Quasiclassical methods for spin-charge coupled dynamics in low-dimensional systems
Energy Technology Data Exchange (ETDEWEB)
Corini, Cosimo
2009-06-12
Spintronics is a new field of study whose broad aim is the manipulation of the spin degrees of freedom in solid state systems. One of its main goals is the realization of devices capable of exploiting, besides the charge, the carriers' - and possibly the nuclei's - spin. The presence of spin-orbit coupling in a system enables the spin and charge degrees of freedom to ''communicate'', a favorable situation if one is to realize such devices. More importantly, it offers the opportunity of doing so by relying solely on electric fields, whereas magnetic fields are otherwise required. Eminent examples of versatile systems with built-in and variously tunable spin-orbit interaction are two-dimensional electron - or hole - gases. The study of spin-charge coupled dynamics in such a context faces a large number of open questions, both of the fundamental and of the more practical type. To tackle the problem we rely on the quasiclassical formalism. This is an approximate quantum-field theoretical formulation with a solid microscopic foundation, perfectly suited for describing phenomena at the mesoscopic scale, and bearing a resemblance to standard Boltzmann theory which makes for physical transparency. Originally born to deal with transport in electron-phonon systems, we first generalize it to the case in which spin-orbit coupling is present, and then move on to apply it to specific situations and phenomena. Among these, to the description of the spin Hall effect and of voltage induced spin polarizations in two-dimensional electron gases under a variety of conditions - stationary or time-dependent, in the presence of magnetic and non-magnetic disorder, in the bulk or in confined geometries -, and to the problem of spin relaxation in narrow wires. (orig.)
Carlström, Johan
2017-09-01
I derive a dual description of lattice fermions, specifically focusing on the t-J and Hubbard models, that allow diagrammatic techniques to be employed efficiently in the strongly correlated regime, as well as for systems with a restricted Hilbert space. These constructions are based on spin-charge transformation, where the lattice fermions of the original model are mapped onto spins and spin-less fermions. This mapping can then be combined with Popov-Fedotov fermionisation, where the spins are mapped onto lattice fermions with imaginary chemical potential. The resulting models do not contain any large expansion parameters, even for strongly correlated systems. Also, they exhibit dramatically smaller corrections to the density matrix from nonlinear terms in the Hamiltonian. The combination of these two properties means that they can be addressed with diagrammatic methods, including simulation techniques based on stochastic sampling of diagrammatic expansions.
The Two-level Management System of University and School
Institute of Scientific and Technical Information of China (English)
Yang Xu
2013-01-01
With the development of our country's higher e-ducation, the school also presents the great-leap-forward devel-opment trend. The previous denotative development has changed into the way of connotative development. The two-level management system of university and school is the most common management mode in many colleges. This paper intro-duces the advantage of this mode in the objective view, analyzes the problems existing in the practice operation, put forward countermeasures to improve the two-level management and proposes a method to build the two-level management system.
Field correlations and effective two level atom-cavity systems
Rebic, S; Tan, S M
2004-01-01
We analyse the properties of the second order correlation functions of the electromagnetic field in atom-cavity systems that approximate two-level systems. It is shown that a recently-developed polariton formalism can be used to account for all the properties of the correlations, if the analysis is extended to include two manifolds - corresponding to the ground state and the states excited by a single photon - rather than just two levels.
Directory of Open Access Journals (Sweden)
Shenghan Jiang
2014-09-01
Full Text Available Recently, two interesting candidate quantum phases—the chiral spin-density wave state featuring anomalous quantum Hall effect and the d+id superconductor—were proposed for the Hubbard model on the honeycomb lattice at 1/4 doping. Using a combination of exact diagonalization, density matrix renormalization group, the variational Monte Carlo method, and quantum field theories, we study the quantum phase diagrams of both the Hubbard model and the t-J model on the honeycomb lattice at 1/4 doping. The main advantage of our approach is the use of symmetry quantum numbers of ground-state wave functions on finite-size systems (up to 32 sites to sharply distinguish different quantum phases. Our results show that for 1≲U/t<40 in the Hubbard model and for 0.1
Modulated two-level system: exact work statistics.
Verley, Gatien; Van den Broeck, Christian; Esposito, Massimiliano
2013-09-01
We consider an open two-level system driven by a piecewise constant periodic field and described by a rate equation with Fermi, Bose, and Arrhenius rates, respectively. We derive an analytical expression for the generating function and large deviation function of the work performed by the field and show that a work fluctuation theorem holds.
Berry phase in a generalized nonlinear two-level system
Institute of Scientific and Technical Information of China (English)
Liu Ji-Bing; Li Jia-Hua; Song Pei-Jun; Li Wei-Bin
2008-01-01
In this paper,we investigate the behaviour of the geometric phase of a more generalized nonlinear system composed of an effective two-level system interacting with a single-mode quantized cavity field.Both the field nonlinearity and the atom-field coupling nonlinearity are considered.We find that the geometric phase depends on whether the index k is an odd number or an even number in the resonant case.In addition,we also find that the geometric phase may be easily observed when the field nonlinearity is not considered.The fractional statistical phenomenon appears in this system if the strong nonlinear atom-field coupling is considered.We have also investigated the geometric phase of an effective two-level system interacting with a two-mode quantized cavity field.
Possible Minkowskian Language in Two-level Systems
Kim, Y S
2008-01-01
One hundred years ago, in 1908, Hermann Minkowski completed his proof that Maxwell's equations are covariant under Lorentz transformations. During this process, he introduced a four-dimensional space called the Minkowskian space. In 1949, P. A. M. Dirac showed the Minkowskian space can be handled with the light-cone coordinate system with squeeze transformations. While the squeeze is one of the fundamental mathematical operations in optical sciences, it could serve useful purposes in two-level systems. Some possibilities are considered in this report. It is shown possible to cross the light-cone boundary in optical and two-level systems while it is not possible in Einstein's theory of relativity.
Model discrimination for dephasing two-level systems
Energy Technology Data Exchange (ETDEWEB)
Gong, Er-ling [Department of Automatic Control, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China); College of Science (Physics), Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom); Zhou, Weiwei [Department of Automatic Control, College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073 (China); Schirmer, Sophie, E-mail: sgs29@swan.ac.uk [College of Science (Physics), Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom)
2015-02-06
The problem of model discriminability and parameter identifiability for dephasing two-level systems subject to Hamiltonian control is studied. Analytic solutions of the Bloch equations are used to derive explicit expressions for observables as functions of time for different models. This information is used to give criteria for model discrimination and parameter estimation based on simple experimental paradigms. - Highlights: • Analytic expressions for observables of driven, dephasing two-level systems. • Distinguishability of dephasing models via Rabi-oscillation experiments. • General identifiability of model parameters and cases of failure. • Application to empirically determine of effect of driving on dephasing basis. • Importance for optimal design of coherent controls for qubits subject to dephasing.
Two-level systems driven by large-amplitude fields
Nori, F.; Ashhab, S.; Johansson, J. R.; Zagoskin, A. M.
2009-03-01
We analyze the dynamics of a two-level system subject to driving by large-amplitude external fields, focusing on the resonance properties in the case of driving around the region of avoided level crossing. In particular, we consider three main questions that characterize resonance dynamics: (1) the resonance condition, (2) the frequency of the resulting oscillations on resonance, and (3) the width of the resonance. We identify the regions of validity of different approximations. In a large region of the parameter space, we use a geometric picture in order to obtain both a simple understanding of the dynamics and quantitative results. The geometric approach is obtained by dividing the evolution into discrete time steps, with each time step described by either a phase shift on the basis states or a coherent mixing process corresponding to a Landau-Zener crossing. We compare the results of the geometric picture with those of a rotating wave approximation. We also comment briefly on the prospects of employing strong driving as a useful tool to manipulate two-level systems. S. Ashhab, J.R. Johansson, A.M. Zagoskin, F. Nori, Two-level systems driven by large-amplitude fields, Phys. Rev. A 75, 063414 (2007). S. Ashhab et al, unpublished.
Ultra-short strong excitation of two-level systems
Jha, Pankaj K.; Eleuch, Hichem; Grazioso, Fabio
2014-11-01
We present a model describing the use of ultra-short strong pulses to control the population of the excited level of a two-level quantum system. In particular, we study an off-resonance excitation with a few cycles pulse which presents a smooth phase jump i.e. a change of the pulse's phase which is not step-like, but happens over a finite time interval. A numerical solution is given for the time-dependent probability amplitude of the excited level. The control of the excited level's population is obtained acting on the shape of the phase transient, and other parameters of the excitation pulse.
Ultra-short strong excitation of two-level systems
2013-01-01
We present a model describing the use of ultra-short strong pulses to control the population of the excited level of a two-level quantum system. In particular, we study an off-resonance excitation with a few cycles pulse which presents a smooth phase jump i.e. a change of the pulse's phase which is not step-like, but happens over a finite time interval. A numerical solution is given for the time-dependent probability amplitude of the excited level. The control of the excited level's populatio...
Noise from Two-Level Systems in Superconducting Resonators
Neill, C.; Barends, R.; Chen, Y.; Chiaro, B.; Jeffrey, E.; Kelly, J.; Mariantoni, M.; Megrant, A.; Mutus, J.; Ohya, S.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Cleland, A. N.; Martinis, J. M.
2013-03-01
Two-level systems (TLSs) present in amorphous dielectrics and surface interfaces are a significant source of decoherence in superconducting qubits. Linear microwave resonators offer a valuable instrument for characterizing the strongly power-dependent response of these TLSs. Using quarter-wavelength coplanar waveguide resonators, we monitored the microwave response of the resonator at a single near-resonant frequency versus time at varying microwave drive powers. We observe a time dependent variation of the resonator's internal dissipation and resonance frequency. The amplitude of these variations saturates with power in a manner similar to loss from TLSs. These results provide a means for quantifying the number and distribution of TLSs.
Comparison of time optimal control for two level quantum systems
Institute of Scientific and Technical Information of China (English)
Shuang Cong; Jie Wen; Xubo Zou
2014-01-01
The time optimal problem for a two level quantum sys-tem is studied. We compare two different control strategies of bang-bang control and the geometric control, respectively, es-pecial y in the case of minimizing the time of steering the state from North Pole to South Pole on the Bloch sphere with bounded control. The time performances are compared for different param-eters by the individual numerical simulation experiments, and the experimental results are analyzed. The results show that the ge-ometric control spends less time than the bang-bang control does.
Variational Study on a Dissipative Two-Level System
Institute of Scientific and Technical Information of China (English)
ZHU Wei-Wing; REN Qing-Bao; CHEN Qing-Hu
2008-01-01
A new variational approach is proposed to study the ground-state of a two-level system coupled to a dispersionless phonon bath. By the extended coherent state, where the more phonon correlations are easily incorporated, we can obtain very accurate ground state energy and the tunnelling reduction factor in all regime of tunnelling matrix element δo and coupling parameter s. The relative difference between the present ones and those by exact numerical diagonalization is less then 0.001%. In addition, some simple analytical results are given in the limits of δo/s → 0 and ∞.
Two-level tunneling systems in amorphous alumina
Lebedeva, Irina V.; Paz, Alejandro P.; Tokatly, Ilya V.; Rubio, Angel
2014-03-01
The decades of research on thermal properties of amorphous solids at temperatures below 1 K suggest that their anomalous behaviour can be related to quantum mechanical tunneling of atoms between two nearly equivalent states that can be described as a two-level system (TLS). This theory is also supported by recent studies on microwave spectroscopy of superconducting qubits. However, the microscopic nature of the TLS remains unknown. To identify structural motifs for TLSs in amorphous alumina we have performed extensive classical molecular dynamics simulations. Several bistable motifs with only one or two atoms jumping by considerable distance ~ 0.5 Å were found at T=25 K. Accounting for the surrounding environment relaxation was shown to be important up to distances ~ 7 Å. The energy asymmetry and barrier for the detected motifs lied in the ranges 0.5 - 2 meV and 4 - 15 meV, respectively, while their density was about 1 motif per 10 000 atoms. Tuning of motif asymmetry by strain was demonstrated with the coupling coefficient below 1 eV. The tunnel splitting for the symmetrized motifs was estimated on the order of 0.1 meV. The discovered motifs are in good agreement with the available experimental data. The financial support from the Marie Curie Fellowship PIIF-GA-2012-326435 (RespSpatDisp) is gratefully acknowledged.
Franson Interference Generated by a Two-Level System
Peiris, M.; Konthasinghe, K.; Muller, A.
2017-01-01
We report a Franson interferometry experiment based on correlated photon pairs generated via frequency-filtered scattered light from a near-resonantly driven two-level semiconductor quantum dot. In contrast to spontaneous parametric down-conversion and four-wave mixing, this approach can produce single pairs of correlated photons. We have measured a Franson visibility as high as 66%, which goes beyond the classical limit of 50% and approaches the limit of violation of Bell's inequalities (70.7%).
Quantum modeling of two-level photovoltaic systems
Aram, Tahereh Nemati; Asgari, Asghar; Ernzerhof, Matthias; Quémerais, Pascal; Mayou, Didier
2017-06-01
We present a quantum formalism that provides a quantitative picture of the fundamental processes of charge separation that follow an absorption event. We apply the formalism to two-level photovoltaic cells and our purpose is to pedagogically explain the main aspects of the model. The formalism is developed in the energy domain and provides detailed knowledge about existence or absence of localized states and their effects on electronic structure and photovoltaic yield.
A Two-Level Spreading-despreading CDMA System and Its Performance Evaluation
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
A new two-level spreading-despreading scheme is presented in this paper. By adopting the two-level scheme, the Generalized Orthogonal (GO) zone of GO codes can be utilized. In this paper, the forward link of a multi-cell CDMA system employing the two-level scheme is presented and analyzed. The BER performance obtained by Gaussian Approximation is compared with that of the conventional single-level spreading-despreading system. The results reveal that the two*$-level CDMA system introduced in this paper exhibits larger performance gain when time delay can be restricted within a given zone.
Two-Level Incremental Checkpoint Recovery Scheme for Reducing System Total Overheads
Li, Huixian; Pang, Liaojun; Wang, Zhangquan
2014-01-01
Long-running applications are often subject to failures. Once failures occur, it will lead to unacceptable system overheads. The checkpoint technology is used to reduce the losses in the event of a failure. For the two-level checkpoint recovery scheme used in the long-running tasks, it is unavoidable for the system to periodically transfer huge memory context to a remote stable storage. Therefore, the overheads of setting checkpoints and the re-computing time become a critical issue which directly impacts the system total overheads. Motivated by these concerns, this paper presents a new model by introducing i-checkpoints into the existing two-level checkpoint recovery scheme to deal with the more probable failures with the smaller cost and the faster speed. The proposed scheme is independent of the specific failure distribution type and can be applied to different failure distribution types. We respectively make analyses between the two-level incremental and two-level checkpoint recovery schemes with the Weibull distribution and exponential distribution, both of which fit with the actual failure distribution best. The comparison results show that the total overheads of setting checkpoints, the total re-computing time and the system total overheads in the two-level incremental checkpoint recovery scheme are all significantly smaller than those in the two-level checkpoint recovery scheme. At last, limitations of our study are discussed, and at the same time, open questions and possible future work are given. PMID:25111048
Time-Minimal Control of Dissipative Two-level Quantum Systems: the Generic Case
Bonnard, B; Sugny, D
2008-01-01
The objective of this article is to complete preliminary results concerning the time-minimal control of dissipative two-level quantum systems whose dynamics is governed by Lindblad equations. The extremal system is described by a 3D-Hamiltonian depending upon three parameters. We combine geometric techniques with numerical simulations to deduce the optimal solutions.
Design and Implementation of Two-Level Metadata Server in Small-Scale Cluster File System
Institute of Scientific and Technical Information of China (English)
LIU Yuling; YU Hongfen; SONG Weiwei
2006-01-01
The reliability and high performance of metadata service is crucial to the store architecture. A novel design of a two-level metadata server file system (TTMFS) is presented, which behaves high reliability and performance. The merits both centralized management and distributed management are considered simultaneously in our design. In this file system, the advanced-metadata server is responsible for manage directory metadata and the whole namespace. The double-metadata server is responsible for maintaining file metadata. And this paper uses the Markov return model to analyze the reliability of the two-level metadata server. The experiment data indicates that the design can provide high throughput.
The Two-Level System of Higher Education: Western Traditions and Russian Reality
Druzhilov, S. A.
2011-01-01
The law on the two-level system of higher education has now gone into effect in Russia: the bachelor's degree will correspond to the first level of higher education, while the master's degree will correspond to the second level. These levels entail separate state educational standards and separate final certification. In the process of adopting…
Exact Solution of the Two-Level System and the Einstein Solid in the Microcanonical Formalism
Bertoldi, Dalia S.; Bringa, Eduardo M.; Miranda, E. N.
2011-01-01
The two-level system and the Einstein model of a crystalline solid are taught in every course of statistical mechanics and they are solved in the microcanonical formalism because the number of accessible microstates can be easily evaluated. However, their solutions are usually presented using the Stirling approximation to deal with factorials. In…
Broadband EM radiation amplification by means of a monochromatically driven two-level system
Soldatov, Andrey V.
2017-02-01
It is shown that a two-level quantum system possessing dipole moment operator with permanent non-equal diagonal matrix elements and driven by external semiclassical monochromatic high-frequency electromagnetic (EM) (laser) field can amplify EM radiation waves of much lower frequency.
Time-minimal control of dissipative two-level quantum systems: The Integrable case
Bonnard, B
2008-01-01
The objective of this article is to apply recent developments in geometric optimal control to analyze the time minimum control problem of dissipative two-level quantum systems whose dynamics is governed by the Lindblad equation. We focus our analysis on the case where the extremal Hamiltonian is integrable.
Mankoč Borštnik, Norma Susana
The spin-charge-family theory, which is a kind of the Kaluza-Klein theories but with fermions carrying two kinds of spins (no charges), offers the explanation for all the assumptions of the standard model, with the origin of families, the higgs and the Yukawa couplings included. It offers the explanation also for other phenomena, like the origin of the dark matter and of the matter/antimatter asymmetry in the universe. It predicts the existence of the fourth family to the observed three, as well as several scalar fields with the weak and the hyper charge of the standard model higgs (± 1/2 ∓ 1/2], respectively), which determine the mass matrices of family members, offering an explanation, why the fourth family with the masses above 1 TeV contributes weakly to the gluon-fusion production of the observed higgs and to its decay into two photons, and predicting that the two photons events, observed at the LHC at ≈ 750 GeV, might be an indication for the existence of one of several scalars predicted by this theory.
Transmission Dynamics of a Driven Two-Level System Dissipated by Leads
Institute of Scientific and Technical Information of China (English)
ZHANG Ping; FAN Wen-Bin; ZHAO Xian-Geng
2001-01-01
We study the transmission dynamics of a driven two-level system dissipated by the two leads. Using the nonequilibrium Green function, we derive an analytical transmission formula for an electron incident from the left lead,through the double quantum dots, to the right lead. The Landauer-type conductance and current are also given.A discussion of the internal tunnelling dynamics reveals crucial effects of the localization and delocalization on the transport of the system.
Zeno and Anti Zeno effect for a two level system in a squeezed bath
Mundarain, D F
2005-01-01
We discuss the appearance of Zeno (QZE) or anti-Zeno (QAE) effect in an exponentially decaying system. We consider the quantum dynamics of a continuously monitored two level system interacting with a squeezed bath. We find that the behavior of the system depends critically on the way in which the squeezed bath is prepared. For specific choices of the squeezing phase the system shows Zeno or anti-Zeno effect in conditions for which it would decay exponentially if no measurements were done. This result allows for a clear interpretation in terms of the equivalent spin system interacting with a fictitious magnetic field.
Energy Technology Data Exchange (ETDEWEB)
Tan, Xinsheng [National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045 (United States); Yu, Haifeng, E-mail: hfyu@nju.edu.cn; Yu, Yang, E-mail: yuyang@nju.edu.cn [National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Han, Siyuan [Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045 (United States)
2015-09-07
We demonstrate a fast method to detect microscopic two-level systems in a superconducting phase qubit. By monitoring the population leak after sweeping the qubit bias flux, we are able to measure the two-level systems that are coupled with the qubit. Compared with the traditional method that detects two-level systems by energy spectroscopy, our method is faster and more sensitive. This method supplies a useful tool to investigate two-level systems in solid-state qubits.
Photon-statistics excitation spectroscopy of a single two-level system
Strauß, Max; Placke, Marlon; Kreinberg, Sören; Schneider, Christian; Kamp, Martin; Höfling, Sven; Wolters, Janik; Reitzenstein, Stephan
2016-06-01
We investigate the influence of the photon statistics on the excitation dynamics of a single two-level system. A single semiconductor quantum dot represents the two-level system and is resonantly excited either with coherent laser light, or excited with chaotic light, with photon statistics corresponding to that of thermal radiation. Experimentally, we observe a reduced absorption cross section under chaotic excitation in the steady state. In the transient regime, the Rabi oscillations observable under coherent excitation disappear under chaotic excitation. Likewise, in the emission spectrum, the well-known Mollow triplet, which we observe under coherent drive, disappears under chaotic excitation. Our observations are fully consistent with theoretical predictions based on the semiclassical Bloch equation approach.
Photon-Statistics Excitation Spectroscopy of a Single Two Level System
Strauß, M; Kreinberg, S; Schneider, C; Kamp, M; Höfling, S; Wolters, J; Reitzenstein, S
2016-01-01
We investigate the influence of the photon statistics on the excitation dynamics of a single two level system. A single semiconductor quantum dot represents the two level system and is resonantly excited either with coherent laser light, or excited with chaotic light, with photon statistics corresponding to that of thermal radiation. Experimentally, we observe a reduced absorption cross-section under chaotic excitation in the steady-state. In the transient regime, the Rabi oscillations observable under coherent excitation disappear under chaotic excitation. Likewise, in the emission spectrum the well-known Mollow triplet, which we observe under coherent drive, disappears under chaotic excitation. Our observations are fully consistent with theoretical predictions based on the semi-classical Bloch equation approach.
Weak-Coupling Theory for Low-Frequency Periodically Driven Two-Level Systems
Institute of Scientific and Technical Information of China (English)
CHEN Ai-Xi; HUANG Ke-Lin; WANG Zhi-Ping
2008-01-01
We generalize the Wu-Yang strong-coupling theory to solve analytically periodically driven two-level systems in the weak-coupling and low-frequency regimes for single- and multi-period periodic driving of continuous-wave-type and pulse-type including ultrashort pulses of a few cycles. We also derive a general formula of the AC Stark shift suitable for such diverse situations.
Total Quantum Zeno effect and Intelligent States for a two level system in a squeezed bath
Mundarain, D; Stephany, J
2006-01-01
In this work we show that by frequent measurements of adequately chosen observables, a complete suppression of the decay in an exponentially decaying two level system interacting with a squeezed bath is obtained. The observables for which the effect is observed depend on the the squeezing parameters of the bath. The initial states which display Total Zeno Effect are intelligent states of two conjugate observables associated to the electromagnetic fluctuations of the bath.
Automatic Detection of Cervical Cancer Cells by a Two-Level Cascade Classification System
Directory of Open Access Journals (Sweden)
Jie Su
2016-01-01
Full Text Available We proposed a method for automatic detection of cervical cancer cells in images captured from thin liquid based cytology slides. We selected 20,000 cells in images derived from 120 different thin liquid based cytology slides, which include 5000 epithelial cells (normal 2500, abnormal 2500, lymphoid cells, neutrophils, and junk cells. We first proposed 28 features, including 20 morphologic features and 8 texture features, based on the characteristics of each cell type. We then used a two-level cascade integration system of two classifiers to classify the cervical cells into normal and abnormal epithelial cells. The results showed that the recognition rates for abnormal cervical epithelial cells were 92.7% and 93.2%, respectively, when C4.5 classifier or LR (LR: logical regression classifier was used individually; while the recognition rate was significantly higher (95.642% when our two-level cascade integrated classifier system was used. The false negative rate and false positive rate (both 1.44% of the proposed automatic two-level cascade classification system are also much lower than those of traditional Pap smear review.
Quantum dynamics of a microwave driven superconducting phase qubit coupled to a two-level system
Sun, Guozhu; Wen, Xueda; Mao, Bo; Zhou, Zhongyuan; Yu, Yang; Wu, Peiheng; Han, Siyuan
2010-10-01
We present an analytical and comprehensive description of the quantum dynamics of a microwave resonantly driven superconducting phase qubit coupled to a microscopic two-level system (TLS), covering a wide range of the external microwave field strength. Our model predicts several interesting phenomena in such an ac driven four-level bipartite system including anomalous Rabi oscillations, high-contrast beatings of Rabi oscillations, and extraordinary two-photon transitions. Our experimental results in a coupled qubit-TLS system agree quantitatively very well with the predictions of the theoretical model.
The Master Equation for Two-Level Accelerated Systems at Finite Temperature
Tomazelli, J. L.; Cunha, R. O.
2016-10-01
In this work, we study the behaviour of two weakly coupled quantum systems, described by a separable density operator; one of them is a single oscillator, representing a microscopic system, while the other is a set of oscillators which perform the role of a reservoir in thermal equilibrium. From the Liouville-Von Neumann equation for the reduced density operator, we devise the master equation that governs the evolution of the microscopic system, incorporating the effects of temperature via Thermofield Dynamics formalism by suitably redefining the vacuum of the macroscopic system. As applications, we initially investigate the behaviour of a Fermi oscillator in the presence of a heat bath consisting of a set of Fermi oscillators and that of an atomic two-level system interacting with a scalar radiation field, considered as a reservoir, by constructing the corresponding master equation which governs the time evolution of both sub-systems at finite temperature. Finally, we calculate the energy variation rates for the atom and the field, as well as the atomic population levels, both in the inertial case and at constant proper acceleration, considering the two-level system as a prototype of an Unruh detector, for admissible couplings of the radiation field.
Experimental investigation of slow light propagation in degenerate two-level system
Institute of Scientific and Technical Information of China (English)
Wang Li-Rong; Zhao Yan-Ting; Ma Jie; Zhao Jian-Ming; Xiao Lian-Tuan; Jia Suo-Tang
2006-01-01
Slowing a light pulse in a degenerate two-level system is observed with a double-frequency sweeping technique. The effects of coupling beam intensity, cell temperature and frequency detunings of the coupling and probe beams in resonance, on the slowing of light propagation in such a system are investigated. It is found that group velocities depend strongly on polarization combinations. A group velocity υg=6760m/s of light pulses in caesium vapour is obtained under the optimal parameters.
Analysis of Two-Level Support Systems with Time-Dependent Overflow - A Banking Application
DEFF Research Database (Denmark)
Barth, Wolfgang; Manitz, Michael; Stolletz, Raik
2010-01-01
is available. The analysis of such a system with time-dependent overflow is reduced to the analysis of a continuous-time Markov chain with state-dependent overflow probabilities. To approximate the system with time-dependent overflow, some waiting-based performance measures are modified. Numerical results......In this paper, we analyze the performance of call centers of financial service providers with two levels of support and a time-dependent overflow mechanism. Waiting calls from the front-office queue flow over to the back office if a waiting-time limit is reached and at least one back-office agent...
Load-Balance Policy in Two Level-Cluster File System
Institute of Scientific and Technical Information of China (English)
LIU Yuling; SONG Weiwei; MA Xiaoxue
2006-01-01
In this paper, we explored a load-balancing algorithm in a cluster file system contains two levels of metadata-server,primary-level server quickly distributestasks to second-level servers depending on the closest load-balancing information. At the same time, we explored a method which accurately reflect I/O traffic and storage of storage-node: computing the heat-value of file, according to which we realized a more logical storage allocation. According to the experiment result, we conclude that this new algorithm shortens the executing time of tasks and improves the system performance compared with other load algorithm.
A two-level formal specification of a defense communications system
Energy Technology Data Exchange (ETDEWEB)
Chisholm, G.H. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.; Kemmerer, R.A. [Univ. of California, Santa Barbara, CA (United States). Reliable Software Group
1994-04-01
Computer systems are being used in critical situations with sensitive data, which makes it very important to ensure that these systems perform as desired. The defense communications system contains particularly sensitive data. A two-level ASLAN formal specification of a defense communications system is presented. The ASLAN model is designed to enhance the understanding of critical requirements and demands of the defense communications system. For the top-level (high-level) specifications, the structural details of the actual network are actual network are abstracted to allow more time for examining the interactions between the sites and the network. At this level, DataGrams move through the network, although the actual routing decisions are not specified. More details are added in the second-level specification. At this level, structure is added to the network.
Ultra-short, off-resonant, strong excitation of two-level systems
Jha, Pankaj K; Grazioso, Fabio
2013-01-01
We present a model describing the use of ultra-short strong pulses to populate the excited level of a two-level quantum system. In particular, we study an off-resonance excitation with a few cycles pulse which presents a smooth phase jump i.e. a change of the pulse's phase which is not step-like, but happens over a finite time interval. A numerical solution is given for the time-dependent probability amplitude of the excited level. The enhancement of the excited level's population is optimized with respect to the shape of the phase transient, and to other parameters of the excitation pulse.
Enhancing student learning of two-level quantum systems with interactive simulations
Kohnle, Antje; Campbell, Anna; Korolkova, Natalia; Paetkau, Mark J
2015-01-01
The QuVis Quantum Mechanics Visualization project aims to address challenges of quantum mechanics instruction through the development of interactive simulations for the learning and teaching of quantum mechanics. In this article, we describe evaluation of simulations focusing on two-level systems developed as part of the Institute of Physics Quantum Physics resources. Simulations are research-based and have been iteratively refined using student feedback in individual observation sessions and in-class trials. We give evidence that these simulations are helping students learn quantum mechanics concepts at both the introductory and advanced undergraduate level, and that students perceive simulations to be beneficial to their learning.
Miao, Qiang; Zheng, Yujun
2016-06-29
In this paper, the nature of the multi-order resonance and coherent destruction of tunneling (CDT) for two-level system driven cross avoided crossing is investigated by employing the emitted photons 〈N〉 and the Mandel's Q parameter based on the photon counting statistics. An asymmetric feature of CDT is shown in the spectrum of Mandel's Q parameter. Also, the CDT can be employed to suppress the spontaneous decay and prolong waiting time noticeably. The photon emission pattern is of monotonicity in strong relaxation, and homogeneity in pure dephasing regime, respectively.
Miao, Qiang; Zheng, Yujun
2016-06-01
In this paper, the nature of the multi-order resonance and coherent destruction of tunneling (CDT) for two-level system driven cross avoided crossing is investigated by employing the emitted photons and the Mandel’s Q parameter based on the photon counting statistics. An asymmetric feature of CDT is shown in the spectrum of Mandel’s Q parameter. Also, the CDT can be employed to suppress the spontaneous decay and prolong waiting time noticeably. The photon emission pattern is of monotonicity in strong relaxation, and homogeneity in pure dephasing regime, respectively.
Interaction of Lamb modes with two-level systems in amorphous nanoscopic membranes.
Energy Technology Data Exchange (ETDEWEB)
Kuhn, T.; Anghel, D. V.; Galperin, Y. M.; Manninen, M.; Materials Science Division; Univ. Jyvaskyla; National Inst. for Physics and Nuclear Engineering; Bogolivbov Lab. Theoretical Physics; Univ. Oslo; Russian Academy of Sciences
2007-01-01
Using a generalized model of interaction between a two-level system (TLS) and an arbitrary deformation of the material, we calculate the interaction of Lamb modes with TLSs in amorphous nanoscopic membranes. We compare the mean free paths of the Lamb modes of different symmetries and calculate the heat conductivity {kappa}. In the limit of an infinitely wide membrane, the heat conductivity is divergent. Nevertheless, the finite size of the membrane imposes a lower cutoff for the phonon frequencies, which leads to the temperature dependence {kappa}{alpha}T(a+b ln T). This temperature dependence is a hallmark of the TLS-limited heat conductance at low temperature.
Optimal state transfer of a single dissipative two-level system
Jirari, Hamza; Wu, Ning
2016-04-01
Optimal state transfer of a single two-level system (TLS) coupled to an Ohmic boson bath via off-diagonal TLS-bath coupling is studied by using optimal control theory. In the weak system-bath coupling regime where the time-dependent Bloch-Redfield formalism is applicable, we obtain the Bloch equation to probe the evolution of the dissipative TLS in the presence of a time-dependent external control field. By using the automatic differentiation technique to compute the gradient for the cost functional, we calculate the optimal transfer integral profile that can achieve an ideal transfer within a dimer system in the Fenna-Matthews-Olson (FMO) model. The robustness of the control profile against temperature variation is also analyzed.
Interaction between two SU(1 , 1) quantum systems and a two-level atom
Abdalla, M. Sebawe; Khalil, E. M.; Obada, A. S.-F.
2016-07-01
We consider a two-level atom interacting with two coupled quantum systems that can be represented in terms of su(1 , 1) Lie algebra. The wave function that is obtained using the evolution operator for the atom is initially in a superposition state and the coupled su(1 , 1) systems in a pair coherent Barut-Girardello coherent state. We then discuss atomic inversion, where more periods of revivals are observed and compared with a single su(1 , 1) quantum system. For entanglement and squeezing phenomena, the atomic angles coherence and phase as well as the detuning are effective parameters. The second-order correlation function displays Bunching and anti-Bunching behavior.
On Two-Level State-Dependent Routing Polling Systems with Mixed Service
Directory of Open Access Journals (Sweden)
Guan Zheng
2015-01-01
Full Text Available Based on priority differentiation and efficiency of the system, we consider an N+1 queues’ single-server two-level polling system which consists of one key queue and N normal queues. The novel contribution of the present paper is that we consider that the server just polls active queues with customers waiting in the queue. Furthermore, key queue is served with exhaustive service and normal queues are served with 1-limited service in a parallel scheduling. For this model, we derive an expression for the probability generating function of the joint queue length distribution at polling epochs. Based on these results, we derive the explicit closed-form expressions for the mean waiting time. Numerical examples demonstrate that theoretical and simulation results are identical and the new system is efficient both at key queue and normal queues.
Assessment of two-level heat pump installations’ power efficiency for heat supply systems
Directory of Open Access Journals (Sweden)
Аlla Е. Denysova
2015-06-01
Full Text Available The problem of energy saving becomes one of the most important in power engineering. It is caused by exhaustion of world reserves in hydrocarbon fuel, such as gas, oil and coal representing sources of traditional heat supply. Conventional sources has essential shortcomings: low power, ecological and economic efficiencies, that can be eliminated by using alternative methods of power supply, like the considered one: low-temperature natural heat of ground waters of on the basis of heat pump installations application. The heat supply system considered provides an effective use of two-level heat pump installation operating as heat source the Odessa city ground waters during the lowest ambient temperature period. Proposed is a calculation method of heat pump installations on the basis of geothermal heat supply. Calculated are the values of electric energy consumption N by the compressors’ drive, and the heat supply system transformation coefficient µ for a source of geothermal heat from ground waters of Odessa city allowing to estimate efficiency of two-level heat pump installations.
Amplification without inversion, fast light and optical bistability in a duplicated two-level system
Energy Technology Data Exchange (ETDEWEB)
Ebrahimi Zohravi, Lida; Vafafard, Azar; Mahmoudi, Mohammad, E-mail: mahmoudi@znu.ac.ir
2014-07-01
The optical properties of a weak probe field in a duplicated two-level system are investigated in multi-photon resonance (MPR) condition and beyond it. It is shown that by changing the relative phase of applied fields, the absorption switches to the amplification without inversion in MPR condition. By applying the Floquet decomposition to the equations of motion beyond MPR condition, it is shown that the phase-dependent behavior is valid only in MPR condition. Moreover, it is demonstrated that the group velocity of light pulse can be controlled by the intensity of the applied fields and the gain-assisted superluminal light propagation (fast light) is obtained in this system. In addition, the optical bistability (OB) behavior of the system is studied beyond MPR condition. We apply an indirect incoherent pumping field to the system and it is found that the group velocity and OB behavior of the system can be controlled by the incoherent pumping rate. - Highlights: • We studied the optical properties of DTL system under MPR condition and beyond it. • By changing the relative phase, the absorption switches to the amplification without inversion in MPR condition. • The gain-assisted superluminal light propagation (fast light) is obtained in this system. • The optical bistability (OB) behavior of the system is studied beyond MPR condition. • The incoherent pumping rate has a major role in controlling the group velocity and OB behavior of the system.
Solvent effects on the optical properties of two-level systems with permanent dipole moments
Mastrodomenico, A.; Izquierdo, M. A.; Paz, J. L.; Colmenares, P.
2013-11-01
The inclusion of the permanent dipole moments and the solvent on the optical conventional Bloch equations (OCBE) allowed us to obtain analytical expressions for the optical properties of a two-level molecular system. We employed the methodology developed by Colmenares et al.1, in which they model the collisional effect of the solvent through a stochastical function, ξ(t) = ω0 + σ(t), so the OCBE become a set of coupled integro-differential stochastical equations that we solved, up to third order in the incident field, employing the perturbation theory. Once obtained the analytical expressions for the density matrix elements, macroscopic polarization and effective susceptibility of the system, we studied the optical properties derived in the frequency space, inside and outside the rotating wave approximation.
Equivalence of the measures of non-Markovianty for open two-level systems
Zeng, Hao-Sheng; Zheng, Yan-Ping; Wang, Guo-You
2011-01-01
In order to depict the deviation of quantum time evolution in open systems from Markovian processes, different measures have been presented. We demonstrate that the measure proposed by Breuer, Laine and Piilo [Phys. Rev. Lett. 103, 210401 (2009)] and the two measures proposed by Rivas, Huelga and Plenio [Phys. Rev. Lett. 105, 050403 (2010)] have exactly the same non-Markovian time-evolution intervals and thus are really equivalent each other when they apply to open two-level systems coupled to environments via Jaynes-Cummings or dephasing models. This equivalence implies that the three measures in different ways capture the intrinsical characters of non-Markovianty of quantum evolutional processes. We also show that the maximization in the definition of the first measure can be actually removed for the considered models without influencing the sensibility of the measure to detect non-Markovianty.
Equivalence of the measures of non-Markovianity for open two-level systems
Energy Technology Data Exchange (ETDEWEB)
Zeng Haosheng; Tang Ning; Zheng Yanping; Wang Guoyou [Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081 (China)
2011-09-15
Different measures have been presented to depict the deviation of quantum time evolution in open systems from Markovian processes. We demonstrate that the measure proposed by Breuer, Laine, and Piilo [Phys. Rev. Lett. 103, 210401 (2009)] and the two measures proposed by Rivas, Huelga, and Plenio [Phys. Rev. Lett. 105, 050403 (2010)] have exactly the same non-Markovian time-evolution intervals and thus are really equivalent to each other when they are applied to open two-level systems coupled to environments via the Jaynes-Cummings or dephasing models. This equivalence implies that the three measures, in different ways, capture the intrinsic character of the non-Markovianity of quantum evolutional processes. We also show that the maximization in the definition of the first measure can be actually removed for the considered models without influencing the sensibility of the measure to detect non-Markovianity.
Quantum mechanical treatment of traveling light in an absorptive medium of two-level systems
Inoue, K.
2016-12-01
Quantum mechanical treatment of a light wave that propagates through an absorptive medium is presented. Unlike a phenomenological beam-splitter model conventionally employed to describe a traveling light in a lossy medium, the time evolution of the field operator is derived using the Heisenberg equation with the Hamiltonian for a physical system, where the light wave interacts with an ensemble of two-level systems in a medium. Using the obtained time-evolved field operators, the mean values and variances of the light amplitude and the photon number are evaluated. The results are in agreement with those obtained in the beam-splitter model, giving a logical theoretical basis for the phenomenological beam-splitter model.
Two Level Versus Matrix Converters Performance in Wind Energy Conversion Systems Employing DFIG
Reddy, Gongati Pandu Ranga; Kumar, M. Vijaya
2017-05-01
Wind power capacity has received enormous growth during past decades. With substantial development of wind power, it is expected to provide a fifth of world's electricity by the end of 2030. In wind energy conversion system, the power electronic converters play an important role. This paper presents the two level and matrix converters performance in wind energy conversion system employing Doubly Fed Induction Generator (DFIG). The DFIG is a wound rotor induction generator. Because of the advantages of the DFIG over other generators it is being used for most of the wind applications. This paper also discusses control of converters using the space vector pulse width modulation technique. The MATLAB/SIMULINK ® software is used to study the performance of the converters.
Three-body entanglement induced by spontaneous emission in a three two-level atoms system
Institute of Scientific and Technical Information of China (English)
Liao Xiang-Ping; Fang Mao-Fa; Zheng Xiao-Juan; Cai Jian-Wu
2006-01-01
We study three-body entanglement induced by spontaneous emission in a three two-level atoms system by using the entanglement tensor approach. The results show that the amount of entanglement is strongly dependent on the initial state of the system and the species of atoms. The three-body entanglement is the result of the coherent superposition of the two-body entanglements. The larger the two-body entanglement is, the stronger the three-body entanglement is. On the other hand, if there exists a great difference in three two-body entanglement measures, the three-body entanglement is very weak. We also find that the maximum of the two-body entanglement obtained with nonidentical atoms is greater than that obtained with identical atoms via adjusting the difference in atomic frequency.
Two-level system noise reduction for Microwave Kinetic Inductance Detectors
Noroozian, Omid; Zmuidzinas, Jonas; LeDuc, Henry G; Mazin, Benjamin A
2009-01-01
Noise performance is one of the most crucial aspects of any detector. Superconducting Microwave Kinetic Inductance Detectors (MKIDs) have an "excess" frequency noise that shows up as a small time dependent jitter of the resonance frequency characterized by the frequency noise power spectrum measured in units of Hz^2/Hz. Recent studies have shown that this noise almost certainly originates from a surface layer of two-level system (TLS) defects on the metallization or substrate. Fluctuation of these TLSs introduces noise in the resonator due to coupling of the TLS electric dipole moments to the resonator's electric field. Motivated by a semi-empirical quantitative theory of this noise mechanism, we have designed and tested new resonator geometries in which the high-field "capacitive" portion of the CPW resonator is replaced by an interdigitated capacitor (IDC) structure with 10 - 20 micron electrode spacing, as compared to the 2 micron spacing used for our more conventional CPW resonators. Measurements show tha...
Nonvolatile optical memory via recoil-induced resonance in a pure two-level system
de Almeida, A. J. F.; Maynard, M.-A.; Banerjee, C.; Felinto, D.; Goldfarb, F.; Tabosa, J. W. R.
2016-12-01
We report on the storage of light via the phenomenon of recoil-induced resonance in a pure two-level system of cold cesium atoms. We use a strong coupling beam and a weak probe beam to couple different external momentum states of the cesium atom via two-photon Raman interaction which leads to the storage of the optical information of the probe beam. We have also measured the probe transmission spectrum, as well as the light storage spectrum which reveals very narrow subnatural resonance features showing absorption and gain. We have demonstrated that this memory presents the unique property of being insensitive to the reading process, which does not destroy the stored information leading to a memory lifetime limited only by the atomic thermal motion.
A Two-Level Task Scheduler on Multiple DSP System for OpenCL
Directory of Open Access Journals (Sweden)
Li Tian
2014-04-01
Full Text Available This paper addresses the problem that multiple DSP system does not support OpenCL programming. With the compiler, runtime, and the kernel scheduler proposed, an OpenCL application becomes portable not only between multiple CPU and GPU, but also between embedded multiple DSP systems. Firstly, the LLVM compiler was imported for source-to-source translation in which the translated source was supported by CCS. Secondly, two-level schedulers were proposed to support efficient OpenCL kernel execution. The DSP/BIOS is used to schedule system level tasks such as interrupts and drivers; however, the synchronization mechanism resulted in heavy overhead during task switching. So we designed an efficient second level scheduler especially for OpenCL kernel work-item scheduling. The context switch process utilizes the 8 functional units and cross path links which was superior to DSP/BIOS in the aspect of task switching. Finally, dynamic loading and software managed CACHE were redesigned for OpenCL running on multiple DSP system. We evaluated the performance using some common OpenCL kernels from NVIDIA, AMD, NAS, and Parboil benchmarks. Experimental results show that the DSP OpenCL can efficiently exploit the computing resource of multiple cores.
Equivalence of the measures of non-Markovianity for open two-level systems
Zeng, Hao-Sheng; Tang, Ning; Zheng, Yan-Ping; Wang, Guo-You
2011-09-01
Different measures have been presented to depict the deviation of quantum time evolution in open systems from Markovian processes. We demonstrate that the measure proposed by Breuer, Laine, and Piilo [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.210401 103, 210401 (2009)] and the two measures proposed by Rivas, Huelga, and Plenio [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.105.050403 105, 050403 (2010)] have exactly the same non-Markovian time-evolution intervals and thus are really equivalent to each other when they are applied to open two-level systems coupled to environments via the Jaynes-Cummings or dephasing models. This equivalence implies that the three measures, in different ways, capture the intrinsic character of the non-Markovianity of quantum evolutional processes. We also show that the maximization in the definition of the first measure can be actually removed for the considered models without influencing the sensibility of the measure to detect non-Markovianity.
Low frequency critical current noise and two level system defects in Josephson junctions
Nugroho, Christopher Daniel
The critical current in a Josephson junction is known to exhibit a 1/falpha low frequency noise. Implemented as a superconducting qubit, this low frequency noise can lead to decoherence. While the 1/f noise has been known to arise from an ensemble of two level systems connected to the tunnel barrier, the precise microscopic nature of these TLSs remain a mystery. In this thesis we will present measurements of the 1/f alpha low frequency noise in the critical current and tunneling resistance of Al-AlOx-Al Josephson junctions. Measurements in a wide range of resistively shunted and unshunted junctions confirm the equality of critical current and tunneling resistance noise. That is the critical current fluctuation corresponds to fluctuations of the tunneling resistance. In not too small Al-AlOx-Al junctions we have found that the fractional power spectral density scales linearly with temperature. We confirmed that the 1/falpha power spectrum is the result of a large number of two level systems modulating the tunneling resistance. At small junction areas and low temperatures, the number of thermally active TLSs is insufficient to integrate out a featureless 1/ f spectral shape. By analyzing the spectral variance in small junction areas, we have been able to deduce the TLS defect density, n ≈ 2.53 per micrometer squared per Kelvin spread in the TLS energy per factor e in the TLS lifetimes. This density is consistent with the density of tunneling TLSs found in glassy insulators, as well as the density deduced from coherent TLSs interacting at qubit frequencies. The deduced TLS density combined with the magnitude of the 1/f power spectral density in large area junctions, gives an average TLS effective area, A ˜ 0.3 nanometer squared. In ultra small tunnel junctions, we have studied the time-domain dynamics of isolated TLSs. We have found a TLS whose dynamics is described by the quantum tunneling between the two localized wells, and a one-phonon absorption
Yan, Yiying; Lü, Zhiguo; Zheng, Hang
2016-08-01
We present a theoretical formalism for resonance fluorescence radiating from a two-level system (TLS) driven by any periodic driving and coupled to multiple reservoirs. The formalism is derived analytically based on the combination of Floquet theory and Born-Markov master equation. The formalism allows us to calculate the spectrum when the Floquet states and quasienergies are analytically or numerically solved for simple or complicated driving fields. We can systematically explore the spectral features by implementing the present formalism. To exemplify this theory, we apply the unified formalism to comprehensively study a generic model that a harmonically driven TLS is simultaneously coupled to a radiative reservoir and a dephasing reservoir. We demonstrate that the significant features of the fluorescence spectra, the driving-induced asymmetry and the dephasing-induced asymmetry, can be attributed to the violation of detailed balance condition, and explained in terms of the driving-related transition quantities between Floquet-states and their steady populations. In addition, we find the distinguished features of the fluorescence spectra under the biharmonic and multiharmonic driving fields in contrast with that of the harmonic driving case. In the case of the biharmonic driving, we find that the spectra are significantly different from the result of the RWA under the multiple resonance conditions. By the three concrete applications, we illustrate that the present formalism provides a routine tool for comprehensively exploring the fluorescence spectrum of periodically strongly driven TLSs.
Energy Technology Data Exchange (ETDEWEB)
Yan, Yiying, E-mail: yiyingyan@sjtu.edu.cn; Lü, Zhiguo, E-mail: zglv@sjtu.edu.cn; Zheng, Hang, E-mail: hzheng@sjtu.edu.cn
2016-08-15
We present a theoretical formalism for resonance fluorescence radiating from a two-level system (TLS) driven by any periodic driving and coupled to multiple reservoirs. The formalism is derived analytically based on the combination of Floquet theory and Born–Markov master equation. The formalism allows us to calculate the spectrum when the Floquet states and quasienergies are analytically or numerically solved for simple or complicated driving fields. We can systematically explore the spectral features by implementing the present formalism. To exemplify this theory, we apply the unified formalism to comprehensively study a generic model that a harmonically driven TLS is simultaneously coupled to a radiative reservoir and a dephasing reservoir. We demonstrate that the significant features of the fluorescence spectra, the driving-induced asymmetry and the dephasing-induced asymmetry, can be attributed to the violation of detailed balance condition, and explained in terms of the driving-related transition quantities between Floquet-states and their steady populations. In addition, we find the distinguished features of the fluorescence spectra under the biharmonic and multiharmonic driving fields in contrast with that of the harmonic driving case. In the case of the biharmonic driving, we find that the spectra are significantly different from the result of the RWA under the multiple resonance conditions. By the three concrete applications, we illustrate that the present formalism provides a routine tool for comprehensively exploring the fluorescence spectrum of periodically strongly driven TLSs.
Absorption spectrum of a two-level system subjected to a periodic pulse sequence
Fotso, H. F.; Dobrovitski, V. V.
2017-06-01
We investigate how the quantum control of a two-level system (TLS) coupled to photons can modify and tune the TLS's photon absorption spectrum. Tuning and controlling the emission and the absorption are of great interest, e.g., for the development of efficient interfaces between stationary and flying qubits in modern architectures for quantum computation and quantum communication. We consider periodic pulse control, where the TLS is subjected to a periodic sequence of the near-resonant Rabi driving pulses, each pulse implementing a 180∘ rotation. For small interpulse delays, the absorption spectrum features a pronounced peak of stimulated emission at the pulse frequency, similar satellite peaks with smaller spectral weights, and the net absorption peaks on the sides. As long as the detuning between the carrier frequency of the driving and the TLS transition frequency remains moderate, this spectral shape shows little change. Therefore, the pulse control allows shifting the absorption peak to a desired position and locks the overall absorption spectrum to the carrier frequency of the driving pulses. A detailed description of the spectrum and its evolution as a function time, the interpulse spacing, and the detuning is presented.
Non-Markovian dynamics of quantum coherence of two-level system driven by classical field
Huang, Zhiming; Situ, Haozhen
2017-09-01
In this paper, we study the quantum coherence dynamics of two-level atom system embedded in non-Markovian reservoir in the presence of classical driving field. We analyze the influence of memory effects, classical driving, and detuning on the quantum coherence. It is found that the quantum coherence has different behaviors in resonant case and non-resonant case. In the resonant case, in stark contrast with previous results, the strength of classical driving plays a negative effect on quantum coherence, while detuning parameter has the opposite effect. However, in non-resonant case through a long time, classical driving and detuning parameter have a different influence on quantum coherence compared with resonant case. Due to the memory effect of environment, in comparison with Markovian regime, quantum coherence presents vibrational variations in non-Markovian regime. In the resonant case, all quantum coherence converges to a fixed maximum value; in the non-resonant case, quantum coherence evolves to different stable values. For zero-coherence initial states, quantum coherence can be generated with evolution time. Our discussions and results should be helpful in manipulating and preserving the quantum coherence in dissipative environment with classical driving field.
Decoherence of a quantum two-level system by spectral diffusion
Matityahu, Shlomi; Shnirman, Alexander; Schön, Gerd; Schechter, Moshe
2016-04-01
We study the dephasing of an individual high-frequency tunneling two-level system (TLS) due to its interaction with an ensemble of low-frequency thermal TLSs which are described by the standard tunneling model (STM). We show that the dephasing by the bath of TLSs explains both the dependence of the Ramsey dephasing rate on an externally applied strain as well as its order of magnitude, as observed in a recent experiment [J. Lisenfeld et al., Sci. Rep. 6, 23786 (2016)], 10.1038/srep23786. However, the theory based on the STM predicts the Hahn-echo protocol to be much more efficient, yielding too low echo dephasing rates, as compared to the experiment. Also the strain dependence of the echo dephasing rate predicted by the STM does not agree with the measured quadratic dependence, which would fit to a high-frequency white noise environment. We suggest that few fast TLSs which are coupled much more strongly to the strain fields than the usual TLSs of the STM give rise to such a white noise. This explains the magnitude and strong fluctuations of the echo dephasing rate observed in the experiment.
Nonadiabatic transitions for a decaying two-level system: geometrical and dynamical contributions
Energy Technology Data Exchange (ETDEWEB)
Schilling, R [Institute of Physics, Johannes Gutenberg-Universitaet Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Vogelsberger, Mark [Institute of Physics, Johannes Gutenberg-Universitaet Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Garanin, D A [Physics Department, Lehman College, City University of New York, 250 Bedford Park Boulevard West, Bronx, NY 10468-1589 (United States)
2006-11-03
We study the Landau-Zener problem for a decaying two-level system described by a non-Hermitian Hamiltonian, depending analytically on time. Use of a super-adiabatic basis allows us to calculate the survival probability P in the slow-sweep limit, without specifying the Hamiltonian explicitly. It is found that P consists of a 'dynamical' and a 'geometrical' factor. The former is determined by the complex adiabatic eigenvalues E{sub {+-}}(t), only, whereas the latter solely requires the knowledge of {alpha}{sub {+-}}(t), the ratio of the components of each of the adiabatic eigenstates. Both factors can be split into a universal one, depending only on the complex level crossing points, and a nonuniversal one, involving the full time dependence of E{sub {+-}}(t) and {alpha}{sub {+-}}(t). This general result is applied to the Akulin-Schleich model where the initial upper level is damped with damping constant {gamma}. For analytic power-law sweeps we find that Stueckelberg oscillations of P exist for {gamma} smaller than a critical value {gamma}{sub c} and disappear for {gamma} > {gamma}{sub c}. A physical interpretation of this behaviour will be presented by use of a damped harmonic oscillator.
Institute of Scientific and Technical Information of China (English)
Zeng Ke; Fang Mao-Fa
2005-01-01
The entanglement properties of the system of two two-level atoms interacting with a single-mode vacuum field are explored. The quantum entanglement between two two-level atoms and a single-mode vacuum field is investigated by using the quantum reduced entropy; the quantum entanglement between two two-level atoms, and that between a single two-level atom and a single-mode vacuum field are studied in terms of the quantum relative entropy. The influences of the atomic dipole-dipole interaction on the quantum entanglement of the system are also discussed. Our results show that three entangled states of two atoms-field, atom-atom, and atom-field can be prepared via two two-level atoms interacting with a single-mode vacuum field.
Two levels decision system for efficient planning and implementation of bioenergy production
Energy Technology Data Exchange (ETDEWEB)
Ayoub, Nasser [Chemical Resources Laboratory, Process Systems Engineering Division, Tokyo Institute of Technology, R1-19, 4259 Nagatsuta, Midori-ku Yokohama 226-8503 (Japan)]. E-mail: nasser@pse.res.titech.ac.jp; Martins, Ricardo [Chemical Resources Laboratory, Process Systems Engineering Division, Tokyo Institute of Technology, R1-19, 4259 Nagatsuta, Midori-ku Yokohama 226-8503 (Japan); Wang, Kefeng [Chemical Resources Laboratory, Process Systems Engineering Division, Tokyo Institute of Technology, R1-19, 4259 Nagatsuta, Midori-ku Yokohama 226-8503 (Japan); Seki, Hiroya [Chemical Resources Laboratory, Process Systems Engineering Division, Tokyo Institute of Technology, R1-19, 4259 Nagatsuta, Midori-ku Yokohama 226-8503 (Japan); Naka, Yuji [Chemical Resources Laboratory, Process Systems Engineering Division, Tokyo Institute of Technology, R1-19, 4259 Nagatsuta, Midori-ku Yokohama 226-8503 (Japan)
2007-03-15
When planning bioenergy production from biomass, planners should take into account each and every stakeholder along the biomass supply chains, e.g. biomass resources suppliers, transportation, conversion and electricity suppliers. Also, the planners have to consider social concerns, environmental and economical impacts related with establishing the biomass systems and the specific difficulties of each country. To overcome these problems in a sustainable manner, a robust decision support system is required. For that purpose, a two levels general Bioenergy Decision System (gBEDS) for bioenergy production planning and implementation was developed. The core part of the gBEDS is the information base, which includes the basic bioenergy information and the detailed decision information. Basic bioenergy information include, for instance, the geographical information system (GIS) database, the biomass materials' database, the biomass logistic database and the biomass conversion database. The detailed decision information considers the parameters' values database with their default values and the variables database, values obtained by simulation and optimization. It also includes a scenario database, which is used for demonstration to new users and also for case based reasoning by planners and executers. Based on the information base, the following modules are included to support decision making: the simulation module with graph interface based on the unit process (UP) definition and the genetic algorithms (GAs) methods for optimal decisions and the Matlab module for applying data mining methods (fuzzy C-means clustering and decision trees) to the biomass collection points, to define the location of storage and bioenergy conversion plants based on the simulation and optimization model developed of the whole life cycle of bioenergy generation. Furthermore, Matlab is used to set up a calculation model with crucial biomass planning parameters (e.g. costs, CO{sub 2
Spin-charge separation in an Aharonov-Bohm interferometer
Dmitriev, A. P.; Gornyi, I. V.; Kachorovskii, V. Yu.; Polyakov, D. G.
2017-09-01
We study manifestations of spin-charge separation (SCS) in transport through a tunnel-coupled interacting single-channel quantum ring. We focus on the high-temperature case (temperature T larger than the level spacing Δ ) and discuss both the classical (flux-independent) and interference contributions to the tunneling conductance of the ring in the presence of magnetic flux. We demonstrate that the SCS effects, which arise solely from the electron-electron interaction, lead to the appearance of a peculiar fine structure of the electron spectrum in the ring. Specifically, each level splits into a series of sublevels, with their spacing governed by the interaction strength. In the high-T limit, the envelope of the series contains of the order of T /Δ sublevels. At the same time, SCS suppresses the tunneling width of the sublevels by a factor of Δ /T . As a consequence, the classical transmission through the ring remains unchanged compared to the noninteracting case: the suppression of tunneling is compensated by the increase of the number of tunneling channels. On the other hand, the flux-dependent contribution to the conductance depends on the interaction-induced dephasing rate which is known to be parametrically increased by SCS in an infinite system. We show, however, that SCS is not effective for dephasing in the limit of weak tunneling. Moreover, generically, in the almost closed ring, the dephasing rate does not depend on the interaction strength and is determined by the tunneling coupling to the leads. In certain special symmetric cases, dephasing is further suppressed. Similarly to the spinless case, the high-T conductance shows, as a function of magnetic flux, a sequence of interaction-induced sharp negative peaks on top of the classical contribution.
Semiclassical electrodynamics of alien atoms in interacting media II. Two-level systems
Elçi, Ahmet
1985-03-01
The previously developed self-consistent mean field theory of atoms entering an interacting medium is specialized to two-level alien atoms. It is shown that the medium may invert or split the original two levels, and that there is an intimate connection between the dressed atom spectrum and the statistical nature of the ensemble of alien atoms in the self-consistent mean field approximation. The optical susceptibility of alien atoms while inside the medium is calculated, and the lineshape and position of the optical resonance are shown to depend on the intensity of the optical field applied. There may be more than one phase possible for the atomic ensemble as a result of optical excitation.
A study of two-level system defects in dielectric films using superconducting resonators
Khalil, Moe Shwan
In this dissertation I describe measurements of dielectric loss at microwave frequencies due to two level systems (TLS) using superconducting resonators. Most measurements were performed in a dilution refrigerator at temperatures between 30 and 200 mK and all resonators discussed were fabricated with thin-film superconducting aluminum. I derive the transmission through a non-ideal (mismatched) resonant circuit and find that in general the resonance line-shape is asymmetric. I describe an analysis method for extracting the internal quality factor (Q i), the diameter correction method (DCM), and compare it to a commonly used phenomenological method, the phi rotation method (phiRM). I analytically find that the phiRM deterministically overestimates Qi when the asymmetry of the resonance line-shape is high. Four coplanar resonator geometries were studied, with frequencies spanning 5-7 GHz. They were all superconducting aluminum fabricated on sapphire and silicon substrates. These include a quasi-lumped element resonator, a coplanar strip transmission line resonator, and two hybrid designs that contain both a coplanar strip and a quasi-lumped element. Measured Qi's were as high as 2 x 105 for single photon excitations and there was no systematic variation in loss between quasi-lumped and coplanar strip resonance modes. I also measured the microwave loss tangent of several atomic layer deposition (ALD) grown dielectrics and obtained secondary ion mass spectrometry (SIMS) measurements of the same films. I found that hydrogen defect concentrations were correlated with low temperature microwave loss. In amorphous films that showed excess hydrogen defects on the surface, two independent TLS distributions were required to fit the loss tangent, one for the surface and one for the bulk. In crystalline dielectrics where hydrogen contamination was uniform throughout the bulk, a single bulk TLS distribution was sufficient. Finally, I measured the TLS loss in 250 nm thick HD
Quantum optical properties of a single Inx Ga1-x As-GaAs quantum dot two-level system
Stufler, S.; Ester, P.; Zrenner, A.; Bichler, M.
2005-09-01
We report on a two-level system, defined by the ground-state exciton of a single InGaAs/GaAs quantum dot. Saturation spectroscopy combined with ultrahigh spectral resolution gives us a complete description of the system in the steady-state limit. Rabi oscillations and quantum interference experiments, on the other hand, provide a detailed insight into the coherent high excitation regime. All fundamental properties of the two-level system show an excellent quantitative agreement in both domains, even though obtained under entirely different experimental conditions. We thus are able to demonstrate control over an almost ideal two-level system, suitable for possible applications in quantum information processing.
Non-Hermitian wave packet approximation for coupled two-level systems in weak and intense fields
Puthumpally-joseph, Raiju; Charron, Eric
2016-01-01
We introduce an accurate non-Hermitian Schr\\"odinger-type approximation of Bloch optical equations for two-level systems. This approximation provides a complete description of the excitation, relaxation and decoherence dynamics in both weak and strong laser fields. In this approach, it is sufficient to propagate the wave function of the quantum system instead of the density matrix, providing that relaxation and dephasing are taken into account via automatically-adjusted time-dependent gain and decay rates. The developed formalism is applied to the problem of scattering and absorption of electromagnetic radiation by a thin layer comprised of interacting two-level emitters.
Tunable spin-charge conversion through topological phase transitions in zigzag nanoribbons
Li, Hang
2016-06-29
We study spin-orbit torques and charge pumping in magnetic quasi-one-dimensional zigzag nanoribbons with a hexagonal lattice, in the presence of large intrinsic spin-orbit coupling. Such a system experiences a topological phase transition from a trivial band insulator to a quantum spin Hall insulator by tuning of either the magnetization direction or the intrinsic spin-orbit coupling. We find that the spin-charge conversion efficiency (i.e., spin-orbit torque and charge pumping) is dramatically enhanced at the topological transition, displaying a substantial angular anisotropy.
DEFF Research Database (Denmark)
Malossi, Nicola; Bason, Mark George; Viteau, Matthieu
2013-01-01
We present experimental results on the preparation of a desired quantum state in a two-level system with the maximum possible fidelity using driving protocols ranging from generalizations of the linear Landau-Zener protocol to transitionless driving protocols that ensure perfect following of the ...
The dynamical Cooperative Lamb Shift in a system of two-level atoms in a slab-geometry
Energy Technology Data Exchange (ETDEWEB)
Friedberg, Richard [Department of Physics, Columbia University, New York, NY 10027 (United States); Manassah, Jamal T., E-mail: jmanassah@gmail.co [HMS Consultants, Inc., PO Box 592, New York, NY 10028 (United States)
2009-09-14
Using the eigenmode analysis, we compute the Cooperative Lamb Shift (CLS) as a function of time from the vector photon model for a system of two-level atoms in a slab-geometry for forward and backward emission in two initial states of weak excitation and complete inversion.
DEFF Research Database (Denmark)
Malossi, Nicola; Bason, Mark George; Viteau, Matthieu
2013-01-01
We present experimental results on the preparation of a desired quantum state in a two-level system with the maximum possible fidelity using driving protocols ranging from generalizations of the linear Landau-Zener protocol to transitionless driving protocols that ensure perfect following...
The Tera Two-Level Operating System. Revision 1.2.
2007-11-02
The Tera computer hardware provides for four privilege levels. These privilege levels are used to protect various parts of the system from each other...are for normal use by the operating system (OS). This document describes some of the motivation for using two privilege levels in the OS and discusses the way such an OS is built using the Tera tools.
Magnetic-field-induced mixed-level Kondo effect in two-level systems
Energy Technology Data Exchange (ETDEWEB)
Wong, Arturo; Ngo, Anh T.; Ulloa, Sergio E.
2016-10-17
We consider a two-orbital impurity system with intra-and interlevel Coulomb repulsion that is coupled to a single conduction channel. This situation can generically occur in multilevel quantum dots or in systems of coupled quantum dots. For finite energy spacing between spin-degenerate orbitals, an in-plane magnetic field drives the system from a local-singlet ground state to a "mixed-level" Kondo regime, where the Zeeman-split levels are degenerate for opposite-spin states. We use the numerical renormalization group approach to fully characterize this mixed-level Kondo state and discuss its properties in terms of the applied Zeeman field, temperature, and system parameters. Under suitable conditions, the total spectral function is shown to develop a Fermi-level resonance, so that the linear conductance of the system peaks at a finite Zeeman field while it decreases as a function of temperature. These features, as well as the local moment and entropy contribution of the impurity system, are commensurate with Kondo physics, which can be studied in suitably tuned quantum dot systems.
Controlled Dicke Subradiance from a Large Cloud of Two-Level Systems
Bienaime, Tom; Kaiser, Robin
2012-01-01
Dicke superradiance has been observed in many systems and is based on constructive interferences between many scattered waves. The counterpart of this enhanced dynamics, subradiance, is a destructive interference effect leading to the partial trapping of light in the system. In contrast to the robust superradiance, subradiant states are fragile and spurious decoherence phenomena hitherto obstructed the observation of such metastable states. We show that a dilute cloud of cold atoms is an ideal system to look for subradiance in free space and study various mechanisms to control this subradiance.
Directory of Open Access Journals (Sweden)
Hesham A. Baraka
2015-03-01
The objective of this paper was to introduce a new technique that can support decision makers in the call centers industry to evaluate, and analyze the performance of call centers. The technique presented is derived from the research done on measuring the success or failure of information systems. Two models are mainly adopted namely: the Delone and Mclean model first introduced in 1992 and the Design Reality Gap model introduced by Heeks in 2002. Two indices are defined to calculate the performance of the call center; the success index and the Gap Index. An evaluation tool has been developed to allow call centers managers to evaluate the performance of their call centers in a systematic analytical approach; the tool was applied on 4 call centers from different areas, simple applications such as food ordering, marketing, and sales, technical support systems, to more real time services such as the example of emergency control systems. Results showed the importance of using information systems models to evaluate complex systems as call centers. The models used allow identifying the dimensions for the call centers that are facing challenges, together with an identification of the individual indicators in these dimensions that are causing the poor performance of the call center.
DEFF Research Database (Denmark)
SUN, BO; Dragicevic, Tomislav; Vasquez, Juan Carlos
2015-01-01
This paper applies a hierarchical control for a fast charging station (FCS) composed of paralleled PWM rectifier and dedicated paralleled multiple flywheel energy storage systems (FESSs), in order to mitigate peak power shock on grid caused by sudden connection of electrical vehicle (EV) chargers....... Distributed DC-bus signaling (DBS) and method resistive virtual impedance are employed in the power coordination of grid and flywheel converters, and a centralized secondary controller generates DC voltage correction term to adjust the local voltage set point. The control system is able to realize the power...... control strategy....
A laboratory comparison of portable cooling systems for workers exposed to two levels of heat stress
Terrian, D. M.; Nunneley, S. A.
1983-07-01
Two commercially available liquid cooling systems (LCSs) were tested on subjects wearing the current USAF groundcrew chemical defense ensemble and working in the heat. Each cooling system consisted of an ice-water heat sink, a pump, and a vest or vest-and-cap through which cool water circulated. Subjects walked on a treadmill to produce a time-weighted metabolic rate of about 480 W. Environmental conditions were: hot = 45/31C and warm = 32/22C. Under the hot conditions neither LCS produced and difference from the uncooled control, and all subjects were forced to stop within 40-50 min because of high temperatures, excessive heat rates, or exhaustion. Under the warm condition the LCS did allow T sub re to equilibrate; one system which could be recharged with ice enabled subjects to continue work to the 160-min limit of the protocol. Discussion covers logistics problems and reliability of the two systems. The conclusion is the LCSs are a viable concept for USAF operations, but that better heat sinks must be found and field tested before acceptance.
Simulation-based Performance Analysis and Tuning for a Two-level Directly Connected System
Energy Technology Data Exchange (ETDEWEB)
Totoni, E; Bhatele, A; Bohm, E J; Jain, N; Mendes, C L; Mokos, R M; Zheng, G; Kale, L V
2011-09-19
Hardware and software co-design is becoming increasingly important due to complexities in supercomputing architectures. Simulating applications before there is access to the real hardware can assist machine architects in making better design decisions that can optimize application performance. At the same time, the application and runtime can be optimized and tuned beforehand. BigSim is a simulation-based performance prediction framework designed for these purposes. It can be used to perform packet-level network simulations of parallel applications using existing parallel machines. In this paper, we demonstrate the utility of BigSim in analyzing and optimizing parallel application performance for future systems based on the PERCS network. We present simulation studies using benchmarks and real applications expected to run on future supercomputers. Future petascale systems will have more than 100,000 cores, and we present simulations at that scale.
Optical driving of macroscopic mechanical motion by a single two-level system
Auffèves, A.; Richard, M.
2014-08-01
A quantum emitter coupled to a nanomechanical oscillator is a hybrid system where a macroscopic degree of freedom is coupled to a purely quantum system. Recent progress in nanotechnology has led to the realization of such devices by embedding single artificial atoms, such as quantum dots or superconducting qubits, into vibrating wires or membranes, opening up new perspectives for quantum information technologies and for the exploration of the quantum-classical boundary. In this paper, we show that the quantum emitter can be turned into a strikingly efficient light-controlled source of mechanical power by exploiting constructive interferences of classical phonon fields in the mechanical oscillator. We show that this mechanism can be exploited to carry out low-background nondestructive single-shot measurement of an optically active quantum bit state.
Spin-charge coupled dynamics driven by a time-dependent magnetization
Tölle, Sebastian; Eckern, Ulrich; Gorini, Cosimo
2017-03-01
The spin-charge coupled dynamics in a thin, magnetized metallic system are investigated. The effective driving force acting on the charge carriers is generated by a dynamical magnetic texture, which can be induced, e.g., by a magnetic material in contact with a normal-metal system. We consider a general inversion-asymmetric substrate/normal-metal/magnet structure, which, by specifying the precise nature of each layer, can mimic various experimentally employed setups. Inversion symmetry breaking gives rise to an effective Rashba spin-orbit interaction. We derive general spin-charge kinetic equations which show that such spin-orbit interaction, together with anisotropic Elliott-Yafet spin relaxation, yields significant corrections to the magnetization-induced dynamics. In particular, we present a consistent treatment of the spin density and spin current contributions to the equations of motion, inter alia, identifying a term in the effective force which appears due to a spin current polarized parallel to the magnetization. This "inverse-spin-filter" contribution depends markedly on the parameter which describes the anisotropy in spin relaxation. To further highlight the physical meaning of the different contributions, the spin-pumping configuration of typical experimental setups is analyzed in detail. In the two-dimensional limit the buildup of dc voltage is dominated by the spin-galvanic (inverse Edelstein) effect. A measuring scheme that could isolate this contribution is discussed.
Nemati Aram, Tahereh; Anghel-Vasilescu, Petrutza; Asgari, Asghar; Ernzerhof, Matthias; Mayou, Didier
2016-09-28
We present a novel simple model to describe molecular photocells where the energy conversion process takes place by a single molecular donor-acceptor complex attached to electrodes. By applying quantum scattering theory, an open quantum system method, the coherent molecular photocell is described by a wave function. We analyze photon absorption, energy conversion, and quantum yield of a molecular photocell by considering the effects of electron-hole interaction and non-radiative recombination. We model the exciton creation, dissociation, and subsequent effects on quantum yield in the energy domain. We find that depending on the photocell structure, the electron-hole interaction can normally decrease or abnormally increase the cell efficiency. The proposed model helps to understand the mechanisms of molecular photocells, and it can be used to optimize their yield.
Certified Randomness from a Two-Level System in a Relativistic Quantum Field
Thinh, Le Phuc; Martin-Martinez, Eduardo
2016-01-01
Randomness is an indispensable resource in modern science and information technology. Fortunately, an experimentally simple procedure exists to generate randomness with well-characterized devices: measuring a quantum system in a basis complementary to its preparation. Towards realizing this goal one may consider using atoms or superconducting qubits, promising candidates for quantum information processing. However, their unavoidable interaction with the electromagnetic field affects their dynamics. At large time scales, this can result in decoherence. Smaller time scales in principle avoid this problem, but may not be well analysed under the usual rotating wave and single-mode approximation (RWA and SMA) which break the relativistic nature of quantum field theory. Here, we use a fully relativistic analysis to quantify the information that an adversary with access to the field could get on the result of an atomic measurement. Surprisingly, we find that the adversary's guessing probability is not minimized for ...
Certified randomness from a two-level system in a relativistic quantum field
Thinh, Le Phuc; Bancal, Jean-Daniel; Martín-Martínez, Eduardo
2016-08-01
Randomness is an indispensable resource in modern science and information technology. Fortunately, an experimentally simple procedure exists to generate randomness with well-characterized devices: measuring a quantum system in a basis complementary to its preparation. Towards realizing this goal one may consider using atoms or superconducting qubits, promising candidates for quantum information processing. However, their unavoidable interaction with the electromagnetic field affects their dynamics. At large time scales, this can result in decoherence. Smaller time scales in principle avoid this problem, but may not be well analyzed under the usual rotating wave and single mode approximation (RWA and SMA) which break the relativistic nature of quantum field theory. Here, we use a fully relativistic analysis to quantify the information that an adversary with access to the field could get on the result of an atomic measurement. Surprisingly, we find that the adversary's guessing probability is not minimized for atoms initially prepared in the ground state (an intuition derived from the RWA and SMA model).
Squeezing Effect of a Nanomechanical Resonator Coupled to a Two-Level System:an Equilibrium Approach
Institute of Scientific and Technical Information of China (English)
LI Jing; CHEN Zhi-De
2009-01-01
The squeezing effect of a nanomechanical resonator coupled to a two-level system is studied by variational calculations based on both the displaced-squeezed-state (DSS) and the displaced-oscillator-state (DOS).The stable region of the DSS ground state at both T = 0 and T≠0 and the corresponding squeezing factor are alculated.It is found that when the resonator frequency lies in (kBT,△),where △ is the tunnelling splitting of the two-level-system in the presence of dissipation,tunnelling splitting of a DSS ground state decreases with the temperature,while tunnelling splitting of a DOS ground state increases with the temperature in low temperature region.This opposite temperature dependence can help to distinguish between the DSS and DOS ground state in the experiment.
Institute of Scientific and Technical Information of China (English)
赵延霆; 赵建明; 肖连团; 尹王保; 贾锁堂
2004-01-01
The electromagnetically induced absorption and electromagnetically induced transparency spectra of degenerate two-level systems with a strong coupling laser were observed. The frequency detuning and intensity effect of the coupling laser were demonstrated simultaneously. A dispersion-like spectrum can be obtained when the coupling laser is situated at blue-side detuning. The absorption inversion was realized when the coupling laser intensity is small. The coherent resonance has a linewidth much narrower than the natural linewidth of the optical transitions.
Two-Level Dipolar System in a Heat Bath: High-Pump Power Effects in the Nonlinear Optical Responses
Paz, J. L.; León-Torres, J. R.; Lascano, Luis; Alvarado, Ysaias J.; Costa-Vera, Cesar
2017-06-01
Using the four-wave mixing spectroscopy, we analyze the nonlinear optical properties in a strongly driven two-level system, using a perturbative treatment where, the pump field is considered at all orders, second order in the probe, and first order for the signal field, when the stochastic effects of the solvent are considered. Significant variations in the nonlinear optical properties due mainly to changes in the probe intensity, chemical concentrations, and transversal relaxation times are observed.
Institute of Scientific and Technical Information of China (English)
Cai-Zhi SUN; Wei ZOU; Xue-Yu LIN
2004-01-01
In the management of unconfined aquifer systems, if the thickness of the aquifer is very small and the drawdown is relatively big, errors may arise when the superposition principle is adopted.directly. In allusion to this limitation, a new management model for the management of unconfined aquifer systems called two-level response matrix method is put forward. This method is applied in groundwater resources management in Shenyang city. The managing results show that this methodcan, in some degree, increase the efficiency of management and decrease the risk of management.
Entropy as a measure of the noise extent in a two-level quantum feedback controlled system
Institute of Scientific and Technical Information of China (English)
Wang Tao-Bo; Fang Mao-Fa; Hu Yao-Hua
2007-01-01
By introducing the von Neumann entropy as a measure of the extent of noise, this paper discusses the entropy evolution in a two-level quantum feedback controlled system. The results show that the feedback control can induce the reduction of the degree of noise, and different control schemes exhibit different noise controlling ability, the extent of the reduction also related with the position of the target state on the Bloch sphere. It is shown that the evolution of entropy can provide a real time noise observation and a systematic guideline to make reasonable choice of control strategy.
Cheng, Guang-Ling; Cong, Lu; Chen, Ai-Xi
2016-04-01
A scheme for two-dimensional (2D) electromagnetically induced grating via spatial gain and phase modulation is presented in a two-level atomic system. Based on the interactions of two orthogonal standing-wave fields, the atom could diffract the weak probe beam into high-order directions and a 2D diffraction grating is generated. It is shown that the diffraction efficiency of the grating can be efficiently manipulated by controlling the Rabi frequencies of control fields, the detunings of the control and probe fields, and interaction length. Different from 2D cross-grating via electromagnetically induced transparency in a four-level atomic system, the present scheme results from the spatial modulation of gain and phase in a simple two-level system, which could lead to 2D gain-phase grating with larger diffraction intensities in the diffraction directions. The studies we present may have potential applications in developing photon devices for optical-switching, optical imaging and quantum information processing.
Design of a Two-level Adaptive Multi-Agent System for Malaria Vectors driven by an ontology
Directory of Open Access Journals (Sweden)
Etang Josiane
2007-07-01
Full Text Available Abstract Background The understanding of heterogeneities in disease transmission dynamics as far as malaria vectors are concerned is a big challenge. Many studies while tackling this problem don't find exact models to explain the malaria vectors propagation. Methods To solve the problem we define an Adaptive Multi-Agent System (AMAS which has the property to be elastic and is a two-level system as well. This AMAS is a dynamic system where the two levels are linked by an Ontology which allows it to function as a reduced system and as an extended system. In a primary level, the AMAS comprises organization agents and in a secondary level, it is constituted of analysis agents. Its entry point, a User Interface Agent, can reproduce itself because it is given a minimum of background knowledge and it learns appropriate "behavior" from the user in the presence of ambiguous queries and from other agents of the AMAS in other situations. Results Some of the outputs of our system present a series of tables, diagrams showing some factors like Entomological parameters of malaria transmission, Percentages of malaria transmission per malaria vectors, Entomological inoculation rate. Many others parameters can be produced by the system depending on the inputted data. Conclusion Our approach is an intelligent one which differs from statistical approaches that are sometimes used in the field. This intelligent approach aligns itself with the distributed artificial intelligence. In terms of fight against malaria disease our system offers opportunities of reducing efforts of human resources who are not obliged to cover the entire territory while conducting surveys. Secondly the AMAS can determine the presence or the absence of malaria vectors even when specific data have not been collected in the geographical area. In the difference of a statistical technique, in our case the projection of the results in the field can sometimes appeared to be more general.
Dynamics of a Landau-Zener transitions in a two-level system driven by a dissipative environment
Ateuafack, M. E.; Diffo, J. T.; Fai, L. C.
2016-02-01
The paper investigates the effects of a two-level quantum system coupled to transversal and longitudinal dissipative environment. The time-dependent phase accumulation, LZ transition probability and entropy in the presence of fast-ohmic, sub-ohmic and super-ohmic quantum noise are derived. Analytical results are obtained in terms of temperature, dissipation strength, LZ parameter and bath cutoff frequency. The bath is observed to modify the standard occupation difference by a decaying random phase factor and also produces dephasing during the transfer of population. The dephasing characteristics or the initial non-zero decoherence rate are observed to increase in time with the bath temperature and depend on the system-bath coupling strength and cutoff frequency. These parameters are found to strongly affect the memory and thus tailor the coherence process of the system.
Dynamics of a Landau–Zener transitions in a two-level system driven by a dissipative environment
Energy Technology Data Exchange (ETDEWEB)
Ateuafack, M.E., E-mail: esouamath@yahoo.fr [Mesoscopic and Multilayer Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang (Cameroon); Diffo, J.T., E-mail: diffojaures@yahoo.com [Mesoscopic and Multilayer Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang (Cameroon); Department of Physics, Higher Teachers' Training College, The University of Maroua, PO Box 55 Maroua (Cameroon); Fai, L.C., E-mail: corneliusfai@yahoo.fr [Mesoscopic and Multilayer Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang (Cameroon)
2016-02-15
The paper investigates the effects of a two-level quantum system coupled to transversal and longitudinal dissipative environment. The time-dependent phase accumulation, LZ transition probability and entropy in the presence of fast-ohmic, sub-ohmic and super-ohmic quantum noise are derived. Analytical results are obtained in terms of temperature, dissipation strength, LZ parameter and bath cutoff frequency. The bath is observed to modify the standard occupation difference by a decaying random phase factor and also produces dephasing during the transfer of population. The dephasing characteristics or the initial non-zero decoherence rate are observed to increase in time with the bath temperature and depend on the system-bath coupling strength and cutoff frequency. These parameters are found to strongly affect the memory and thus tailor the coherence process of the system.
Suh, J.; Weinstein, A. J.; Schwab, K. C.
2013-07-01
We show that the two-level systems (TLS) in lithographic superconducting circuits act as a power-dependent dielectric leading to non-linear responses in a parametrically coupled electromechanical system. Driven TLS shift the microwave resonance frequency and modulate the mechanical resonance through the optical spring effect. By pumping with two tones in a back-action evading measurement, these effects produce a mechanical parametric instability which limits single quadrature imprecision to 1.4 xzp. The microwave resonator noise is also consistent to a TLS-noise model. These observations suggest design strategies for minimizing TLS effects to improve ground-state cooling and quantum non-demolition measurements of motion.
Grace, M; Kosut, R L; Lidar, D A; Rabitz, H; Walmsley, I A; Brif, Constantin; Grace, Matthew; Kosut, Robert L.; Lidar, Daniel A.; Rabitz, Herschel; Walmsley, Ian A.
2007-01-01
Methods of optimal control are applied to a model system of interacting two-level particles (e.g., spin-half atomic nuclei or electrons or two-level atoms) to produce high-fidelity quantum gates while simultaneously negating the detrimental effect of decoherence. One set of particles functions as the quantum information processor, whose evolution is controlled by a time-dependent external field. The other particles are not directly controlled and serve as an effective environment, coupling to which is the source of decoherence. The control objective is to generate target one- and two-qubit unitary gates in the presence of strong environmentally-induced decoherence and under physically motivated restrictions on the control field. The quantum-gate fidelity, expressed in terms of a novel state-independent distance measure, is maximized with respect to the control field using combined genetic and gradient algorithms. The resulting high-fidelity gates demonstrate the feasibility of precisely guiding the quantum ev...
Prigogine, Ilya
2002-01-01
Hamiltonian systems can be classified according Poincaré into integrable and non-integrable systems. On the other hand, our previous work introduced a formulation of dynamics based on the evolution of correlations. It is shown that for integrable systems this method is equivalent to the diagonalisation problem of the Hamiltonian for integrable systems but our method can be easily extended to non-integrable systems through analytic continuation. This leads to a description of unstable dressed excited states, as well as to excitations for interacting fields. The mechanism of the formation of dressed objects will be analysed in terms of two different time scales. The analogy with these dissipative structures will be emphasized. We may distinguish two levels in the formulation of laws of nature. The first is in terms of Hamiltonian dynamics, the second, necessary for classes of non-integrable systems, The first is in terms of Hamiltonian dynamics, the second, necessary for classes of non-integrable systems, aris...
Zeng, H. S.; Tang, N.; Zheng, Y. P.; Xu, T. T.
2012-10-01
By use of the recently presented two measures, the indivisibility and the backflow of information, we study the non-Markovianity of the dynamics for a two-level system interacting with a zero-temperature structured environment without using rotating wave approximation (RWA). In the limit of weak coupling between the system and its reservoir, and by expanding the time-convolutionless (TCL) generator to the forth order with respect to the coupling strength, the time-local non-Markovian master equation for the reduced state of the system is derived. Under the secular approximation, the exact analytic solution is obtained and the sufficient and necessary conditions for the indivisibility and the backflow of information for the system dynamics are presented. In the more general case, we investigate numerically the properties of the two measures for the case of Lorentzian reservoir. Our results show the importance of the counter-rotating terms to the short-time-scale non-Markovian behavior of the system dynamics, further expose the relation between the two measures and their rationality as non-Markovian measures. Finally, the complete positivity of the dynamics of the considered system is discussed.
Random-Defect Laser: Manipulating Lossy Two-Level Systems to Produce a Circuit with Coherent Gain
Rosen, Yaniv J.; Khalil, Moe S.; Burin, Alexander L.; Osborn, Kevin D.
2016-04-01
We demonstrate a laser using material defects known for deleterious microwave absorption in quantum computing. These defects are two-level atomic tunneling systems (TSs), which are manipulated using a uniform swept dc electric field and two ac pump fields. The swept field changes the TS energies. TSs first pass through degeneracy with pump photons, which invert (excite) them with a high probability using rapid adiabatic passage. Population inversion is accomplished in spite of a broad distribution of TS parameters. Afterwards the TSs are brought to degeneracy with the resonator where they emit photons. The emission is found to be dependent on individual cavity-TS interactions, and the narrowing linewidth at increasing photon occupancy indicates stimulated emission. Characterization with a microwave probe shows a transition from ordinary defect loss to negligible microwave absorption, and ultimately to coherent amplification. Thus, instead of absorbing microwave energy, the TSs can be tuned to reduce loss and even amplify signals.
Energy Technology Data Exchange (ETDEWEB)
Skacel, S. T. [Physikalisches Institut, Karlsruher Institut für Technologie, Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe (Germany); Institut für Mikro- und Nanoelektronische Systeme, Karlsruher Institut für Technologie, Hertzstraße 16, D-76187 Karlsruhe (Germany); Kaiser, Ch.; Wuensch, S.; Siegel, M. [Institut für Mikro- und Nanoelektronische Systeme, Karlsruher Institut für Technologie, Hertzstraße 16, D-76187 Karlsruhe (Germany); Rotzinger, H.; Lukashenko, A.; Jerger, M.; Weiss, G. [Physikalisches Institut, Karlsruher Institut für Technologie, Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe (Germany); Ustinov, A. V. [Physikalisches Institut, Karlsruher Institut für Technologie, Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe (Germany); Russian Quantum Center, 100 Novaya St., Skolkovo, Moscow Region 143025 (Russian Federation)
2015-01-12
We have investigated dielectric losses in amorphous silicon oxide (a-SiO) thin films under operating conditions of superconducting qubits (mK temperatures and low microwave powers). For this purpose, we have developed a broadband measurement setup employing multiplexed lumped element resonators using a broadband power combiner and a low-noise amplifier. The measured temperature and power dependences of the dielectric losses are in good agreement with those predicted for atomic two-level tunneling systems (TLS). By measuring the losses at different frequencies, we found that the TLS density of states is energy dependent. This had not been seen previously in loss measurements. These results contribute to a better understanding of decoherence effects in superconducting qubits and suggest a possibility to minimize TLS-related decoherence by reducing the qubit operation frequency.
Deng, Chunqing; Shen, Feiruo; Ashhab, Sahel; Lupascu, Adrian
2016-09-01
We consider the dynamics of a two-level system (qubit) driven by strong and short resonant pulses in the framework of Floquet theory. First we derive analytical expressions for the quasienergies and Floquet states of the driven system. If the pulse amplitude varies very slowly, the system adiabatically follows the instantaneous Floquet states, which acquire dynamical phases that depend on the evolution of the quasienergies over time. The difference between the phases acquired by the two Floquet states corresponds to a qubit state rotation, generalizing the notion of Rabi oscillations to the case of large driving amplitudes. If the pulse amplitude changes very fast, the evolution is nonadiabatic, with transitions taking place between the Floquet states. We quantify and analyze the nonadiabatic transitions during the pulse by employing adiabatic perturbation theory and exact numerical simulations. We find that, for certain combinations of pulse rise and fall times and maximum driving amplitude, a destructive interference effect leads to a remarkably strong suppression of transitions between the Floquet states. This effect provides the basis of a quantum control protocol, which we name Floquet interference efficient suppression of transitions in the adiabatic basis (FIESTA), that can be used to design ultrafast high-fidelity single-qubit quantum gates.
Abbout, Adel
2016-08-05
Using the tools of random matrix theory we develop a statistical analysis of the transport properties of thermoelectric low-dimensional systems made of two electron reservoirs set at different temperatures and chemical potentials, and connected through a low-density-of-states two-level quantum dot that acts as a conducting chaotic cavity. Our exact treatment of the chaotic behavior in such devices lies on the scattering matrix formalism and yields analytical expressions for the joint probability distribution functions of the Seebeck coefficient and the transmission profile, as well as the marginal distributions, at arbitrary Fermi energy. The scattering matrices belong to circular ensembles which we sample to numerically compute the transmission function, the Seebeck coefficient, and their relationship. The exact transport coefficients probability distributions are found to be highly non-Gaussian for small numbers of conduction modes, and the analytical and numerical results are in excellent agreement. The system performance is also studied, and we find that the optimum performance is obtained for half-transparent quantum dots; further, this optimum may be enhanced for systems with few conduction modes.
Abbout, Adel; Ouerdane, Henni; Goupil, Christophe
2016-09-01
Using the tools of random matrix theory we develop a statistical analysis of the transport properties of thermoelectric low-dimensional systems made of two electron reservoirs set at different temperatures and chemical potentials, and connected through a low-density-of-states two-level quantum dot that acts as a conducting chaotic cavity. Our exact treatment of the chaotic behavior in such devices lies on the scattering matrix formalism and yields analytical expressions for the joint probability distribution functions of the Seebeck coefficient and the transmission profile, as well as the marginal distributions, at arbitrary Fermi energy. The scattering matrices belong to circular ensembles which we sample to numerically compute the transmission function, the Seebeck coefficient, and their relationship. The exact transport coefficients probability distributions are found to be highly non-Gaussian for small numbers of conduction modes, and the analytical and numerical results are in excellent agreement. The system performance is also studied, and we find that the optimum performance is obtained for half-transparent quantum dots; further, this optimum may be enhanced for systems with few conduction modes.
Energy Technology Data Exchange (ETDEWEB)
Gramich, Vera; Ankerhold, Joachim [Institut fuer Theoretische Physik, Universitaet Ulm, Albert-Einstein-Allee 11, 89069 Ulm (Germany); Solinas, Paolo; Moettoenen, Mikko [Department of Applied Physics/COMP, Aalto University, P.O. Box 14100, FI-00076 Aalto (Finland); Low Temperature Laboratory, Aalto University, P.O. Box 13500, FI-00076 Aalto (Finland); Pekola, Jukka [Low Temperature Laboratory, Aalto University, P.O. Box 13500, FI-00076 Aalto (Finland)
2012-07-01
Realistic quantum systems are never completely isolated. Even a single atom in zero-temperature vacuum is influenced by the zero-point fluctuations of the electromagnetic field which in turn induces a shift of its transition frequencies known as the Lamb shift. Cavity quantum electrodynamics (QED) provides a particularly convenient setup to observe this shift since the restricted geometries of the cavities allow the atoms to interact only with the fluctuations of single harmonic fields. In contrast to single-frequency environments, typical reservoirs for mesoscopic solid-state devices are characterized by broadband spectral distributions in thermal equilibrium. Within weak-coupling master equations even explicit expressions for the reservoir-induced frequency shifts can be derived, while associated experimental observations are still missing. To fill this gap, we discuss and analyze a theoretical proposal to retrieve the Lamb shift for a superconducting two-level system embedded in an Ohmic environment. Moreover, we present a possible way to measure the Lamb shift in a circuit containing a Cooper pair sluice.
Energy Technology Data Exchange (ETDEWEB)
Sarabi, B.; Ramanayaka, A. N. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Burin, A. L. [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States); Wellstood, F. C. [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States); Osborn, K. D. [Laboratory for Physical Sciences, College Park, Maryland 20740 (United States); Joint Quantum Institute, University of Maryland, College Park, Maryland 20742 (United States)
2015-04-27
Random tunneling two-level systems (TLSs) in dielectrics have been of interest recently because they adversely affect the performance of superconducting qubits. The coupling of TLSs to qubits has allowed individual TLS characterization, which has previously been limited to TLSs within (thin) Josephson tunneling barriers made from aluminum oxide. Here, we report on the measurement of an individual TLS within the capacitor of a lumped-element LC microwave resonator, which forms a cavity quantum electrodynamics (CQED) system and allows for individual TLS characterization in a different structure and material than demonstrated with qubits. Due to the reduced volume of the dielectric (80 μm{sup 3}), even with a moderate dielectric thickness (250 nm), we achieve the strong coupling regime as evidenced by the vacuum Rabi splitting observed in the cavity spectrum. A TLS with a coherence time of 3.2 μs was observed in a film of silicon nitride as analyzed with a Jaynes-Cummings spectral model, which is larger than seen from superconducting qubits. As the drive power is increased, we observe an unusual but explicable set of continuous and discrete crossovers from the vacuum Rabi split transitions to the Glauber (coherent) state.
Sarabi, B.; Ramanayaka, A. N.; Burin, A. L.; Wellstood, F. C.; Osborn, K. D.
2015-04-01
Random tunneling two-level systems (TLSs) in dielectrics have been of interest recently because they adversely affect the performance of superconducting qubits. The coupling of TLSs to qubits has allowed individual TLS characterization, which has previously been limited to TLSs within (thin) Josephson tunneling barriers made from aluminum oxide. Here, we report on the measurement of an individual TLS within the capacitor of a lumped-element LC microwave resonator, which forms a cavity quantum electrodynamics (CQED) system and allows for individual TLS characterization in a different structure and material than demonstrated with qubits. Due to the reduced volume of the dielectric (80 μm3), even with a moderate dielectric thickness (250 nm), we achieve the strong coupling regime as evidenced by the vacuum Rabi splitting observed in the cavity spectrum. A TLS with a coherence time of 3.2 μs was observed in a film of silicon nitride as analyzed with a Jaynes-Cummings spectral model, which is larger than seen from superconducting qubits. As the drive power is increased, we observe an unusual but explicable set of continuous and discrete crossovers from the vacuum Rabi split transitions to the Glauber (coherent) state.
Sohail, Amjad; Zhang, Yang; Zhang, Jun; Yu, Chang-Shui
2016-06-28
We analytically study the optomechanically induced transparency (OMIT) in the N-cavity system with the Nth cavity driven by pump, probing laser fields and the 1st cavity coupled to mechanical oscillator. We also consider that one atom could be trapped in the ith cavity. Instead of only illustrating the OMIT in such a system, we are interested in how the number of OMIT windows is influenced by the cavities and the atom and what roles the atom could play in different cavities. In the resolved sideband regime, we find that, the number of cavities precisely determines the maximal number of OMIT windows. It is interesting that, when the two-level atom is trapped in the even-labeled cavity, the central absorptive peak (odd N) or dip (even N) is split and forms an extra OMIT window, but if the atom is trapped in the odd-labeled cavity, the central absorptive peak (odd N) or dip (even N) is only broadened and thus changes the width of the OMIT windows rather than induces an extra window.
Coupling of conduction electrons to two-level systems formed by hydrogen: a scattering approach.
Nagy, I; Zawadowski, A
2009-04-29
An effective Hamiltonian for a two-level system (TLS) which could model the interaction between a tunneling proton and the conduction electrons of a metal is investigated in a comparative way. In the conventional first-order Born approximation with plane waves, and for small-distance displacement of the tunneling particle, a simple correlation between the atomic motion and angular momentum change of the scattering electron is deduced. For such a displacement, and within a distorted wave Born approximation for initial and final states, the change in the scattering amplitude is expressed via bounded trigonometric functions of the corresponding difference of scattering phase shifts. The numerical value of this amplitude change is analyzed in the framework of a self-consistent screening description for an impurity embedding in a paramagnetic electron gas. The coupling thus obtained of the tunneling proton to a homogeneous electron gas is too weak to be in the range required for realization of the two-channel Kondo effect.
Mangel, László; Kövér, Erika; Szilágyi, István; Varga, Zsuzsanna; Bércesi, Eva; Nagy, Zsuzsanna; Holcz, Tibor; Karádi, Oszkár; Farkas, Róbert; Csák, Szilvia; Csere, Tibor; Kásler, Miklós
2012-12-16
By now therapy decision taken by a multi-disciplinary oncology team in cancer care has become a routine method in worldwide. However, multi-disciplinary oncology team has to face more and more difficulties in keeping abreast with the fast development in oncology science, increasing expectations, and financial considerations. Naturally the not properly controlled decision mechanisms, the permanent lack of time and shortage of professionals are also hindering factors. Perhaps it would be a way out if the staff meetings and discussions of physicians in the oncology departments were transformed and provided with administrative, legal and decision credentials corresponding to those of multi-disciplinary oncology team. The new form of the oncotherapy oncoteam might be able to decide the optimal and particular treatment after previous consultation with the patient. The oncotherapy oncoteam is also suitable to carry out training and tasks of a cancer centre and by diminishing the psychological burden of the doctors it contributes to an improved patient care. This study presents the two-level multi-disciplinary and oncotherapy oncology team system at the University of Pécs including the detailed analysis of the considerations above.
Comparison of PI and PR current controllers applied on two-level VSC-HVDC transmission system
DEFF Research Database (Denmark)
Manoloiu, A.; Pereria, H.A.; Teodorescu, Remus;
2015-01-01
This paper analyzes differences between αβ and dq reference frames regarding the control of two-level VSC-HVDC current loop and dc-link voltage outer loop. In the first part, voltage feedforward effect is considered with PI and PR controllers. In the second part, the feedforward effect is removed...
Institute of Scientific and Technical Information of China (English)
LI Zuo-wei; YANG Yi-xian; YUAN Dong-feng; HU Zheng-ming
2004-01-01
In this paper, we propose a novel Unequal Error Protection (UEP) scheme with two levels for image transmission using Multilevel Codes (MLC). By providing the best protection for the most important data, the final recovered image quality is remarkably improved both in visual effect and in Peak Signal to Noise power Ratio (PSNR) performance.
Shorikov, A. F.
2016-12-01
In this article we consider a discrete-time dynamical system consisting of a set a controllable objects (region and forming it municipalities). The dynamics each of these is described by the corresponding linear or nonlinear discrete-time recurrent vector relations and its control system consist from two levels: basic level (control level I) that is dominating level and auxiliary level (control level II) that is subordinate level. Both levels have different criterions of functioning and united by information and control connections which defined in advance. In this article we study the problem of optimization of guaranteed result for program control by the final state of regional social and economic system in the presence of risks vectors. For this problem we propose a mathematical model in the form of two-level hierarchical minimax program control problem of the final states of this system with incomplete information and the general scheme for its solving.
Entanglement in a system of two two-level atoms interacting with a single-mode field
Institute of Scientific and Technical Information of China (English)
Jin Li-Juan; Fang Mao-Fa
2006-01-01
We investigate the entanglement in a system of two coupling atoms interacting with a single-mode field by means of quantum information entropy theory. The quantum entanglement between the two atoms and the coherent field is discussed by using the quantum reduced entropy, and the entanglement between the two coupling atoms is also investigated by using the quantum relative entropy. In addition, the influences of the atomic dipole-dipole interaction intensity and the average photon number of the coherent field on the degree of the entanglement is examined. The results show that the evolution of the degree of entanglement between the two atoms and the field is just opposite to that of the degree of entanglement between the two atoms. And the properties of the quantum entanglement in the system rely on the atomic dipole-dipole interaction and the average photon number of the coherent field.
Masses and mixing matrices of quarks within the spin-charge-family theory
Bregar, Gregor
2012-01-01
The spin-charge-family theory predicts the number of families. There are four massless families of quarks and leptons before the electroweak break. There are two kinds of charges in this theory, connected with two kinds of the Clifford objects. The Dirac like kind explains the spin and the standard model charges, the second kind explains the existence of families. Correspondingly there are two kinds of scalar fields, determining masses of vector bosons and mass matrices of fermions. The first kind distinguishes only among family members, the second kind only among families. Mass matrices exhibit correspondingly very particular symmetries. In this contribution we take matrix elements as free parameters, which we determine by requiring that mass matrices keep by the spin-charge-family theory determined symmetries and that properties of fermions agree with the experimental data. Very preliminary results show that matrix elements of one of the two quark mass matrices are surprisingly close (within a factor of les...
Single-hole spectral function and spin-charge separation in the t-J model
Mishchenko, A. S.; Prokof'ev, N. V.; Svistunov, B. V.
2001-07-01
Worm algorithm Monte Carlo simulations of the hole Green function with subsequent spectral analysis were performed for 0.1hole spectral function in the thermodynamic limit. Spectral analysis reveals a δ-function-sharp quasiparticle peak at the lower edge of the spectrum that is incompatible with the power-law singularity and thus rules out the possibility of spin-charge separation in this parameter range. Spectral continuum features two peaks separated by a gap ~4÷5 t.
An exact solution of the metric-affine gauge theory with dilation, shear, and spin charges
Obukhov, Yu N; Esser, W; Tresguerres, R; Hehl, F W
1996-01-01
The spacetime of the metric-affine gauge theory of gravity (MAG) encompasses {\\it nonmetricity} and {\\it torsion} as post-Riemannian structures. The sources of MAG are the conserved currents of energy-momentum and dilation, shear and spin. We present an exact static spherically symmetric vacuum solution of the theory describing the exterior of a lump of matter carrying mass and dilation, shear and spin charges.
Directory of Open Access Journals (Sweden)
Gisela C V Ramadas
Full Text Available This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.
Ramadas, Gisela C V; Rocha, Ana Maria A C; Fernandes, Edite M G P
2015-01-01
This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.
Pedersen, Rune
2017-01-01
This is a project proposal derived from an urge to re-define the governance of ICT in healthcare towards regional and national standardization of the patient pathways. The focus is on a two-levelled approach for governing EPR systems where the clinicians' model structured variables and patient pathways. The overall goal is a patient centric EPR portfolio. This paper define and enlighten the need for establishing the socio- technical architect role necessary to obtain the capabilities of a modern structured EPR system. Clinicians are not capable to moderate between the technical and the clinical.
Shorikov, A. F.
2016-12-01
This article discusses the discrete-time dynamical system consisting from two controlled objects and described by a linear recurrent vector equations in the presence of uncertain perturbations. This dynamical system has two levels of a control: dominant level (the first level or the level I) and subordinate level (the second level or the level II) and both have different linear terminal criterions of functioning and united a priori by determined information and control connections. It is assumed that the sets constraining all a priori undefined parameters are known and they are a finite sets or convex, closed and bounded polyhedrons in the corresponding finite-dimensional vector spaces. For the dynamical system in question, we propose a mathematical formalization in the form of solving two-level hierarchical minimax program control problem with incomplete information. In this article for solving of the investigated problem is proposed the algorithm that has a form of a recurrent procedure of solving a linear programming and a finite optimization problems. The results obtained in this article can be used for computer simulation of an actual dynamical processes and for designing controlling and navigation systems.
Institute of Scientific and Technical Information of China (English)
S.Abdel-Khalek; M.M.A.Ahmed; A-S F.Obada
2011-01-01
We present an effective two-level system in interaction through two-photon processes with a single mode quantized electromagnetic field,initially prepared in a coherent state.Field entropy squeezing as an indicator of the entanglement in a mixed state system is suggested.The temporal evolution of the negativity,Wehrl entropy,Wehrl phase distribution and field entropy squeezing are investigated.The results highlight the important roles played by both the Stark shift parameters and the mixed state setting in the dynamics of the Wehrl entropy,Wehrl phase distribution and field entropy squeezing.%We present an effective two-level system in interaction through two-photon processes with a single mode quantized electromagnetic Reid, initially prepared in a coherent state. Field entropy squeezing as an indicator of the entanglement in a mixed state system is suggested. The temporal evolution of the negativity, Wehrl entropy, Wehrl phase distribution and field entropy squeezing are investigated. The results highlight the important roles played by both the Stark shift parameters and the mixed state setting in the dynamics of the Wehrl entropy, Wehrl phase distribution and field entropy squeezing.
Kale, Y. B.; Tiwari, V. B.; Mishra, S. R.; Singh, S.; Rawat, H. S.
2016-12-01
We report electromagnetically induced absorption (EIA) and transparency (EIT) resonances of sub-natural linewidth in degenerate two level systems (DTLSs) of metastable 84Kr (84Kr*) and 83Kr (83Kr*) atoms. Using the spectrally narrow EIA signals obtained corresponding to the closed hyperfine transition 4p55s[3/2]2(F=13/2) to 4p55p[5/2]3(F‧ = 15 / 2) in 83Kr* atom, we have measured the Landé g-factor (gF) for the lower hyperfine level involved in this transition by application of small values of magnetic field of few Gauss.
Howard, I A
2003-01-01
There is ongoing interest in the kinetic energy functional T sub s [rho] in density functional theory. The present study lies in this area and concerns the Pauli potential V sub P [rho]. A differential equation is obtained here for V sub P (x) in one dimension for a general two-level system. Also, as a specific example, such a functional of rho(x), the ground-state Fermion density, is given for the case of N Fermions which are harmonically confined. (letter to the editor)
Qureshi, Muhammad Mohsin; Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae
2016-05-01
We have investigated ultra-narrow EIA spectral features with respect to variations of polarizations and powers of pump laser beam in a degenerate two-level system of the transition of 85 Rb D2 transition line. Polarizations of the probe laser beam in two separate experiments were fixed at right circular and horizontal linear polarizations, respectively while the polarizations of the pump lasers were varied from initial polarizations same as the probe laser beams to orthogonal to probe polarizations. One homemade laser combined with AOMs was used to the pump and probe laser beams instead of two different lasers to overcome broad linewidths of the homemade lasers. Theoretically, probe absorption coefficients have been calculated from optical Bloch equations of the degenerate two level system prepared by a pump laser beam. In the case of the circular polarization, EIA signal was obtained as expected theoretically although both pump and probe beams have same polarization. The EIA signal become smaller as power increases and polarizations of the pump and probe beams were same. When the polarization of the pump beam was linear polarization, maximum EIA signal was obtained theoretically and experimentally. Experimental EIA spectral shapes with respect to variations of the pump beam polarization shows similar trends as the theoretical results.
Grinberg, Horacio
2008-12-18
The interaction of a two-level cyclic XY n-spin model with a two-mode cavity field involving two-photon transitions is investigated through a generalized Jaynes-Cummings model in the rotating-wave approximation. The two-photon interacting Hamiltonian becomes from the replacement of each single-mode field in the one-photon interacting Hamiltonian with the second-harmonic generation. It was assumed that initially the correlated field modes are in disentangled coherent states having the same photon distribution and that the spin system is in an excited state. At any time t > 0, the spin system and the field are in an entangled state, in this case, via a unitary time evolution operator. Thus, the spontaneous decay of a spin level was treated by considering the interaction of the two-level spin system with the modes of the universe in the vacuum state. The different cases of interest, characterized in terms of a detuning parameter for each mode, which emerge from nonvanishing commutation relations, were analytically implemented and numerically discussed for various values of the initial mean photon number and spin-photon coupling constants. Photon distribution, time evolution of the spin population inversion, as well as the statistical properties of the field leading to the possible production of nonclassical states, such as antibunched light, violations of the Cauchy-Schwartz inequality, and second- and fourth-order squeezing, are examined. The case of zero detuning of both modes was treated in terms of a linearization of the expansion of the time evolution operator, while in other three cases, the computations were conducted via second- and third-order Dyson perturbation expansion of the time evolution operator matrix elements for the excited and ground states of the spin system, respectively.
Biborski, Andrzej; Kądzielawa, Andrzej P.; Spałek, Józef
2015-12-01
An efficient computational scheme devised for investigations of ground state properties of the electronically correlated systems is presented. As an example, (H2)n chain is considered with the long-range electron-electron interactions taken into account. The implemented procedure covers: (i) single-particle Wannier wave-function basis construction in the correlated state, (ii) microscopic parameters calculation, and (iii) ground state energy optimization. The optimization loop is based on highly effective process-pool solution - specific root-workers approach. The hierarchical, two-level parallelism was applied: both shared (by use of Open Multi-Processing) and distributed (by use of Message Passing Interface) memory models were utilized. We discuss in detail the feature that such approach results in a substantial increase of the calculation speed reaching factor of 300 for the fully parallelized solution. The scheme elaborated in detail reflects the situation in which the most demanding task is the single-particle basis optimization.
Rusydi, Febdian; Shukri, Ganes; Saputro, Adithya G.; Agusta, Mohammad K.; Dipojono, Hermawan K.; Suprijadi, Suprijadi
2017-04-01
We study the Q/B-band dipole strength of zinc tetrabenzoporphyrin (ZnTBP) using density functional theory (DFT) in various solvents. The solvents are modeled using the polarized continuum model (PCM). The dipole strength calculations are approached by a two-level system, where the Q-band is described by the HOMO → LUMO electronic transition and the B-band by the HOMO-1 → LUMO electronic transition. We compare the results with the experimental data of the Q/B-band intensity ratio. We also perform time-dependent DFT coupled with PCM to calculate the Q/B-band oscillator strength ratio of ZnTBP. The results of both methods show a general trend with respect to the experimental Q/B-band intensity ratio in solvents, except for the calculation in the water solvent. Even so, the approximation is a good starting point for studying the UV-vis spectrum based on DFT study alone.
Yazdannik, Ahmad R; Haghighat, Somayeh; Saghaei, Mahmoud; Eghbali, Maryam
2013-03-01
Endotracheal suctioning (ETS) is one of the most common supportive measures in intensive care units (ICU). ETS may be associated with complications including hypoxia and tachycardia. Closed system suctioning (CSS) decreases the rate of cardiorespiratory complication mainly due to continuation of ventilatory support and oxygenation during procedure. CSS has questionable efficacy, therefore higher values of negative pressure has been recommended to enhance the efficacy of CSS. This study was designed to evaluate the effects on gas exchange of 200 mmHg suctioning pressure compared with 100 mmHg in CSS. Fifty mechanically ventilated (MV) ICU patients were selected for the study. Two consecutive ten seconds CSS using suction pressures of 100 and 200 mmHg, in random order applied in each subject with the two hours wash out period. Effects of two levels of suction pressure on gas exchange were measured by recording the SPo2 values at 4 times. Repeated measure analysis of variance didn't show any significant difference between two levels of pressure (P = 0.315), but within each groups (100 and 200 mmHg) SPO2 changes was significant (P = 0.000). There was a mild but significant and transient increase in heart rate following both suction pressures, but no significant difference between two groups. The results show that CSS with suction pressure 200 mmHg has no detrimental effect on cardiorespiratory function of MV ICU patients. Since the safety of 200 mmHg suctioning pressure was approved, using 200 mmHg suction pressures is recommended for ETS of MV patients.
Yazdannik, Ahmad R.; Haghighat, Somayeh; Saghaei, Mahmoud; Eghbali, Maryam
2013-01-01
Background: Endotracheal suctioning (ETS) is one of the most common supportive measures in intensive care units (ICU). ETS may be associated with complications including hypoxia and tachycardia. Closed system suctioning (CSS) decreases the rate of cardiorespiratory complication mainly due to continuation of ventilatory support and oxygenation during procedure. CSS has questionable efficacy, therefore higher values of negative pressure has been recommended to enhance the efficacy of CSS. This study was designed to evaluate the effects on gas exchange of 200 mmHg suctioning pressure compared with 100 mmHg in CSS. Materials and Methods: Fifty mechanically ventilated (MV) ICU patients were selected for the study. Two consecutive ten seconds CSS using suction pressures of 100 and 200 mmHg, in random order applied in each subject with the two hours wash out period. Effects of two levels of suction pressure on gas exchange were measured by recording the SPo2 values at 4 times. Results: Repeated measure analysis of variance didn't show any significant difference between two levels of pressure (P = 0.315), but within each groups (100 and 200 mmHg) SPO2 changes was significant (P = 0.000). There was a mild but significant and transient increase in heart rate following both suction pressures, but no significant difference between two groups. Conclusion: The results show that CSS with suction pressure 200 mmHg has no detrimental effect on cardiorespiratory function of MV ICU patients. Since the safety of 200 mmHg suctioning pressure was approved, using 200 mmHg suction pressures is recommended for ETS of MV patients. PMID:23983740
Dutta, Rajesh
2016-01-01
We study excitation transfer dynamics in a lattice of two level systems characterized by dynamic disorder. The diagonal and off-diagonal energy disorders arise from the coupling of system and bath. We consider both the same and the independent bath limits. In case of independent bath all diagonal and off-diagonal bath coupling elements fluctuate independently of each other and the dynamics is complicated. We obtain the time dependent population distribution by solving quantum stochastic Liouville equation (QSLE) derived by Kubo. The main result of our study is both the population transfer dynamics and the mean square displacement of the exciton behave the similar way in the same and independent bath cases in the Markovian limit. However, these two baths can give rise to markedly different behavior in the non-Markovian limit where coherent transport becomes important. There are also several additional new results as follows. (i) Exciton migration remains coherent all the time for an average, non-zero off-diago...
`C$_{60}$ spin-charging' with an eye on a quantum computer
Connerade, J -P
2014-01-01
A question whether there exists an interaction between the spins of the endohedral atom $A$@C$_{60}$ and the properties of the confining shell which might affect the alignment of, or manipulation by, the spins for building a register for a quantum computer is discussed. It is argued that an effect, termed the `C$_{60}$ spin-charging' effect, can occur in endohedral atoms and would affect the operation of a quantum register. The effect is exemplified by choosing the $\\rm 3d$ (Cr and Mn) and $\\rm 4d$ (Mo and Tc) transition metal atoms as well as a rare-earth Eu atom as the case study. A class of high-spin atoms which are less suitable for building a quantum register is, thus, identified.
Quantum spin Hall effect and spin-charge separation in a kagome lattice
Energy Technology Data Exchange (ETDEWEB)
Wang Zhigang; Zhang Ping, E-mail: zhang_ping@iapcm.ac.c [LCP, Institute of Applied Physics and Computational Mathematics, PO Box 8009, Beijing 100088 (China)
2010-04-15
A two-dimensional kagome lattice is theoretically investigated within a simple tight-binding model, which includes the nearest-neighbor hopping term and the intrinsic spin-orbit interaction between the next nearest neighbors. By using the topological winding properties of the spin-edge states on the complex-energy Riemann surface, the spin Hall conductance is obtained to be quantized as -e/2{pi} (e/2{pi}) in insulating phases. This result is consistent with the numerical linear-response calculation and the Z{sub 2} topological invariance analysis. When the sample boundaries are connected in twist, by which two defects with {pi} flux are introduced, we obtain the spin-charge separated solitons at 1/3 (or 2/3) filling.
Relativistic response and novel spin-charge plasmon at the Tl/Si(111) surface
Lafuente-Bartolome, Jon; Gurtubay, Idoia G.; Eiguren, Asier
2017-07-01
We present a comprehensive ab initio analysis of the spin-charge correlations at the Tl/Si(111) surface, where the spin-orbit interaction is so strong that a detailed treatment of the noncollinear electron spin appears decisive for the correct description of the response properties. The relativistic limit enforces a unified treatment of the spin and charge densities as a four-vector, and the response function acquires then a 4 ×4 tensor structure. Our all-electron implementation allows us to resolve the real-space structure of the possible collective modes, and demonstrates the emergence of a novel collective excitation combining transverse-spin and ordinary charge oscillations of a similar order of magnitude, whose spin character is strongly enhanced as we approach the q →0 momentum limit.
Spin-charge and spin-orbital separations in density-functional theory
Vieira, Daniel
2012-01-01
It is known that the separation of electrons into spinons and chargons, the spin-charge separation, plays a decisive role when describing strongly correlated one-dimensional (1D) Friedel oscillations. Here, we extend the investigation by considering a third electron fractionalization: the separation into spinons and orbitons. Specifically, we deal with two exact constraints of exchange-correlation (XC) density-functionals: (i) The constancy of the highest occupied Kohn-Sham eigenvalues upon fractional electron numbers, and (ii) their discontinuities at integers. By means of 1D Hubbard chains, we show that spin-orbital separation can be decisive when dealing with derivative discontinuities of XC potentials, especially at strong correlations.
Paradis, D; Mény, C; Gromov, V
2011-01-01
In a previous paper we proposed a new model for the emission by amorphous astronomical dust grains, based on solid-state physics. The model uses a description of the Disordered Charge Distribution (DCD) combined with the presence of Two-Level Systems (TLS) defects in the amorphous solid composing the grains. The goal of this paper is to confront this new model to astronomical observations of different Galactic environments in the FIR/submm, in order to derive a set of canonical model parameters to be used as a Galactic reference to be compared to in future Galactic and extragalactic studies. We confront the TLS model with existing astronomical data. We consider the average emission spectrum at high latitudes in our Galaxy as measured with FIRAS and WMAP, as well as the emission from Galactic compact sources observed with Archeops, for which an inverse relationship between the dust temperature and the emissivity spectral index has been evidenced. We show that, unlike models previously proposed which often invo...
Paradis, D.; Bernard, J.-P.; Mény, C.; Gromov, V.
2011-10-01
Aims: In a previous paper we proposed a new model for the emission by amorphous astronomical dust grains, based on solid-state physics. The model uses a description of the disordered charge distribution (DCD) combined with the presence of two-level systems (TLS) defects in the amorphous solid composing the grains. The goal of this paper is to compare this new model to astronomical observations of different Galactic environments in the far-infrared/submillimeter, in order to derive a set of canonical model parameters to be used as a Galactic reference to be compared to in future Galactic and extragalactic studies. Methods: We compare the TLS model with existing astronomical data. We consider the average emission spectrum at high latitudes in our Galaxy as measured with FIRAS and WMAP, as well as the emission from Galactic compact sources observed with the Archeops balloon experiment, for which an inverse relationship between the dust temperature and the emissivity spectral index has been shown. Results: We show that, unlike models previously proposed that often invoke two dust components at different temperatures, the TLS model successfully reproduces both the shape of the Galactic spectral energy distribution and its evolution with temperature as observed in the Archeops data. The best TLS model parameters indicate a charge coherence length of ≃13 nm and other model parameters in broad agreement with expectations from laboratory studies of dust analogs. We conclude that the millimeter excess emission, which is often attributed to the presence of very cold dust in the diffuse ISM, is very likely caused solely by TLS emission in disordered amorphous dust grains. We discuss the implications of the new model, in terms of mass determinations from millimeter continuum observations and the expected variations in the emissivity spectral index with wavelength and dust temperature. The implications for analyzing the Herschel and Planck satellite data are discussed. Table 5
Can the spin-charge-family theory explain baryon number non conservation?
Borstnik, Norma Susana Mankoc
2014-01-01
The spin-charge-family theory, in which spinors carry besides the Dirac spin also the second kind of the Clifford object, no charges, is a kind of the Kaluza-Klein theories. The Dirac spinors of one Weyl representation in d=(13+1) manifest in d=(3+1) at low energies all the properties of quarks and leptons assumed by the standard model. The second kind of spins explains the origin of families. Spinors interact with the vielbeins and the two kinds of the spin connection fields, the gauge fields of the two kinds of the Clifford objects, which manifest in d=(3+1) besides the gravity and the known gauge vector fields also several scalar gauge fields. Scalars with the space index s=(7,8) are weak doublets, explaining the origin of the Higgs and the Yukawa couplings. It is demonstrated in this paper that the scalar fields with the space index t= (9,10,...,14) carry colour charges in the fundamental representations, causing transitions of antileptons and antiquarks into quarks and back, enabling the appearance and t...
Hu, F M; Sun, C P; Zhou, L; Shi, Tao; Zhou, Lan
2006-01-01
This is the first one of a series of our papers theoretically studying the coherent control of photon transmission along the coupled resonator optical waveguide (CROW) by doping artificial atoms for various hybrid structures. We will provide the several approaches correspondingly based on Green function, the mean field method and spin wave theory et al. In the present paper we adopt the two-time Green function approach to study the coherent transmission photon in a CROW with homogeneous couplings, each cavity of which is doped by a two-level artificial atom. We calculate the two-time correlation function for photon in the weak-coupling case. Its poles predict the exact dispersion relation, which results in the group velocity coherently controlled by the collective excitation of the doping atoms. We emphasize the role of the population inversion of doping atoms induced by some polarization mechanism.
DEFF Research Database (Denmark)
Claessen, R.; Sing, M.; Schwingenschlogl, U.;
2002-01-01
The electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ is studied by angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant discrepancies to band theory. We demonstrate that the measured dispersions can be consistently mapped onto...... the one-dimensional Hubbard model at finite doping. This interpretation is further supported by a remarkable transfer of spectral weight as a function of temperature. The ARPES data thus show spectroscopic signatures of spin-charge separation on an energy scale of the conduction bandwidth....
Bachelard, Nicolas; Sebbah, Patrick; Vanneste, Christian
2014-01-01
We use time-domain numerical simulations of a two-dimensional (2D) scattering system to study the interaction of a collection of emitters resonantly coupled to an Anderson-localized mode. For a small electric field intensity, we observe the strong coupling between the emitters and the mode, which is characterized by linear Rabi oscillations. Remarkably, a larger intensity induces non-linear interaction between the emitters and the mode, referred to as the dynamical Stark effect, resulting in non-linear Rabi oscillations. The transition between both regimes is observed and an analytical model is proposed which accurately describes our numerical observations.
Institute of Scientific and Technical Information of China (English)
2008-01-01
The time evolution of the field quantum entropy and entanglement in a system of multi-mode coherent light field resonantly interacting with a two-level atom by de-generating the multi-photon process is studied by utilizing the Von Neumann re-duced entropy theory,and the analytical expressions of the quantum entropy of the multimode field and the numerical calculation results for three-mode field inter-acting with the atom are obtained. Our attention focuses on the discussion of the influences of the initial average photon number,the atomic distribution angle and the phase angle of the atom dipole on the evolution of the quantum field entropy and entanglement. The results obtained from the numerical calculation indicate that: the stronger the quantum field is,the weaker the entanglement between the quan-tum field and the atom will be,and when the field is strong enough,the two sub-systems may be in a disentangled state all the time; the quantum field entropy is strongly dependent on the atomic distribution angle,namely,the quantum field and the two-level atom are always in the entangled state,and are nearly stable at maximum entanglement after a short time of vibration; the larger the atomic dis-tribution angle is,the shorter the time for the field quantum entropy to evolve its maximum value is; the phase angles of the atom dipole almost have no influences on the entanglement between the quantum field and the two-level atom. Entangled states or pure states based on these properties of the field quantum entropy can be prepared.
Institute of Scientific and Technical Information of China (English)
LIU WangYun; YANG ZhiYong; AN YuYing
2008-01-01
The time evolution of the field quantum entropy and entanglement in a system of multi-mode coherent light field resonantly interacting with a two-level atom by de-generating the multi-photon process is studied by utilizing the Von Neumann re-duced entropy theory, and the analytical expressions of the quantum entropy of the multimode field and the numerical calculation results for three-mode field inter-acting with the atom are obtained. Our attention focuses on the discussion of the influences of the initial average photon number, the atomic distribution angle and the phase angle of the atom dipole on the evolution of the quantum field entropy and entanglement. The results obtained from the numerical calculation indicate that: the stronger the quantum field is, the weaker the entanglement between the quan-tum field and the atom will be, and when the field is strong enough, the two sub-systems may be in a disentangled state all the time; the quantum field entropy is strongly dependent on the atomic distribution angle, namely, the quantum field and the two-level atom are always in the entangled state, and are nearly stable at maximum entanglement after a short time of vibration; the larger the atomic dis-tribution angle is, the shorter the time for the field quantum entropy to evolve its maximum value is; the phase angles of the atom dipole almost have no influences on the entanglement between the quantum field and the two-level atom. Entangled states or pure states based on these properties of the field quantum entropy can be prepared.
Institute of Scientific and Technical Information of China (English)
叶朱枫
2015-01-01
The two-level management system emerging with the expansion of higher vocational colleges is not only the objective need of the development of colleges, but also one of the charac-teristics of higher vocational colleges. In order to improve the quality of teaching and management, higher vocational colleges generally implement two-level management system, and the teaching secretary plays an important role in the management system. The expansion of higher vocational colleges will in-evitably lead to the increase of teaching management, which makes the teaching secretary work more complex and challeng-ing. This paper mainly analyzes the new positioning of teaching secretary work under two-level management system as well as how to carry out the work and serve the functions of the secretary better in collaboration with various departments, to ensure the stability of the teaching order and the healthy development of colleges.%随高职院校规模的扩大而出现的二级管理体制不仅是院校发展的客观需要，也是高职院校的办学特色之一。高职院校为提高教学和管理质量，一般都是实行二级管理体制，而且教学秘书在管理体制中起着重要的协调作用。高职院校规模的扩展必然导致教学管理工作的增加，这使得教学秘书的日常工作变得复杂且颇具挑战性。本文主要分析了二级管理体制下教学秘书工作的新定位以及如何更好地开展工作，更好地发挥秘书的职能，配合各部门更好地开展工作，保证教学秩序的稳定性并促进学校的健康发展。
Institute of Scientific and Technical Information of China (English)
金静芬; 范清秋; 赵锐祎
2015-01-01
Objective: To explore the applicability and feasibility of two-level triage system in our tertiary hospital outpatient visit management. Methods: The authors established two-level triage system based on the JCI outpatient safety management goal and homogeneity service, they defined the job description of clinic nurses, established outpatient safety management system, improved clinic environment, using outpatient triage software to support the two-level triage management. Results: The average waiting time decreased from 56.33 min to 40.95 min (P<0.001), the overall satisfaction for outpatient increased from 91.38% to 94.63% (P<0.001) after three-year practice. No one suffered sudden accident death in clinic. The rate of one clinic for one patient was 96.8%. Conclusion: The two-level triage system under JCI standard was safe and efifcient for improving clinic service and outpatient satisfaction. It is an important means to increase outpatient service quality.%目的：构建门诊二级分诊护理管理模式，探索二级分诊管理模式在大型三级甲等医院门诊患者就诊管理中的适用性和可行性。方法：结合JCI门诊患者安全管理目标以及同质化服务要求，完善门诊护士岗位职责，建立并实施二级分诊工作模式，制定门诊患者安全管理制度，优化就诊环境，完善并应用门诊分诊管理软件支持二级分诊护理管理。结果：经过近三年实践，患者就诊等候时间从平均56.33min缩短至40.95min（P<0.001），门诊患者的总体满意度从91.38%提高到94.63%（P<0.001），门诊未发现因突发意外事件死亡，门诊一人一诊间执行率达到96.8%。结论：JCI标准下门诊二级分诊护理管理模式安全可行，提高了就诊效率和患者满意度，是提高门诊综合服务质量的重要手段。
Design of a Two Levels Optical Receiver System for UV Scattering Communication%紫外光散射通信中一种二级光学接收系统设计
Institute of Scientific and Technical Information of China (English)
赵太飞; 柯熙政; 梁薇; 何华
2011-01-01
介绍了大气紫外光通信的特点和光学天线的性能指标,仿真分析了传统的复合抛物面聚光器(CPC)和半球透镜在非视距紫外信道中的聚光性能,设计了一种二级接收的光学聚光系统,并使用ZEMAX软件进行光线追迹,对其光学增益及视场进行分析.结果表明,这种二级光学系统有较高的增益及较大的视场,适合作为非视距紫外光通信中的光学天线.%This paper describes the characteristics of atmospheric ultraviolet (UV) communications and the performance of optical antenna. The concentration performance of the conventional compound parabolic concentrator ( CPC) and ther hemispherical lens in the non-light-of-sight ( NLOS) UV channel have been simulated and analyzed.A kind of two-level receiving optical light-gathering system has been designed, the ZEMAX software was used for the light-tracing and its optic gain as well as the field-of-view have heen analyzed. The simulation results show that this two levels optical systems have a higher gain and a larger field-of-view which is suitable for the optical antenna of the NLOS UV communication.
Two-Level Semantics and Abstract Interpretation
DEFF Research Database (Denmark)
Nielson, Flemming
1989-01-01
Two-level semantics is a variant of Scott/Strachey denotational semantics in which the concept of binding time is treated explicitly. This is done by formally distinguishing between those computations that take place at run-time and those that take place at compile-time. Abstract interpretation...... unique flavour is the insistence on formal proofs of correctness and the methods used to establish these. This paper develops a theory of abstract interpretation for two-level denotational definitions. There are three ingredients in this. First a framework for proving the correctness of analyses...
Expectations of two-level telegraph noise
Fern, J
2006-01-01
We find expectation values of functions of time integrated two-level telegraph noise. Expectation values of this noise are evaluated under simple control pulses. Both the Gaussian limit and $1/f$ noise are considered. We apply the results to a specific superconducting quantum computing example, which illustrates the use of this technique for calculating error probabilities.
Borstnik, Norma Susana Mankoc
2013-01-01
The so far observed three families of quarks and leptons, the vector gauge fields of the fermions charges and the scalar Higgs responsible for masses of fermions and weak bosons, all these confirming the standard model, make most of physicists to declare that the Higgs was the last missing particle to be confirmed. But can this at all be true? Is it not self evident that there must be additional scalar fields which manifest effectively the appearance of the Yukawa couplings and that the Yukawa couplings can only be understood if we understand the origin of families? The spin-charge-family theory is offering a possible explanation for the origin of families and also for several scalar fields, which are responsible for masses of fermions and weak vector boson fields. The theory is offering the explanation also for other assumptions of the standard model. The theory predicts at the observable regime two decoupled groups of four families. The fourth family, coupled to the measured three, will be observed at the L...
Study on the Delay Performance of Station Dependent Two-level Polling Systems%依托站点状态的两级轮询控制系统时延特性分析
Institute of Scientific and Technical Information of China (English)
官铮; 杨志军; 何敏; 钱文华
2016-01-01
Based on priority differentiation and the system eﬃciency, this paper proposes a station dependent two-level polling system. The mixed service two-level polling system is extended by using queue state-dependent routing, in which only active stations with information packets could be visited by server. The scheme meets the requirement not only for conflict free but also for priority differentiation and eﬃciency, and provides a lower latency. An embedded Markov chain framework is set up to drive the closed-form expression for the mean waiting time. Numerical examples demonstrate that theoretical and simulation results are identical and the new system has a better eﬃciency at both key station and normal station.%基于区分业务优先级和提高系统时延性能的网络需求，提出了依托站点状态的两级轮询控制系统。系统在混合服务两级轮询模型的基础上，根据站点缓冲区状态采用并行调度方式仅对有数据分组的活动站点提供服务。该模型既能满足区分站点优先级的需求又能避免空闲查询，从而提高系统利用率、降低等待时延。采用嵌入式马尔科夫链和概率母函数的方法对该系统建立数学模型，对系统平均等待时延特性进行了精确解析。通过理论计算与仿真实验结果的对比验证了理论分析的正确性，与已有两级轮询系统相比，具有更好的时延性能。
Research and simulation of two-level grid-connected photovoltaic inverter system%两级式光伏并网发电系统的研究与仿真
Institute of Scientific and Technical Information of China (English)
安彬; 公茂法; 苏彦平; 王志文; 李岚冰
2014-01-01
在两级式光伏发电系统中，采用基于前级 Boost 变换器的 MPPT 方法，可以使光伏电池达到最优状态，即最大限度的将太阳能转化为电能。后级网侧逆变器采用无差拍控制，使电网功率因数为1。通过两级式并网发电系统的仿真，可以实现最大功率点的跟踪，而且使并网电流与电网电压达到同频同相。因此，光伏模块的效率能够得到提高，逆变控制器的电流呈现高质量的正弦交流波形。通过 Matlab/Simulink 软件进行仿真，前后级都能实现相对独立的功能。仿真结果表明：此方案更有利于系统的模块化设计和集成。%The photovoltaic cell can achieve the optimal state ,and the solar energy is converted into electrical energy suffi -ciently in the two-level PV power system by using the method of MPPT which is based on the front stage Boost converter . The back stage network side inverter adopts the method of deadbeat control and the grid power factor turns to be 1 .The maximum power point tracking is realized ,and the grid current has the same frequency and phase with the grid voltage through simulation .Therefore ,efficiency of the solar module is improved and the sine AC wave of the inverter control circuit is high-quality .Each converter can achieve relatively independent function in the two -level PV power system by the method of Matlab/Simulink software simulation .The simulation shows that it is very conducive to the modular design and integration of the system .
Borstnik, Norma Susana Mankoc
2012-01-01
The spin-charge-family theory offers a possible explanation for the assumptions of the standard model, interpreting the standard model as its low energy effective manifestation. The standard model Higgs and Yukawa couplings are explained as an effective replacement for several scalar fields, all of bosonic (adjoint) representations with respect to all the charge groups, with the family groups included. Assuming the Lagrange function for all scalar fields to be of the renormalizable kind, properties of the scalar fields on the tree level are discussed. Free scalar fields (mass eigenstates) differ from either those, which couple to $Z_m$, or to $W^{\\pm}_{m}$ or to each family member of each of the four families, which further differ among themselves. Consequently the spin-charge-family theory predictions differ from those of the standard model.
Two-Level Semantics and Abstract Interpretation
DEFF Research Database (Denmark)
Nielson, Flemming
1989-01-01
Two-level semantics is a variant of Scott/Strachey denotational semantics in which the concept of binding time is treated explicitly. This is done by formally distinguishing between those computations that take place at run-time and those that take place at compile-time. Abstract interpretation...... is concerned with the (preferably automatic) analysis of programs. The main purpose of these analyses is to find information that may assist in the efficient implementation of the programs. Abstract interpretation is thus related to data flow analysis, partial evaluation and other program analysis methods. Its...... unique flavour is the insistence on formal proofs of correctness and the methods used to establish these. This paper develops a theory of abstract interpretation for two-level denotational definitions. There are three ingredients in this. First a framework for proving the correctness of analyses...
Institute of Scientific and Technical Information of China (English)
肖安南; 张城玮; 戴先玉
2013-01-01
Through establishing standardized the maintenance management system of security system , se-curity risk classification management and neural network risk early warning are implemented , in two level of province and region setting risk analysis , online inspection and field monitoring officers .Effectively tracking the rectification results , to achieve closed-loop management , the level of substation security risk prevention and control is improved .%通过建立规范化的安防系统运维管理体系，实行安防风险分类管理、神经网络风险预警，在省地两级均设置风险分析、在线稽查和现场监控专责人员。有效跟踪隐患整改结果，实现问题的闭环管理，提高变电站安防风险防控水平。
Lukman, D
2016-01-01
This contribution is to prove that in the Kaluza-Klein like theories the vielbeins and the spin connection fields --- as used in the spin-charge-family theory --- lead in $d=(3+1)$ space to equivalent vector (and scalar) gauge fields. The authors demonstrate this equivalence in spaces with the symmetry: $g_{\\alpha \\beta} = \\eta_{\\alpha \\beta} e$, for any scalar function $e$ of the coordinates $x^{\\alpha}$.
Two-level convolution formula for nuclear structure function
Ma, Boqiang
1990-05-01
A two-level convolution formula for the nuclear structure function is derived in considering the nucleus as a composite system of baryon-mesons which are also composite systems of quark-gluons again. The results show that the European Muon Colaboration effect can not be explained by the nuclear effects as nucleon Fermi motion and nuclear binding contributions.
Probing spin-charge relation by magnetoconductance in one-dimensional polymer nanofibers
Park, Yung Woo
2013-03-01
Polymer nanofibers are one dimensional (1-D) organic hydrocarbon systems containing conducting polymers where the non-linear local excitations such as solitons, polarons and bipolarons formed by the electron-phonon interaction were predicted. Magnetoconductance (MC) can simultaneously probe both the spin and charge of these mobile species and identify the effects of electron-electron interactions on these nonlinear excitations. Here we report our observations of a qualitatively different MC in polyacetylene (PA) and in polyaniline (PANI) and polythiophene (PT) nanofibers. In PA the MC is essentially zero, but it is present in PANI and PT. The universal scaling behavior and the zero (finite) MC in PA (PANI and PT) nanofibers provide evidence of Coulomb interactions between spinless charged solitons (interacting polarons which carry both spin and charge).
Institute of Scientific and Technical Information of China (English)
栗惠芳; 柏晴; 丁胜; 吴卫丰
2011-01-01
With the popularization of higher education and the accelerated process of internationalization, it＇ s a general practice for most colleges to apply the two level management system of college and school. The paper is to analyze and explore the effective ways of employing the internal control management at the level of schools from the perspectives of system construction, operational mechanism and leadership construction based on literature review and practice analysis. Furthermore, the paper points out that it＇ s imperative for schools to make adaptive adjustments in the above mentioned three aspects, thus facilitating the healthy and rapid development of schools by achieving effectiveness in the fields of teaching, researches, talents cultivation and discipline construction.%随着高等教育大众化和国际化进程的加快，我国大部分高校普遍实行校院两级管理。文章以制度建设、运行机制和领导班子建设三个主要方面为切入点，通过文献梳理和实践分析，对二级学院实施内控管理的有效路径进行分析和探讨。并进一步指出，二级学院迫切需要在上述三个主要方面做出适应性调整，才能在教学、科研、人才队伍和学科建设等方面取得较大成效，促进学院健康、快速发展。
Levitated nanoparticle as a classical two-level atom [Invited
Frimmer, Martin; Gieseler, Jan; Ihn, Thomas; Novotny, Lukas
2017-06-01
The center-of-mass motion of a single optically levitated nanoparticle resembles three uncoupled harmonic oscillators. We show how a suitable modulation of the optical trapping potential can give rise to a coupling between two of these oscillators, such that their dynamics are governed by a classical equation of motion that resembles the Schr\\"odinger equation for a two-level system. Based on experimental data, we illustrate the dynamics of this parametrically coupled system both in the frequency and in the time domain. We discuss the limitations and differences of the mechanical analogue in comparison to a true quantum mechanical system.
Borstnik, Norma Susana Mankoc
2014-01-01
One Weyl representation of SO(13+1) contains, if analysed with respect to the charge and the spin groups of the standard model, left handed weak (SU(2)_{I}) charged and SU(2)_{II} chargeless colour triplet quarks and colourless leptons, and right handed weakless and SU(2)_{II} charged quarks and leptons (neutrinos and electrons). In the spin-charge-family theory spinors carry also the family quantum numbers, explaining the origin of families and correspondingly the masses of fermions and weak bosons and the origin of the scalar Higgs and Yukawa couplings. It is demonstrated in this paper that all the fields appearing in the simple starting action of spin-charge-family theory in d=(13+1) with the scalar index with respect to d=(3+1) and determining masses of quarks and leptons (and correspondingly also of the weak boson fields) carry the weak and the hyper charge in the fundamental representations, in agreement with the Higgs in the standard model.
Optimizing ETL by a Two-level Data Staging Method
DEFF Research Database (Denmark)
Iftikhar, Nadeem
2016-01-01
In data warehousing, the data from source systems are populated into a central data warehouse (DW) through extraction, transformation and loading (ETL). The standard ETL approach usually uses sequential jobs to process the data with dependencies, such as dimension and fact data. It is a non......-/late-arriving data, and fast-/slowly-changing data. The introduced additional staging area decouples loading process from data extraction and transformation, which improves ETL flexibility and minimizes intervention to the data warehouse. This paper evaluates the proposed method empirically, which shows......-trivial task to process the so-called early-/late-arriving data, which arrive out of order. This paper proposes a two-level data staging area method to optimize ETL. The proposed method is an all-in-one solution that supports processing different types of data from operational systems, including early...
Modeling of Two Level Grid Connected PV System and Designing the Key Links%两级式光伏并网系统建模及关键环节的设计
Institute of Scientific and Technical Information of China (English)
孙亮; 袁文强; 吴长鹏
2016-01-01
Set up two-stage photovoltaic grid-connected system model,the control strategy and the key technol-ogy of photovoltaic grid-connected has been studied. Firstly, the front stage adopt DC / DC boost, and with MPPT ( Maximum Power Point Tracking) system to improve the efficiency of the PV system. The traditional MPPT algorithm has been improved,adopted a voltage disturbance observation algorithm which combining with genetic algorithm,even the weather changes greatly,the algorithm is able to accurately track and control the maximum power point. The next stage links adopt single-phase bridge inverter inverts,using the phase-locked loop ( PLL) to achieve the grid current and grid voltage have same phase,because of the grid voltage will in-terfere the grid current,the feedforward compensation of grid voltage has been put forward. Finally,the model using MATLAB simulink simulation software to verify,the method is feasible has been proved.%搭建了两级式光伏并网系统模型，研究其控制策略，分析光伏并网的关键技术环节。前级首先采用DC/DC升压环节，并配合MPPT(最大功率点跟踪)装置来提升光伏系统的工作效率。对传统的MPPT算法进行了改进，采用了与遗传算法相结合的电压干扰观测法，即使外界环境剧烈变化，该算法都能对最大功率点进行准确跟踪控制。后级逆变环节采用单相桥式逆变，利用PLL(锁相环)实现并网电流和电网电压同相位，针对电网电压会对并网电流造成干扰，提出了电网电压前馈补偿控制。最后利用MATLAB软件中simulink模块对模型进行仿真验证，证明了方法的可行性。
Squeezing in the interaction of radiation with two-level atoms
Bandyopadhyay, Abir; Rai, Jagdish
1995-01-01
We propose a simple experimental procedure to produce squeezing and other non-classical properties like photon antibunching of radiation, and amplification without population inversion. The method also decreases the uncertainties of the angular-momentum quadratures representing the two-level atomic system in the interaction of the two-level atoms with quantized radiation.
Two-Level Fingerprinting Codes: Non-Trivial Constructions
Rochanakul, Penying
2011-01-01
We extend the concept of two-level fingerprinting codes, introduced by Anthapadmanabhan and Barg (2009) in context of traceability (TA) codes, to other types of fingerprinting codes, namely identifiable parent property (IPP) codes, secure-frameproof (SFP) codes, and frameproof (FP) codes. We define and propose the first explicit non-trivial construction for two-level IPP, SFP and FP codes.
Energy Technology Data Exchange (ETDEWEB)
Lukman, Dragan; Mankoc Borstnik, Norma Susana [University of Ljubljana, Department of Physics, FMF, Ljubljana (Slovenia)
2017-04-15
It is shown that in the spin-charge-family theory (Mankoc Borstnik in arXiv:1607.01618v2, 2016, Phys Rev D 91:065004. arxiv:1409.7791, 2015, J Mod Phys 6:2244. doi:10.4236/jmp.2015.615230. arXiv: 1409.4981, 2015, J Mod Phys 4:823. doi:10.4236/jmp.2013.46113. arxiv:1312.1542, 2013, arxiv:1409.4981, 2014) as well as in all the Kaluza-Klein like theories (Blagojevic in Gravitation and gauge symmetries, IoP Publishing, Bristol, 2002, An introduction to Kaluza-Klein theories, World Scientific, Singapore, 1983), vielbeins and spin connections manifest in d = (3+1) space equivalent vector gauge fields, when space with d ≥ 5 has a large enough symmetry. The authors demonstrate this equivalence in spaces with the symmetry of the metric tensor in the space out of d = (3+1)-g{sup στ} = η{sup στ} f{sup 2} - for any scalar function f of the coordinates x{sup σ}, where x{sup σ} denotes the coordinates of space out of d = (3+1). Also the connection between vielbeins and scalar gauge fields in d = (3+1) (offering the explanation for the Higgs scalar) is discussed. (orig.)
Borstnik, Norma Susana Mankoc
2013-01-01
The spin-charge-family theory, proposed by the author as a possible new way to explain the assumptions of the standard model, predicts at the low energy regime two decoupled groups of four families of quarks and leptons. In two successive breaks the massless families, first the group of four and at the second break the rest four families, gain nonzero mass matrices. The families are identical with respect to the charges and spin. There are two kinds of fields in this theory, which manifest at low energies as the gauge vector and scalar fields: the fields which couple to the charges and spin, and the fields which couple to the family quantum numbers. In loop corrections to the tree level mass matrices both kinds start to contribute coherently. The fourth family of the lower group of four families is predicted to be possibly observed at the LHC and the stable of the higher four families -- the fifth family -- is the candidate to constitute the dark matter. Properties of the families of quarks and leptons and of...
Two-level cervical disc replacement: perspectives and patient selection
Directory of Open Access Journals (Sweden)
Narain AS
2017-02-01
Full Text Available Ankur S Narain, Fady Y Hijji, Daniel D Bohl, Kelly H Yom, Krishna T Kudaravalli, Kern Singh Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA Introduction: Cervical disc replacement (CDR is an emerging treatment option for cervical degenerative disease. Postulated benefits of cervical disc replacement compared to anterior cervical discectomy and fusion include preserved motion at the operative segments and decreased motion at adjacent levels. Multiple studies have been performed investigating the outcomes of CDR in single-level pathology. The investigation of the use of CDR in two-level pathology is an emerging topic within the literature.Purpose: To critically evaluate the literature regarding two-level CDR in order to determine its utility compared to two-level cervical arthrodesis. Patient selection factors including indications and contraindications will also be explored.Methods: The PubMed database was searched for all articles published on the subject of two-level CDR up until October 2016. Studies were classified by publication year, study design, sample size, follow-up interval, and conflict of interest. Outcomes were recorded from each study, and included data on patient-reported outcomes, radiographic measurements, range of motion, peri- and postoperative complications, heterotopic ossification, adjacent segment disease, reoperation rate, and total intervention cost. Results: Fourteen studies were included in this review. All studies demonstrated at least noninferiority of two-level CDR compared to both two-level arthrodesis and single-level CDR. Patient selection in two-level CDR is driven by the inclusion and exclusion criteria presented in prospective, randomized controlled trials. The most common indication is subaxial degenerative disc disease over two contiguous levels presenting with radiculopathy or myelopathy. Furthermore, costs analyses trended toward at least noninferiority of two-level
Borstnik, Norma Susana Mankoc
2013-01-01
This contribution is to show how does the spin-charge-family theory interpret the assumptions of the standard model, and those extensions of this model, which are trying to see the Yukawa couplings as scalar fields with the family (flavour) charges in the fundamental representations of the group. The purpose of these contribution is i.) to try to understand why the standard model works so well, although its assumptions look quite artificial, and ii.) how do predictions of the spin-charge-family theory about the measurements of the scalar fields differ from predictions of the {\\em standard model}, which has only one scalar field - the Higgs - and also from its more or less direct extensions with Yukawas as the scalar dynamical fields with the family charge in the fundamental or anti-fundamental representation of group.
Structured Learning of Two-Level Dynamic Rankings
Raman, Karthik; Shivaswamy, Pannaga
2011-01-01
For ambiguous queries, conventional retrieval systems are bound by two conflicting goals. On the one hand, they should diversify and strive to present results for as many query intents as possible. On the other hand, they should provide depth for each intent by displaying more than a single result. Since both diversity and depth cannot be achieved simultaneously in the conventional static retrieval model, we propose a new dynamic ranking approach. Dynamic ranking models allow users to adapt the ranking through interaction, thus overcoming the constraints of presenting a one-size-fits-all static ranking. In particular, we propose a new two-level dynamic ranking model for presenting search results to the user. In this model, a user's interactions with the first-level ranking are used to infer this user's intent, so that second-level rankings can be inserted to provide more results relevant for this intent. Unlike for previous dynamic ranking models, we provide an algorithm to efficiently compute dynamic ranking...
Uniformity pattern and related criteria for two-level factorials
Institute of Scientific and Technical Information of China (English)
FANG; Kaitai; QIN; Hong
2005-01-01
In this paper,the study of projection properties of two-level factorials in view of geometry is reported.The concept of uniformity pattern is defined.Based on this new concept,criteria of uniformity resolution and minimum projection uniformity are proposed for comparing two-level factorials.Relationship between minimum projection uniformity and other criteria such as minimum aberration,generalized minimum aberration and orthogonality is made explict.This close relationship raises the hope of improving the connection between uniform design theory and factorial design theory.Our results provide a justification of orthogonality,minimum aberration,and generalized minimum aberration from a natural geometrical interpretation.
A Comprehensive Guide to Factorial Two-Level Experimentation
Mee, Robert
2009-01-01
Statistical design of experiments is useful in virtually every quantitative field. This book focuses on two-level factorial designs that provide efficient plans for exploring the effects of many factors at once. It is suitable for engineers, physical scientists, and those who conduct experiments.
Experiments of Two-level Training in Hungarian Higher Education
Korcsog, Andras; And Others
1977-01-01
An experiment designed to train engineering students to two levels of achievement in three-year and five-year programs within a single institution is reported. Organizational and curricular problems created by such integrated schemes are examined. (Author/LBH)
THE TWO-LEVEL MODEL AT FINITE-TEMPERATURE
Energy Technology Data Exchange (ETDEWEB)
Goodman, A.L.
1980-07-01
The finite-temperature HFB cranking equations are solved for the two-level model. The pair gap, moment of inertia and internal energy are determined as functions of spin and temperature. Thermal excitations and rotations collaborate to destroy the pair correlations. Raising the temperature eliminates the backbending effect and improves the HFB approximation.
Clustering DTDs: An Interactive Two-Level Approach
Institute of Scientific and Technical Information of China (English)
周傲英; 钱卫宁; 钱海蕾; 张龙; 梁宇奇; 金文
2002-01-01
XML (eXtensible Markup Language) is a standard which is widely appliedin data representation and data exchange. However, as an important concept of XML, DTD(Document Type Definition) is not taken full advantage in current applications. In this paper, anew method for clustering DTDs is presented, and it can be used in XML document clustering.The two-level method clusters the elements in DTDs and clusters DTDs separately. Elementclustering forms the first level and provides element clusters, which are the generalization ofrelevant elements. DTD clustering utilizes the generalized information and forms the secondlevel in the whole clustering process. The two-level method has the following advantages: 1) Ittakes into consideration both the content and the structure within DTDs; 2) The generalizedinformation about elements is more useful than the separated words in the vector model; 3) Thetwo-level method facilitates the searching of outliers. The experiments show that this methodis able to categorize the relevant DTDs effectively.
Two-level method with coarse space size independent convergence
Energy Technology Data Exchange (ETDEWEB)
Vanek, P.; Brezina, M. [Univ. of Colorado, Denver, CO (United States); Tezaur, R.; Krizkova, J. [UWB, Plzen (Czech Republic)
1996-12-31
The basic disadvantage of the standard two-level method is the strong dependence of its convergence rate on the size of the coarse-level problem. In order to obtain the optimal convergence result, one is limited to using a coarse space which is only a few times smaller than the size of the fine-level one. Consequently, the asymptotic cost of the resulting method is the same as in the case of using a coarse-level solver for the original problem. Today`s two-level domain decomposition methods typically offer an improvement by yielding a rate of convergence which depends on the ratio of fine and coarse level only polylogarithmically. However, these methods require the use of local subdomain solvers for which straightforward application of iterative methods is problematic, while the usual application of direct solvers is expensive. We suggest a method diminishing significantly these difficulties.
A two level DEA in project based organizations
Directory of Open Access Journals (Sweden)
Mehrdad Hamidi Hedayat
2012-01-01
Full Text Available This paper presents a systematic approach for evaluating the performance of a project based organization using a two level fuzzy data envelopment analysis (DEA technique in project based organizations. In order to determine the required inputs and outputs, important indicators are selected using both expert judgments and statistical analysis and a two-level DEA model is adapted. In this model, by considering different inputs and outputs through a hierarchical process, a large number of sub indicators are provided and rolled up to a higher level. Since inputs and outputs are combinations of qualitative and quantitative indicators, fuzzy logic is also included through the modeling procedure. In addition, since the exact amount cannot be attributed to the indicators, the proposed model uses interval values for the project life cycle. Finally, some of the projects are evaluated throughout the approach proposed in this paper.
Micro- and macrostresses in two level model of coating growth
N. N. Nazarenko; Knyazeva, Anna Georgievna
2014-01-01
In the work, a two level model of coating growing with the diffusion and chemical compounds formation is proposed. The process of coating formation includes different physico-chemical steps and transformations of the structure. From the experiments it was established that the coating consists of the following substances: 4+ titanium oxide, titanium pyrophosphate, calcium pyrophosphate, calcium titanophosphate. Coating growth rate is determined by the deposition rate and the dispersion of the ...
Two-level leader-follower organization in pigeon flocks
Chen, Zhiyong; Zhang, Hai-Tao; Chen, Xi; Chen, Duxin; Zhou, Tao
2015-10-01
The most attractive trait of collective animal behavior is the emergence of highly ordered structures (Cavagna A., Giardina I. and Ginelli F., Phys. Rev. Lett., 110 (2013) 168107). It has been conjectured that the interaction mechanism in pigeon flock dynamics follows a hierarchical leader-follower influential network (Nagy M., Ákos Z., Biro D. and Vicsek T., Nature, 464 (2010) 890). In this paper, a new observation is reported that shows that pigeon flocks actually adopt a much simpler two-level interactive network composed of one leader and some followers. By statistically analyzing the same experimental dataset, we show that for a certain period of time a sole leader determines the motion of the flock while the remaining birds are all followers directly copying the leader's direction with specific time delays. This simple two-level despotic organization is expected to save both motional energy and communication cost, while retaining agility and robustness of the whole group. From an evolutionary perspective, our results suggest that a two-level organization of group flight may be more efficient than a multilevel topology for small pigeon flocks.
Two-Level Stabilized Finite Volume Methods for Stationary Navier-Stokes Equations
Directory of Open Access Journals (Sweden)
Anas Rachid
2012-01-01
Full Text Available We propose two algorithms of two-level methods for resolving the nonlinearity in the stabilized finite volume approximation of the Navier-Stokes equations describing the equilibrium flow of a viscous, incompressible fluid. A macroelement condition is introduced for constructing the local stabilized finite volume element formulation. Moreover the two-level methods consist of solving a small nonlinear system on the coarse mesh and then solving a linear system on the fine mesh. The error analysis shows that the two-level stabilized finite volume element method provides an approximate solution with the convergence rate of the same order as the usual stabilized finite volume element solution solving the Navier-Stokes equations on a fine mesh for a related choice of mesh widths.
Open-Loop Control in Quantum Optics: Two-Level Atom in Modulated Optical Field
Saifullah, Sergei
2008-01-01
The methods of mathematical control theory are widely used in the modern physics, but still they are less popular in quantum science. We will discuss the aspects of control theory, which are the most useful in applications to the real problems of quantum optics. We apply this technique to control the behavior of the two-level quantum particles (atoms) in the modulated external optical field in the frame of the so called "semi classical model", where quantum two-level atomic system (all other levels are neglected) interacts with classical electromagnetic field. In this paper we propose a simple model of feedforward (open-loop) control for the quantum particle system, which is a basement for further investigation of two-level quantum particle in the external one-dimensional optical field.
Performance of a Two-Level Call Admission Control Scheme for DS-CDMA Wireless Networks
Directory of Open Access Journals (Sweden)
Abraham O. Fapojuwo
2007-11-01
Full Text Available We propose a two-level call admission control (CAC scheme for direct sequence code division multiple access (DS-CDMA wireless networks supporting multimedia traffic and evaluate its performance. The first-level admission control assigns higher priority to real-time calls (also referred to as class 0 calls in gaining access to the system resources. The second level admits nonreal-time calls (or class 1 calls based on the resources remaining after meeting the resource needs for real-time calls. However, to ensure some minimum level of performance for nonreal-time calls, the scheme reserves some resources for such calls. The proposed two-level CAC scheme utilizes the delay-tolerant characteristic of non-real-time calls by incorporating a queue to temporarily store those that cannot be assigned resources at the time of initial access. We analyze and evaluate the call blocking, outage probability, throughput, and average queuing delay performance of the proposed two-level CAC scheme using Markov chain theory. The analytic results are validated by simulation results. The numerical results show that the proposed two-level CAC scheme provides better performance than the single-level CAC scheme. Based on these results, it is concluded that the proposed two-level CAC scheme serves as a good solution for supporting multimedia applications in DS-CDMA wireless communication systems.
Performance of a Two-Level Call Admission Control Scheme for DS-CDMA Wireless Networks
Directory of Open Access Journals (Sweden)
Fapojuwo Abraham O
2007-01-01
Full Text Available We propose a two-level call admission control (CAC scheme for direct sequence code division multiple access (DS-CDMA wireless networks supporting multimedia traffic and evaluate its performance. The first-level admission control assigns higher priority to real-time calls (also referred to as class 0 calls in gaining access to the system resources. The second level admits nonreal-time calls (or class 1 calls based on the resources remaining after meeting the resource needs for real-time calls. However, to ensure some minimum level of performance for nonreal-time calls, the scheme reserves some resources for such calls. The proposed two-level CAC scheme utilizes the delay-tolerant characteristic of non-real-time calls by incorporating a queue to temporarily store those that cannot be assigned resources at the time of initial access. We analyze and evaluate the call blocking, outage probability, throughput, and average queuing delay performance of the proposed two-level CAC scheme using Markov chain theory. The analytic results are validated by simulation results. The numerical results show that the proposed two-level CAC scheme provides better performance than the single-level CAC scheme. Based on these results, it is concluded that the proposed two-level CAC scheme serves as a good solution for supporting multimedia applications in DS-CDMA wireless communication systems.
A Two-Level Method for Nonsymmetric Eigenvalue Problems
Institute of Scientific and Technical Information of China (English)
Karel Kolman
2005-01-01
A two-level discretization method for eigenvalue problems is studied. Compared to the standard Galerkin finite element discretization technique performed on a fine grid this method discretizes the eigenvalue problem on a coarse grid and obtains an improved eigenvector (eigenvalue) approximation by solving only a linear problem on the fine grid (or two linear problems for the case of eigenvalue approximation of nonsymmetric problems). The improved solution has the asymptotic accuracy of the Galerkin discretization solution. The link between the method and the iterated Galerkin method is established. Error estimates for the general nonsymmetric case are derived.
Negative spontaneous emission by a moving two-level atom
Lannebère, Sylvain; Silveirinha, Mário G.
2017-01-01
In this paper we investigate how the dynamics of a two-level atom is affected by its interaction with the quantized near field of a plasmonic slab in relative motion. We demonstrate that for small separation distances and a relative velocity greater than a certain threshold, this interaction can lead to a population inversion, such that the probability of the excited state exceeds the probability of the ground state, corresponding to a negative spontaneous emission rate. It is shown that the developed theory is intimately related to a classical problem. The problem of quantum friction is analyzed and the differences with respect to the corresponding classical effect are highlighted.
Two-level hierarchical feature learning for image classification
Institute of Scientific and Technical Information of China (English)
Guang-hui SONG; Xiao-gang JIN; Gen-lang CHEN; Yan NIE
2016-01-01
In some image classifi cation tasks, similarities among different categories are different and the samples are usually misclassifi ed as highly similar categories. To distinguish highly similar categories, more specifi c features are required so that the classifi er can improve the classifi cation performance. In this paper, we propose a novel two-level hierarchical feature learning framework based on the deep convolutional neural network (CNN), which is simple and effective. First, the deep feature extractors of different levels are trained using the transfer learning method that fi ne-tunes the pre-trained deep CNN model toward the new target dataset. Second, the general feature extracted from all the categories and the specifi c feature extracted from highly similar categories are fused into a feature vector. Then the fi nal feature representation is fed into a linear classifi er. Finally, experiments using the Caltech-256, Oxford Flower-102, and Tasmania Coral Point Count (CPC) datasets demonstrate that the expression ability of the deep features resulting from two-level hierarchical feature learning is powerful. Our proposed method effectively increases the classifi cation accuracy in comparison with fl at multiple classifi cation methods.
Eigenmode expansion of the polarization for a spherical sample of two-level atoms
Energy Technology Data Exchange (ETDEWEB)
Friedberg, Richard [Physics Department, Columbia University, New York, NY 10027 (United States); Manassah, Jamal T., E-mail: jmanassah@gmail.co [HMS Consultants, Inc., PO Box 592, New York, NY 10028 (United States)
2009-12-07
We derive pseudo-orthogonality relations for both the magnetic and electric eigenmodes of a system of two-level atoms in a sphere configuration. We verify numerically that an arbitrary vector field can be reconstructed to a great accuracy from these eigenmode expansions. We apply this eigenmode analysis to explore superradiance from a sphere with initially uniform polarization.
Directory of Open Access Journals (Sweden)
Ayse KOCALMIS BILHAN
2013-01-01
Full Text Available A space vector PWM method for a two level inverter is proposed in this paper. A two level inverter using space vector modulation strategy has been modeled and simulated with a passive R-L load. Photovoltaic cells are used as DC source for input of two-level inverter. Simulation results are presented for various operation conditions to verify the system model. In this paper, MATLAB/Simulink package program has been used for modeling and simulation of PV cells and two-level space vector pulse width modulation (SVPWM inverter.
Borstnik, N S Mankoc
2010-01-01
This contribution is an attempt to try to understand the matter-antimatter asymmetry in the universe within the {\\it spin-charge-family-theory} if assuming that transitions in non equilibrium processes among instanton vacua and complex phases in mixing matrices are the sources of the matter-antimatter asymmetry, as studied in the literature for several proposed theories. The {\\it spin-charge-family-theory} is, namely, very promising in showing the right way beyond the {\\it standard model}. It predicts families and their mass matrices, explaining the origin of the charges and of the gauge fields. It predicts that there are, after the universe passes through two $SU(2)\\times U(1)$ phase transitions, in which the symmetry breaks from $SO(1,3) \\times SU(2) \\times SU(2) \\times U(1) \\times SU(3)$ first to $SO(1,3) \\times SU(2) \\times U(1) \\times SU(3)$ and then to $SO(1,3) \\times U(1) \\times SU(3)$, twice decoupled four families. The upper four families gain masses in the first phase transition, while the second fo...
Rabi noise spectroscopy of individual two-level tunneling defects
Matityahu, Shlomi; Lisenfeld, Jürgen; Bilmes, Alexander; Shnirman, Alexander; Weiss, Georg; Ustinov, Alexey V.; Schechter, Moshe
2017-06-01
Understanding the nature of two-level tunneling defects is important for minimizing their disruptive effects in various nanodevices. By exploiting the resonant coupling of these defects to a superconducting qubit, one can probe and coherently manipulate them individually. In this work, we utilize a phase qubit to induce Rabi oscillations of single tunneling defects and measure their dephasing rates as a function of the defect's asymmetry energy, which is tuned by an applied strain. The dephasing rates scale quadratically with the external strain and are inversely proportional to the Rabi frequency. These results are analyzed and explained within a model of interacting defects, in which pure dephasing of coherent high-frequency (gigahertz) defects is caused by interaction with incoherent low-frequency thermally excited defects. Our analysis sets an upper bound for the relaxation rates of thermally excited defects interacting strongly with strain fields.
Collective polaritonic modes in an array of two-level quantum emitters coupled to optical nanofiber
Kornovan, D F; Petrov, M I
2016-01-01
In this paper we develop a microscopic analysis of the light scattering on a periodic two-level atomic array coupled to an optical nanofiber. We extend the scattering matrix approach for two-level system interaction with nanofiber fundamental waveguiding mode HE_{11}, that allows us modeling the scattering spectra. We support these results considering the dispersion of the polaritonic states formed by the superposition of the fundamental mode of light HE_{11} and the atomic chain states. To illustrate our approach we start with considering a simple model of light scattering over atomic array in the free space. We discuss the Bragg diffraction at the atomic array and show that the scattering spectrum is defined by the non-symmetric coupling of two-level system with nanofiber and vacuum modes. The proposed method allows considering two-level systems interaction with full account for dipole-dipole interaction both via near fields and long-range interaction owing to nanofiber mode coupling.
Institute of Scientific and Technical Information of China (English)
李宏朝; 胡文娟; 王百军; 陈举民; 王晓静
2016-01-01
In order to ensure stable exploitation of oil, combined with CaiNan Oilfield ac-tual production, taking into account the external environment of the scene, we designed two level distributed automation systems. The system controller uses the well 16 monolithic INTEL 80C196 microcontroller circuit as the core monitoring and control, access to the wellhead temperature and pressure data acquisition via standard signal transmitter. Based on the principle of circuit design and control software design method,developed primarily mod-ular applications. By applying concluded: power factor follower method can achieve signifi-cant energy- saving effect,the modular controller program easy to modify and transplant,to achieve a cost-effective extraction of automated control systems.%为了确保油田稳定开采，结合彩南油田的实际生产情况，考虑外界现场环境，设计了两级分布式采油自动化系统。该系统中油井控制器采用Intel十六位单片机80C196作为测控核心，通过采集变送器标准信号获得井口温度及压力等数据。基于电路设计原理及控制软件设计方法，开发了主要的模块化应用程序。通过应用得出结论：采用功率因数随动技术节电效果显著，模块化控制器程序易于修改和移植，实现了采油自动化控制系统的低成本高效率。
CONSENSUS FORMATION OF TWO-LEVEL OPINION DYNAMICS
Institute of Scientific and Technical Information of China (English)
Yilun SHANG
2014-01-01
Opinion dynamics have received significant attention in recent years. This pa-per proposes a bounded confidence opinion model for a group of agents with two different confidence levels. Each agent in the population is endowed with a confidence interval around her opinion with radius αd or (1-α)d, where α ∈ (0, 1/2] represents the differentiation of confidence levels. We analytically derived the critical confidence bound dc =1/(4α) for the two-level opinion dynamics on Z. A single opinion cluster is formed with probability 1 above this critical value regardless of the ratio p of agents with high/low confidence. Extensive numerical simulations are performed to illustrate our theoretical results. Noticed is a clear impact of p on the collective behavior: more agents with high confidence lead to harder agreement. It is also experimentally revealed that the sharpness of the threshold dc increases with αbut does not depend on p.
A DISCRETE TIME TWO-LEVEL MIXED SERVICE PARALLEL POLLING MODEL
Institute of Scientific and Technical Information of China (English)
Guan Zheng; Zhao Dongfeng; Zhao Yifan
2012-01-01
We present a discrete time single-server two-level mixed service polling systems with two queue types,one center queue and N normal queues.Two-level means the center queue will be successive served after each normal queue.In the first level,server visits between the center queue and the normal queue.In the second level,normal queues are polled by a cyclic order.Mixed service means the service discipline are exhaustive for center queue,and parallel i-limited for normal queues.We propose an imbedded Markov chain framework to drive the closed-form expressions for the mean cycle time,mean queue length,and mean waiting time.Numerical examples demonstrate that theoretical and simulation results are identical the new system efficiently differentiates priorities.
Some studies of the interaction between N-two level atoms and three level atom
Directory of Open Access Journals (Sweden)
D.A.M. Abo-Kahla
2016-07-01
Full Text Available In this paper, we present the analytical solution for the model that describes the interaction between a three level atom and two systems of N-two level atoms. The effect of the quantum numbers on the atomic inversion and the purity, for some special cases of the initial states, are investigated. We observe that the atomic inversion and the purity change remarkably by the change of the quantum numbers.
Directory of Open Access Journals (Sweden)
Dolean Victorita
2014-07-01
Full Text Available Multiphase, compositional porous media flow models lead to the solution of highly heterogeneous systems of Partial Differential Equations (PDE. We focus on overlapping Schwarz type methods on parallel computers and on multiscale methods. We present a coarse space [Nataf F., Xiang H., Dolean V., Spillane N. (2011 SIAM J. Sci. Comput. 33, 4, 1623-1642] that is robust even when there are such heterogeneities. The two-level domain decomposition approach is compared to multiscale methods.
Coupling of effective one-dimensional two-level atoms to squeezed light
Clark, S; Clark, Stephen; Parkins, Scott
2002-01-01
A cavity QED system is analyzed which duplicates the dynamics of a two-level atom in free space interacting exclusively with broadband squeezed light. We consider atoms in a three or four-level Lambda-configuration coupled to a high-finesse optical cavity which is driven by a squeezed light field. Raman transitions are induced between a pair of stable atomic ground states via the squeezed cavity mode and coherent driving fields. An analysis of the reduced master equation for the atomic ground states shows that a three-level atomic system has insufficient parameter flexibility to act as an effective two-level atom interacting exclusively with a squeezed reservoir. However, the inclusion of a fourth atomic level, coupled dispersively to one of the two ground states by an auxiliary laser field, introduces an extra degree of freedom and enables the desired interaction to be realised. As a means of detecting the reduced quadrature decay rate of the effective two-level system, we examine the transmission spectrum o...
Two-level tuning of fuzzy PID controllers.
Mann, G I; Hu, B G; Gosine, R G
2001-01-01
Fuzzy PID tuning requires two stages of tuning; low level tuning followed by high level tuning. At the higher level, a nonlinear tuning is performed to determine the nonlinear characteristics of the fuzzy output. At the lower level, a linear tuning is performed to determine the linear characteristics of the fuzzy output for achieving overall performance of fuzzy control. First, different fuzzy systems are defined and then simplified for two-point control. Non-linearity tuning diagrams are constructed for fuzzy systems in order to perform high level tuning. The linear tuning parameters are deduced from the conventional PID tuning knowledge. Using the tuning diagrams, high level tuning heuristics are developed. Finally, different applications are demonstrated to show the validity of the proposed tuning method.
Intrinsic decoherence in the interaction of two fields with a two-level atom
Energy Technology Data Exchange (ETDEWEB)
Juarez-Amaro, R. [Universidad Tecnologica de la Mixteca, Mexico (Mexico); INAOE, Puebla (Mexico); Escudero-Jimenez, J.L. [INAOE, Puebla (Mexico); Moya-Cessa, H.
2009-06-15
We study the interaction of a two-level atom and two fields, one of them classical. We obtain an effective Hamiltonian for this system by using a method recently introduced that produces a small rotation to the Hamiltonian that allows to neglect some terms in the rotated Hamiltonian. Then we solve a variation of the Schroedinger equation that models decoherence as the system evolves through intrinsic mechanisms beyond conventional quantum mechanics rather than dissipative interaction with an environment. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
Canyon of current suppression in an interacting two-level quantum dot
DEFF Research Database (Denmark)
Karlström, O; Pedersen, Jonas Nyvold; Samuelsson, P
2011-01-01
Motivated by the recent discovery of a canyon of conductance suppression in a two-level equal-spin quantum dot system [Phys. Rev. Lett. 104, 186804 (2010)], the transport through this system is studied in detail. At low bias and low temperature a strong current suppression is found around...... quantum rate equations. The simulations allow for the prediction of how the suppression is affected by the couplings, the charging energy, the position of the energy levels, the applied bias, and the temperature. We find that, away from electron-hole symmetry, the parity of the couplings is essential...
Optimizing ETL by a Two-level Data Staging Method
DEFF Research Database (Denmark)
Liu, Xiufeng; Iftikhar, Nadeem; Nielsen, Per Sieverts
2016-01-01
In data warehousing, the data from source systems are populated into a central data warehouse (DW) through extraction, transformation and loading (ETL). The standard ETL approach usually uses sequential jobs to process the data with dependencies, such as dimension and fact data. It is a non......-/late-arriving data, and fast-/slowly-changing data. The introduced additional staging area decouples loading process from data extraction and transformation, which improves ETL flexibility and minimizes intervention to the data warehouse. This paper evaluates the proposed method empirically, which shows...
Institute of Scientific and Technical Information of China (English)
李鹏茂; 萨楚尔夫; 苏少龙
2015-01-01
Applying the method of coherent states orthogonalization expansion , the atomic population and the anti-bunching effect of the light field are studied in the system of interaction between a two -level atom and the SchrÖdinger cat state without rotating wave approximation ( RWA) .The results are compared with those in RWA . The influences of the original strength of the light field and two coherent phase angles on the atomic population and antibunching effect with RWA and without RWA are discussed respectively , and the antibunching effect in the weak coupling condition is also discussed without RWA .The results show that the atomic populations with RWA and without RWA have different properties with the different original strengths of the light field .As the original strength of the light field is smaller , the atomic populations with RWA and without RWA show the same properties , but with the increase of the original strength of the light field the population with RWA will show the collapse phe -nomenon .When the coupling strength is larger , the antibunching effects with RWA and without RWA have bigger difference .Without RWA the light field will appear bunching effect , whereas with RWA it will appear alternately the bunching effect and the antibunching effect with the increase of the original strength of light field .%在非旋波近似下，通过采用相干态正交化展开的方法，研究了薛定谔猫态光场与二能级原子相互作用系统中，原子的布局数和光场的反聚束效应，并与旋波近似下的结果进行了对比。在旋波近似与非旋波近似下，讨论了初始光场强度、相干态间的相位角以及失谐量对原子布局数和光场反聚束效应的影响；在非旋波近似下，讨论了强弱耦合情况下光场的反聚束效应。研究结果表明：旋波近似与非旋波近似下，原子的布局数随着初始光场强度的不同，表现出不同的特性；当初始光场强度较小时，
Ultrasonic distance sensor improvement using a two-level neural network
Parvis, Marco; Carullo, Alessio; Ferraris, Franco
1996-01-01
This paper discusses the performance improvement that a neural network can provide to a contactless distance sensor based on the measurement of the time of flight (TOF) of an ultrasonic (US) pulse. The sensor, which embeds a correction system for the temperature effect, achieves a distance uncertainty (rms) of less than 0.5 mm over 0.5 m by using a two-level neural network to process the US echo and determine the TOF in the presence of environmental acoustic noise. The network embeds a "guard...
Quantum averaging and resonances: two-level atom in a one-mode classical laser field
Directory of Open Access Journals (Sweden)
M. Amniat-Talab
2007-06-01
Full Text Available We use a nonperturbative method based on quantum averaging and an adapted from of resonant transformations to treat the resonances of the Hamiltonian of a two-level atom interacting with a one-mode classical field in Floquet formalism. We illustrate this method by extraction of effective Hamiltonians of the system in two regimes of weak and strong coupling. The results obtained in the strong-coupling regime, are valid in the whole range of the coupling constant for the one-photon zero-field resonance.
Institute of Scientific and Technical Information of China (English)
邹旭波; 许晶波; 高孝纯; 符建
2001-01-01
We adopt a dynamical algebraic approach to study the system of a two-level atom moving in a quantized travelling light field and a gravitational field with a multiphoton interaction. The exact solution of the system is obtained and used to discuss the influence of the gravitational field on the collapses and revivals of atomic population, sub-Poissonian statistics.
Intrinsic decoherence of entanglement of a single quantized field interacting with a two-level atom
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
How the mean photon number, the probability of excited state and intrinsic decoherence coefficient influence the time evolution of entanglement is unknown, when a single-mode quantized optic field and a two-level atom coupling system is governed by Milburn equation. The Jaynes-Cummings model is considered. A lower bound of concurrence is proposed to calculate the entanglement. Simulation results indicate that the entanglement of system increases following the increasing of intrinsic decoherence coefficient or the decreasing of the mean photon number. Besides that, the entanglement of system decreases, while the probability of exited state increases from 0 to 0.1, and increases, while the probability of exited state increases from 0.1 to 1.
Two-level Robust Measurement Fusion Kalman Filter for Clustering Sensor Networks
Institute of Scientific and Technical Information of China (English)
ZHANG Peng; QI Wen-Juan; DENG Zi-Li
2014-01-01
This paper investigates the distributed fusion Kalman filtering over clustering sensor networks. The sensor network is partitioned as clusters by the nearest neighbor rule and each cluster consists of sensing nodes and cluster-head. Using the minimax robust estimation principle, based on the worst-case conservative system with the conservative upper bounds of noise variances, two-level robust measurement fusion Kalman filter is presented for the clustering sensor network systems with uncertain noise variances. It can significantly reduce the communication load and save energy when the number of sensors is very large. A Lyapunov equation approach for the robustness analysis is presented, by which the robustness of the local and fused Kalman filters is proved. The concept of the robust accuracy is presented, and the robust accuracy relations among the local and fused robust Kalman filters are proved. It is proved that the robust accuracy of the two-level weighted measurement fuser is equal to that of the global centralized robust fuser and is higher than those of each local robust filter and each local weighted measurement fuser. A simulation example shows the correctness and effectiveness of the proposed results.
Borštnik, Norma Susana Mankoč
2016-01-01
The spin-charge-family theory, which is a kind of the Kaluza-Klein theories but with fermions carrying two kinds of spins (no charges), offers the explanation for all the assumptions of the standard model, with the origin of families, the higgs and the Yukawa couplings included. It offers the explanation also for other phenomena, like the origin of the dark matter and of the matter/antimatter asymmetry in the universe. It predicts the existence of the fourth family to the observed three, as well as several scalar fields with the weak and the hyper charge of the standard model higgs ($\\pm \\frac{1}{2}, \\mp \\frac{1}{2}$, respectively), which determine the mass matrices of family members, offering an explanation, why the fourth family with the masses above $1$ TeV contributes weakly to the gluon-fusion production of the observed higgs and to its decay into two photons, and predicting that the two photons events, observed at the LHC at $\\approx 750$ GeV, might be an indication for the existence of one of several s...
EVALUATION OF TWO-LEVEL GLOBAL LOAD BALANCING FRAMEWORK IN CLOUD ENVIRONMENT
Directory of Open Access Journals (Sweden)
Po-Huei Liang
2015-05-01
Full Text Available With technological advancements and constant changes of Internet, cloud computing has been today's trend. With the lower cost and convenience of cloud computing services, users have increasingly put their Web resources and information in the cloud environment. The availability and reliability of the client systems will become increasingly important. Today cloud applications slightest interruption, the impact will be significant for users. It is an important issue that how to ensure reliability and stability of the cloud sites. Load balancing would be one good solution. This paper presents a framework for global server load balancing of the Web sites in a cloud with two-level load balancing model. The proposed framework is intended for adapting an open-source load-balancing system and the framework allows the network service provider to deploy a load balancer in different data centers dynamically while the customers need more load balancers for increasing the availability.
A two-level approach towards semantic colon segmentation: removing extra-colonic findings.
Lu, Le; Wolf, Matthias; Liang, Jianming; Dundar, Murat; Bi, Jinbo; Salganicoff, Marcos
2009-01-01
Computer aided detection (CAD) of colonic polyps in computed tomographic colonography has tremendously impacted colorectal cancer diagnosis using 3D medical imaging. It is a prerequisite for all CAD systems to extract the air-distended colon segments from 3D abdomen computed tomography scans. In this paper, we present a two-level statistical approach of first separating colon segments from small intestine, stomach and other extra-colonic parts by classification on a new geometric feature set; then evaluating the overall performance confidence using distance and geometry statistics over patients. The proposed method is fully automatic and validated using both the classification results in the first level and its numerical impacts on false positive reduction of extra-colonic findings in a CAD system. It shows superior performance than the state-of-art knowledge or anatomy based colon segmentation algorithms.
Two-Level Automatic Adaptation of a Distributed User Profile for Personalized News Content Delivery
Directory of Open Access Journals (Sweden)
Maria Papadogiorgaki
2008-01-01
Full Text Available This paper presents a distributed client-server architecture for the personalized delivery of textual news content to mobile users. The user profile consists of two separate models, that is, the long-term interests are stored in a skeleton profile on the server and the short-term interests in a detailed profile in the handset. The user profile enables a high-level filtering of available news content on the server, followed by matching of detailed user preferences in the handset. The highest rated items are recommended to the user, by employing an efficient ranking process. The paper focuses on a two-level learning process, which is employed on the client side in order to automatically update both user profile models. It involves the use of machine learning algorithms applied to the implicit and explicit user feedback. The system's learning performance has been systematically evaluated based on data collected from regular system users.
Phonon induced optical gain in a current carrying two-level quantum dot
Energy Technology Data Exchange (ETDEWEB)
Eskandari-asl, Amir, E-mail: amir.eskandari.asl@gmail.com [Department of Physics, Shahid Beheshti University, G.C. Evin, Tehran 1983963113 (Iran, Islamic Republic of); School of Nano Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5531, Tehran, Iran (Iran, Islamic Republic of)
2017-05-15
In this work we consider a current carrying two level quantum dot (QD) that is coupled to a single mode phonon bath. Using self-consistent Hartree-Fock approximation, we obtain the I-V curve of QD. By considering the linear response of our system to an incoming classical light, we see that depending on the parametric regime, the system could have weak or strong light absorption or may even show lasing. This lasing occurs at high enough bias voltages and is explained by a population inversion considering side bands, while the total electron population in the higher level is less than the lower one. The frequency at which we have the most significant lasing depends on the level spacing and phonon frequency and not on the electron-phonon coupling strength.
Mahfouzi, Farzad
Current and future technological needs increasingly motivate the intensive scientific research of the properties of materials at the nano-scale. One of the most important domains in this respect at present concerns nano-electronics and its diverse applications. The great interest in this domain arises from the potential reduction of the size of the circuit components, maintaining their quality and functionality, and aiming at greater efficiency, economy, and storage characteristics for the corresponding physical devices. The aim of this thesis is to present a contribution to the analysis of the electronic charge and spin transport phenomena that occur at the quantum level in nano-structures. This thesis spans the areas of quantum transport theory through time-dependent systems, electron-boson interacting systems and systems of interest to spintronics. A common thread in the thesis is to develop the theoretical foundations and computational algorithms to numerically simulate such systems. In order to optimize the numerical calculations I resort to different techniques (such as graph theory in finding inverse of a sparse matrix, adaptive grids for integrations and programming languages (e.g., MATLAB and C++) and distributed computing tools (MPI, CUDA). Outline of the Thesis: After giving an introduction to the topics covered in this thesis in Chapter 1, I present the theoretical foundations to the field of non-equilibrium quantum statistics in Chapter 2. The applications of this formalism and the results are covered in the subsequent chapters as follows: Spin and charge quantum pumping in time-dependent systems: Covered in Chapters 3, 4 and 5, this topics was initially motivated by experiments on measuring voltage signal from a magnetic tunnel junction (MTJ) exposed to a microwave radiation in ferromagnetic resonance (FMR) condition. In Chapter 3 we found a possible explanation for the finite voltage signal measured from a tunnel junction consisting of only a single
Directory of Open Access Journals (Sweden)
M. Corgini
2010-01-01
Full Text Available For a Bose atom system whose energy operator is diagonal in the so-called number operators and its ground state has an internal two-level structure with negative energies, exact expressions for the limit free canonical energy and pressure are obtained. The existence of non-conventional Bose-Einstein condensation has been also proved.
Chao, Li; Wu, Zhen; Wang, Jianing; Liu, Yi; Chen, Yi
2010-07-01
This article is focused on the two-level control system of ODL, which are divided into bottom layer control of linear motor and upper layer control of Piezoelectric Transducer(PZT).This ODL are designed to compensate geometrical optical path difference, which results from the earth rotation, and other disturbances, with high-accuracy and real time. Based on the PLC of PMAC controller, the linear motor tracks the trajectory of the simulated optical path difference to compensate roughly. PZT then compensates the rest error measured by ZLM almost real time. A detailed fulfillment of this method is shown in the article, and the first result data is produced. The result implies that this method is efficient. This article offers the reference for the ODL development with the practical high accuracy of compensation.
Photon absorption and emission statistics of a two-level atom in a cavity
Energy Technology Data Exchange (ETDEWEB)
Lee, Chang J. [Sun Moon University, Asan (Korea, Republic of)
2012-03-15
The absorption and the emission of photons by an atom involves quantum jumps between states. We investigate the quantum jump statistics for the system of a two-level atom and a single-mode cavity field. We use the Jaynes-Cummings model for this problem, perform Monte Carlo numerical simulations, and give a detailed exact analysis on these simulations. These studies reveal that the waiting-time distribution (WTD) for photon absorptions (emissions) has a unique novel statistic, and that the photon absorption (emission) rate is not uniform, but counter-intuitively depends on the position in the Rabi cycle. The effects of the nonclassical nature of the field on the WTD is discussed.
Information Entropy Squeezing of a Two-Level Atom Interacting with Two-Mode Coherent Fields
Institute of Scientific and Technical Information of China (English)
LIU Xiao-Juan; FANG Mao-Fa
2004-01-01
From a quantum information point of view we investigate the entropy squeezing properties for a two-level atom interacting with the two-mode coherent fields via the two-photon transition. We discuss the influences of the initial state of the system on the atomic information entropy squeezing. Our results show that the squeezed component number,squeezed direction, and time of the information entropy squeezing can be controlled by choosing atomic distribution angle,the relative phase between the atom and the two-mode field, and the difference of the average photon number of the two field modes, respectively. Quantum information entropy is a remarkable precision measure for the atomic squeezing.
Temperature dependent quantum correlations in three dipolar coupled two-level atoms
Ahmed, Shaik
2016-01-01
We investigate the thermal entanglement characteristics of three dipole-coupled two-level atoms arranged in two different configurations - in a line with nearest neighbour coupling and in a closed loop with each atom interacting with both its neighbours. It is observed that in loop configuration, any one of the three atoms is indeed entangled with the other two atoms in the system, which are not mutually entangled, and further that this feature is specific to only the loop configuration, which is markedly absent in the line configuration. A detailed study of the quantum correlations demonstrated how these can be tuned by varying the temperature and the dipole dipole coupling strength, in both the configurations.
Quantum logic gates with two-level trapped ions beyond Lamb-Dicke limit
Institute of Scientific and Technical Information of China (English)
Zheng Xiao-Juan; Luo Yi-Min; Cai Jian-Wu
2009-01-01
In the system with two two-level ions confined in a linear trap,this paper presents a simple scheme to realize the quantum phase gate(QPG)and the swap gate beyond the Lamb-Dicke(LD)limit.These two-qubit quantum logic gates only involve the internal states of two trapped ions.The scheme does not use the vibrational mode as the data bus and only requires a single resonant interaction of the ions with the lasers.Neither the LD approximation nor the auxiliary atomic level is needed in the proposed scheme.Thus the scheme is simple and the interaction time is very short,which is important in view of decoherence.The experimental feasibility for achieving this scheme is also discussed.
Nakatani, Masatoshi; Nobuhiro, Atsushi; Yokoshi, Nobuhiko; Ishihara, Hajime
2013-06-07
We theoretically investigate photoexcitation processes of a two-level molecular system coherently coupled with an antenna system having a significant dissipation. The auxiliary antenna enables the whole system to exhibit anomalous optical effects by controlling the coupling with the molecule. For example, in the weak excitation regime, the quantum interference yields a distinctive energy transparency through the antenna, which drastically reduces the energy dissipation. On the other hand, in the strong excitation regime, a population inversion of the two-level molecule appears due to the nonlinear effect. Both phenomena can be explained by regarding the antenna and molecule as one quantum-mechanically coupled system. Such an approach drives further research to exploit the full potential of the coupled systems.
Efficiency analysis on a two-level three-phase quasi-soft-switching inverter
DEFF Research Database (Denmark)
Geng, Pan; Wu, Weimin; Huang, Min;
2013-01-01
for non-conventional inverters with special shoot-through state is introduced and illustrated through the analysis on a special two-level three-phase quasi-soft-switching inverter. Efficiency comparison between the classical two-stage two-level three-phase inverter and the two-level three-phase quasi......-soft-switching inverter is carried out. A 10 kW/380 V prototype is constructed to verify the analysis. The experimental results show that the efficiency of the new inverter is higher than that of the traditional two-stage two- level three-phase inverter....
Melgar, Miguel A; Tobler, William D; Ernst, Robert J; Raley, Thomas J; Anand, Neel; Miller, Larry E; Nasca, Richard J
2014-01-01
Background Loss of lumbar lordosis has been reported after lumbar interbody fusion surgery and may portend poor clinical and radiographic outcome. The objective of this research was to measure changes in segmental and global lumbar lordosis in patients treated with presacral axial L4-S1 interbody fusion and posterior instrumentation and to determine if these changes influenced patient outcomes. Methods We performed a retrospective, multi-center review of prospectively collected data in 58 consecutive patients with disabling lumbar pain and radiculopathy unresponsive to nonsurgical treatment who underwent L4-S1 interbody fusion with the AxiaLIF two-level system (Baxano Surgical, Raleigh NC). Main outcomes included back pain severity, Oswestry Disability Index (ODI), Odom's outcome criteria, and fusion status using flexion and extension radiographs and computed tomography scans. Segmental (L4-S1) and global (L1-S1) lumbar lordosis measurements were made using standing lateral radiographs. All patients were followed for at least 24 months (mean: 29 months, range 24-56 months). Results There was no bowel injury, vascular injury, deep infection, neurologic complication or implant failure. Mean back pain severity improved from 7.8±1.7 at baseline to 3.3±2.6 at 2 years (p lordosis, defined as a change in Cobb angle ≤ 5°, was identified in 84% of patients at L4-S1 and 81% of patients at L1-S1. Patients with loss or gain in segmental or global lordosis experienced similar 2-year outcomes versus those with less than a 5° change. Conclusions/Clinical Relevance Two-level axial interbody fusion supplemented with posterior fixation does not alter segmental or global lordosis in most patients. Patients with postoperative change in lordosis greater than 5° have similarly favorable long-term clinical outcomes and fusion rates compared to patients with less than 5° lordosis change. PMID:25694920
Maximum Likelihood Analysis of a Two-Level Nonlinear Structural Equation Model with Fixed Covariates
Lee, Sik-Yum; Song, Xin-Yuan
2005-01-01
In this article, a maximum likelihood (ML) approach for analyzing a rather general two-level structural equation model is developed for hierarchically structured data that are very common in educational and/or behavioral research. The proposed two-level model can accommodate nonlinear causal relations among latent variables as well as effects…
Analysis of Bullwhip Effect for Two-level Supply Chain with Multi-distributed Centers
Institute of Scientific and Technical Information of China (English)
LirongCui
2004-01-01
The bullwhip effect is studied for two-level supply chain with multi-distributed centers. First the model for two-level supply chain with multi-distributed centers is established under some assumptions, then the mathematical description is given for it. Finally a simple example is showed to illustrate the results obtained in the paper.
Further Problems with Integral Spin Charged Particles
Directory of Open Access Journals (Sweden)
Comay E.
2013-07-01
Full Text Available The structure of the Lagrangian density of quantum theories of electrically charged particles is analyzed. It is pointed out that a well known and self-consistent expression exists for the electromagnetic interactions of a spin-1/2 Dirac particle. On the other hand, using the Noether theorem, it is shown that no such expression exists for the spin-0 Klein-Gordon charged particle as well as for the W spin-1 particle. It is also explained why effective expressions used in practical analysis of collider data cannot be a part of a self-consistent theory. The results cast doubt on the validity of the electroweak theory.
Grid trust based on pre-measure and two-level reputation
Institute of Scientific and Technical Information of China (English)
ZHANG Lin; WANG Ru-chuan; WANG Hai-yan
2007-01-01
Security has been the focus of grid systems recently. As a kind of tool, grid security infrastructure (GSI) provides the authentication and authorization services and so on. These mechanisms mostly belong to the objective factors, which have not met the needs of security. As the subjective factor, trust model plays an important role in security field. A new two-level reputation trust architecture for grid is given to reduce the costs of system management largely, in which trust relationships amongst virtual organizations (VOs) are built on domain trust managers (DTMs) rather than resource nodes (RNs). Taking inter-domain trust propagation for example, trust model is improved by integrating global reputation and the subjective trust concept of each recommender into synthesizing final trust value. Moreover, before the grid starts to interact with the trustworthy entities, the pre-measure scheme is presented to filter distrustful entities further, which is based on accuracy and honesty. Experimental results indicate that the model can prevent from the malicious attacks better.
Sarabi, B; Ramanayaka, A N; Burin, A L; Wellstood, F C; Osborn, K D
2016-04-22
Material-based two-level systems (TLSs), appearing as defects in low-temperature devices including superconducting qubits and photon detectors, are difficult to characterize. In this study we apply a uniform dc electric field across a film to tune the energies of TLSs within. The film is embedded in a superconducting resonator such that it forms a circuit quantum electrodynamical system. The energy of individual TLSs is observed as a function of the known tuning field. By studying TLSs for which we can determine the tunneling energy, the actual p_{z}, dipole moments projected along the uniform field direction, are individually obtained. A distribution is created with 60 p_{z}. We describe the distribution using a model with two dipole moment magnitudes, and a fit yields the corresponding values p=p_{1}=2.8±0.2 D and p=p_{2}=8.3±0.4 D. For a strong-coupled TLS the vacuum-Rabi splitting can be obtained with p_{z} and tunneling energy. This allows a measurement of the circuit's zero-point electric-field fluctuations, in a method that does not need the electric-field volume.
Quantum dynamics of a driven two-level molecule with variable dephasing
Grandi, Samuele; Major, Kyle D.; Polisseni, Claudio; Boissier, Sebastien; Clark, Alex S.; Hinds, E. A.
2016-12-01
The longitudinal (Γ1) and transverse (Γ2) decay rates of a two-level quantum system have a profound influence on its evolution. Atomic systems with Γ2=1/2 Γ1 have been studied extensively, but with the rise of solid-state quantum devices it is also important to consider the effect of stronger transverse relaxation due to interactions with the solid environment. Here we study the quantum dynamics of a single organic dye molecule driven by a laser. We measure the variation of Γ2 with temperature and determine the activation energy for thermal dephasing of the optical dipole. Then we measure the second-order correlation function g(2 )(τ ) of the light emitted by the molecule for various ratios Γ2/Γ1 and saturation parameters S . We show that the general solution to the optical Bloch equations accurately describes the observed quantum dynamics over a wide range of these parameters, and we discuss the limitations of the various approximate expressions for g(2 )(τ ) that appear in the literature.
Testing a Quantum Heat Pump with a Two-Level Spin
Correa, Luis; Mehboudi, Mohammad
2016-04-01
Once in its non-equilibrium steady state, a nanoscale system coupled to several heat baths may be thought-of as a quantum heat pump. Depending on the direction of its stationary heat flows it may function as e.g. a refrigerator or a heat transformer. These continuous heat devices can be arbitrarily complex multipartite systems, and yet their working principle is always the same: They are made up of several elementary three-level stages operating in parallel. As a result, it is possible to devise external black-box testing strategies to learn about their functionality and performance regardless of any internal details. In particular, one such heat pump can be tested by coupling a two-level spin to one of its contact transitions. The steady state of this external probe contains information about the presence of heat leaks and internal dissipation in the device, and also, about the direction of its steady-state heat currents. Provided that the irreversibility of the heat pump is low, one can further estimate its coefficient of performance. These techniques may find applications in the emerging field of quantum thermal engineering, as they facilitate the diagnosis and design optimization of complex thermodynamic cycles.
Testing a Quantum Heat Pump with a Two-Level Spin
Directory of Open Access Journals (Sweden)
Luis A. Correa
2016-04-01
Full Text Available Once in its non-equilibrium steady state, a nanoscale system coupled to several heat baths may be thought of as a “quantum heat pump”. Depending on the direction of its stationary heat flows, it may function as, e.g., a refrigerator or a heat transformer. These continuous heat devices can be arbitrarily complex multipartite systems, and yet, their working principle is always the same: they are made up of several elementary three-level stages operating in parallel. As a result, it is possible to devise external “black-box” testing strategies to learn about their functionality and performance regardless of any internal details. In particular, one such heat pump can be tested by coupling a two-level spin to one of its “contact transitions”. The steady state of this external probe contains information about the presence of heat leaks and internal dissipation in the device and, also, about the direction of its steady-state heat currents. Provided that the irreversibility of the heat pump is low, one can further estimate its coefficient of performance. These techniques may find applications in the emerging field of quantum thermal engineering, as they facilitate the diagnosis and design optimization of complex thermodynamic cycles.
SPONGY (SPam ONtoloGY): email classification using two-level dynamic ontology.
Youn, Seongwook
2014-01-01
Email is one of common communication methods between people on the Internet. However, the increase of email misuse/abuse has resulted in an increasing volume of spam emails over recent years. An experimental system has been designed and implemented with the hypothesis that this method would outperform existing techniques, and the experimental results showed that indeed the proposed ontology-based approach improves spam filtering accuracy significantly. In this paper, two levels of ontology spam filters were implemented: a first level global ontology filter and a second level user-customized ontology filter. The use of the global ontology filter showed about 91% of spam filtered, which is comparable with other methods. The user-customized ontology filter was created based on the specific user's background as well as the filtering mechanism used in the global ontology filter creation. The main contributions of the paper are (1) to introduce an ontology-based multilevel filtering technique that uses both a global ontology and an individual filter for each user to increase spam filtering accuracy and (2) to create a spam filter in the form of ontology, which is user-customized, scalable, and modularized, so that it can be embedded to many other systems for better performance.
Institute of Scientific and Technical Information of China (English)
XIAO Dong-hai; TAN Chun-lu; WANG Jun-qiang; ZHONG Yuan-chang
2007-01-01
To fit the complicated geographic conditions of the Three Gorges Reservoir area, a two-level multi-objective monitoring system was developed to monitor the atmosphere of the area. Statistical analysis of environmental monitoring data and the macro control principle were employed to configure the upper layer. The lower layer was designed by the application of the thumb rule to a local terrain and specific point sources of pollution therein. The optimized two-level system comprises an upper layer of 16 monitoring stations distributed at places of diverse geographical, ecological, economical and social characteristics, and a lower layer of 16 sub-machines at each monitoring station of the upper layer. This optimal outcome fits the complicated conditions of the Three Gorges Reservoir area, substantially cuts down the installation cost and the operation cost, and provides accurate monitoring data of atmosphere over the entire area with a high resolution.
Economic-mathematical model of two-level minimax program control of economic security of a region
Directory of Open Access Journals (Sweden)
Andrey Fyodorovich Shorikov
2014-09-01
Full Text Available This article discusses a discrete-time dynamical system consisting of a set of a controllable objects (region and forming it municipalities. The dynamics each of these is described by the corresponding vector linear discrete-time recurrent relations, and its control system consist from two levels: basic (control level I that is dominating and subordinate level (control level II. Both levels have different criterions of functioning and united a priori by determined informational and control connections defined in advance. Considered addresses the problem of optimization of management of economic security of the region in the presence of risks. For the investigated problem is proposed in this work an economic-mathematical model of two-level hierarchical minimax program control of economic security of the region in the presence of risk and the general scheme of the solution.
Information Entropy. and Squeezing of Quantum Fluctuations in a Two-Level Atom
Institute of Scientific and Technical Information of China (English)
FANG Mao-Fa; ZHOU Peng; S. Swain
2000-01-01
We study the atomic squeezing in the language of the quantum information theory. A rigorous entropy uncertainty relation which suits for characterizing the squeezing of a two-level atoms is obtained, and a general definition of information entropy squeezing in the two-level atoms is given. The information entropy squeezing of two-level atoms interacting with a single-mode quantum field is examined. Our results show that the information entropy is a superior measure of the quantum uncertainty of atomic observable, also is a remarkable good precision measure of atomic squeezing. When the population difference of two-level atom is zero, the definition of atomic squeezing based on the Heisenberg uncertainty relation is trivial, while the definition of information entropy squeezing of the atom based on the entropy uncertainty relation is valid and can provide full information on the atomic squeezing in any cases.
Dispersion management for two-level optically labeled signals in IP-over-WDM networks 4
DEFF Research Database (Denmark)
Chi, Nan; Carlsson, Birger; Holm-Nielsen, Pablo Villanueva;
2002-01-01
The transmission characteristics of a two-level optically labeled signal with ASK/DPSK modulation are investigated under varying dispersion management. A limitation of extinction ratio and the resilience of fiber span, compensation ratio, and power level are obtained...
Can Hare's two-level utilitarianism overcome the problems facing act-utilitarianism?
Roberts, Emma
2012-01-01
In order to provide a positive defence of utilitarianism, R.M Hare presented his own theory of 'two-level' utilitarianism, claiming that it overcame the main objections directed towards traditional act utilitarianism. This essay firstly outlines the main problems associated with utilitarianism and examines whether Hare's theory is indeed able to successfully overcome them. It then goes on to examine the coherence of two-level utilitarianism itself, and thus determine whether it can provide a ...
Proposing a two-level stochastic model for epileptic seizure genesis.
Shayegh, F; Sadri, S; Amirfattahi, R; Ansari-Asl, K
2014-02-01
By assuming the brain as a multi-stable system, different scenarios have been introduced for transition from normal to epileptic state. But, the path through which this transition occurs is under debate. In this paper a stochastic model for seizure genesis is presented that is consistent with all scenarios: a two-level spontaneous seizure generation model is proposed in which, in its first level the behavior of physiological parameters is modeled with a stochastic process. The focus is on some physiological parameters that are essential in simulating different activities of ElectroEncephaloGram (EEG), i.e., excitatory and inhibitory synaptic gains of neuronal populations. There are many depth-EEG models in which excitatory and inhibitory synaptic gains are the adjustable parameters. Using one of these models at the second level, our proposed seizure generator is complete. The suggested stochastic model of first level is a hidden Markov process whose transition matrices are obtained through analyzing the real parameter sequences of a seizure onset area. These real parameter sequences are estimated from real depth-EEG signals via applying a parameter identification algorithm. In this paper both short-term and long-term validations of the proposed model are done. The long-term synthetic depth-EEG signals simulated by this model can be taken as a suitable tool for comparing different seizure prediction algorithms.
Regular and Chaotic Quantum Dynamics of Two-Level Atoms in a Selfconsistent Radiation Field
Konkov, L. E.; Prants, S. V.
1996-01-01
Dynamics of two-level atoms interacting with their own radiation field in a single-mode high-quality resonator is considered. The dynamical system consists of two second-order differential equations, one for the atomic SU(2) dynamical-group parameter and another for the field strength. With the help of the maximal Lyapunov exponent for this set, we numerically investigate transitions from regularity to deterministic quantum chaos in such a simple model. Increasing the collective coupling constant b is identical with 8(pi)N(sub 0)(d(exp 2))/hw, we observed for initially unexcited atoms a usual sharp transition to chaos at b(sub c) approx. equal to 1. If we take the dimensionless individual Rabi frequency a = Omega/2w as a control parameter, then a sequence of order-to-chaos transitions has been observed starting with the critical value a(sub c) approx. equal to 0.25 at the same initial conditions.
Preventing IP Source Address Spoofing: A Two-Level,State Machine-Based Method
Institute of Scientific and Technical Information of China (English)
BI Jun; LIU Bingyang; WU Jianping; SHEN Yan
2009-01-01
A signature-and-verification-based method, automatic peer-to-peer anti-spoofing (APPA), is pro-posed to prevent IP source address spoofing. In this method, signatures are tagged into the packets at the source peer, and verified and removed at the verification peer where packets with incorrect signatures are filtered. A unique state machine, which is used to generate signatures, is associated with each ordered pair of APPA peers. As the state machine automatically transits, the signature changes accordingly. KISS ran-dom number generator is used as the signature generating algorithm, which makes the state machine very small and fast and requires very low management costs. APPA has an intre-AS (autonomous system) level and an inter-AS level. In the intra-AS level, signatures are tagged into each departing packet at the host and verified at the gateway to achieve finer-grained anti-spoofing than ingress filtering. In the inter-AS level, signatures are tagged at the source AS border router and verified at the destination AS border muter to achieve prefix-level anti-spoofing, and the automatic state machine enables the peers to change signatures without negotiation which makes APPA attack-resilient compared with the spoofing prevention method. The results show that the two levels are both incentive for deployment, and they make APPA an integrated anti-spoofing solution.
Institute of Scientific and Technical Information of China (English)
牟蕾; 孙晔; 王克勤; 朱姗; 赵忠川
2013-01-01
多校区教学是大众化教育背景下，随着招生规模扩大而产生的一种新的教学模式。作为一种并不成熟的教学管理模式，其所面临的一系列问题使得高校教学质量与保障体系受到了挑战。因此，国内外诸多机构和学者纷纷对此开展了多方位、多层次的研究。文章在简要概述目前多校区两级教学质量监控和保障体系研究现状的基础上，指出了目前在该领域研究中的一些空白和不足，为今后在确定该领域的研究探索方向提供思路。%In the context of popular education, multiple-campus teaching is a brand-new type of model of teaching with the expansion of enrolment amount. As a kind of immature teaching management mode, multiple-campus teaching faces a serial of obstacles which challenge the effective teaching quality and security system. Therefore, many an institution and scholar at home and abroad conducted all round and multi-level studies on it. Based on the research status of the brief overview of the present multi-campus and two stage teaching quality monitoring and security system, the paper points out some gap and weakness in the present research field and pave the way for future exploration and study.
Quantum Otto engine of a two-level atom with single-mode fields.
Wang, Jianhui; Wu, Zhaoqi; He, Jizhou
2012-04-01
We establish a quantum Otto engine (QOE) of a two-level atom, which is confined in a one-dimensional (1D) harmonic trap and is coupled to single-mode radiation fields. Besides two adiabatic processes, the QOE cycle consists of two isochoric processes, along one of which the two-level atom as the working substance interacts with a single-mode radiation field. Based on the semigroup approach, we derive the time for completing any adiabatic process and then present a performance analysis of the heat engine model. Furthermore, we generalize the results to the performance optimization for a QOE of a single two-level atom trapped in a 1D power-law potential. Our result shows that the efficiency at maximum power output is dependent on the trap exponent θ but is independent of the energy spectrum index σ.
Two-Level Solutions to Exponentially Complex Problems in Glass Science
DEFF Research Database (Denmark)
Mauro, John C.; Smedskjær, Morten Mattrup
Glass poses an especially challenging problem for physicists. The key to making progress in theoretical glass science is to extract the key physics governing properties of practical interest. In this spirit, we discuss several two-level solutions to exponentially complex problems in glass science....... Topological constraint theory, originally developed by J.C. Phillips, is based on a two-level description of rigid and floppy modes in a glass network and can be used to derive quantitatively accurate and analytically solvable models for a variety of macroscopic properties. The temperature dependence...... of the floppy mode density is used to derive the new MYEGA model of supercooled liquid viscosity, which offers improved descriptions for the temperature and composition dependence of relaxation time. The relaxation behavior of the glassy state can be further elucidated using a two-level energy landscape...
Quantum Otto engine of a two-level atom with single-mode fields
Wang, Jianhui; Wu, Zhaoqi; He, Jizhou
2012-04-01
We establish a quantum Otto engine (QOE) of a two-level atom, which is confined in a one-dimensional (1D) harmonic trap and is coupled to single-mode radiation fields. Besides two adiabatic processes, the QOE cycle consists of two isochoric processes, along one of which the two-level atom as the working substance interacts with a single-mode radiation field. Based on the semigroup approach, we derive the time for completing any adiabatic process and then present a performance analysis of the heat engine model. Furthermore, we generalize the results to the performance optimization for a QOE of a single two-level atom trapped in a 1D power-law potential. Our result shows that the efficiency at maximum power output is dependent on the trap exponent θ but is independent of the energy spectrum index σ.
Two-level system in spin baths: non-adiabatic dynamics and heat transport.
Segal, Dvira
2014-04-28
We study the non-adiabatic dynamics of a two-state subsystem in a bath of independent spins using the non-interacting blip approximation, and derive an exact analytic expression for the relevant memory kernel. We show that in the thermodynamic limit, when the subsystem-bath coupling is diluted (uniformly) over many (infinite) degrees of freedom, our expression reduces to known results, corresponding to the harmonic bath with an effective, temperature-dependent, spectral density function. We then proceed and study the heat current characteristics in the out-of-equilibrium spin-spin-bath model, with a two-state subsystem bridging two thermal spin-baths of different temperatures. We compare the behavior of this model to the case of a spin connecting boson baths, and demonstrate pronounced qualitative differences between the two models. Specifically, we focus on the development of the thermal diode effect, and show that the spin-spin-bath model cannot support it at weak (subsystem-bath) coupling, while in the intermediate-strong coupling regime its rectifying performance outplays the spin-boson model.
Russian Education and Society, 2013
2013-01-01
Teacher education programs in Russia need to be redesigned to be suitable for the changes that have occurred in Russian society, and also to equip teachers to help students connect with their local cultures and ethnicities.
Fidelity decay in interacting two-level boson systems: Freezing and revivals
Benet, Luis; Hernández-Quiroz, Saúl; Seligman, Thomas H.
2011-05-01
We study the fidelity decay in the k-body embedded ensembles of random matrices for bosons distributed in two single-particle states, considering the reference or unperturbed Hamiltonian as the one-body terms and the diagonal part of the k-body embedded ensemble of random matrices and the perturbation as the residual off-diagonal part of the interaction. We calculate the ensemble-averaged fidelity with respect to an initial random state within linear response theory to second order on the perturbation strength and demonstrate that it displays the freeze of the fidelity. During the freeze, the average fidelity exhibits periodic revivals at integer values of the Heisenberg time tH. By selecting specific k-body terms of the residual interaction, we find that the periodicity of the revivals during the freeze of fidelity is an integer fraction of tH, thus relating the period of the revivals with the range of the interaction k of the perturbing terms. Numerical calculations confirm the analytical results.
Fidelity decay in interacting two-level boson systems: Freezing and revivals
Benet, Luis; Seligman, Thomas H
2011-01-01
We study the fidelity decay in the $k$-body embedded ensembles of random matrices for bosons distributed in two single-particle states, considering the reference or unperturbed Hamiltonian as the one-body terms and the diagonal part of the $k$-body embedded ensemble of random matrices, and the perturbation as the residual off-diagonal part of the interaction. We calculate the ensemble-averaged fidelity with respect to an initial random state within linear response theory to second order on the perturbation strength, and demonstrate that it displays the freeze of the fidelity. During the freeze, the average fidelity exhibits periodic revivals at integer values of the Heisenberg time $t_H$. By selecting specific $k$-body terms of the residual interaction, we find that the periodicity of the revivals during the freeze of fidelity is an integer fraction of $t_H$, thus relating the period of the revivals with the range of the interaction $k$ of the perturbing terms. Numerical calculations confirm the analytical re...
Dynamical properties of a two-level system with arbitrary nonlinearities
Indian Academy of Sciences (India)
Mahmoud Abdel-Aty; Nour A Zidan
2003-09-01
We investigate some aspects of a generalized JC-model which include arbitrary forms of non-linearities of both the ﬁeld and the intensity-dependent atom–ﬁeld coupling. We obtain an exactly analytic solution of the model, by means of which we identify and numerically demonstrate the region of parameters where signiﬁcantly large entanglement can be obtained.
Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence
Institute of Scientific and Technical Information of China (English)
Zhang Jian; Shao Bin; Zou Jian
2009-01-01
In this paper,we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling.We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially.The effects of the field squeezing factor,the two-level atomic transition frequency,the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed.Without intrinsic decoherence,the increase of field squeezing factor can break the entropy squeezing.The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing.The influence of the second field frequency is complicated.With the intrinsic decoherence taken into consideration,the results show that the stronger the intrinsic decoherence is,the more quickly the entropy squeezing will disappear.The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing.
A modified two-level three-phase quasi-soft-switching inverter
DEFF Research Database (Denmark)
Liu, Yusheng; Wu, Weimin; Blaabjerg, Frede;
2014-01-01
to reduce the extra conduction power loss and the voltage stress across the DC-link capacitor, a modified two-level three-phase quasi-soft-switching inverter is proposed by using a SiC MOSFET instead of an IGBT. The principle of the modified two-level three-phase quasi-soft-switching inverter is analyzed...... in detail. And the performance is verified through simulations and experiments on a 5 kW/380 V three-phase prototype....
Fundamentals of PV Efficiency Interpreted by a Two-Level Model
Alam, Muhammad A
2012-01-01
Elementary physics of photovoltaic energy conversion in a two-level atomic PV is considered. We explain the conditions for which the Carnot efficiency is reached and how it can be exceeded! The loss mechanisms - thermalization, angle entropy, and below-bandgap transmission - explain the gap between Carnot efficiency and the Shockley-Queisser limit. Wide varieties of techniques developed to reduce these losses (e.g., solar concentrators, solar-thermal, tandem cells, etc.) are reinterpreted by using a two level model. Remarkably, the simple model appears to capture the essence of PV operation and reproduce the key results and important insights that are known to the experts through complex derivations.
A two-level cache for distributed information retrieval in search engines.
Zhang, Weizhe; He, Hui; Ye, Jianwei
2013-01-01
To improve the performance of distributed information retrieval in search engines, we propose a two-level cache structure based on the queries of the users' logs. We extract the highest rank queries of users from the static cache, in which the queries are the most popular. We adopt the dynamic cache as an auxiliary to optimize the distribution of the cache data. We propose a distribution strategy of the cache data. The experiments prove that the hit rate, the efficiency, and the time consumption of the two-level cache have advantages compared with other structures of cache.
A Two-Level Cache for Distributed Information Retrieval in Search Engines
Directory of Open Access Journals (Sweden)
Weizhe Zhang
2013-01-01
Full Text Available To improve the performance of distributed information retrieval in search engines, we propose a two-level cache structure based on the queries of the users’ logs. We extract the highest rank queries of users from the static cache, in which the queries are the most popular. We adopt the dynamic cache as an auxiliary to optimize the distribution of the cache data. We propose a distribution strategy of the cache data. The experiments prove that the hit rate, the efficiency, and the time consumption of the two-level cache have advantages compared with other structures of cache.
Two-level Schwartz methods for nonconforming finite elements and discontinuous coefficients
Sarkis, Marcus
1993-01-01
Two-level domain decomposition methods are developed for a simple nonconforming approximation of second order elliptic problems. A bound is established for the condition number of these iterative methods, which grows only logarithmically with the number of degrees of freedom in each subregion. This bound holds for two and three dimensions and is independent of jumps in the value of the coefficients.
Two-Level Solutions to Exponentially Complex Problems in Glass Science
DEFF Research Database (Denmark)
Mauro, John C.; Smedskjær, Morten Mattrup
Glass poses an especially challenging problem for physicists. The key to making progress in theoretical glass science is to extract the key physics governing properties of practical interest. In this spirit, we discuss several two-level solutions to exponentially complex problems in glass science...
M Sakawa; Kato, K.
2009-01-01
This paper considers stochastic two-level linear programming problems. Using the concept of chance constraints and probability maximization, original problems are transformed into deterministic ones. An interactive fuzzy programming method is presented for deriving a satisfactory solution efficiently with considerations of overall satisfactory balance.
How to Calculate the Exact Angle for Two-level Osteotomy in Ankylosing Spondylitis?
Zheng, Guoquan; Song, Kai; Yao, Ziming; Zhang, Yonggang; Tang, Xiangyu; Wang, Zheng; Zhang, Xuesong; Mao, Keya; Cui, Geng; Wang, Yan
2016-09-01
A prospective case series study. To describe and assess a two-level osteotomy method for the management of severe thoracolumbar kyphosis (TLK) in patients with ankylosing spondylitis (AS). To achieve better postoperative outcomes in these patients, a sophisticated preoperative surgical plan is required. Most deformities are managed using a one-level osteotomy and a two-level osteotomy is seldomly reported. Till date, no study has described a two-level osteotomy for these cases. From January 2011 to December 2012, 10 consecutive patients with ankylosing spondylitis who underwent two-level spinal osteotomy were studied. Pre- and postoperative full-length free-standing radiographs, including the whole spine and pelvis, were available for all patients. Pre- and postoperative radiological parameters, including T5-S1 Cobb angles, TLK, lumbar lordosis, pelvic incidence, pelvic tilt, sacral slope, and sagittal vertical axis were measured. Health related quality of life , including Oswestry Disability Index and Scoliosis Research Society-22 surveys were administered before surgery and at 1-year follow up. The preoperative and postoperative T5-S1 Cobb angles was 51.3° and -7.1°, respectively (P osteotomy provides an accurate and reproducible method for ankylosing spondylitis correction. By which, we can obtain satisfactory radiological parameters and clinical outcomes. 4.
On the dependence of the two-level source function on its radiation field.
Steinitz, R.; Shine, R. A.
1973-01-01
The consequences of the universally made assumption that the stimulated emission profile is identical to the absorption profile are quantitatively investigated for a two-level atom with Doppler redistribution. The nonlinear terms arising in the source function are evaluated iteratively. We find that the magnitude of the effects is probably completely negligible for visible and UV solar lines.
Experimental Research into the Two-Level Cylindrical Cyclone with a Different Number of Channels
Directory of Open Access Journals (Sweden)
Egidijus Baliukas
2014-10-01
Full Text Available The multichannel two-level cyclone has been designed for separating solid particles from airflow and built at the Laboratory of Environmental Protection Technologies of Vilnius Gediminas Technical University. The conducted research is aimed at determining air flow distribution at two levels and channels of the multichannel cyclone. The multifunctional meter Testo-400 and the dynamic Pitot tube have been used form easuring air flow rates in the channels. The obtained results show that the equal volume of air gets into two levels installed inside the cyclone, and rates are distributed equally in the channels of these levels. The maximum air flow rate is recorded in the first channel and occurs when half-rings are set in such positions so that 75% of air flow returns to the previous channel. The biggest aerodynamic resistance is 1660 Pa and has been recorded in the cyclone having eight channels under air flow distribution ratio 75/25. The highest air purification efficiency has been observed in the two-level six-channel cyclone under air flow distribution ratio 75/25. The effectiveness of separating granite particles is 92.1% and that of wood particles – 91.1 when the particles are up to 20 μm in diameter.
Psychological Corp., New York, NY.
Under the guidance of an advisory committee from the American Association for Respiratory Therapy (AART), The Psychological Corporation developed three forms of two criterion-referenced proficiency examinations to measure the skills, understandings, and knowledge required in entry level jobs for two levels of respiratory therapy personnel. The…
Reactive Power Impact on Lifetime Prediction of Two-level Wind Power Converter
DEFF Research Database (Denmark)
Zhou, Dao; Blaabjerg, Frede; Lau, M.
2013-01-01
The influence of reactive power injection on the dominating two-level wind power converter is investigated and compared in terms of power loss and thermal behavior. Then the lifetime of both the partial-scale and full-scale power converter is estimated based on the widely used Coffin-Manson model...
A two-level stochastic collocation method for semilinear elliptic equations with random coefficients
Energy Technology Data Exchange (ETDEWEB)
Chen, Luoping; Zheng, Bin; Lin, Guang; Voulgarakis, Nikolaos
2017-05-01
In this work, we propose a novel two-level discretization for solving semilinear elliptic equations with random coefficients. Motivated by the two-grid method for deterministic partial differential equations (PDEs) introduced by Xu, our two-level stochastic collocation method utilizes a two-grid finite element discretization in the physical space and a two-level collocation method in the random domain. In particular, we solve semilinear equations on a coarse mesh $\\mathcal{T}_H$ with a low level stochastic collocation (corresponding to the polynomial space $\\mathcal{P}_{P}$) and solve linearized equations on a fine mesh $\\mathcal{T}_h$ using high level stochastic collocation (corresponding to the polynomial space $\\mathcal{P}_p$). We prove that the approximated solution obtained from this method achieves the same order of accuracy as that from solving the original semilinear problem directly by stochastic collocation method with $\\mathcal{T}_h$ and $\\mathcal{P}_p$. The two-level method is computationally more efficient, especially for nonlinear problems with high random dimensions. Numerical experiments are also provided to verify the theoretical results.
DEFF Research Database (Denmark)
Bianchi, Federica; Hjortkjær, Jens; Santurette, Sébastien
2017-01-01
in pitch discrimination across all participants, but not within the musicians group alone. Only neural activity in the right auditory cortex scaled with the fine pitch-discrimination thresholds within the musicians. These findings suggest two levels of neuroplasticity in musicians, whereby training...
Constrained Maximum Likelihood Estimation for Two-Level Mean and Covariance Structure Models
Bentler, Peter M.; Liang, Jiajuan; Tang, Man-Lai; Yuan, Ke-Hai
2011-01-01
Maximum likelihood is commonly used for the estimation of model parameters in the analysis of two-level structural equation models. Constraints on model parameters could be encountered in some situations such as equal factor loadings for different factors. Linear constraints are the most common ones and they are relatively easy to handle in…
A two-level generative model for cloth representation and shape from shading.
Han, Feng; Zhu, Song-Chun
2007-07-01
In this paper, we present a two-level generative model for representing the images and surface depth maps of drapery and clothes. The upper level consists of a number of folds which will generate the high contrast (ridge) areas with a dictionary of shading primitives (for 2D images) and fold primitives (for 3D depth maps). These primitives are represented in parametric forms and are learned in a supervised learning phase using 3D surfaces of clothes acquired through photometric stereo. The lower level consists of the remaining flat areas which fill between the folds with a smoothness prior (Markov random field). We show that the classical ill-posed problem-shape from shading (SFS) can be much improved by this two-level model for its reduced dimensionality and incorporation of middle-level visual knowledge, i.e., the dictionary of primitives. Given an input image, we first infer the folds and compute a sketch graph using a sketch pursuit algorithm as in the primal sketch [10], [11]. The 3D folds are estimated by parameter fitting using the fold dictionary and they form the "skeleton" of the drapery/cloth surfaces. Then, the lower level is computed by conventional SFS method using the fold areas as boundary conditions. The two levels interact at the final stage by optimizing a joint Bayesian posterior probability on the depth map. We show a number of experiments which demonstrate more robust results in comparison with state-of-the-art work. In a broader scope, our representation can be viewed as a two-level inhomogeneous MRF model which is applicable to general shape-from-X problems. Our study is an attempt to revisit Marr's idea [23] of computing the 2(1/2)D sketch from primal sketch. In a companion paper [2], we study shape from stereo based on a similar two-level generative sketch representation.
Directory of Open Access Journals (Sweden)
Fangfang Qin
2016-01-01
Full Text Available This paper proposes a two-level additive Schwarz preconditioning algorithm for the weak Galerkin approximation of the second-order elliptic equation. In the algorithm, a P1 conforming finite element space is defined on the coarse mesh, and a stable intergrid transfer operator is proposed to exchange the information between the spaces on the coarse mesh and the fine mesh. With the framework of the Schwarz method, it is proved that the condition number of the preconditioned system only depends on the rate of the coarse mesh size and the overlapping size. Some numerical experiments are carried out to verify the theoretical results.
Institute of Scientific and Technical Information of China (English)
李春先; 方卯发
2003-01-01
We study the squeezing for a two-level atom in the Jaynes-Cummings model with intensity-dependent coupling using quantum information entropy, and examine the influences of the initial state of the system on the squeezed component number and direction of the information entropy squeezing. Our results show that, the squeezed component number depends on the atomic initial distribution angle, while the squeezed direction is determined by both the phases of the atom and the field for the information entropy squeezing. Quantum information entropy is shown to be a remarkable precision measure for atomic squeezing.
An EOQ Model with Stock-Dependent Demand under Two Levels of Trade Credit and Time Value of Money
Directory of Open Access Journals (Sweden)
H.A.O. Jia-Qin
2013-05-01
Full Text Available Since the value of money changes with time, it is necessary to take account of the influence of time factor in making the replenishment policy. In this study, to investigate the influence of the time value of money to the inventory strategy, an inventory system for deteriorating items with stock-dependent demand is investigated under two levels of trade credit. The method to efficiently determine the optimal cycle time is presented. Numerical examples are provided to demonstrate the model and the method.
A Two-Level Undercut-Profile Substrate for Chemical-Solution-Based Filamentary Coated Conductors
DEFF Research Database (Denmark)
Wulff, Anders Christian; Lundeman, Jesper H.; Hansen, Jørn B.
2016-01-01
. In the present study, the 2LUPS concept is applied to a commercial cube-textured Ni-5at.% W tape, and the surface of the 2LUPS coated with two Gd2Zr2O7 buffer layers using chemical solution deposition is examined. Except for narrow regions near the edge of upper plateaus, the plateaus are found to be covered......A recently developed two-level undercut-profile substrate (2LUPS), containing two levels of plateaus connected by a curved wall with an undercut profile, enables self-forming filaments in a coated conductor during physical line-of-sight deposition of buffer and superconducting layers...... by strongly textured Gd2Zr2O7 buffer layers after dip coating and sintering....
Dynamical decoherence in a cavity with a large number of two-level atoms
Frasca, M
2004-01-01
We consider a large number of two-level atoms interacting with the mode of a cavity in the rotating-wave approximation (Tavis-Cummings model). We apply the Holstein-Primakoff transformation to study the model in the limit of the number of two-level atoms, all in their ground state, becoming very large. The unitary evolution that we obtain in this approximation is applied to a macroscopic superposition state showing that, when the coherent states forming the superposition are enough distant, then the state collapses on a single coherent state describing a classical radiation mode. This appear as a true dynamical effect that could be observed in experiments with cavities.
Two-Level Bregman Method for MRI Reconstruction with Graph Regularized Sparse Coding
Institute of Scientific and Technical Information of China (English)
刘且根; 卢红阳; 张明辉
2016-01-01
In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and up-dates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.
A novel two-level dielectric barrier discharge reactor for methyl orange degradation.
Tao, Xumei; Wang, Guowei; Huang, Liang; Ye, Qingguo; Xu, Dongyan
2016-12-15
A novel pilot two-level dielectric barrier discharge (DBD) reactor has been proposed and applied for degradation of continuous model wastewater. The two-level DBD reactor was skillfully realized with high space utilization efficiency and large contact area between plasma and wastewater. Various conditions such as applied voltage, initial concentration and initial pH value on methyl orange (MO) model wastewater degradation were investigated. The results showed that the appropriate applied voltage was 13.4 kV; low initial concentration and low initial pH value were conducive for MO degradation. The percentage removal of 4 L MO with concentration of 80 mg/L reached 94.1% after plasma treatment for 80min. Based on ultraviolet spectrum (UV), Infrared spectrum (IR), liquid chromatography-mass spectrometry (LC-MS) analysis of degradation intermediates and products, insights in the degradation pathway of MO were proposed.
Quantum transport in a two-level quantum dot driven by coherent and stochastic fields
Ke, Sha-Sha; Miao, Ling-E.; Guo, Zhen; Guo, Yong; Zhang, Huai-Wu; Lü, Hai-Feng
2016-12-01
We study theoretically the current and shot noise properties flowing through a two-level quantum dot driven by a strong coherent field and a weak stochastic field. The interaction x(t) between the quantum dot and the stochastic field is assumed to be a Gaussian-Markovian random process with zero mean value and correlation function = Dκe - κ | t - t ‧ | , where D and κ are the strength and bandwidth of the stochastic field, respectively. It is found that the stochastic field could enhance the resonant effect between the quantum dot and the coherent field, and generate new resonant points. At the resonant points, the state population difference between two levels is suppressed and the current is considerably enhanced. The zero-frequency shot noise of the current varies dramatically between sub- and super-Poissonian characteristics by tuning the stochastic field appropriately.
Theoretical treatment of the interaction between two-level atoms and periodic waveguides
Zang, Xiaorun
2015-01-01
Light transport in periodic waveguides coupled to a two-level atom is investigated. By using optical Bloch equations and a photonic modal formalism, we derive semi-analytical expressions for the scattering matrix of one atom trapped in a periodic waveguide. The derivation is general, as the expressions hold for any periodic photonic or plasmonic waveguides. It provides a basic building block to study collective effects arising from photon-mediated multi-atom interactions in periodic waveguides.
Spontaneously induced atom-radiation entanglement in an ensemble of two-level atoms
Tesfa, Sintayehu
2007-01-01
Analysis of the spontaneously induced correlation on atom-radiation entanglement in an ensemble of two-level atoms initially prepared in the upper level and placed in a cavity containing a squeezed radiation employing the method of evaluating the coherent-state propagator is presented. It is found that the cavity radiation exhibits squeezing which is directly attributed to the squeezed radiation in the cavity. The intensity of the cavity radiation increases with the squeeze parameter and inte...
Two-level, two-objective evolutionary algorithms for solving unit commitment problems
Energy Technology Data Exchange (ETDEWEB)
Georgopoulou, Chariklia A.; Giannakoglou, Kyriakos C. [National Technical University of Athens, School of Mechanical Engineering, Laboratory of Thermal Turbomachines, Parallel CFD and Optimization Unit, P.O. Box 64069, Athens 157 10 (Greece)
2009-07-15
A two-level, two-objective optimization scheme based on evolutionary algorithms (EAs) is proposed for solving power generating Unit Commitment (UC) problems by considering stochastic power demand variations. Apart from the total operating cost to cover a known power demand distribution over the scheduling horizon, which is the first objective, the risk of not fulfilling possible demand variations forms the second objective to be minimized. For this kind of problems with a high number of decision variables, conventional EAs become inefficient optimization tools, since they require a high number of evaluations before reaching the optimal solution(s). To considerably reduce the computational burden, a two-level algorithm is proposed. At the low level, a coarsened UC problem is defined and solved using EAs to locate promising solutions at low cost: a strategy for coarsening the UC problem is proposed. Promising solutions migrate upwards to be injected into the high level EA population for further refinement. In addition, at the high level, the scheduling horizon is partitioned in a small number of subperiods of time which are optimized iteratively using EAs, based on objective function(s) penalized to ensure smooth transition from/to the adjacent subperiods. Handling shorter chromosomes due to partitioning increases method's efficiency despite the need for iterating. The proposed two-level method and conventional EAs are compared on representative test problems. (author)
Two-level total disc replacement with Mobi-C(r over 3-years
Directory of Open Access Journals (Sweden)
Reginald Davis
2014-01-01
Full Text Available Objective: To evaluate the safety and effectiveness of two-level total disc replacement (TDR using a Mobi-C(r Cervical Artificial Disc at the 36 month follow-up. Methods: a Prospective, randomized, controlled, multicenter clinical trial of an artificial cervical disc (Mobi-C(r Cervical Artificial Disc was conducted under the Investigational Device Exemptions (IDE and the U.S. Food & Drug Administration (FDA regulations. A total of 339 patients with degenerative disc disease were enrolled to receive either two-level treatment with TDR, or a two-level anterior cervical discectomy and fusion (ACDF as control. The 234 TDR patients and 105 ACDF patients were followed up at regular time points for three years after surgery. Results: At 36 months, both groups demonstrated an improvement in clinical outcome measures and a comparable safety profile. NDI scores, SF-12 PCS scores, patient satisfaction, and overall success indicated greater statistically significant improvement from baseline for the TDR group, in comparison to the ACDF group. The TDR patients experienced lower subsequent surgery rates and a lower rate of adjacent segment degeneration. On average, the TDR patients maintained segmental range of motion through 36 months with no device failure. Conclusion: Results at three-years support TDR as a safe, effective and statistically superior alternative to ACDF for the treatment of degenerative disc disease at two contiguous cervical levels.
Sato, Shinji
2015-01-01
Characteristics of the 2011 Tohoku Tsunami have been revealed by collaborative tsunami surveys extensively performed under the coordination of the Joint Tsunami Survey Group. The complex behaviors of the mega-tsunami were characterized by the unprecedented scale and the low occurrence frequency. The limitation and the performance of tsunami countermeasures were described on the basis of tsunami surveys, laboratory experiments and numerical analyses. These findings contributed to the introduction of two-level tsunami hazards to establish a new strategy for tsunami disaster mitigation, combining structure-based flood protection designed by the Level-1 tsunami and non-structure-based damage reduction planned by the Level-2 tsunami.
Thermal analysis of multi-MW two-level wind power converter
Zhou, Dao; Blaabjerg, Frede; Mogens, Lau; Tonnes, Michael
2012-01-01
In this paper, the multi-MW wind turbine of partial-scale and full-scale two-level power converter with DFIG and direct-drive PMSG are designed and compared in terms of their thermal performance. Simulations of different configurations regarding loss distribution and junction temperature in the power device in the whole range of wind speed are presented and analyzed. It is concluded that in both partial-scale and full-scale power converter the most thermal stressed power device in the generat...
Two-level correlation function of critical random-matrix ensembles
E. Cuevas
2004-01-01
The two-level correlation function $R_{d,\\beta}(s)$ of $d$-dimensional disordered models ($d=1$, 2, and 3) with long-range random-hopping amplitudes is investigated numerically at criticality. We focus on models with orthogonal ($\\beta=1$) or unitary ($\\beta=2$) symmetry in the strong ($b^d \\ll 1$) coupling regime, where the parameter $b^{-d}$ plays the role of the coupling constant of the model. It is found that $R_{d,\\beta}(s)$ is of the form $R_{d,\\beta}(s)=1+\\delta(s)-F_{\\beta}(s^{\\beta}/...
Solving the scattering of N photons on a two-level atom without computation
Roulet, Alexandre; Scarani, Valerio
2016-09-01
We propose a novel approach for solving the scattering of light onto a two-level atom coupled to a one-dimensional waveguide. First we express the physical quantity of interest in terms of Feynman diagrams and treat the atom as a non-saturable linear beamsplitter. By using the atomic response to our advantage, a relevant substitution is then made that captures the nonlinearity of the atom, and the final result is obtained in terms of simple integrals over the initial incoming wavepackets. The procedure is not limited to post-scattering quantities and allows for instance to derive the atomic excitation during the scattering event.
Phase Dependence of Few-Cycle Pulsed Laser Propagation in a Two-Level Atom Medium
Institute of Scientific and Technical Information of China (English)
肖健; 王中阳; 徐至展
2002-01-01
The phase-dependent feature of few-cycle pulsed laser propagation in a resonant two-level atom medium is demonstrated by solving the full Maxwell-Bloch equations. Even in the perturbative region, the propagating carrier field and the corresponding spectra of the few-cycle pulsed laser are sensitive to the initial phase due to self-phase modulation. For the larger pulse area, the fact that the carrier-wave reshaping comes from the carrier wave Rabi flopping is also responsible for this sensitivity, and the phase-dependent feature is more evident.
SPECTRUM OF A FEW-CYCLE LASER PULSE PROPAGATING IN A TWO-LEVEL ATOM MEDIUM
Institute of Scientific and Technical Information of China (English)
肖健; 王中阳; 徐至展
2001-01-01
The spectrum evolution of a few-cycle optical pulse in a resonant two-level atom medium is studied theoretically by using the full Maxwell-Bloch equations. On the propagating pulse, significantly much faster oscillation components separated with the main pulse appear due to strong self-phase modulation and pulse reshaping. In this case, ideal selfinduced transparency cannot occur for a 2r pulse. The spectrum of the 4r pulse shows an evident oscillatory feature because of the continuum interference of the separate pulses. For larger pulse areas, continuum generation from near ultraviolet to infrared occurs.
Reactive Power Impact on Lifetime Prediction of Two-level Wind Power Converter
DEFF Research Database (Denmark)
Zhou, Dao; Blaabjerg, Frede; Lau, M.;
2013-01-01
The influence of reactive power injection on the dominating two-level wind power converter is investigated and compared in terms of power loss and thermal behavior. Then the lifetime of both the partial-scale and full-scale power converter is estimated based on the widely used Coffin-Manson model....... It is concluded that the injection of the reactive power could have serious impact on the power loss and thermal profile, especially at lower wind speed. Furthermore, the introduction of the reactive power could also shorten the lifetime of the wind power converter significantly....
Dynamics of Two-Level Trapped Ion in a Standing Wave Laser in Noncommutative Space
Institute of Scientific and Technical Information of China (English)
YANG Xiao-Xue; WU Ying
2007-01-01
We study the dynamics of a two-level trapped ion in a standing wave electromagnetic field in two-dimensional (2D) noncommutative spaces in the Lamb-Dicke regime under the rotating wave approximation. We obtain the explicit analytical expressions for the energy spectra, energy eigenstates, unitary time evolution operator, atomic inversion, and phonon number operators. The Rabi oscillations, the collapse, and revivals in the average atomic inversion and the average phonon number are explicitly shown to contain the information of the parameter of the space noncommutativity,which sheds light on proposing new schemes based on the dynamics of trappedion to test the noncommutativity.
Radiation Rate of a Two-Level Atom in a Spacetime with a Reflecting Boundary
Institute of Scientific and Technical Information of China (English)
LU Shi-Zhuan; YU Hong-Wei
2005-01-01
@@ We study a two-level atom in interaction with a real massless scalar quantum field in a spacetime with a reflecting boundary. We calculate the rate of change of the atomic energy for the atom. The presence of the boundary modifies the quantum fluctuations of the scalar field, which in turn modifies the rate of change of the atomic energy.It is found that the modifications induced by the presence of a boundary make the spontaneous radiation rate of an excited atom to oscillate near the boundary and this oscillatory behaviour may offer a possible opportunity for experimental tests for geometrical (boundary) effects in flat spacetime.
Propagation of Few-Cycle Pulse Laser in Two-Level Atom Medium
Institute of Scientific and Technical Information of China (English)
肖健; 王中阳; 徐至展
2001-01-01
By comparing the numerical solutions of Maxwell-Bloch equations beyond and within the slowly-varying envelope approximation and the rotating-wave approximation for the propagation of a few-cycle pulse laser in a resonant two-level atom medium, we found that both the Rabi flopping and the refractive index, and subsequently the carrier and the propagation velocity of the few-cycle pulse, are closely connected with the time-derivative behaviour of the electric field. This is because the Rabi flopping is such that the soliton pulse splits during propagation and that a shorter pulse propagates faster than a broader one.
Fractal Two-Level Finite Element Method For Free Vibration of Cracked Beams
Directory of Open Access Journals (Sweden)
A.Y.T. Leung
1998-01-01
Full Text Available The fractal two-level finite element method is extended to the free vibration behavior of cracked beams for various end boundary conditions. A cracked beam is separated into its singular and regular regions. Within the singular region, infinite number of finite elements are virturally generated by fractal geometry to model the singular behavior of the crack tip. The corresponding numerous degrees of freedom are reduced to a small set of generalized displacements by fractal transformation technique. The solution time and computer storage can be remarkably reduced without sacrifying accuracy. The resonant frequencies and mode shapes computed compared well with the results from a commercial program.
Phase Dependence of Fluorescence Spectrum of a Two-Level Atom in a Trichromatic Field
Institute of Scientific and Technical Information of China (English)
LI Jing-Yan; HU Xiang-Ming; LI Xiao-Xia; SHI Wen-Xing; XU Qing; GUO Hong-Ju
2005-01-01
@@ We examine the phase-dependent effects in resonance fluorescence of a two-level atom driven by a trichromatic modulated field. It is shown that the fluorescence spectrum depends crucially on the sum of relative phases of the sideband components compared to the central component, not simply on the respective phases. The appearance or disappearance of the central peak and the selective elimination of the sideband peaks are achieved simply by varying the sum phase. Once the sum phase is fixed, the spectrum keeps its features unchanged regardless of the respective relative phases.
The dynamic properties of the two-level entangled atom in an optical field
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The interaction of an optical field and one of the entangled atoms is analyzed in detail in this paper. Furthermore, the dynamic properties of the two-level entangled atom are manifested. The properties of the action are dependent on the initial state of the atom. After detecting the atom out of the field, we can obtain the state of the other atom moving in the field. It is shown that the state of the atom out of the field influences the dynamic properties of the atom in the field.
Spectral density of Cooper pairs in two level quantum dot-superconductors Josephson junction
Dhyani, A.; Rawat, P. S.; Tewari, B. S.
2016-09-01
In the present paper, we report the role of quantum dot energy levels on the electronic spectral density for a two level quantum dot coupled to s-wave superconducting leads. The theoretical arguments in this work are based on the Anderson model so that it necessarily includes dot energies, single particle tunneling and superconducting order parameter for BCS superconductors. The expression for single particle spectral function is obtained by using the Green's function equation of motion technique. On the basis of numerical computation of spectral function of superconducting leads, it has been found that the charge transfer across such junctions can be controlled by the positions and availability of the dot levels.
Haffoudhi, Houda
2005-01-01
URL des Cahiers :http://mse.univ-paris1.fr/MSEFramCahier2005.htm; Cahiers de la Maison des Sciences Economiques 2005.54 - ISSN : 1624-0340; International environmental agreements (IEAs) are increasingly important in a globalized economy. The aim of our paper is study the effect of political pressure groups-lobbies on the size and stability of IEAs. To this purpose we use the framework of two-level games to explain how national political situation influences the decisions of governments at the...
Directory of Open Access Journals (Sweden)
Zohreh Molamohamadi
2014-01-01
Full Text Available In the traditional inventory system, it was implicitly assumed that the buyer pays to the seller as soon as he receives the items. In today’s competitive industry, however, the seller usually offers the buyer a delay period to settle the account of the goods. Not only the seller but also the buyer may apply trade credit as a strategic tool to stimulate his customers’ demands. This paper investigates the effects of the latter policy, two-level trade credit, on a retailer’s optimal ordering decisions within the economic order quantity framework and allowable shortages. Unlike most of the previous studies, the demand function of the customers is considered to increase with time. The objective of the retailer’s inventory model is to maximize the profit. The replenishment decisions optimally are obtained using genetic algorithm. Two special cases of the proposed model are discussed and the impacts of parameters on the decision variables are finally investigated. Numerical examples demonstrate the profitability of the developed two-level supply chain with backorder.
Energy Technology Data Exchange (ETDEWEB)
Yuan, R.-Y., E-mail: yuanry@cnu.edu.cn [Center for Theoretical Physics, Department of Physics, Capital Normal University, Beijing 100048 (China); Zhao, X.; Ji, A.-C. [Center for Theoretical Physics, Department of Physics, Capital Normal University, Beijing 100048 (China); Guo, Y., E-mail: guoy66@tsinghua.edu.cn [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100084 (China); Yan, H. [Laboratory of Thin Film Materials, Beijing University of Technology, Beijing 100022 (China)
2015-09-04
Both the charging and orbital quantization energies of InAs quantum dot (QD) typically correspond to the terahertz (THz) region. In this letter, under the asymmetric THz irradiations on two leads, electron transport through a two-level InAs QD is theoretically discussed. We demonstrate that when both the frequencies and amplitudes of THz irradiations on two leads are different with the higher asymmetry, the photon–electron pump effect vanishes, even a negative platform appears on the left of the Coulomb peak and a positive platform occurs on the right of the Coulomb interaction related energy level, respectively. This behavior is favorable for the design of THz optoelectronic device. - Highlights: • Asymmetric terahertz waves are irradiated on two leads in two-level InAs QD system. • Only with different frequencies, a negative current resonance is obtained. • A negative platform appears on the left of the Coulomb peak with higher asymmetry. • For the low terahertz field strength, a positive platform occurs. • We report the behaviors are favorable for the design of THz optoelectronic device.
SCREENING OF MEDIUM COMPOUNDS USING A TWO-LEVEL FACTORIAL DESIGN FOR SACCHAROMYCES BOULARDII
Directory of Open Access Journals (Sweden)
GUOWEI SHU
2016-04-01
Full Text Available Even if the probiotic effect of Saccharomyces boulardii is has been reported, this yeast is rarely used in medium composition. Based on single factor experiment, two-level factorial design was employed to evaluate the effect of carbon sources (sucrose, glucose, nitrogen sources (soy peptone, beef extract, yeast extract, calf serum, malt extract and salts (K2HPO4, KH2PO4, MgSO4, Na2HPO4, NaH2PO4, CaCl2, sodium citrate, sodium glutamate on the growth of S. boulardii. At the same time, the optical density (OD in the medium was measured at 560 nm after 36 h of incubation. The result of two-level factorial design experiment showed that calf serum (p = 0.0214 and sodium citrate (p = 0.0045 are the significant growth factors of S. boulardii, sucrose (p = 0.0861 and malt extract (p = 0.0763 are important factors. In addition, sucrose and sodium citrate showed positive effect on the growth of S. boulardii. However, calf serum and malt extract showed negative effect on the growth. And we determined that the optimum medium composition for S. boulardii was as follow: 37.5 g·L-1 sucrose, 6 g·L-1 calf serum, 6 g·L-1 malt extract, 5 g·L-1 sodium citrate.
Directory of Open Access Journals (Sweden)
Shen-yan Chen
2015-01-01
Full Text Available This paper presents an Improved Genetic Algorithm with Two-Level Approximation (IGATA to minimize truss weight by simultaneously optimizing size, shape, and topology variables. On the basis of a previously presented truss sizing/topology optimization method based on two-level approximation and genetic algorithm (GA, a new method for adding shape variables is presented, in which the nodal positions are corresponding to a set of coordinate lists. A uniform optimization model including size/shape/topology variables is established. First, a first-level approximate problem is constructed to transform the original implicit problem to an explicit problem. To solve this explicit problem which involves size/shape/topology variables, GA is used to optimize individuals which include discrete topology variables and shape variables. When calculating the fitness value of each member in the current generation, a second-level approximation method is used to optimize the continuous size variables. With the introduction of shape variables, the original optimization algorithm was improved in individual coding strategy as well as GA execution techniques. Meanwhile, the update strategy of the first-level approximation problem was also improved. The results of numerical examples show that the proposed method is effective in dealing with the three kinds of design variables simultaneously, and the required computational cost for structural analysis is quite small.
Thermal analysis of multi-MW two-level wind power converter
DEFF Research Database (Denmark)
Zhou, Dao; Blaabjerg, Frede; Mogens, Lau;
2012-01-01
In this paper, the multi-MW wind turbine of partial-scale and full-scale two-level power converter with DFIG and direct-drive PMSG are designed and compared in terms of their thermal performance. Simulations of different configurations regarding loss distribution and junction temperature in the p......In this paper, the multi-MW wind turbine of partial-scale and full-scale two-level power converter with DFIG and direct-drive PMSG are designed and compared in terms of their thermal performance. Simulations of different configurations regarding loss distribution and junction temperature...... in the power device in the whole range of wind speed are presented and analyzed. It is concluded that in both partial-scale and full-scale power converter the most thermal stressed power device in the generator-side converter will have higher mean junction temperature and larger junction temperature...... fluctuation compared to grid-side converter at the rated wind speed. Moreover, the thermal performance of the generator-side converter in the partial-scale power converter becomes crucial around the synchronous operating point and should be considered carefully....
Directory of Open Access Journals (Sweden)
Abdelkrim Thameur
2015-01-01
Full Text Available This paper proposes a regulation method of back-to-back connected two-level PWM rectifier-five-level Voltage Source Inverter (VSI in order to reduce the torque ripple in induction motor. First part is dedicated to the presentation of the feedback control of two-level PWM rectifier. In the second part, five-level Neutral Point Clamped (NPC voltage source inverter balancing DC bus algorithm is presented. A theoretical analysis with a complete simulation of the system is presented to prove the excellent performance of the proposed technique.
Energy Technology Data Exchange (ETDEWEB)
Friedberg, Richard [Physics Department, Columbia University, New York, NY 10027 (United States); Manassah, Jamal T., E-mail: jmanassah@gmail.co [HMS Consultants, Inc., P.O. Box 592, New York, NY 10028 (United States)
2010-04-05
We give the analytic expressions for the initial Cooperative Decay Rate and Cooperative Lamb Shift for a spherical cloud of two-level atoms for the cases of uniform and Gaussian number density distributions. We derive these expressions in both scalar and vector models for the cases when the system's initial polarization is uniform and when it is coherently phased.
Chung, Kun-Jen
2013-09-01
An inventory problem involves a lot of factors influencing inventory decisions. To understand it, the traditional economic production quantity (EPQ) model plays rather important role for inventory analysis. Although the traditional EPQ models are still widely used in industry, practitioners frequently question validities of assumptions of these models such that their use encounters challenges and difficulties. So, this article tries to present a new inventory model by considering two levels of trade credit, finite replenishment rate and limited storage capacity together to relax the basic assumptions of the traditional EPQ model to improve the environment of the use of it. Keeping in mind cost-minimisation strategy, four easy-to-use theorems are developed to characterise the optimal solution. Finally, the sensitivity analyses are executed to investigate the effects of the various parameters on ordering policies and the annual total relevant costs of the inventory system.
Spectroscopic properties of a two-level atom interacting with a complex spherical nanoshell
Moroz, A
2004-01-01
Frequency shifts, radiative decay rates, the Ohmic loss contribution to the nonradiative decay rates, fluorescence yields, and photobleaching of a two-level atom radiating anywhere inside or outside a complex spherical nanoshell, i.e. a stratified sphere consisting of alternating silica and gold concentric spherical shells, are studied. The changes in the spectroscopic properties of an atom interacting with complex nanoshells are significantly enhanced, often more than two orders of magnitude, compared to the same atom interacting with a homogeneous dielectric sphere. The changes strongly depend on the nanoshell parameters and the atom position. When an atom approaches a metal shell,the radiative decay rates are strongly enhanced and they increase faster than the Ohmic loss contribution to the nonradiative decay rates. However, the majority of the emitted radiation does not escape to spatial infinity but instead is absorbed. The enhancement of the radiative decay rates in a close proximity of metal boundaries...
DEFF Research Database (Denmark)
Nysteen, Anders; McCutcheon, Dara; Mørk, Jesper
2015-01-01
We analytically treat the scattering of two counterpropagating photons on a two-level emitter embedded in an optical waveguide. We find that the nonlinearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could...... be quantified via a reduction in coincidence clicks in a Hong–Ou–Mandel measurement setup, analogous to a linear beam splitter. Changes to the spectra and phase of the scattered photons, however, would lead to reduced interference with other photons when implemented in a larger optical circuit. We introduce...... suitable fidelity measures which account for these changes and find that high values can still be achieved even when accounting for all properties of the scattered photonic state....
Giant Cooperative Lamb Shift in a density-modulated slab of two-level atoms
Energy Technology Data Exchange (ETDEWEB)
Manassah, Jamal T., E-mail: jmanassah@gmail.co [Department of Electrical Engineering, City College of New York, NY 10031 (United States)
2010-04-19
A 'slab' of two-level atoms prepared in a superradiant Dicke state exhibits interesting enhancement of the Cooperative Decay Rate (CDR) when its density is modulated at the Bragg condition. In this Letter, complete analytical formulas are given, not only for CDR but also for the Cooperative Lamb Shift (CLS), both at and near the Bragg condition, as a function of the depth of modulation, the thickness of the slab, and the detuning from the Bragg condition. A major new result is that for detuning O(1/m) (where m=thickness/wavelength) the CLS takes on 'giant' values, proportional to m. The reason for this giant CLS is explored.
Controlling spontaneous emission of a two-level atom by hyperbolic metamaterials
Liu, Zheng; Jiang, Xunya
2012-01-01
Within the frame of quantum optics we analyze the properties of spontaneous emission of two-level atom in media with indefinite permittivity tensor where the geometry of the dispersion relation is characterized by an ellipsoid or a hyperboloid(hyperbolic medium). The decay rate is explicitly given with the orientation of the dipole transition matrix element taken into account. It indicates that for the ellipsoid case the intensity of the photons coupled into different modes can be tuned by changing the direction of the matrix element and for the hyperboloid case it is found that spontaneous emission in hyperbolic medium can be dramatically enhanced compared to the dielectric background. Moreover, spontaneous emission exhibit the strong directivity and get the maximum in the asymptote direction.
TWO-LEVEL HIERARCHICAL COORDINATION QUEUING METHOD FOR TELECOMMUNICATION NETWORK NODES
Directory of Open Access Journals (Sweden)
M. V. Semenyaka
2014-07-01
Full Text Available The paper presents hierarchical coordination queuing method. Within the proposed method a queuing problem has been reduced to optimization problem solving that was presented as two-level hierarchical structure. The required distribution of flows and bandwidth allocation was calculated at the first level independently for each macro-queue; at the second level solutions obtained on lower level for each queue were coordinated in order to prevent probable network link overload. The method of goal coordination has been determined for multilevel structure managing, which makes it possible to define the order for consideration of queue cooperation restrictions and calculation tasks distribution between levels of hierarchy. Decisions coordination was performed by the method of Lagrange multipliers. The study of method convergence has been carried out by analytical modeling.
Zhao, Tao; Hwang, Feng-Nan; Cai, Xiao-Chuan
2016-07-01
We consider a quintic polynomial eigenvalue problem arising from the finite volume discretization of a quantum dot simulation problem. The problem is solved by the Jacobi-Davidson (JD) algorithm. Our focus is on how to achieve the quadratic convergence of JD in a way that is not only efficient but also scalable when the number of processor cores is large. For this purpose, we develop a projected two-level Schwarz preconditioned JD algorithm that exploits multilevel domain decomposition techniques. The pyramidal quantum dot calculation is carefully studied to illustrate the efficiency of the proposed method. Numerical experiments confirm that the proposed method has a good scalability for problems with hundreds of millions of unknowns on a parallel computer with more than 10,000 processor cores.
Stimuli-Responsive Reversible Two-Level Adhesion from a Structurally Dynamic Shape-Memory Polymer.
Michal, Brian T; Spencer, Emily J; Rowan, Stuart J
2016-05-01
A shape-memory adhesive has been prepared that exhibits two levels of reversible adhesion. The adhesive is a semicrystalline cross-linked polymer that contains dynamic disulfide bonds. Melting of the crystalline regions via heat causes a drop in the modulus of the material facilitating wetting of the substrate as well as enhancing the surface contact area with the substrate, which result in the formation of an adhesive bond. Exposure to higher heat or UV light results in dynamic exchange of the disulfide bonds, which yields a further drop in the modulus/viscosity that improves surface wetting/contact and strengthens the adhesive bond. This improvement in adhesion is shown to apply over different substrates, contact forces, and deformation modes. Furthermore, the adhesive acts as a thermal shape-memory material and can be used to create joints that can reposition themselves upon application of heat.
Effect of Phase Shifted Frequency Modulation on Two Level Atom-Field Interaction
Institute of Scientific and Technical Information of China (English)
K.V. Priyesh; Ramesh Babu Thayyullathil
2012-01-01
We have studied the effect of phase shifted frequency modulation on two level atom with field interaction using Jaynes-Cummings model. Here the frequency of the interacting field is sinusoidally varying with time with a constant phase. Due to the presence of phase in the frequency modulation, the variation of population inversion with time is different from the standard case. There are no exact collapses and revivals in the variation of population inversion but it oscillates sinusoidally with time. In coherent field atom interaction the population inversion behaves as in the case of Fock state atom interaction, when frequency modulation with a non zero phase is applied. The study done with squeezed field has shown the same behavior of the population inversion.
The Level-split of the Two-level Entangled Atom in an Optical Field
Institute of Scientific and Technical Information of China (English)
CAO Zhuoliang; HUANG Ting; GUO Guangcan; YI Youming
2002-01-01
The behavior of a two-level entangled atom in an optical field with circular polarization is studied in this paper. The interaction of an optical field and one of the entangled atoms is analyzed in detail. A general solution of the SchrAo¨Gdinger equation about the motion of the entangled atom is obtained. The properties of the action are dependent on the initial state of the atom. By detecting the entangled atom out of the field, we can obtain the state of the other atom moving in the field. It is shown that the state of the atom out of the field will influence the energies of the split-levels of the atom in the field.
Two-level evaluation on sensor interoperability of features in fingerprint image segmentation.
Yang, Gongping; Li, Ying; Yin, Yilong; Li, Ya-Shuo
2012-01-01
Features used in fingerprint segmentation significantly affect the segmentation performance. Various features exhibit different discriminating abilities on fingerprint images derived from different sensors. One feature which has better discriminating ability on images derived from a certain sensor may not adapt to segment images derived from other sensors. This degrades the segmentation performance. This paper empirically analyzes the sensor interoperability problem of segmentation feature, which refers to the feature's ability to adapt to the raw fingerprints captured by different sensors. To address this issue, this paper presents a two-level feature evaluation method, including the first level feature evaluation based on segmentation error rate and the second level feature evaluation based on decision tree. The proposed method is performed on a number of fingerprint databases which are obtained from various sensors. Experimental results show that the proposed method can effectively evaluate the sensor interoperability of features, and the features with good evaluation results acquire better segmentation accuracies of images originating from different sensors.
Two-Level Verification of Data Integrity for Data Storage in Cloud Computing
Xu, Guangwei; Chen, Chunlin; Wang, Hongya; Zang, Zhuping; Pang, Mugen; Jiang, Ping
Data storage in cloud computing can save capital expenditure and relive burden of storage management for users. As the lose or corruption of files stored may happen, many researchers focus on the verification of data integrity. However, massive users often bring large numbers of verifying tasks for the auditor. Moreover, users also need to pay extra fee for these verifying tasks beyond storage fee. Therefore, we propose a two-level verification of data integrity to alleviate these problems. The key idea is to routinely verify the data integrity by users and arbitrate the challenge between the user and cloud provider by the auditor according to the MACs and ϕ values. The extensive performance simulations show that the proposed scheme obviously decreases auditor's verifying tasks and the ratio of wrong arbitration.
Reversible Data Hiding Based on Two-level HDWT Coefficient Histograms
Directory of Open Access Journals (Sweden)
Xu-Ren Luo
2011-05-01
Full Text Available In recent years, reversible data hiding has attracted much more attention than before. Reversibilitysignifies that the original media can be recovered without any loss from the marked media afterextracting the embedded message. This paper presents a new method that adopts two-level wavelettransform and exploits the feature of large wavelet coefficient variance to achieve the goal of highcapacity with imperceptibility. Our method differs from those of previous ones in which the waveletcoefficients histogram not gray-level histogram is manipulated. Besides, clever shifting rules areintroduced into histogram to avoid the decimal problem in pixel values after recovery to achievereversibility. With small alteration of the wavelet coefficients in the embedding process, and therefore lowvisual distortion is obtained in the marked image. In addition, an important feature of our design is thatthe use of threshold is much different from previous studies. The results indicate that our design issuperior to many other state-of-the-art reversible data hiding schemes.
A two-level on-line learning algorithm of Artificial Neural Network with forward connections
Directory of Open Access Journals (Sweden)
Stanislaw Placzek
2014-12-01
Full Text Available An Artificial Neural Network with cross-connection is one of the most popular network structures. The structure contains: an input layer, at least one hidden layer and an output layer. Analysing and describing an ANN structure, one usually finds that the first parameter is the number of ANN’s layers. A hierarchical structure is a default and accepted way of describing the network. Using this assumption, the network structure can be described from a different point of view. A set of concepts and models can be used to describe the complexity of ANN’s structure in addition to using a two-level learning algorithm. Implementing the hierarchical structure to the learning algorithm, an ANN structure is divided into sub-networks. Every sub-network is responsible for finding the optimal value of its weight coefficients using a local target function to minimise the learning error. The second coordination level of the learning algorithm is responsible for coordinating the local solutions and finding the minimum of the global target function. In the article a special emphasis is placed on the coordinator’s role in the learning algorithm and its target function. In each iteration the coordinator has to send coordination parameters into the first level of subnetworks. Using the input X and the teaching Z vectors, the local procedures are working and finding their weight coefficients. At the same step the feedback information is calculated and sent to the coordinator. The process is being repeated until the minimum of local target functions is achieved. As an example, a two-level learning algorithm is used to implement an ANN in the underwriting process for classifying the category of health in a life insurance company.
Abdel-Khalek, S.; Berrada, K.; Alkhateeb, Sadah A.
2016-09-01
In this paper, we propose a useful quantum system to perform different tasks of quantum information and computational technologies. We explore the required optimal conditions for this system that are feasible with real experimental realization. We present an active way to control the variation of some measures of nonclassicality considering the time-dependent coupling and photon transition effects under a model that closely describes a realistic experimental scenario. We investigate qualitatively the quantum measures for a two-level atom system interacting with a quantum field initially defined in a coherent state in the framework of power-law potentials (PLPCSs). We study the nonlocal correlation in the whole system state using the negativity as a measure of entanglement in terms of the exponent parameter, number of photon transition, and phase damping effect. The influences of the different physical parameters on the statistical properties and purity of the field are also demonstrated during the time evolution. The results indicate that the preservation and enhancement of entanglement greatly benefit from the combination of the choice of the physical parameters. Finally, we explore an interesting relationship between the different quantum measures of non-classicality during the time evolution in the absence and presence of time-dependent coupling effect.
Institute of Scientific and Technical Information of China (English)
Liu Xiao-Juan; Zhou Yuan-Jun; Fang Mao-Fa
2009-01-01
From the viewpoint of quantum information, this paper proposes a concept and a definition of the atomic optimal entropy squeezing sudden generation (AOESSG) for the system of an effective two-level moving atom which entangles with the two-mode coherent fields. It also researches the relationship between the AOESSG and entanglement sudden death of the atom-fields, and discusses the influences of atomic initial state on the AOESSG and obtains the system parameter which controls the AOESSG.
Institute of Scientific and Technical Information of China (English)
LUO Jin-Ming; LI Jia-Hua; XIE Xiao-Tao
2006-01-01
@@ Taking the intensity-dependent coupling between atoms and cavity mode into account, we investigate a system consisting of N homogeneously broadened two-level atoms interacting with the field inside a single-mode Fabry Perot cavity containing a nonlinear Kerr-like medium. We derive the steady-state bistable behaviour of the system, and further analyse in details the influence of several critical parameters on the bistable behaviour.
Directory of Open Access Journals (Sweden)
Ryuto Shigenobu
2017-05-01
Full Text Available High penetration of distributed generators (DGs using renewable energy sources (RESs is raising some important issues in the operation of modern power system. The output power of RESs fluctuates very steeply, and that include uncertainty with weather conditions. This situation causes voltage deviation and reverse power flow. Several methods have been proposed for solving these problems. Fundamentally, these methods involve reactive power control for voltage deviation and/or the installation of large battery energy storage system (BESS at the interconnection point for reverse power flow. In order to reduce the installation cost of static var compensator (SVC, Distribution Company (DisCo gives reactive power incentive to the cooperating customers. On the other hand, photovoltaic (PV generator, energy storage and electric vehicle (EV are introduced in customer side with the aim of achieving zero net energy homes (ZEHs. This paper proposes not only reactive power control but also active power flow control using house BESS and EV. Moreover, incentive method is proposed to promote participation of customers in the control operation. Demand response (DR system is verified with several DR menu. To create profit for both side of DisCo and customer, two level optimization approach is executed in this research. Mathematical modeling of price elasticity and detailed simulations are executed by case study. The effectiveness of the proposed incentive menu is demonstrated by using heuristic optimization method.
STLIS: A Scalable Two-Level Index Scheme for Big Data in IoT
Directory of Open Access Journals (Sweden)
Yonglin Leng
2016-01-01
Full Text Available The rapid development of the Internet of Things causes the dramatic growth of data, which poses an important challenge on the storage and quick retrieval of big data. As an effective representation model, RDF receives the most attention. More and more storage and index schemes have been developed for RDF model. For the large-scale RDF data, most of them suffer from a large number of self-joins, high storage cost, and many intermediate results. In this paper, we propose a scalable two-level index scheme (STLIS for RDF data. In the first level, we devise a compressed path template tree (CPTT index based on S-tree to retrieve the candidate sets of full path. In the second level, we create a hierarchical edge index (HEI and a node-predicate (NP index to accelerate the match. Extensive experiments are executed on two representative RDF benchmarks and one real RDF dataset in IoT by comparison with three representative index schemes, that is, RDF-3X, Bitmat, and TripleBit. Results demonstrate that our proposed scheme can respond to the complex query in real time and save much storage space compared with RDF-3X and Bitmat.
The excitation of a two-level atom by a propagating light pulse
Wang, Yimin; Scarani, Valerio
2010-01-01
State mapping between atoms and photons, and photon-photon interactions play an important role in scalable quantum information processing. We consider the interaction of a two-level atom with a quantized \\textit{propagating} pulse in free space and study the probability $P_e(t)$ of finding the atom in the excited state at any time $t$. This probability is expected to depend on (i) the quantum state of the pulse field and (ii) the overlap between the pulse and the dipole pattern of the atomic spontaneous emission. In the full three-dimensional vector model for the field, we show that the second effect is captured by a single parameter $\\Lambda\\in[0,8\\pi/3]$, obtained by weighing the numerical aperture with the dipole pattern. Then $P_e(t)$ can be obtained by solving time-dependent Heisenberg-Langevin equations. We provide detailed solutions for both single-photon states and coherent states and for various shapes of the pulse.
Yang, Xingwang; Qian, Jing; Jiang, Ling; Yan, Yuting; Wang, Kan; Liu, Qian; Wang, Kun
2014-04-01
Ochratoxin A (OTA) has a number of toxic effects to both humans and animals, so developing sensitive detection method is of great importance. Herein, we describe an ultrasensitive electrochemical aptasensor for OTA based on the two-level cascaded signal amplification strategy with methylene blue (MB) as a redox indicator. In this method, capture DNA, aptamers, and reporter DNA functionalized-gold nanoparticles (GNPs) were immobilized on the electrode accordingly, where GNPs were used as the first-level signal enhancer. To receive the more sensitive response, a larger number of guanine (G)-rich DNA was bound to the GNPs' surface to provide abundant anchoring sites for MB to achieve the second-level signal amplification. By employing this novel strategy, an ~8.5 (±0.3) fold amplification in signal intensity was obtained. Afterward, OTA was added to force partial GNPs/G-rich DNA to release from the sensing interface and thus decreased the electrochemical response. An effective sensing range from 2.5pM to 2.5nM was received with an extremely low detection limit of 0.75 (±0.12) pM. This amplification strategy has the potential to be the main technology for aptamer-based electrochemical biosensor in a variety of fields.
Formulation and Solution ofTwo-Level Capacitated Lot-Sizing Problem
Directory of Open Access Journals (Sweden)
Mohsen Basti
2016-06-01
Full Text Available The integration of sequencing decisions in lot-sizing and scheduling problems has received an increased attention from the research community due to its inherent applicability to the real-world problems. In this paper, we develop and solve a synchronized and integrated two-level lot-sizing and scheduling problem motivated by a real-world problem arisen in the soft drink production. The soft drink production process has two main stages: flavor preparation (Stage1 and bottling (Stage2. In Stage 1, the liquid flavor (concentrated syrup plus some water is prepared in tanks with various capacities. In Stage 2 in which the liquid flavors are bottled at the filling lines. we considered stock capacityconstraint, and shortages of the combination(shortages backlog and lost sales added to the model. The aim is to determine the lot-sizing and scheduling raw materials and products so that the soft drink flavors and bottle types are assigned to the tanks and bottling lines, respectively, in order to meet a known weekly product demand. Finally, we implement LINGO solver to solve this model.
Spectral density of Cooper pairs in two level quantum dot–superconductors Josephson junction
Energy Technology Data Exchange (ETDEWEB)
Dhyani, A., E-mail: archana.d2003@gmail.com [Department of Physics, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India); Rawat, P.S. [Department of Nuclear Science and Technology, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India); Tewari, B.S., E-mail: bstewari@ddn.upes.ac.in [Department of Physics, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand (India)
2016-09-15
Highlights: • The present work deals with the study of the electronic spectral density of electron pairs and its effect in charge transport in superconductor-quantum dot-superconductor junctions. • The charge transfer across such junctions can be controlled by changing the positions of the dot level. • The Josephson supercurrent can also be tuned by controlling the position of quantum dot energy levels. - Abstract: In the present paper, we report the role of quantum dot energy levels on the electronic spectral density for a two level quantum dot coupled to s-wave superconducting leads. The theoretical arguments in this work are based on the Anderson model so that it necessarily includes dot energies, single particle tunneling and superconducting order parameter for BCS superconductors. The expression for single particle spectral function is obtained by using the Green's function equation of motion technique. On the basis of numerical computation of spectral function of superconducting leads, it has been found that the charge transfer across such junctions can be controlled by the positions and availability of the dot levels.
An Energy-Efficient Instruction Scheduler Design with Two-Level Shelving and Adaptive Banking
Institute of Scientific and Technical Information of China (English)
Yu-Lai Zhao; Xian-Feng Li; Dong Tong; Xu Cheng
2007-01-01
Mainstream processors implement the instruction scheduler using a monolithic CAM-based issue queue (IQ),which consumes increasingly high energy as its size scales.In particular, its instruction wakeup logic accounts for a major portion of the consumed energy.Our study shows that instructions with 2 non-ready operands (called 2OP instructions) are in small percentage, but tend to spend long latencies in the IQ.They can be effectively shelved in a small RAM-based waiting instruction buffer (WIB) and steered into the IQ at appropriate time.With this two-level shelving ability, half of the CAM tag comparators are eliminated in the IQ, which significantly reduces the energy of wakeup operation.In addition,we propose an adaptive banking scheme to downsize the IQ and reduce the bit-width of tag comparators.Experiments indicate that for an 8-wide issue superscalar or SMT processor, the energy consumption of the instruction scheduler can be reduced by 67%.Furthermore, the new design has potentially faster scheduler clock speed while maintaining close IPC to the monolithic scheduler design.Compared with the previous work on eliminating tags through prediction, our design is superior in terms of both energy reduction and SMT support.
Non-redundant patent sequence databases with value-added annotations at two levels.
Li, Weizhong; McWilliam, Hamish; de la Torre, Ana Richart; Grodowski, Adam; Benediktovich, Irina; Goujon, Mickael; Nauche, Stephane; Lopez, Rodrigo
2010-01-01
The European Bioinformatics Institute (EMBL-EBI) provides public access to patent data, including abstracts, chemical compounds and sequences. Sequences can appear multiple times due to the filing of the same invention with multiple patent offices, or the use of the same sequence by different inventors in different contexts. Information relating to the source invention may be incomplete, and biological information available in patent documents elsewhere may not be reflected in the annotation of the sequence. Search and analysis of these data have become increasingly challenging for both the scientific and intellectual-property communities. Here, we report a collection of non-redundant patent sequence databases, which cover the EMBL-Bank nucleotides patent class and the patent protein databases and contain value-added annotations from patent documents. The databases were created at two levels by the use of sequence MD5 checksums. Sequences within a level-1 cluster are 100% identical over their whole length. Level-2 clusters were defined by sub-grouping level-1 clusters based on patent family information. Value-added annotations, such as publication number corrections, earliest publication dates and feature collations, significantly enhance the quality of the data, allowing for better tracking and cross-referencing. The databases are available format: http://www.ebi.ac.uk/patentdata/nr/.
Wen, Zaidao; Hou, Biao; Jiao, Licheng
2016-06-30
Discriminative dictionary learning (DDL) framework has been widely used in image classification which aims to learn some class-specific feature vectors as well as a representative dictionary according to a set of labeled training samples. However, interclass similarities and intraclass variances among input samples and learned features will generally weaken the representability of dictionary and the discrimination of feature vectors so as to degrade the classification performance. Therefore, how to explicitly represent them becomes an important issue. In this paper, we present a novel DDL framework with two-level low rank and group sparse decomposition model. In the first level, we learn a class-shared and several class-specific dictionaries, where a low rank and a group sparse regularization are, respectively, imposed on the corresponding feature matrices. In the second level, the class-specific feature matrix will be further decomposed into a low rank and a sparse matrix so that intraclass variances can be separated to concentrate the corresponding feature vectors. Extensive experimental results demonstrate the effectiveness of our model. Compared with the other state-of-the-arts on several popular image databases, our model can achieve a competitive or better performance in terms of the classification accuracy.
Two-Level Evaluation on Sensor Interoperability of Features in Fingerprint Image Segmentation
Directory of Open Access Journals (Sweden)
Ya-Shuo Li
2012-03-01
Full Text Available Features used in fingerprint segmentation significantly affect the segmentation performance. Various features exhibit different discriminating abilities on fingerprint images derived from different sensors. One feature which has better discriminating ability on images derived from a certain sensor may not adapt to segment images derived from other sensors. This degrades the segmentation performance. This paper empirically analyzes the sensor interoperability problem of segmentation feature, which refers to the feature’s ability to adapt to the raw fingerprints captured by different sensors. To address this issue, this paper presents a two-level feature evaluation method, including the first level feature evaluation based on segmentation error rate and the second level feature evaluation based on decision tree. The proposed method is performed on a number of fingerprint databases which are obtained from various sensors. Experimental results show that the proposed method can effectively evaluate the sensor interoperability of features, and the features with good evaluation results acquire better segmentation accuracies of images originating from different sensors.
Trophic groups and modules: two levels of group detection in food webs.
Gauzens, Benoit; Thébault, Elisa; Lacroix, Gérard; Legendre, Stéphane
2015-05-06
Within food webs, species can be partitioned into groups according to various criteria. Two notions have received particular attention: trophic groups (TGs), which have been used for decades in the ecological literature, and more recently, modules. The relationship between these two group concepts remains unknown in empirical food webs. While recent developments in network theory have led to efficient methods for detecting modules in food webs, the determination of TGs (groups of species that are functionally similar) is largely based on subjective expert knowledge. We develop a novel algorithm for TG detection. We apply this method to empirical food webs and show that aggregation into TGs allows for the simplification of food webs while preserving their information content. Furthermore, we reveal a two-level hierarchical structure where modules partition food webs into large bottom-top trophic pathways, whereas TGs further partition these pathways into groups of species with similar trophic connections. This provides new perspectives for the study of dynamical and functional consequences of food-web structure, bridging topological and dynamical analysis. TGs have a clear ecological meaning and are found to provide a trade-off between network complexity and information loss.
Non-redundant patent sequence databases with value-added annotations at two levels
Li, Weizhong; McWilliam, Hamish; de la Torre, Ana Richart; Grodowski, Adam; Benediktovich, Irina; Goujon, Mickael; Nauche, Stephane; Lopez, Rodrigo
2010-01-01
The European Bioinformatics Institute (EMBL-EBI) provides public access to patent data, including abstracts, chemical compounds and sequences. Sequences can appear multiple times due to the filing of the same invention with multiple patent offices, or the use of the same sequence by different inventors in different contexts. Information relating to the source invention may be incomplete, and biological information available in patent documents elsewhere may not be reflected in the annotation of the sequence. Search and analysis of these data have become increasingly challenging for both the scientific and intellectual-property communities. Here, we report a collection of non-redundant patent sequence databases, which cover the EMBL-Bank nucleotides patent class and the patent protein databases and contain value-added annotations from patent documents. The databases were created at two levels by the use of sequence MD5 checksums. Sequences within a level-1 cluster are 100% identical over their whole length. Level-2 clusters were defined by sub-grouping level-1 clusters based on patent family information. Value-added annotations, such as publication number corrections, earliest publication dates and feature collations, significantly enhance the quality of the data, allowing for better tracking and cross-referencing. The databases are available format: http://www.ebi.ac.uk/patentdata/nr/. PMID:19884134
A two level mutation-selection model of cultural evolution and diversity.
Salazar-Ciudad, Isaac
2010-11-21
Cultural evolution is a complex process that can happen at several levels. At the level of individuals in a population, each human bears a set of cultural traits that he or she can transmit to its offspring (vertical transmission) or to other members of his or her society (horizontal transmission). The relative frequency of a cultural trait in a population or society can thus increase or decrease with the relative reproductive success of its bearers (individual's level) or the relative success of transmission (called the idea's level). This article presents a mathematical model on the interplay between these two levels. The first aim of this article is to explore when cultural evolution is driven by the idea's level, when it is driven by the individual's level and when it is driven by both. These three possibilities are explored in relation to (a) the amount of interchange of cultural traits between individuals, (b) the selective pressure acting on individuals, (c) the rate of production of new cultural traits, (d) the individual's capacity to remember cultural traits and to the population size. The aim is to explore the conditions in which cultural evolution does not lead to a better adaptation of individuals to the environment. This is to contrast the spread of fitness-enhancing ideas, which make individual bearers better adapted to the environment, to the spread of "selfish" ideas, which spread well simply because they are easy to remember but do not help their individual bearers (and may even hurt them). At the same time this article explores in which conditions the adaptation of individuals is maximal. The second aim is to explore how these factors affect cultural diversity, or the amount of different cultural traits in a population. This study suggests that a larger interchange of cultural traits between populations could lead to cultural evolution not improving the adaptation of individuals to their environment and to a decrease of cultural diversity.
A two level hierarchical model of protein retention in ion exchange chromatography.
Salvalaglio, Matteo; Paloni, Matteo; Guelat, Bertrand; Morbidelli, Massimo; Cavallotti, Carlo
2015-09-11
Predicting protein retention in ion exchange chromatography (IEX) from first principles is a fascinating perspective. In this work a two level hierarchical modeling strategy is proposed in order to calculate protein retention factors. Model predictions are tested against experimental data measured for Lysozyme and Chymotrypsinogen A in IEX columns as a function of ionic strength and pH. At the highest level of accuracy Molecular Dynamics (MD) simulations in explicit water are used to determine the interaction free energy between each of the two proteins and the IEX stationary phase for a reference pH and ionic strength. At a lower level of accuracy a linear response model based on an implicit treatment of solvation and adopting a static protein structure is used to calculate interaction free energies for the full range of pHs and ionic strengths considered. A scaling coefficient, determined comparing MD and implicit solvent simulations, is then introduced in order to correct the linear response model for errors induced by the adoption of a static protein structure. The calculated free energies are then used to compute protein retention factors, which can be directly compared with experimental data. The possibility to introduce a third level of accuracy is explored testing the predictions of a semiempirical model. A quantitative agreement between the predicted and measured protein retention factors is obtained using the coupled MD-linear response models, supporting the reliability of the proposed approach. The model allows quantifying the electrostatic, van der Waals, and conformational contributions to the interaction free energies. A good agreement between experiments and model is obtained also using the semiempirical model that, although requiring parameterization over higher level models or experimental data, proves to be useful in order to rapidly determine protein retention factors across wide pH and ionic strength ranges as it is computationally inexpensive.
Bashmakova, I.; Belotserkovsky, A.; Ivanov, V.; Karlin, L.; Petrosyan, A.; Room, R.; Serditova, N.; Tyuryakov, S.; Zilitinkevich, S.
2009-09-01
The project in question (http://www.combat-meteo.net/) aims to provide the basis for the reform of the system of higher education in the area of hydrometeorology in the Russian Federation to comply with the Bologna Declaration. In this regard, the project puts the following specific objectives: 1. To develop internationally recognized competency-based two-level (Bachelor / Master) curricula in meteorology by December 2007. 2. To transform existing and to develop new syllabi supported by teaching materials according to the developed two-level curricula by December 2008. 3. To implement the developed competency-based two-level curricula in meteorology at Russian State Hydro-meteorological University and universities-members of Academic Association of Russian Universities in hydrometeorology by September 2009. These objectives are met by the consortium headed by the University of Helsinki (Finland) including the University of Tartu (Estonia), the Academic Association of Russian Universities in Hydrometeorology (Russia), the Faculty of Geography of the Moscow State University (Russia) and the State Environmental University (Ukraine), with the Russian State Hydrometeorological University (Russia) as target institution. The project provides opportunities for retraining of academic and administrative staff from target universities in the consortium EU universities, as well as for bidirectional student mobility. The project results in teaching meteorology in Russia according to competency-based two-level curricula that will start by 01 September, 2009.
Two-Level Cross-Talked Admission Control Mechanism for QoS Guarantee in 802.11e EDCA
Institute of Scientific and Technical Information of China (English)
NIU Zhisheng; LIU Jing
2008-01-01
This paper describes a two-level cross-talked admission control mechanism that guarantees qual-ity of service (QoS) requirements for multimedia applications over wireless local area networks (WLANs). An enhanced distributed channel access analytical model is used to compute the maximum number of admitted users according to the QoS requirements and the packet arrival characters. Then, some channel resources are reserved for handoff calls based on the maximum number of admitted users and the call-level traffic model. The channel utilization ratio is also measured to reflect the current system traffic load. The maximum number of admitted users and the channel utilization ratio are used for admission control for applications with QoS requirements in the call level and for rate control of best effort applications in the packet level using the p-nonacknowledgement scheme. Thus, the QoS requirements are statistically guaranteed while the system is efficiently utilized. Simulations validate the effectiveness of this mechanism to guarantee the QoS and bandwidth utilization.
Directory of Open Access Journals (Sweden)
M. R. Abdullah
2017-02-01
Full Text Available This study aims to identify the essential performance indicators in two level of soccer expertise. A total of 84 elite’s soccer players and 100 novice players from eight soccer academies in Malaysia were enrolled and subjected to standard anthropometric, fitness, skills related performance testing and responded to the questionnaire in mastery and performance. Principal component analysis (PCA was employed to determine the most indispensable variables pertinent to the requirement of the game in relation to the level of expertise of the players. The initial PCA shows seven components out of 26 as the most significant for both elite and novice soccer players with a considerable eigenvalue > 1. Moreover, the PCA after varimax rotation highlighted seven principles components (PCs for elite and novice players respectively. Each of the seven components contained varifactors (VF selected based on their higher factor loading and that distinguish the players on their expertise. The first PCs for elite’s players revealed strong loading from sit and reach (0.780, vertical jump (0.635, VO2max (0.637 and age (0.752. The second PCs revealed weight (0.639, biceps (0.859, triceps (0.769, subscapular (0.847, suprailiac (0.886 and middle upper arm circumference (0.776. The third PCs revealed 505 agility (0.618, 5m speed (0.712, 10m speed (0.858 and 20m speed (0.929. The forth PCs revealed task (-0.675 and short pass (0.789 and the last PCs revealed sit up (-0.702. For novice’s players, the first PCs revealed vertical jump (0.624, weight (0.861, height (0.856, sitting height (0.632, middle upper arm circumference (0.673, calf circumference (0.790 and maturity (0.651. The second PCs revealed biceps (0.832, triceps (0.899, subscapular (0.816 and suprailiac (0.869. The third PCs revealed 5m speed (-0.847, 10m speed (-0.877, 20m speed (-0.785 and VO2max (0.658. The forth PCs revealed task (0.694 and ego (0.747 and the last PCs revealed short pass (0.766.
Institute of Scientific and Technical Information of China (English)
An Haichao; Chen Shenyan; Huang Hai
2016-01-01
This paper is to address structural optimization problems where multiple structure cases or multiple payload cases can be considered simultaneously. Both types of optimization problems involve multiple finite element models at each iteration step, which draws high demands in opti-mization methods. Considering the common characteristic for these two types of problems, which is that the design domain keeps the same no matter what the structure cases or payload cases are, both problems can be formulated into the unified expressions. A two-level multipoint approxima-tion (TMA) method is firstly improved with the use of analytical sensitivity analysis for structural mass, and then this improved method is utilized to tackle these two types of problems. Based on the commercial finite element software MSC.Patran/Nastran, an optimization system for multiple structure cases and multiple payload cases is developed. Numerical examples are conducted to ver-ify its feasibility and efficiency, and the necessity for the simultaneous optimizations of multiple structure cases and multiple payload cases are illustrated as well.
Surdutovich, G. I.; Ghiner, A. V.
2000-08-01
A famous model of a two-level atom interacting with the classical electromagnetic field is used to illustrate the fundamental problem of the relationship between the dynamical and relaxation processes under the interaction of radiation with a quantum-mechanical system and, as a result, to derive nonlinear Bloch-like equations. The presented considerations are based on the analysis of the balance of the fluxes of energy between atomic and field subsystems. It is shown that the generally accepted model of the exponential relaxation deduced for an isolated excited atom and inserted customarily into optical Bloch equations (OBE) describing atom in an external field always leads to a very strange result: spontaneous emission of an atom should be accompanied by the radiation of the coherent field into the external field's mode. Making use of only the energetic considerations, we found the relaxation mechanism (in the form of additional terms in the OBE) which, on the one hand, guarantees the fulfillment of the energetic balance and, on the other hand, allows to introduce arbitrary additional collision-like relaxation mechanism without violation of this balance. Note that these additional terms introduced into OBE from the energetic considerations in a remarkable manner exactly correspond to the renormalization of the external field with the allowance of the classical radiation damping (RD) effect. The revisited OBE may be used as the starting point for considering the dynamics of an atom by making allowance for the quantum properties of an external field.
All polymer, injection molded nanoslits, fabricated through two-level UV-LIGA processes
DEFF Research Database (Denmark)
Østergaard, Peter Friis; Matteucci, Marco; Marie, Rodolphe;
2012-01-01
Micro- and nanofluidic systems fabricated in silicon and glass substrates are expensive and have long production cycles. To minimize the time used by researchers to fabricate their systems, rather than using them, medium to high volume throughput of specific chips, containing fluidic channels in ...
Thermal analysis of two-level wind power converter under symmetrical grid fault
DEFF Research Database (Denmark)
Zhou, Dao; Blaabjerg, Frede
2013-01-01
) condition as well as the junction temperature. For the full-scale wind turbine system, the most thermal stressed power device in the grid-side converter will appear at the grid voltage below 0.5 pu, and for the partial-scale wind turbine system, the most thermal stressed power device in the rotor...
Two-level hierarchical fragmentation in the northern filament of the Orion Molecular Cloud 1
Teixeira, P. S.; Takahashi, S.; Zapata, L. A.; Ho, P. T. P.
2016-03-01
-equidistant length of ≈30' (0.06 pc). This separation is dominated by the Jeans length and therefore indicates that the main physical process in the filament evolution was thermal fragmentation. Within the protostellar groups, the typical separation is ≈6'' (~2500 au), which is a factor 2-3 smaller than the Jeans length of the parental clumps within which the protostars are embedded. These results point to a hierarchical (two-level) thermal fragmentation process of the OMC 1n filament. The reduced continuun map (FITS file) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A47
Yang, Yiquan; Yu, Hongwei
2016-01-01
We investigate the entanglement dynamics of two uniformly accelerated atoms with the same acceleration perpendicular to their separation. The two-atom system is treated as an open system coupled with fluctuating electromagnetic fields in the Minkowski vacuum, and in the Born-Markov approximation the master equation that describes the completely positive time evolution of the two-atom system is derived. In particular, we investigate the phenomena of entanglement degradation, generation, revival and enhancement. As opposed to the scalar-field case, the entanglement dynamics is crucially dependent on the polarization directions of the atoms. For the two-atom system with certain acceleration and separation, the polarization directions of the atoms may determine whether entanglement generation, revival or enhancement happens, while for entanglement degradation, they affect the decay rate of entanglement. A comparison between the entanglement evolution of accelerated atoms and that of static ones immersed in a ther...
An Efficient Data Fingerprint Query Algorithm Based on Two-Leveled Bloom Filter
Directory of Open Access Journals (Sweden)
Bin Zhou
2013-04-01
Full Text Available The function of the comparing fingerprints algorithm was to judge whether a new partitioned data chunk was in a storage system a decade ago. At present, in the most de-duplication backup system the fingerprints of the big data chunks are huge and cannot be stored in the memory completely. The performance of the system is unavoidably retarded by data chunks accessing the storage system at the querying stage. Accordingly, a new query mechanism namely Two-stage Bloom Filter (TBF mechanism is proposed. Firstly, as a representation of the entirety for the first grade bloom filter, each bit of the second grade bloom filter in the TBF represents the chunks having the identical fingerprints reducing the rate of false positives. Secondly, a two-dimensional list is built corresponding to the two grade bloom filter for the absolute addresses of the data chunks with the identical fingerprints. Finally, a new hash function class with the strong global random characteristic is set up according to the data fingerprints’ random characteristics. To reduce the comparing data greatly, TBF decreases the number of accessing disks, improves the speed of detecting the redundant data chunks, and reduces the rate of false positives which helps the improvement of the overall performance of system.
The Implications of Contamination for Educational Experiments with Two Levels of Nesting
Rhoads, Christopher
2016-01-01
Experimental evaluations that involve the educational system usually involve a hierarchical structure (students are nested within classrooms that are nested within schools, etc.). Concerns about contamination, where research subjects receive certain features of an intervention intended for subjects in a different experimental group, have often led…
Cross-Circulating Current Suppression Method for Parallel Three-Phase Two-Level Inverters
DEFF Research Database (Denmark)
Wei, Baoze; Guerrero, Josep M.; Guo, Xiaoqiang
2015-01-01
The parallel architecture is very popular for power inverters to increase the power level. This paper presents a method for the parallel operation of inverters in an ac-distributed system, to suppress the cross-circulating current based on virtual impedance without current-sharing bus...
A two-level real-time vision machine combining coarse and fine grained parallelism
DEFF Research Database (Denmark)
Jensen, Lars Baunegaard With; Kjær-Nielsen, Anders; Pauwels, Karl;
2010-01-01
In this paper, we describe a real-time vision machine having a stereo camera as input generating visual information on two different levels of abstraction. The system provides visual low-level and mid-level information in terms of dense stereo and optical flow, egomotion, indicating areas...... a factor 90 and a reduction of latency of a factor 26 compared to processing on a single CPU--core. Since the vision machine provides generic visual information it can be used in many contexts. Currently it is used in a driver assistance context as well as in two robotic applications....... with independently moving objects as well as a condensed geometric description of the scene. The system operates at more than 20 Hz using a hybrid architecture consisting of one dual--GPU card and one quad-core CPU. The different processing stages of visual information have rather different characteristics...
A TWO LEVEL ARCHITECTURE USING CONSENSUS METHOD FOR GLOBAL DECISION MAKING AGAINST DDoS ATTACKS
Directory of Open Access Journals (Sweden)
S.Seetha
2010-06-01
Full Text Available Distributed Denial of service is a major threat to the availability of internet services. Due to the distributed, large scale nature of the Internet makes DDoS (Distributed Denial-of-Service attacks stealthy and difficult to counter. Defense against Distributed Denial- of -Service attacks is one of the hardest security problems on the Internet. Recently these network attacks have been increasing. Therefore more effective countermeasures are required to counter the threat. This requirement has motivated us to propose a novel mechanism against DDoS attack. This paper presents the design details of a distributed defense mechanism against DDoS attack. In our approach, the egress routers of the intermediate network coordinate with each other to provide the information necessary to detect and respond to the attack. Thus, a detection system based on single site will have either high positive or high negative rates. Unlike the traditional IDSs (Intrusion Detection System this method has the potential to achieve high true positive ratio. This work has been done by using consensus algorithms for exchanging the information between the detection systems. So the overall detection time would be reduced for global decision making.
Two-level noise and stochastic resonance in individual permalloy nanoscale magnets
Youngblood, Bern Willem
We present the results of a study on stochastic resonance in individual magnetic random telegraph oscillators. We have fabricated sub-micron magnetic samples, which have multiple stable magnetic states. We are able to observe random telegraph switching between magnetic states and tune the energetics by varying the temperature and applied external field. If a small AC field is applied to the system, it will modulate the energy well depth for the two states and the system shows stochastic resonance near the matching condition 2fA = oD, where o D is the drive frequency and fA is the characteristic frequency of magnetic transitions. We fit our measured data for the resonance amplitude and phase of the particle as a function of temperature to a linear-response model and obtain good agreement. At low temperatures we observe a peak in the phase lag of the returned signal, which is consistent with linear-response theories. At higher temperatures, our fitted model parameters suggest that the particle has an energy surface that is not sinusoidal. This contradicts our initial approximation for the energy surface, but it is consistent with a model for magnetic energy that takes into account the magnetization dynamics near the conditions for random telegraph switching. Our work is the first clear observation of stochastic resonance in a single superparamagnetic particle where the energetics are modulated by an applied field. In addition, our work is the first physical system where stochastic resonance has been characterized with sufficient detail to allow for comparison to linear-response models.
Xu, Hui; Zhang, Yonggang; Zhao, Yongfei; Zhang, Xuesong; Xiao, Songhua; Wang, Yan
2015-02-01
Single pedicle subtraction osteotomy (PSO) has been used to correct ankylosing spondylitis (AS) kyphosis successfully, but this approach seems insufficient to correct severe kyphosis. Two-level PSO has been attempted to correct advanced kyphosis in recent years. However, studies have not yet compared outcomes between single and double PSOs, and the indications to perform two-level PSO are unclear. This study aimed to compare the radiologic and clinical outcomes between single- and two-level PSOs in correcting AS kyphosis. This work is a retrospective cohort study. Sixty patients were included. Thirty-seven underwent single-level PSO, and 23 underwent one stage two-level PSO. The radiologic analysis included thoracic kyphosis, thoracolumbar junction, lumbar lordosis, pelvic index, chin-brow vertical angle (CBVA), sagittal vertical axis (SVA), and pelvic tilt (PT). Clinical assessment was performed with a Scoliosis Research Society-22 (SRS-22) outcomes instrument. The operative time, blood loss, and complications were also documented. All of the aforementioned measurements were recorded before surgery, after surgery, and at the last follow-up. The outcomes were compared between the two groups. The operating time was 232±52 minutes for single- and 282±43 minutes for two-level PSOs. The blood loss was 1,240±542 mL (Level 1) and 2,202±737 mL (Level 2). The total spine correction was 43.2°±15.1° (Level 1) and 60.6°±19.1° (Level 2) (p.05). All patients could walk with horizontal vision and lie on their backs postoperatively. The SRS-22 improved from 1.7±0.4 to 4.2±0.8 in the two-level group and 1.8±0.8 to 4.3±0.7 in the single-level group. The fusion of the osteotomy was achieved in each patient. The complications were similar in both groups. Pedicle subtraction osteotomy is an effective method to correct kyphosis with AS. Most patients can be successfully treated by single PSO. In severe patients, two-level PSO may be preferable because its correction
Energy Technology Data Exchange (ETDEWEB)
Wang, Z.M. [Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006 (China); Xue, H.B. [College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Xue, N.T. [Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006 (China); Liang, J.-Q., E-mail: jqliang@sxu.edu.cn [Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006 (China)
2015-02-15
We study the full counting statistics of transport electrons through a semiconductor two-level quantum dot with Rashba spin–orbit (SO) coupling, which acts as a nonabelian gauge field and thus induces the electron transition between two levels along with the spin flip. By means of the quantum master equation approach, shot noise and skewness are obtained at finite temperature with two-body Coulomb interaction. We particularly demonstrate the crucial effect of SO coupling on the super-Poissonian fluctuation of transport electrons, in terms of which the SO coupling can be probed by the zero-frequency cumulants. While the charge currents are not sensitive to the SO coupling.
Institute of Scientific and Technical Information of China (English)
Yin-nianHe
2004-01-01
In this article we consider a two-level finite element Galerkin method using mixed finite elements for the two-dimensional nonstationary incompressible Navier-Stokes equations. The method yields a H1-optimal velocity approximation and a L2-optimal pressure approximation. The two-level finite element Galerkin method involves solving one small,nonlinear Navier-Stokes problem on the coarse mesh with mesh size H, one linear Stokes problem on the fine mesh with mesh size h <
Bunnoon, Pituk; Chalermyanont, Kusumal; Limsakul, Chusak
2010-02-01
This paper proposed the discrete transform and neural network algorithms to obtain the monthly peak load demand in mid term load forecasting. The mother wavelet daubechies2 (db2) is employed to decomposed, high pass filter and low pass filter signals from the original signal before using feed forward back propagation neural network to determine the forecasting results. The historical data records in 1997-2007 of Electricity Generating Authority of Thailand (EGAT) is used as reference. In this study, historical information of peak load demand(MW), mean temperature(Tmean), consumer price index (CPI), and industrial index (economic:IDI) are used as feature inputs of the network. The experimental results show that the Mean Absolute Percentage Error (MAPE) is approximately 4.32%. This forecasting results can be used for fuel planning and unit commitment of the power system in the future.
Ye, Xiang; Gao, Weihua; Yan, Yanjun; Osadciw, Lisa A.
2010-04-01
Wind is an important renewable energy source. The energy and economic return from building wind farms justify the expensive investments in doing so. However, without an effective monitoring system, underperforming or faulty turbines will cause a huge loss in revenue. Early detection of such failures help prevent these undesired working conditions. We develop three tests on power curve, rotor speed curve, pitch angle curve of individual turbine. In each test, multiple states are defined to distinguish different working conditions, including complete shut-downs, under-performing states, abnormally frequent default states, as well as normal working states. These three tests are combined to reach a final conclusion, which is more effective than any single test. Through extensive data mining of historical data and verification from farm operators, some state combinations are discovered to be strong indicators of spindle failures, lightning strikes, anemometer faults, etc, for fault detection. In each individual test, and in the score fusion of these tests, we apply multidimensional scaling (MDS) to reduce the high dimensional feature space into a 3-dimensional visualization, from which it is easier to discover turbine working information. This approach gains a qualitative understanding of turbine performance status to detect faults, and also provides explanations on what has happened for detailed diagnostics. The state-of-the-art SCADA (Supervisory Control And Data Acquisition) system in industry can only answer the question whether there are abnormal working states, and our evaluation of multiple states in multiple tests is also promising for diagnostics. In the future, these tests can be readily incorporated in a Bayesian network for intelligent analysis and decision support.
High Resolution Parameter Space from a Two Level Model on Semi-Insulating GaAs
da Silva, S L; de Oliveira, A G; Ribeiro, G M; da Silva, R L
2014-01-01
Semi-insulating Gallium Arsenide (SI-GaAs) samples experimentally show, under high electric fields and even at room temperature, negative differential conductivity in N-shaped form (NNDC). Since the most consolidated model for n-GaAs, namely, "the model", proposed by E. Scholl was not capable to generate the NNDC curve for SI-GaAs, in this work we proposed an alternative model. The model proposed, "the two-valley model" is based on the minimal set of generation recombination equations for two valleys inside of the conduction band, and an equation for the drift velocity as a function of the applied electric field, that covers the physical properties of the nonlinear electrical conduction of the SI-GaAs system. The "two valley model" was capable to generate theoretically the NNDC region for the first time, and with that, we were able to build a high resolution parameter-space of the periodicity (PSP) using a Periodicity-Detection (PD) routine. In the parameter space were observed self-organized periodic structu...
Talero, Paco; Barbosa, Luis
2012-01-01
We applied the FCI to 646 engineering students from Bogota when they began your first year physics, we found that the relative frequency of the number of correct answers has a random pattern of two levels, also we found that they don't have clear mental models about physical world.
DEFF Research Database (Denmark)
Kouchaki, Alireza; Nymand, Morten
2016-01-01
This paper presents LCL filter design method for three-phase two-level power factor correction (PFC) using line impedance stabilization network (LISN). A straightforward LCL filter design along with variation in grid impedance is not simply achievable and inevitably lead to an iterative solution...
Energy Technology Data Exchange (ETDEWEB)
Xia Keyu [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate University of Chinese Academy of Sciences (China); Niu Yueping [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Graduate University of Chinese Academy of Sciences (China); Li Chunfang [Department of Physics, Shanghai University, Shanghai 200436 (China); Gong Shangqing [CCAST (World Laboratory), PO Box 8730, Beijing 100080 (China) and State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)]. E-mail: sqgong@siom.ac.cn
2007-01-22
Using a {omega}-3{omega} combination scenario, we investigate the absolute phase control of the spectra effects for ultrashort laser pulses propagating in a two-level medium. It is found that the higher spectral components can be controlled by the absolute phases. In particular, different absolute phase combinations can lead to the buildup or split of the even harmonics.
Zhu, Qingan; Itshayek, Eyal; Jones, Claire F; Schwab, Timothy; Larson, Chadwick R; Lenke, Lawrence G; Cripton, Peter A
2012-06-01
Adjacent level degeneration that occurs above and/or below long fusion constructs is a documented clinical problem that is widely believed to be associated with the considerable change in stiffness caused by the fusion. Some researchers have suggested that early degeneration at spinal joints adjacent to a fusion could be treated by implanting total disc replacements at these levels. It is thought that further degeneration could be prevented through the disc replacement's design aims to reproduce normal disc heights, kinematics and tissue loading. For this reason, there is a clinical need to evaluate if a total disc replacement can maintain both the quantity of motion (i.e. range) and the quality of motion (i.e. center of rotation and coupling) at segments adjacent to a long spinal fusion. The purpose of this study was to experimentally evaluate range of motion (ROM-the intervertebral motion measured) and helical axis of motion (HAM) changes due to one- and two-level Maverick total disc replacement (TDR) adjacent to a long spinal fusion. Seven spine specimens (T8-S1) were used in this study (66 ± 19 years old, 3F/4 M). A continuous pure moment of ±5.0 Nm was applied to the specimen in flexion-extension (FE), lateral bending (LB) and axial rotation (AR), with a compressive follower preload of 400 N. The 5.0 Nm data were analyzed to evaluate the operated segment biomechanics at the level of the disc replacements. The data were also analyzed at lower moments using a modified version of Panjabi's proposed "hybrid" method to evaluate adjacent segment kinematics (intervertebral motion at the segments adjacent to the fusion) under identical overall (T8-S1) specimen rotations. The motion of each vertebra was monitored with an optoelectronic camera system. The biomechanical test was completed for (1) the intact condition and repeated after each surgical technique was applied to the specimen, (2) capsulotomy at L4-L5 and L5-S1, (3) T8-L4 fusion and capsulotomy at L4
Thangam, A.
2014-02-01
In today's fast marketing over the Internet or online, many retailers want to trade at the same time and change their marketing strategy to attract more customers. Some of the customers may decide to cancel their orders partially with a retailer due to various reasons such as increase in customer's waiting time, loss of customer's goodwill on retailer's business, and attractive promotional schemes offered by other retailers. Even though there is a lag in trading and order cancellation, this paper attempts to develop the retailer's inventory model with the effect of order cancellations during advance sales period. The retailer announces a price discount program during advance sales period to promote his sales and also offers trade credit financing during the sales periods. The retailer availing trade credit period from his supplier offers a permissible delay period to his customers. The customer who gets an item is allowed to pay on or before the permissible delay period which is accounted from the buying time rather than from the start period of inventory sales. This accounts for significant changes in the calculations of interest payable and interest earned by the retailer. The retailer's total cost is minimized so as to find out the optimal replenishment cycle time and price discount policies through a solution procedure. The results derived in mathematical theorems are implemented in numerical examples, and sensitivity analyses on several inventory parameters are obtained.
A Two-Level Sensorless MPPT Strategy Using SRF-PLL on a PMSG Wind Energy Conversion System
National Research Council Canada - National Science Library
Amina Echchaachouai; Soumia El Hani; Ahmed Hammouch; Imad Aboudrar
2017-01-01
...) giving the six Pulse Width Modulation (PWM) signals to the active rectifier. The generator rotor speed and position required by the FOC and the sensorless MPPT are estimated using a Synchronous Reference Frame Phase Locked Loop (SRF-PLL...
Directory of Open Access Journals (Sweden)
Orlova E. B.
2014-02-01
Full Text Available The problems connected with cut of class hours on academic disciplines and increase of time for personal work are considered in the article. The author offers the variants of methods and ways of organization of self- work and checking the quality of knowledge
Thangam, A.
2015-03-01
In today's fast marketing over the Internet or online, many retailers want to trade at the same time and change their marketing strategy to attract more customers. Some of the customers may decide to cancel their orders partially with a retailer due to various reasons such as increase in customer's waiting time, loss of customer's goodwill on retailer's business, attractive promotional schemes offered by other retailers etc. Even though there is a lag in trading and order cancelation, this paper attempts to develop the retailer's inventory model with the effect of order cancelations during advance sales period. The retailer announces a price discount program during advance sales period to promote his sales and also he offers trade credit financing during the sales periods. The retailer availing trade credit period from his supplier offers a permissible delay period to his customers. The customer who gets an item has allowed paying on or before the permissible delay period which is accounted from the buying time rather than the start period of inventory sales. This accounts for significant changes in the calculations of interest payable and interest earned by the retailer. The retailer's total cost is minimized so as to find out the optimal replenishment cycle time and price discount policies through a solution procedure. The results derived in mathematical theorems are implemented in numerical examples and sensitivity analyses on several inventory parameters are obtained.
RESIDUAL A POSTERIORI ERROR ESTIMATE OF A NEW TWO-LEVEL METHOD FOR STEADY NAVIER-STOKES EQUATIONS
Institute of Scientific and Technical Information of China (English)
Chunfeng REN; Yichen MA
2006-01-01
Residual-based a posteriori error estimate for conforming finite element solutions of incompressible Navier-Stokes equations, which is computed with a new two-level method that is different from Volker John, is derived. A posteriori error estimate contains additional terms in comparison to the estimate for the solution obtained by the standard finite element method. The importance of the additional terms in the error estimates is investigated by studying their asymptotic behavior. For optimal scaled meshes, these bounds are not of higher order than the convergence of discrete solution. The two-level method aims to solve the nonlinear problem on a coarse grid with less computational work,then to solve the linear problem on a fine grid, which is superior to the usual finite element method solving a similar nonlinear problem on the fine grid.
Propagation of subcycle pulses in a two-level medium: Area-theorem breakdown and pulse shape
Novitsky, Denis
2013-01-01
We solve the problem of ultrashort pulse propagation in a two-level medium beyond the rotating-wave (RWA) and slowly-varying-envelope approximations. The method of solution is based on the Maxwell--Bloch equations represented in the form that allows one to switch between RWA and general (non-RWA) cases in the framework of a single numerical algorithm. Using this method, the effect of a subcycle pulse (containing less than a single period of field oscillations) on the two-level medium was analyzed. It is shown that for such short pulses, the clear breakdown of the area theorem occurs for the pulses of large enough area. Moreover, deviations from the area theorem appear to be strongly dependent on the pulse shape that cannot be observed for longer few-cycle pulses.
Directory of Open Access Journals (Sweden)
Ahmet Mete Vural
2016-09-01
Full Text Available This paper presents the design details of a two-level space vector pulse width modulation algorithm in PSCAD that is able to generate pulses for three-phase two-level DC/AC converters with two different switching patterns. The presented FORTRAN code is generic and can be easily modified to meet many other kinds of space vector modulation strategies. The code is also editable for hardware programming. The new component is tested and verified by comparing its output as six gating signals with those of a similar component in MATLAB library. Moreover the component is used to generate digital signals for closed-loop control of STATCOM for reactive power compensation in PSCAD. This add-on can be an effective tool to give students better understanding of the space vector modulation algorithm for different control tasks in power electronics area, and can motivate them for learning.
Shuval-Sergeeva, E. V.; Zaitsev, A. I.
2008-03-01
When describing the phenomenon of bistability of optical response of an ultra thin layer consisting of two-level atoms it is important to take into account the local field correction. The account of the correction results in the improvement of existence conditions of bistability. One more bistable region is formed starting with certain value of local field parameter. Both effects are induced by the dynamical frequency shift.
On a Connection between Ideal Two-level Autocorrelation and Almost Balancedness of $p$-ary Sequences
Borissov, Yuri L
2011-01-01
In this correspondence, for every periodic $p-$ary sequence satisfying ideal two-level autocorrelation property the existence of an element of the field ${\\bf GF}(p)$ which appears one time less than all the rest that are equally distributed in a period of that sequence, is proved by algebraic method. In addition, it is shown that such a special element might not be only the zero element but as well arbitrary element of that field.
NAFTA as an agricultural "policy option" for Mexico : a case study within a two-level framework
Røssaak, Camilla
1996-01-01
NAFTA AS AN AGRICULTURAL 'POLICY OPTION' FOR MEXICO: A CASE STUDY WITHIN A TWO- LEVEL FRAMEWORK The main focus of the thesis was the agricultural negotiation process between Mexico and the United States within the NAFTA process. I wanted to investigate to what extent this process led to changes in Mexican agricultural policy. Furthermore I wanted to find out whose interests were taken into consideration when Mexico negotiated agriculture in NAFTA. If so, was this done at the expense o...
Higher-spin charges in Hamiltonian form. I. Bose fields
Campoleoni, Andrea; Hörtner, Sergio; Leonard, Amaury
2016-01-01
We study asymptotic charges for symmetric massless higher-spin fields on Anti de Sitter backgrounds of arbitrary dimension within the canonical formalism. We first analyse in detail the spin-3 example: we cast Fronsdal's action in Hamiltonian form, we derive the charges and we propose boundary conditions on the canonical variables that secure their finiteness. We then extend the computation of charges and the characterisation of boundary conditions to arbitrary spin.
Spin, Charge, and Bonding in Transition Metal Mono Silicides
Marel, D. van der; Damascelli, A.; Schulte, K.; Menovsky, A. A.
1997-01-01
Published in: Physica B 244 (1998) 138-147 citations recorded in [Science Citation Index] Abstract: We review some of the relevant physical properties of the transition metal mono-silicides with the FeSi structure (CrSi, MnSi, FeSi, CoSi, NiSi, etc) and explore the relation between their structural
Solution-processed organic spin-charge converter.
Ando, Kazuya; Watanabe, Shun; Mooser, Sebastian; Saitoh, Eiji; Sirringhaus, Henning
2013-07-01
Conjugated polymers and small organic molecules are enabling new, flexible, large-area, low-cost optoelectronic devices, such as organic light-emitting diodes, transistors and solar cells. Owing to their exceptionally long spin lifetimes, these carbon-based materials could also have an important impact on spintronics, where carrier spins play a key role in transmitting, processing and storing information. However, to exploit this potential, a method for direct conversion of spin information into an electric signal is indispensable. Here we show that a pure spin current can be produced in a solution-processed conducting polymer by pumping spins through a ferromagnetic resonance in an adjacent magnetic insulator, and that this generates an electric voltage across the polymer film. We demonstrate that the experimental characteristics of the generated voltage are consistent with it being generated through an inverse spin Hall effect in the conducting polymer. In contrast with inorganic materials, the conducting polymer exhibits coexistence of high spin-current to charge-current conversion efficiency and long spin lifetimes. Our discovery opens a route for a new generation of molecular-structure-engineered spintronic devices, which could lead to important advances in plastic spintronics.
Higher-spin charges in Hamiltonian form. I. Bose fields
Energy Technology Data Exchange (ETDEWEB)
Campoleoni, A.; Henneaux, M. [Université Libre de Bruxelles and International Solvay InstitutesULB-Campus Plaine CP231, 1050 Brussels (Belgium); Hörtner, S. [Centro de Estudios Científicos (CECs),Casilla 1469, Valdivia (Chile); Leonard, A. [Université Libre de Bruxelles and International Solvay InstitutesULB-Campus Plaine CP231, 1050 Brussels (Belgium)
2016-10-26
We study asymptotic charges for symmetric massless higher-spin fields on Anti de Sitter backgrounds of arbitrary dimension within the canonical formalism. We first analyse in detail the spin-3 example: we cast Fronsdal’s action in Hamiltonian form, we derive the charges and we propose boundary conditions on the canonical variables that secure their finiteness. We then extend the computation of charges and the characterisation of boundary conditions to arbitrary spin.
Liu, Ju; Li, Zhi-Yuan
2014-11-17
One of the simplest models involving the atom-field interaction is the coupling of a single two-level atom with single-mode optical field. Under the rotating wave approximation, this problem is reduced to a form that can be solved exactly. But the approximation is only valid when the two levels are resonant or nearly resonant with the applied electromagnetic radiation. Here we present an analytical solution without the rotating wave approximation and applicable to general atom-field interaction far away from the resonance. We find that there exists remarkable influence of the initial phase of optical field on the Rabi oscillations and Rabi splitting, and this issue cannot be explored in the context of the rotating wave approximation. Due to the retention of the counter-rotating terms, higher-order harmonic appears during the Rabi splitting. The analytical solution suggests a way to regulate and control the quantum dynamics of a two-level atom and allows for exploring more essential features of the atom-field interaction.
Merrill, Robert K; McAnany, Steven J; Albert, Todd J; Qureshi, Sheeraz A
2017-08-14
Cost-effectiveness analysis. Investigate the 7-year cost-effectiveness of two-level cervical disc replacement (CDR) and anterior cervical discectomy and fusion (ACDF). CDR and ACDF are both effective treatment strategies for managing degenerative conditions of the cervical spine. CDR has been shown to be a more-cost effective intervention in the short term, but the long-term cost-effectiveness has not been established. We analyzed 7-year follow-up data from the two-level Medtronic Prestige LP investigational device exemption study. Short-form 36 (SF-36) data were converted into health utility scores using the SF-6D algorithm. Costs were based on direct costs from the payer perspective, and effectiveness was measured as quality adjusted life years (QALYs). The willingness to pay (WTP) threshold was set to $50,000/QALY. A probabilistic sensitivity analysis was conducted via Monte Carlo simulation. Two-level CDR had a 7-year cost of $176,654.19, generated 4.65 QALYs, and had a cost-effectiveness ratio of $37,993.53/QALY. Two-level ACDF had a 7-year cost of $158,373.48, generated 4.44 QALYs, and had a cost-effectiveness ratio of $35,635.72. CDR was associated with an incremental cost of $18,280.71 and an incremental effectiveness of 0.21 QALYs, resulting in an incremental cost-effectiveness ratio (ICER) of $89,021.04, above the WTP threshold. Our Monte Carlo simulation demonstrated CDR would be chosen 46% of the time based on 10,000 simulations. Two-level CDR and ACDF are both cost-effective procedures at 7-year follow-up for treating degenerative conditions of the cervical spine. Based on an ICER of $89,021.04/QALY, we cannot conclude which treatment is the more cost-effective option at 7-years. CDR would be chosen 46% of the time based on 10,000 iterations of our Monte Carlo probabilistic sensitivity analysis. 3.
Almasi, Omid Naghash; Fereshtehpoor, Vahid; Khooban, Mohammad Hassan; Blaabjerg, Frede
2017-03-01
In this paper, a new modified fuzzy Two-Level Control Scheme (TLCS) is proposed to control a non-inverting buck-boost converter. Each level of fuzzy TLCS consists of a tuned fuzzy PI controller. In addition, a Takagi-Sugeno-Kang (TSK) fuzzy switch proposed to transfer the fuzzy PI controllers to each other in the control system. The major difficulty in designing fuzzy TLCS which degrades its performance is emerging unwanted drastic oscillations in the converter output voltage during replacing the controllers. Thereby, the fuzzy PI controllers in each level of TLCS structure are modified to eliminate these oscillations and improve the system performance. Some simulations and digital signal processor based experiments are conducted on a non-inverting buck-boost converter to support the effectiveness of the proposed TLCS in controlling the converter output voltage.
Directory of Open Access Journals (Sweden)
S. R. Singh
2013-01-01
Full Text Available An inventory system for deteriorating items, with ramp-type demand rate, under two-level trade credit policy taking account of preservation technology is considered. The objective of this study is to develop a deteriorating inventory policy when the supplier provides to the retailer a permissible delay in payments, and during this credit period, the retailer accumulates the revenue and earns interest on that revenue; also the retailer invests on the preservation technology to reduce the rate of product deterioration. Shortages are allowed and partially backlogged. Sufficient conditions of the existence and uniqueness of the optimal replenishment policy are provided, and an algorithm, for its determination, is proposed. Numerical examples draw attention to the obtained results, and the sensitivity analysis of the optimal solution with respect to leading parameters of the system is carried out.
DEFF Research Database (Denmark)
Song, Zhanfeng; Tian, Yanjun; Yan, Zhuo
2016-01-01
characteristic is highly dynamic behaviors, the proposed control strategy can present comparably enhanced transient performance. Furthermore, excellent steady-state power performance can also be observed when the proposed control scheme is adopted. In addition, another attractive feature lies in its robust......This paper proposed a direct power control strategy for three-phase two-level voltage-source rectifiers based on extended-state observation. Active and reactive powers are directly regulated in the stationary reference frame. Similar to the family of predictive controllers whose inherent...... control strategy, the vector-oriented control scheme and the proposed strategy, which demonstrate the superiority of the proposed scheme....
Evolution of optical force on two-level atom by ultrashort time-domain dark hollow Gaussian pulse
Cao, Xiaochao; Wang, Zhaoying; Lin, Qiang
2017-09-01
Based on the analytical expression of the ultrashort time-domain dark hollow Gaussian (TDHG) pulse, the optical force on two-level atoms induced by a TDHG pulse is calculated in this paper. The phenomena of focusing or defocusing of the light force is numerical analyzed for different detuning, various duration time, and different order of the ultrashort pulse. The transverse optical force can change from a focusing force to a defocusing force depending on the spatial-temporal coupling effect as the TDHG pulses propagating in free space. Our results also show that the initial phase of the TDHG pulse can significantly changes the envelope of the optical force.
Institute of Scientific and Technical Information of China (English)
何小灵; 杜四德; 周鲁卫; 汪启胜; 陈灏
2004-01-01
Tunnelling of a two-level atom is investigated in the two-photon mazer when the atom is initially prepared in a coherent superposition state and the cavity in various quantum states. For a strong coherent field, the tunnelling exhibits more regular oscillations but less remarkable switch effect than that in the one-photon mazer. It is discovered that in the presence of atomic coherence, the transmission probabilities in the ultracold regime are significantly different when the cavity field is initially in coherent, squeezed vacuum, even cat and odd cat states,respectively.
Gaonkar, A. K.; Kulkarni, S. S.
2015-01-01
In the present paper, a method to reduce the computational cost associated with solving a nonlinear transient heat conduction problem is presented. The proposed method combines the ideas of two level discretization and the multilevel time integration schemes with the proper orthogonal decomposition model order reduction technique. The accuracy and the computational efficiency of the proposed methods is discussed. Several numerical examples are presented for validation of the approach. Compared to the full finite element model, the proposed method significantly reduces the computational time while maintaining an acceptable level of accuracy.
Two-Level Optimization for GFRP Wind Turbine Blade Structural Design%GFRP风机叶片结构设计的二级优化方法
Institute of Scientific and Technical Information of China (English)
李丹; 姚卫星
2011-01-01
Based on the topology of wind turbine blade structures, the web position of the blade is chosen as systematical design variable and the layer thickness as size design variable, and then a two-level opti-mization method is proposed to determine web position and skin layer thickness. Firstly, the surrogate model of web position is established based on which the system level optimization is performed with weight minimum as objective in order to obtain the position variable values. Then the position values are passed to sub-system where the layer thickness is optimized with a fractional step strategy. When the results of system and sub-system satisfy convergent condition, the optimum blade structure design is ob-tained. The two-level optimization method is proved to be efficient to obtain better blade design by the given examples.%通过对风机叶片结构特性的分析,以叶片腹板位置和蒙皮锗层厚度为设计变量,发展了一种二级优化设计方法.首先建立腹板位置参数的代理模型,根据所建的代理模型以质量最轻为目标进行系统级优化求解出腹板位置,然后将结果传给予系统级,子系统级采取分步优化策略求解叶片铺层厚度.当两级优化结果收敛时得到叶片最佳设计.经算例验证,采用这种二级优化方法,可得到较为理想的叶片结构设计结果.
Directory of Open Access Journals (Sweden)
Tarek H. M. Abou-El-Enien
2015-04-01
Full Text Available This paper extended TOPSIS (Technique for Order Preference by Similarity Ideal Solution method for solving Two-Level Large Scale Linear Multiobjective Optimization Problems with Stochastic Parameters in the righthand side of the constraints (TL-LSLMOP-SPrhs of block angular structure. In order to obtain a compromise ( satisfactory solution to the (TL-LSLMOP-SPrhs of block angular structure using the proposed TOPSIS method, a modified formulas for the distance function from the positive ideal solution (PIS and the distance function from the negative ideal solution (NIS are proposed and modeled to include all the objective functions of the two levels. In every level, as the measure of ―Closeness‖ dp-metric is used, a k-dimensional objective space is reduced to two –dimentional objective space by a first-order compromise procedure. The membership functions of fuzzy set theory is used to represent the satisfaction level for both criteria. A single-objective programming problem is obtained by using the max-min operator for the second –order compromise operaion. A decomposition algorithm for generating a compromise ( satisfactory solution through TOPSIS approach is provided where the first level decision maker (FLDM is asked to specify the relative importance of the objectives. Finally, an illustrative numerical example is given to clarify the main results developed in the paper.
Institute of Scientific and Technical Information of China (English)
Xun ZHU
2003-01-01
The classic two-level or equivalent two-level model that includes only the statistical equilibriumof radiative and thermal processes of excitation and quenching between two vibrational energy levelsis extended by adding chemical production to the rate equations. The modifications to the non-localthermodynamic equilibrium source function and cooling rate are parameterized by φc, which characterizesthe ratio of chemical production to collisional quenching. For applications of broadband emission of O3 at9.6 μm, the non-LTE effect of chemical production on the cooling rate and limb emission is proportionalto the ratio of O to O3. For a typical [O]/[O3], the maximum enhancements of limb radiance and coolingrate are about 15%-30% and 0.03-0.05 K day-1, respectively, both occurring near the mesopause regions.This suggests that the broadband limb radiance above ～80 km is sensitive to O3 density but not sensitiveto the direct cooling rate along the line-of-sight, which makes O3 retrieval feasible but the direct coolingrate retrieval difficult by using the O3 9.6 μm band limb emission.
Wu, Xinbo; Fan, Guoxin; Gu, Xin
2016-01-01
Objective. To describe the two-level percutaneous endoscopic lumbar discectomy (PELD) technique in transforaminal approach for highly migrated disc herniation and investigate its clinical outcomes. Methods. A total of 22 consecutive patients with highly migrated lumbar disc herniation were enrolled for the study from June 2012 to February 2014. Results. There were 12 males and 10 females, with a mean age of 41.1 (range 23–67) years. The mean follow-up period was 18.05 (range 14–33) months. According to the modified MacNab criteria, the clinical outcome at the final follow-up was excellent in 14, good in 6, and fair in 2 patients and the satisfactory rate (excellent and good) was 90.9%. The improvements in VAS and ODI were statistically significant. One patient had recurrent herniation in 18 months after the first surgery and underwent open discectomy. One patient showed symptoms of postoperative dysesthesia (POD), but the POD symptom was transient and partial remission was achieved in two months after conservative treatment. Conclusion. Two-level PELD in transforaminal approach can be a safe and effective procedure for highly migrated disc herniation. PMID:28070509
Vllasolli, Teuta Osmani; Orovcanec, Nikola; Zafirova, Beti; Krasniqi, Blerim; Murtezani, Ardiana; Krasniqi, Valbona; Rama, Bukurije
2015-01-01
Background: The Physiological Cost Index (PCI) was introduced by MacGregor to estimate the energy cost in walking of healthy people, also it has been reported for persons with lower limb amputation, walking with prosthesis. Objective: To assess energy cost and walking speed in two level lower limb amputation: transfemoral and transtibial amputation and to determine if the age and prosthetic walking supported with walking aids have impact on energy cost and walking speed. Methods: A prospective cross sectional study was performed in two level lower limb amputees with no vascular disease who were rehabilitated at the Department of Prosthetics and Orthotics at the University Clinical Center of Kosovo. The Physiological Cost Index (PCI) was assessed by five minutes of continuous indoor walking at Comfort Walking Speed (CWS). Results: Eighty three lower limb amputees were recruited. It is shown relevant impact of level of amputation in PCI (t=6.8, pamputation. Conclusions: Walking with transfemoral prosthesis or using walking aids during prosthetic ambulation is matched with higher cost of energy and slower walking speed. Advanced age was shown with high impact on PCI and CWS in both groups of amputees. PMID:25870485
Directory of Open Access Journals (Sweden)
Yi-hung Chiou
2010-04-01
Full Text Available The goal of this article is to investigate the conditions under which ASEAN states are more likely to pursue regional economic integration, namely, a series of ASEAN Free Trade Area (AFTA agreements/ protocols. Adopting Putnam’s two-level-games model, this article examines the influences of domestic politics, political elites’ preferences, economic performance, and external impacts. Through the construction of a set of hypotheses, this article investigates five AFTA agreements/ protocols and the conditions of ASEAN states during the 1992–2003 period. The findings indicate that political leaders’ preferences have played a pivotal role in the development of the AFTA. Economic performance and domestic support in individual states has also affected the AFTA. The close link between AFTA agreements and external impacts reveals that the AFTA’s inherent nature is defensive.
Giri, B. C.; Maiti, T.
2013-05-01
This article develops a single-manufacturer and single-retailer supply chain model under two-level permissible delay in payments when the manufacturer follows a lot-for-lot policy in response to the retailer's demand. The manufacturer offers a trade credit period to the retailer with the contract that the retailer must share a fraction of the profit earned during the trade credit period. On the other hand, the retailer provides his customer a partial trade credit which is less than that of the manufacturer. The demand at the retailer is assumed to be dependent on the selling price and the trade credit period offered to the customers. The average net profit of the supply chain is derived and an algorithm for finding the optimal solution is developed. Numerical examples are given to demonstrate the coordination policy of the supply chain and examine the sensitivity of key model-parameters.
Energy Technology Data Exchange (ETDEWEB)
Zhai, Hua [Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Zhang, Jialin, E-mail: jialinzhang@hunnu.edu.cn [Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn [Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081 (China); Center for Nonlinear Science and Department of Physics, Ningbo University, Ningbo 315211 (China)
2016-08-15
We study the geometric phase of a uniformly accelerated two-level atom coupled with vacuum fluctuations of electromagnetic fields in the presence of a perfectly reflecting plane. We find that the geometric phase difference between the accelerated and inertial atoms which can be observed by atom interferometry crucially depends on the polarizability of the atom and the distance to the boundary and it can be dramatically manipulated with anisotropically polarizable atoms. In particular, extremely close to the boundary, the phase difference can be increased by two times as compared to the case without any boundary. So, the detectability of the effects associated with acceleration using an atom interferometer can be significantly increased by the presence of a boundary using atoms with anisotropic polarizability.
Temporal Bell-type inequalities for two-level Rydberg atoms coupled to a high-{ital Q} resonator
Energy Technology Data Exchange (ETDEWEB)
Huelga, S.F.; Marshall, T.W.; Santos, E. [Departamento de Fisica, Universidad de Oviedo, 33007 Oviedo (Spain)]|[Department of Mathematics, University of Manchester, Manchester M139PL, United Kingdom Departamento de Fisica Moderna, Universidad de Cantabria, 39005 Santander (Spain)
1996-09-01
Following the strategy of showing specific quantum effects by means of the violation of a classical inequality, a pair of Bell-type inequalities is derived on the basis of certain additional assumptions, whose plausibility is discussed in detail. Such inequalities are violated by the quantum mechanical predictions for the interaction of a two-level Rydberg atom with a single mode sustained by a high-{ital Q} resonator. The experimental conditions required in order to show the existence of forbidden values, according to a hidden variables formalism, in a real experiment are analyzed for various initial field statistics. In particular, the revival dynamics expected for the interaction with a coherent field leads to classically forbidden values, which would indicate a purely quantum effect. {copyright} {ital 1996 The American Physical Society.}
Directory of Open Access Journals (Sweden)
Huang Yung-Fu
2007-01-01
Full Text Available The main purpose of this paper is to modify Huang’s model [13] by considering two warehouses. In addition, we try to use algebraic method to determine the optimal lot-sizing policy for the retailer under two warehouses and two levels of delay permitted. This paper provides this algebraic approach that could be used easily to introduce the basic inventory theories to younger students who lack the knowledge of calculus. Furthermore, we develop three easy-to-use theorems to efficiently determine the optimal cycle time and optimal lot sizing for the retailer. As a result, we deduce some previously published results of other researchers as special cases. Finally, a numerical example is given to illustrate these theorems obtained in this paper. In addition, we obtain a lot of managerial insights from this numerical example.
Directory of Open Access Journals (Sweden)
Yong He
2013-01-01
Full Text Available Trade credit financing is a useful tool in business today, which can be characterized as the agreement between supply chain members such as permissible delay in payments. In this study, we assume that the items have the property of noninstantaneous deterioration and the demand is a function of downstream credit. Then, an EOQ model for noninstantaneous deterioration is built based on the two-level financing policy. The purpose of this paper is to maximize the total average profit by determine the optimal downstream credit period, the optimal replenishment cycle length, and the optimal ordering quantity per cycle. Useful theorems are proposed to characterize the method of obtaining the optimal solutions. Based on the theorems, an algorithm is designed, and numerical tests and sensitive analysis are provided. Lastly, according to the sensitive analysis, managerial insights are proposed.
Musson-Genon, Luc; Dupont, Eric; Wendum, Denis
2007-08-01
We present a comparison between several methods used to reconstruct fluxes and vertical profiles of wind, temperature and humidity from measurements at two levels in the atmospheric surface layer for different practical applications. An analytical method and an iterative method are tested by evaluating the quality of estimations of surface fluxes from detailed field measurements obtained during a campaign on the site of Lannemezan in the south-west of France. The iterative method yields better results, but the analytical one can give results of the same level of accuracy provided that specific constants in its formulation are modified. Then these techniques are applied to wind and temperature reconstruction for an experiment dedicated to wind power estimates over flat terrain. If turbulent fluxes are not needed, a simple power law appears to be sufficient, as the method based on Monin-Obukhov theory does not improve the accuracy of the vertical profile reconstruction.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Let G = (V, E) be a complete undirected graph with vertex set V, edge set E, and edge weights I(e)satisfying the triangle inequality. The vertex set V is partitioned into clusters V1, V2 Vk. The clustered traveling salesman problem (CTSP) seeks to compute the shortest Hamiltonian tour that visits all the vertices, in which the vertices of each cluster are visited consecutively. A two-level genetic algorithm (TLGA) was developed for the problem, which favors neither intra-cluster paths nor inter-cluster paths, thus realized integrated evolutionary optimization for both levels of the CTSP. Results show that the algorithm is more effective than known algorithms. A large-scale traveling salesman problem (TSP) can be converted into a CTSP by clustering so that it can then be solved by the algorithm. Test results demonstrate that the clustering TLGA for large TSPs is more effective and efficient than the classical genetic algorithm.
Directory of Open Access Journals (Sweden)
Ghada F. Elkabbany
2012-05-01
Full Text Available Group communication can benefit from Internet Protocol (IP multicast protocol to achieve efficient exchange of messages. However, IP multicast does not provide any mechanisms for authentication. In literature, many solutions to solve this problem were presented. It has been shown that Wong and Lam protocol is the only protocol that can resist both packet loss and pollution attacks. In contrast, it has high computation and communication overheads. In the present paper, an efficient design for the implementation of Wong and Lam multicast authentication protocol is proposed. In order to solve the computation overhead problem, we use two-levels of parallelism. To reduce the communication overhead, we use Universal Message Authentication Codes (UMAC instead of hash functions. The design is analyzed for both NTRU and elliptic curve cryptography signature algorithms. The analysis shows that the proposed design decreases significantly the execution time of Wong-Lam protocol which makes it suitable for real-time applications.
Firth, W J; Labeyrie, G; Camara, A; Gomes, P; Ackemann, T
2016-01-01
We explore various models for the pattern forming instability in a laser-driven cloud of cold two-level atoms with a plane feedback mirror. Focus is on the combined treatment of nonlinear propagation in a diffractively thick medium and the boundary condition given by feedback. The combined presence of purely transverse transmission gratings and reflection gratings on wavelength scale is addressed. Different truncation levels of the Fourier expansion of the dielectric susceptibility in terms of these gratings are discussed and compared to literature. A formalism to calculate the exact solution for the homogenous state in presence of absorption is presented. The relationship between the counterpropagating beam instability and the feedback instability is discussed. Feedback reduces the threshold by a factor of two under optimal conditions. Envelope curves which bound all possible threshold curves for varying mirror distances are calculated. The results are comparing well to experimental results regarding the obs...
Real-space decoupling transformation for quantum many-body systems.
Evenbly, G; Vidal, G
2014-06-06
We propose a real-space renormalization group method to explicitly decouple into independent components a many-body system that, as in the phenomenon of spin-charge separation, exhibits separation of degrees of freedom at low energies. Our approach produces a branching holographic description of such systems that opens the path to the efficient simulation of the most entangled phases of quantum matter, such as those whose ground state violates a boundary law for entanglement entropy. As in the coarse-graining transformation of Vidal [Phys. Rev. Lett. 99, 220405 (2007).
Directory of Open Access Journals (Sweden)
Majid Gholipour
2013-08-01
Full Text Available Background: The prevalence of obesity has risen enormously over the past few decad-es. Both food intake (Appetite and energy expenditure can influence body weight. Acylated ghrelin enhances appetite, and its plasma level is suppressed by growth horm-one. The present study, examines the effects of an intermittent exercise with progress-ive intensities on acylated ghrelin, appetite, and growth hormone in inactive male students with two levels of obesity.Methods: Eleven inactive males were allocated into two groups on the basis of their body mass index (BMI. Six subjects in group one, BMI= 31.18±0.92 kg/m2, and five subjects in group two, BMI= 36.94±2.25 kg/m2, ran on the treadmill with progressive intensities of 50, 60, 70 and 80% of VO2max for 10, 10, 5, and 2 min respectively. Blood samples were collected before the exercise (as the resting values, after each workload (during the exercise, and at 30, 60, and 120 min (during recovery.Results: Plasma acylated ghrelin concentrations and hunger ratings in two groups were decreased and remained significantly lower than resting values (P=0.008 and P=0.002 respectively at the end of the trial and there was no significant differences between groups. Growth hormone levels in two groups were increased and remained significant-ly higher than resting values (groups one P=0.012, group two P=0.005 at the end of the trial and there was no significant differences between groups. In addition, there were no significant differences between area under the curves (AUC values over total periods for acylated ghrelin, hunger ratings, and growth hormone in two groups.Conclusion: These findings indicate that individuals with two levels of obesity have the same response to the different intensities of treadmill running and two hours thereafter during recovery period, which can be considered for designing a more effective weighting loss training program.
Directory of Open Access Journals (Sweden)
Pu Wang
Full Text Available Nuclear receptors (NRs are one of the most abundant classes of transcriptional regulators in animals. They regulate diverse functions, such as homeostasis, reproduction, development and metabolism. Therefore, NRs are a very important target for drug development. Nuclear receptors form a superfamily of phylogenetically related proteins and have been subdivided into different subfamilies due to their domain diversity. In this study, a two-level predictor, called NR-2L, was developed that can be used to identify a query protein as a nuclear receptor or not based on its sequence information alone; if it is, the prediction will be automatically continued to further identify it among the following seven subfamilies: (1 thyroid hormone like (NR1, (2 HNF4-like (NR2, (3 estrogen like, (4 nerve growth factor IB-like (NR4, (5 fushi tarazu-F1 like (NR5, (6 germ cell nuclear factor like (NR6, and (7 knirps like (NR0. The identification was made by the Fuzzy K nearest neighbor (FK-NN classifier based on the pseudo amino acid composition formed by incorporating various physicochemical and statistical features derived from the protein sequences, such as amino acid composition, dipeptide composition, complexity factor, and low-frequency Fourier spectrum components. As a demonstration, it was shown through some benchmark datasets derived from the NucleaRDB and UniProt with low redundancy that the overall success rates achieved by the jackknife test were about 93% and 89% in the first and second level, respectively. The high success rates indicate that the novel two-level predictor can be a useful vehicle for identifying NRs and their subfamilies. As a user-friendly web server, NR-2L is freely accessible at either http://icpr.jci.edu.cn/bioinfo/NR2L or http://www.jci-bioinfo.cn/NR2L. Each job submitted to NR-2L can contain up to 500 query protein sequences and be finished in less than 2 minutes. The less the number of query proteins is, the shorter the time will
Wang, Pu; Xiao, Xuan; Chou, Kuo-Chen
2011-01-01
Nuclear receptors (NRs) are one of the most abundant classes of transcriptional regulators in animals. They regulate diverse functions, such as homeostasis, reproduction, development and metabolism. Therefore, NRs are a very important target for drug development. Nuclear receptors form a superfamily of phylogenetically related proteins and have been subdivided into different subfamilies due to their domain diversity. In this study, a two-level predictor, called NR-2L, was developed that can be used to identify a query protein as a nuclear receptor or not based on its sequence information alone; if it is, the prediction will be automatically continued to further identify it among the following seven subfamilies: (1) thyroid hormone like (NR1), (2) HNF4-like (NR2), (3) estrogen like, (4) nerve growth factor IB-like (NR4), (5) fushi tarazu-F1 like (NR5), (6) germ cell nuclear factor like (NR6), and (7) knirps like (NR0). The identification was made by the Fuzzy K nearest neighbor (FK-NN) classifier based on the pseudo amino acid composition formed by incorporating various physicochemical and statistical features derived from the protein sequences, such as amino acid composition, dipeptide composition, complexity factor, and low-frequency Fourier spectrum components. As a demonstration, it was shown through some benchmark datasets derived from the NucleaRDB and UniProt with low redundancy that the overall success rates achieved by the jackknife test were about 93% and 89% in the first and second level, respectively. The high success rates indicate that the novel two-level predictor can be a useful vehicle for identifying NRs and their subfamilies. As a user-friendly web server, NR-2L is freely accessible at either http://icpr.jci.edu.cn/bioinfo/NR2L or http://www.jci-bioinfo.cn/NR2L. Each job submitted to NR-2L can contain up to 500 query protein sequences and be finished in less than 2 minutes. The less the number of query proteins is, the shorter the time will
Directory of Open Access Journals (Sweden)
Floriano De Rango
2009-11-01
Full Text Available This paper focuses on the routing protocol issue in two important environments for Vehicular Ad Hoc Networks (VANET: Manhattan and the Freeway. A novel protocol called Two-level Trajectory Based Routing (TTBR protocol is proposed. Deterministic vehicles movement permits advantage to be taken of the map info to build a specific local trajectory to reach the destination node. However, in order to offer network scalability also a high level cell-based trajectory is applied to have a coarse knowledge of the cell where the destination node is moving. Our proposal needs Peer Servers and Grid subdivision of the space. Simulation results were assessed to show the improvements and scalability offered by TTBR in comparison with other Ad Hoc networks protocols such as AODV and GPSR. Performance Evaluation was evaluated in terms of Normalized Control Overhead and Data Packet Delivery Ratio. TTBR is more performing than AODV for a high speed and high density scenario for both the Manhattan and Freeway scenarios.
Directory of Open Access Journals (Sweden)
Claudio F. M. Toledo
2015-01-01
Full Text Available This paper presents the synchronized and integrated two-level lot sizing and scheduling problem (SITLSP. This problem is found in beverage production, foundry, glass industry, and electrofused grains, where the production processes have usually two interdependent levels with sequence-dependent setups in each level. For instance, in the first level of soft drink production, raw materials are stored in tanks flowing to production lines in the second level. The amount and the time the raw materials and products have to be stored and produced should be determined. A synchronization problem occurs because the production in lines and the storage in tanks have to be compatible with each other throughout the time horizon. The SITLSP and its mathematical model are described in detail by this paper. The lack of similar models in the literature has led us to also propose a set of instances for the SITLSP, based on data provided by a soft drink company. Thus, a set of benchmark results for these problem instances are established using an exact method available in an optimization package. Moreover, results for two relaxations proved that the modeling methodology could be useful in real-world applications.
Luo, Chaomin; Krishnan, Mohan; Paulik, Mark; Cui, Bo; Zhang, Xingzhong
2013-12-01
In this paper, a two-level LIDAR-driven hybrid approach is proposed for real-time unmanned ground vehicle navigation and map building. Top level is newly designed enhanced Voronoi Diagram (EVD) method to plan a global trajectory for an unmanned vehicle. Bottom level employs Vector Field Histogram (VFH) algorithm based on the LIDAR sensor information to locally guide the vehicle under complicated workspace, in which it autonomously traverses from one node to another within the planned EDV with obstacle avoidance. To find the least-cost path within the EDV, novel distance and angle based search heuristic algorithms are developed, in which the cost of an edge is the risk of traversing the edge. An EVD is first constructed based on the environment, which is utilized to generate the initial global trajectory with obstacle avoidance. The VFH algorithm is employed to guide the vehicle to follow the path locally. Its effectiveness and efficiency of real-time navigation and map building for unmanned vehicles have been successfully validated by simulation studies and experiments. The proposed approach is successfully experimented on an actual unmanned vehicle to demonstrate the real-time navigation and map building performance of the proposed method. The vehicle appears to follow a very stable path while navigating through various obstacles.
Zhang, Dasen; Zhang, Zhiming
2017-01-01
We study the spatiotemporal structure of the biphoton entangled state generated by the four-wave mixing (FWM) process in a cold two-level atomic ensemble. We analyze, for the first time, the X-like shaped structure of the biphoton entangled state and the geometry of the biphoton correlation for different lengths and densities of the cold atomic ensemble. The propagation equations of the photon pairs generated from FWM process are derived in a spatiotemporal framework. By means of the input-output relations of the propagation equations, the biphoton amplitude function is obtained in a spatiotemporal domain. In the given frequency range, the biphoton amplitude displays an X-like shaped geometry, nonfactorizable in the space-time domain. Such an X-like shaped spatiotemporal structure is caused by the phase matching and the FWM gain. The former leads to the X-like shaped envelope of the biphoton correlation, while the latter gives rise to the oscillations around the X-like shaped envelope. PMID:28218235
Zhang, Dasen; Zhang, Zhiming
2017-02-20
We study the spatiotemporal structure of the biphoton entangled state generated by the four-wave mixing (FWM) process in a cold two-level atomic ensemble. We analyze, for the first time, the X-like shaped structure of the biphoton entangled state and the geometry of the biphoton correlation for different lengths and densities of the cold atomic ensemble. The propagation equations of the photon pairs generated from FWM process are derived in a spatiotemporal framework. By means of the input-output relations of the propagation equations, the biphoton amplitude function is obtained in a spatiotemporal domain. In the given frequency range, the biphoton amplitude displays an X-like shaped geometry, nonfactorizable in the space-time domain. Such an X-like shaped spatiotemporal structure is caused by the phase matching and the FWM gain. The former leads to the X-like shaped envelope of the biphoton correlation, while the latter gives rise to the oscillations around the X-like shaped envelope.
Frozen Gaussian approximation-based two-level methods for multi-frequency Schrödinger equation
Lorin, E.; Yang, X.
2016-10-01
In this paper, we develop two-level numerical methods for the time-dependent Schrödinger equation (TDSE) in multi-frequency regime. This work is motivated by attosecond science (Corkum and Krausz, 2007), which refers to the interaction of short and intense laser pulses with quantum particles generating wide frequency spectrum light, and allowing for the coherent emission of attosecond pulses (1 attosecond=10-18 s). The principle of the proposed methods consists in decomposing a wavefunction into a low/moderate frequency (quantum) contribution, and a high frequency contribution exhibiting a semi-classical behavior. Low/moderate frequencies are computed through the direct solution to the quantum TDSE on a coarse mesh, and the high frequency contribution is computed by frozen Gaussian approximation (Herman and Kluk, 1984). This paper is devoted to the derivation of consistent, accurate and efficient algorithms performing such a decomposition and the time evolution of the wavefunction in the multi-frequency regime. Numerical simulations are provided to illustrate the accuracy and efficiency of the derived algorithms.
Udayakumar, R.; Geetha, K. V.
2017-09-01
A deterministic inventory model with two levels of storage (own warehouse and rented warehouse) with non-instantaneous deteriorating items is studied. The supplier offers the retailer a trade credit period to settle the amount. Different scenarios based on the deterioration and the trade credit period have been considered. In this article, we have framed two models considering single warehouse (Model-I) and two warehouses (Model-II) for non-instantaneous deteriorating items. The objective of this work is to minimize the total inventory cost and to find the optimal length of replenishment and the optimal order quantity. Mathematical theorems have been developed to determine the existence and the uniqueness of the optimal solution. Computational algorithms for the two different models are designed to find the optimal order quantity and the optimal cycle time. Comparison between the optimal solutions for the two models is also given. Numerical illustrations and managerial insights obtained demonstrate the application and the performance of the proposed theory.
Vladimirova, Yu V.; Chubchev, E. D.; Zadkov, V. N.
2017-02-01
It is demonstrated that the interaction of a two-level quantum emitter (atom, molecule, etc) with a plasmonic nanoparticle (prolate nanospheroid) in an external laser field features either an essential increase (up to a few orders of magnitude) or reduction (up to a few times) of the total decay rate of the emitter in specific areas around the nanoparticle in contrast to its decay rate in a vacuum. It is also shown that the resonance fluorescence spectrum of the emitter in close proximity to a plasmonic nanoparticle is very sensitive to both the location of the emitter around the nanoparticle and to polarization of the near-field, which depends in turn on the polarization of the incident laser field. This can be used in engineering potential quantum optics experiments with quantum emitters in the near-field, as well as for 3D nanoscopy of the near-field by registering the resonance fluorescence spectra of quantum emitters scattered in the vicinity of a plasmonic nanoparticle.
Directory of Open Access Journals (Sweden)
Ying-Nong Chen
2015-12-01
Full Text Available In this paper, an object detector is proposed based on a convolution/subsampling feature map and a two-level cascade classifier. First, a convolution/subsampling operation alleviates illumination, rotation and noise variances. Then, two classifiers are concatenated to check a large number of windows using a coarse-to-fine strategy. Since the sub-sampled feature map with enhanced pixels was fed into the coarse-level classifier, the checked windows were drastically reduced to a quarter of the original image. A few remaining windows showing detailed data were further checked using a fine-level classifier. In addition to improving the detection process, the proposed mechanism also sped up the training process. Some features generated from the prototypes within the small window were selected and trained to obtain the coarse-level classifier. Moreover, a feature ranking algorithm reduced the large feature pool to a small set, thus speeding up the training process without losing detection performance. The contribution of this paper is twofold: first, the coarse-to-fine scheme shortens both the training and detection processes. Second, the feature ranking algorithm reduces training time. Finally, some experimental results were achieved for evaluation. From the results, the proposed method was shown to outperform the rapidly performing Adaboost, as well as forward feature selection methods.
Ghafouri, H. R.; Mosharaf-Dehkordi, M.; Afzalan, B.
2017-07-01
A simulation-optimization model is proposed for identifying the characteristics of local immiscible NAPL contaminant sources inside aquifers. This model employs the UTCHEM 9.0 software as its simulator for solving the governing equations associated with the multi-phase flow in porous media. As the optimization model, a novel two-level saturation based Imperialist Competitive Algorithm (ICA) is proposed to estimate the parameters of contaminant sources. The first level consists of three parallel independent ICAs and plays as a pre-conditioner for the second level which is a single modified ICA. The ICA in the second level is modified by dividing each country into a number of provinces (smaller parts). Similar to countries in the classical ICA, these provinces are optimized by the assimilation, competition, and revolution steps in the ICA. To increase the diversity of populations, a new approach named knock the base method is proposed. The performance and accuracy of the simulation-optimization model is assessed by solving a set of two and three-dimensional problems considering the effects of different parameters such as the grid size, rock heterogeneity and designated monitoring networks. The obtained numerical results indicate that using this simulation-optimization model provides accurate results at a less number of iterations when compared with the model employing the classical one-level ICA.
Directory of Open Access Journals (Sweden)
Álvaro Morales
2014-04-01
Full Text Available Corn (Zea mays L. silage (CS is a nutritious food that can be used as a supplement in dairy cows. The aim of this study was to determine the effect of supplementation with two amounts of CS on milk production and composition, live weight and body condition, as well as on some blood indicators for energy and protein metabolism on dairy cows in early lactation and grazing low mass pasture during autumn. The study was carried out in 40 Holstein Friesian cows over 57 d. Prior to experimental treatment, milk production and days of lactation averaged 24.1 ± 2.8 kg d-1 and 62 ± 14 d, respectively. The dietary treatments consisted of two levels of supplementation with CS; 4.5 and 9 kg DM cow-1 d-1 (treatments LCS and HCS, respectively. Additionally, all the cows received a pasture allowance of 21 and 3 kg DM cow-1 d-1 of concentrate. Milk composition was determined using infrared spectrophotometry, while blood indicators were obtained using an autoanalyzer. There were not differences between treatments regarding milk production or composition, total DM or energy intake. Herbage and protein intake was higher for LCS treatment (P < 0.001. Increasing supplementation decreased (P < 0.001 daily weight gain but did not affect body condition. Plasma concentrations of βOH-butyrate were lower (P = 0.038 for the LCS treatment; while urea concentrations were higher (P = 0.003, with no differences for non-esterified fatty acids (NEFA concentrations. Supplementation with 4.5 kg d-1 of CS was sufficient to meet the production requirements of the cows.
Directory of Open Access Journals (Sweden)
Sandra Yamile Martínez
2010-12-01
Full Text Available Objetive: To identify biopsychosocial characteristics preceding the pregnancy in teenagers that went to see the doctor in two level one medical centers in Popayán. Method: Descriptive study, gathering and analysing qualitative and quantitative information. Results: 38 teenagers with an average age of 16.37 years at conception. 90% (34 were first-time mothers. 73% (28 were attending high school and 68% (26 were from a low socioeconomic background. 36.8% (14 were planning a future involving study and work. 46% (17 had dropped out from school. The young girls average age and of commencing sexual activities are 12.89 and 15.32 respectively. 71% 27 had a sexual partner and mentioned that the main reasons for getting pregnant were falling in love and loneliness. Dysfunctional families were a notable feature with 32% (12 coming from broken nuclear families. In order of frequency, social activities in their free time 22/38; 34.2% (13 spend time with their boyfriends. 55%( 21 did not use any contraceptive. 50% (19 heard negative comments against teenage motherhood before their pregnancy. 63% (24 did not plan to get pregnant. 71% 27 had their mother, cousins or a friend with a history of teenage pregnancy. Conclusions: In this population, pregnancy is perhaps a way to establish the sexual identity. It is probable that there is an influence of the repetitive generational pattern of pregnancy at an early age. Teenagers find it viable to adopt adult roles to establish their identity creating a false identity, in addition the limited support from their parents lead them to a marriage or pregnancy as a way to reaffirm their role.
Directory of Open Access Journals (Sweden)
Sushant B. Jadhav
2016-10-01
Full Text Available A novel, stability indicating, reverse phase high-performance liquid chromatography (RP-HPLC method was developed to determine the S-isomer of linagliptin (LGP in linagliptin and metformin hydrochloride (MET HCl tablets (LGP–MET HCl by implementing design of experiment (DoE, i.e., two-level, full factorial design (23 + 3 centre points = 11 experiments to understand the critical method parameters (CMP and its relation with the critical method attribute (CMA, and to ensure robustness of the method. The separation of the S-isomer, LGP and MET HCl in the presence of their impurities was achieved on Chiralpak® IA-3 (Amylose tris (3, 5-dimethylphenylcarbamate, immobilized on 3 µm silica gel stationary phase (250 × 4.6 mm, 3 µm using isocratic elution and detector wavelength at 225 nm with a flow rate of 0.5 mL·min−1, an injection volume of 10 µL with a sample cooler (5 °C and column oven temperature of 25 °C. Ethanol:Methanol:Monoethanolamine (EtOH:MeOH:MEA in the ratio of 60:40:0.2 v/v/v was used as a mobile phase. The developed method was validated in accordance with international council for harmonisation (ICH guidelines and was applied for the estimation of the S-isomer of LGP in LGP–MET HCl tablets. The same method also can be extended for the estimation of the S-isomer in LGP dosage forms.
Institute of Scientific and Technical Information of China (English)
Armand BABOLI; Mohammadali Pirayesh NEGHAB; Rasoul HAJI
2008-01-01
This paper considers a two-level supply chain consisting of one warehouse and one retailer. In this model we determine the optimal ordering policy according to inventory and transportation costs. We assume that the demand rate by the retailer is known. Shortages are allowed neither at the retailer nor at the warehouse. We study this model in two cases; decentralized and centralized. In the decentralized case the retailer and the warehouse independently minimize their own costs; while in the centralized case the warehouse and the retailer are considered as a whole firm. We propose an algorithm to find economic order quantities for both the retailer and the warehouse which minimize the total system cost in the centralized case. The total system cost contains the holding and ordering costs at the retailer and the warehouse as well as the transportation cost from the warehouse to the retailer. The application of this model into the pharmaceutical downstream supply chain of a public hospital allows obtaining significant savings. By numerical examples, the costs are computed in MATLAB(C) to compare the costs in the centralized case with decentralized one and to propose a saving-sharing mechanism through quantity discount.
Varshosaz, Jaleh; Moazen, Ellaheh
2014-08-01
Carvedilol used in cardiovascular diseases has systemic bioavailability of 25-35%. The objective of this study was production of lectin-modified poly(ethylene-co-vinyl acetate) (PEVA) as mucoadhesive nanoparticles to enhance low oral bioavailability of carvedilol. Nanoparticles were prepared by the emulsification-solvent evaporation method using a two-level factorial design. The studied variables included the vinyl acetate content of the polymer, drug and polymer content. Surface modification of PEVA nanoparticles with lectin was carried out by the adsorption method and coupling efficiency was determined using the Bradford assay. Mucoadhesion of nanoparticles was studied on mucin. The particle size, polydispersity index, zeta potential, drug loading and drug release from nanoparticles were studied. The morphology of nanoparticles and crystalline status of the entrapped drug were studied by SEM, DSC and XRD tests, respectively. Results showed the most effective factor on particle size and zeta potential was the interaction of polymer and drug content while, drug loading efficiency and mucoadhesion were more affected by the interaction of polymer type and drug content. Drug concentration was the most effective variable on the drug release rate. The drug was in amorphous state in nanoparticles. The optimum nanoparticles obtained by 45 mg of copolymer contained 12% vinyl acetate/4.3 ml of organic phase and drug concentration of 37.5 wt% of polymer.
Energy Technology Data Exchange (ETDEWEB)
Zheng Xiaojuan [College of Physics and Information Science, Hunan Normal University, Changsha, 410081 (China); Fang Maofa [College of Physics and Information Science, Hunan Normal University, Changsha, 410081 (China); Liao Xiangping [College of Physics and Information Science, Hunan Normal University, Changsha, 410081 (China); Cai Jianwu [College of Physics and Information Science, Hunan Normal University, Changsha, 410081 (China)
2007-02-14
In the system with a two-level ion confined both in a linear trap and in a high-Q single-mode cavity, we present a simple scheme to realize the basic two-qubit logic gates such as the quantum phase gate (QPG), the SWAP gate and the controlled-NOT (CNOT) gate beyond the Lamb-Dicke (LD) limit. We realize the three kinds of two-qubit quantum phase gates, i.e. QPG operation involving the cavity mode as well as the vibrational mode of the trapped ion, QPG operation involving the internal states as well as the vibrational mode of the trapped ion and QPG operation involving the internal states of the trapped ion as well as the cavity mode. The controlled-NOT gate can be implemented from a QPG operation through a rotation of the second qubit before and after the QPG operation. We can also perform the SWAP gate operation involving the ionic internal states of the trapped ion and the two-mode bosonic basis. The logic gates involving the cavity mode as well as the vibrational mode of the trapped ion are insensitive to spontaneous emission, and the logic gates involving the internal states as well as the vibrational mode of the trapped ion are insensitive to the decay of the cavity, which is an important feature for the practical implementation of quantum computing. Neither the LD approximation nor the auxiliary atomic level is needed in our scheme. Experimental feasibility for achieving our scheme is also discussed.
Sub-Poissonian phonon statistics in an acoustical resonator coupled to a pumped two-level emitter
Energy Technology Data Exchange (ETDEWEB)
Ceban, V., E-mail: victor.ceban@phys.asm.md; Macovei, M. A., E-mail: macovei@phys.asm.md [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of)
2015-11-15
The concept of an acoustical analog of the optical laser has been developed recently in both theoretical and experimental works. We here discuss a model of a coherent phonon generator with a direct signature of the quantum properties of sound vibrations. The considered setup is made of a laser-driven quantum dot embedded in an acoustical nanocavity. The system dynamics is solved for a single phonon mode in the steady-state and in the strong quantum dot—phonon coupling regime beyond the secular approximation. We demonstrate that the phonon statistics exhibits quantum features, i.e., is sub-Poissonian.
Maximum power point tracking for photovoltaic applications by using two-level DC/DC boost converter
Moamaei, Parvin
Recently, photovoltaic (PV) generation is becoming increasingly popular in industrial applications. As a renewable and alternative source of energy they feature superior characteristics such as being clean and silent along with less maintenance problems compared to other sources of the energy. In PV generation, employing a Maximum Power Point Tracking (MPPT) method is essential to obtain the maximum available solar energy. Among several proposed MPPT techniques, the Perturbation and Observation (P&O;) and Model Predictive Control (MPC) methods are adopted in this work. The components of the MPPT control system which are P&O; and MPC algorithms, PV module and high gain DC-DC boost converter are simulated in MATLAB Simulink. They are evaluated theoretically under rapidly and slowly changing of solar irradiation and temperature and their performance is shown by the simulation results, finally a comprehensive comparison is presented.
Perner, Henrike; Schwarz, Dietmar; Bruns, Christian; Mäder, Paul; George, Eckhard
2007-07-01
Two challenges frequently encountered in the production of ornamental plants in organic horticulture are: (1) the rate of mineralization of phosphorus (P) and nitrogen (N) from organic fertilizers can be too slow to meet the high nutrient demand of young plants, and (2) the exclusive use of peat as a substrate for pot-based plant culture is discouraged in organic production systems. In this situation, the use of beneficial soil microorganisms in combination with high quality compost substrates can contribute to adequate plant growth and flower development. In this study, we examined possible alternatives to highly soluble fertilizers and pure peat substrates using pelargonium (Pelargonium peltatum L'Her.) as a test plant. Plants were grown on a peat-based substrate with two rates of compost addition and with and without arbuscular mycorrhizal (AM) fungi. Inoculation with three different commercial AM inocula resulted in colonization rates of up to 36% of the total root length, whereas non-inoculated plants remained free of root colonization. Increasing the rate of compost addition increased shoot dry weight and shoot nutrient concentrations, but the supply of compost did not always completely meet plant nutrient demand. Mycorrhizal colonization increased the number of buds and flowers, as well as shoot P and potassium (K) concentrations, but did not significantly affect shoot dry matter or shoot N concentration. We conclude that addition of compost in combination with mycorrhizal inoculation can improve nutrient status and flower development of plants grown on peat-based substrates.
Directory of Open Access Journals (Sweden)
Aiwen Wang
2012-01-01
Full Text Available We investigate an Oseen two-level stabilized finite-element method based on the local pressure projection for the 2D/3D steady Navier-Stokes equations by the lowest order conforming finite-element pairs (i.e., Q1−P0 and P1−P0. Firstly, in contrast to other stabilized methods, they are parameter free, no calculation of higher-order derivatives and edge-based data structures, implemented at the element level with minimal cost. In addition, the Oseen two-level stabilized method involves solving one small nonlinear Navier-Stokes problem on the coarse mesh with mesh size H, a large general Stokes equation on the fine mesh with mesh size h=O(H2. The Oseen two-level stabilized finite-element method provides an approximate solution (uh,ph with the convergence rate of the same order as the usual stabilized finite-element solutions, which involves solving a large Navier-Stokes problem on a fine mesh with mesh size h. Therefore, the method presented in this paper can save a large amount of computational time. Finally, numerical tests confirm the theoretical results. Conclusion can be drawn that the Oseen two-level stabilized finite-element method is simple and efficient for solving the 2D/3D steady Navier-Stokes equations.
Huysmans, M.A.; Looze, M.P. de; Hoozemans, M.J.M.; Beek, A.J. van der; Dieën, J.H. van
2006-01-01
The study was designed to determine the effect of joystick handle size and (display-control) gain at two levels of required task precision on performance and physical load on crane operators. Eight experienced crane operators performed a simulated crane operation task on a computer by use of a joyst
Directory of Open Access Journals (Sweden)
P.C. Ferro Lopes
2014-10-01
Full Text Available In the initial stage of traumatic brain injury, the use of 1.0 inspired oxygen fraction (FiO2 is indicated. However, high FiO2 has been correlated with atelectasis. Thus, the effects of FiO2 = 1.0 and FiO2 = 0.6 on the cardiopulmonary function in propofol-anesthetized dogs with high intracranial pressure (ICP were evaluated. Eight dogs were anesthetized on two occasions, receiving, during controlled ventilation, an FiO2 = 1 (G100 or an FiO2 = 0.6 (G60. Propofol was used for induction (10mg.kg-1 followed by a continuous rate infusion (0.6mg.kg-1.minute-1. An increase in the ICP was induced by temporary obliteration of the right jugular vein (OJv 50 minutes after induction of anesthesia. The measurement was taken twenty minutes after OJv (T0 and then at 15-minute intervals (T15 to T60. Alveolar oxygen partial pressure in G60 was lower than in G100 during the whole procedure. Alveolar-arterial oxygen gradient in G100 was greater than in G60 at T0 and at T60. No differences were observed for arterial oxygen partial pressure/inspired oxygen fraction ratio, arterial-to-alveolar oxygen pressure ratio, respiratory index, venous admixture, oxygen delivery, oxygen consumption, oxygen extraction, heart rate, mean pulmonary arterial pressure, pulmonary arterial occlusion pressure, cardiac index, stroke index and systemic vascular resistance index. In G100, mean arterial pressure at T0 was higher than at T45. In dogs with high ICP, the cardiopulmonary function was not influenced by the different FiO2 used.
Hardware implementation of two-level scheduling algorithm ofμC/OS-II%μC/OS-II二级调度算法的硬件实现
Institute of Scientific and Technical Information of China (English)
李岩; 崔浩鑫; 杜永斌
2016-01-01
针对μC/OS-II不支持同优先级任务轮转调度的问题，提出了二级混合任务调度策略。第一级调度把任务优先级高低作为任务调度的标准，实现不同优先级任务的抢占式调度；第二级采用时间片轮转策略，实现同优先级任务的轮转调度。采用FPGA片内的寄存器和RAM实现了等待任务列表和就绪表，并设计了后继轮转任务查找电路实现时间片轮转调度。整个设计采用VHDL，通过ISE 10.1软件时序仿真验证。仿真结果证明，硬件实现行之有效。%Aiming at the problem thatμC/OS-II does not support round-robin scheduling of the same priority task, a two-level hybrid task scheduling strategy is proposed. In the first level, by putting the task priority as criterion for task scheduling, a preemptive scheduling of different priority task is implemented. And in the second level, adopting time slice circular scheduling strategy, round-robin scheduling of same priority task is implemented. The waiting list of tasks is designed by on-chip registers of FPGA and the ready list of tasks is designed by RAM of FPGA, and to implement time slice circular scheduling, hardware circuit for finding successor of task is designed. The system adopts VHDL, and is simulated by the software ISE10.1. The simulation results show that the hardware implementation of the system is well-worked.
Directory of Open Access Journals (Sweden)
Alvin MD
2014-11-01
Full Text Available Matthew D Alvin,1,2 Thomas E Mroz1,3,41Cleveland Clinic Center for Spine Health, Cleveland Clinic, Cleveland, OH, USA; 2Case Western Reserve University School of Medicine, Cleveland, OH, USA; 3Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA; 4Department of Neurological Surgery, Cleveland Clinic, Cleveland, OH, USABackground: Cervical disc arthroplasty (CDA is a novel motion-preserving procedure that is an alternative to fusion. The Mobi-C disc prosthesis, one of many Food and Drug Administration (FDA-approved devices for CDA, is the only FDA-approved prosthesis for two-level CDA. Hence, it may allow for improved outcomes compared with multilevel fusion procedures.Purpose: To critically assess the available literature on CDA with the Mobi-C prosthesis, with a focus on two-level CDA.Methods: All clinical articles involving the Mobi-C disc prosthesis for CDA through September 1, 2014 were identified on Medline. Any paper that presented Mobi-C CDA clinical results was included. Study design, sample size, length of follow-up, use of statistical analysis, quality of life outcome scores, conflict of interest, and complications were recorded.Results: Fifteen studies were included that investigated Mobi-C CDA, only one of which was a level Ib randomized control trial. All studies included showed non-inferiority of one-level Mobi-C CDA to one-level anterior cervical discectomy and fusion (ACDF. Only one study analyzed outcomes of one-level versus two-level Mobi-C CDA, and only one study analyzed two-level Mobi-C CDA versus two-level ACDF. In comparison with other cervical disc prostheses, the Mobi-C prosthesis is associated with higher rates of heterotopic ossification (HO. Studies with conflicts of interest reported lower rates of HO. Adjacent segment degeneration or disease, along with other complications, were not assessed in most studies.Conclusion: One-level Mobi-C CDA is non-inferior, but not superior, to one-level ACDF for patients
Construction of Exchange-Correlation Potentials for Strongly Interacting One-Dimensional Systems
Silva, J. Wildon O.; Vieira, Daniel
2017-08-01
One-dimensional (1D) systems are useful laboratories aiming further improvement of electronic structure calculations. In order to simulate electron-electron interactions, two types of expressions are commonly considered: soft-Coulomb and exponential. For both cases, in the context of density-functional theory (DFT), 1D systems can be employed to gain insight into the ingredients accurate exchange-correlation (XC) density functionals must incorporate. A question of major interest is the treatment of strongly interacting situations, one of the main modern challenges for DFT. In this manuscript, we propose a generalization of preexisting XC potentials which can be applied to investigate the transition from weak to strong interactions. Specifically, we employ the intriguing behavior of electrons confined in one dimension: the spin-charge separation, for which spin and charge are decoupled to form two independent quasiparticles, spinons, and chargons. By means of Friedel oscillations, our results indicate it is possible to reproduce the weak-strong interaction transition by using a simple strategy we name, from previous works, spin-charge separation correction (SCSC). In addition, SCSC also yields good results in reproducing the constancy of the highest occupied Kohn-Sham eigenvalues upon fractional electron charges.
Zhang, Wen-Zhuo
2012-01-01
We derive a set of optical Bloch equations (OBEs) directly from the minimal-coupling Hamiltonian density of the bound-state quantum electrodynamics (bound-state QED). Such optical Bloch equations are beyond the former widely-used ones due to that there is no electric dipole approximation (EDA) on the minimal-coupling Hamiltonian density of the bound-state QED. Then our optical Bloch equations can describe a two-level atom interacting with a monochromatic light of arbitrary wavelength, which are suitable to study the spectroscopy and the Rabi oscillations of two-level atoms in X-ray laser beams since that the wavelength of X-ray is close to an atom to make the electric dipole approximation (EDA) invalid.
Energy Technology Data Exchange (ETDEWEB)
Kalchev, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ketelsen, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Vassilevski, P. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2013-11-07
Our paper proposes an adaptive strategy for reusing a previously constructed coarse space by algebraic multigrid to construct a two-level solver for a problem with nearby characteristics. Furthermore, a main target application is the solution of the linear problems that appear throughout a sequence of Markov chain Monte Carlo simulations of subsurface flow with uncertain permeability field. We demonstrate the efficacy of the method with extensive set of numerical experiments.
Yu, Min; Fang, Mao-Fa
2016-10-01
We investigate the entropy squeezing of a two-level atom coupled to a dissipative cavity under two different controls: In the first case, quantum-jump-based feedback is alone applied, whereas in the second case we consider the combined effect of quantum-jump-based feedback and classical driving, in which we provide a scheme to generate and protect steady and optimal entropy squeezing of the two-level atom. The results show that the entropy squeezing of atomic polarization components greatly depends on the control of quantum-jump-based feedback and classical driving. Under the condition of designing proper quantum-jump-based feedback parameters, the entropy squeezing can be generated and protected. Furthermore, when both quantum-jump-based feedback and classical driving are simultaneously applied, steady and optimal entropy squeezing of the two-level atom can be obtained even though there is initially no entropy squeezing, which is explained by making use of the steady-state solution of the atom.
Kemmerer, David; Gonzalez-Castillo, Javier
2010-01-01
Verbs have two separate levels of meaning. One level reflects the uniqueness of every verb and is called the "root". The other level consists of a more austere representation that is shared by all the verbs in a given class and is called the "event structure template". We explore the following hypotheses about how, with specific reference to the…
Quantum transport characteristics in mesoscopic two-level system%介观二能级体系的量子输运特性研究
Institute of Scientific and Technical Information of China (English)
胡兢; 骆钧炎
2016-01-01
利用电子数分辨的量子主方程,推导了介观输运体系中的电流和散粒噪声计算方法,研究了二能级体系的量子输运特性.在非对称隧穿耦合强度下,电流输运出现了快慢通道的输运机制,导致了动态库伦阻塞,以及新颖的负微分电导现象和超泊松散粒噪声.这些研究结果对量子器件的实现、优化和控制具有一定的实际意义.
Kemmerer, David; Gonzalez-Castillo, Javier
2010-01-01
Verbs have two separate levels of meaning. One level reflects the uniqueness of every verb and is called the "root". The other level consists of a more austere representation that is shared by all the verbs in a given class and is called the "event structure template". We explore the following hypotheses about how, with specific reference to the…
Energy Technology Data Exchange (ETDEWEB)
Hwang, Jung Han; Hwang, Cheol Mog; Cho, Young Jun; Kim, Keun Won; Kim, Young Joong; Seo, Jae Young; Lim, Seong Joo [Dept. of Diagnostic Radiology, Konyang University Hospital, Deajeon (Korea, Republic of); Kang, Byeong Seong [Dept. of Radiology, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan (Korea, Republic of)
2017-01-15
The aim of this study was to evaluate the therapeutic effect of a transforaminal epidural steroid injection (TFESI) along with a caudal epidural steroid injection (ESI), compared to two-level TFESIs in a multi-level radiculopathy patient. A total of 895 lumbar ESIs were performed in 492 patients with multi-level radiculopathy from January 2012 to January 2015. Before injections were performed, the initial Numeric Rating Scale (NRS) score was assessed in all patients, categorized into no pain (excellent), mild (good, NRS: 1-3), moderate (fair, NRS: 4-6), and severe pain (poor, NRS: 7-10). Therapeutic effects were examined for two groups: one-level TFESI along with caudal and ESI two-level TFESIs. Patient outcomes were assessed by NRS in a serial follow-up at one, three, and six months. One TFESI along with caudal ESI was performed in 274 patients and two TFESIs for 218. For the former group with one TFESI along with caudal ESI, excellent results were shown: 219 (79.9%) patients after one month, 200 (72.9%) after three, and 193 (70.4%) after six months. In the patient group with two TFESIs (n = 218) the outcomes were also very good: 152 (69.7%) after one month, 131 (60.0%) after three months, and 123 (56.4%) patients after six months. The therapeutic effect of one TFESI along with caudal ESI was better than two TFESIs in for one, threes, and six months (p < 0.01). Transforaminal epidural steroid with caudal epidural injection is a more effective tool for lumbosacral radiculopathy than two level transforaminal injections in multi-level radiculopathy patients.
Energy Technology Data Exchange (ETDEWEB)
Gloaguen, D. [GeM, Institut de Recherche en Genie Civil et Mecanique, Universite de Nantes, Ecole Centrale de Nantes, CNRS UMR 6183, 37 Boulevard de l' Universite, BP 406, 44 602 Saint-Nazaire (France); Francois, M. [Laboratoire des Systemes Mecaniques et d' Ingenierie Simultanee (LASMIS FRE CNRS 2719), Universite de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes cedex (France)
2006-06-15
A two-level homogenisation approach is applied to the micro-mechanical modelling of the elasto-plasticity of polycrystalline materials during various strain-path changes. The model is tested by simulating the development of intragranular strains during different complex loads. Mechanical tests measurements are used as a reference in order to validate the model. The anisotropy of plastic deformation in relation to the evolution of the dislocation structure is analysed. The results demonstrate the relevance of this approach for FCC polycrystals. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.; Krasowski, Michael J.; Prokop, Norman F.
2015-01-01
Complex integrated circuit (IC) chips rely on more than one level of interconnect metallization for routing of electrical power and signals. This work reports the processing and testing of 4H-SiC junction field effect transistor (JFET) prototype IC's with two levels of metal interconnect capable of prolonged operation at 500 C. Packaged functional circuits including 3- and 11-stage ring oscillators, a 4-bit digital to analog converter, and a 4-bit address decoder and random access memory cell have been demonstrated at 500 C. A 3-stage oscillator functioned for over 3000 hours at 500 C in air ambient. Improved reproducibility remains to be accomplished.
Energy Technology Data Exchange (ETDEWEB)
Dodonov, A.V., E-mail: adodonov@fis.unb.br [Instituto de Física, Universidade de Brasília, Caixa Postal 04455, 70910-900 Brasília, DF (Brazil); Dodonov, V.V., E-mail: vdodonov@fis.unb.br [Instituto de Física, Universidade de Brasília, Caixa Postal 04455, 70910-900 Brasília, DF (Brazil)
2011-11-21
We study numerically the evolution of the cavity electromagnetic field mode which is in resonance with an oscillating boundary (dynamical Casimir effect), taking into account the interaction between the field and a two-level atom, that may or not be continuously monitored by a coupled atomic excitation detector. We analyze the behavior of the field statistics and the quadrature squeezing properties in different regimes, demonstrating that at the expense of decreasing the number of produced photons and the degree of squeezing, one can create qualitatively new types of cavity field states. -- Highlights: ► We study the statistics of photons created in a cavity via dynamical Casimir effect. ► We take into account the interaction with a two-level atom placed inside the cavity. ► The field–atom dynamics is calculated numerically for the Rabi coupling. ► The interaction with a detector can totally change the statistics of created photons. ► The statistics can vary from weakly super-Poissonian to strong “hyper-Poissonian”.
Tsirogiannis, George A.; Davis, Kathryn E.
2016-07-01
The proposed method connects two unstable periodic orbits by employing trajectories of their associated invariant manifolds that are perturbed in two levels. A first level of velocity perturbations is applied on the trajectories of the discretized manifolds at the points where they approach the nominal unstable periodic orbit in order to accelerate them. A second level of structured velocity perturbations is applied to trajectories that have already been subjected to first level perturbations in order to approximately meet the necessary conditions for a low Δ {V} transfer. Due to this two-level perturbation approach, the number of the trajectories obtained is significantly larger compared with approaches that employ traditional invariant manifolds. For this reason, the problem of connecting two unstable periodic orbits through perturbed trajectories of their manifolds is transformed into an equivalent discrete optimization problem that is solved with a very low computational complexity algorithm that is proposed in this paper. Finally, the method is applied to a lunar observation mission of practical interest and is found to perform considerably better in terms of Δ {V} cost and time of flight when compared with previous techniques applied to the same project.
Huysmans, Maaike A; de Looze, Michiel P; Hoozemans, Marco J M; van der Beek, Allard J; van Dieën, Jaap H
2006-09-15
The study was designed to determine the effect of joystick handle size and (display-control) gain at two levels of required task precision on performance and physical load on crane operators. Eight experienced crane operators performed a simulated crane operation task on a computer by use of a joystick with either a short or a large handle. The task was performed at three gain levels and at two levels of required precision. Task performance, wrist and forearm postures, upper extremity muscle activity, perceived exertion and perceived comfort were measured.Task performance improved when using the joystick with the short handle and when working at a higher gain, while physical load decreased or remained the same. An increased level of required task precision was associated with a lower performance, but physical load was not affected. External validity of the simulated crane task seemed sufficient enough to extrapolate the results to practice.A joystick with a short handle is recommended, as this leads to an increased performance whilst the operator's physical load decreases or remains the same. Further optimization of performance and physical load can be achieved by optimizing gain settings of the joystick in relation to the task and type of joystick used.
Bisogni, Valentina; Wohlfeld, Krzysztof; Nishimoto, Satoshi; Monney, Claude; Trinckauf, Jan; Zhou, Kejin; Kraus, Roberto; Koepernik, Klaus; Sekar, Chinnathambi; Strocov, Vladimir; Büchner, Bernd; Schmitt, Thorsten; van den Brink, Jeroen; Geck, Jochen
2015-03-06
Fractionalization of an electronic quasiparticle into spin, charge, and orbital parts is a fundamental and characteristic property of interacting electrons in one dimension. However, real materials are never strictly one dimensional and the fractionalization phenomena are hard to observe. Here we studied the spin and orbital excitations of the anisotropic ladder material CaCu_{2}O_{3}, whose electronic structure is not one dimensional. Combining high-resolution resonant inelastic x-ray scattering experiments with theoretical model calculations, we show that (i) spin-orbital fractionalization occurs in CaCu_{2}O_{3} along the leg direction x through the xz orbital channel as in a 1D system, and (ii) no fractionalization is observed for the xy orbital, which extends in both leg and rung direction, contrary to a 1D system. We conclude that the directional character of the orbital hopping can select different degrees of dimensionality. Using additional model calculations, we show that spin-orbital separation is generally far more robust than the spin-charge separation. This is not only due to the already mentioned selection realized by the orbital hopping, but also due to the fact that spinons are faster than the orbitons.
Erkan, Serkan; Rivera, Yamil; Wu, Chunhui; Mehbod, Amir A; Transfeldt, Ensor E
2009-10-01
Multilevel lumbar disc disease (MLDD) is a common finding in many patients. Surgical solutions for MLDD include fusion or disc replacement. The hybrid model, combining fusion and disc replacement, is a potential alternative for patients who require surgical intervention at both L5-S1 and L4-L5. The indications for this hybrid model could be posterior element insufficiency, severe facet pathology, calcified ligamentum flavum, and subarticular disease confirming spinal stenosis at L5-S1 level, or previous fusion surgery at L5-S1 and new symptomatic pathology at L4-L5. Biomechanical data of the hybrid model with the Maverick disc and anterior fusion are not available in the literature. To compare the biomechanical properties of a two-level Maverick disc replacement at L4-L5, L5-S1, and a hybrid model consisting of an L4-L5 Maverick disc replacement with an L5-S1 anterior lumbar interbody fusion using multidirectional flexibility test. An in vitro human cadaveric biomechanical study. Six fresh human cadaveric lumbar specimens (L4-S1) were subjected to unconstrained load in axial torsion (AT), lateral bending (LB), flexion (F), extension (E), and flexion-extension (FE) using multidirectional flexibility test. Four surgical treatments-intact, one-level Maverick at L5-S1, two-level Maverick between L4 and S1, and the hybrid model (anterior fusion at L5-S1 and Maverick at L4-L5) were tested in sequential order. The range of motion of each treatment was calculated. The Maverick disc replacement slightly reduced intact motion in AT and LB at both levels. The total FE motion was similar to the intact motion. However, the E motion is significantly increased (approximately 50% higher) and F motion is significantly decreased (30%-50% lower). The anterior fusion using a cage and anterior plate significantly reduced spinal motion compared with the condition (pMaverick disc prosthesis and the hybrid model in terms of all motion types at L4-L5 level (p>.05). The Maverick disc
Institute of Scientific and Technical Information of China (English)
肖健; 王中阳; 徐至展
2002-01-01
We have studied the spectral behaviour of few-cycle soliton pulses in a non-resonant two-level atom medium by solving the full Maxwell-Bloch equations. It is demonstrated further that the carrier effects play an important role in the propagation of the few-cycle pulse laser. When the frequency detuning is not very large, both the population distribution and the refractive index of the medium follow the oscillatory carrier field instantaneously; in this case,carrier-wave compression or carrier shock occurs, and a supercontinuum broader than that in the resonant medium may be generated. When the frequency detuning is large, the carrier shock is weak and the spectrum is not continuous, only showing an odd harmonic radiation.
Two-Level Architecture Model for Web Applications Development%Web应用开发的两层体系结构建模
Institute of Scientific and Technical Information of China (English)
杨卫东; 施伯乐
2002-01-01
With the rapid development of Internet,the Web has evolved into a main platform for delivering all kinds of applications.The complexity of Web applications requires more systematic method and model to support it.This paper describes development process of Web applications,presents a two-level architecture model of Web applications and its modeling language(object-oriented modeling language-OOWML),which includes hypermedia model and data model.With the Object-Oriented concepts,this method uses object as an uniform modeling entity,provides high-level description of a Web application,supports modeling Web service entities at arbitrary levels of granularity,abstraction and reuse.OOWML is a textual language based on XML and independent of specific platform,supports design,implementation and maintenance ofr Web applications.
DEFF Research Database (Denmark)
Maheshwari, Ram Krishan; Munk-Nielsen, Stig; Busquets-Monge, S.
2012-01-01
The size of passive components in an adjustable speed drive can be reduced by using small dc-link capacitors. The EMI filter in the drive also consists of passive components. The size of the filter can be reduced by using a three-level inverter, which can have low output voltage distortion. However......, the three-level inverter based on small dc-link capacitors requires a PWM strategy to maintain neutral-point voltage balance. In this paper, the common mode voltage, which is the determining factor for the EMI filter size, is analyzed for a virtual-vector-based PWM strategy. The common mode voltage....... Results show that the conducted emission from the three-level inverter is lower than that of the two-level inverter. Thus, a three-level inverter requires a smaller EMI filter in motor drives with small dc-link capacitors....
Directory of Open Access Journals (Sweden)
Tomaž Tollazzi
2013-10-01
Full Text Available The problems of low level traffic safety on multi-lane roundabouts have been resolved in various ways in different countries, usually by using alternative types of roundabouts that reduce the number of conflict points. Alternative types of roundabouts typically differ from "normal" or "standard" roundabouts in one or more design elements, as their implementation purposes could also be specific. Today, several different types of roundabouts are already in use ("mini", "double mini", "dumb-bell", those "with joint splitter islands" ("dog-bone", those "with a spiralling circular carriageway" ("turbo", those "with depressed lanes for right-hand turners" ("flower" etc.. This paper introduces a new type of roundabout, dual one-lane roundabouts on two levels with right-hand turning bypasses, namely the "target roundabout". This paper describes and analyses their design, traffic safety, and capacity characteristics, compared with the standard two–lane roundabouts.
Quintana, Daniel S; Alvares, Gail A; Hickie, Ian B; Guastella, Adam J
2015-02-01
Accumulating evidence demonstrates the important role of oxytocin (OT) in the modulation of social cognition and behavior. This has led many to suggest that the intranasal administration of OT may benefit psychiatric disorders characterized by social dysfunction, such as autism spectrum disorders and schizophrenia. Here, we review nasal anatomy and OT pathways to central and peripheral destinations, along with the impact of OT delivery to these destinations on social behavior and cognition. The primary goal of this review is to describe how these identified pathways may contribute to mechanisms of OT action on social cognition and behavior (that is, modulation of social information processing, anxiolytic effects, increases in approach-behaviors). We propose a two-level model involving three pathways to account for responses observed in both social cognition and behavior after intranasal OT administration and suggest avenues for future research to advance this research field.
Directory of Open Access Journals (Sweden)
Chih-Te Yang
2014-01-01
Full Text Available This paper extends the previous economic order quantity (EOQ models under two-level trade credit such as Goyal (1985, Teng (2002, Huang (2003, 2007, Kreng and Tan (2010, Ouyang et al. (2013, and Teng et al. (2007 to reflect the real-life situations by incorporating the following concepts: (1 the storage capacity is limited, (2 the supplier offers the retailer a partially upstream trade credit linked to order quantity, and (3 both the dispensable assumptions that the upstream trade credit is longer than the downstream trade credit N
Mahata, Puspita; Mahata, Gour Chandra; Kumar De, Sujit
2017-06-01
Traditional supply chain inventory modes with trade credit usually only assumed that the up-stream suppliers offered the down-stream retailers a fixed credit period. However, in practice the retailers will also provide a credit period to customers to promote the market competition. In this paper, we formulate an optimal supply chain inventory model under two levels of trade credit policy with default risk consideration. Here, the demand is assumed to be credit-sensitive and increasing function of time. The major objective is to determine the retailer's optimal credit period and cycle time such that the total profit per unit time is maximized. The existence and uniqueness of the optimal solution to the presented model are examined, and an easy method is also shown to find the optimal inventory policies of the considered problem. Finally, numerical examples and sensitive analysis are presented to illustrate the developed model and to provide some managerial insights.
Wang, J.-T.; Gates, W. L.; Kim, J.-W.
1984-01-01
A three-year simulation which prescribes seasonally varying solar radiation and sea surface temperature is the basis of the present study of the horizontal structure of the balances of kinetic and total energy simulated by Oregon State University's two-level atmospheric general circulation model. Mechanisms responsible for the local energy changes are identified, and the energy balance requirement's fulfilment is examined. In January, the vertical integral of the total energy shows large amounts of external heating over the North Pacific and Atlantic, together with cooling over most of the land area of the Northern Hemisphere. In July, an overall seasonal reversal is found. Both seasons are also characterized by strong energy flux divergence in the tropics, in association with the poleward transport of heat and momentum.
Institute of Scientific and Technical Information of China (English)
何蓉; 方旭明
2011-01-01
Frame aggregation is one of the efficient methods to improve wireless channel utility of MAC (Media Access Control) and spectral efficiency. Aiming at multi-services, this paper adopts two-level buffer mechanism and polls each queue for aggregation according to aggregation weight factor. The aggregation weight factor of each queue is dynamically adjusted based on the packet overtime urgent factor defined to meet with the delay requirement of each QoS type of service. This paper introduces queue theory into the performance analysis of frame aggregation scheme. A mathematical analysis model is set up. Additionally, the relationship of main performance parameters and system load is quantificationally analyzed. Compared with the performance of the two-level aggregation scheme defined in IEEE 802.11n standard, the proposed scheme indicates the performance of the new frame aggregation scheme is more efficient than the two-level aggregation scheme defined in 802.11n standard.%帧聚合是改善无线MAC(Media Access Control)协议信道利用率,提高频谱效率的有效手段之一.该文针对多业务场景,采用两级缓冲区调度策略,按照不同聚合权重因子对各队列轮询聚合.根据各个队列的包超时紧迫因子动态调整各队列的聚合权重,以满足各QoS等级业务的时延限制.该文还将排队论模型引入到帧聚合策略的性能分析中,建立了系统的数学分析模型,定量分析了主要性能参数与系统负载的关系.通过与IEEE 802.11n标准中定义的两层帧聚合策略比较表明,该文提出的帧聚合策略的性能优于IEEE 802.11n两层帧聚合策略.
Choi, Man Kyu; Kim, Sung Bum; Park, Chang Kyu; Kim, Sung Min
2016-03-01
Although anterior cervical decompression and fusion with a stand-alone cage (ACDF-SAC) is accepted as a suitable procedure, the outcomes of the multi-level procedure remain controversial. The aim of this study is to compare the clinical and radiologic outcomes achieved with single versus two-level ACDF-SAC along with identification of the factors that contribute to loss in mean disc height (MDH) and change in cervical lordotic angle (CLA). A total of 109 consecutive patients who underwent ACDF-SAC for degenerative spondylosis were reviewed. Patients were divided into two groups according to surgical level (group A, single; group B, two) and were followed for at least 1 year. Clinical outcomes were evaluated using the visual analog scale (VAS) and Robinson's criteria. The fusion and subsidence rates, MDH, CLA, anterior, and posterior vertebral body height of the fused segments (AVBH, PVBH) were measured retrospectively from plain radiographs. Clinical outcomes were similar in both groups, in terms of decreasing VAS score and a grade higher than "good" by Robinson's criteria. The fusion and subsidence rates for each group were found to be 92.2, 91.1, 14.1, and 20.0 %, respectively. The MDH (mm) increased by 1.44 ± 0.96 in group A, 1.57 ± 0.79 and 1.66 ± 0.69 for each surgical level in group B over the 12 postoperative months. The CLA (°) decreased by 1.70 ± 4.04 and 0.75 ± 6.12 over the 12 postoperative months from its presurgery value, the rate of kyphosis >5° was 26.6 and 22.2 % for each group. All compared values were not significantly different between the two groups. Correlation analysis revealed that the AVBH/PVBH ratio exhibited a positive correlation with CLA change in both groups (r = 0.368, 0.397; p = 0.018, 0.040). The overall outcomes achieved with two-level ACDF-SAC were similar to those achieved with single-level ones. In addition, the AVBH/PVBH ratio might be a predictable marker for a postoperative kyphosis.
Directory of Open Access Journals (Sweden)
Sunil Kumar
2015-12-01
Full Text Available The present study investigated the inventory model for a retailer under two levels of trade credit to reflect the supply chain management. Supplier offers trade credit period of M to the retailer while in turn retailer provides a trade credit period of N to his/her customers. The supplier is willing to provide the retailer a full trade credit period for payments and the retailer offers the partial trade credit period to his/her customers. Here, selling items are considered as perishable items such as fruits, fresh fishes, gasoline, photographic films, etc. so that its potential worth decreases. It is assumed that decay in potential worth of items can be increased by using preservation technology. The demand is considered as the function of selling price and trade credit. Ordering cost can be reducing due to learning by doing phenomenon. By applying convex fractional programming results, we obtain necessary and sufficient conditions of an optimal solution. Some theorems are developed to determine retailer’s optimal ordering policies and numerical examples are given to illustrate these theorems. In addition, some managerial insights from the numerical examples are also concluded.
Lupei, Voicu; Aka, Gerard; Vivien, Daniel
2006-04-15
The possibility of using direct pumping into the emitting level of the Nd3+ ion in magnesium-compensated strontium lanthanum aluminate (Sr(1-x)La(x-y)Nd(y)Mg(x)Al(12-x)O19) to improve 900 nm 4F(3/2) --> 4I(9/2) laser emission is discussed. Selection of the composition parameters x and y for optimization of laser emission and reduction of heat generation is based on the spectroscopic and crystal growth characteristics. Pumping in the 865.5 nm absorption band 4I(9/2)(Z1) --> 4F(3/2)(R1) transforms the laser process into a quasi-two-level scheme of very low (below 4%) quantum defects. A very high slope efficiency (over 84%) for 901 nm continuous-wave laser emission is demonstrated with Ti:sapphire laser pumping in this band for a crystal with x = 0.4 and y = 0.05.
Institute of Scientific and Technical Information of China (English)
Lu Daoming
2012-01-01
Using multipohton Tavis-Cummings model, the entanglement evolution of two coupling two-level atoms in Bell states interacting with a single-mode vacuum field is investigated by using negativity. The influences of coupling constants between atoms, the atomic initial states and the photon number of transition on the entanglement evolution of two coupling two-level atoms are discussed. The results obtained using the numerical method show that the entanglement of two atoms is related with coupling constants between atoms, the atomic initial states and the photon number of transition. The two-atom entanglement state will forever stay in the maximum entanglement state when the initial state is ｜β11 〉 . When the initial state of two atoms is ｜β 01 〉, the entanglement of two atoms displays periodic oscillation behavior. And its oscillation period decreases with increasing of coupling constant between atoms or the photon number of transition. On the other hand, when the initial state is ｜β 00 〉 or ｜β10 ）, the entanglement of two atoms displays quasiperiodic oscillation behavior and its oscillation period decreases with increasing of coupling constant between atoms or the photon number of transition.
Nyquist, Nicole F; Rødbotten, Rune; Thomassen, Magny; Haug, Anna
2013-05-09
Chicken meat nutritional value with regard to fatty acid composition and selenium content depends on the choice of dietary oil and selenium level used in the chickens' feed. The objective of this study was to investigate the effect of replacing commonly used rendered animal fat as a dietary source of saturated fatty acids and soybean oil as a source of unsaturated fatty acids, with palm oil and red palm oil in combinations with rapeseed oil, linseed oil and two levels of selenium enriched yeast on chicken breast meat nutritional value. The study also wished to see whether red palm oil had a cholesterol lowering effect on chicken plasma.204 male, newly hatched broiler chickens were randomly divided into twelve dietary treatment groups, and individually fed one out of six dietary fat combinations combined with either low (0.1 mg Se /kg feed) or high (1 mg Se/kg feed) dietary selenium levels. Linseed oil, independent of accompanying dietary fat source, lead to increased levels of the n-3 EPA, DPA and DHA and reduced levels of the n-6 arachidonic acid (AA). The ratio between AA/EPA was reduced from 19/1 in the soybean oil dietary groups to 1.7/1 in the linseed oil dietary groups. Dietary red palm oil reduced total chicken plasma cholesterol levels. There were no differences between the dietary groups with regard to measured meat antioxidant capacity or sensory evaluation. Chicken meat selenium levels were clearly influenced by dietary selenium levels, but were not influenced by feed fatty acid composition. High dietary selenium level lead to marginally increased n-3 EPA and higher meat fat % in breast muscle but did not influence the other LC PUFA levels. Chicken breast meat nutritional value from the soybean oil and low selenium dietary groups may be regarded as less beneficial compared to the breast meat from the linseed oil and high selenium dietary groups. Replacing rendered animal fat with palm oil and red palm oil had no negative effects on chicken muscle
Spin-charge coupling in quantum wires at zero magnetic field
Pereira, Rodrigo G.; Sela, Eran
2009-01-01
We discuss an approximation for the dynamic charge response of nonlinear spin-1/2 Luttinger liquids in the limit of small momentum. Besides accounting for the broadening of the charge peak due to two-holon excitations, the nonlinearity of the dispersion gives rise to a two-spinon peak, which at zero temperature has an asymmetric line shape. At finite temperature the spin peak is broadened by diffusion. As an application, we discuss the density and temperature dependence of the Coulomb drag re...
Single hole spectral function and spin-charge separation in the t-J model
Mishchenko, A.; Prokof'ev, N. V.; Svistunov, B. V.
2001-01-01
Worm algorithm quantum Monte Carlo simulations of the hole Green function with subsequent spectral analysis were performed for J/t 0.1, 0.2, 0.4 on lattices with up to LxL=32x32 sites at temperatures as low as T=J/40, and present, apparently, the hole spectral function in the thermodynamic limit. Spectral analysis reveals a delta-function-sharp quasiparticle peak at the lower edge of the spectrum which is incompatible with the power-law singularity and thus rules out the possibility of spin-c...
Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics
Wang, Yifei; Sahin-Tiras, Kevser; Harmon, Nicholas J.; Wohlgenannt, Markus; Flatté, Michael E.
2016-01-01
As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blends exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device's current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. Magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.
Ma, Yujing; Diaz, Horacio Coy; Avila, José; Chen, Chaoyu; Kalappattil, Vijaysankar; Das, Raja; Phan, Manh-Huong; Čadež, Tilen; Carmelo, José M. P.; Asensio, Maria C.; Batzill, Matthias
2017-02-01
Material line defects are one-dimensional structures but the search and proof of electron behaviour consistent with the reduced dimension of such defects has been so far unsuccessful. Here we show using angle resolved photoemission spectroscopy that twin-grain boundaries in the layered semiconductor MoSe2 exhibit parabolic metallic bands. The one-dimensional nature is evident from a charge density wave transition, whose periodicity is given by kF/π, consistent with scanning tunnelling microscopy and angle resolved photoemission measurements. Most importantly, we provide evidence for spin- and charge-separation, the hallmark of one-dimensional quantum liquids. Our studies show that the spectral line splits into distinctive spinon and holon excitations whose dispersions exactly follow the energy-momentum dependence calculated by a Hubbard model with suitable finite-range interactions. Our results also imply that quantum wires and junctions can be isolated in line defects of other transition metal dichalcogenides, which may enable quantum transport measurements and devices.
Femtosecond switching of magnetism via strongly correlated spin-charge quantum excitations.
Li, Tianqi; Patz, Aaron; Mouchliadis, Leonidas; Yan, Jiaqiang; Lograsso, Thomas A; Perakis, Ilias E; Wang, Jigang
2013-04-04
The technological demand to push the gigahertz (10(9) hertz) switching speed limit of today's magnetic memory and logic devices into the terahertz (10(12) hertz) regime underlies the entire field of spin-electronics and integrated multi-functional devices. This challenge is met by all-optical magnetic switching based on coherent spin manipulation. By analogy to femtosecond chemistry and photosynthetic dynamics--in which photoproducts of chemical and biochemical reactions can be influenced by creating suitable superpositions of molecular states--femtosecond-laser-excited coherence between electronic states can switch magnetic order by 'suddenly' breaking the delicate balance between competing phases of correlated materials: for example, manganites exhibiting colossal magneto-resistance suitable for applications. Here we show femtosecond (10(-15) seconds) photo-induced switching from antiferromagnetic to ferromagnetic ordering in Pr0.7Ca0.3MnO3, by observing the establishment (within about 120 femtoseconds) of a huge temperature-dependent magnetization with photo-excitation threshold behaviour absent in the optical reflectivity. The development of ferromagnetic correlations during the femtosecond laser pulse reveals an initial quantum coherent regime of magnetism, distinguished from the picosecond (10(-12) seconds) lattice-heating regime characterized by phase separation without threshold behaviour. Our simulations reproduce the nonlinear femtosecond spin generation and underpin fast quantum spin-flip fluctuations correlated with coherent superpositions of electronic states to initiate local ferromagnetic correlations. These results merge two fields, femtosecond magnetism in metals and band insulators, and non-equilibrium phase transitions of strongly correlated electrons, in which local interactions exceeding the kinetic energy produce a complex balance of competing orders.
Striped superconductors: how spin, charge and superconducting orders intertwine in the cuprates
Energy Technology Data Exchange (ETDEWEB)
Berg, Erez; Kivelson, Steven A [Department of Physics, Stanford University, Stanford, CA 94305-4060 (United States); Fradkin, Eduardo [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3080 (United States); Tranquada, John M [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)], E-mail: kivelson@stanford.edu
2009-11-15
Recent transport experiments in the original cuprate high temperature superconductor, La{sub 2-x}Ba{sub x}CuO{sub 4}, have revealed a remarkable sequence of transitions and crossovers that give rise to a form of dynamical dimensional reduction, in which a bulk crystal becomes essentially superconducting in two directions while it remains poorly metallic in the third. We identify these phenomena as arising from a distinct new superconducting state, the 'striped superconductor', in which the superconducting order is spatially modulated, so that its volume average value is zero. Here, in addition to outlining the salient experimental findings, we sketch the order parameter theory of the state, stressing some of the ways in which a striped superconductor differs fundamentally from an ordinary (uniform) superconductor, especially concerning its response to quenched randomness. We also present the results of density matrix renormalization group calculations on a model of interacting electrons in which sign oscillations of the superconducting order are established. Finally, we speculate concerning the relevance of this state to experiments in other cuprates, including recent optical studies of La{sub 2-x}Sr{sub x}CuO{sub 4} in a magnetic field, neutron scattering experiments in underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} and a host of anomalies seen in STM and ARPES studies of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}.
Striped superconductors: how spin, charge and superconducting orders intertwine in the cuprates
Berg, Erez; Fradkin, Eduardo; Kivelson, Steven A.; Tranquada, John M.
2009-11-01
Recent transport experiments in the original cuprate high temperature superconductor, La2-xBaxCuO4, have revealed a remarkable sequence of transitions and crossovers that give rise to a form of dynamical dimensional reduction, in which a bulk crystal becomes essentially superconducting in two directions while it remains poorly metallic in the third. We identify these phenomena as arising from a distinct new superconducting state, the 'striped superconductor', in which the superconducting order is spatially modulated, so that its volume average value is zero. Here, in addition to outlining the salient experimental findings, we sketch the order parameter theory of the state, stressing some of the ways in which a striped superconductor differs fundamentally from an ordinary (uniform) superconductor, especially concerning its response to quenched randomness. We also present the results of density matrix renormalization group calculations on a model of interacting electrons in which sign oscillations of the superconducting order are established. Finally, we speculate concerning the relevance of this state to experiments in other cuprates, including recent optical studies of La2-xSrxCuO4 in a magnetic field, neutron scattering experiments in underdoped YBa2Cu3O6+x and a host of anomalies seen in STM and ARPES studies of Bi2Sr2CaCu2O8+δ.
Institute of Scientific and Technical Information of China (English)
虞剑锋
2012-01-01
预算绩效管理已成为公共财政管理的重点和价值取向。高校应适应公共财政管理的要求,在校院两级管理基础上,建立内部预算绩效管理制度,以此来推动学校整体预算绩效管理水平的提高。本文重点论述了实施预算绩效管理的观念创新、主要环节和实施的必备条件。%The budget performance management has become the focal point and value orientation of the public financial management.Universities must adapt to the requirement of the public financial management and establish the system of their internal budget performance management on the basis of the two-level administration of the university so as to push forward the improvement of the schools＇ budget performance management in an all-round way.This paper focuses on the discussion about the innovative thinking,main links and essential conditions to implement the budget performance management in the universities.
Karmatz, Franklin Neil
An historical study of the theories and attitudes pertaining to the social responsibilities of corporations in the free enterprise system was done so that these theories could be compared to operant attitudes toward the free enterprise system. Two simultaneous studies were carried out. The first one used visual representations of media opinions…
Karmatz, Franklin Neil
An historical study of the theories and attitudes pertaining to the social responsibilities of corporations in the free enterprise system was done so that these theories could be compared to operant attitudes toward the free enterprise system. Two simultaneous studies were carried out. The first one used visual representations of media opinions…
一种基于权重与轮询的双层仲裁算法%A Two-level Arbitration Algorithm Based on Weight and Round-robin
Institute of Scientific and Technical Information of China (English)
吴睿振; 杨银堂; 张丽; 陆锋雷
2013-01-01
A two-level arbitration algorithm based on weight and Round-Robin (RR) is presented. It sets weight by tickets and employs improved Fixed Priority (FP) and RR arbitration to work in turn respectively under the conditions that there is no contention and there exit heavy contentions. In the NonIdling and NonPreemptive (NINP) model, the proposed arbitration algorithm is much better in the output bandwidth ratio, bandwidth utilization, power, fanout and it also has advantages in speed and area compared with the commonly-used FP, RR and Lottery arbitration algorithms. The proposed arbitration algorithm is suitable in various request environments, simple in logic and easy to implement, so it can be applied to SoC bus systems.%该文提出一种基于权重与轮询(Round-Robin, RR)的双层仲裁算法，在无冲突和多冲突情况下分别采用改进的固定优先级(Fixed Priority, FP)和RR仲裁轮流工作，并通过彩票项设置权重。在非空非抢占(NonIdling and NonPreemptive, NINP)模型下相比传统FP, RR和Lottery仲裁算法有更好的输出带宽比、带宽占用率和功耗，在速度和面积上有一定优势。该算法适应多种请求环境，逻辑简单，容易实现，可应用于总线结构的片上系统(System-on-Chip, SoC)。
DEFF Research Database (Denmark)
Qin, Zian; Liserre, Marco; Blaabjerg, Frede
2013-01-01
Thermal performance is one of the main indicators of power converter, since it is related to both the cost of cooling system and the reliability of the power converter. Moreover, the common-mode voltage in motor driver may damage the bearing of the motor and also cause failure. Therefore, both...
Downer, Jason; Brown, Josh; Herrera, Manuela Jimenez; Stuhlman, Megan; Bourassa, Kyle; Gologor, Ben; Wong, Pamela
2013-01-01
Teacher-educators and policy-makers recognize that ongoing training and support for high quality implementation of curricula can be a vital component of systems that ensure the value of education experiences, particularly for students at-risk of school failure (Meisels, 2007; Pew Charitable Trusts, 2007; Pianta, 2005). In particular, there is…
Directory of Open Access Journals (Sweden)
Yanhong Qin
2013-07-01
Full Text Available The paper establishes a fairness preference framework based on game theory of Nash bargaining, and builds a utility system about fairness preference. On the basis, we expeands the newboy model to behavior research. The analysis shows that because of the retailer and suppliers’ fairness preference, their optimal order quantities tend to became conservative, and the result shows that the greater the retailer’s fairness preference, the smaller the optimal order quantity of the retailer and the supply chain system, and the change tendency of the supply chan is more obvious than that of retailer. the greater the supplier’s fairness preference, the greater the optimalorder quantity of the retailer and the supply chain system, and the change tendency of the supply chan is more obvious than that of retailer. Furthermore, we draw a conclusion that the wholesale price contract don’t change the supply chain coordination. Finally, we make the sensitivity analysis of the wholesale price, the retail price, the manufacturing cost of supplier, the stortage cost of retailer and the stortage cost of supplier.
Institute of Scientific and Technical Information of China (English)
潘良时; 吕本富
2011-01-01
Through analyzing the elements of army's combat effectiveness under conditions of information explosion, highlighting the important position of the information in the creation of combat effectiveness, this thesis build a two levels evaluation indicator system for combat efFectiveness. In order to improve the drawbacks of previous methods, the thesis combines AHP and fuzzy mathematical model to conduct evaluation, and gives the whole evaluation process. Finally, through case study over the combat effectiveness of an army,the thesis obtains both qualitative and quantitative evaluation results. The empirical results show that the method proposed in this thesis can overcome previous problems, such as containing too many human factors on evaluation of combat effectiveness, unreasonable combination of qualitative and quantitative analysis, and make evaluation more scientific.%在分析信息化条件下陆军作战部队战斗力构成要素,以及研究信息在战斗力生成中重要性的基础上,构建了评价陆军作战部队战斗力水平的二级评判指标体系.针对以往战斗力评判方法存在的不足,提出基于AHP法和模糊方法的评判模型,并给出了评价过程.最后对某陆军作战部队的战斗力水平进行实例分析,实证表明,方法克服了以往战斗力评价中主观因素影响大、定性与定量分析结合不够合理等问题,使战斗力评判更加科学.
Abdalla, M. Sebawe; Khalil, E. M.; Obada, A. S.-F.
2017-01-01
In the present communication, we consider the problem of two quantum systems with the Kerr-like medium nonlinearity. The system is cast form of an interaction between two operators of the form su(1 , 1) Lie algebra and su(2) Lie algebra. We obtain the wave function via the evolution operator where we use the Heisenberg equations of motion to derive the constants of motion. We discuss the atomic inversion. It is found that the Kerr-like medium decreases the amplitude and increases the fluctuations. Also we consider different types of squeezing, it is shown that the entropy squeezing is pronounced in the second quadrature, but it shows a small amount in the first quadrature. For the variance squeezing, a small amount occurs in the presence of the Kerr-like medium. However, the normal squeezing occurs in the first quadrature where the squeezing is sensitive to both the Kerr-like medium parameter and the initial state. Furthermore, the degree of entanglement is examined through the linear entropy. It is shown that the function decreases besides rapid fluctuations. The correlation function displays nonclassical behavior in addition to an increase in the amplitude of the fluctuations.
Bertin, E.; Bonville, P.; Bouchaud, J.-P.; Hodges, J. A.; Sanchez, J. P.; Vulliet, P.
2002-06-01
Using 155Gd Mössbauer spectroscopy down to 27 mK, we show that, in the geometrically frustrated pyrochlore Gd2Sn2O7, the Gd3+ hyperfine levels are populated out of equilibrium. From this, we deduce that the hyperfine field, and the correlated Gd3+ moments which produce this field, continue to fluctuate as T|--> 0. With a model of a spin 1/2 system experiencing a magnetic field which reverses randomly in time, we obtain an analytical expression for the steady state probability distribution of the level populations. This distribution is a simple function of the ratio of the nuclear spin relaxation time to the average electronic spin-flip time. In Gd2Sn2O7, we find the two time scales are of the same order of magnitude. We discuss the mechanism giving rise to the nuclear spin relaxation and the influence of the electronic spin fluctuations on the hyperfine specific heat. The corresponding low temperature measurements in Gd2Ti2O7 are presented and discussed.
Siddeq, M. M.; Rodrigues, M. A.
2015-09-01
Image compression techniques are widely used on 2D image 2D video 3D images and 3D video. There are many types of compression techniques and among the most popular are JPEG and JPEG2000. In this research, we introduce a new compression method based on applying a two level discrete cosine transform (DCT) and a two level discrete wavelet transform (DWT) in connection with novel compression steps for high-resolution images. The proposed image compression algorithm consists of four steps. (1) Transform an image by a two level DWT followed by a DCT to produce two matrices: DC- and AC-Matrix, or low and high frequency matrix, respectively, (2) apply a second level DCT on the DC-Matrix to generate two arrays, namely nonzero-array and zero-array, (3) apply the Minimize-Matrix-Size algorithm to the AC-Matrix and to the other high-frequencies generated by the second level DWT, (4) apply arithmetic coding to the output of previous steps. A novel decompression algorithm, Fast-Match-Search algorithm (FMS), is used to reconstruct all high-frequency matrices. The FMS-algorithm computes all compressed data probabilities by using a table of data, and then using a binary search algorithm for finding decompressed data inside the table. Thereafter, all decoded DC-values with the decoded AC-coefficients are combined in one matrix followed by inverse two levels DCT with two levels DWT. The technique is tested by compression and reconstruction of 3D surface patches. Additionally, this technique is compared with JPEG and JPEG2000 algorithm through 2D and 3D root-mean-square-error following reconstruction. The results demonstrate that the proposed compression method has better visual properties than JPEG and JPEG2000 and is able to more accurately reconstruct surface patches in 3D.
SUPERSATURATED DESIGN WITH MORE THAN TWO LEVELS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Supersaturated designs are useful in screening experiments. This paper discusses the topic of multi-level supersaturated design. Two quantities, E(d2) and Df, are proposed to evaluate the optimality of supersaturated designs. A lower bound of E(d2) is obtained with a necessary condition for achieving it. Some E(d2)-optimal supersaturated designs of 3, 4, and 5 levels are given.
Two level scheme solvers for nuclear spectroscopy
Jansson, Kaj; DiJulio, Douglas; Cederkäll, Joakim
2011-10-01
A program for building level schemes from γ-spectroscopy coincidence data has been developed. The scheme builder was equipped with two different algorithms: a statistical one based on the Metropolis method and a more logical one, called REMP (REcurse, Merge and Permute), developed from scratch. These two methods are compared both on ideal cases and on experimental γ-ray data sets. The REMP algorithm is based on coincidences and transition energies. Using correct and complete coincidence data, it has solved approximately half a million schemes without failures. Also, for incomplete data and data with minor errors, the algorithm produces consistent sub-schemes when it is not possible to obtain a complete scheme from the provided data.
Optical resonance and two-level atoms
Allen, L
1987-01-01
""Coherent and lucid…a valuable summary of a subject to which [the authors] have made significant contributions by their own research."" - Contemporary PhysicsOffering an admirably clear account of the basic principles behind all quantum optical resonance phenomena, and hailed as a valuable contribution to the literature of nonlinear optics, this distinguished work provides graduate students and research physicists probing fields such as laser physics, quantum optics, nonlinear optics, quantum electronics, and resonance optics an ideal introduction to the study of the interaction of electroma
Two-Level Semantics and Code Generation
DEFF Research Database (Denmark)
Nielson, Flemming; Nielson, Hanne Riis
1988-01-01
not absolutely necessary for describing the input-output semantics of programming languages, it is necessary when issues such as data flow analysis and code generation are considered. For an example stack-machine, the authors show how to generate code for the run-time computations and still perform the compile......-time computations. Using an example, it is argued that compiler-tricks such as the use of activation records suggest how to cope with certain syntactic restrictions in the metalanguage. The correctness of the code generation is proved using Kripke-like relations and using a modified machine that can be made to loop...
Institute of Scientific and Technical Information of China (English)
王洪江; 闻世宇; 武瑞
2014-01-01
With the expansion of university postgraduate enrolment,university-school two-level management mode has become the mainstream form of postgraduate management. In the process of implementing the two-level management,however,some universities are faced with problems such as personnel and funds,division of responsibilities,communication of information and so on. In order to solve these problems,we should further strengthen the leadership,establish the regulations,define the responsibilities and improve the efficiency.%随着高校研究生规模的扩大，校、院二级管理模式已成为当前研究生教育的主流。在实行二级管理过程中，一些院校面临着人员经费、责任划分、信息沟通等问题。为了解决这些问题，需要进一步加强领导，建章立制，明确责任，提高效率。
Institute of Scientific and Technical Information of China (English)
张强; 刘西林
2006-01-01
研究多个供应商、多个销售商组成的两级供应链的库存系统,在具有价格弹性的市场需求、允许供应商和销售商产生缺货的条件下,针对有无价格折扣的两种情况,分别建立了供应商、销售商各自的库存模型;结合满足供应商和销售商Pareto有效性,建立了含价格折扣的供应链系统整体盈利最大的库存模型.
Institute of Scientific and Technical Information of China (English)
伏振兴; 张国前
2008-01-01
考虑系统粒子的弛豫,利用密度矩阵运动方程,研究了线性啁啾脉冲作用下二能级系统的粒子布居几率随时间的演化情况,并在布洛赫矢量模型表象下,通过布洛赫矢量的动态演化过程分析了粒子相干布居转移过程中布居振荡的物理机理.结果表明,粒子数振荡反映的是二能级原子系统中粒子布居转移、色散和吸收三者之间的动态转化过程.
Institute of Scientific and Technical Information of China (English)
王菊霞
2013-01-01
The process of two - atom interacting with light field under considering atom - atom coupling and intensity - dependent coppling are investigated by mean of full quantum theory. The analysis law of evolutionary process of atomical fidelity is obtained. It is found that the variation of atomical fidelity with time presents the oscillation characteristics. Trie light field could revert to the initial coherent state at some microtime and the value of atomical fidelity less than 1 during most of interacting process, that is, both light fields and atoms are in complex entangled states. The above mentioned show that the interaction between atoms and light fields may leads to maintaining or cancaling the initial entanglement states.%利用全量子理论,分析了原子耦合时双原子与光场依赖于强度耦合的相互作用,得出了原子保真度演化过程的解析规律,结果表明:原子的保真度随时间的变化呈现出振荡性,而且在某些瞬时光场恢复为初始的相干态,其它更多的相互作用期间原子的保真度值小于1,即原子与光场处于复杂的纠缠状态,说明原子与光场的相互作用使得初始的纠缠态既可能保持也可能消纠缠.
Modeling on Two-level System of Quantum Dots Semiconductor Optical Amplifier%量子点半导体光放大器二能级系统的数值建模
Institute of Scientific and Technical Information of China (English)
张印
2008-01-01
量子点半导体光放大器(QD-SOA)的二能级速率方程具有简单易懂并能较好的描述其工作特性的特点.为便于利用数值模拟方法分析QD-SOA的动态工作特性,在QD-SOA的二能级速率方程基础上,采用对QD-SOA进行了空间分段,对输入脉冲进行了时间分段的方法,建立了QD-SOA的二能级数值模型.图2,参4.
Institute of Scientific and Technical Information of China (English)
田文娟; 钱伟懿
2014-01-01
在模糊环境下，考虑产品采购价随时间指数增长和两阶段存货影响销售，建立了一个价格增长和两阶段存货影响销售率的EOQ（ Economic Order Quantity ）模型。最后通过数值例子验证所建立的模糊EOQ模型的有效性。%A fuzzy EOQ model is generated under fuzzy environment for the purchase price increasing expo -nentially with time and two -level stock-dependent selling rate .Finally, a numerical example is presented to illustrate the effectiveness of algorithm .
Entropy Evolution of Coherend Field Interacting with Two-level Atom%相干光场与二能级原子的相互作用及场熵的演化
Institute of Scientific and Technical Information of China (English)
王建伟
2001-01-01
应用J-C模型研究了相干光场作用下二能级原子体系内部状态间的跃迁几率和相干光场场熵的演化，讨论了光场参数、耦合常数对跃迁几率和场熵演化的影响.%In this paper,evolution of the field entropy have been studied by use of the Jaynes-Cummings model, transition probability between every two levels if atom with coherent field interacting is also studied. The influence of field parameters and coupling constant on the transition probability and evolution of the field entropy are discussed.
Akhundov, V. M.
2017-01-01
Results of an analysis of form changes of a toroidal body highly filled with fibers at large torsional deformations and rotational motions are presented. The body is reinforced in the meridional direction. The investigation was carried out by using the two-level carcass theory of fibrous media at large deformations, according to which the macroscopic fields of a reinforced body are determined by its internal fields. These fields are represented by the material configurations of nodal material blocks of the body, for which, on the basis of the model of a piecewise homogeneous medium, boundary-values problems of the micromechanical level of the theory are solved. The results obtained are compared with those for a homogeneous body. The congruent deformation of the homogeneous body at which its initial form and dimensions are practically restored upon superposition of torsion and rotation is determined.
Zhao, Yongfei; Xu, Hui; Zhang, Yonggang; Wang, Zheng; Zhang, Xuesong; Wang, Yan
2015-12-01
To explore a simple and effective surgery for correcting severe kyphotic deformity caused by ankylosing spondylitis (AS). From January 2003 to December 2009, we respectively reviewed 32 patients with severe spinal kyphosis caused by AS with at least 2-year follow-up. Patients were divided into two groups, according to surgical methods: transpedicular bivertebrae wedge osteotomy (Group A) or one-stage interrupted two-level transpedicular wedge osteotomy (Group B). We recorded operating time and blood loss. Variation between pre- and post-operative sagittal imbalance, global spinal alignments (Cobb angle of T1 and L5, TLKA), lumbar lordosis, chin-brow vertical angle, thoracolumbar kyphosis angle in both groups were analyzed. The average operating time was 236 ± 39 min and the average blood loss was 2200 ± 712 ml in Group A, and 252 ± 43 min, 2202 ± 737 ml respectively in Group B. There were no significant differences in operating time and blood loss. Variation between pre- and post-operative sagittal imbalance, global spinal alignments, lumbar lordosis and chin-brow vertical angle (CBVA) were comparable between the two groups. The variation of thoracolumbar kyphosis angle was significantly greater in Group B compared with Group A. SRS-22 scores were similar in the two groups at the 2-year follow-up and significantly improved compared with preoperative. For correcting severe kyphosis in patients with AS, the one-stage interrupted two-level transpedicular wedge osteotomy is a safe and effective technique which can significantly improve the thoracolumbar kyphosis angle. Copyright © 2015 Elsevier B.V. All rights reserved.
Institute of Scientific and Technical Information of China (English)
王中结; 陆同兴; 路轶群
2001-01-01
In this paper the model of two-level atomic momentum spread in amplitude- and phase-modulated standing light wave was investigated. this is a nonlinear quantum pendulum driven by a time-dependent perterbation with two frequencies. This system shows chaotic behaviour in the classical limit. The system exists the characteristic of dynamical localization for the same parameters as that in the classical model correspoinding to it. Localization length of the system with two incommensurate perturbing frequency is much larger than that of the system with one perturbing frequency.%分析了二能级原子在振幅相位调制驻波场作用下动量扩散模型，这是一个双频参数激励的非线性量子单摆模型。这个系统在经典极限下表现混沌行为，在相同参数条件下，这个系统具有动力学局域特征，具有两个不可约频率扰动的系统的局域长度要比单个频率扰动时大得多。
单节段双节段颈椎融合术后颈椎活动度的观察%Motion changes of cervical range after one or two-level cervical spine fusion
Institute of Scientific and Technical Information of China (English)
赵信; 徐宏光; 郑权; 方振; 赵泉来; 王弘; 刘平
2015-01-01
目的：探讨单节段及双节段颈椎融合手术对颈椎活动度的影响。方法：选取2010年6月～2012年6月在皖南医学院附属弋矶山医院脊柱外科行颈椎前路减压融合术的43例颈椎病患者，其中单节段融合29例，双节段融合14例。根据症状及X线片评价手术的有效率及融合节段的融合率。使用颈椎活动度测量仪（ cervical range of motion device ，CROM）测量患者术前及术后随访24个月时颈椎前屈、后伸、左右侧弯、左右旋转6个方向的活动度。结果：从患者主诉分析，所有患者临床症状均得到缓解，通过X线评价融合节段融合率为100％。与术前相比单节段融合术后患者颈椎左右侧弯方向活动度无明显差异（P＞0.05），而在前屈、后伸及左右旋转方向的活动度均较术前明显减低（P＜0.05）。行双节段融合手术后患者颈椎在6个方向的活动度较术前均明显减低（ P＜0.05）。对两种不同融合术后患者颈椎活动度的差异进行统计学分析后发现双节段融合患者术后颈椎活动度在6个方向均较单节段融合患者降低（ P＜0.05）。结论：颈椎融合手术能够降低患者颈椎的活动度，与单节段融合相比双节段融合术后颈椎活动度的降低更为明显。%Objective:To observe the impact of one or two-level and double-level cervical spine fusion on the rang of cervical motion .Methods:Forty-three patients undergone cervical spine fusion in our department between June of 2010 and 2012 were included,among whom 29 received single-level fusion,and 14,two-level fusion.The curative effects and fusion rate of spine were evaluated by presented symptoms and X-ray findings.The cervical flexion,backward extension,left and right lateral bending,left and right rotation of the cervical vertebrae were measured by the cervical range of motion device(CROM) in all patients before operation and post-operative 24-month follow
Institute of Scientific and Technical Information of China (English)
WU Wen-jian; LIANG Yu; ZHANG Xin-kai; CAO Peng; ZHENG Tao
2012-01-01
Background Minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) has been successfully used to treat degenerative diseases of the lumbar spine.There are few reports comparing the complications and clinical outcomes in older patients who have undergone one- or two-level MIS-TLIF with those of younger patients.The aim of this study was to investigate the clinical outcomes of MIS-TLIF in the treatment of degenerative disc disease of lumbar spine of the patients older than 65 years,with an emphasis on perioperative complications compared to the younger patients.Methods One hundred and fifty-one consecutive cases of one- or two-level degenerative disc disease of lumbar spine treated with MIS-TLIF were reviewed for the radiological and clinical outcomes.They were divided into elderly group (age ≥65 years old) and younger group (age ＜65 years old),and were followed for at least 6 months.Radiographs were obtained before and after surgery,3 months postoperatively,and at the final follow-up to determine the presence of fusion,hardware-related problems.The clinical outcomes were evaluated using the Oswestry Disability Index (ODI)before and after surgery,and at the final follow-up.The visual analogue scale (VAS) score of back and leg pain were evaluated as well.The intra-operative data and peri-operative complications were recorded.Results The mean age of these patients at operation was (57.7±14.2) years (range 26-82 years).Of 151 patients,62were 65 years or older.The elderly patients had more comorbidities and more porportion of lumbar canal stenosis.The overall fusion rate was 88.4％ at the final follow-up,with no significant difference between younger and elderly patients.The ODI,the VAS of back pain and radicular pain of both young and elderly group were significantly improved aftersurgery and at the final follow-up,without significant difference between two groups.There were 16 complications with an incidence of 10.6％,including 7 major complications
Institute of Scientific and Technical Information of China (English)
张品; 姜亚光; 陈磊
2011-01-01
In wireless sensor network, LEACH (Low Energy Adaptive Clustering Hierarchy)and GSEN (Groupbased Sensor Network)are the two most important algorithms in clustering routing protocols. Based on the basis of algorithm GSEN and LEACH, this article proposes a new routing algorithm, TL-WCA (two levels-Weighted Clustering Algorithm) ,which actually selects weighted clusters after the network has been divided in accordance with the principle of LEACH. Then greedy algorithm is used to make a chain with the shortest path for the principle. Considering their energies and distances from the base, one of the clusters is singled out as senior cluster, which forwards data to the base station after mixing with other clusters. MATLAB simulation shows that, the improved protocol has the result of better balancing network node energy consumption, and prolonging the stable time of network effectively.%在无线传感器网络中,LEACH与GSEN算法是分簇路由协议中重要的两种.本文以LEACH与GSEN为基础提出了一种新型的加权优化选择两级簇头的路由算法TL-WCA(Two Levels-Weighted Clustering Algorithm),该算法首先在LEACH将网络分成若干个簇的基础上,加权优化选择簇头.再将选好的簇头以路径最短为原则采用贪婪算法形成一条链,考虑链中节点能量不小于链中平均能量及离基站的距离最近,选出一簇头作为高级簇头,融合其它簇头的数据后转发给基站.MATLAB仿真结果显示,改进后的协议能够均衡网络节点能耗,有效延长了网络的稳定期.
Institute of Scientific and Technical Information of China (English)
李雄; 张东波
2014-01-01
结合基于密度估计和归一化两种融合方法的优点，在匹配分数层级提出了一种基于高斯混合模型（Guassian Mixture Model，GMM）和加权和（Weighted Sums，WSUM）的多生物特征二级融合识别方法。利用GMM对匹配分数建模后，采用N-P准则作为第一级融合策略；第二级融合采用基于加权和的归一化方法，较好地解决了分数归一化融合方法在单模识别算法识别率相差较大时融合识别性能差的问题。在ORL、AR人脸数据库和FVC2004组成的人脸-指纹多模数据库上进行了实验，结果表明，该方法有效地提升了识别性能。%By combining the merits of density estimation and score normalization, a multi-biometric two level fusion method based on GMM(Guassian Mixture Model)and WSUM(Weighted Sums), is proposed in this paper. N-P criteria is adopted as the first-level fusion strategy after the probability distribution of scores has been built by GMM model. And a weighted sums normalization is introduced as the second-level fusion strategy. This two level fusion method provides a better solution for the poor performance of score normalization fusion method when single-mode identification algorithms have great difference. The ORL and AR face database, FVC2004 fingerprint database are collected to build a face-fingerprint multimode database to evaluate the proposed method. Experimental results show that the proposed method effectively improve the performance of recognition.
Institute of Scientific and Technical Information of China (English)
张红梅; 肖映雄; 欧阳媛
2012-01-01
Higher-order conforming finite elements can effectively overcome the poisson-Locking in linear elasticity,which is call and Locking-free finite elements. But when compared with the linear element,it often requires more computer storage and has a higher computational complexity. For the Locking-free (quartic) finite element discretization in linear elasticity,a general two-level method is proposed by analyzing the relationship between the quadratic finite element space and the quartic finite element space and by taking advantage of the special nature of the finite element's basi functions,such as compactly supported. First,the quadratic element is chosen as the coarse level space. Secon'd,by combining the selective reduced integration and some efficient smoothers,then,obtain the two-level method is obtained in which the element is chosen as the coarse level space for the Locking-free finite element discretization with better robustness and high efficiency. The numerical results show the efficiency of the resulting method.%高次协调元能有效克服弹性力学问题的闭锁( Locking)现象,称这种单元为无闭锁(Locking—free)有限元,但它与线性元相比,往往需要更多的计算机存储单元,具有更高的计算复杂性.针对弹性力学问题Locking—free(四次)有限元离散系统的求解,本文通过分析四次有限元与二次有限元空间之间的关系,并利用有限元基函数的特殊性质,如紧支集性,建立一种以二次有限元(P2)为粗水平空间的两水平方法;然后,利用减缩积分方案,以P2／P0元作为四次元空间的粗水平空间,并结合有效的磨光算子,为Locking—free有限元离散系统设计具有更好计算效率和鲁棒性的求解方法.数值实验结果验证了算法的有效性.
Wada, S.
2006-05-01
In rare earth compounds, the concentration of charge carriers is known to strongly influence the nature, and the charge carriers caused by valence fluctuations result in a complete suppression of the magnetic state, as typically observed for YbInCu4. The notable exception has been reported for the cubic (NaCl structure) TmX and YbX families with low carrier, that exhibits antiferro-magnetic (AFM) order at low temperatures. Among these families, TmTe and YbSb with degenerate low-lying multiplets have an additional transition of antiferro-quadrupolar (AFQ) orderings. To elucidate the interplay between the electronic transport and magnetic and/or orbital phenomena close to a semiconductor-to-metal transition, we have carried NMR measurements of 63Cu in YbInCu4, 125Te in TmTe, and 121Sb in YbSb down to 1.2 K and the implication of NMR findings is discussed in terms of the CEF splitting.
AUTHOR|(CDS)2085887; Heylen, Hanne
In this work, the odd-even $^{51–63}$Mn isotopes have been analyzed using collinear laser spectroscopy, from which the magnetic dipole moment and the change in change in mean square charge radius can be determined. The magnetic moment is very sensitive to the composition of the total nuclear wave function, while the charge radius gives information about the relative size and degree of deformation of the nucleus. An additional advantage of collinear laser spectroscopy is the possibility of direct measurement of the nuclear spin. The main motivation behind the study of these isotopes is to investigate the change in nuclear structure when approaching neutron number N = 40. This region is of interest due to the apparent doubly magic nature of $^{68}$Ni , which is not seen in the N = 40 isotopes of $^{26}$Fe and $^{24}$Cr. Mn, situated between these elements, offers another perspective due to its uncoupled proton. Based on the observed spectra and extracted moments, spins were assigned to $^{59,61,63}$Mn. The ex...
Institute of Scientific and Technical Information of China (English)
邓小伟
2012-01-01
According to the new ideas and new methods by guidelines for seismic design of highway bridges (JTG / T B02-01-2008) , with the background of a continuous girder bridge in the area of 7 degree earthquake intensity, an elastic-plastic finite element model is established for dynamic characteristics analysis, seismic response spectrum analysis and nonlinear time history analysis, to reveal the force and deformation under earthquake action of two levels. Furthermore, the seismic performance is evaluated to provide a reference for seismic design of bridges.%根据《公路桥梁抗震设计细则》(JTG/T B02—01—2008)中的抗震设防新理念和新方法,以Ⅶ度区某连续梁桥为工程背景,建立了弹塑性有限元模型,依次进行了动力特性分析、地震反应谱分析和非线性时程分析,揭示了两级地震作用下桥梁的受力及变形情况,并对桥梁的抗震性能进行了评价,可供桥梁抗震设计参考.
Institute of Scientific and Technical Information of China (English)
叶宏权
2015-01-01
The construction of supervision architecture is vital to the quality of higher vocational college education .Supervision of higher vocational education has the functionalities of management and service .The construction architecture of the supervision should have the clarity and rationality .The rule of supervision should have operability and effectiveness .The construction of the two-level supervision has the feasibility in higher vocational education .%高职院校督导体系建立对高职院校教学质量至关重要。高职院校教学督导具有管理、服务职能。高职院校督导的结构体系要具清晰度及合理性，督导制度要具有可操作性及有效性。两级督导的建立，在高职院校教学中具有可行性。
Two-level Tiled Quad-tree Index for Real-time Terrain Rendering%实时地形绘制的两级瓦片四叉树索引
Institute of Scientific and Technical Information of China (English)
陆筱霞; 李思昆
2012-01-01
To satisfy the massive data management and real-time requirement in terrain scene rendering, a two-level Tiled Quad-Tree index was proposed. Firstly, terrain data were subdivided as many primary square grid, and then Tiled Quad-Trees were built on each primary patches. Index was made on these divided blocks. Based on the index, a bottom-up viewpoint diffused algorithm for rendering data retrieval was designed. Experiments and analysis show that the index can decrease storage of auxiliary information, and the retrieval efficiency for rendering is improved.%针对地形场景绘制的海量数据管理和实时性要求，提出一种两级瓦片四又树索引方法：首先将地形数据在水平面上进行初级方格副分，然后在每介初级方格面片上构建瓦片四叉树，分块数据被两级索引唯一标识。以此为基础，设计了自底向上的视点扩散绘制数据检索算法。实验结果表明，该索引能够大幅度减少辅助信息存储，并提高绘制检索的速度。
Directory of Open Access Journals (Sweden)
Irena Kiecana
2012-12-01
Full Text Available Investigations were carried out in 2007-2009 on the plots of the Felin Experimental Station belonging to the University of Life Science in Lublin. The studies comprised two cultivation lines of durum wheat (Triticum durum L.: STH 716 and STH 717, as well as the 'Tonacja' cultivar of common wheat (T. aestivum ssp. vulgare L.. Two levels of chemical protection were applied in the cultivation: minimal and complex protection. Infection of wheat roots and stem bases was recorded in each growing season at hard dough stage (87 in Tottman's scale, 1987. After three years of study, the mean disease indexes for the analyzed wheat genotypes in the experimental treatment with minimal protection were 31.13, 30.43 and 38.83 for, respectively, the 'Tonacja' cultivar and the cultivation lines of T. durum STH 716 and STH 717. In the experimental combination with complex protection, after three years of study the disease indexes ranged from 25.26 (T. durum STH 716 to 30.83 (T. durum STH 717. The results of mycological analysis of diseased plants showed that Fusarium spp., especially F. culmorum, F. avenaceum as well as Bipolaris sorokiniana and Rhizoctonia solani, caused root rot and necrosis of wheat stem bases. The analyzed chemical protection levels did not significantly influence grain yield of the investigated genotypes of T. aestivum and T. durum.
Exact solution for the quench dynamics of a nested integrable system
Mestyán, Márton; Bertini, Bruno; Piroli, Lorenzo; Calabrese, Pasquale
2017-08-01
Integrable models provide an exact description for a wide variety of physical phenomena. For example nested integrable systems contain different species of interacting particles with a rich phenomenology in their collective behavior, which is the origin of the unconventional phenomenon of spin-charge separation. So far, however, most of the theoretical work in the study of non-equilibrium dynamics of integrable systems has focussed on models with an elementary (i.e. not nested) Bethe ansatz. In this work we explicitly investigate quantum quenches in nested integrable systems, by generalizing the application of the quench action approach. Specifically, we consider the spin-1 Lai-Sutherland model, described, in the thermodynamic limit, by the theory of two different species of Bethe-ansatz particles, each one forming an infinite number of bound states. We focus on the situation where the quench dynamics starts from a simple matrix product state for which the overlaps with the eigenstates of the Hamiltonian are known. We fully characterize the post-quench steady state and perform several consistency checks for the validity of our results. Finally, we provide predictions for the propagation of entanglement and mutual information after the quench, which can be used as signature of the quasi-particle content of the model.
Institute of Scientific and Technical Information of China (English)
陈志明; 杨滨; 马华松; 王晓平; 谭荣; 陈阳; 袁伟
2014-01-01
Objectives: To analyze the clinical results of two-level pedicle subtraction osteotomy for correc-tion of severe thoracolumbar kyphosis due to ankylosing spondylitis. Methods: From May 2009 to December 2010, 18 males with ankylosing spondylitis complicated with severe thoracolumbar kyphosis underwent two-level pedicle subtraction osteotomy, the average age at admission was 34.8 years(range, 19-47 years). Preoper-ative global kyphosis(GK) Cobb angle was 70°-108°(82.6°±17.5°) and the apex vertebra was at thoracolumbar region. Preoperative thoracic kyphosis(TK), thoracolumbar kyphosis(TLK) and lumbar lordosis(LL) angle was 46 °-67°(55.2°±15.3°), 25°-43°(32.4°±12.6°) and (-37°)-(-11°)[(-19.5°)±10.3°], respectively. Preoperative chin-brow vertical angle at standing position was 43°-130°(67.2°±21.9°). Global sagittal imbalance was determined by C7 plumb line and its relationship with the posterior superior corner of the sacrum, and the preoperative one was 11-35cm(18.3±14.8cm). Bridwell-Dewald scale was used to evaluate the clinical outcomes. Results: The aver-age operation time was 5.3±1.0h (3.7-6.9h), and the average blood loss was 1887.5±850.9ml (600-3000ml). Dura matter tearing was noted in 4 cases and skin infection in 1 case, 1 case developed transient neurologic deficits, but all healed after proper intervention. The average follow-up time was 33.5 months(24-48 months). The postoperative mean GK angle, chin-brow vertical angle, global sagittal imbalance was corrected to 21.3 °±4.2°, 9.3°±12.8° and 3.0±4.7cm, respectively. The postoperative GK, TK, TLK, LL, chin-brow vertical angle and global sagittal imbalance improved significantly compared with the preoperative data(P0.05). Instrument displacement was not noted at final follow-up. All patients could walk with normal vision. Satisfactory clinical outcomes including changes of pain, social and working status were noted at final follow-up(P0.05）；X线片显示所有患者内
Two-level information management scheme based on visual cryptography and QR code%基于视觉密码和QR码的两级信息管理方案
Institute of Scientific and Technical Information of China (English)
刘莺迎; 付正欣; 王益伟
2016-01-01
设计了一种新的扩展多秘密视觉密码，能够分享n个公开信息和n－1个隐私信息，其像素扩展度为4且相对差为1／4。在此基础上，结合QR码提出了一种两级信息管理方案，其中一般参与者的共享份可以呈现参与者公开信息的QR码，而且管理者的共享份与一般共享份叠加后，可以呈现参与者隐私信息的QR码。实验结果表明，公开信息和隐私信息的QR码尽管存在失真，仍可以被正确识别。%This paper designed a new extended multi-secret visual cryptography scheme (EMVCS),which could share n pub-lic information and n-1 private information.The pixel expansion of EMVCS was 4,and the relative difference was 1/4.Fur-thermore,it proposed a new two-level information management scheme based on EMVCS and QR code,in which the common participants’shares could display public information QR code.Meanwhile,the private information QR code of common partici-pants would be shown by stacking the share of manager and common participant.The experimental results demonstrate that the distorted QR codes of public and private information can be recognized correctly.
Directory of Open Access Journals (Sweden)
Małgorzata Cegiełko
2016-09-01
Full Text Available Investigations were carried out in 2007–2009 on the plots of the Felin Experimental Station belonging to the University of Life Sciences in Lublin, Poland. The studies comprised two breeding lines of spelt wheat (Triticum aestivum ssp. spelta L. Thell. – STH 3 and STH 715. Two levels of chemical protection were applied in the cultivation with minimal and complex protection. Infection of winter spelt wheat roots and stem bases was recorded in each growing season at hard dough stage (87 in Zadok’s scale. After 3 years of the study, the mean values of disease indexes for the analyzed spelt wheat lines in the experimental treatment with minimal protection were 28.53 and 40.30 respectively for STH 3 and STH 715. In the experimental combination with complex protection, after 3 years of the study the mean values of disease indexes ranged from 25.96 (STH 3 to 26.90 (STH 715. The mycological analysis showed that Fusarium spp., especially F. culmorum, caused root rot and necrosis of stem bases of spelt wheat in the experimental combination with minimal and complex protection. Moreover, Fusarium avenaceum and Bipolaris sorokiniana caused root rot and necrosis of stem bases of spelt wheat. Investigation carried out in a growth chamber on susceptibility of seedlings of three lines of spelt wheat (LO 2/09/n/2, LO 5/09/13/3, LO 5/09/5/4 to infection with Fusarium graminearum No. 8 and F. graminearum No. 45 showed that the genotypes did not differ in their susceptibility. All of them were susceptible, as indicated by high values of the disease indexes. No interaction was found between genotypes and strains of the fungus. This indicates the differential pathogenicity of Fusarium graminearum species.