)(n = 2 or 3), that form in nonpolar molecular solvents, such as xylene or chloroform. The presence of anionic lanthanide complexes in C4mim+Tf2N(-) is made possible by the exchange of the ionic liquid anions into the aqueous phase for the lanthanide complex. The resulting complexes in the ionic liquid phase should be thought of as weak C4mim+Ln(tta)4(-) ion pairs which exert little influence on the structure of the ionic liquid phase.

  8. Mechanisms of metal ion transfer into room-temperature ionic liquids : the role of anion exchange.

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M. P.; Neuefeind, J.; Beitz, J. V.; Skanthakumar, S.; Soderholm, L.; Chemistry

    2003-12-17

    The structure and stoichiometry of the lanthanide(III) (Ln) complexes with the ligand 2-thenoyltrifluoroacetone (Htta) formed in a biphasic aqueous room-temperature ionic liquid system have been studied by complementary physicochemical methods. Equilibrium thermodynamics, optical absorption and luminescence spectroscopies, high-energy X-ray scattering, EXAFS, and molecular dynamics simulations all support the formation of anionic Nd(tta){sub 4}{sup -} or Eu(tta){sub 4}{sup -} complexes with no water coordinated to the metal center in 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (C{sub 4}mim{sup +}Tf{sub 2}N{sup -}), rather than the hydrated, neutral complexes, M(tta){sub 3}(H{sub 2}O){sub n} (n = 2 or 3), that form in nonpolar molecular solvents, such as xylene or chloroform. The presence of anionic lanthanide complexes in C{sub 4}mim{sup +}Tf{sub 2}N{sup -} is made possible by the exchange of the ionic liquid anions into the aqueous phase for the lanthanide complex. The resulting complexes in the ionic liquid phase should be thought of as weak C{sub 4}mim{sup +}Ln(tta){sub 4}{sup -} ion pairs which exert little influence on the structure of the ionic liquid phase.

  9. Non-equilibrium statistical mechanical approach for describing heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sventek, J.S.

    1978-11-01

    With the availability of heavy-ion projectiles (A > 4) at low to intermediate energies (4 < E/A < 10), products showing various stages of relaxation for certain macroscopic variables (center-of-mass energy, orbital angular momentum, etc.) were produced in various reactions. The distributions for these macroscopic variables showed a correlation between the stage of relaxation reached and the net amount of mass transfer which had occurred in the reaction. There was also evidence that there was an asymmetry in the number of net transfers necessary for complete relaxation between stripping and pickup reactions. A model for describing the time-evolution of these reactions was formulated, the keystone of which is a master-equation approach for describing the time-dependence of the mass-asymmetry. This, coupled with deterministic equations of motion for the other macroscopic coordinates in the reaction lead to calculated distributions which provide an excellent qualitative description of these reactions, and, in some cases, quantitatively reproduce the experimental data quite well. 61 figures, 2 tables.

  10. Potentiometric response and mechanism of anionic recognition of heterocalixarene-based ion selective electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Shishkanova, T.V. [Department of Analytical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic)]. E-mail: tatiana.shishkanova@vscht.cz; Sykora, D. [Department of Analytical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Sessler, J.L. [Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712-0615 (United States); Kral, V. [Department of Analytical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2007-03-28

    The ion selective electrode (ISE)-based potentiometric approach is shown to be an effective means of characterizing the anion recognition sites in the molecular receptor calix[2]pyridino[2]pyrrole (CPP). In particular, potentiometric pH-measurements involving the use of experimental PVC-membranes based on CPP revealed the existence of both mono- and diprotonated forms of the receptor under readily accessible conditions. Based on these analyses, apparent surface protonation constants for this heterocalixarene were found to lie between 8.5-8.9 (pK {sub B1}) and 3.3-3.8 (pK {sub B2}). CPP was found to interact with targeted anionic analytes based on both coulombic and hydrogen bond interactions, as inferred from varying the kinds of ionic sites present within the membrane phase. Potentiometric selectivity studies revealed that CPP preferred 'Y-shaped' anions (e.g. acetate, lactate, benzoate) over spherical anions (e.g. fluoride and chloride), fluoride over chloride within the set of spherical anions, and the ortho-isomer over the corresponding meta- and para-isomers in the case of hydroxybenzoate (salicylate and congeners). In the context of this study, the advantages of potentiometric determinations of acetylsalicylic acid using optimized PVC-membranes based on CPP relative to more conventional PVC-membrane ISEs based on traditional anion exchanger were also demonstrated.

  11. Thermo-mechanical properties of mixed ion-electron conducting membrane materials

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bingxin

    2011-07-01

    The thesis presents thermo-mechanical properties of La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF) and Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF) perovskite materials, which are considered as oxygen transport membranes (OTM) for gas separation units. Ring-on-ring bending test with disk-shaped samples and depth-sensitive micro-indentation have been used as macroscopic and microscopic tests, respectively. In addition, the thermo-mechanical properties of a third OTM candidate material La{sub 2}NiO{sub 4+{delta}} (LNO) were investigated. The results of the thermo-mechanical measurements with the BSCF revealed an anomaly between 200 C and 400 C. In particular, the temperature dependence of Young's modulus shows a minimum at {proportional_to} 200 C. Fracture stress and toughness exhibit a qualitatively similar behavior with a minimum between 200 C and 400 C, before recovering between 500 C and 800 C. X-ray diffraction analyses verified that BSCF remains cubic in the relevant temperature range. Hence the anomalies were assumed to be related to the transition of Co{sup 3+} spin states reported for other Co-containing perovskites. This assumption could be experimentally confirmed by magnetic susceptibility measurements. The fracture surfaces of the specimens are not affected by the mechanical anomalies at intermediate temperatures, since only a transgranular fracture mode has been observed. Complementary to the mechanical characterization of BSCF, also the temperature dependency of fracture stress and elastic behavior of LSCF have been determined. Phase compositions of LSCF have been studied by in-situ high temperature XRD. Changes in phase composition with temperature are observed. At ambient temperature the LSCF perovskite material comprises two phases: rhombohedral and cubic symmetry. The ratio of the two phases depends on both cooling rate and atmosphere. The transition of rhombohedral to cubic occurs between 700 C and

  12. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries

    Science.gov (United States)

    Guo, Rui; Lu, Languang; Ouyang, Minggao; Feng, Xuning

    2016-07-01

    Lithium-ion batteries connected in series are prone to be overdischarged. Overdischarge results in various side effects, such as capacity degradation and internal short circuit (ISCr). However, most of previous research on the overdischarge of a cell was terminated when the cell voltage dropped to 0 V, leaving the further impacts of overdischarge unclear. This paper investigates the entire overdischarge process of large-format lithium-ion batteries by discharging the cell to -100% state of charge (SOC). A significant voltage platform is observed at approximately -12% SOC, and ISCr is detected after the cell is overdischarged when passing the platform. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that the overdischarge-induced ISCr is caused by Cu deposition on electrodes, suggesting possible Cu collector dissolution at the voltage platform near -12% SOC. A prognostic/mechanistic model considering ISCr is used to evaluate the resistance of ISCr (RISCr), the value of which decreases sharply at the beginning of ISCr formation. Inducing the ISCr by overdischarge is effective and well controlled without any mechanical deformation or the use of a foreign substance.

  13. Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite.

    Science.gov (United States)

    Ahmed, I; Parsons, A J; Palmer, G; Knowles, J C; Walker, G S; Rudd, C D

    2008-09-01

    Composites comprising a biodegradable polymeric matrix and a bioactive filler show considerable promise in the field of regenerative medicine, and could potentially serve as degradable bone fracture fixation devices, depending on the properties obtained. Therefore, glass fibres from a binary calcium phosphate (50P(2)O(5)+50CaO) glass were used to reinforce polycaprolactone, at two different volume fractions (V(f)). As-drawn, non-treated and heat-treated fibres were assessed. Weight loss, ion release and the initial mechanical properties of the fibres and composites produced have been investigated. Single fibre tensile testing revealed a fibre strength of 474MPa and a tensile modulus of 44GPa. Weibull analysis suggested a scale value of 524. The composites yielded flexural strength and modulus of up to 30MPa and 2.5GPa, respectively. These values are comparable with human trabecular bone. An 8% mass loss was seen for the lower V(f) composite, whereas for the two higher V(f) composites an approximate 20% mass loss was observed over the course of the 5week study. A plateau in the degradation profile at 350h indicated that fibre dissolution was complete at this interval. This assertion was further supported via ion release studies. The leaching of fibres from the composite created a porous structure, including continuous channels within the polymer matrix. This offers further scope for tailoring scaffold development, as cells from the surrounding tissue may be induced to migrate into the resulting porous matrix.

  14. Selective recovery of Pd(II) from extremely acidic solution using ion-imprinted chitosan fiber: Adsorption performance and mechanisms.

    Science.gov (United States)

    Lin, Shuo; Wei, Wei; Wu, Xiaohui; Zhou, Tao; Mao, Juan; Yun, Yeoung-Sang

    2015-12-15

    A novel, selective and acid-resisting chitosan fiber adsorbent was prepared by the ion-imprinting technique using Pd(II) and epichlorohydrin as the template and two-step crosslinking agent, respectively. The resulting ion-imprinted chitosan fibers (IIF) were used to selectively adsorb Pd(II) under extremely acidic synthetic metal solutions. The adsorption and selectivity performances of IIF including kinetics, isotherms, pH effects, and regeneration were investigated. Pd(II) rapidly adsorbed on the IIF within 100 min, achieving the adsorption equilibrium. The isotherm results showed that the maximum Pd(II) uptake on the IIF was maintained as 324.6-326.4 mg g(-1) in solutions containing single and multiple metals, whereas the Pd(II) uptake on non-imprinted fibers (NIF) decreased from 313.7 to 235.3 mg g(-1) in solution containing multiple metals. Higher selectivity coefficients values were obtained from the adsorption on the IIF, indicating a better Pd(II) selectivity. The amine group, supposedly the predominant adsorption site for Pd(II), was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The pH value played a significant role on the mechanism of the selective adsorption in the extremely acidic conditions. Furthermore, the stabilized performance for three cycles of sorption/desorption shows a potential for further large-scale applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Simple and rapid mercury ion selective electrode based on 1-undecanethiol assembled Au substrate and its recognition mechanism.

    Science.gov (United States)

    Li, Xian-Qing; Liang, Hai-Qing; Cao, Zhong; Xiao, Qing; Xiao, Zhong-Liang; Song, Liu-Bin; Chen, Dan; Wang, Fu-Liang

    2017-03-01

    A simple and rapid mercury ion selective electrode based on 1-undecanethiol (1-UDT) assembled Au substrate (Au/1-UDT) has been well constructed. 1-UDT was for the purpose of generating self-assembled monolayer on gold surface to recognize Hg(2+) in aqueous solution, which had a working concentration range of 1.0×10(-8)-1.0×10(-4)molL(-1), with a Nernst response slope of 28.83±0.4mV/-pC, a detection limit of 4.5×10(-9)molL(-1), and a good selectivity over the other tested cations. Also, the Au/1-UDT possessed good reproducibility, stability, and short response time. The recovery obtained for the determination of mercury ion in practical tremella samples was in the range of 99.8-103.4%. Combined electrochemical analysis and X-ray photoelectron spectroscopy (XPS) with quantum chemical computation, the probable recognition mechanism of the electrode for selective recognition of Hg(2+) has been investigated. The covalent bond formed between mercury and sulfur is stronger than the one between gold and sulfur and thus prevents the adsorption of 1-UDT molecules on the gold surface. The quantum chemical computation with density functional theory further demonstrates that the strong interaction between the mercury atom and the sulfur atom on the gold surface leads to the gold sulfur bond ruptured and the gold mercury metallophilic interaction.

  16. Comparative proteomic profiling and possible toxicological mechanism of acute injury induced by carbon ion radiation in pubertal mice testes

    Science.gov (United States)

    Zhang, Hong

    2016-07-01

    We investigated potential mechanisms of acute injury in pubertal mice testes after exposure to carbon ion radiation (CIR). Serum testosterone was measured following whole-body irradiation with a 2Gy carbon ion beam. Comparative proteomic profiling and Western blotting were applied to identify potential biomarkers and measure protein expression, and terminal dUTP nick end-labeling (TUNEL) was performed to detect apoptotic cells. Immunohistochemistry and immunofluorescence were used to investigate protein localization. Serum testosterone was lowest at 24h after CIR, and 10 differentially expressed proteins were identified at this time point that included eIF4E, an important regulator of initiation that combines with mTOR and 4EBP1 to control protein synthesis via the mTOR signalling pathway during proliferation and apoptosis. Protein expression and localization studies confirmed their association with acute injury following exposure to CIR. These three proteins may be useful molecular markers for detecting abnormal spermatogenesis following exposure to environmental and cosmic radiation

  17. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches

    Energy Technology Data Exchange (ETDEWEB)

    Hausbrand, R., E-mail: hausbrand@surface.tu-darmstadt.de; Cherkashinin, G.; Ehrenberg, H.; Gröting, M.; Albe, K.; Hess, C.; Jaegermann, W.

    2015-02-15

    Graphical abstract: - Highlights: • Description of recent in operando and in situ analysis methodology. • Surface science approach using photoemission for analysis of cathode surfaces and interfaces. • Ageing and fatigue of layered oxide Li-ion battery cathode materials from the atomistic point of view. • Defect formation and electronic structure evolution as causes for cathode degradation. • Significance of interfacial energy alignment and contact potential for side reactions. - Abstract: This overview addresses the atomistic aspects of degradation of layered LiMO{sub 2} (M = Ni, Co, Mn) oxide Li-ion battery cathode materials, aiming to shed light on the fundamental degradation mechanisms especially inside active cathode materials and at their interfaces. It includes recent results obtained by novel in situ/in operando diffraction methods, modelling, and quasi in situ surface science analysis. Degradation of the active cathode material occurs upon overcharge, resulting from a positive potential shift of the anode. Oxygen loss and eventual phase transformation resulting in dead regions are ascribed to changes in electronic structure and defect formation. The anode potential shift results from loss of free lithium due to side reactions occurring at electrode/electrolyte interfaces. Such side reactions are caused by electron transfer, and depend on the electron energy level alignment at the interface. Side reactions at electrode/electrolyte interfaces and capacity fade may be overcome by the use of suitable solid-state electrolytes and Li-containing anodes.

  18. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries

    Science.gov (United States)

    Guo, Rui; Lu, Languang; Ouyang, Minggao; Feng, Xuning

    2016-01-01

    Lithium-ion batteries connected in series are prone to be overdischarged. Overdischarge results in various side effects, such as capacity degradation and internal short circuit (ISCr). However, most of previous research on the overdischarge of a cell was terminated when the cell voltage dropped to 0 V, leaving the further impacts of overdischarge unclear. This paper investigates the entire overdischarge process of large-format lithium-ion batteries by discharging the cell to −100% state of charge (SOC). A significant voltage platform is observed at approximately −12% SOC, and ISCr is detected after the cell is overdischarged when passing the platform. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) results indicate that the overdischarge-induced ISCr is caused by Cu deposition on electrodes, suggesting possible Cu collector dissolution at the voltage platform near −12% SOC. A prognostic/mechanistic model considering ISCr is used to evaluate the resistance of ISCr (RISCr), the value of which decreases sharply at the beginning of ISCr formation. Inducing the ISCr by overdischarge is effective and well controlled without any mechanical deformation or the use of a foreign substance. PMID:27444934

  19. Retention model of protein for mixed-mode interaction mechanism in ion exchange and hydrophobic interaction chromatography

    Institute of Scientific and Technical Information of China (English)

    WEI, Yin-Mao; LUO, Quan-Zhou; LIU,Tong; GENG, Xin-Du

    2000-01-01

    A unified retention equation of proteins was proved to be valid for a mixed-mode interaction mechanism in ion exchange chromatography (IEC) and hydrophobic interaction chromatography (HIC). The reason to form a “U” shape retention curve of proteins in both HIC and IEC was explained and the concentration range of the strongest elution ability for the mobile phase was determined with this equation. The parameters in this equation could be used to characterize the difference for either HIC or IEC adsorbents and the changes in the molecular conformation of proteins. With the parameters in this equation, the contributions of salt and water in the mobile phase to the protein retention in HIC and IEC were discussed,respectively. In addition, the comparison between the unified equation and Melander's three-parameter equation for mixedmode interaction chromatography was also investigated and better results were obtained in former equation.

  20. Kinetic Approach to the Mechanism of Redox Reaction of Pyrocatechol Violet and Nitrite Ion in Aqueous Hydrochloric Acid

    Directory of Open Access Journals (Sweden)

    A. Adetoro

    2011-10-01

    Full Text Available The kinetics of the oxidation of Pyrocatechol violet (PCVH by nitrite ion (NO2- in aqueous acidic medium has been studied at 24±1ºC, I = 0.50 mol/dm3(NaCl, [H+] = 1.0×10-3 mol/dm3. The reaction is first order to [PCVH] and half order to [NO2-]. The redox reaction displayed a 1:1 stoichiometry and obeys the rate law: d[PCVH]/dt = (a + b[H+] [PCVH][NO2-]½. The second-order rate constant increases with increase in acid concentration and ionic strength. This system displayed positive salt effect while spectroscopic investigation and Michaelis-Menten plot showed evidence of intermediate complex formation in the course of the reaction. A plausible mechanism has been proposed for the reaction.

  1. Investigation of heavy ions diffusion under the influence of current-driven mechanism and compositional waves in plasma

    CERN Document Server

    Urpin, Vadim

    2016-01-01

    We consider diffusion caused by a combined influence of the Hall effect and electric currents, and argue that such diffusion forms chemical inhomogeneities in plasma. The considered mechanism can be responsible for the formation of element spots in laboratory and astrophysical plasmas. Such current-driven diffusion can be accompanied by the propagation of a particular type of waves which have not been considered earlier. In these waves, the impurity number density oscillare alone and their frequency is determined by the electric currents and sort of impurity ions. These compositional waves exist if the magnetic pressure in plasma is much greater than the gas pressure. Such waves lead to local variations of chemical composition and, hence, can manifest themselves by variations of the emission in spectral lines.

  2. Study of sorption mechanisms of europium(3) and uranium(6) ions on clays : impact of silicates; Etude des mecanismes de retention des ions U(6) et Eu(3) sur les argiles: influence des silicates

    Energy Technology Data Exchange (ETDEWEB)

    Kowal-Fouchard, A

    2002-11-01

    Bentonite clay has been selected as a potential buffer or backfill material in a number of disposal programmes for high level waste. In order to enhance the thermodynamic database of sorption phenomena at the solid-water interface, we have investigated sorption mechanisms of europium(III) and uranium(VI) ions onto montmorillonite and bentonite. Thermodynamic data were obtained for different ions concentrations, different background electrolytes and different ionic strengths. The structural identification of the surface complexes and sorption sites was carried out using two spectroscopies, XPS and TRLIFS, while sorption edges were performed using batch experiments. However, clays are complex minerals and in order to understand these sorption mechanisms we have studied europium(III) and uranium(VI) retention on a silica and an alumina because these solids are often considered as basic components of clays. The comparison of structural results shows that europium ions are significantly sorbed on permanently charged sites of clay until pH 7. But this ion is also sorbed on {identical_to}SiOH and {identical_to}AlOH sites of montmorillonite at pH higher than 6. Uranyl ions sorption on montmorillonite is mainly explained by retention of three complexes on {identical_to}SiOH sites. Moreover, we have shown that nitrate ions and dissolved silicates affect on uranium(VI) sorption mechanisms onto alumina. Nevertheless, uranyl ions sorption on montmorillonite and bentonite only decreases with increasing carbonate concentration. Finally, all the sorption edges were then modeled using these results and a surface complexation model (2 pK and constant capacitance models). (author)

  3. Hydroxy double salts loaded with bioactive ions: Synthesis, intercalation mechanisms, and functional performance

    Science.gov (United States)

    Y. A. Kaassis, Abdessamad; Xu, Si-Min; Guan, Shanyue; Evans, David G.; Wei, Min; Williams, Gareth R.

    2016-06-01

    The intercalation of the anions of diclofenac (Dic), naproxen (Nap), and valproic acid (Val) into three hydroxy double salts (HDSs) has been explored in this work. Experiments were performed with [Co1.2Zn3.8(OH)8](NO3)2·2H2O (CoZn-NO3), [Ni2Zn3(OH)8](NO3)2·2H2O (NiZn-NO3) and [Zn5(OH)8](NO3)2·2H2O (Zn-NO3). It proved possible to intercalate diclofenac and naproxen into all three HDSs. In contrast, Val could be intercalated into CoZn-NO3 but when it was reacted with Zn-NO3 the HDS structure was destroyed, and the product comprised ZnO. Successful intercalation was verified by X-ray diffraction, IR spectroscopy, and elemental microanalysis. Molecular dynamics simulations showed the Dic and Nap ions to arrange themselves in an "X" shape in the interlayer space, forming a bilayer. Val was found to adopt a position with its aliphatic groups parallel to the HDS layer, again in a bilayer. In situ time resolved X-ray diffraction experiments revealed that intercalation of Dic and Nap into CoZn-NO3 and Zn-NO3 is mechanistically complex, with a number of intermediate phases observed. In contrast, the intercalation of all three guests into NiZn-NO3 and of Val into CoZn-NO3 are simple one step reactions proceeding directly from the starting material to the product. The HDS-drug composites were found to have sustained release profiles.

  4. FM1-43 is a permeant blocker of mechanosensitive ion channels in sensory neurons and inhibits behavioural responses to mechanical stimuli

    Directory of Open Access Journals (Sweden)

    Drew Liam J

    2007-01-01

    Full Text Available Abstract The molecular identity and pharmacological properties of mechanically gated ion channels in sensory neurons are poorly understood. We show that FM1-43, a styryl dye used to fluorescently label cell membranes, permeates mechanosensitive ion channels in cultured dorsal root ganglion neurons, resulting in blockade of three previously defined subtypes of mechanically activated currents. Blockade and dye uptake is voltage dependent and regulated by external Ca2+. The structurally related larger dye FM3-25 inhibited mechanically activated currents to a lesser degree and did not permeate the channels. In vivo, FMI-43 decreases pain sensitivity in the Randall-Selitto test and increases the withdrawal threshold from von Frey hairs, together suggesting that the channels expressed at the cell body in culture mediate mechanosensation in the intact animal. These data give further insight into the mechanosensitive ion channels expressed by somatosensory neurons and suggest FM dyes are an interesting tool for studying them.

  5. Metal and pharmaceutical mixtures: Is ion loss the mechanism underlying acute toxicity and widespread additive toxicity in zebrafish?

    Energy Technology Data Exchange (ETDEWEB)

    Alsop, Derek, E-mail: alsopde@mcmaster.ca; Wood, Chris M.

    2013-09-15

    Highlights: •Zebrafish larvae were used to test the acute toxicity of contaminant mixtures. •Interactions were observed between metals, ammonia and pharmaceuticals. •Larval Na{sup +} loss was observed with exposure to all acutely toxic contaminants tested. •Water quality criteria should recognize the toxic interactions between contaminants. -- Abstract: The acute toxicities and mechanisms of action of a variety of environmental contaminants were examined using zebrafish larvae (Danio rerio; 4–8 days post fertilization). Toxic interactions were observed between metals. For example, the addition of a sublethal level of nickel (15% of the LC{sub 50}, one third of the LC{sub 01}) to all copper treatments decreased the copper 96 h LC{sub 50} by 58%, while sublethal copper exposure (6% of the copper LC{sub 50}, 13% of the LC{sub 01}) decreased the cadmium 96 h LC{sub 50} by 47%. Two predictive models were assessed, the concentration addition (CA) model, which assumes similar mechanisms of action, and the independent action (IA) model, which assumes different mechanisms of action. Quantitative comparisons indicated the CA model performed better than the IA model; the latter tended to underestimate combined toxicity to a greater extent. The effects of mixtures with nickel or ammonia were typically additive, while mixtures with copper or cadmium were typically greater than additive. Larvae exposed to cadmium, copper or nickel experienced whole body ion loss. Decreases were greatest for Na{sup +} followed by K{sup +} (as high as 19% and 9%, respectively, in 24 h). Additive toxicity between copper and other pharmaceutical compounds such as fluoxetine (Prozac™), β-naphthoflavone, estrogen and 17α-ethinylestradiol were also observed. Similar to metals, acutely toxic concentrations of fluoxetine, β-naphthoflavone and ammonia all decreased whole body Na{sup +} and K{sup +}. Overall, whole body Na{sup +} loss showed the greatest correlation with mortality across a

  6. Possible mechanism of action of vanadium ions as an antidiabetic agent.

    Science.gov (United States)

    Terziyski, K; Tzenova, R; Milieva, E; Vladeva, S

    1999-01-01

    Vanadium compounds, at much higher concentrations than they are typically ingested, are being considered for use in the treatment of diabetes mellitus. They exert an insulin-mimetic effect in an insulin-receptor-independent manner. In our study we obtained new data about the vanadium insulin-receptor-independent mechanism of action on cell membranes. When rat stomach smooth muscle samples are treated with NH4VO3 (10(-7) divided by 10(-5) this action is possibly exhibited with increased influx of Ca2+ through VDCa2+C.

  7. Focus ion beam-induced mechanical stress switching in an ultra-fast resistive switching device

    Science.gov (United States)

    Yang, Xiang

    2016-06-01

    The Mo/Si3N4:Pt/Pt nanometallic resistive switching devices with ultra-fast write/erase speed (meta-stable state, while LRS (detrapping state) is a stable state. Strong mechanical stress facilitates local bond distortion in dielectric films and thus lowers the energy barrier between HRS and LRS, eventually leading to a barrier-less state transition. A quantitative model based on stress-mediated parallel conduction paths were established to provide a more accurate description of the resistive switching devices.

  8. Simulations of Magnetic Reconnection - Kinetic Mechanisms Underlying the Fluid Description of Ions

    Science.gov (United States)

    Aunai, icolas; Belmont, Gerard; Smets, Roch

    2012-01-01

    the thermal energy flux rather than to the convective kinetic energy flux, although the latter is generally supposed dominant. In the symmetric case, we propose the pressure tensor to be an additional proxy of the ion decoupling region in satellite data and verify this suggestion by studying a reconnection event encountered by the Cluster spacecrafts. Finally, the last part of this thesis is devoted to the study of the kinetic structure of asymmetric tangential current sheets where connection can develop. This theoretical part consists in finding a steady state solution to the Vlasov-Maxwell system for the protons in such a configuration. We present the theory and its first confrontation to numerical tests.

  9. Plasma damage mechanisms in low k organosilicate glass and their inhibition by Ar ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Kazi, Haseeb; Kelber, Jeffry A., E-mail: kelber@unt.edu [Center for Electronic Materials Processing and Integration and Department of Chemistry, University of North Texas, Denton, Texas 76203 (United States)

    2014-03-15

    In-situ x-ray photoelectron spectroscopy and ex-situ Fourier transform infrared spectroscopy studies of vacuum ultraviolet (VUV) photons with or without O{sub 2}, and O radicals point to distinct mechanisms of carbon abstraction in nanoporous organosilicate glass (OSG) films. VUV alone in the absence of O{sub 2} results in Si-CH{sub 3} bond scission and recombination preferentially at silicon monomethyl sites, obeying diffusion kinetics. In contrast, the presence of O{sub 2} interferes with recombination, resulting in diffusion-dominated carbon loss kinetics, enhanced Si oxidation, and greatly accelerating the rate of carbon loss in both the near surface and bulk regions of the OSG, at both monomethyl and dimethyl sites. Carbon abstraction due to exposure to (O({sup 3}P)) does not follow diffusion kinetics, and such interactions yield a SiO{sub 2}-like surface layer inhibiting further O diffusion. Results indicate that diffusion-dominated carbon abstraction kinetics previously observed for OSG exposure to O{sub 2} plasma damage is primarily attributable to the diffusion of O{sub 2} down OSG nanopores, reacting at photoactivated sites, rather than the diffusion of O radicals. OSG pretreatment by 900 eV Ar{sup +} bombardment effectively inhibits both VUV + O{sub 2} and O damage mechanisms by formation of ∼1 nm thick SiO{sub 2}-like surface region that inhibits both O and O{sub 2} diffusion.

  10. Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent mechanical stability

    Science.gov (United States)

    Chiappone, A.; Nair, Jijeesh R.; Gerbaldi, C.; Jabbour, L.; Bongiovanni, R.; Zeno, E.; Beneventi, D.; Penazzi, N.

    Methacrylic-based thermo-set gel-polymer electrolyte membranes obtained by a very easy, fast and reliable free radical photo-polymerisation process and reinforced with microfibrillated cellulose particles are here presented. The morphology of the composite electrolytes is investigated by scanning electron microscopy and their thermal behaviour (characteristic temperatures, degradation temperature) are investigated by thermo-gravimetric analysis and differential scanning calorimetry. The composite membranes prepared exhibit excellent mechanical properties, with a Young's modulus as high as about 80 MPa at ambient temperature. High ionic conductivity (approaching 10 -3 S cm -1 at 25 °C) and good overall electrochemical performances are maintained, enlightening that such specific approach would make these hybrid organic, cellulose-based composite polymer electrolyte systems a strong contender in the field of thin and flexible lithium based power sources.

  11. Calcium ion involvement in growth inhibition of mechanically stressed soybean (Glycine max) seedlings

    Science.gov (United States)

    Jones, R. S.; Mitchell, C. A.

    1989-01-01

    A 40-50% reduction in soybean [Glycine max (L.) Merr. cv. Century 84] hypocotyl elongation occurred 24 h after application of mechanical stress. Exogenous Ca2+ at 10 mM inhibited growth by 28% if applied with the Ca2+ ionophore A23187 to the zone of maximum hypocotyl elongation. La3+ was even more inhibitory than Ca2+, especially above 5 mM. Treatment with ethyleneglycol-bis-(beta-aminoethylether)-N, N, N', N'-tetraacetic acid (EGTA) alone had no effect on growth of non-stressed seedlings at the concentrations used but negated stress-induced growth reduction by 36% at 4 mM when compared to non-treated, stressed controls. Treatment with EDTA was ineffective in negating stress-induced growth inhibition. Calmodulin antagonists calmidazolium, chlorpromazine, and 48/80 also negated stress-induced growth reduction by 23, 50, and 35%, respectively.

  12. Mechanism and ion-dependence of in vitro autoactivation of yeast proteinase A

    DEFF Research Database (Denmark)

    Van Den Hazel, H; Wolff, A M; Kielland-Brandt, Morten

    1997-01-01

    Yeast proteinase A is synthesized as a zymogen which transits through the endoplasmic reticulum, the Golgi complex and the endosome to the vacuole. On arrival in the vacuole, activation takes place. It has previously been found that proteinase A can activate autocatalytically; however......, the propeptide of proteinase A shows essentially no similarity to other known aspartic proteinase propeptides. To understand why proteinase A activation occurs rapidly in the vacuole but not at all in earlier compartments, we have purified the zymogen and investigated the conditions that trigger autoactivation...... the pH- and ionic-strength-dependence and the predominance of a product-catalysed mechanism are well adapted to the situation in vivo, since slow activation in the absence of active proteinase A helps to prevent activation in prevacuolar compartments, whereas, on delivery to the vacuole, lower p...

  13. Ion pump as Brownian motor: theory of electroconformational coupling and proof of ratchet mechanism for Na,K-ATPase action

    Science.gov (United States)

    Tsong, Tian Yow; Chang, Cheng-Hung

    2003-04-01

    This article reviews some concepts of the Brownian Ratchet which are relevant to our discussion of mechanisms of action of Na,K-ATPase, a universal ion pump and an elemental motor protein of the biological cell. Under wide ranges of ionic compositions it can hydrolyze an ATP and use the γ-phosphorous bond energy of ATP to pump 3 Na + out of, and 2 K + into the cell, both being uphill transport. During the ATP-dependent pump cycle, the enzyme oscillates between E1 and E2 states. Our experiment replaces ATP with externally applied electric field of various waveforms, amplitudes, and frequencies. The field enforced-oscillation, or fluctuation of E1 and E2 states enables the enzyme to harvest energy from the applied field and convert it to the chemical gradient energy of cations. A theory of electroconformational coupling (TEC), which embodies all the essential features of the Brownian Ratchet, successfully simulates these experimental results. Our analysis based on a four-state TEC model indicates that the equilibrium and the rate constants of the transport system define the frequency and the amplitude of the field for the optimal activation. Waveform, frequency, and amplitude are three elements of signal. Thus, electric signal of the ion pump is found by TEC analysis of the experimental data. Electric noise (white) superimposed on an electric signal changes the pump efficiency and produces effects similar to the stochastic resonance reported in other biological systems. The TEC concept is compared with the most commonly used Michaelis-Menten enzyme mechanism (MME) for similarities and differences. Both MME and TEC are catalytic wheels, which recycle the catalyst in each turnover. However, a MME can only catalyze reaction of descending free energy while a TEC enzyme can catalyze reaction of ascending free energy by harvesting needed energy from an off-equilibrium electric noise. The TEC mechanism is shown to be applicable to other biological motors and engines, as

  14. Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy.

    Science.gov (United States)

    Abellan, Patricia; Mehdi, B Layla; Parent, Lucas R; Gu, Meng; Park, Chiwoo; Xu, Wu; Zhang, Yaohui; Arslan, Ilke; Zhang, Ji-Guang; Wang, Chong-Min; Evans, James E; Browning, Nigel D

    2014-03-12

    Development of novel electrolytes with increased electrochemical stability is critical for the next generation battery technologies. In situ electrochemical fluid cells provide the ability to rapidly and directly characterize electrode/electrolyte interfacial reactions under conditions directly relevant to the operation of practical batteries. In this paper, we have studied the breakdown of a range of inorganic/salt complexes relevant to state-of-the-art Li-ion battery systems by in situ (scanning) transmission electron microscopy ((S)TEM). In these experiments, the electron beam itself caused the localized electrochemical reaction that allowed us to observe electrolyte breakdown in real-time. The results of the in situ (S)TEM experiments matches with previous stability tests performed during battery operation and the breakdown products and mechanisms are also consistent with known mechanisms. This analysis indicates that in situ liquid stage (S)TEM observations could be used to directly test new electrolyte designs and identify a smaller library of candidate solutions deserving of more detailed characterization. A systematic study of electrolyte degradation is also a necessary first step for any future controlled in operando liquid (S)TEM experiments intent on visualizing working batteries at the nanoscale.

  15. Potential role of gene-environment interactions in ion transport mechanisms in the etiology of renal cell cancer

    Science.gov (United States)

    Deckers, Ivette A. G.; van den Brandt, Piet A.; van Engeland, Manon; van Schooten, Frederik J.; Godschalk, Roger W. L.; Keszei, András P.; Hogervorst, Janneke G. F.; Schouten, Leo J.

    2016-01-01

    We investigated the ion transport mechanism (ITM) in renal cell cancer (RCC) etiology using gene-environment interactions between candidate single nucleotide polymorphisms (SNPs) and associated environmental factors, including dietary intakes of sodium, potassium and fluid, hypertension and diuretic medication. A literature-based selection of 13 SNPs in ten ITM genes were successfully genotyped in toenail DNA of 3,048 subcohort members and 419 RCC cases from the Netherlands Cohort Study. Diet and lifestyle were measured with baseline questionnaires. Cox regression analyses were conducted for main effects and gene-environment interactions. ADD1_rs4961 was significantly associated with RCC risk, showing a Hazard Ratio (HR) of 1.24 (95% confidence intervals (CI): 1.01–1.53) for the GT + TT (versus GG) genotype. Four of 65 tested gene-environment interactions were statistically significant. Three of these interactions clustered in SLC9A3_rs4957061, including the ones with fluid and potassium intake, and diuretic medication. For fluid intake, the RCC risk was significantly lower for high versus low intake in participants with the CC genotype (HR(95% CI): 0.47(0.26–0.86)), but not for the CT + TT genotype (P-interaction = 0.002). None of the main genetic effects and gene-environment interactions remained significant after adjustment for multiple testing. Data do not support the general hypothesis that the ITM is a disease mechanism in RCC etiology. PMID:27686058

  16. Impact of acidity and metal ion on the antibacterial activity and mechanisms of β- and α-chitosan.

    Science.gov (United States)

    Bingjun, Qian; Jung, Jooyeoun; Zhao, Yanyun

    2015-03-01

    This study investigated the effects of acidity and metal ion on the antibacterial activity of α- and β-chitosan at different molecular weights (Mw, 22-360 kDa) against Escherichia coli and Listeria innocua through agar well diffusion assay. Spectrophotometric, electrophoretic, and confocal fluorescence microscopy analysis were further employed to evaluate the antibacterial mechanisms probably involved. Increasing pH from 4.0 to 5.0 weakened the antibacterial ability of chitosan as shown by the decreased bacteria growth inhibition zone (BGIZ) from 0.63 to 0.57 cm for β-chitosan (61 kDa) and from 0.62 to 0.57 cm for α-chitosan (30 kDa) against E. coli. All β- and α-chitosan samples showed antibacterial activity against L. innocua, in which 22 kDa β-chitosan and 30 kDa α-chitosan at pH 4.0 had the highest antibacterial activity with BGIZ of 1.22 and 0.98 cm, respectively. Interactive effect between pH and Mw on the antibacterial activity of β-chitosan was observed, but not of α-chitosan. Adding Co(2+) and Ni(2+) significantly improved the antibacterial activity of chitosan, while adding K(+), Na(+), and Li(+) significantly weakened the antibacterial activity of some β- and α-chitosan samples (P antibacterial mechanisms of chitosan.

  17. In Situ Radiographic Investigation of (De)Lithiation Mechanisms in a Tin-Electrode Lithium-Ion Battery.

    Science.gov (United States)

    Sun, Fu; Markötter, Henning; Zhou, Dong; Alrwashdeh, Saad Sabe Sulaiman; Hilger, Andre; Kardjilov, Nikolay; Manke, Ingo; Banhart, John

    2016-05-10

    The lithiation and delithiation mechanisms of multiple-Sn particles in a customized flat radiography cell were investigated by in situ synchrotron radiography. For the first time, four (de)lithiation phenomena in a Sn-electrode battery system are highlighted: 1) the (de)lithiation behavior varies between different Sn particles, 2) the time required to lithiate individual Sn particles is markedly different from the time needed to discharge the complete battery, 3) electrochemical deactivation of originally electrochemically active particles is reported, and 4) a change of electrochemical behavior of individual particles during cycling is found and explained by dynamic changes of (de)lithiation pathways amongst particles within the electrode. These unexpected findings fundamentaly expand the understanding of the underlying (de)lithiation mechanisms inside commercial lithium-ion batteries (LIBs) and would open new design principles for high-performance next-generation LIBs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Modelling of the interaction between chemical and mechanical behaviour of ion exchange resins incorporated into a cement-based matrix

    Directory of Open Access Journals (Sweden)

    Le Bescop P.

    2013-07-01

    Full Text Available In this paper, we present a predictive model, based on experimental data, to determine the macroscopic mechanical behavior of a material made up of ion exchange resins solidified into a CEM III cement paste. Some observations have shown that in some cases, a significant macroscopic expansion of this composite material may be expected, due to internal pressures generated in the resin. To build the model, we made the choice to break down the problem in two scale’s studies. The first deals with the mechanical behavior of the different heterogeneities of the composite, i.e. the resin and the cement paste. The second upscales the information from the heterogeneities to the Representative Elementary Volume (REV of the composite. The heterogeneities effects are taken into account in the REV by applying a homogenization method derived from the Eshelby theory combined with an interaction coefficient drawn from the poroelasticity theory. At the first scale, from the second thermodynamic law, a formulation is developed to estimate the resin microscopic swelling. The model response is illustrated on a simple example showing the impact of the calculated internal pressure, on the macroscopic strain.

  19. [Stabilization of Cadmium Contaminated Soils by Ferric Ion Modified Attapulgite (Fe/ATP)--Characterizations and Stabilization Mechanism].

    Science.gov (United States)

    Rong, Yang; Li, Rong-bo; Zhou, Yong-li; Chen, Jing; Wang, Lin-ling; Lu, Xiao-hua

    2015-08-01

    Ferric ion modified attapulgite (Fe/ATP) was prepared by impregnation and its structure and morphology were characterized. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effect of Cadmium( Cd) stabilization in soil with the addition of attapulgite (ATP) and Fe/ATP. The stabilization mechanism of Cd was further elucidated by comparing the morphologies and structure of ATP and Fe/ATP before and after Cd adsorption. Fe/ATP exhibited much better adsorption capacity than ATP, suggesting different adsorption mechanisms occurred between ATP and Fe/ATP. The leaching concentrations of Cd in soil decreased by 45% and 91% respectively, with the addition of wt. 20% ATP and Fe/ATP. The former was attributed to the interaction between Cd2 and --OH groups by chemical binding to form inner-sphere complexes in ATP and the attachment between Cd2+ and the defect sites in ATP framework. Whereas Cd stabilization with Fe/ATP was resulted from the fact that the active centers (--OH bonds or O- sites) on ATP could react with Fe3+ giving Fe--O--Cd-- bridges, which helped stabilize Cd in surface soil. What'more, the ferric oxides and metal hydroxides on the surface of ATP could interact with Cd, probably by the formation of cadmium ferrite. In conclusion, Fe/ATP, which can be easily prepared, holds promise as a potential low-cost and environmental friendly stabilizing agent for remediation of soil contaminated with heavy metals.

  20. Integrated mRNA and micro RNA profiling reveals epigenetic mechanism of differential sensitivity of Jurkat T cells to AgNPs and Ag ions.

    Science.gov (United States)

    Eom, Hyun-Jeong; Chatterjee, Nivedita; Lee, Jeongsoo; Choi, Jinhee

    2014-08-17

    In our previous in vitro study of the toxicity on silver nanoparticles (AgNPs), we observed a dramatically higher sensitivity of Jurkat T cells to AgNPs than to Ag ions, and DNA damage and apoptosis were found to be involved in that toxicity. In this study, to understand underlying mechanism of different sensitivity of Jurket T cells to AgNPs and Ag ions, mRNA microarray and micro RNA microarray were concomitantly conducted on AgNPs and Ag ions exposed Jurkat T cells. Surprisingly only a small number of genes were differentially expressed by exposure to each of the silver (15 altered mRNA by AgNPs exposure, whereas 4 altered mRNA by Ag ions exposure, as determined 1.5-fold change as the cut-off value). miRNA microarray revealed that the expression of 63 miRNAs was altered by AgNPs exposure, whereas that of 32 miRNAs was altered by Ag ions exposure. An integrated analysis of mRNA and miRNA expression revealed that the expression of hsa-miR-219-5p, was negatively correlated with the expression of metallothionein 1F (MT1F) and tribbles homolog 3 (TRIB3), in cells exposed to AgNPs; whereas, the expression of hsa-miR-654-3p was negatively correlated with the expression of mRNA, endonuclease G-like 1 (EDGL1) in cells exposed to Ag ions. Network analysis were further conducted on mRNA-miRNA pairs, which revealed that miR-219-5p-MT1F and -TRIB3 pairs by AgNPs are being involved in various cellular processes, such as, oxidative stress, cell cycle and apoptosis, whereas, miR-654-3p and ENDOGL1 pair by Ag ions generated a much simpler network. The putative target genes of AgNPs-induced miR-504, miR-33 and miR-302 identified by Tarbase 6.0 are also found to be involved in DNA damage and apoptosis. These results collectively suggest that distinct epigenetic regulation may be an underlying mechanism of different sensitivity of Jurkat T cells to AgNPs and Ag ion. Further identification of putative target genes of DE miRNA by AgNPs and Ag ions may provide additional clues for the

  1. Chemical and mechanical instabilities in high energy heavy-ion collisions

    Science.gov (United States)

    Gervino, G.; Lavagno, A.; Pigato, D.

    2015-07-01

    We investigate the possible thermodynamic instability in a warm and dense nuclear medium where a phase transition from nucleonic matter to resonance-dominated Δ-matter can take place. Such a phase transition is characterized by both mechanical instability (fluctuations on the baryon density) and by chemical-diffusive instability (fluctuations on the isospin concentration) in asymmetric nuclear matter. Similarly to the liquid-gas phase transition, the nucleonic and the Δ-matter phase have a different isospin density in the mixed phase. In the liquid-gas phase transition, the process of producing a larger neutron excess in the gas phase is referred to as isospin fractionation. A similar effects can occur in the nucleon-Δ matter phase transition due essentially to a Δ- excess in the Δ-matter phase in asymmetric nuclear matter. In this context, we study the hadronic equation of state by means of an effective quantum relativistic mean field model with the inclusion of the full octet of baryons, the Δ-isobar degrees of freedom, and the lightest pseudoscalar and vector mesons. Finally, we will investigate the presence of thermodynamic instabilities in a hot and dense nuclear medium where phases with different values of antibaryon-baryon ratios and strangeness content may coexist. Such a physical regime could be in principle investigated in the future high-energy compressed nuclear matter experiments where will make it possible to create compressed baryonic matter with a high net baryon density.

  2. Functional characterization of the vertebrate primary ureter: Structure and ion transport mechanisms of the pronephric duct in axolotl larvae (Amphibia

    Directory of Open Access Journals (Sweden)

    Prehn Lea R

    2010-05-01

    Full Text Available Abstract Background Three kidney systems appear during vertebrate development: the pronephroi, mesonephroi and metanephroi. The pronephric duct is the first or primary ureter of these kidney systems. Its role as a key player in the induction of nephrogenic mesenchyme is well established. Here we investigate whether the duct is involved in urine modification using larvae of the freshwater amphibian Ambystoma mexicanum (axolotl as model. Results We investigated structural as well as physiological properties of the pronephric duct. The key elements of our methodology were: using histology, light and transmission electron microscopy as well as confocal laser scanning microscopy on fixed tissue and applying the microperfusion technique on isolated pronephric ducts in combination with single cell microelectrode impalements. Our data show that the fully differentiated pronephric duct is composed of a single layered epithelium consisting of one cell type comparable to the principal cell of the renal collecting duct system. The cells are characterized by a prominent basolateral labyrinth and a relatively smooth apical surface with one central cilium. Cellular impalements demonstrate the presence of apical Na+ and K+ conductances, as well as a large K+ conductance in the basolateral cell membrane. Immunolabeling experiments indicate heavy expression of Na+/K+-ATPase in the basolateral labyrinth. Conclusions We propose that the pronephric duct is important for the subsequent modification of urine produced by the pronephros. Our results indicate that it reabsorbs sodium and secretes potassium via channels present in the apical cell membrane with the driving force for ion movement provided by the Na+/K+ pump. This is to our knowledge the first characterization of the pronephric duct, the precursor of the collecting duct system, which provides a model of cell structure and basic mechanisms for ion transport. Such information may be important in understanding

  3. Light-cured dimethacrylate-based resins and their composites: comparative study of mechanical strength, water sorption and ion release

    Science.gov (United States)

    O’Donnell, J.N.R.; Langhorst, S.E.; Fow, M.D.; Antonucci, J.M.; Skrtic, D.

    2008-01-01

    This study explored how resin type affects selected physicochemical properties of complex methacrylate copolymers and their amorphous calcium phosphate (ACP)-filled and glass-filled composites. Two series of photo-polymerizable resin matrices were formulated employing 2,2-bis[p-(2’-hydroxy-3’-methacryloxypropoxy)phenyl]propane (Bis-GMA) or an ethoxylated bisphenol A dimethacrylate (EBPADMA) as the base monomer, Unfilled copolymers and composites filled with a mass fraction with 40 %, 35 % and 30 %, respectively, of ACP or the un-silanized glass were assessed for biaxial flexure strength (BFS), water sorption (WS) and mineral ion release upon immersion in HEPES-buffered saline solution for up to six months. Substituting EBPADMA for Bis-GMA significantly reduced the WS while only marginally affected the BFS of both dry and wet copolymers. Independent of the filler level, both dry and wet ACP composites formulated with either BTHM or ETHM resins were mechanically weaker than the corresponding copolymers. The BFS of ACP composite specimens after 1 month in saline did not further decrease with further aqueous exposure. The BFS of glass-filled composites decreased with the increased level of the glass filler and the time of aqueous exposure. After 6 months of immersion, the BFS of glass-filled BTHM and ETHM composites, respectively, remained 58 % and 41 % higher than the BFS of the corresponding ACP composites. Ion release data indicated that a minimum mass fraction of 35 % ACP was required to attain the desired solution supersaturation with respect to hydroxyapatite for both the BTHM and ETHM derived composites. PMID:18607513

  4. Development of intestinal ion-transporting mechanisms during smoltification and seawater acclimation in Atlantic salmon Salmo salar

    Science.gov (United States)

    Sundh, Henrik; Nilsen, Tom O.; Lindström, Jenny; Hasselberg-Frank, Linda; Stefansson, Sigurd O.; McCormick, Stephen D.; Sundell, K.

    2014-01-01

    This study investigated the expression of ion transporters involved in intestinal fluid absorption and presents evidence for developmental changes in abundance and tissue distribution of these transporters during smoltification and seawater (SW) acclimation of Atlantic salmonSalmo salar. Emphasis was placed on Na+, K+-ATPase (NKA) and Na+, K+, Cl− co-transporter (NKCC) isoforms, at both transcriptional and protein levels, together with transcription of chloride channel genes. The nka α1c was the dominant isoform at the transcript level in both proximal and distal intestines; also, it was the most abundant isoform expressed in the basolateral membrane of enterocytes in the proximal intestine. This isoform was also abundantly expressed in the distal intestine in the lower part of the mucosal folds. The protein expression of intestinal Nkaα1c increased during smoltification. Immunostaining was localized to the basal membrane of the enterocytes in freshwater (FW) fish, and re-distributed to a lateral position after SW entry. Two other Nka isoforms, α1a and α1b, were expressed in the intestine but were not regulated to the same extent during smoltification and subsequent SW transfer. Their localization in the intestinal wall indicates a house-keeping function in excitatory tissues. The absorptive form of the NKCC-like isoform (sub-apically located NKCC2 and/or Na+, Cl−co-transporter) increased during smoltification and further after SW transfer. The cellular distribution changed from a diffuse expression in the sub-apical regions during smoltification to clustering of the transporters closer to the apical membrane after entry to SW. Furthermore, transcript abundance indicates that the mechanisms necessary for exit of chloride ions across the basolateral membrane and into the lateral intercellular space are present in the form of one or more of three different chloride channels: cystic fibrosis transmembrane conductance regulator I and II and chloride channel

  5. Analysis on the capacity degradation mechanism of a series lithium-ion power battery pack based on inconsistency of capacity

    Institute of Scientific and Technical Information of China (English)

    Wang Zhen-Po; Liu Peng; Wang Li-Fang

    2013-01-01

    The lithium-ion battery has been widely used as an energy source.Charge rate,discharge rate,and operating temperature are very important factors for the capacity degradations of power batteries and battery packs.Firstly,in this paper we make use of an accelerated life test and a statistical analysis method to establish the capacity accelerated degradation model under three constant stress parameters according to the degradation data,which are charge rate,discharge rate,and operating temperature,and then we propose a capacity degradation model according to the current residual capacity of a Li-ion cell under dynamic stress parameters.Secondly,we analyze the charge and discharge process of a series power battery pack and interpret the correlation between the capacity degradations of the battery pack and its charge/discharge rate.According to this cycling condition,we establish a capacity degradation model of a series power battery pack under inconsistent capacity of cells,and analyze the degradation mechanism with capacity variance and operating temperature difference.The comparative analysis of test results shows that the inconsistent operating temperatures of cells in the series power battery pack are the main cause of its degradation; when the difference between inconsistent temperatures is narrowed by 5 ℃,the cycle life can be improved by more than 50%.Therefore,it effectively improves the cycle life of the series battery pack to reasonably assemble the batteries according to their capacities and to narrow the differences in operating temperature among cells.

  6. Negative Ion MALDI Mass Spectrometry of Polyoxometalates (POMs): Mechanism of Singly Charged Anion Formation and Chemical Properties Evaluation

    Science.gov (United States)

    Boulicault, Jean E.; Alves, Sandra; Cole, Richard B.

    2016-08-01

    MALDI-MS has been developed for the negative ion mode analysis of polyoxometalates (POMs). Matrix optimization was performed using a variety of matrix compounds. A first group of matrixes offers MALDI mass spectra containing abundant intact singly charged anionic adduct ions, as well as abundant in-source fragmentations at elevated laser powers. A relative ranking of the ability to induce POM fragmentation is found to be: DAN > CHCA > CNA > DIT> HABA > DCTB > IAA. Matrixes of a second group provide poorer quality MALDI mass spectra without observable fragments. Sample preparation, including the testing of salt additives, was performed to optimize signals for a model POM, POMc12, the core structure of which bears four negative charges. The matrix 9-cyanoanthracene (CNA) provided the best signals corresponding to singly charged intact POMc12 anions. Decompositions of these intact anionic species were examined in detail, and it was concluded that hydrogen radical-induced mechanisms were not prevalent, but rather that the observed prompt fragments originate from transferred energy derived from initial electronic excitation of the CNA matrix. Moreover, in obtained MALDI mass spectra, clear evidence of electron transfer to analyte POM species was found: a manifestation of the POMs ability to readily capture electrons. The affinity of polyanionic POMc12 toward a variety of cations was evaluated and the following affinity ranking was established: Fe3+ > Al3+ > Li+ > Ga3+ > Co2+ > Cr3+ > Cu2+ > [Mn2+, Mg2+] > [Na+, K+]. Thus, from the available cationic species, specific adducts are preferentially formed, and evidence is given that these higher affinity POM complexes are formed in the gas phase during the early stages of plume expansion.

  7. Electron paramagnetic resonance parameters of Mn4+ ion in h-BaTiO3 crystal from a two-mechanism model

    Indian Academy of Sciences (India)

    Wu Xiao-Xuan; Fang Wang; Feng Wen-Lin; Zheng Wen-Chen

    2009-03-01

    The EPR parameters ( factors ∥, ⊥ and zero-field splitting ) of Mn4+ ion in h-BaTiO3 crystal are calculated from the complete high-order perturbation formulas based on a two-mechanism model for the EPR parameters of 33 ions in trigonal symmetry. In the model, not only the widely used crystal-field mechanism, but also the charge-transfer mechanism (which is not considered in crystal-field theory) are included. The calculated results are in reasonable agreement with the experimental values. The relative importance of charge-transfer mechanism to EPR parameters and the defect structure of Mn4+ centre in h-BaTiO3 crystal obtained from the calculations are discussed.

  8. Synergic effect of benzotriazole and chloride ion on Cu passivation in a phosphate electrochemical mechanical planarization electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jeng-Yu, E-mail: jylin@ttu.edu.t [Department of Chemical Engineering, Tatung University, 40 ChungShan North Road, 3rd Section, Taipei 104, Taiwan (China); Chou, Shu-Wei [Department of Chemical Engineering, Tatung University, 40 ChungShan North Road, 3rd Section, Taipei 104, Taiwan (China)

    2011-03-30

    Research highlights: The addition of Cl{sup -} in phosphate electrolytes containing BTAH only can increase the thickness of BTAH passive film. The enhanced inhibition capability of the Cl{sup -}containing BTAH passive film was found, especially at high anodic potential. The control of Cl{sup -} concentration in the phosphate electrolyte can expand the operating potential window during ECMP process. - Abstract: In this study, the effect of chloride ion (Cl{sup -}) in phosphate electrolytes of pH 2 containing benzotriazole (BTAH) developed for use in electrochemical mechanical planarization (ECMP) was investigated at various anodic potentials. According to D.C. and A.C. electrochemical analyses, the inhibition effect of the BTAH passive film formed in phosphate electrolyte containing both BTAH and Cl{sup -} was superior to that formed in phosphate electrolytes containing BTAH alone, even at high anodic potential. The effective window for BTAH passivation reached {approx}1.3 V vs. Ag/AgCl nearly three times that of the {approx}0.5 V vs. Ag/AgCl recorded for electrolyte containing BTAH alone. According to analyses conducted by atomic force microscopy (AFM) and secondary ion mass spectrometer (SIMS), the thickness of the passive film grown from the BTAH-only electrolyte at 0.3 V vs. Ag/AgCl was {approx}52 {+-} 7 nm and {approx}55 nm, respectively. As for the passive film grown from the BTAH and Cl{sup -} electrolyte, the thickness increased to {approx}104 {+-} 18 nm and {approx}106 nm, respectively. The mechanism for the enhanced inhibition capability was that the passive film grown from the BTAH and Cl{sup -} electrolyte was thicker compared to that formed from the BTAH-only electrolyte due to the incorporation of Cl{sup -} into the BTAH passive film. The ECMP polishing results also demonstrated an obvious step height reduction of {approx}1000 nm in a patterned structure for only 60 s polishing at a high potential of 1.0 V vs. Ag/AgCl under a low downward pressure

  9. DDQ-promoted dehydrogenation from natural rigid polycyclic acids or flexible alkyl acids to generate lactones by a radical ion mechanism.

    Science.gov (United States)

    Ding, Ye; Huang, Zhangjian; Yin, Jian; Lai, Yisheng; Zhang, Shibo; Zhang, Zhiguo; Fang, Lei; Peng, Sixun; Zhang, Yihua

    2011-09-07

    A novel and facile DDQ-mediated dehydrogenation from natural rigid polycyclic acids or flexible alkyl acids to generate lactones is described. The formation of lactones proceeds by a radical ion mechanism, which has been established by DPPH˙-mediated chemical identification, ESR spectroscopy and an enol intermediate trapping.

  10. Experimental evidence for quantum cutting co-operative energy transfer process in Pr(3+)/Yb(3+) ions co-doped fluorotellurite glass: dispute over energy transfer mechanism.

    Science.gov (United States)

    Balaji, Sathravada; Ghosh, Debarati; Biswas, Kaushik; Gupta, Gaurav; Annapurna, Kalyandurg

    2016-12-07

    Pr(3+)/Yb(3+) doped materials have been widely reported as quantum-cutting materials in recent times. However, the question of the energy transfer mechanism in the Pr(3+)/Yb(3+) pair in light of the quantum-cutting phenomenon still remains unanswered. In view of that, we explored a series of Pr(3+)/Yb(3+) co-doped low phonon fluorotellurite glass systems to estimate the probability of different energy transfer mechanisms. Indeed, a novel and simple way to predict the probability of the proper energy transfer mechanism in the Pr(3+)/Yb(3+) pair is possible by considering the donor Pr(3+) ion emission intensities and the relative ratio dependence in the presence of acceptor Yb(3+) ions. Moreover, the observed results are very much in accordance with other estimated results that support the quantum-cutting phenomena in Pr(3+)/Yb(3+) pairs, such as sub-linear power dependence of Yb(3+) NIR emission upon visible ∼450 nm laser excitation, integrated area of the donor Pr(3+) ion's visible excitation spectrum recorded by monitoring the acceptor Yb(3+) ion's NIR emission, and the experimentally obtained absolute quantum yield values using an integrating sphere setup. Our results give a simple way of estimating the probability of an energy transfer mechanism and the factors to be considered, particularly for the Pr(3+)/Yb(3+) pair.

  11. The in situ gas-phase formation of a C-glycoside ion obtained during electrospray ionization tandem mass spectrometry. A unique intramolecular mechanism involving an ion-molecule reaction.

    Science.gov (United States)

    Banoub, Joseph H; Demian, Wael L L; Piazzetta, Paolo; Sarkis, George; Kanawati, Basem; Lafont, Dominique; Laurent, Nicolas; Vaillant, Celine; Randell, Edward; Giorgi, Gianluca; Fridgen, Travis D

    2015-10-15

    This study examines the electrospray ionization mass spectrometry (ESI-MS), in-source collision-induced dissociation (CID) fragmentation and low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) of a synthetic pair of β- and α-anomers of the amphiphilic cholesteryl polyethoxy neoglycolipids containing the 2-azido-2-deoxy-D-galactosyl-D-GalN3 moiety. We describe the novel and unique in situ gas-phase formation of a C-glycoside ion formed during all these gas-phase processes and propose a reasonable mechanism for its formation. The synthetic amphiphilic glycolipids were composed of the 2-deoxy-2-azido-D-galactosyl moiety (GalN3, the hydrophilic part) covalently attached to a polyethoxy spacer which is covalently linked to the cholesteryl moiety (hydrophobic part). The 2-azido-2-deoxy-α- and β-D-galactosyl-containing glycolipids were studied by in-time and in-space ESI-MS and CID-MS/MS in positive ion mode, with quadrupole ion trap (QIT), quadrupole-quadrupole-time-of-flight (QqTOF), and Fourier transform ion cyclotron resonance (FTICR) instruments. Conventional single-stage ESI-MS analysis showed the formation of the protonated molecule. During the single-stage ESI-MS analysis and the CID-MS/MS of the [M+H](+) and [M+NH4](+) adducts obtained from both glycolipid anomers, the presence of a series of specific product ions with different intensities was observed, consistent with the [C-glycoside+H-N2](+), [cholestadiene+H](+), 2-deoxy-2-D-azido-galactosyl [GalN3](+), [GalNH](+) and [sugar-Spacer+H](+) ions. The gas-phase formation of the [C-glycoside+H-N2](+) ion isolated from the glycolipid anomers was observed during both the ESI-MS of the glycolipids and the CID-MS/MS analyses of the [M+H](+) ions and it was found to occur by an intramolecular rearrangement involving an ion-molecule complex. CID-QqTOF-MS/MS and CID-FTICR-MS(2) analysis allowed the differentiation of the two glycolipid anomers and showed noticeable variation in the

  12. In situ and postradiation analysis of mechanical stress in Al{sub 2}O{sub 3}:Cr induced by swift heavy-ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Skuratov, V.A., E-mail: skuratov@jinr.r [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); Bujnarowski, G. [Institute of Physics, Opole University, 45-052 Opole (Poland); Kovalev, Yu.S. [Joint Institute for Nuclear Research, Dubna 141980 (Russian Federation); O' Connell, J. [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Havanscak, K. [Eoetvoes University, Pazmany P. setany 1/A, H-1117 Budapest (Hungary)

    2010-10-01

    Optical spectroscopy and TEM techniques have been applied to study the radiation damage and correlated mechanical stresses in Al{sub 2}O{sub 3} and Al{sub 2}O{sub 3}:Cr single crystals induced by (1-3) MeV/amu Kr, Xe and Bi ion irradiation. Mechanical stresses were evaluated in situ using a piezospectroscopic effect through the shift of the respective lines in ionoluminescence spectra. It was found that dose dependence of the stress level for Xe and Bi ions, when ionization energy loss exceeds the threshold of damage formation via electronic excitations, exhibits several alternate stages showing the build-up and relaxation of stresses. The beginning of relaxation stages is observed at fluences associated with beginning of individual ion track regions overlapping. The residual stress profiles through the ion irradiated layers were deduced from depth-resolved photostimulated spectra using laser confocal scanning microscopy set-up. It was determined that stresses are compressive in basal plane and tensile in perpendicular direction in all samples irradiated with high energy ions.

  13. Cocaine and phencyclidine inhibition of the acetylcholine receptor: analysis of the mechanisms of action based on measurements of ion flux in the millisecond-to-minute time region.

    Science.gov (United States)

    Karpen, J W; Aoshima, H; Abood, L G; Hess, G P

    1982-01-01

    The effects of cocaine and of phencyclidine and procaine on acetylcholine receptor-controlled ion flux were measured in the millisecond-to-minute time region. Chemical kinetic measurements of ion flux were made in membrane vesicles prepared from the electric organ of Electrophorus electricus and in PC-12 cells, a sympathetic neuronal cell line. A quench-flow technique was used to measure ion flux in the millisecond-to-second range in membrane vesicles. Cocaine and phencyclidine both inhibit acetylcholine receptor-controlled ion flux, but by different mechanisms. Both compounds decrease the initial rate of ion flux, an effect observed with the local anesthetic procaine. This inhibition cannot be prevented by saturating concentrations of acetylcholine (1 mM). These results from chemical kinetic experiments are consistent with electrophysiological measurements which indicate that local anesthetics act by interfering with the movement of ions through receptor-formed channels. The chemical kinetic experiments, however, give additional information about the action of phencyclidine. They indicate that phencyclidine also increases the rate of receptor inactivation (desensitization) and changes the equilibrium between active and inactive receptor conformations, effects not observed in the presence of cocaine or procaine. PMID:6953408

  14. Highly Efficient Adsorption of Copp er Ions by a PVP-Reduced Graphene Oxide Based On a New Adsorptions Mechanism

    Institute of Scientific and Technical Information of China (English)

    Yongji Zhang; HuiJuan Chi; WenHui Zhang; Youyi Sun; Qing Liang; Yu Gu; Riya Jing

    2014-01-01

    Polyvinylpyrrolidone-reduced graphene oxide was prepared by modified hummers method and was used as adsorbent for removing Cu ions from wastewater. The effects of contact time and ions concentration on adsorption capacity were examined. The maximum adsorption capacity of 1689 mg/g was observed at an initial pH value of 3.5 after agitating for 10 min. It was demonstrated that polyvinylpyrrolidone-reduced graphene oxide had a huge adsorption capacity for Cu ions, which was 10 times higher than maximal value reported in previous works. The adsorption mechanism was also discussed by density functional theory. It demonstrates that Cu ions are attracted to surface of reduced graphene oxide by C atoms in reduced graphene oxide modified by polyvinylpyrrolidone through physisorption processes, which may be responsible for the higher adsorption capacity. Our results suggest that polyvinylpyrrolidone-reduced graphene oxide is an effective adsorbent for removing Cu ions in wastewater. It also provides a new way to improve the adsorption capacity of reduced graphene oxide for dealing with the heavy metal ion in wastewater.

  15. Gas chromatography/mass spectrometry as a suitable tool for the Li-ion battery electrolyte degradation mechanisms study.

    Science.gov (United States)

    Gachot, Grégory; Ribière, Perrine; Mathiron, David; Grugeon, Sylvie; Armand, Michel; Leriche, Jean-Bernard; Pilard, Serge; Laruelle, Stéphane

    2011-01-15

    To allow electric vehicles to be powered by Li-ion batteries, scientists must understand further their aging processes in view to extend their cycle life and safety. For this purpose, we focused on the development of analytical techniques aiming at identifying organic species resulting from the degradation of carbonate-based electrolytes (EC-DMC/LiPF(6)) at low potential. As ESI-HRMS provided insightful information to the mechanism and chronological formation of ethylene oxide oligomers, we implemented "gas" GC/MS experiments to explore the lower mass range corresponding to highly volatile compounds. With the help of chemical simulation tests, we were able to discriminate their formation pathways (thermal and/or electrochemical) and found that most of the degradation compounds originate from the electrochemically driven linear alkyl carbonate reduction upon cycling and to a lesser extent from a two-step EC reduction. Deduced from these results, we propose an overall electrolyte degradation scheme spanning the entire mass range and the chemical or electrochemical type of processes.

  16. A facile strategy for fabrication of nano-ZnO/yeast composites and their adsorption mechanism towards lead (II) ions

    Science.gov (United States)

    Zhang, Wei; Meng, Lingyin; Mu, Guiqin; Zhao, Maojun; Zou, Ping; Zhang, Yunsong

    2016-08-01

    Nano-ZnO/yeast composites were successfully fabricated by one-step alkali hydrothermal method, and their adsorption properties for Pb2+ ions were also evaluated. Various influencing parameters of nano-ZnO/yeast composites, such as initial pH, contact time and initial Pb2+ concentration were investigated, respectively. The maximum adsorption capacity of nano-ZnO/yeast composites for Pb2+ (31.72 mg g-1) is 2.03 times higher than that of pristine yeast (15.63 mg g-1). The adsorption mechanism of nano-ZnO/yeast composites was studied by a series of techniques. Scanning electron microscopy (SEM) showed that nano-ZnO is evenly deposited on yeast surface. Atomic force microscopy (AFM) analysis exhibited that the yeast surface is rougher than that of pristine yeast. Energy dispersive X-ray detector (EDX) and X-ray diffraction (XRD) indicated the existence of nano-ZnO on yeast surface. Additionally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) measurements further illustrated that alkali hydrothermal method causes not only the generation and anchorage of nano-ZnO on yeast surface but also the exposure of more functional groups (such as amino, carboxyl groups etc.) on yeast surface, both of which could adsorb Pb2+ via synergistic effect.

  17. Probing kinetic drug binding mechanism in voltage-gated sodium ion channel: open state versus inactive state blockers.

    Science.gov (United States)

    Pal, Krishnendu; Gangopadhyay, Gautam

    2015-01-01

    The kinetics and nonequilibrium thermodynamics of open state and inactive state drug binding mechanisms have been studied here using different voltage protocols in sodium ion channel. We have found that for constant voltage protocol, open state block is more efficient in blocking ionic current than inactive state block. Kinetic effect comes through peak current for mexiletine as an open state blocker and in the tail part for lidocaine as an inactive state blocker. Although the inactivation of sodium channel is a free energy driven process, however, the two different kinds of drug affect the inactivation process in a different way as seen from thermodynamic analysis. In presence of open state drug block, the process initially for a long time remains entropy driven and then becomes free energy driven. However in presence of inactive state block, the process remains entirely entropy driven until the equilibrium is attained. For oscillating voltage protocol, the inactive state blocking is more efficient in damping the oscillation of ionic current. From the pulse train analysis it is found that inactive state blocking is less effective in restoring normal repolarisation and blocks peak ionic current. Pulse train protocol also shows that all the inactive states behave differently as one inactive state responds instantly to the test pulse in an opposite manner from the other two states.

  18. Reaction between Chromium(III) and EDTA Ions: an Overlooked Mechanism of Case Study Reaction of Chemical Kinetics.

    Science.gov (United States)

    Cerar, Janez

    2015-01-01

    Widely cited and accepted explanation of reaction mechanism of the case study reaction of chemical kinetics between Cr(III) ions and ethylenediaminetetraacetic acid (EDTA) contradicts modern chromium(III) coordination chemistry data. Absorption UV and visible light spectra were recorded during the reaction between aqueous solution of Cr(NO(3))(3) and EDTA in order to obtain new information about this reaction. Analysis of the spectra showed that only very small fraction of intermediates may be present in solution during the course of the reaction. The reaction scheme was established and according to it calculations based on a simplified model were carried out. Literature data for constants were used if known, otherwise, adjusted values of their sound estimates were applied. Reasonable agreement of the model calculations with the experimental data was obtained for pH values 3.8 and 4.5 but the model failed to reproduce measured rate of reaction at pH 5.5, probably due to the use of the oversimplified model.

  19. Structural, morphological and mechanical properties of niobium nitride thin films grown by ion and electron beams emanated from plasma

    Science.gov (United States)

    Siddiqui, Jamil; Hussain, Tousif; Ahmad, Riaz; Umar, Zeeshan A.; Abdus Samad, Ubair

    2016-05-01

    The influence of variation in plasma deposition parameters on the structural, morphological and mechanical characteristics of the niobium nitride films grown by plasma-emanated ion and electron beams are investigated. Crystallographic investigation made by X-ray diffractometer shows that the film synthesized at 10 cm axial distance with 15 plasma focus shots (PFS) exhibits better crystallinity when compared to the other deposition conditions. Morphological analysis made by scanning electron microscope reveals a definite granular pattern composed of homogeneously distributed nano-spheroids grown as clustered particles for the film synthesized at 10 cm axial distance for 15 PFS. Roughness analysis demonstrates higher rms roughness for the films synthesized at shorter axial distance and by greater number of PFS. Maximum niobium atomic percentage (35.8) and maximum average hardness (19.4 ± 0.4 GPa) characterized by energy-dispersive spectroscopy and nano-hardness analyzer respectively are observed for film synthesized at 10 cm axial distance with 15 PFS.

  20. Investigation of path dependence in commercial lithium-ion cells for pure electric bus applications: Aging mechanism identification

    Science.gov (United States)

    Ma, Zeyu; Jiang, Jiuchun; Shi, Wei; Zhang, Weige; Mi, Chunting Chris

    2015-01-01

    There is a growing need to provide more realistic and accurate State of Health estimations for batteries in electric vehicles. Thus, it is necessary to research various lithium-ion cell aging processes, including cell degradation and related path dependence. This paper focuses on quantitative analyses of cell aging path dependence in a repeatable laboratory setting, considering the influence of duty cycles, depth of discharge (DOD), and the frequency and severity of the thermal cycle, as reflected in pure electric buses operated in Beijing. Incremental capacity analysis (ICA) and differential voltage analysis (DVA) are applied to infer cell degradation mechanisms and quantify the attributions to capacity fade. It was observed that the cells experienced a higher rate of aging at 80% DOD and an accelerated aging at 40 °C in the thermal cycling, as a result of possible loss of active material (LAM) in both electrodes, in addition to the loss of lithium inventory (LLI) and inhibited kinetics. The slight capacity fade from low-temperature extremes likely caused by LLI due to lithium plating, whereas the noticeable fade after the high-temperature excursion was likely caused by LAM and hindrance to kinetics. These results may lead to improved battery management in EV applications.

  1. Properties and Mechanism of the Mechanosensitive Ion Channel Inhibitor GsMTx4, a Therapeutic Peptide Derived from Tarantula Venom.

    Science.gov (United States)

    Gottlieb, Philip A; Suchyna, Thomas M; Sachs, Frederick

    2007-01-01

    Mechanosensitive ion channels (MSCs) are found in all types of cells ranging from Escherichia coli to morning glories to humans. They seem to fall into two families: those in specialized receptors, such as the hair cells of the cochlea, and those in cells not clearly differentiated for sensory duty. The physiological function of the channels in nonspecialized cells has not been demonstrated, although their activity has been demonstrated innumerable times in vitro. The only specific reagent to block MSCs isGsMTx4, a 4-kDa peptide isolated from tarantula venom. Despite being isolated from venom, it is nontoxic to mice. GsMTx4 is specific for an MSC subtype, the nonselective cation channels that may be members of the transient receptor potential (TRP) family. GsMTx4 acts as a gating modifier, increasing the energy of the open state relative to the closed state. The mirror image D enantiomer of GsMTx4 is equally active, so mode of action is not via the traditional lock and key model. GsMTx4 probably acts in the boundary lipid of the channel by changing local curvature and mechanically stressing the channel toward the closed state. Despite the lack of definitive physiological data on the function of the cationic MSCs, GsMTx4 may prove useful as a drug or lead compound that can affect physiological processes. These processes would be those driven by mechanical stress, such as blood vessel autoregulation, stress-induced contraction of smooth muscle, and Ca(2+) loading in muscular dystrophy. © 2007, Elsevier Inc. All right reserved.

  2. Study of the interaction mechanism in the biosorption of copper(II) ions onto posidonia oceanica and peat

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, Marta; Marzal, Paula; Gabaldon, Carmen [Departamento de Ingenieria Quimica, Escuela Tecnica Superior de Ingenieria, Universitat de Valencia, Valencia (Spain); Silvetti, Margherita; Castaldi, Paola [Dipartimento di Scienze Ambientali e Agrarie e Biotecnologie Agro-Alimentari, Sez. Chimica Agraria ed Ambientale, University of Sassari, Sassari (Italy)

    2012-04-15

    A systematic approach was used to characterize the biosorption of copper(II) onto two biosorbents, Posidonia oceanica and peat, focusing on the interaction mechanisms, the copper(II) sorption-desorption process and the thermal behavior of the biosorbents. Sorption isotherms at pH 4-6 were obtained and the experimental data were fitted to the Langmuir model with a maximum uptake (q{sub max}) at pH 6 of 85.78 and 49.69 mg g{sup -1}, for P. oceanica and peat, respectively. A sequential desorption (SD) with water, Ca(NO{sub 3}){sub 2}, and EDTA was applied to copper-saturated biosorbents. Around 65-70% copper(II) were desorbed with EDTA, indicating that this heavy metal was strongly bound. The reversibility of copper(II) sorption was obtained by desorption with HCl and SD. Fourier transform IR spectroscopy (FTIR) analysis detected the presence of peaks associated with OH groups in aromatic and aliphatic structures, CH, CH{sub 2}, and CH{sub 3} in aliphatic structures, COO{sup -} and COOH groups and unsaturated aromatic structures on the surface of both biosorbents, as well as peaks corresponding to Si-O groups on the surface of peat. The results of SEM-EDX and FTIR analysis of copper-saturated samples demonstrated that ion exchange was one of the mechanisms involved in copper(II) retention. Thermal analysis of biosorbent samples showed that copper(II) sorption-desorption processes affected the thermal stability of the biosorbents. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium ion battery use.

    Science.gov (United States)

    Xing, Lidan; Li, Weishan; Wang, Chaoyang; Gu, Fenglong; Xu, Mengqing; Tan, Chunlin; Yi, Jin

    2009-12-31

    The electrochemical oxidative stability of solvent molecules used for lithium ion battery, ethylene carbonate (EC), propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate in the forms of simple molecule and coordination with anion PF(6)(-), is compared by using density functional theory at the level of B3LYP/6-311++G (d, p) in gas phase. EC is found to be the most stable against oxidation in its simple molecule. However, due to its highest dielectric constant among all the solvent molecules, EC coordinates with PF(6)(-) most strongly and reaches cathode most easily, resulting in its preferential oxidation on cathode. Detailed oxidative decomposition mechanism of EC is investigated using the same level. Radical cation EC(*+) is generated after one electron oxidation reaction of EC and there are five possible pathways for the decomposition of EC(*+) forming CO(2), CO, and various radical cations. The formation of CO is more difficult than CO(2) during the initial decomposition of EC(*+) due to the high activation energy. The radical cations are reduced and terminated by gaining one electron from anode or solvent molecules, forming aldehyde and oligomers of alkyl carbonates including 2-methyl-1,3-dioxolane, 1,3,6-trioxocan-2-one, 1,4,6,9-tetraoxaspiro[4.4]nonane, and 1,4,6,8,11-pentaoxaspiro[4.6]undecan-7-one. The calculation in this paper gives a detailed explanation on the experimental findings that have been reported in literatures and clarifies the mechanism on the oxidative decomposition of EC.

  4. Impact of mechanical stress on ion transport in native lung epithelium (Xenopus laevis): short-term activation of Na+, Cl (-) and K+ channels.

    Science.gov (United States)

    Bogdan, Roman; Veith, Christine; Clauss, Wolfgang; Fronius, Martin

    2008-09-01

    Epithelia, in general, and the lung epithelium, in particular, are exposed to mechanical forces, but little is known about their impact on pulmonary ion transport. In our present study, we employed transepithelial ion transport measurements on Xenopus lung preparations using custom-built Ussing chambers. Tissues were exposed to mechanical stress by increasing the water column (5 cm) at one side of the tissues. Apical exposure to hydrostatic pressure significantly decreased the short circuit current (I (SC): 24 +/- 1%, n = 152), slightly decreased the transepithelial resistance (R (T): 7 +/- 2%, n = 152), but increased the apical membrane capacitance (C (M): 16 +/- 6%, n = 9). The pressure-induced effect was sensitive to Na+ (amiloride), Cl(-) (DIDS, NFA, NPPB) and K+ channel blockers (Ba2+), glibenclamide). Further on, it was accompanied by increased extracellular ATP levels. The results show that mechanical stress leads to an activation of Na+, Cl(-), and K+ conductances in a native pulmonary epithelium resulting in a net decrease of ion absorption. This could be of considerable interest, since an altered ion transport may contribute to pathophysiological conditions, e.g., the formation of pulmonary edema during artificial ventilation.

  5. Layered LaSrGa{sub 3}O{sub 7}-based oxide-ion conductors: cooperative transport mechanisms and flexible structures

    Energy Technology Data Exchange (ETDEWEB)

    Tealdi, Cristina; Mustarelli, Piercarlo [Dipartimento di Chimica Fisica, Universita di Pavia, Viale Taramelli 16, 27100 Pavia (Italy); Islam, M. Saiful [Department of Chemistry, University of Bath, Bath, BA2 7AY (United Kingdom)

    2010-11-23

    Novel melilite-type gallium-oxides are attracting attention as promising new oxide-ion conductors with potential use in clean energy devices such as solid oxide fuel cells. Here, an atomic-scale investigation of the LaSrGa{sub 3}O{sub 7}-based system using advanced simulation techniques provides valuable insights into the defect chemistry and oxide ion conduction mechanisms, and includes comparison with the available experimental data. The simulation model reproduces the observed complex structure composed of layers of corner-sharing GaO{sub 4} tetrahedra. A major finding is the first indication that oxide-ion conduction in La{sub 1.54}Sr{sub 0.46}Ga{sub 3}O{sub 7.27} occurs through an interstitialcy or cooperative-type mechanism involving the concerted knock-on motion of interstitial and lattice oxide ions. A key feature for the transport mechanism and high ionic conductivity is the intrinsic flexibility of the structure, which allows considerable local relaxation and changes in Ga coordination. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Plasma catecholamines in hypertension and pheochromocytoma determined using ion-pair reversed-phase chromatography with amperometric detection: investigation of the separation mechanism and clinical methodology.

    Science.gov (United States)

    Krstulović, A M; Dziedzic, S W; Bertani-Dziedzic, L; DiRico, D E

    1981-11-06

    The retention behavior of catecholamines (CAs) in ion-pair reversed-phase chromatography is examined. From the effects of pH, ionic strength and a secondary ion-pairing reagent (citric acid), under our chromatographic conditions, the retention behavior can be explained by assuming a mixed ion-exchange mechanism with octyl sulfate and citrate, on the column and in the mobile phase, respectively. The developed separation method was applied to the analysis of CAs in plasma samples purified by alumina adsorption and detected amperometrically. This method provides the basis for the determination of the short-term magnitude of CA response to physical and physiological interventions, as well as the baseline CA levels in essential hypertension and pheochromocytoma. The results seen for norepinephrine and epinephrine are consistent with eh funcitonal roles of these CAs as hormones or peripheral transmitters.

  7. Modeling of long-term defect evolution in heavy-ion irradiated 3C-SiC: Mechanism for thermal annealing and influences of spatial correlation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Daxi; He, Chaohui, E-mail: ignacio.martin@imdea.org, E-mail: hechaohui@mail.xjtu.edu.cn; Zang, Hang; Zhang, Peng [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an 710049 (China); Martin-Bragado, Ignacio, E-mail: ignacio.martin@imdea.org, E-mail: hechaohui@mail.xjtu.edu.cn [IMDEA Materiales, C/ Eric Kandel, 2, Tecnogetafe, 28906 Getafe, Madrid (Spain)

    2014-11-28

    Based on the parameters from published ab-initio theoretical and experimental studies, and combining molecular dynamics and kinetic Monte Carlo simulations, a framework of multi-scale modeling is developed to investigate the long-term evolution of displacement damage induced by heavy-ion irradiation in cubic silicon carbide. The isochronal annealing after heavy ion irradiation is simulated, and the annealing behaviors of total interstitials are found consistent with previous experiments. Two annealing stages below 600 K and one stage above 900 K are identified. The mechanisms for those recovery stages are interpreted by the evolution of defects. The influence of the spatial correlation in primary damage on defect recovery has been studied and found insignificant when the damage dose is high enough, which sheds light on the applicability of approaches with mean-field approximation to the long-term evolution of damage by heavy ions in SiC.

  8. Responsive mechanism of 2-(2’-hydroxyphenyl)benzoxazole-based two-photon fluorescent probes for zinc and hydroxide ions

    Institute of Scientific and Technical Information of China (English)

    张玉瑾; 张秋月; 丁红娟; 宋秀能; 王传奎

    2015-01-01

    The response theory is used to investigate one-and two-photon absorption (TPA) as well as emission properties of a series of potential zinc ion and pH sensitive materials containing 2-(2’-hydroxyphenyl)benzoxazole (HPBO) end groups. Special emphasis is placed on the evolution of their optical properties upon combining with zinc ions or deprotonation. Calculated results indicate that upon combining with zinc ions or deprotonation, these HPBO derivatives show drastic changes in their one-photon absorption (OPA), emission, and TPA properties. Moreover, mechanisms of the probes are analyzed to be intramolecular charge transfer. These compounds are thus proved to be excellent candidates for two-photon fl uorescent zinc and pH probes.

  9. A representative-sandwich model for simultaneously coupled mechanical-electrical-thermal simulation of a lithium-ion cell under quasi-static indentation tests

    Science.gov (United States)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-12-01

    The safety behavior of lithium-ion batteries under external mechanical crush is a critical concern, especially during large-scale deployment. We previously presented a sequentially coupled mechanical-electrical-thermal modeling approach for studying mechanical-abuse-induced short circuit. In this work, we study different mechanical test conditions and examine the interaction between mechanical failure and electrical-thermal responses, by developing a simultaneously coupled mechanical-electrical-thermal model. The present work utilizes a single representative-sandwich (RS) to model the full pouch cell with explicit representations for each individual component such as the active material, current collector, separator, etc. Anisotropic constitutive material models are presented to describe the mechanical properties of active materials and separator. The model predicts accurately the force-strain response and fracture of battery structure, simulates the local failure of separator layer, and captures the onset of short circuit for lithium-ion battery cells under sphere indentation tests with three different diameters. Electrical-thermal responses to the three different indentation tests are elaborated and discussed. Numerical studies are presented to show the potential impact of test conditions on the electrical-thermal behavior of the cell after the occurrence of short circuit.

  10. Mechanical Properties and Thermal Stability of TiN/Ta Multilayer Film Deposited by Ion Beam Assisted Deposition

    Directory of Open Access Journals (Sweden)

    Hongfei Shang

    2014-01-01

    Full Text Available TiN/Ta multilayer film with a modulation period of 5.6 nm and modulation ratio of 1 : 1 was produced by ion beam assisted deposition. Microstructure of the as-deposited TiN/Ta multilayer film was observed by transmission electron microscopy and mechanical properties were investigated. Residual stress in the TiN/Ta multilayer film was about 72% of that of a TiN monolayer film with equivalent thickness deposited under the same conditions. Partial residual stress was released in the Ta sublayers during deposition, which led to the decrease of the residual stress of the TiN/Ta multilayer film. Nanohardness (H of the TiN/Ta multilayer film was 24 GPa, 14% higher than that of the TiN monolayer film. It is suggested that the increase of the nanohardness is due to the introduction of the Ta layers which restrained the growth of TiN crystal and led to the decrease of the grain size. A significant increase (3.5 times of the H3/E2 (E elastic modulus value indicated that the TiN/Ta multilayer film has higher elasticity than the TiN monolayer film. The Lc (critical load in nano-scratch test value of the TiN monolayer film was 45 mN, which was far lower than that of the TiN/Ta multilayer film (around 75 mN. Results of the indentation test showed a higher fracture toughness of the TiN/Ta multilayer film than that of the TiN monolayer film. Results of differential scanning calorimetric (DSC and thermo gravimetric analysis (TGA indicate that the TiN/Ta multilayer film has better thermal stability than the TiN monolayer film.

  11. A facile strategy for fabrication of nano-ZnO/yeast composites and their adsorption mechanism towards lead (II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei; Meng, Lingyin [College of Science, Sichuan Agricultural University, Yaan 625014 (China); Mu, Guiqin [Maize Research Institute of Sichuan Agricultural University, Wenjiang 611130 (China); Zhao, Maojun; Zou, Ping [College of Science, Sichuan Agricultural University, Yaan 625014 (China); Zhang, Yunsong, E-mail: yaanyunsong@126.com [College of Science, Sichuan Agricultural University, Yaan 625014 (China)

    2016-08-15

    Highlights: • Nano-ZnO/yeast composites were fabricated by alkali hydrothermal method. • Nano-ZnO was in-situ achieved and anchored on the yeast surface. • Alkali and hydrothermal process cause more exposed funcitional groups on yeast. • Nano-ZnO/yeast composites show higher Pb{sup 2+} adsorption ability than pristine yeast. • Nano-ZnO and exposed functional groups synergistically participate in adsorption. - Abstract: Nano-ZnO/yeast composites were successfully fabricated by one-step alkali hydrothermal method, and their adsorption properties for Pb{sup 2+} ions were also evaluated. Various influencing parameters of nano-ZnO/yeast composites, such as initial pH, contact time and initial Pb{sup 2+} concentration were investigated, respectively. The maximum adsorption capacity of nano-ZnO/yeast composites for Pb{sup 2+} (31.72 mg g{sup −1}) is 2.03 times higher than that of pristine yeast (15.63 mg g{sup −1}). The adsorption mechanism of nano-ZnO/yeast composites was studied by a series of techniques. Scanning electron microscopy (SEM) showed that nano-ZnO is evenly deposited on yeast surface. Atomic force microscopy (AFM) analysis exhibited that the yeast surface is rougher than that of pristine yeast. Energy dispersive X-ray detector (EDX) and X-ray diffraction (XRD) indicated the existence of nano-ZnO on yeast surface. Additionally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) measurements further illustrated that alkali hydrothermal method causes not only the generation and anchorage of nano-ZnO on yeast surface but also the exposure of more functional groups (such as amino, carboxyl groups etc.) on yeast surface, both of which could adsorb Pb{sup 2+} via synergistic effect.

  12. On an aerodynamic mechanism to enhance ion transmission and sensitivity of FAIMS for nano-electrospray ionization-mass spectrometry.

    Science.gov (United States)

    Prasad, Satendra; Belford, Michael W; Dunyach, Jean-Jacques; Purves, Randy W

    2014-12-01

    Simulations show that significant ion losses occur within the commercial electrospray ionization-field asymmetric waveform ion mobility spectrometer (ESI-FAIMS) interface owing to an angular desolvation gas flow and because of the impact of the FAIMS carrier gas onto the inner rf (radio frequency) electrode. The angular desolvation gas flow diverts ions away from the entrance plate orifice while the carrier gas annihilates ions onto the inner rf electrode. A novel ESI-FAIMS interface is described that optimizes FAIMS gas flows resulting in large improvements in transmission. Simulations with the bromochloroacetate anion showed an improvement of ~9-fold to give ~70% overall transmission). Comparable transmission improvements were attained experimentally for six peptides (2+) in the range of m/z 404.2 to 653.4 at a chromatographic flow rate of 300 nL/min. Selected ion chromatograms (SIC) from nano-LC-FAIMS-MS analyses showed 71% (HLVDEPQNLIK, m/z 653.4, 2+) to 95% (LVNELTEFAK, m/z 582.3, 2+) of ion signal compared with ion signal in the SIC from LC-MS analysis. IGSEVYHNLK (580.3, 2+) showed 24% more ion signal compared with LC-MS and is explained by enhanced desolvation in FAIMS. A 3-10 times lower limits of quantitation (LOQ) (<15% RSD) was achieved for chemical noise limited peaks with FAIMS. Peaks limited by ion statistics showed subtle improvement in RSD and yielded comparable LOQ to that attained with nano-LC-MS (without FAIMS). These improvements were obtained using a reduced FAIMS separation gap (from 2.5 to 1.5 mm) that results in a shorter residence time (13.2 ms ± 3.9 ms) and enables the use of a helium free transport gas (100% nitrogen).

  13. The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics.

    Science.gov (United States)

    Rajput, Nav Nidhi; Qu, Xiaohui; Sa, Niya; Burrell, Anthony K; Persson, Kristin A

    2015-03-11

    In this work we uncover a novel effect between concentration dependent ion pair formation and anion stability at reducing potentials, e.g., at the metal anode. Through comprehensive calculations using both first-principles as well as well-benchmarked classical molecular dynamics over a matrix of electrolytes, covering solvents and salt anions with a broad range in chemistry, we elucidate systematic correlations between molecular level interactions and composite electrolyte properties, such as electrochemical stability, solvation structure, and dynamics. We find that Mg electrolytes are highly prone to ion pair formation, even at modest concentrations, for a wide range of solvents with different dielectric constants, which have implications for dynamics as well as charge transfer. Specifically, we observe that, at Mg metal potentials, the ion pair undergoes partial reduction at the Mg cation center (Mg(2+) → Mg(+)), which competes with the charge transfer mechanism and can activate the anion to render it susceptible to decomposition. Specifically, TFSI(-) exhibits a significant bond weakening while paired with the transient, partially reduced Mg(+). In contrast, BH4(-) and BF4(-) are shown to be chemically stable in a reduced ion pair configuration. Furthermore, we observe that higher order glymes as well as DMSO improve the solubility of Mg salts, but only the longer glyme chains reduce the dynamics of the ions in solution. This information provides critical design metrics for future electrolytes as it elucidates a close connection between bulk solvation and cathodic stability as well as the dynamics of the salt.

  14. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    Science.gov (United States)

    Karakurt, G.; Abdelouas, A.; Guin, J.-P.; Nivard, M.; Sauvage, T.; Paris, M.; Bardeau, J.-F.

    2016-07-01

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He+ ions and 7 MeV Au5+ ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to -0.7% and -2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about -22% to -38% of the hardness and a decrease of the reduced Young's modulus by -8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also 11B and 27Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO4 to BO3 units but also a formation of AlO5 and AlO6 species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed.

  15. Effects of adsorbed F, OH, and Cl ions on formaldehyde adsorption performance and mechanism of anatase TiO2 nanosheets with exposed {001} facets.

    Science.gov (United States)

    Zhou, Peng; Zhu, Xiaofeng; Yu, Jiaguo; Xiao, Wei

    2013-08-28

    Formaldehyde (HCHO), as the main indoor air pollutant, is highly needed to be removed by adsorption or catalytic oxidation from the indoor air. Herein, the F(-), OH(-), and Cl(-)-modified anatase TiO2 nanosheets (TNS) with exposed {001} facets were prepared by a simple hydrothermal and post-treatment method, and their HCHO adsorption performance and mechanism were investigated by the experimental analysis and theoretical simulations. Our results indicated that the adsorbed F(-), OH(-), and Cl(-) ions all could weaken the interaction between the HCHO and TNS surface, leading to the serious reduction of HCHO adsorption performance of TNS. However, different from F(-) and Cl(-) ions, OH(-) ion could induce the dissociative adsorption of HCHO by capturing one H atom from HCHO, resulting in the formation of one formyl group and one H2O-like group. This greatly reduced the total energy of the HCHO adsorption system. Thus, the adsorbed OH(-) ions could provide the additional active centers for HCHO adsorption. As a result, the NaOH-treated TNS showed the best HCHO adsorption performance mainly because its surface F(-) was replaced by OH(-). This study will provide new insight into the design and fabrication of high performance adsorbents for removing indoor HCHO and, also, will enhance the understanding of the HCHO adsorption mechanism.

  16. Mechanism of leakage of ion-implantation isolated AlGaN/GaN MIS-high electron mobility transistors on Si substrate

    Science.gov (United States)

    Zhang, Zhili; Song, Liang; Li, Weiyi; Fu, Kai; Yu, Guohao; Zhang, Xiaodong; Fan, Yaming; Deng, Xuguang; Li, Shuiming; Sun, Shichuang; Li, Xiajun; Yuan, Jie; Sun, Qian; Dong, Zhihua; Cai, Yong; Zhang, Baoshun

    2017-08-01

    In this paper, we systematically investigated the leakage mechanism of the ion-implantation isolated AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs) on Si substrate. By means of combined DC tests at different temperatures and electric field dependence, we demonstrated the following original results: (1) It is proved that gate leakage is the main contribution to OFF-state leakage of ion-implantation isolated AlGaN/GaN MIS-HEMTs, and the gate leakage path is a series connection of the gate dielectric Si3N4 and Si3N4-GaN interface. (2) The dominant mechanisms of the leakage current through LPCVD-Si3N4 gate dielectric and Si3N4-GaN interface are identified to be Frenkel-Poole emission and two-dimensional variable range hopping (2D-VRH), respectively. (3) A certain temperature annealing could reduce the density of the interface state that produced by ion implantation, and consequently suppress the interface leakage transport, which results in a decrease in OFF-state leakage current of ion-implantation isolated AlGaN/GaN MIS-HEMTs.

  17. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Karakurt, G., E-mail: karakurt_gokhan@yahoo.fr [SUBATECH, UMR 6457CNRS-IN2P3, Ecole des Mines de Nantes, 4 rue Alfred Kastler, 44307 Nantes (France); Abdelouas, A. [SUBATECH, UMR 6457CNRS-IN2P3, Ecole des Mines de Nantes, 4 rue Alfred Kastler, 44307 Nantes (France); Guin, J.-P.; Nivard, M. [Institut de Physique de Rennes, Université de Rennes 1 – UMR 62051 IPR, 263 avenue du Général Leclerc, 35042 Rennes (France); Sauvage, T. [Laboratoire CEMHTI (Conditions Extrêmes et Matériaux: Haute Température et Irradiation), CNRS UPR, 3079 Orléans (France); Paris, M. [Institut des Matériaux Jean ROUXEL, Université de Nantes, UMR 6502 CNRS, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 03 (France); Bardeau, J.-F. [Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, avenue Olivier Messiaen, 72085 Le Mans (France)

    2016-07-15

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He{sup +} ions and 7 MeV Au{sup 5+} ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to −0.7% and −2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about −22% to −38% of the hardness and a decrease of the reduced Young's modulus by −8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also {sup 11}B and {sup 27}Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO{sub 4} to BO{sub 3} units but also a formation of AlO{sub 5} and AlO{sub 6} species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed. - Highlights: • Mechanical and structural properties of two borosilicate glass compositions irradiated with alpha particles and heavy ions were investigated. • Both kinds of particles induced a decrease of the hardness, reduced Young's modulus and density. • Electronic and nuclear interactions are responsible for the changes observed. • The evolution of the mechanical properties under irradiation is linked

  18. Simultaneous monitoring of superoxides and intracellular calcium ions in neutrophils by chemiluminescence and fluorescence: evaluation of action mechanisms of bioactive compounds in foods.

    Science.gov (United States)

    Kazumura, Kimiko; Sato, Yukiko; Satozono, Hiroshi; Koike, Takashi; Tsuchiya, Hiroshi; Hiramatsu, Mitsuo; Katsumata, Masakazu; Okazaki, Shigetoshi

    2013-10-01

    We have developed a measuring system for simultaneous monitoring of chemiluminescence and fluorescence, which indicate respectively, (i) generation of superoxide anion radicals (O2(-•)) and (ii) change in the intracellular calcium ion concentration ([Ca(2+)]i) of neutrophils triggered by the mechanism of innate immune response. We applied this measuring system for establishing a method to distinguish between anti-inflammatory actions and antioxidant actions caused by bioactive compounds. We evaluated anti-inflammatory agents (zinc ion [Zn(2+)] and ibuprofen) and antioxidants (superoxide dismutase [SOD] and ascorbic acid). It was shown that ibuprofen and Zn(2+) were anti-inflammatory while SOD and ascorbic acid were anti-oxidative. We conclude that it is possible to determine the mechanism of action of bioactive compounds using this method.

  19. The Extreme Overabundance of Molybdenum in Two Metal-Poor Stars

    CERN Document Server

    Peterson, Ruth C

    2011-01-01

    We report determinations of the molybdenum abundances in five mildly to extremely metal-poor turnoff stars using five Mo II lines near 2000A. In two of the stars, the abundance of molybdenum is found to be extremely enhanced, as high or higher than the neighboring even-Z elements ruthenium and zirconium. Of the several nucleosynthesis scenarios envisioned for the production of nuclei in this mass range in the oldest stars, a high-entropy wind (HEW) acting in a core-collapse supernova seems uniquely capable of the twin aspects of a high molybdenum overproduction confined to a narrow mass range. Whatever the details of the nucleosynthesis mechanism, however, this unusual excess suggests that very few individual nucleosynthesis events were responsible for the synthesis of the light trans-Fe heavy elements in these cases, an unexpected result given that both are only moderately metal-poor.

  20. Atomistic Conversion Reaction Mechanism of WO 3 in Secondary Ion Batteries of Li, Na, and Ca

    Energy Technology Data Exchange (ETDEWEB)

    He, Yang [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh PA 15261 USA; Gu, Meng [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Xiao, Haiyan [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 China; Luo, Langli [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Shao, Yuyan [Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Gao, Fei [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor MI 48109 USA; Du, Yingge [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Mao, Scott X. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh PA 15261 USA; Wang, Chongmin [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2016-04-13

    Reversible insertion and extraction of ionic species into a host lattice governs the basic operating principle for both rechargeable battery (such as lithium batteries) and electrochromic devices (such as ANA Boeing 787-8 Dreamliner electrochromic window). Intercalation and/or conversion are two fundamental chemical processes for some materials in response to the ion insertion. The interplay between these two chemical processes has never been established. It is speculated that the conversion reaction is initiated by ion intercalation. However, experimental evidence of intercalation and subsequent conversion remains unexplored. Here, using in situ HRTEM and spectroscopy, we captured the atomistic conversion reaction processes during lithium, sodium and calcium ion insertion into tungsten trioxide (WO3) single crystal model electrodes. An intercalation step right prior to conversion is explicitly revealed at atomic scale for the first time for these three ion species. Combining nanoscale diffraction and ab initio molecular dynamics simulations, it is found that, beyond intercalation, the inserted ion-oxygen bonding formation destabilized the transition-metal framework which gradually shrunk, distorted and finally collapsed to a pseudo-amorphous structure. This study provides a full atomistic picture on the transition from intercalation to conversion, which is of essential for material applications in both secondary ion batteries and electrochromic devices.

  1. Polyplex Formation Influences Release Mechanism of Mono- and Di-Valent Ions from Phosphorylcholine Group Bearing Hydrogels

    Directory of Open Access Journals (Sweden)

    A. Nolan Wilson

    2014-09-01

    Full Text Available The release of monovalent potassium and divalent calcium ions from zwitterionic phosphorylcholine containing poly(2-hydroxyethyl methacrylate (pHEMA-based hydrogels was studied and the effects of polymer swelling, ion valence and temperature were investigated. For comparison, ions were loaded during hydrogel formulation or loaded by partitioning following construct synthesis. Using the Koshmeyer-Peppas release model, the apparent diffusion coefficient, Dapp, and diffusional exponents, n, were Dapp (pre-K+ = 2.03 × 10−5, n = 0.4 and Dapp (post-K+ = 1.86 × 10−5, n = 0.33 respectively, indicative of Fickian transport. The Dapp (pre-Ca2+ = 3.90 × 10−6, n = 0.60 and Dapp (post-Ca2+ = 2.85 × 10−6, n = 0.85, respectively, indicative of case II and anomalous transport. Results indicate that divalent cations form cation-polyelectrolyte anion polymer complexes while monovalent ions do not. Temperature dependence of potassium ion release was shown to follow an Arrhenius-type relation with negative apparent activation energy of −19 ± 15 while calcium ion release was temperature independent over the physiologically relevant range (25–45 °C studied. The negative apparent activation energy may be due to temperature dependent polymer swelling. No effect of polymer swelling on the diffusional exponent or rate constant was found suggesting polymer relaxation occurs independent of polymer swelling.

  2. In Situ Neutron Diffraction Studies of the Ion Exchange Synthesis Mechanism of Li2Mg2P3O9N: Evidence for a Hidden Phase Transition.

    Science.gov (United States)

    Liu, Jue; Whitfield, Pamela S; Saccomanno, Michael R; Bo, Shou-Hang; Hu, Enyuan; Yu, Xiqian; Bai, Jianming; Grey, Clare P; Yang, Xiao-Qing; Khalifah, Peter G

    2017-07-12

    Motivated by predictions made using a bond valence sum difference map (BVS-DM) analysis, the novel Li-ion conductor Li2Mg2P3O9N was synthesized by ion exchange from a Na2Mg2P3O9N precursor. Impedance spectroscopy measurements indicate that Li2Mg2P3O9N has a room temperature Li-ion conductivity of about 10(-6) S/cm (comparable to LiPON), which is 6 orders of magnitude higher than the extrapolated Na-ion conductivity of Na2Mg2P3O9N at this temperature. The structure of Li2Mg2P3O9N was determined from ex situ synchrotron and time-of-flight neutron diffraction data to retain the P213 space group, though with a cubic lattice parameter of a = 9.11176(8) Å that is significantly smaller than the a = 9.2439(1) Å of Na2Mg2P3O9N. The two Li-ion sites are found to be very substantially displaced (∼0.5 Å) relative to the analogous Na sites in the precursor phase. The non-molten salt ion exchange method used to prepare Li2Mg2P3O9N produces a minimal background in powder diffraction experiments, and was therefore exploited for the first time to follow a Li(+)/Na(+) ion exchange reaction using in situ powder neutron diffraction. Lattice parameter changes during ion exchange suggest that the reaction proceeds through a Na2-xLixMg2P3O9N solid solution (stage 1) followed by a two-phase reaction (stage 2) to form Li2Mg2P3O9N. However, full Rietveld refinements of the in situ neutron diffraction data indicate that the actual transformation mechanism is more complex and instead involves two thermodynamically distinct solid solutions in which the Li exclusively occupies the Li1 site at low Li contents (stage 1a) and then migrates to the Li3 site at higher Li contents (stage 1b), a crossover driven by the different signs of the local volume change at these sites. In addition to highlighting the importance of obtaining full structural data in situ throughout the ion exchange process, these results provide insights into the general question of what constitutes a thermodynamic phase.

  3. The use of electrostatic probes to characterize the discharge plasma structure and identify discharge cathode erosion mechanisms in ring-cusp ion thrusters

    Science.gov (United States)

    Herman, Daniel Andrew

    The erosion of the discharge cathode assembly (DCA) is currently one of the lifetime limiting factors of ion thruster operation and will play an even more important role for more ambitious, future ion thruster applications requiring more throughput at higher-power. Erosion of the DCA has been observed throughout the ground-based wear testing of the 30-cm NSTAR ion thruster. Energetic ions have been detected near the DCA, from Laser-Induced Fluorescence (LIF) measurements, that appear to be the cause of the DCA erosion, though a mechanism by which ions gain sufficient energy to sputter erode the DCA material has not been determined. This dissertation presents research aimed at characterizing the discharge chamber plasma near the DCA to determine the mechanism by which energetic ions are created and erode the DCA inside ring-cusp ion engines. A diagnostic technique is developed to interrogate the near-DCA regions of two ion thrusters: the 30-cm FMT2 NSTAR and 40-cm LM4 NEXT engines. Both engines contain similar plasma structures. Number densities are highest along cathode centerline as the axial magnetic field near the DCA effectively confines electrons to a narrow plume. Plasma potential mappings rule out the existence of a potential-hill that has been proposed as the cause of the DCA erosion. A free standing potential gradient structure is found to form the transition between the low-potential cathode plume and the high-potential bulk discharge plasma, termed a double layer. The field-aligned double layer accelerates ions from the bulk discharge plasma towards the DCA centerline. Measured plasma parameters and LIF velocimetry data are used to calculate an erosion rate utilizing near-threshold sputtering yield formulae. Singly-ionized xenon cannot solely account for the observed NSTAR erosion rates. Incorporation of double-ionized xenon from measured double-to-single current measurements in the plume of the 30-cm and 40-cm thrusters significantly increases the

  4. Biprism interferometry with electrons and ions, a valuable tool to study the fundamentals of quantum mechanics and quantum statistics

    Science.gov (United States)

    Hasselbach, Franz

    2005-05-01

    Our miniaturized electron biprism interferometer [1] proved to be many orders of magnitude less sensitive to mechanical and electromagnetic disturbances than conventional interferometers (modified electron microscopes). Experiments so far inconceivable with electron waves, e.g., to rotate an electron interferometer on a turntable and to prove the Sagnac phase shift [2,3] or to realize biprism interferences with He-ions [4] with wavelengths as small as 0.3 pm became reality. A crossed-field analyzer (Wien filter) in the beam path of our electron interferometer allows to introduce electric and magnetic Aharonov-Bohm phase differences and transit time differences between the interfering wave packets [5]. For wave packet shifts introduced by the Wien filter which exceed the coherence length, which-path information is available in principle, leading to vanishing fringe contrast. Since which-path information is not read out in this experiment, fringe contrast can be restored by compensating the longitudinal shift in a second shifting device. Only recently we succeeded to demonstrate that electrons arrive at two coherently illuminated detectors `antibunched' [6], i.e., according to the demands of Fermi statistics. At present, our intertest is focused on decoherence. Coherently split electron waves propagate over a resistive plate. Which-path information of the electrons decreases with increasing height of flight. In turn the contrast of the fringes increases [7,8].[1] F. Hasselbach, Z. Phys. B -- Condensed Matter 71(1988), 443-449.[2] F. Hasselbach, M. Nicklaus, Phys. Rev. A 48(1993), 143-151.[3] R. Neutze, F. Hasselbach, Phys. Rev. A 58(1998), 557-565.[4] F. Hasselbach, U. Maier, in Quantum Coherence and Decoherence: Proc. ISQM-Tokyo`98 p. 299-302, eds. Y.Y. Ono and K. Fujikawa, Amsterdam, Elsevier, 1999.[5] M. Nicklaus, F. Hasselbach, Phys. Rev. A 48(1993), 152-160.[6] Harald Kiesel, Andreas Renz & F. Hasselbach, Nature 418(2002), 392-394.[7] H.D. Zeh, Found. Phys. 1

  5. Simultaneous Platinum and Copper Ion Attachment to a Human Copper Chaperone Protein

    Science.gov (United States)

    Hodak, Miroslav; Cvitkovic, John; Yu, Corey; Dmitriev, Oleg; Kaminski, George; Bernholc, Jerry

    2015-03-01

    Cisplatin is a potent anti-cancer drug based on a platinum ion. However, its effectiveness is decreased by cellular resistance, which involves cisplatin attaching to copper transport proteins. One of such proteins is Atox1, where cisplatin attaches to the copper binding site. Surprisingly, it was shown that both cisplatin and copper can attach to Atox1 at the same time. To study this double metal ion attachment, we use the KS/FD DFT method, which combines Kohn-Sham DFT with frozen-density DFT to achieve efficient quantum-mechanical description of explicit solvent. Calculations have so far investigated copper ion attachment to CXXC motifs present in Atox1. The addition of the platinum ion and the competition between the two metals is currently being studied. These calculations start from a molecular mechanics (MM) structural model, in which glutathione groups provide additional ligands to the Pt ion. Our goals are to identify possible Cu-Pt structures and to determine whether copper/platinum attachment is competitive, independent, or cooperative. Results will be compared to the 1H, N1 5 -HSQC NMR experiments, in which binding of copper and cisplatin to Atox1 produces distinct secondary chemical shift signatures, allowing for kinetic studies of simultaneous metal binding.

  6. Studies on adsorptions of metallic ions in water by zirconium glyphosate (ZrGP): Behaviors and mechanisms

    Science.gov (United States)

    Jia, Yunjie; Zhang, Yuejuan; Wang, Runwei; Fan, Faying; Xu, Qinghong

    2012-01-01

    A new adsorbent named zirconium glyphosate [Zr(O3PCH2NHCH2COOH)2·0.5H2O, denoted as ZrGP] and its selective adsorptions to Pb2+, Cd2+, Mg2+ and Ca2+ ions in water were reported in this paper. Compared to other zirconium adsorbents, such as zirconium phosphate [Zr(HPO4)2], ZrGP exhibited highly selective adsorption to Pb2+ in solution which contained Pb2+, Cd2+, Mg2+ and Ca2+ ions. The loaded ZrGP with metallic ions can be efficaciously regenerated by aqueous solution of HCl (1.0 M) without any noticeable capacity loss, and almost all of it can be reused and recycled. The memory effect on structural regeneration of ZrGP was also found when Mg2+ and Ca2+ were adsorbed. To be specific, the structure of ZrGP was destroyed due to adsorbing these two ions, but it could be regenerated after the loaded materials were dipped in HCl solution (1.0 M) for several minutes to remove metallic ions.

  7. Studies on adsorptions of metallic ions in water by zirconium glyphosate (ZrGP): Behaviors and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Jia Yunjie; Zhang Yuejuan [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box. 98, No.15, Beisanhuan donglu, Beijing 100029 (China); Wang Runwei [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012 (China); Fan Faying [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box. 98, No.15, Beisanhuan donglu, Beijing 100029 (China); Xu Qinghong, E-mail: xuqh@mail.buct.edu.cn [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box. 98, No.15, Beisanhuan donglu, Beijing 100029 (China)

    2012-01-15

    A new adsorbent named zirconium glyphosate [Zr(O{sub 3}PCH{sub 2}NHCH{sub 2}COOH){sub 2}{center_dot}0.5H{sub 2}O, denoted as ZrGP] and its selective adsorptions to Pb{sup 2+}, Cd{sup 2+}, Mg{sup 2+} and Ca{sup 2+} ions in water were reported in this paper. Compared to other zirconium adsorbents, such as zirconium phosphate [Zr(HPO{sub 4}){sub 2}], ZrGP exhibited highly selective adsorption to Pb{sup 2+} in solution which contained Pb{sup 2+}, Cd{sup 2+}, Mg{sup 2+} and Ca{sup 2+} ions. The loaded ZrGP with metallic ions can be efficaciously regenerated by aqueous solution of HCl (1.0 M) without any noticeable capacity loss, and almost all of it can be reused and recycled. The memory effect on structural regeneration of ZrGP was also found when Mg{sup 2+} and Ca{sup 2+} were adsorbed. To be specific, the structure of ZrGP was destroyed due to adsorbing these two ions, but it could be regenerated after the loaded materials were dipped in HCl solution (1.0 M) for several minutes to remove metallic ions.

  8. New Detections of Arsenic, Selenium, and Other Heavy Elements in Two Metal-poor Stars

    Science.gov (United States)

    Roederer, Ian U.; Schatz, Hendrik; Lawler, James E.; Beers, Timothy C.; Cowan, John J.; Frebel, Anna; Ivans, Inese I.; Sneden, Christopher; Sobeck, Jennifer S.

    2014-08-01

    We use the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope to obtain new high-quality spectra covering the 1900 detected previously in either star. Abundances derived for Ge I, Te I, Os II, and Pt I confirm those derived from lines at longer wavelengths. We also derive upper limits from the non-detection of W II, Hg II, Pb II, and Bi I. The mean [As/Fe] ratio derived from these two stars and five others in the literature is unchanged over the metallicity range -2.8 < [Fe/H] <-0.6, lang[As/Fe]rang = +0.28 ± 0.14 (σ = 0.36 dex). The mean [Se/Fe] ratio derived from these two stars and six others in the literature is also constant, lang[Se/Fe]rang = +0.16 ± 0.09 (σ = 0.26 dex). The As and Se abundances are enhanced relative to a simple extrapolation of the iron-peak abundances to higher masses, suggesting that this mass region (75 <=A <= 82) may be the point at which a different nucleosynthetic mechanism begins to dominate the quasi-equilibrium α-rich freezeout of the iron peak. lang[Cu II/Cu I]rang = +0.56 ± 0.23 in HD 108317 and HD 128279, and we infer that lines of Cu I may not be formed in local thermodynamic equilibrium in these stars. The [Zn/Fe], [Mo/Fe], [Cd/Fe], and [Os/Fe] ratios are also derived from neutral and ionized species, and each ratio pair agrees within the mutual uncertainties, which range from 0.15 to 0.52 dex. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs GO-12268 and GO-12976.

  9. Mechanically induced strong red emission in samarium ions doped piezoelectric semiconductor CaZnOS for dynamic pressure sensing and imaging

    Science.gov (United States)

    Wang, Wei; Peng, Dengfeng; Zhang, Hanlu; Yang, Xiaohong; Pan, Caofeng

    2017-07-01

    Piezoelectric semiconductor with optical, electrical and mechanical multifunctions has great potential applications in future optoelectronic devices. The rich properties and applications mainly encompass the intrinsic structures and their coupling effects. Here, we report that lanthanide ions doped piezoelectric semiconductor CaZnOS:Sm3+ showing strong red emission induced by dynamic mechanical stress. Under moderate mechanical load, the doped piezoelectric semiconductor exhibits strong visible red emission to the naked eyes even under the day light. A flexible dynamic pressure sensor device is fabricated based on the prepared CaZnOS:Sm3+ powders. The mechanical-induced emission properties of the device are investigated by the optical fiber spectrometer. The linear characteristic emissions are attributed to the 4G5/2→6H5/2 (566 nm), 4G5/2→6H7/2 (580-632 nm), 4G5/2→6H9/2 (653-673 nm) and 4G5/2→6H11/2 (712-735 nm) f-f transitions of Sm3+ ions. The integral emission intensity is proportional to the value of applied pressure. By using the linear relationship between integrated emission intensity and the dynamic pressure, the real-time pressure distribution is visualized and recorded. Our results highlight that the incorporation of lanthanide luminescent ions into piezoelectric semiconductors as smart materials could be applied into the flexible mechanical-optical sensor device without additional auxiliary power, which has great potential for promising applications such as mapping of personalized handwriting, smart display, and human machine interface.

  10. Kinetics and mechanism of the oxidation of pentathionate ion by chlorine dioxide in a slightly acidic medium.

    Science.gov (United States)

    Xu, Li; Csekő, György; Petz, Andrea; Horváth, Attila K

    2014-02-27

    The chlorine dioxide-pentathionate reaction has been studied at a slightly acidic medium by conventional UV-vis spectroscopy monitoring the absorbance at 430 nm. We have shown that pentathionate was oxidized to sulfate, but chlorate is also a marginal product of the reaction besides the chloride ion. The stoichiometry of the reaction can be established as a linear combination of two limiting stoichiometries under our experimental conditions. Kinetics of the reaction was found to be also complex because initial rate studies revealed that formal kinetic orders of both the hydrogen ion and chlorine dioxide is far from unity. Moreover, log-log plot of the initial rate against pentathionate concentration indicated a nonconstant formal kinetic order. We also observed a significant catalytic effect of chloride ion. Based on our observations and simultaneous evaluation of the kinetic curves, an 11-step kinetic model is obtained with 6 fitted rate coefficients. A relatively simple rate equation has also been derived and discussed.

  11. Emission properties of Tb{sup 3+} ions in LYSO: evidence of a cross relaxation mechanism explained by a kinetic model

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, P C; Salis, M; Corpino, R; Carbonaro, C M; Anedda, A [Dipartimento di Fisica, Universita di Cagliari, Cittadella Universitaria, S.P. No. 8, I-09042 Monserrato (Cagliari) (Italy); Fortin, E, E-mail: carlo.ricci@dsf.unica.i [Department of Physics, Macdonald Hall, 150 Louis Pasteur, Ottawa, ON, K1N 6N5 (Canada)

    2010-09-01

    The optical properties of Tb{sup 3+} ions in oxyorthosilicates of lutetium and yttrium (LYSO) are reported. The introduction of a small number of terbium ions (nominal content 10 ppm) generates, in the otherwise transparent absorption spectrum of the matrix, an ultraviolet absorption band peaked at about 240 nm. By exciting within the reported UV band, line shaped emissions in the 350-600 nm range are detected. These transitions are related to the {sup 5}D{sub 3} and {sup 5}D{sub 4} levels of the Tb{sup 3+} ions and are characterized by decay times in the millisecond time domain. Analysis of the decay time measurements allows us to individuate a cross relaxation mechanism among terbium ions even at the low dopant concentration investigated. We propose a three-level kinetic model which is able to successfully reproduce the experimental data, allowing us to discriminate among the radiative and non-radiative contributions to the observed emissions.

  12. Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nano-adsorbents: Behaviours and mechanisms

    Science.gov (United States)

    Bao, Shuangyou; Li, Kai; Ning, Ping; Peng, Jinhui; Jin, Xu; Tang, Lihong

    2017-01-01

    A novel hybrid material was fabricated using mercaptoamine-functionalised silica-coated magnetic nanoparticles (MAF-SCMNPs) and was effective in the extraction and recovery of mercury and lead ions from wastewater. The properties of this new magnetic material were explored using various characterisation and analysis methods. Adsorbent amounts, pH levels and initial concentrations were optimised to improve removal efficiency. Additionally, kinetics, thermodynamics and adsorption isotherms were investigated to determine the mechanism by which the fabricated MAF-SCMNPs adsorb heavy metal ions. The results revealed that MAF-SCMNPs were acid-resistant. Sorption likely occurred by chelation through the amine group and ion exchange between heavy metal ions and thiol functional groups on the nanoadsorbent surface. The equilibrium was attained within 120 min, and the adsorption kinetics showed pseudo-second-order (R2 > 0.99). The mercury and lead adsorption isotherms were in agreement with the Freundlich model, displaying maximum adsorption capacities of 355 and 292 mg/g, respectively. The maximum adsorptions took place at pH 5-6 and 6-7 for Hg(II) and Pb(II), respectively. The maximum adsorptions were observed at 10 mg and 12 mg adsorbent quantities for Hg(II) and Pb(II), respectively. The adsorption process was endothermic and spontaneous within the temperature range of 298-318 K. This work demonstrates a unique magnetic nano-adsorbent for the removal of Hg(II) and Pb(II) from wastewater.

  13. 探讨负离子粘胶纤维保健机理及应用∗%Study on the Health Mechanism and Application of Negative Ion Viscose Fiber

    Institute of Scientific and Technical Information of China (English)

    贠秋霞

    2015-01-01

    阐述了负离子粘胶纤维制备,负离子产生的机理,国内外负离子开发现状及负离子纺织品应用,以期对企业对所帮助。%This paper describes the mechanism of negative ion production,the development of negative ions in China and abroad,and the application of negative ion textiles.

  14. Substitution mechanisms and location of Co2+ ions in congruent and stoichiometric lithium niobate crystals derived from electron paramagnetic resonance data

    Science.gov (United States)

    Grachev, V. G.; Hansen, K.; Meyer, M.; Kokanyan, E. P.; Malovichko, G. I.

    2017-03-01

    Electron paramagnetic resonance (EPR) spectra and their angular dependencies were measured for Co2+ trace impurities in stoichiometric samples of lithium niobate doped with rhodium. It was found that Co2+ substitutes for Li+ in the dominant axial center (CoLi) and that the principal substitution mechanism in stoichiometric lithium niobate is 4Co2+ ↔ 3Li+  +  Nb5+. The four Co2+ ions can occupy the nearest possible cation sites by occupying a Nb site and its three nearest-neighbor Li sites, creating a trigonal pyramid with C3 symmetry, as well as non-neighboring sites (e.g. a CoNb-CoLi pair at the nearest sites on the C3 axis with two nearby isolated single Co2+ ions substituted for Li+). In congruent crystals and samples with Li content enriched by vapor transport equilibrium treatment the excess charge of the Co2+ centers is compensated by lithium vacancies located rather far from the Co2+ ions for the dominant axial center or in the nearest neighborhood for low-symmetry satellite centers (the Co2+ ↔ 2Li+ substitution mechanism). The use of exact numerical diagonalization of the spin-Hamiltonian matrices explains all the details of the EPR spectra and gives a value for hyperfine interaction A || that is several times smaller than that obtained using perturbation formulae. The refined values of A and g-tensor components can be used as reliable cornerstones for ab initio and cluster calculations.

  15. Coupling of Mechanical Behavior of Lithium Ion Cells to Electrochemical-Thermal Models for Battery Crush; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Pesaran, Ahmad; Zhang, Chao; Santhanagopalan, Shriram; Sahraei, Elham; Wierzbiki, Tom

    2015-06-15

    Propagation of failure in lithium-ion batteries during field events or under abuse is a strong function of the mechanical response of the different components in the battery. Whereas thermal and electrochemical models that capture the abuse response of batteries have been developed and matured over the years, the interaction between the mechanical behavior and the thermal response of these batteries is not very well understood. With support from the Department of Energy, NREL has made progress in coupling mechanical, thermal, and electrochemical lithium-ion models to predict the initiation and propagation of short circuits under external crush in a cell. The challenge with a cell crush simulation is to estimate the magnitude and location of the short. To address this, the model includes an explicit representation of each individual component such as the active material, current collector, separator, etc., and predicts their mechanical deformation under different crush scenarios. Initial results show reasonable agreement with experiments. In this presentation, the versatility of the approach for use with different design factors, cell formats and chemistries is explored using examples.

  16. Exploring the structure and function of Thermotoga maritima CorA reveals the mechanism of gating and ion selectivity in Co2+/Mg2+ transport.

    Science.gov (United States)

    Nordin, Nurhuda; Guskov, Albert; Phua, Terri; Sahaf, Newsha; Xia, Yu; Lu, Siyan; Eshaghi, Hojjat; Eshaghi, Said

    2013-05-01

    The CorA family of divalent cation transporters utilizes Mg2+ and Co2+ as primary substrates. The molecular mechanism of its function, including ion selectivity and gating, has not been fully characterized. Recently we reported a new structure of a CorA homologue from Methanocaldococcus jannaschii, which provided novel structural details that offered the conception of a unique gating mechanism involving conversion of an open hydrophilic gate into a closed hydrophobic one. In the present study we report functional evidence for this novel gating mechanism in the Thermotoga maritima CorA together with an improved crystal structure of this CorA to 2.7 Å (1 Å=0.1 nm) resolution. The latter reveals the organization of the selectivity filter to be similar to that of M. jannaschii CorA and also the previously unknown organization of the second signature motif of the CorA family. The proposed gating is achieved by a helical rotation upon the binding of a metal ion substrate to the regulatory binding sites. Additionally, our data suggest that the preference of this CorA for Co2+ over Mg2+ is controlled by the presence of threonine side chains in the channel. Finally, the roles of the intracellular metal-binding sites have been assigned to increased thermostability and regulation of the gating. These mechanisms most likely apply to the entire CorA family as they are regulated by the highly conserved amino acids.

  17. Photoinduced proton transfer coupled with energy transfer: Mechanism of sensitized luminescence of terbium ion by salicylic acid doped in polymer.

    Science.gov (United States)

    Misra, Vinita; Mishra, Hirdyesh

    2008-06-28

    In the present work, excited state intramolecular proton transfer (ESIPT) in salicylic acid (SA) monoanion and subsequent sensitization of Tb(3+) ion in polyvinyl alcohol (PVA) have been studied. The study has been carried out both by steady state and time domain fluorescence measurement techniques at room temperature. It is found that the SA completely ionizes and exists as monoanion in PVA. It exhibits a large Stokes shifted blue emission (10 000 cm(-1)) due to ESIPT and shows a decay time of 6.85 ns. On the other hand, Tb(3+) ion shows a very weak green emission and a decay time of approximately 641 mus in PVA film. Upon incorporating Tb(3+) ion in SA doped PVA film, both intensity and decay time of SA decrease and sensitized emission from Tb(+3) ion along with 3.8 mus rise time is observed. Energy transfer is found to take place both from excited singlet as well as triplet states. A brief description of the properties of the present system from the viewpoint of luminescent solar collector material is addressed.

  18. Investigate the ultrasound energy assisted adsorption mechanism of nickel(II) ions onto modified magnetic cobalt ferrite nanoparticles: Multivariate optimization.

    Science.gov (United States)

    Mehrabi, Fatemeh; Alipanahpour Dil, Ebrahim

    2017-07-01

    In present study, magnetic cobalt ferrite nanoparticles modified with (E)-N-(2-nitrobenzylidene)-2-(2-(2-nitrophenyl)imidazolidine-1-yl) ethaneamine (CoFe2O4-NPs-NBNPIEA) was synthesized and applied as novel adsorbent for ultrasound energy assisted adsorption of nickel(II) ions (Ni(2+)) from aqueous solution. The prepared adsorbent characterized by Fourier transforms infrared spectroscopy (FT-IR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and X-ray diffraction (XRD). The dependency of adsorption percentage to variables such as pH, initial Ni(2+) ions concentration, adsorbent mass and ultrasound time were studied with response surface methodology (RSM) by considering the desirable functions. The quadratic model between the dependent and independent variables was built. The proposed method showed good agreement between the experimental data and predictive value, and it has been successfully employed to adsorption of Ni(2+) ions from aqueous solution. Subsequently, the experimental equilibrium data at different concentration of Ni(2+) ions and 10mg amount of adsorbent mass was fitted to conventional isotherm models like Langmuir, Freundlich, Tempkin, Dubinin-Radushkevich and it was revealed that the Langmuir is best model for explanation of behavior of experimental data. In addition, conventional kinetic models such as pseudo-first and second-order, Elovich and intraparticle diffusion were applied and it was seen that pseudo-second-order equation is suitable to fit the experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Ultrathin SnO2 nanosheets: Oriented attachment mechanism, nonstoichiometric defects and enhanced Lithium-ion battery performances

    DEFF Research Database (Denmark)

    Wang, Cen; Du, Gaohui; Ståhl, Kenny

    2012-01-01

    capability of SnO2 NSs is probably resulting from the ultrathin thicknesses and the unique porous structures: the nanometer-sized networks provide negligible diffusion times of ions thus faster phase transitions, while the “breathable” interior porous structure can effectively buffer the drastic volume...

  20. Measurement of activation of rhodopsine with heavy ions irradiation in the ALTEA program: a possible mechanism responsible for light flash perceptions in space

    Science.gov (United States)

    Narici, Livio; Rinaldi, Adele; Sannita, Walter, , Prof; Paci, Maurizio; Brunetti, Valentina; de Martino, Angelo; Picozza, Piergiorgio

    Since late 60s astronauts in space have reported seeing flashes of light, more frequently when dark adapted. Experiments have been performed to characterize these phenomena, and to suggest possible mechanisms. High Z ions have been shown to be the most likely cause of these perceptions: when ionizing radiation hits the eye there is a high probability of a light flash perception. However the mechanisms behind this phenomenon are not fully understood yet. We show that one of these mechanisms is the activation of the rhodopsin (bleaching) by heavy ions. Rhodopsin is at the start of the photo-electronic cascade in the process of vision. It is one of the best molecular transducer to convert a visible photon into an electric signal. In this work we show that rhodopsine can also be activated by irradiation with 12C nuclei. In the frame of ALTEA program, aimed at studying the effects of cosmic radiation on brain functions, an investigation on the interaction between heavy ions and rhodopsin has been performed. Intact Rod Outer Segment (ROS) containing rhodopsin were isolated from bovine retina. Suspended rods were irradiated with 12C (200 MeV/n, well below the Cherenkov threshold) at GSI (Darmstadt FRG) with doses ranging from few mrem to several rem. Spectrophotometric measurements investigated the presence of non activated and activated rhodopsin. The functionality of the purified rods were checked by previous light irradiation and subsequent regeneration by the addition of external 11-cis-retinal, to confirm the reversibility of the process in vitro. We can show effective and reversible bleaching also following irradiation, thus proving that the rhodopsin was not damaged by radiation. Works are in progress to model this interaction. Latest analysis results and considerations about the underlying mechanism will be presented.

  1. Novel hybrids of metronidazole and quinolones: synthesis, bioactive evaluation, cytotoxicity, preliminary antimicrobial mechanism and effect of metal ions on their transportation by human serum albumin.

    Science.gov (United States)

    Cui, Sheng-Feng; Peng, Li-Ping; Zhang, Hui-Zhen; Rasheed, Syed; Vijaya Kumar, Kannekanti; Zhou, Cheng-He

    2014-10-30

    A novel series of hybrids of metronidazole and quinolones as antimicrobial agents were designed and synthesized. Most prepared compounds exhibited good or even stronger antimicrobial activities in comparison with reference drugs. Furthermore, these highly active metronidazole-quinolone hybrids showed appropriate ranges of pKa, log P and aqueous solubility to pharmacokinetic behaviors and no obvious toxicity to A549 and human hepatocyte LO2 cells. Their competitive interactions with metal ions to HSA revealed that the participation of Mg(2+) ion in compound 7d-HSA association could result in a concentration increase of free compound 7d. Molecular modeling and experimental investigation of compound 7d with DNA suggested that possible antibacterial mechanism might be in relation with multiple binding sites between bioactive molecules and topo IV-DNA complex.

  2. Formation mechanism and yield of molecules ejected from ZnS, CdS, and FeS{sub 2} during ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Nikzad, S.; Calaway, W.F.; Pellin, M.J.; Young, C.E.; Gruen, D.M. [Argonne National Lab., IL (United States); Tombrello, T.A. [California Inst. of Technology, Pasadena, CA (United States). Div. of Physics, Mathematics, and Astronomy

    1994-03-01

    Neutral species ejected from single crystals of ZnS, CdS, and FeS{sub 2} during ion bombardment by 3 keV Ar{sup +} were detected by laser post-ionization followed by time-of-flight mass spectrometry. While metal atoms (Fe, Zn, Cd) and S{sub 2} were the dominant species observed, substantial amounts of S, FeS, Zn{sub 2}, ZnS, Cd{sub 2}, and CdS were also detected. The experimental results demonstrate that molecules represent a larger fraction of the sputtered yield than was previously believed from secondary ion mass spectrometry experiments. In addition, the data suggest that the molecules are not necessarily formed from adjacent atoms in the solid and that a modified form of the recombination model could provide a mechanism for their formation.

  3. Electron Heating by the Ion Cyclotron Instability in Collisionless Accretion Flows. I. Compression-driven Instabilities and the Electron Heating Mechanism

    Science.gov (United States)

    Sironi, Lorenzo; Narayan, Ramesh

    2015-02-01

    In systems accreting well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the plasma in the innermost regions of the disk is believed to be collisionless and have two temperatures, with the ions substantially hotter than the electrons. However, whether a collisionless faster-than-Coulomb energy transfer mechanism exists in two-temperature accretion flows is still an open question. We study the physics of electron heating during the growth of ion velocity-space instabilities by means of multidimensional, fully kinetic, particle-in-cell (PIC) simulations. A background large-scale compression—embedded in a novel form of the PIC equations—continuously amplifies the field. This constantly drives a pressure anisotropy P > P ∥ because of the adiabatic invariance of the particle magnetic moments. We find that, for ion plasma beta values β0i ~ 5-30 appropriate for the midplane of low-luminosity accretion flows (here, β0i is the ratio of ion thermal pressure to magnetic pressure), mirror modes dominate if the electron-to-proton temperature ratio is T 0e /T 0i >~ 0.2, whereas for T 0e /T 0i ~ 2 me /mi —governed by the conservation of the particle magnetic moment in the growing fields of the instability—is proportional to the initial electron temperature, and it scales with the magnetic energy of ion cyclotron waves. Our results have implications for two-temperature accretion flows as well as for solar wind and intracluster plasmas.

  4. The capacity fading mechanism and improvement of cycling stability in MoS2-based anode materials for lithium-ion batteries.

    Science.gov (United States)

    Shu, Haibo; Li, Feng; Hu, Chenli; Liang, Pei; Cao, Dan; Chen, Xiaoshuang

    2016-02-01

    Two-dimensional (2D) layered MoS2 nanosheets possess great potential as anode materials for lithium ion batteries (LIBs), but they still suffer from poor cycling performance. Improving the cycling stability of electrode materials depends on a deep understanding of their dynamic structural evolution and reaction kinetics in the lithiation process. Herein, thermodynamic phase diagrams and the lithiation dynamics of MoS2-based nanostructures with the intercalation of lithium ions are studied by using first-principles calculations and ab initio molecular dynamics simulations. Our results demonstrate that the continuous intercalation of Li ions induces structural destruction of 2H phase MoS2 nanosheets in the discharge process that follows a layer-by-layer dissociation mechanism. Meanwhile, the intercalation of Li ions leads to a structural transition of MoS2 nanosheets from the 2H to the 1T phase due to the ultralow transition barriers (∼0.1 eV). We find that the phase transition can slow down the dissociation of MoS2 nanosheets during lithiation. The result can be applied to explain extensive experimental observation of the fast capacity fading of MoS2-based anode materials between the first and the subsequent discharges. To suppress the dissociation of MoS2 nanosheets in the lithiation process, we propose a strategy by constructing a sandwich-like graphene/MoS2/graphene structure that indicates high chemical stability, superior conductivity, and high Li-ion mobility in the charge/discharge process, implying the possibility to induce an improvement in the anode cycling performance. This work opens a new route to rational design layered transition-metal disulfide (TMD) anode materials for LIBs with superior cycling stability and electrochemical performance.

  5. Biosorption of copper ions from dilute aqueous solutions on base treated rubber (Hevea brasiliensis) leaves powder: kinetics, isotherm, and biosorption mechanisms

    Institute of Scientific and Technical Information of China (English)

    W. S. Wan Ngah; M. A. K. M. Hanafiah

    2008-01-01

    The efficiency of sodium hydroxide treated rubber (Hevea brasiliensis) leaves powder (NHBL) for removing copper ions fromaqueous solutions has been investigated. The effects of physicochemical parameters on biosorption capacities such as stirring speed,pH, biosorbent dose, initial concentrations of copper, and ionic strength were studied. The biosorption capacities of NHBL increasedwith increase in pH, stirring speed and copper concentration hut decreased with increase in biosorbent dose and ionic strength. Theisotherm study indicated that NHBL fitted well with Langmuir model compared to Freundlich and Dubinin-Radushkevich models. Themaximum biosorption capacity determined from Langmuir isotherm was 14.97 mg/g at 27~C. The kinetic study revealed that pseudo-second order model fitted well the kinetic data, while Boyd kinetic model indicated that film diffusion was the main rate determiningstep in biosorption process. Based on surface area analysis, NHBL has low surface area and categorized as macroporous. Fouriertransform infrared (FT-IR) analyses revealed that hydroxyl, carboxyl, and amino are the main functional groups involved in the bindingof copper ions. Complexation was one of the main mechanisms for the removal of copper ions as indicated by FT-IR spectra. Ionexchange was another possible mechanism since the ratio of adsorbed cations (Cu2+ and H+) to the released cations (Na, Ca, andMg) from NHBL was almost unity. Copper ions bound on NHBL were able to be desorbed at>99% using 0.05 mol/L HCI, 0.01mol/L HNO, and 0.01 mol/L EDTA solutions.

  6. Kinetics and Mechanism of the Oxidation of Naphthol Green B by Peroxydisulphate Ion in Aqueous Acidic Medium

    Directory of Open Access Journals (Sweden)

    B. Myek

    2014-01-01

    Full Text Available The kinetics of the oxidation of naphthol green B (NGB3− by peroxydisulphate ion has been carried out in aqueous acidic medium at λmax of 700 nm, T=23±1°C, and I=0.50 mol dm−3 (NaCl. The reaction shows a first-order dependence on oxidant and reductant concentration, respectively. The stoichiometry of the NGB—S2O82- reaction is 1 : 2. Change in hydrogen ions concentration of the reaction medium has no effect on the rate of the reaction. Added cations and anions decreased the rate of the reaction. The results of spectroscopic and kinetic investigation indicate that no intermediate complex is probably formed in the course of this reaction.

  7. Direct observation and mechanism for enhanced field emission sites in platinum ion implanted/post-annealed ultrananocrystalline diamond films

    Science.gov (United States)

    Panda, Kalpataru; Sankaran, Kamatchi J.; Inami, Eiichi; Sugimoto, Yoshiaki; Tai, Nyan Hwa; Lin, I.-Nan

    2014-10-01

    Enhanced electron field emission (EFE) properties for ultrananocrystalline diamond (UNCD) films upon platinum (Pt) ion implantation and subsequent post-annealing processes is reported, viz., low turn-on field of 4.17 V/μm with high EFE current density of 5.08 mA/cm2 at an applied field of 7.0 V/μm. Current imaging tunneling spectroscopy (CITS) mode in scanning tunneling spectroscopy directly revealed the increased electron emission sites density for Pt ion implanted/post-annealed UNCD films than the pristine one. The high resolution CITS mapping and local current-voltage characteristic curves demonstrated that the electrons are dominantly emitted from the diamond grain boundaries and Pt nanoparticles.

  8. The influences of plasma ion bombarded on crystallization, electrical and mechanical properties of Zn-In-Sn-O films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.J. [Instrument Center, Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Materials Science and Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hung, F.Y., E-mail: fyhung@mail.ncku.edu.tw [Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Materials Science and Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Chang, S.J. [Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Liao, J.D.; Weng, C.C. [Department of Materials Science and Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hu, Z.S. [Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2011-11-15

    The quality of co-sputtering derived Zn-In-Sn-O (ZITO) film was adjusted by different gas (oxygen and argon) induced plasma ions bombarding (PIB) treatment. The result showed that the film conductivity could be improved after plasma bombardment. The increment of oxygen vacancies and plasma bombard-induced thermal energy were main reasons. Notably, the efficiency of Ar plasma bombarded for improved conductivity not only was better but also had a smoother surface morphology. Due to Ar ions will not react with metal atoms to form oxide and possessed a higher momentum. In addition, the O-rich layer on the ultra-surface not only was removed but also enhanced film reliability by plasma bombarded that could enhance the performance of optoelectronic devices.

  9. The wire array Z-pinch: an efficient x-ray source for ICF and a new ion heating mechanism

    Science.gov (United States)

    Haines, M. G.

    2008-10-01

    The Z-pinch provides an efficient x-ray source for driving a hohlraum for inertial confinement fusion. The basic physics of wire-array implosions is reviewed. It can be understood in several sequential stages. Firstly, the wires heat and form a surrounding vapour which ionizes, causing the current to transfer to this lower resistance. The J×B global force leads to ejection of this plasma towards the axis to form a precursor plasma. The wire cores continue to ablate due to the heat flux from the Joule-heated nearby plasma. The cooling of this plasma by the wire-cores leads to a low magnetic Reynolds number so that the precursor plasma carries little or no current. When gaps appear in the liquid/vapour cores the plasma temperature and Reynolds number rise and this plasma accelerates in towards the axis carrying the current. This is the main implosion, and it sweeps up earlier ablated plasma, which acts to reduce Rayleigh-Taylor growth. At stagnation, the ion kinetic energy is thermalized and equipartition heats the electrons, which then radiate in a 5 ns pulse. In some conditions the energy radiated by soft x-rays exceeds the ion kinetic energy by a factor of 3 or 4. A theory has been developed to explain this in which fine-scale, fast growing m= 0 MHD instabilities grow to saturation, viscous dissipation of which leads to ion heating, followed by equipartition. World record ion temperatures of 2-3 billion Kelvin were predicted, and measured at Sandia National Laboratory. Lastly, progress in capsule implosions and in application to inertial fusion energy is reported.

  10. The Wire Array Z-Pinch AN Efficient X-Ray Source for Icf and a New Ion Heating Mechanism

    Science.gov (United States)

    Haines, M. G.

    2009-07-01

    The Z-pinch provides an efficient x-ray source for driving a hohlraum for inertial confinement fusion. The basic physics of wire-array implosions is reviewed. It can be understood in several sequential stages. First, the wires heat and form a surrounding vapor which ionizes, causing the current to transfer to this lower resistance. The J×B global force leads to ejection of this plasma towards the axis to form a precursor plasma. The wire cores continue to ablate due to the heat flux from the Joule-heated nearby plasma. The cooling of this plasma by the wire-cores leads to a low magnetic Reynolds number so that the precursor plasma carries little or no current. When gaps appear in the liquid/vapor cores the plasma temperature and Reynolds' number rise and this plasma accelerates in towards the axis carrying the current. This is the main implosion, and it sweeps up earlier ablated plasma, which acts to reduce Rayleigh-Taylor growth. At stagnation the ion kinetic energy is thermalised and equipartition heats the electrons, which then radiate in a 5 ns pulse. In some conditions the energy radiated as soft x-rays exceeds the ion kinetic energy by a factor of 3 or 4. A theory has been developed to explain this in which fine-scale, fast growing m = 0 MHD instabilities grow to saturation, viscous dissipation of which leads to ion heating, followed by equipartition. World record ion temperatures of 2 to 3 billion Kelvin were predicted, and measured at Sandia National Laboratory. Lastly progress in capsule implosions and in application to inertial fusion energy is reported.

  11. Effect of silver nanoparticles and silver ions on growth and adaptive response mechanisms of Pseudomonas putida mt-2.

    Science.gov (United States)

    Hachicho, Nancy; Hoffmann, Philipp; Ahlert, Kristin; Heipieper, Hermann J

    2014-06-01

    The distribution and use of nanoparticles increased rapidly during the last years, while the knowledge about mode of action, ecological tolerance and biodegradability of these chemicals is still insufficient. The effect of silver nanoparticles (AgNP) and free silver ions (Ag(+) , AgNO3 ) on Pseudomonas putida mt-2 as one of the best described bacterial strains for stress response were investigated. The effective concentration (EC50) causing 50% growth inhibition for AgNP was about 250 mg L(-1) , whereas this was only 0.175 mg L(-1) for AgNO3 . However, when calculating the amount of free silver ions released from AgNP both tested compounds showed very similar results. Therefore, the antibacterial activity of AgNP can be explained and reduced, respectively, to the amount of silver ions released from the nanoparticles. Both tested compounds showed a strong activation of the unique membrane adaptive response of Pseudomonas strains, the cis-trans isomerization of unsaturated fatty acids, whereas another important adaptive response of these bacteria, changes in cell surface hydrophobicity, measured as water contact angle, was not activated. These results are important informations for the estimation of environmental tolerance of newly developed, active ingredients like silver nanoparticles. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. Removal of heavy metal ions from wastewater by a novel HEA/AMPS copolymer hydrogel: preparation, characterization, and mechanism.

    Science.gov (United States)

    Li, Zhengkui; Wang, Yueming; Wu, Ningmei; Chen, Qichun; Wu, Kai

    2013-03-01

    This study aims to synthesize 2-hydroxyethyl acrylate (HEA) and 2-acrylamido-2-methylpropane sulfonic (AMPS) acid-based hydrogels by gamma radiation and to investigate their swelling behavior and heavy metal ion adsorption capabilities. The copolymer hydrogels prepared were characterized via scanning electron microscopy, Fourier transformed infrared spectra, thermal gravimetric analysis, and X-ray photoelectron spectroscopy. The research showed that the copolymer hydrogel was beneficial for permeation due to its porous structure. In addition, the experimental group A-2-d [70 % water volume ratio and (n (AMPS)/n (HEA)) =1:1] was an optimal adsorbent. The optimal pH was 6.0 and the optimal temperature was 15 °C. Pb(2+), Cd(2+), Cu(2+), and Fe(3)+ achieved adsorption equilibriums within 24 h, whereas Cr(3+) reached equilibrium in 5 h. Pb(2)+, Cd(2+), Cr(3+), and Fe(3+) maximum load capacity was 1,000 mg L(-1), whereas the Cu(2+) maximum capacity was 500 mg L(-1). The priority order in the multicomponent adsorption was Cr(3+)>Fe(3+)>Cu(2+)>Cd(2+)>Pb(2+). The adsorption process of the HEA/AMPS copolymer hydrogel for the heavy metal ions was mainly due to chemisorption, and was only partly due to physisorption, according to the pseudo-second-order equation and Langmuir adsorption isotherm analyses. The HEA/AMPS copolymer hydrogel was confirmed to be an effective adsorbent for heavy metal ion adsorption.

  13. High energy density sodium-ion capacitors through co-intercalation mechanism in diglyme-based electrolyte system

    Science.gov (United States)

    Han, Pengxian; Han, Xiaoqi; Yao, Jianhua; Zhang, Lixue; Cao, Xiaoyan; Huang, Changshui; Cui, Gunglei

    2015-11-01

    A novel sodium-ion capacitor (NIC) was assembled using graphitic mesocarbon microbead anode and activated carbon cathode in diglyme-based electrolyte. Charge/discharge tests indicate that sodium ions can reversibly co-intercalated with diglyme solvent into graphite anode and show good rate performance. The energy densities of the NICs are as high as 93.5 and 86.5 Wh kg-1 at 573 and 2832 W kg-1 (equal to 4 C and 50 C) in the voltage window at 1-4 V, respectively. By optimizing the voltage ranges, the capacity retention of the NIC at 20 C is 98.3% even after 3000 cycles. Such superior electrochemical performance should be attributed to the reversible intercalated/deintercalated reaction of sodium ions and the formation of ternary graphite intercalation compounds in diglyme-based electrolyte. The present work pioneers new realms of hybrid energy storage system with high energy density, high power density and long cycle life.

  14. The mechanism of enhanced luminescence in ion-codoped Lu{sub 2}SiO{sub 5}:Ce{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaolin, E-mail: liuxiaolin@tongji.edu.cn [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Wu, Fei; Chen, Shiwei; Gu, Mu; Chen, Hui; Liu, Bo; Huang, Shiming [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Zhang, Jing [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China)

    2015-05-15

    (Lu{sub 0.995−x}M{sub x}Ce{sub 0.005}){sub 2}SiO{sub 5} (M=Li, Mg and Sc, x=0.00–0.01) phosphors were synthesized via a sol–gel technique, the luminescence enhancement effect by Li{sup +}, Mg{sup 2+}, or Sc{sup 3+} codoping is comprehensively investigated by XRD, Raman, thermoluminescence and X-ray absorption near edge structure (XANES) spectra. The underlying reason of enhanced luminescence by ion codoping is revealed, and a mechanism of the luminescence enhancement effect based on the valence state variation of cerium is proposed. It can be safely concluded that the enhanced luminescence of Lu{sub 2}SiO{sub 5}:Ce{sup 3+} by ion codoping essentially originates from the increase in the population of Ce{sup 3+}, which is directly proved by XANES. The difference in luminescence enhancement effect for different codopants can be reasonably explained by the electronegativity of the codopant. - Highlights: • Enhanced luminescence by ion codoping in LSO:Ce phosphors was comprehensively investigated. • The codopants prefer to occupy interstitial at sites and serve as electron donors. • The origin of enhanced luminescence was proposed based on the results of XANES spectra. • The magnitude of luminescence enhancement is closely related to the electronegativity of the codopant.

  15. Enhanced selective removal of Cu(II) from aqueous solution by novel polyethylenimine-functionalized ion imprinted hydrogel: Behaviors and mechanisms.

    Science.gov (United States)

    Wang, Jingjing; Li, Zhengkui

    2015-12-30

    A novel polyethylenimine-functionalized ion-imprinted hydrogel (Cu(II)-p(PEI/HEA)) was newly synthesized by (60)Co-γ-induced polymerization for the selective removal of Cu(II) from aqueous solution. The adsorption performances including the adsorption capacity and selectivity of the novel hydrogel were much better than those of similar adsorbents reported. The hydrogel was characterized via scanning electron microscope, transmission electron microscopy, Fourier transform infrared spectra, thermal gravimetric analysis and X-ray photoelectron spectroscopy to determine the structure and mechanisms. The adsorption process was pH and temperature sensitive, better fitted to pseudo-second-order equation, and was Langmuir monolayer adsorption. The maximum adsorption capacity for Cu(II) was 40.00 mg/g. The selectivity coefficients of ion-imprinted hydrogel for Cu(II)/Pb(II), Cu(II)/Cd(II) and Cu(II)/Ni(II) were 55.09, 107.47 and 63.12, respectively, which were 3.93, 4.25 and 3.53 times greater than those of non-imprinted hydrogel, respectively. Moreover, the adsorption capacity of Cu(II)-p(PEI/HEA) could still keep more than 85% after four adsorption-desorption cycles. Because of such enhanced selective removal performance and excellent regeneration property, Cu(II)-p(PEI/HEA) is a promising adsorbent for the selective removal of copper ions from wastewater.

  16. Electron Heating by the Ion Cyclotron Instability in Collisionless Accretion Flows. I. Compression-Driven Instabilities and the Electron Heating Mechanism

    CERN Document Server

    Sironi, Lorenzo

    2014-01-01

    In systems accreting well below the Eddington rate, the plasma in the innermost regions of the disk is collisionless and two-temperature, with the ions hotter than the electrons. Yet, whether a collisionless faster-than-Coulomb energy transfer mechanism exists in two-temperature accretion flows is still an open question. We study the physics of electron heating during the growth of ion velocity-space instabilities, by means of multi-dimensional particle-in-cell (PIC) simulations. A large-scale compression - embedded in a novel form of the PIC equations - continuously amplifies the field. This constantly drives a pressure anisotropy P_perp > P_parallel, due to the adiabatic invariance of the particle magnetic moments. We find that, for ion plasma beta values beta_i ~ 5-30 appropriate for the midplane of low-luminosity accretion flows, mirror modes dominate if the electron-to-proton temperature ratio is > 0.2, whereas if it is m_e/m_i - governed by the conservation of the magnetic moment in the growing fields ...

  17. Efficient Reformulation of Solid Phase Diffusion in Electrochemical-Mechanical Coupled Models for Lithium-Ion Batteries: Effect of Intercalation Induced Stresses

    Energy Technology Data Exchange (ETDEWEB)

    De, S; Suthar, B; Rife, D; Sikha, G; Subramanian, VR

    2013-07-23

    Lithium-ion batteries are typically modeled using porous electrode theory coupled with various transport and reaction mechanisms with an appropriate discretization or approximation for the solid phase diffusion within the electrode particle. One of the major difficulties in simulating Li-ion battery models is the need for simulating solid-phase diffusion in the second radial dimension r within the particle. It increases the complexity of the model as well as the computation time/cost to a great extent. This is Particularly true for the inclusion of pressure induced diffusion inside particles experiencing volume change. A computationally efficient representation for solid-phase diffusion is discussed in this paper. The operating condition has a significant effect on the validity, accuracy, and efficiency of various approximations for the solid-phase transport governed by pressure induced diffusion. This paper introduces efficient methods for solid phase reformulation - (1) parabolic profile approach and (2) a mixed order finite difference method for approximating/representing solid-phase concentration variations within the active materials of porous electrodes for macroscopic models for lithium-ion batteries. (C) 2013 The Electrochemical Society. All rights reserved.

  18. Direct atomic-scale confirmation of three-phase storage mechanism in Li₄Ti₅O₁₂ anodes for room-temperature sodium-ion batteries.

    Science.gov (United States)

    Sun, Yang; Zhao, Liang; Pan, Huilin; Lu, Xia; Gu, Lin; Hu, Yong-Sheng; Li, Hong; Armand, Michel; Ikuhara, Yuichi; Chen, Liquan; Huang, Xuejie

    2013-01-01

    Room-temperature sodium-ion batteries attract increasing attention for large-scale energy storage applications in renewable energy and smart grid. However, the development of suitable anode materials remains a challenging issue. Here we demonstrate that the spinel Li4Ti5O12, well-known as a 'zero-strain' anode for lithium-ion batteries, can also store sodium, displaying an average storage voltage of 0.91 V. With an appropriate binder, the Li4Ti5O12 electrode delivers a reversible capacity of 155 mAh g(-1) and presents the best cyclability among all reported oxide-based anode materials. Density functional theory calculations predict a three-phase separation mechanism, 2Li4Ti5O12+6Na(+)+6e(-)↔Li7Ti5O12+Na6LiTi5O12, which has been confirmed through in situ synchrotron X-ray diffraction and advanced scanning transmission electron microscope imaging techniques. The three-phase separation reaction has never been seen in any insertion electrode materials for lithium- or sodium-ion batteries. Furthermore, interfacial structure is clearly resolved at an atomic scale in electrochemically sodiated Li4Ti5O12 for the first time via the advanced electron microscopy.

  19. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  20. Effect of additional sample bias in Meshed Plasma Immersion Ion Deposition (MPIID) on microstructural, surface and mechanical properties of Si-DLC films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Mingzhong [State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001 (China); School of Materials Science & Engineering, Jiamusi University, Jiamusi 154007 (China); Tian, Xiubo, E-mail: xiubotian@163.com [State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001 (China); Li, Muqin [School of Materials Science & Engineering, Jiamusi University, Jiamusi 154007 (China); Gong, Chunzhi [State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001 (China); Wei, Ronghua [Southwest Research Institute, San Antonio, TX 78238 (United States)

    2016-07-15

    Highlights: • A novel Meshed Plasma Immersion Ion Deposition is proposed. • The deposited Si-DLC films possess denser structures and high deposition rate. • It is attributed to ion bombardment of the deposited films. • The ion energy can be independently controlled by an additional bias (novel set up). - Abstract: Meshed Plasma Immersion Ion Deposition (MPIID) using cage-like hollow cathode discharge is a modified process of conventional PIID, but it allows the deposition of thick diamond-like carbon (DLC) films (up to 50 μm) at a high deposition rate (up to 6.5 μm/h). To further improve the DLC film properties, a new approach to the MPIID process is proposed, in which the energy of ions incident to the sample surface can be independently controlled by an additional voltage applied between the samples and the metal meshed cage. In this study, the meshed cage was biased with a pulsed DC power supply at −1350 V peak voltage for the plasma generation, while the samples inside the cage were biased with a DC voltage from 0 V to −500 V with respect to the cage to study its effect. Si-DLC films were synthesized with a mixture of Ar, C{sub 2}H{sub 2} and tetramethylsilane (TMS). After the depositions, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectrons spectroscopy (XPS), Raman spectroscopy and nanoindentation were used to study the morphology, surface roughness, chemical bonding and structure, and the surface hardness as well as the modulus of elasticity of the Si-DLC films. It was observed that the intense ion bombardment significantly densified the films, reduced the surface roughness, reduced the H and Si contents, and increased the nanohardness (H) and modulus of elasticity (E), whereas the deposition rate decreased slightly. Using the H and E data, high values of H{sup 3}/E{sup 2} and H/E were obtained on the biased films, indicating the potential excellent mechanical and tribological properties of the films. In this

  1. Mechanism of rhythmic contractions induced by uranyl ion in the ileal longitudinal muscle of guinea-pig

    Energy Technology Data Exchange (ETDEWEB)

    Wenmei Fu; Shoeiyn Linshiau

    1985-07-17

    The uranyl ion (UO2S ) produces rhythmic contractions of the longitudinal muscle of the ileum, similar to those induced by repetitive transmural stimulation. Hexamethonium inhibited the action of UO2S , indicating a preganglionic site of action of UO2S and interneurons possibly being involved in the ACh-releasing effect of UO2S . In addition, the action of UO2S was enhanced by physostigmine but antagonized by atropine, ATP, adrenaline and morphine suggesting multiple sites of action of UO2S . The effects of BaS were studied simultaneously in order to compare them with those of UO2S . (Auth.). 25 refs.; 4 figs.

  2. Mechanical measurements on lithium phosphorous oxynitride coated silicon thin film electrodes for lithium-ion batteries during lithiation and delithiation

    Science.gov (United States)

    Al-Obeidi, Ahmed; Kramer, Dominik; Boles, Steven T.; Mönig, Reiner; Thompson, Carl V.

    2016-08-01

    The development of large stresses during lithiation and delithiation drives mechanical and chemical degradation processes (cracking and electrolyte decomposition) in thin film silicon anodes that complicate the study of normal electrochemical and mechanical processes. To reduce these effects, lithium phosphorous oxynitride (LiPON) coatings were applied to silicon thin film electrodes. Applying a LiPON coating has two purposes. First, the coating acts as a stable artificial solid electrolyte interphase. Second, it limits mechanical degradation by retaining the electrode's planar morphology during cycling. The development of stress in LiPON-coated electrodes was monitored using substrate curvature measurements. LiPON-coated electrodes displayed highly reproducible cycle-to-cycle behavior, unlike uncoated electrodes which had poorer coulombic efficiency and exhibited a continual loss in stress magnitude with continued cycling due to film fracture. The improved mechanical stability of the coated silicon electrodes allowed for a better investigation of rate effects and variations of mechanical properties during electrochemical cycling.

  3. Directional solidification, thermo-mechanical and optical properties of (Mg(x)Ca(1-x))(3)Al(2)Si(3)O(12) glasses doped with Nd(3+) ions.

    Science.gov (United States)

    Sola, D; Conejos, D; Martínez de Mendivil, J; Ortega-San-Martín, L; Lifante, G; Peña, J I

    2015-10-05

    In this work glass rods of (Mg(x)Ca(1-x))(3)Al(2)Si(3)O(12) (x = 0, 0.5 and 1) doped with 1 wt% Nd(2)O(3) were produced by the laser floating zone technique. Thermo-mechanical and spectroscopic properties have been evaluated. The three glass samples present good thermo-mechanical properties, with similar hardness, toughness and glass transition temperatures. The spectroscopic characterization shows spectral shifts in absorption and emission spectra. These spectral shifts together with Judd-Ofelt intensity parameters and ionic packing ratio have been used to investigate the local structure surrounding the Nd(3+) ions and the covalency of the Nd-O bond. All obtained results agree and confirm the higher covalency of the Nd-O bond in the Ca(3)Al(2)Si(3)O(12) glass.

  4. Effect of silicon configurations on the mechanical integrity of silicon-carbon nanotube heterostructured anode for lithium ion battery: A computational study

    Science.gov (United States)

    Damle, Sameer S.; Pal, Siladitya; Kumta, Prashant N.; Maiti, Spandan

    2016-02-01

    Heterostructures of silicon and carbon nanotubes (CNT) have been widely studied as Li-ion battery anodes. The focus of the current study is to investigate the role of silicon configurations on the mechanical integrity of the Si-CNT heterostructured anodes during electrochemical cycling. We hypothesize that void nucleation and growth in silicon during electrochemical cycling of Li can induce fracture and eventual failure. To test this hypothesis, we utilized a custom developed multiphysics finite element modeling framework considering the lithium diffusion induced elasto-plastic deformation of silicon. We systematically varied the silicon component configuration and enumerated the stress field within it for one complete electrochemical cycle. Resulting evolution of stress state reveals that reducing the mechanical constraints on Si reduces the plastic flow of the material, and thus possibility of void nucleation and growth. We find that the Si droplet configuration is mechanically stable while the continuous Si coating configuration is prone to void growth induced mechanical failure. Present analysis provides a mechanistic understanding of the effect of Si configurations in heterostructured electrodes on its mechanical integrity, which can help in design of next-generation hetersostructured electrodes with improved capacity retention.

  5. Electrical transport and EPR investigations: A comparative study for d.c. conduction mechanism in monovalent and multivalent ions doped polyaniline

    Indian Academy of Sciences (India)

    Suresh Kumar Gupta; Vandna Luthra; Ramadhar Singh

    2012-10-01

    A detailed comparative study of electron paramagnetic resonance (EPR) in conjunction with d.c. electrical conductivity has been undertaken to know about the charge transport mechanism in polyaniline (PANI) doped with monovalent and multivalent protonic acids. This work is in continuation of our previous work for further understanding the conduction mechanism in conducting polymers. The results reveal that the polarons and bipolarons are the main charge carriers formed during doping process and these cause increase in electrical conductivity not only by increase in their concentration but also because of their enhanced mobility due to increased inter-chain transport in polyaniline at high doping levels. EPR line asymmetry having Dysonian line shape for highly doped samples shows a marked deviation of amplitudes / ratio from values close to one to much high values as usually observed in metals, thereby support the idea of high conductivity at higher doping levels. The nature of dopant ions and their doping levels control the charge carriers concentration as well as electrical conductivity of polyaniline. The electrical conductivity has also been studied as a function of temperature to know the thermally assisted transport process of these charge carriers at different doping levels which has been found to follow the Mott’s variable range hopping (VRH) conduction model for all the three dopants used. The charge carriers show a change over from 3D VRH to quasi 1D VRH hopping process for multivalent ions at higher doping levels whereas 1D VRH has been followed by monovalent ion for full doping range. These studies collectively give evidence of inter-chain percolation at higher doping levels causing increase in effective mobility of the charge carriers which mainly seems to govern the electrical conduction behaviour in this system.

  6. Mechanisms of sodium and potassium ions transfer facili-tated by dibenzo-15-crown-5 across the water / 1,2-dichloro-ethane interface using micropipettes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The transfer of sodium and potassium ions facilitated by dibenzo-15-crown-5 (DB15C5) has been studied at the micro-water/1,2-dichloroethane (water/DCE) interface supported at the tip of a micropipette. Cyclic voltammetric measurements were performed in two limiting conditions: the bulk concentration of Na+ or K+ in the aqueous phase is much higher than that of DB15C5 in the organic phase (DB15C5 diffusion controlled process) and the reverse condition (metal ion diffusion controlled process). The mechanisms of the facilitated Na+ transfer by DB15C5 are both transfer by interfacial complexation (TIC) with 1∶1 stoichiometry under these two conditions, and the corresponding association constants were determined at log β1 = 8.97 ( 0.05 or log β1 = 8.63 ( 0.03. However, the transfers of K+ facilitated by DB15C5 show different behavior. In the former case it is a TIC process and its stoichiometry is 1∶2, whereas in the latter case two peaks during the forward scan were observed, the first of which was confirmed as the formation of K+(DB15C5)2 at the interface by a TIC mechanism, while the second one may be another TIC process with 1∶1 stoichiometry in the more positive potential. The relevant association constants calculated for the complexed ion, K+(DB15C5)2, in the organic phase in two cases, logβ2, are 13.64 ( 0.03 and 11.34 ( 0.24, respectively.

  7. Growth mechanism and magnetic and electrochemical properties of Na{sub 0.44}MnO{sub 2} nanorods as cathode material for Na-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Demirel, S.; Oz, E. [Physic Department, Inonu University, Malatya 44120 (Turkey); Altin, E. [Scientific and Technological Research Center, Inonu University, 44120 (Turkey); Altin, S.; Bayri, A. [Physic Department, Inonu University, Malatya 44120 (Turkey); Kaya, P.; Turan, S. [Department of Materials Science and Engineering, Anadolu University, Eskisehir (Turkey); Avci, S., E-mail: sevdaavci@aku.edu.tr [Department of Materials Science and Engineering, Afyon Kocatepe University, Afyon 3200 (Turkey)

    2015-07-15

    Nanorods of Na{sub 0.44}MnO{sub 2} are a promising cathode material for Na-ion batteries due to their large surface area and single crystalline structure. We report the growth mechanism of Na{sub 0.44}MnO{sub 2} nanorods via solid state synthesis and their physical properties. The structure and the morphology of the Na{sub 0.44}MnO{sub 2} nanorods are investigated by X-ray diffraction (XRD), scanning and tunneling electron microscopy (SEM and TEM), and energy-dispersive X-ray (EDX) techniques. The growth mechanism of the rods is investigated and the effects of vapor pressure and partial melting of Na-rich regions are discussed. The magnetic measurements show an antiferromagnetic phase transition at 25 K and the μ{sub eff} is determined as 3.41 and 3.24 μ{sub B} from the χ–T curve and theoretical calculation, respectively. The electronic configuration and spin state of Mn{sup 3+} and Mn{sup 4+} are discussed in detail. The electrochemical properties of the cell fabricated using the nanorods are investigated and the peaks in the voltammogram are attributed to the diffusion of Na ions from different sites. Na intercalation process is explained by one and two Margules and van Laar models. - Highlights: • We synthesized Na{sub 0.44}MnO{sub 2} nanorods via a simple solid state reaction technique. • Our studies show that excess Na plays a crucial role in the nanorod formation. • Magnetization measurements show that Mn{sup 3+} ions are in LS and HS states. • The electrochemical properties of the cell fabricated using the nanorods are investigated. • Na intercalation process is explained by one and two Margules and van Laar models.

  8. Bio-synthesis participated mechanism of mesoporous LiFePO4/C nanocomposite microspheres for lithium ion battery

    DEFF Research Database (Denmark)

    Zhang, X.D.; He, W.; Yue, Yuanzheng

    2012-01-01

    In this paper we report a bio-synthesis participated route towards controllable mesoporous LiFePO4/C nanocomposite microspheres (MP-LFP/C-NC-MS). During the synthesis Baker’s yeast cells are used as both structure templates and carbon source. Then we clarify the bio-deposited and biomolecular self...... specific surface area (203 m2 g-1). The microsphere is composed of densely aggregated nanoparticles and interconnected nanopores. The open mesoporous structure allows lithium ions easily to penetrate into the spheres, while a thorough coating of the biocarbon network on the surface of the LiFePO4...... nanoparticles facilitates lithium ion and electron diffusion. The MP-LFP/C-NC-MS have high discharge capacity of about 158.5 mA h g−1 at the current density of 0.1 C, discharge capacity of 122 mA h g−1 at 10 C, and high capacity retention rate. Therefore the mesoporous microspheres are an ideal type of cathode...

  9. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    Science.gov (United States)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  10. Interaction of metal ions and amino acids - Possible mechanisms for the adsorption of amino acids on homoionic smectite clays

    Science.gov (United States)

    Gupta, A.; Loew, G. H.; Lawless, J.

    1983-01-01

    A semiempirical molecular orbital method is used to characterize the binding of amino acids to hexahydrated Cu(2+) and Ni(2+), a process presumed to occur when they are adsorbed in the interlamellar space of homoionic smectite clays. Five alpha-amino acids, beta-alanine, and gamma-aminobutyric acid were used to investigate the metal ion and amino acid specificity in binding. It was assumed that the alpha, beta, and gamma-amino acids would bind as bidentate anionic ligands, forming either 1:1 or 1:2 six-coordinated five, six, and seven-membered-ring chelate complexes, respectively. Energies of complex formation, optimized geometries, and electron and spin distribution were determined; and steric constraints of binding of the amino acids to the ion-exchanged cations in the interlamellar spacing of a clay were examined. Results indicate that hexahydrated Cu(2+) forms more stable complexes than hexahydrated Ni(2+) with all the amino acids studied. However, among these amino acids, complex formation does not favor the adsorption of the biological subset. Calculated energetics of complex formation and steric constraints are shown to predict that 1:1 rather than 1:2 metal-amino acid complexes are generally favored in the clay.

  11. Metaldehyde removal from aqueous solution by adsorption and ion exchange mechanisms onto activated carbon and polymeric sorbents.

    Science.gov (United States)

    Tao, Bing; Fletcher, Ashleigh J

    2013-01-15

    Metaldehyde removal from aqueous solution was evaluated using granular activated carbon (GAC), a non-functionalised hyper-cross-linked polymer Macronet (MN200) and an ion-exchange resin (S957) with sulfonic and phosphonic functional groups. Equilibrium experimental data were successfully described by Freundlich isotherm models. The maximum adsorption capacity of S957 (7.5 g metaldehyde/g S957) exceeded those of MN200 and GAC. Thermodynamic studies showed that sorption of metaldehyde onto all sorbents is endothermic and processes are controlled by entropic rather than enthalpic changes. Kinetic experiments demonstrated that experimental data for MN200 and GAC obey pseudo-second order models with rates limited by particle diffusion. Comparatively, S957 was shown to obey a pseudo-first order model with a rate-limiting step of metaldehyde diffusion through the solid/liquid interface. Results obtained suggest that metaldehyde adsorption onto MN200 and GAC are driven by hydrophobic interactions and hydrogen bonding, as leaching tendencies were high since no degradation of metaldehyde occurred. Conversely, adsorption of metaldehyde onto S957 occurs via ion-exchange processes, where sulfonic and phosphonic functionalities degrade adsorbed metaldehyde molecules and failure to detect metaldehyde in leaching studies for S957 supports this theory. Consequently, the high adsorption capacity and absence of leaching indicate S957 is promising for metaldehyde removal from source water. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Swift heavy ion irradiation damage in Ti-6Al-4V and Ti-6Al-4V-1B: Study of the microstructure and mechanical properties

    Science.gov (United States)

    Amroussia, Aida; Avilov, Mikhail; Boehlert, Carl J.; Durantel, Florent; Grygiel, Clara; Mittig, Wolfgang; Monnet, Isabelle; Pellemoine, Frederique

    2015-12-01

    The α + β alloy Ti-6Al-4V (wt.%) and the boron-modified Ti-6Al-4V-1B (wt.%), due to their low activation, corrosion resistance, good mechanical properties, and their commercial availability, were chosen as candidate materials for the beam dump for the Facility for Rare Isotope Beams (FRIBs) at Michigan State University: a new generation accelerator with high power heavy ion beams. Through this study our goal is to establish the first irradiation data of the recently developed Ti-6Al-4V-1B (wt.%) alloy and investigate the changes in microstructure and mechanical properties of Ti-6Al-4V due to swift heavy ion (SHI) irradiation damage. The results of hardness measurements showed that the studied Ti-6Al-4V (wt.%) and Ti-6Al-4V-1B (wt.%) alloy, under the specified irradiation conditions, exhibited a high irradiation resistance. In fact, only a slight hardening was observed (∼13%) in the tested samples and no changes in the microstructure were observed. Temperature, dose and electronic excitation effects were also discussed.

  13. Synthesis, Structures and Properties of Two Metal-organic Frameworks Derived from 3-Nitro-1,2-benzenedicarboxylic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenjia; Zhang, Lingyu; Tang, Jinniu; Wang, Daiyin; Pan, Ganghong; Feng, Yu [Guangxi Univ. for Nationalities, Nanning (China)

    2013-08-15

    Two metal-organic frameworks based on the connectivity co-effect between rigid benzenedicarboxylic acid and bridging ligand have been synthesized [Zn{sub 2}(3-NO{sub 2}-bdc){sub 2}(4,4'-bpy){sub 2}H{sub 2}O]n (1), [Co(3-NO{sub 2}-bdc)(4,4'-bpy)H{sub 2}O]{sub n} (2) (where 3-NO{sub 2}-bdcH{sub 2} = 3-nitro-1,2-benzenedicarboxylic acid, 4,4'-bpy = 4,4'-bipyridine). The two novel complexes were characterized by IR spectrum, elemental analysis, fluorescent properties, thermogravimetric analysis, single-crystal X-ray diffraction and powder X-ray diffraction (PXRD). X-ray structure analysis reveals that 1 and 2 are two-dimensional (2D) network structures. Complex 1 and complex 2 belong to triclinic crystal with P-1 space group. The luminescence measurements reveal that two complexes exhibit good fluorescent emissions in the solid state at room temperature. Also, thermal decomposition process and powder X-ray diffraction of complexes were investigated.

  14. QUANTUM MECHANICAL STUDY OF THE COMPETITIVE HYDRATION BETWEEN PROTONATED QUINAZOLINE AND LI+, NA+, AND CA2+ IONS

    Science.gov (United States)

    Hydration reactions are fundamental to many biological functions and environmental processes. The energetics of hydration of inorganic and organic chemical species influences their fate and transport behavior in the environment. In this study, gas-phase quantum mechanical calcula...

  15. Ion irradiation induced effects and magnetization reversal mechanism in (Ni{sub 80}Fe{sub 20}){sub 1−x}Co{sub x} nanowires and nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Naeem, E-mail: naeem.ahmad@iiu.edu.pk [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100090 (China); Spintronics Laboratory, Department of Physics, Faculty of Basic and Applied Sciences (FBAS), International Islamic University H-10, Islamabad 44000 (Pakistan); Iqbal, Javed [Laboratory of Nanoscience and Technology, Department of Physics, International Islamic University, H-10, Islamabad,Pakistan (Pakistan); Chen, J.Y. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100090 (China); Hussain, Asim [Spintronics Laboratory, Department of Physics, Faculty of Basic and Applied Sciences (FBAS), International Islamic University H-10, Islamabad 44000 (Pakistan); Shi, D.W.; Han, X.F. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100090 (China)

    2015-03-15

    The effect of Co on the ferromagnetic characteristics of the Ni{sub 80}Fe{sub 20} nanocylinders having zero magnetostriction and soft magnetic nature is an interesting field of research. The (Ni{sub 80}Fe{sub 20}){sub 1−x}Co{sub x} nanocylinders have been prepared by electrodeposition into commercially available anodized aluminum oxide (AAO) nanoporous templates. The analysis of magnetization reversal from the angular dependence of coercivity has been studied in detail. This angular dependence of coercivity has shown a transition from curling to nucleation mode as a function of field angle for all (Ni{sub 80}Fe{sub 20}){sub 1−x}Co{sub x} nanocylinders depending upon the critical angle. The shape anisotropy, dipole–dipole interactions, surface effects and magnetocrystalline anisotropy have been found to play an effective role for the spontaneous magnetization in nanowires and nanotubes. It has been interestingly observed that the magnetostatic interactions or dipole–dipole interactions are dominant in nanocylinders regardless of its geometry. Furthermore, the prepared samples have been irradiated with He{sup 2+} ions (energy E=2 MeV, fluence=10{sup 14} ions/cm{sup 2} and ion current=16 nA) at room temperature using a 5-UDH-2pelletron tandem accelerator. The irradiations have created defects and these defects have induced changes in magnetization as a result an increase in coercivity as function of the ion fluences is observed. Such kind of behavior in coercivity enhancement and magnetization reduction can also be attributed to the stress relaxation and percolation in nonuniform states of ferromagnetic alloys, respectively. - Highlights: • We have prepared the ferromagnetic NiFeCo nanowires and nanotubes into anodized aluminum oxide templates (AAO) by electrodeposition method. • We have studied the magnetization reversal mechanism from the angle dependent coercivity measured by a hysteresis loop. • The ion irradiation effects on these nanostructures

  16. Functional anatomy and ion regulatory mechanisms of the antennal gland in a semi-terrestrial crab, Ocypode stimpsoni

    Directory of Open Access Journals (Sweden)

    Jyuan-Ru Tsai

    2014-05-01

    Full Text Available Brachyuran crabs from diverse habitats show great differences in their osmoregulatory processes, especially in terms of the structural and physiological characteristics of the osmoregulatory organs. In crustaceans, the antennal glands are known to be important in osmoregulation, and they play a functional role analogous to that of the vertebrate kidney. Nevertheless, the detailed structure and function of the antennal glands in different species have rarely been described. The aim of this study is to investigate the role of the antennal gland in ion regulation by examining the ultrastructure of the cells and the distribution of the ion regulatory proteins in each cell type in the antennal gland of a semi-terrestrial crab. The results showed that Na+, K+-ATPase activity significantly increased in the antennal gland after a 4-day acclimation in dilute seawater and returned to its original (day 0 level after 7 days. Three major types of cells were identified in the antennal gland, including coelomic cells (COEs, labyrinthine cells (LBRs and end-labyrinthine cells (ELBRs. The proximal tubular region (PT and distal tubular region (DT of the antennal gland consist of LBRs and COEs, whereas the end tubular region (ET consists of all three types of cells, with fewer COEs and more ELBRs. We found a non-uniform distribution of NKA immunoreactivity, with increasing intensity from the proximal to the distal regions of the antennal gland. We summarise our study with a proposed model for the urine reprocessing pathway and the role of each cell type or segment of the antennal gland.

  17. Mechanical measurements on lithium phosphorous oxynitride coated silicon thin film electrodes for lithium-ion batteries during lithiation and delithiation

    Energy Technology Data Exchange (ETDEWEB)

    Al-Obeidi, Ahmed, E-mail: alobeidi@mit.edu; Thompson, Carl V., E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Kramer, Dominik, E-mail: dominik.kramer@kit.edu; Mönig, Reiner, E-mail: reiner.moenig@kit.edu, E-mail: cthomp@mit.edu [Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Helmholtz Institute Ulm for Electrochemical Energy Storage (HIU), Helmholtzstraße 11, 89081 Ulm (Germany); Boles, Steven T., E-mail: steven.t.boles@polyu.edu.hk [Institute for Applied Materials, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom (Hong Kong)

    2016-08-15

    The development of large stresses during lithiation and delithiation drives mechanical and chemical degradation processes (cracking and electrolyte decomposition) in thin film silicon anodes that complicate the study of normal electrochemical and mechanical processes. To reduce these effects, lithium phosphorous oxynitride (LiPON) coatings were applied to silicon thin film electrodes. Applying a LiPON coating has two purposes. First, the coating acts as a stable artificial solid electrolyte interphase. Second, it limits mechanical degradation by retaining the electrode's planar morphology during cycling. The development of stress in LiPON-coated electrodes was monitored using substrate curvature measurements. LiPON-coated electrodes displayed highly reproducible cycle-to-cycle behavior, unlike uncoated electrodes which had poorer coulombic efficiency and exhibited a continual loss in stress magnitude with continued cycling due to film fracture. The improved mechanical stability of the coated silicon electrodes allowed for a better investigation of rate effects and variations of mechanical properties during electrochemical cycling.

  18. Effect of resin charged functional group, porosity, and chemical matrix on the long-term pharmaceutical removal mechanism by conventional ion exchange resins.

    Science.gov (United States)

    Wang, Wei; Li, Xiaofeng; Yuan, Shengliu; Sun, Jian; Zheng, Shaokui

    2016-10-01

    This study attempted to clarify the long-term pharmaceutical removal mechanism from sewage treatment plant effluent during the cyclical adsorption-regeneration operation of 5 commercial resin-based fixed-bed reactors with the simultaneous occurrence of electrostatic interactions and complex non-electrostatic interactions. It examined 12 pharmaceuticals belonging to 10 therapeutic classes with different predominant existing forms and hydrophobicities. Furthermore, the effect of the resin charged functional group (strong-base vs. strong-acid vs. non-ionic), porosity (macroporous vs. gel), and chemical matrix (polystyrenic vs. polyacrylic) on the mechanism was investigated to optimize resin properties and achieve higher pharmaceutical removal. The results reported herein indicate the importance of non-electrostatic interactions between pharmaceuticals and the resin backbone during short-term cyclical operation (i.e., the 1st adsorption-regeneration cycle). With the development of cyclical operation, however, non-electrostatic interaction-induced pharmaceutical removal generally decreased and even disappeared when equilibrium was achieved between the influent and the resin. Despite pharmaceutical therapeutic class or hydrophilicity, anion (or cation) exchange resin preferentially removed those pharmaceuticals that were predominantly present as organic anions (or cations) by ion exchange process during long-term cyclical operation (i.e., ≥6 adsorption-regeneration cycles). Besides pharmaceuticals predominantly present as undissociated molecules, some amphoteric pharmaceuticals containing large amounts of zwitterions were also difficult to remove by ion exchange resin. Additionally, neither resin porosity nor chemical matrix had any significant effect on the long-term pharmaceutical removal mechanism.

  19. Modelling of the mechanical behavior of a polyurethane finger interphalangeal joint endoprosthesis after surface modification by ion implantation

    Science.gov (United States)

    Beliaev, A.; Svistkov, A.; Iziumov, R.; Osorgina, I.; Kondyurin, A.; Bilek, M.; McKenzie, D.

    2016-04-01

    Production of biocompatible implants made of polyurethane treated with plasma is very perspective. During plasma treatment the surface of polyurethane acquires unique physic-chemical properties. However such treatment may change the mechanical properties of polyurethane which may adversely affect the deformation behaviour of the real implant. Therefore careful study of the mechanical properties of the plasma-modified polyurethane is needed. In this paper, experimental observations of the elastic characteristics of plasma treated polyurethane and modelling of the deformation behaviour of polyurethane bio-implants are reported.

  20. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  1. Ion channels in asthma.

    Science.gov (United States)

    Valverde, Miguel A; Cantero-Recasens, Gerard; Garcia-Elias, Anna; Jung, Carole; Carreras-Sureda, Amado; Vicente, Rubén

    2011-09-23

    Ion channels are specialized transmembrane proteins that permit the passive flow of ions following their electrochemical gradients. In the airways, ion channels participate in the production of epithelium-based hydroelectrolytic secretions and in the control of intracellular Ca(2+) levels that will ultimately activate almost all lung cells, either resident or circulating. Thus, ion channels have been the center of many studies aiming to understand asthma pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. In this minireview, we focus on molecular, genetic, and animal model studies associating ion channels with asthma.

  2. Structure of the SthK carboxy-terminal region reveals a gating mechanism for cyclic nucleotide-modulated ion channels.

    Directory of Open Access Journals (Sweden)

    Divya Kesters

    Full Text Available Cyclic nucleotide-sensitive ion channels are molecular pores that open in response to cAMP or cGMP, which are universal second messengers. Binding of a cyclic nucleotide to the carboxyterminal cyclic nucleotide binding domain (CNBD of these channels is thought to cause a conformational change that promotes channel opening. The C-linker domain, which connects the channel pore to this CNBD, plays an important role in coupling ligand binding to channel opening. Current structural insight into this mechanism mainly derives from X-ray crystal structures of the C-linker/CNBD from hyperpolarization-activated cyclic nucleotide-modulated (HCN channels. However, these structures reveal little to no conformational changes upon comparison of the ligand-bound and unbound form. In this study, we take advantage of a recently identified prokaryote ion channel, SthK, which has functional properties that strongly resemble cyclic nucleotide-gated (CNG channels and is activated by cAMP, but not by cGMP. We determined X-ray crystal structures of the C-linker/CNBD of SthK in the presence of cAMP or cGMP. We observe that the structure in complex with cGMP, which is an antagonist, is similar to previously determined HCN channel structures. In contrast, the structure in complex with cAMP, which is an agonist, is in a more open conformation. We observe that the CNBD makes an outward swinging movement, which is accompanied by an opening of the C-linker. This conformation mirrors the open gate structures of the Kv1.2 channel or MthK channel, which suggests that the cAMP-bound C-linker/CNBD from SthK represents an activated conformation. These results provide a structural framework for better understanding cyclic nucleotide modulation of ion channels, including HCN and CNG channels.

  3. The crystal structure of D-threonine aldolase from Alcaligenes xylosoxidans provides insight into a metal ion assisted PLP-dependent mechanism.

    Science.gov (United States)

    Uhl, Michael K; Oberdorfer, Gustav; Steinkellner, Georg; Riegler-Berket, Lina; Mink, Daniel; van Assema, Friso; Schürmann, Martin; Gruber, Karl

    2015-01-01

    Threonine aldolases catalyze the pyridoxal phosphate (PLP) dependent cleavage of threonine into glycine and acetaldehyde and play a major role in the degradation of this amino acid. In nature, L- as well as D-specific enzymes have been identified, but the exact physiological function of D-threonine aldolases (DTAs) is still largely unknown. Both types of enantio-complementary enzymes have a considerable potential in biocatalysis for the stereospecific synthesis of various β-hydroxy amino acids, which are valuable building blocks for the production of pharmaceuticals. While several structures of L-threonine aldolases (LTAs) have already been determined, no structure of a DTA is available to date. Here, we report on the determination of the crystal structure of the DTA from Alcaligenes xylosoxidans (AxDTA) at 1.5 Å resolution. Our results underline the close relationship of DTAs and alanine racemases and allow the identification of a metal binding site close to the PLP-cofactor in the active site of the enzyme which is consistent with the previous observation that divalent cations are essential for DTA activity. Modeling of AxDTA substrate complexes provides a rationale for this metal dependence and indicates that binding of the β-hydroxy group of the substrate to the metal ion very likely activates this group and facilitates its deprotonation by His193. An equivalent involvement of a metal ion has been implicated in the mechanism of a serine dehydratase, which harbors a metal ion binding site in the vicinity of the PLP cofactor at the same position as in DTA. The structure of AxDTA is completely different to available structures of LTAs. The enantio-complementarity of DTAs and LTAs can be explained by an approximate mirror symmetry of crucial active site residues relative to the PLP-cofactor.

  4. Effect of additional sample bias in Meshed Plasma Immersion Ion Deposition (MPIID) on microstructural, surface and mechanical properties of Si-DLC films

    Science.gov (United States)

    Wu, Mingzhong; Tian, Xiubo; Li, Muqin; Gong, Chunzhi; Wei, Ronghua

    2016-07-01

    Meshed Plasma Immersion Ion Deposition (MPIID) using cage-like hollow cathode discharge is a modified process of conventional PIID, but it allows the deposition of thick diamond-like carbon (DLC) films (up to 50 μm) at a high deposition rate (up to 6.5 μm/h). To further improve the DLC film properties, a new approach to the MPIID process is proposed, in which the energy of ions incident to the sample surface can be independently controlled by an additional voltage applied between the samples and the metal meshed cage. In this study, the meshed cage was biased with a pulsed DC power supply at -1350 V peak voltage for the plasma generation, while the samples inside the cage were biased with a DC voltage from 0 V to -500 V with respect to the cage to study its effect. Si-DLC films were synthesized with a mixture of Ar, C2H2 and tetramethylsilane (TMS). After the depositions, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectrons spectroscopy (XPS), Raman spectroscopy and nanoindentation were used to study the morphology, surface roughness, chemical bonding and structure, and the surface hardness as well as the modulus of elasticity of the Si-DLC films. It was observed that the intense ion bombardment significantly densified the films, reduced the surface roughness, reduced the H and Si contents, and increased the nanohardness (H) and modulus of elasticity (E), whereas the deposition rate decreased slightly. Using the H and E data, high values of H3/E2 and H/E were obtained on the biased films, indicating the potential excellent mechanical and tribological properties of the films. In this paper, the effects of the sample bias voltage on the film properties are discussed in detail and the optimal bias voltage is presented.

  5. Adsorption performances and mechanisms of the newly synthesized N,N'-di (carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Jing Xiaosheng [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Liu Fuqiang, E-mail: jogia@163.com [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China) and Engineering Technology Research Center of Organic Toxic Substance Control and Resource Reuse of Jiangsu Province, Nanjing 210046 (China); Yang Xin; Ling Panpan; Li Lanjuan [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Long Chao; Li Aimin [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Engineering Technology Research Center of Organic Toxic Substance Control and Resource Reuse of Jiangsu Province, Nanjing 210046 (China)

    2009-08-15

    N,N'-di (carboxymethyl) dithiocarbamate chelating resin (PSDC) was synthesized by anchoring the chelating agent of N,N'-di (carboxymethyl) dithiocarbamate to the chloromethylated PS-DVB (Cl-PS-DVB) matrix, as a new adsorbent for removing divalent heavy metal ions from waste-stream. The physicochemical structures of Cl-PS-DVB and PSDC were elaborately characterized using Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), and were further morphologically characterized using BET and BJH methods. The adsorption performances of PSDC towards heavy metals such as Cu(II), Pb(II) and Ni(II) were systematically investigated, based upon which the adsorption mechanisms were deeply exploited. For the above target, the classic batch adsorption experiments were conducted to explore the kinetics and isotherms of the removal processes with pH-value, initial concentration, temperature, and contact time as the controlling parameters. The kinetic and isotherm data could be well elucidated with Lagergren-second-order equation and Langmuir model respectively. The strong affinity of PSDC toward these target soft acids could be well demonstrated with the electrostatic attraction and chelating interaction caused by IDA moiety and sulphur which were namely soft bases on the concept of hard and soft acids and bases (HASB). Thermodynamic parameters, involving {Delta}H{sup o}, {Delta}S{sup o} and {Delta}G{sup o} were also calculated from graphical interpretation of the experimental data. The standard heats of adsorption ({Delta}H{sup o}) were found to be endothermic and the entropy change values ({Delta}S{sup o}) were calculated to be positive for the adsorption of Cu(II), Pb(II) and Ni(II) ions onto the tested adsorbents. Negative values of {Delta}G{sup o} indicated that adsorption processes for all tested metal ions onto PSDC were spontaneous.

  6. The crystal structure of D-threonine aldolase from Alcaligenes xylosoxidans provides insight into a metal ion assisted PLP-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Michael K Uhl

    Full Text Available Threonine aldolases catalyze the pyridoxal phosphate (PLP dependent cleavage of threonine into glycine and acetaldehyde and play a major role in the degradation of this amino acid. In nature, L- as well as D-specific enzymes have been identified, but the exact physiological function of D-threonine aldolases (DTAs is still largely unknown. Both types of enantio-complementary enzymes have a considerable potential in biocatalysis for the stereospecific synthesis of various β-hydroxy amino acids, which are valuable building blocks for the production of pharmaceuticals. While several structures of L-threonine aldolases (LTAs have already been determined, no structure of a DTA is available to date. Here, we report on the determination of the crystal structure of the DTA from Alcaligenes xylosoxidans (AxDTA at 1.5 Å resolution. Our results underline the close relationship of DTAs and alanine racemases and allow the identification of a metal binding site close to the PLP-cofactor in the active site of the enzyme which is consistent with the previous observation that divalent cations are essential for DTA activity. Modeling of AxDTA substrate complexes provides a rationale for this metal dependence and indicates that binding of the β-hydroxy group of the substrate to the metal ion very likely activates this group and facilitates its deprotonation by His193. An equivalent involvement of a metal ion has been implicated in the mechanism of a serine dehydratase, which harbors a metal ion binding site in the vicinity of the PLP cofactor at the same position as in DTA. The structure of AxDTA is completely different to available structures of LTAs. The enantio-complementarity of DTAs and LTAs can be explained by an approximate mirror symmetry of crucial active site residues relative to the PLP-cofactor.

  7. Analysis of diffuse K+ and Mg2+ ion binding to a two-base-pair kissing complex by single-molecule mechanical unfolding.

    Science.gov (United States)

    Li, Pan T X

    2013-07-23

    The folding and stability of RNA tertiary interactions depend critically on cationic conditions. It is usually difficult, however, to isolate such effects on tertiary interactions from those on the entire RNA. By manipulating conformations of single RNA molecules using optical tweezers, we distinguished individual steps of breaking and forming of a two-base-pair kissing interaction from those of secondary folding. The binding of metal ions to the small tertiary structure appeared to be saturable with an apparent Kd of 160 mM for K(+) and 1.5 mM for Mg(2+). The kissing formation was estimated to be associated with binding of ~2-3 diffuse K(+) or Mg(2+) ions. At their saturated binding, Mg(2+) provided ~3 kcal/mol more stabilizing energy to the structure than K(+). Furthermore, the cations change the unkissing forces significantly more than the kissing ones. For example, the presence of Mg(2+) ions increased the average unkissing force from 21 pN to 44 pN, surprisingly high for breaking merely two base pairs; in contrast, the mean kissing force was changed by only 4.5 pN. Interestingly, the differential salt effects on the transition forces were not caused by different changes in the height of the kinetic barriers but were instead attributed to how different molecular structures respond to the applied force. Our results showed the importance of diffuse cation binding to the stability of tertiary interaction and demonstrated the utility of mechanical unfolding in studying tertiary interactions.

  8. Coupled binding mechanism of three sodium ions and aspartate in the glutamate transporter homologue GltTk

    NARCIS (Netherlands)

    Guskov, Albert; Jensen, Sonja; Faustino, Ignacio; Marrink, Siewert J.; Slotboom, Dirk Jan

    2016-01-01

    Glutamate transporters catalyse the thermodynamically unfavourable transport of anionic amino acids across the cell membrane by coupling it to the downhill transport of cations. This coupling mechanism is still poorly understood, in part because the available crystal structures of these transporters

  9. Coupled binding mechanism of three sodium ions and aspartate in the glutamate transporter homologue GltTk

    NARCIS (Netherlands)

    Guskov, Albert; Jensen, Sonja; Faustino, Ignacio; Marrink, Siewert J.; Slotboom, Dirk Jan

    2016-01-01

    Glutamate transporters catalyse the thermodynamically unfavourable transport of anionic amino acids across the cell membrane by coupling it to the downhill transport of cations. This coupling mechanism is still poorly understood, in part because the available crystal structures of these transporters

  10. STRUCTURE, MECHANICAL PROPERTIES AND THERMAL STABILITY OF DIAMOND-LIKE CARBON FILMS PREPARED BY ARC ION PLATING

    Institute of Scientific and Technical Information of China (English)

    Y.S. Zou; J.D. Zheng; J. Gong; C. Sun; R.F. Huang; L.S. Wen

    2005-01-01

    Diamond-like Carbon (DLC) films have been prepared on Si(100) substrates by arc ion plating in conjunction with pulse bias voltage under H2 atmosphere. The deposited films have been characterized by scanning electron microscopy and atomic force microscopy. The results show that the surface of the film is smooth and dense without any cracks, and the surface roughness is low. The bonding characteristic of the films has been studied by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. It shows the sp3 bond content of the film deposited at -200V is 26.7%. The hardness and elastic modulus of the film determined by nanoindentation technique are 30.8 and 250.1GPa, respectively. The tribological characteristic of the films reveals that they have low friction coefficient and good wear-resistance. After deposition, the films have been annealed in the range of 350-700℃ for 1h in vacuum to investigate the thermal stability. Raman spectra indicate that the ID/IG ratio and G peak position have few detectable changes below 500℃. Further increasing the annealing temperature, the hydrogen can be released, the structure rearranges, and the phase transition of sp3 configured carbon to sp2 configured carbon appears.

  11. Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions

    KAUST Repository

    Huang, Yi-Jen

    2016-04-07

    The combination of nonvolatile memory switching and volatile threshold switching functions of transition metal oxides in crossbar memory arrays is of great potential for replacing charge-based flash memory in very-large-scale integration. Here, we show that the resistive switching material structure, (amorphous TiOx)/(Ag nanoparticles)/(polycrystalline TiOx), fabricated on the textured-FTO substrate with ITO as the top electrode exhibits both the memory switching and threshold switching functions. When the device is used for resistive switching, it is forming-free for resistive memory applications with low operation voltage (<±1 V) and self-compliance to current up to 50 μA. When it is used for threshold switching, the low threshold current is beneficial for improving the device selectivity. The variation of oxygen distribution measured by energy dispersive X-ray spectroscopy and scanning transmission electron microscopy indicates the formation or rupture of conducting filaments in the device at different resistance states. It is therefore suggested that the push and pull actions of oxygen ions in the amorphous TiOx and polycrystalline TiOx films during the voltage sweep account for the memory switching and threshold switching properties in the device.

  12. Dual-functional Memory and Threshold Resistive Switching Based on the Push-Pull Mechanism of Oxygen Ions

    Science.gov (United States)

    Huang, Yi-Jen; Chao, Shih-Chun; Lien, Der-Hsien; Wen, Cheng-Yen; He-Hau, Jr.; Lee, Si-Chen

    2016-04-01

    The combination of nonvolatile memory switching and volatile threshold switching functions of transition metal oxides in crossbar memory arrays is of great potential for replacing charge-based flash memory in very-large-scale integration. Here, we show that the resistive switching material structure, (amorphous TiOx)/(Ag nanoparticles)/(polycrystalline TiOx), fabricated on the textured-FTO substrate with ITO as the top electrode exhibits both the memory switching and threshold switching functions. When the device is used for resistive switching, it is forming-free for resistive memory applications with low operation voltage (compliance to current up to 50 μA. When it is used for threshold switching, the low threshold current is beneficial for improving the device selectivity. The variation of oxygen distribution measured by energy dispersive X-ray spectroscopy and scanning transmission electron microscopy indicates the formation or rupture of conducting filaments in the device at different resistance states. It is therefore suggested that the push and pull actions of oxygen ions in the amorphous TiOx and polycrystalline TiOx films during the voltage sweep account for the memory switching and threshold switching properties in the device.

  13. Experiment and simulation of the fabrication process of lithium-ion battery cathodes for determining microstructure and mechanical properties

    Science.gov (United States)

    Forouzan, Mehdi M.; Chao, Chien-Wei; Bustamante, Danilo; Mazzeo, Brian A.; Wheeler, Dean R.

    2016-04-01

    The fabrication process of Li-ion battery electrodes plays a prominent role in the microstructure and corresponding cell performance. Here, a mesoscale particle dynamics simulation is developed to relate the manufacturing process of a cathode containing Toda NCM-523 active material to physical and structural properties of the dried film. Particle interactions are simulated with shifted-force Lennard-Jones and granular Hertzian functions. LAMMPS, a freely available particle simulator, is used to generate particle trajectories and resulting predicted properties. To make simulations of the full film thickness feasible, the carbon binder domain (CBD) is approximated with μm-scale particles, each representing about 1000 carbon black particles and associated binder. Metrics for model parameterization and validation are measured experimentally and include the following: slurry viscosity, elasticity of the dried film, shrinkage ratio during drying, volume fraction of phases, slurry and dried film densities, and microstructure cross sections. Simulation results are in substantial agreement with experiment, showing that the simulations reasonably reproduce the relevant physics of particle arrangement during fabrication.

  14. Nanostructured multielement (TiHfZrNbVTa)N coatings before and after implantation of N+ ions (1018 cm-2): Their structure and mechanical properties

    Science.gov (United States)

    Pogrebnjak, A. D.; Bondar, O. V.; Borba, S. O.; Abadias, G.; Konarski, P.; Plotnikov, S. V.; Beresnev, V. M.; Kassenova, L. G.; Drodziel, P.

    2016-10-01

    Multielement high entropy alloy (HEA) nitride (TiHfZrNbVTa)N coatings were deposited by vacuum arc and their structural and mechanical stability after implantation of high doses of N+ ions, 1018 cm-2, were investigated. The crystal structure and phase composition were characterized by X-ray diffraction (XRD) and Transmission Electron Microscopy, while depth-resolved nanoindentation tests were used to determine the evolution of hardness and elastic modulus along the implantation depth. XRD patterns show that coatings exhibit a main phase with fcc structure, which preferred orientation varies from (1 1 1) to (2 0 0), depending on the deposition conditions. First-principles calculations reveal that the presence of Nb atoms could favor the formation of solid solution with fcc structure in multielement HEA nitride. TEM results showed that amorphous and nanostructured phases were formed in the implanted coating sub-surface layer (∼100 nm depth). Concentration of nitrogen reached 90 at% in the near-surface layer after implantation, and decreased at higher depth. Nanohardness of the as-deposited coatings varied from 27 to 38 GPa depending on the deposition conditions. Ion implantation led to a significant decrease of the nanohardness to 12 GPa in the implanted region, while it reaches 24 GPa at larger depths. However, the H/E ratio is ⩾0.1 in the sub-surface layer due to N+ implantation, which is expected to have beneficial effect on the wear properties.

  15. Mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)

    Science.gov (United States)

    Nastasović, Aleksandra B.; Ekmeščić, Bojana M.; Sandić, Zvjezdana P.; Ranđelović, Danijela V.; Mozetič, Miran; Vesel, Alenka; Onjia, Antonije E.

    2016-11-01

    The mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (PGME) functionalized by reaction of the pendant epoxy groups with diethylene triamine (PGME-deta) was studied using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis. Atomic force microscopy (AFM) and scanning energy-dispersive X-ray spectroscopy (SEM-EDX) were used for the determination of surface morphology of the copolymer particles. The sorption behavior of heavy metals Cu(II), Cd(II) and Pb(II) ions sorption was investigated in batch static experiments under non-competitive conditions at room temperature (298 K). The obtained results were fitted to pseudo-first order, pseudo-second order and intraparticle diffusion kinetic model. The kinetics studies showed that Cu(II), Cd(II) and Pb(II) sorption obeys the pseudo-second-order model under all investigated operating conditions with evident influence of pore diffusion.

  16. Racemization of the Succinimide Intermediate Formed in Proteins and Peptides: A Computational Study of the Mechanism Catalyzed by Dihydrogen Phosphate Ion

    Directory of Open Access Journals (Sweden)

    Ohgi Takahashi

    2016-10-01

    Full Text Available In proteins and peptides, d-aspartic acid (d-Asp and d-β-Asp residues can be spontaneously formed via racemization of the succinimide intermediate formed from l-Asp and l-asparagine (l-Asn residues. These biologically uncommon amino acid residues are known to have relevance to aging and pathologies. Although nonenzymatic, the succinimide racemization will not occur without a catalyst at room or biological temperature. In the present study, we computationally investigated the mechanism of succinimide racemization catalyzed by dihydrogen phosphate ion, H2PO4−, by B3LYP/6-31+G(d,p density functional theory calculations, using a model compound in which an aminosuccinyl (Asu residue is capped with acetyl (Ace and NCH3 (Nme groups on the N- and C-termini, respectively (Ace–Asu–Nme. It was shown that an H2PO4− ion can catalyze the enolization of the Hα–Cα–C=O portion of the Asu residue by acting as a proton-transfer mediator. The resulting complex between the enol form and H2PO4− corresponds to a very flat intermediate region on the potential energy surface lying between the initial reactant complex and its mirror-image geometry. The calculated activation barrier (18.8 kcal·mol−1 after corrections for the zero-point energy and the Gibbs energy of hydration for the enolization was consistent with the experimental activation energies of Asp racemization.

  17. Racemization of the Succinimide Intermediate Formed in Proteins and Peptides: A Computational Study of the Mechanism Catalyzed by Dihydrogen Phosphate Ion

    Science.gov (United States)

    Takahashi, Ohgi; Kirikoshi, Ryota; Manabe, Noriyoshi

    2016-01-01

    In proteins and peptides, d-aspartic acid (d-Asp) and d-β-Asp residues can be spontaneously formed via racemization of the succinimide intermediate formed from l-Asp and l-asparagine (l-Asn) residues. These biologically uncommon amino acid residues are known to have relevance to aging and pathologies. Although nonenzymatic, the succinimide racemization will not occur without a catalyst at room or biological temperature. In the present study, we computationally investigated the mechanism of succinimide racemization catalyzed by dihydrogen phosphate ion, H2PO4−, by B3LYP/6-31+G(d,p) density functional theory calculations, using a model compound in which an aminosuccinyl (Asu) residue is capped with acetyl (Ace) and NCH3 (Nme) groups on the N- and C-termini, respectively (Ace–Asu–Nme). It was shown that an H2PO4− ion can catalyze the enolization of the Hα–Cα–C=O portion of the Asu residue by acting as a proton-transfer mediator. The resulting complex between the enol form and H2PO4− corresponds to a very flat intermediate region on the potential energy surface lying between the initial reactant complex and its mirror-image geometry. The calculated activation barrier (18.8 kcal·mol−1 after corrections for the zero-point energy and the Gibbs energy of hydration) for the enolization was consistent with the experimental activation energies of Asp racemization. PMID:27735868

  18. USING FLY ASH TO STUDY ON THE MECHANISM OF THE ABSORPTION OF HEAVY METAL IONS IN WASTEWATER

    Institute of Scientific and Technical Information of China (English)

    程建光

    2000-01-01

    Using the method of sedentary thermal experiment, the use of fly ash to remove Zn2+,Cu2+ and Pb2+ in waste water was studied. Special attention was paid to the effects of pH and time degree of activity on absorbing ability. The freundlich model applicable to the absorption data was set. Also the mechanism of absorption and ultra-micro structure of fly ash with the help of TEM was put forward.

  19. Mesoporous anatase TiO2 nanorods as thermally robust anode materials for Li-ion batteries: detailed insight into the formation mechanism.

    Science.gov (United States)

    Seisenbaeva, Gulaim A; Nedelec, Jean-Marie; Daniel, Geoffrey; Tiseanu, Carmen; Parvulescu, Vasile; Pol, Vilas G; Abrego, Luis; Kessler, Vadim G

    2013-12-16

    Uniformly mesoporous and thermally robust anatase nanorods were produced with quantitative yield by a simple and efficient one-step approach. The mechanism of this process was revealed by insertion of Eu(3+) cations from the reaction medium as luminescent probes. The obtained structure displays an unusually high porosity, an active surface area of about 300 m(2) g(-1) and a specific capacity of 167 mA h g(-1) at a C/3 rate, making it attractive as an anode electrode for Li-ion batteries. An additional attractive feature is its remarkable thermal stability; heating to 400 °C results in a decrease in the active surface area to a still relatively high value of 110 m(2) g(-1) with conservation of open mesoporosity. Thermal treatment at 800 °C or higher, however, causes transformation into a non-porous rutile monolith, as commonly observed with nanoscale titania.

  20. New understanding of Li3VO4/C as potential anode for Li-ion batteries: Preparation, structure characterization and lithium insertion mechanism

    Science.gov (United States)

    Liang, Zhiyong; Lin, Zhiping; Zhao, Yanming; Dong, Youzhong; Kuang, Quan; Lin, Xinghao; Liu, Xudong; Yan, Danlin

    2015-01-01

    The article gives a totally new understanding about lithium insertion behavior of Li3VO4 as potential anode material for Li-ion batteries. The carbon-coated Li3VO4 (Li3VO4/C) sample was synthesized firstly using simple solid-state method. X-ray diffraction, Raman spectra and Rietveld refinement results show that single-phase Li3VO4/C can be obtained even under the presence of carbon and reducing atmosphere. The final product demonstrates a favorable electronic conductivity with 6.67% residual carbon. Electrochemical testing shows that Li3VO4/C holds both much higher specific capacity and better electrochemical performance than that of carbon-free Li3VO4 sample. The Li3VO4/C electrode display a discharge capacity of 738.5 mAh g-1 and a charge (reversible) capacity of 547.1 mAh g-1 with a high initial coulombic efficiency of 78.0% in the first cycle. First-principles calculation and GITT results illustrate that the maximum embeddable Li-ion number in a single cell is 3 corresponding to the change of V5+ to V2+, and the Li-inserted sites is predicted by first-principles calculations. Furthermore, lithium insertion/de-insertion mechanism of Li3VO4/C is studied by in-situ XRD, and the results surely confirm that Li3VO4/C undergoes a reversible insertion/de-insertion mechanism during discharge/charge process.

  1. High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism.

    Science.gov (United States)

    Li, Linsen; Meng, Fei; Jin, Song

    2012-11-14

    The increasing demands from large-scale energy applications call for the development of lithium-ion battery (LIB) electrode materials with high energy density. Earth abundant conversion cathode material iron trifluoride (FeF(3)) has a high theoretical capacity (712 mAh g(-1)) and the potential to double the energy density of the current cathode material based on lithium cobalt oxide. Such promise has not been fulfilled due to the nonoptimal material properties and poor kinetics of the electrochemical conversion reactions. Here, we report for the first time a high-capacity LIB cathode that is based on networks of FeF(3) nanowires (NWs) made via an inexpensive and scalable synthesis. The FeF(3) NW cathode yielded a discharge capacity as high as 543 mAh g(-1) at the first cycle and retained a capacity of 223 mAh g(-1) after 50 cycles at room temperature under the current of 50 mA g(-1). Moreover, high-resolution transmission electron microscopy revealed the existence of continuous networks of Fe in the lithiated FeF(3) NWs after discharging, which is likely an important factor for the observed improved electrochemical performance. The loss of active material (FeF(3)) caused by the increasingly ineffective reconversion process during charging was found to be a major factor responsible for the capacity loss upon cycling. With the advantages of low cost, large quantity, and ease of processing, these FeF(3) NWs are not only promising battery cathode materials but also provide a convenient platform for fundamental studies and further improving conversion cathodes in general.

  2. A QM/MM investigation of the catalytic mechanism of metal-ion-independent core 2 β1,6-N-acetylglucosaminyltransferase.

    Science.gov (United States)

    Tvaroška, Igor; Kozmon, Stanislav; Wimmerová, Michaela; Koča, Jaroslav

    2013-06-17

    β1,6-GlcNAc-transferase (C2GnT) is an important controlling factor of biological functions for many glycoproteins and its activity has been found to be altered in breast, colon, and lung cancer cells, in leukemia cells, in the lymhomonocytes of multiple sclerosis patients, leukocytes from diabetes patients, and in conditions causing an immune deficiency. The result of the action of C2GnT is the core 2 structure that is essential for the further elongation of the carbohydrate chains of O-glycans. The catalytic mechanism of this metal-ion-independent glycosyltransferase is of paramount importance and is investigated here by using quantum mechanical (QM) (density functional theory (DFT))/molecular modeling (MM) methods with different levels of theory. The structural model of the reaction site used in this report is based on the crystal structures of C2GnT. The entire enzyme-substrate system was subdivided into two different subsystems: the QM subsystem containing 206 atoms and the MM region containing 5914 atoms. Three predefined reaction coordinates were employed to investigate the catalytic mechanism. The calculated potential energy surfaces discovered the existence of a concerted SN 2-like mechanism. In this mechanism, a nucleophilic attack by O6 facilitated by proton transfer to the catalytic base and the separation of the leaving group all occur almost simultaneously. The transition state for the proposed reaction mechanism at the M06-2X/6-31G** (with diffuse functions on the O1', O5', OGlu , and O6 atoms) level was located at C1-O6=1.74 Å and C1-O1=2.86 Å. The activation energy for this mechanism was estimated to be between 20 and 29 kcal mol⁻¹, depending on the method used. These calculations also identified a low-barrier hydrogen bond between the nucleophile O6H and the catalytic base Glu320, and a hydrogen bond between the N-acetamino group and the glycosidic oxygen of the donor in the TS. It is proposed that these interactions contribute to a

  3. A novel isotachophoresis of cobalt and copper complexes by metal ion substitution reaction in a continuous moving chelation boundary.

    Science.gov (United States)

    Zhang, Wei; Chen, Jian-Feng; Fan, Liu-Yin; Cao, Cheng-Xi; Ren, Ji-Cun; Li, Si; Shao, Jing

    2010-01-01

    A novel separation mode of isotachophoresis (ITP) was advanced for the study on the continuous moving chelation boundary (MCB) formed with EDTA and two metal ions of Co(II) and Cu(II). The experiments were performed systemically. The relevant results indicated that: (1) there were three boundaries in the whole system, viz., a sharp MCB, a wide moving substitution boundary (MSB) and a sharp complex boundary (CB); (2) within the MSB, an ion substitution reaction occurred between [Co-EDTA](2-) and Cu(II), and the reaction resulted in the release of Co(II) and EDTA from [Co-EDTA](2-) and the binding of Cu(II) with the released EDTA due to log K(Cu(II)) (= 18.80) > log K(Co(II)) (= 16.31); (3) because of the novel ITP mode induced by the MSB as well as the merging of the MCB and CB, the original low concentration Co(II) and Cu(II) were chemically separated as two characteristic coloured zones of pink [Co-EDTA](2-) and blue [Cu-EDTA](2-), and the sensitivities for detection of the two metal ions were greatly enhanced. The quantitative analyses of the zone composition by ICP-AES and UV-vis spectrophotometry supported the mechanism of the novel separation mode induced by the MSB. The further theoretical and experimental results indicated that the separation mode was a novel ITP relied on moving reaction boundary (MRB), rather than a classic ITP based on the moving boundary system developed about 60 years ago. These findings provide guidance for the development of the MRB and the MCB-based ITP separation of metal ions in environmental and biological matrices.

  4. Effect of humic acid and transition metal ions on the debromination of decabromodiphenyl by nano zero-valent iron: kinetics and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lei; Liang, Bin; Fang, Zhanqiang, E-mail: sunmoon124@163.com; Xie, Yingying [South China Normal University, School of Chemistry and Environment (China); Tsang, Eric Pokeung [Guangdong Technology Research Centre for Ecological Management and Remediation of Water System (China)

    2014-12-15

    E-waste sites are one of the main sources of the pollutant decabromodiphenyl ether (BDE209); contaminated farmland and water bodies urgently need to be remediated. As a potential in situ remediation technology, nano zero-valent iron (nZVI) technology effectively removes PBDEs. However, the humic acid (HA) and heavy metals in the contaminated sites affect the remediation effects. In this study, we explored the influence of HA and transition metals on the removal of PBDEs by nZVI. The specific surface area and average size of the nZVI particles we prepared were 35 m{sup 2}/g and 50–80 nm, respectively. The results showed that HA inhibited the removal of PBDEs; as the concentration of HA increased, its inhibitory effect intensified and the k{sub obs} decreased. However, the three metal ions (Cu{sup 2+}, Co{sup 2+}, and Ni{sup 2+}) enhanced the removal of PBDEs. The enhancement effect was followed the order Ni{sup 2+} > Cu{sup 2+} > Co{sup 2+}. As the concentration of metal ions increased, the promotion effect improved. The synergistic effect of HA and the metal ions was manifested in the combination of the inhibitory effect and the enhancement effect. The values of the first-order kinetic constants (k{sub obs}) under the combined effect were between the values of the rate constants under the individual components. The inhibitory mechanism was the chemisorption of HA, i.e., the benzene carboxylic and phenolic hydroxyl groups in HA occupied the surfactant reactive sites of nZVI, thus inhibiting the removal of BDE209. The promotion mechanism of Cu{sup 2+}, Co{sup 2+}, and Ni{sup 2+} can be explained by their reduction to zero valence on the nZVI surface; furthermore, Ni{sup 2+} strongly affects the debromination and dehydrogenation of BDE209, leading to a stronger promotability than Cu{sup 2+}or Co{sup 2+}.

  5. Poly(ethylene oxide)-co-poly(propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries.

    Science.gov (United States)

    Wang, Shih-Hong; Hou, Sheng-Shu; Kuo, Ping-Lin; Teng, Hsisheng

    2013-09-11

    Using gel polymer electrolytes (GPEs) for lithium-ion batteries usually encounters the drawback of poor mechanical integrity of the GPEs. This study demonstrates the outstanding performance of a GPE consisting of a commercial membrane (Celgard) incorporated with a poly(ethylene oxide)-co-poly(propylene oxide) copolymer (P(EO-co-PO)) swelled by a liquid electrolyte (LE) of 1 M LiPF6 in carbonate solvents. The proposed GPE stably holds LE with an amount that is three times that of the Celgard-P(EO-co-PO) composite. This GPE has a higher ionic conductivity (2.8×10(-3) and 5.1×10(-4) S cm(-1) at 30 and -20 °C, respectively) and a wider electrochemical voltage range (5.1 V) than the LE-swelled Celgard because of the strong ion-solvation power of P(EO-co-PO). The active ion-solvation role of P(EO-co-PO) also suppresses the formation of the solid-electrolyte interphase layer. When assembling the GPE in a Li/LiFePO4 battery, the P(EO-co-PO) network hinders anionic transport, producing a high Li+ transference number of 0.5 and decreased the polarization overpotential. The Li/GPE/LiFePO4 battery delivers a discharge capacity of 156-135 mAh g(-1) between 0.1 and 1 C-rates, which is approximately 5% higher than that of the Li/LE/LiFePO4 battery. The IR drop of the Li/GPE/LiFePO4 battery was 44% smaller than that of the Li/LE/LiFePO4. The Li/GPE/LiFePO4 battery is more stable, with only a 1.2% capacity decay for 150 galvanostatic charge-discharge cycles. The advantages of the proposed GPE are its high stability, conductivity, Li+ transference number, and mechanical integrity, which allow for the assembly of GPE-based batteries readily scalable to industrial levels.

  6. A Proposed Mechanism for the Thermal Denaturation of a Recombinant Bacillus Halmapalus Alpha-amylase - the Effect of Calcium Ions

    Science.gov (United States)

    Nielsen, Anders D.; Pusey, Marc L.; Fuglsang, Claus C.; Westh, Peter

    2003-01-01

    The thermal stability of a recombinant alpha-amylase from Bacillus halmapalus alpha-amylase (BHA) has been investigated using circular dichroism spectroscopy (CD) and differential scanning calorimetry (DSC). This alpha-amylase is homologous to other Bacillus alpha-amylases where previous crystallographic studies have identified the existence of 3 calcium binding sites in the structure. Denaturation of BHA is irreversible with a Tm of approximately 89 C, and DSC thermograms can be described using a one-step irreversible model. A 5 C increase in T(sub m) in the presence of 10 fold excess CaCl2 was observed. However, a concomitant increase in the tendency to aggregate was also observed. The presence of 30-40 fold excess calcium chelator (EDTA or EGTA) results in a large destabilization of BHA corresponding to about 40 C lower T(sub m), as determined by both CD and DSC. Ten fold excess EGTA reveals complex DSC thermograms corresponding to both reversible and irreversible transitions, which possibly originate from different populations of BHA:calcium complexes. The observations in the present study have, in combination with structural information of homologous alpha-amylases, provided the basis for the proposal of a simple denaturation mechanism of BHA. The proposed mechanism describes the irreversible thermal denaturation of different BHA:calcium complexes and the calcium binding equilibrium involved. Furthermore, the model accounts for a temperature induced reversible structural change associated with calcium binding.

  7. Mechanics and transport modeling of particulate and fibrous network: Toward design of improved nickel metal hydride and lithium-ion battery technologies

    Science.gov (United States)

    Wang, Chia-Wei

    2002-01-01

    The main goals of this work were to gain insight into the transport and mechanical properties of the particulate and fibrous network materials widely used as electrodes in NiMH and Li-Ion batteries. During electrochemical cycling, the networks experience multiaxial loading, resulting in degradation and morphology changes of the electrode materials. A stochastic finite element model was used to investigate the effects of morphologic parameters on material properties. This work comprised two studies, of mechanics and transport, respectively, in porous materials. In a mechanics study, beam elements were used to model segments of the networks; several assumptions were investigated to model bond properties and local failures. In the transport study, another stochastic finite element model was developed, wherein particles were modeled as generalized ellipses. A four-point-probe experimental technique was used to measure electrode conductivity, for validation of the models. In the mechanics study, network simulations and two-beam models showed that use of the Euler beam assumption was adequate for the nickel networks of interest, since the shortest segments in the networks apparently served only as rigid connections; most of the network deformation occurred with bending of the longer aspect ratio segments. A torsion spring bond assumption was found suitable for modeling imperfect bonding and curved fibers in the networks. The scale effect was found to be important; simulations less than one staple length in size resulted in unrealistically stiff networks. In the transport study, simulation results showed moderate increases in fiber or whisker aspect ratio significantly improved conductivity, offering immediately practical advice for manufacturers. Overall, the capability of determining the effect of particle shape on material properties makes the stochastic model superior to continuum approaches for porous media. Further work will include extension to 3D materials, and

  8. Impact of citric acid and calcium ions on acid solubilization of mechanically separated turkey meat: effect on lipid and pigment content.

    Science.gov (United States)

    Hrynets, Y; Omana, D A; Xu, Y; Betti, M

    2011-02-01

    Increased demand for poultry products has resulted in an increased availability of by-products, such as the neck, back, and frame, that can be processed into mechanically separated poultry meat. The major problems with mechanically separated poultry meat are its high lipid content, color instability, and high susceptibility to lipid oxidation. The present work was undertaken to determine the effect of different concentrations of citric acid and calcium ions on protein yield, color characteristics, and lipid removal from protein isolates prepared using an acid-aided extraction process. Six levels of citric acid (0, 2, 4, 6, 8, and 10 mmol/L) and 2 levels of calcium chloride (0 and 8 mmol/L) were examined. The entire experiment was replicated 3 times, resulting in 36 extractions (3 × 6 × 2). The highest (P citric acid. In general, all the combinations removed an average of 90.8% of the total lipids from mechanically separated turkey meat, ranging from 86.2 to 94.7%. The lowest amount (1.14%) of total lipids obtained was for samples treated with 4 mmol/L of citric acid. Maximum removal of neutral lipids (96.5%) and polar lipids (96.4%) was attained with the addition of 6 and 2 mmol/L of citric acid, respectively. Polar lipid content was found to be significantly (P = 0.0045) affected by the presence of calcium chloride. The isolated proteins were less (P citric acid. Addition of calcium chloride had a negative effect on total pigment content. The study revealed that acid extractions with the addition of citric acid resulted in substantial removal of lipids and pigments from mechanically separated turkey meat, improved stability of the recovered proteins against lipid oxidation, and appreciable protein recovery yields.

  9. Quantification of uncertainty in first-principles predicted mechanical properties of solids: Application to solid ion conductors

    CERN Document Server

    Ahmad, Zeeshan

    2016-01-01

    Computationally-guided material discovery is being increasingly employed using a descriptor-based screening through the calculation of a few properties of interest. A precise understanding of the uncertainty associated with first principles density functional theory calculated property values is important for the success of descriptor-based screening. Bayesian error estimation approach has been built-in to several recently developed exchange-correlation functionals, which allows an estimate of the uncertainty associated with properties related to the ground state energy, for e.g. adsorption energies. Here, we propose a robust and computationally efficient method for quantifying uncertainty in mechanical properties, which depends on the derivatives of the energy. The procedure involves calculating the energy around the equilibrium cell volume with different strains and fitting the obtained energies to the corresponding energy-strain relationship. At each strain, we use instead of a single energy, an ensemble o...

  10. The mechanism of the sodiation and desodiation in Super P carbon electrode for sodium-ion battery

    Science.gov (United States)

    Wu, Chun-Ming; Pan, Ping-I.; Cheng, Yin-Wei; Liu, Chuan-Pu; Chang, Chia-Chin; Avdeev, Maxim; Lin, Shih-kang

    2017-02-01

    The sodiation and desodiation of sodium (Na) into the Super-P carbon anode material were investigated using electrochemical analyses, high-resolution transmission electron microscopy (HRTEM), and neutron powder diffraction (NPD). In the sodiated Super-P carbon, sodium is stored both in the graphite interlayer space of carbon nano-particles and pores between the particles. Sodium metal clusters found in micro-pores between the carbon particles are responsible for the large irreversible capacity of the Super-P electrode. The graphite interlayer distance increases on sodiation from 3.57 Å to two distinct values of ∼3.84 and 4.41 Å. The mechanism of the process is discussed.

  11. Temperature effects on the interaction mechanisms between the europium (III) and uranyl ions and zirconium diphosphate; Effets de la temperature sur les mecanismes d'interaction entre les ions europium (3) et uranyle et le diphosphate de zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Finck, N

    2006-10-15

    Temperature should remain higher than 25 C in the near field environment of a nuclear waste repository for thousands years. In this context, the aim of this work is to study the temperature influence on the interaction mechanisms between europium (III) and uranyl ions and zirconium diphosphate, as well as the influence of a complexing medium (nitrate) on the sorption of the lanthanide. The experimental definition of the equilibria was achieved by combining a structural investigation with the macroscopic sorption data. Surface complexes were characterized at all temperatures (25 C to 90 C) by TRLFS experiments carried out on dry and in situ samples using an oven. This characterization was completed by XPS experiments carried out at 25 C on samples prepared at 25 C and 90 C. The reaction constants (surface hydration and cations sorption) were obtained by simulating the experimental data with the constant capacitance surface complexation model. The reaction constants temperature dependency allowed one to characterize thermodynamically the different reactions by application of the van't Hoff relation. The validity of this law was tested by performing microcalorimetric measurements of the sorption heat for both cations. (author)

  12. Mechanisms of distal nephron ion transport and regulation%远端肾单位离子转运及调控机制

    Institute of Scientific and Technical Information of China (English)

    茆俊花; 李建中

    2013-01-01

    Distal nephron is composed of DCT,CNT,and CD,which plays a critical role in regulating kidney ion transport. The discovery of WNKs and elaudins points to the underlying mechanisms that dictate Na+ , K+ and Cl- transport in the distal nephron. They should be understood in order to fully comprehend the pathophysiology, manifestations, and treatment of many clinical entities such as hypovolemic shock,congestive heart failure,primary hyperaldosteronism, pseudo-hypoaldosteronism and hypertension et al. Here the underlying molecular mechanisms that dictate Na+,K+ and Cl -handling in the distal nephron is reviewed.%远曲小管、连接小管及集合管组成位于致密斑远端的远端肾单位,是调控肾脏离子转运的重要组成部分.远端肾单位离子转运功能失调与临床上多种疾病(如高血压、假性醛固酮减少症等)的发生发展密切相关.准确了解远端肾单位离子转运及其分子调控机制有助更好地理解相关疾病的发病机制.本文就远端肾单位Na+、K+和Cl-转运及凋控机制的最新研究进展作一综述.

  13. Effect of titanium incorporation on the structural, mechanical and biocompatible properties of DLC thin films prepared by reactive-biased target ion beam deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Bharathy, P. Vijai [Thin Films and Nanomaterials Lab, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Department of Mechanical Engineering, University of Saskatchewan, Saskatoon (Canada); Nataraj, D., E-mail: de.natraj@gmail.com [Thin Films and Nanomaterials Lab, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India); Chu, Paul K.; Wang, Huaiyu [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Yang, Q. [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon (Canada); Kiran, M.S.R.N. [School of Physics, University of Hyderabad, Hyderabad, Andra Pradesh (India); Silvestre-Albero, J. [Laboratorio de Materiales Avanzados, Departmento de Quimica Inorganica, Universidad de Alicante, Ap 99, E-03080 Alicante (Spain); Mangalaraj, D. [Thin Films and Nanomaterials Lab, School of Physical Sciences, Bharathiar University, Coimbatore 641046 (India)

    2010-10-15

    Amorphous diamond like carbon (DLC) and titanium incorporated diamond like carbon (Ti-DLC) thin films were deposited by using reactive-biased target ion beam deposition method. The effects of Ti incorporation and target bias voltage on the microstructure and mechanical properties of the as-deposited films were investigated by means of X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy and nano-indentation. It was found that the Ti content in Ti-DLC films gets increased with increasing target bias voltage. At about 4.2 at.% of Ti, uniform sized well dispersed nanocrystals were seen in the DLC matrix. Using FFT analysis, a facility available in the TEM, it was found that the nanocrystals are in cubic TiC phase. Though at the core, the incorporated Ti atoms react with carbon to form cubic TiC; most of the surface exposed Ti atoms were found to react with the atmospheric oxygen to form weakly bonded Ti-O. The presence of TiC nanocrystals greatly modified the sp{sup 3}/sp{sup 2} hybridized bonding ratio and is reflected in mechanical hardness of Ti-DLC films. These films were then tested for their biocompatibility by an invitro cell culturing test. Morphological observation and the cell proliferation test have demonstrated that the human osteoblast cells well attach and proliferate on the surface of Ti incorporated DLC films, suggesting possible applications in bone related implant coatings.

  14. Probing the mechanical properties and microstructure of WSi2/SixGe1-x multiphase thermoelectric material by nanoindentation, electron and focused ion beam microscopy methods

    Science.gov (United States)

    Sola, Francisco; Dynys, Frederick

    2015-03-01

    Silicon germanium (SiGe) thermoelectric (TE) alloys have been traditionally used in radioisotope thermoelectric generators (RTG) NASA applications. While RTG applications is the main driver of our current research, we are exploring other applications in the energy harvesting arena. There is still a need to improve the TE figure of merit (ZT) of SiGe based TE alloys and we have been working on ways to improve it by incorporating tungsten di-silicide (WSi2) phases in to the matrix by directional solidification process. Considerable efforts have been focused until now in microstructural engineering methods that can lead to ZT improvement by microstructure optimization. Although critical for the previous mentioned applications, work pertinent to the mechanical integrity of WSi2/SiGe based TE materials is lacking. In this presentation, we report local mechanical properties (hardness, modulus and fracture toughness) and microstructure of WSi2/SiGe multiphase thermoelectric material by nanoindentation, scanning electron microscopy, focused ion beam and transmission electron microscopy methods.

  15. Light Particle Emission Mechanisms in Heavy-Ion Reactions at 5-20 MeV/u

    Directory of Open Access Journals (Sweden)

    Fotina O.V.

    2010-03-01

    Full Text Available Light Charged Particle emission mechanisms were studied for different mass entrance channel nuclear reactions. The 300, 400, 500 MeV 64Ni + 68Zn and 130, 250 MeV 16O + 116Sn reactions were measured at the Legnaro National Laboratory using the beams from the TANDEM-ALPI acceleration system. Light Charged Particles were measured in coincidence with Evaporation Residues and their spectra were analyzed using the global moving source fit technique. The characterization of different emission sources (evaporative, pre-equilibrium, break-up is discussed. The behavior of pre-equilibrium emission as a function of projectile energy, excitation energy and mass-asymmetry in the entrance channel was studied, evaluating the energy, mass and charge lost by the composite systems and using Griffin exciton model for the pre-equilibrium neutron emission. The present results are compared with the systematics of the asymmetric mass entrance channel reactions. The present work shows that also at the onset the pre-equilibrium emission depends not only on the projectile velocity but also on the reaction entrance channel mass-asymmetry. The first attempt of the particle spectra analysis using the Griffin exciton model is demonstrated for the case of proton emission in the 130 MeV 16O + 116Sn reaction.

  16. Testing of coalescence mechanism in high energy heavy ion collisions using two-particle correlations with identified particle trigger

    CERN Document Server

    Choudhury, Subikash; Chattopadhyay, Subhasis

    2016-01-01

    In central Au-Au collisions at top RHIC energy, two particle correlation measurements with identified hadron trigger have shown attenuation of near side proton triggered jet-like yield at intermediate transverse momentum ($p{_T}$), 2$< p{_T} <$ 6 GeV/$\\it{c}$. The attenuation has been attributed to the anomalous baryon enhancement observed in the single inclusive measurements at the same $p{_T}$ range. The enhancement has been found to be in agreement with the models invoking coalescence of quarks as a mechanism of hadronization. Baryon enhancement has also been observed at LHC in the single inclusive spectra. We study the consequence of such an enhancement on two particle correlations at LHC energy within the framework of A Multi Phase Transport (AMPT) model that implements quark coalescence as a mode of hadronization. In this paper we have calculated the proton over pion ratio and the near side per trigger yield associated to pion and proton triggers at intermediate $p{_T}$ from String Melting (SM) ve...

  17. Effect of ferrous/ferric ions molar ratio on reaction mechanism for hydrothermal synthesis of magnetite nanoparticles

    Indian Academy of Sciences (India)

    N Mizutani; T Iwasaki; S Watano; T Yanagida; H Tanaka; T Kawai

    2008-10-01

    Magnetite nanoparticles were prepared by hydrothermal synthesis under various initial ferrous/ferric molar ratios without adding any oxidizing and reducing agents in order to clarify effects of the molar ratio on the reaction mechanism for the formation of magnetite nanoparticles. The magnetite nanoparticles prepared were characterized by a scanning electron microscope, powder X-ray diffractometer, and superconducting quantum interference device (SQUID). At the molar ratio corresponding to the stoichiometric ratio in the synthesis reaction of magnetite from ferrous hydroxide and goethite, the nucleation of magnetite crystals progressed rapidly in an initial stage of the hydrothermal synthesis, resulting in formation of the magnetite nanoparticles having a smaller size and a lower crystallinity. On the other hand, at higher molar ratios, the particle size and crystallinity increased with increasing molar ratio because using surplus ferrous hydroxide the crystallites of magnetite nanoparticles grew up slowly under hydrothermal conditions according to the Schikorr reaction. The magnetite nanoparticles prepared under various molar ratios had good magnetic properties regardless of the molar ratio.

  18. Mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Nastasović, Aleksandra B., E-mail: anastaso@chem.bg.ac.rs [University of Belgrade, Institute of Chemistry Technology and Metallurgy, Department of Chemistry, Department of Microelectronic Technologies, Njegoševa 12, Belgrade (Serbia); Ekmeščić, Bojana M. [University of Belgrade, Institute of Chemistry Technology and Metallurgy, Department of Chemistry, Department of Microelectronic Technologies, Njegoševa 12, Belgrade (Serbia); and others

    2016-11-01

    Highlights: • Macroporous PGME-deta sorption potential for Pb(II), Cd(II) and Cu(II) was studied. • Sorption kinetics obeyed pseudo-second order model. • Maximal Pb(II), Cd(II) and Cu(II) sorption capacities were 164, 152 and 120 mg g{sup −1}. • AFM indicates that metal sorption changes the size and morphology of PGME-deta. • XPS suggests complexation through the formation of Me−O and Me−N bonds in PGME-deta. - Abstract: The mechanism of Cu(II), Cd(II) and Pb(II) ions sorption from aqueous solutions by macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (PGME) functionalized by reaction of the pendant epoxy groups with diethylene triamine (PGME-deta) was studied using X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis. Atomic force microscopy (AFM) and scanning energy-dispersive X-ray spectroscopy (SEM-EDX) were used for the determination of surface morphology of the copolymer particles. The sorption behavior of heavy metals Cu(II), Cd(II) and Pb(II) ions sorption was investigated in batch static experiments under non-competitive conditions at room temperature (298 K). The obtained results were fitted to pseudo-first order, pseudo-second order and intraparticle diffusion kinetic model. The kinetics studies showed that Cu(II), Cd(II) and Pb(II) sorption obeys the pseudo-second-order model under all investigated operating conditions with evident influence of pore diffusion.

  19. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  20. Block of GABA(A) receptor ion channel by penicillin: electrophysiological and modeling insights toward the mechanism.

    Science.gov (United States)

    Rossokhin, Alexey V; Sharonova, Irina N; Bukanova, Julia V; Kolbaev, Sergey N; Skrebitsky, Vladimir G

    2014-11-01

    GABA(A) receptors (GABA(A)R) mainly mediate fast inhibitory neurotransmission in the central nervous system. Different classes of modulators target GABA(A)R properties. Penicillin G (PNG) belongs to the class of noncompetitive antagonists blocking the open GABA(A)R and is a prototype of β-lactam antibiotics. In this study, we combined electrophysiological and modeling approaches to investigate the peculiarities of PNG blockade of GABA-activated currents recorded from isolated rat Purkinje cells and to predict the PNG binding site. Whole-cell patch-сlamp recording and fast application system was used in the electrophysiological experiments. PNG block developed after channel activation and increased with membrane depolarization suggesting that the ligand binds within the open channel pore. PNG blocked stationary component of GABA-activated currents in a concentration-dependent manner with IC50 value of 1.12mM at -70mV. The termination of GABA and PNG