Central-Upwind Schemes for Two-Layer Shallow Water Equations
Kurganov, Alexander
2009-01-01
We derive a second-order semidiscrete central-upwind scheme for one- and two-dimensional systems of two-layer shallow water equations. We prove that the presented scheme is well-balanced in the sense that stationary steady-state solutions are exactly preserved by the scheme and positivity preserving; that is, the depth of each fluid layer is guaranteed to be nonnegative. We also propose a new technique for the treatment of the nonconservative products describing the momentum exchange between the layers. The performance of the proposed method is illustrated on a number of numerical examples, in which we successfully capture (quasi) steady-state solutions and propagating interfaces. © 2009 Society for Industrial and Applied Mathematics.
The transfer function analysis of various schemes for the two-dimensional shallow-water equations
Neta, B.; DeVito, C.L.
1988-01-01
In this paper various finite difference and finite element approximations to the linearized two-dimensional shallow-water equations are analyzed. This analysis complements previous results for the one-dimensional case. The first author would like to thank the NPS Foundation Research program for its support of this research.
On the Classical Solutions of Two Dimensional Inviscid Rotating Shallow Water System
Cheng, Bin
2009-01-01
We prove global existence and asymptotic behavior of classical solutions for two dimensional inviscid Rotating Shallow Water system with small initial data subject to the zero-relative-vorticity constraint. One of the key steps is a reformulation of the problem into a symmetric quasilinear Klein-Gordon system, for which the global existence of classical solutions is then proved with combination of the vector field approach and the normal forms. We also probe the case of general initial data and reveal a lower bound for the lifespan that is almost inversely proportional to the size of the initial relative vorticity.
Shallow water acoustic channel estimation using two-dimensional frequency characterization.
Ansari, Naushad; Gupta, Anubha; Gupta, Ananya Sen
2016-11-01
Shallow water acoustic channel estimation techniques are presented at the intersection of time, frequency, and sparsity. Specifically, a mathematical framework is introduced that translates the problem of channel estimation to non-uniform sparse channel recovery in two-dimensional frequency domain. This representation facilitates disambiguation of slowly varying channel components against high-energy transients, which occupy different frequency ranges and also exhibit significantly different sparsity along their local distribution. This useful feature is exploited to perform non-uniform sampling across different frequency ranges, with compressive sampling across higher Doppler frequencies and close to full-rate sampling at lower Doppler frequencies, to recover both slowly varying and rapidly fluctuating channel components at high precision. Extensive numerical experiments are performed to measure relative performance of the proposed channel estimation technique using non-uniform compressive sampling against traditional compressive sampling techniques as well as sparsity-constrained least squares across a range of observation window lengths, ambient noise levels, and sampling ratios. Numerical experiments are based on channel estimates from the SPACE08 experiment as well as on a recently developed channel simulator tested against several field trials.
Cotter, C.J.; Frank, J.E.; Reich, S.
2004-01-01
We develop a particle-mesh method for two-layer shallow-water equations subject to the rigid-lid approximation. The method is based on the recently proposed Hamiltonian particle-mesh (HPM) method and the interpretation of the rigid-lid approximation as a set of holonomic constraints. The suggested s
Numerical simulation of shallow-water flooding using a two-dimensional finite volume model
Institute of Scientific and Technical Information of China (English)
YUAN Bing; SUN Jian; YUAN De-kui; TAO Jian-hua
2013-01-01
A 2-D Finite Volume Model (FVM) is developed for shallow water flows over a complex topography with wetting and drying processes.The numerical fluxes are computed using the Harten,Lax,and van Leer (HLL) approximate Riemann solver.Second-order accuracy is achieved by employing the MUSCL reconstruction method with a slope limiter in space and an explicit two-stage Runge-Kutta method for time integration.A simple and efficient method is introduced to deal with the wetting and drying processes without any correction of the numerical flux term or the source term.In this new method,a switch of alternative schemes is used to compute the water depths at the cell interface to obtain the numerical flux.The model is verified against benchmark tests with analytical solutions and laboratory experimental data.The numerical results show that the model can simulate different types of flood waves from the ideal flood wave to cases over complex terrains.The satisfactory performance indicates an extensive application prospect of the present model in view of its simplicity and effectiveness.
Analysis of Two-Layered Random Interfaces for Two Dimensional Widom-Rowlinson's Model
Directory of Open Access Journals (Sweden)
Jun Wang
2011-01-01
Full Text Available The statistical behaviors of two-layered random-phase interfaces in two-dimensional Widom-Rowlinson's model are investigated. The phase interfaces separate two coexisting phases of the lattice Widom-Rowlinson model; when the chemical potential μ of the model is large enough, the convergence of the probability distributions which describe the fluctuations of the phase interfaces is studied. In this paper, the backbones of interfaces are introduced in the model, and the corresponding polymer chains and cluster expansions are developed and analyzed for the polymer weights. And the existence of the free energy for two-layered random-phase interfaces of the two-dimensional Widom-Rowlinson model is given.
Foglizzo, Thierry; Masset, Frédéric; Guilet, Jérôme; Durand, Gilles
2012-02-03
Despite the sphericity of the collapsing stellar core, the birth conditions of neutron stars can be highly nonspherical due to a hydrodynamical instability of the shocked accretion flow. Here we report the first laboratory experiment of a shallow water analogue, based on the physics of hydraulic jumps. Both the experiment and its shallow water modeling demonstrate a robust linear instability and nonlinear properties of symmetry breaking, in a system which is one million times smaller and about one hundred times slower than its astrophysical analogue.
Karelsky, K V; Slavin, A G
2011-01-01
The numerical method for study of hydrodynamic flows over an arbitrary bed profile in the presence of external force is proposed in this paper. This method takes into account the external force effect, it uses the quasi-two-layer model of hydrodynamic flows over a stepwise boundary with consideration of features of the flow near the step. A distinctive feature of the proposed method is the consideration of the properties of the process of the waterfall, namely the fluid flow on the step in which the fluid does not wet part of the vertical wall of the step. The presence of dry zones in the vertical part of the step indicates violation of the conditions of hydrostatic flow. The quasi-two-layer approach allows to determine the size of the dry zone of the vertical component of the step. Consequently it gives an opportunity to figure out the amount of kinetic energy dissipation. There are performed the numerical simulations based on the proposed algorithm of various physical phenomena, such as a breakdown of the r...
Directory of Open Access Journals (Sweden)
Xinhua Lu
2015-01-01
Full Text Available The first-order Lax-Friedrichs (LF scheme is commonly used in conjunction with other schemes to achieve monotone and stable properties with lower numerical diffusion. Nevertheless, the LF scheme and the schemes devised based on it, for example, the first-order centered (FORCE and the slope-limited centered (SLIC schemes, cannot achieve a time-step-independence solution due to the excessive numerical diffusion at a small time step. In this work, two time-step-convergence improved schemes, the C-FORCE and C-SLIC schemes, are proposed to resolve this problem. The performance of the proposed schemes is validated in solving the one-layer and two-layer shallow-water equations, verifying their capabilities in attaining time-step-independence solutions and showing robustness of them in resolving discontinuities with high-resolution.
2016-06-07
Shallow- Water Propagation William L. Siegmann Rensselaer Polytechnic Institute 110 Eighth Street Troy, New York 12180-3590 phone: (518) 276...ocean_acoustics LONG-TERM GOALS Develop methods for propagation and coherence calculations in complex shallow- water environments, determine...intensity and coherence. APPROACH (A) Develop high accuracy PE techniques for applications to shallow- water sediments, accounting for
Accelerated shallow water modeling
Gandham, Rajesh; Medina, David; Warburton, Timothy
2015-04-01
ln this talk we will describe our ongoing developments in accelerated numerical methods for modeling tsunamis, and oceanic fluid flows using two dimensional shallow water model and/or three dimensional incompressible Navier Stokes model discretized with high order discontinuous Galerkin methods. High order discontinuous Galerkin methods can be computationally demanding, requiring extensive computational time to simulate real time events on traditional CPU architectures. However, recent advances in computing architectures and hardware aware algorithms make it possible to reduce simulation time and provide accurate predictions in a timely manner. Hence we tailor these algorithms to take advantage of single instruction multiple data (SIMD) architecture that is seen in modern many core compute devices such as GPUs. We will discuss our unified and extensive many-core programming library OCCA that alleviates the need to completely re-design the solvers to keep up with constantly evolving parallel programming models and hardware architectures. We will present performance results for the flow simulations demonstrating performance leveraging multiple different multi-threading APIs on GPU and CPU targets.
Zou, Changji; Larisika, Melanie; Nagy, Gabor; Srajer, Johannes; Oostenbrink, Chris; Chen, Xiaodong; Knoll, Wolfgang; Liedberg, Bo; Nowak, Christoph
2013-08-22
The heme protein cytochrome c adsorbed to a two-layer gold surface modified with a self-assembled monolayer of 2-mercaptoethanol was analyzed using a two-dimensional (2D) heterospectral correlation analysis that combined surface-enhanced infrared absorption spectroscopy (SEIRAS) and surface-enhanced Raman spectroscopy (SERS). Stepwise increasing electric potentials were applied to alter the redox state of the protein and to induce conformational changes within the protein backbone. We demonstrate herein that 2D heterospectral correlation analysis is a particularly suitable and useful technique for the study of heme-containing proteins as the two spectroscopies address different portions of the protein. Thus, by correlating SERS and SEIRAS data in a 2D plot, we can obtain a deeper understanding of the conformational changes occurring at the redox center and in the supporting protein backbone during the electron transfer process. The correlation analyses are complemented by molecular dynamics calculations to explore the intramolecular interactions.
Shallow Water Acoustics Studies
2015-09-30
to look at the complicated boundary between deep and shallow water, i.e. the slope/ canyon region. (Dates for any experiments are approximate...them for publication, 2) begin the 2018 (shelfbreak, slope and canyon ) experimental planning, both on an individual basis, and in conjunction with...experimental planning for a shelfbreak/slope/ canyon experiment has been placed “on hold” by ONR for the time being, though some of that planning has been
Fundamentals of Shallow Water Acoustics
Katsnelson, Boris; Lynch, James
2012-01-01
Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.
Finite Volume Multilevel Approximation of the Shallow Water Equations
Institute of Scientific and Technical Information of China (English)
Arthur BOUSQUET; Martine MARION; Roger TEMAM
2013-01-01
The authors consider a simple transport equation in one-dimensional space and the linearized shallow water equations in two-dimensional space,and describe and implement a multilevel finite-volume discretization in the context of the utilization of the incremental unknowns.The numerical stability of the method is proved in both cases.
SHALLOW WATER EQUATION SOLUTION IN 2D USING FINITE DIFFERENCE METHOD WITH EXPLICIT SCHEME
Directory of Open Access Journals (Sweden)
Nuraini Nuraini
2017-09-01
Full Text Available Abstract. Modeling the dynamics of seawater typically uses a shallow water model. The shallow water model is derived from the mass conservation equation and the momentum set into shallow water equations. A two-dimensional shallow water equation alongside the model that is integrated with depth is described in numerical form. This equation can be solved by finite different methods either explicitly or implicitly. In this modeling, the two dimensional shallow water equations are described in discrete form using explicit schemes. Keyword: shallow water equation, finite difference and schema explisit. REFERENSI 1. Bunya, S., Westerink, J. J. dan Yoshimura. 2005. Discontinuous Boundary Implementation for the Shallow Water Equations. Int. J. Numer. Meth. Fluids. 47: 1451-1468. 2. Kampf Jochen. 2009. Ocean Modelling For Beginners. Springer Heidelberg Dordrecht. London New York. 3. Rezolla, L 2011. Numerical Methods for the Solution of Partial Diferential Equations. Trieste. International Schoolfor Advanced Studies. 4. Natakussumah, K. D., Kusuma, S. B. M., Darmawan, H., Adityawan, B. M. Dan Farid, M. 2007. Pemodelan Hubungan Hujan dan Aliran Permukaan pada Suatu DAS dengan Metode Beda Hingga. ITB Sain dan Tek. 39: 97-123. 5. Casulli, V. dan Walters, A. R. 2000. An unstructured grid, three-dimensional model based on the shallow water equations. Int. J. Numer. Meth. Fluids. 32: 331-348. 6. Triatmodjo, B. 2002. Metode Numerik Beta Offset. Yogyakarta.
2010 Hudson River Shallow Water Sediment Cores
National Oceanic and Atmospheric Administration, Department of Commerce — The Hudson River Shallow Water Mapping project characterizes the bottom of the Hudson River Estuary in shallow water (<3 m). The characterization includes...
2010 Hudson River Shallow Water Sediment Grabs
National Oceanic and Atmospheric Administration, Department of Commerce — The Hudson River Shallow Water Mapping project characterizes the bottom of the Hudson River Estuary in shallow water (<3 m). The characterization includes...
Shallow Water Waves and Solitary Waves
Hereman, Willy
2013-01-01
Encyclopedic article covering shallow water wave models used in oceanography and atmospheric science. Sections: Definition of the Subject; Introduction and Historical Perspective; Completely Integrable Shallow Water Wave Equations; Shallow Water Wave Equations of Geophysical Fluid Dynamics; Computation of Solitary Wave Solutions; Numerical Methods; Water Wave Experiments and Observations; Future Directions, and Bibliography.
Shallow Water Tuned Liquid Dampers
DEFF Research Database (Denmark)
Krabbenhøft, Jørgen
researchers on TLDs termed wave breaking. A large part of the energy dissipation in the fluid is anticipated to stem from the turbulence in the vicinity of the moving hydraulic jump, and in order to verify this supposition the effect of bottom friction is included in the mathematical model. Studies reveal...... in connection with sloshing has used cumbersome, computationally expensive and somewhat outdated numerical solution schemes. We compare a state of the art, high order, shock capturing method with a simpler low order scheme and find that the simple scheme is adequate for simulating shallow water sloshing...
Dudzinski, M.; Lukáčová-Medvid'ová, M.
2013-02-01
The aim of this paper is to present a new well-balanced finite volume scheme for two-dimensional multilayer shallow water flows including wet/dry fronts. The ideas, presented here for the two-layer model, can be generalized to a multilayer case in a straightforward way. The method developed here is constructed in the framework of the Finite Volume Evolution Galerkin (FVEG) schemes. The FVEG methods couple a finite volume formulation with evolution operators. The latter are constructed using the bicharacteristics of multidimensional hyperbolic systems. However, in the case of multilayer shallow water flows the required eigenstructure of the underlying equations is not readily available. Thus we approximate the evolution operators numerically. This approximation procedure can be used for arbitrary hyperbolic systems. We derive a well-balanced approximation of the evolution operators and prove that the FVEG scheme is well-balanced for the multilayer lake at rest states even in the presence of wet/dry fronts. Several numerical experiments confirm the reliability and efficiency of the new well-balanced FVEG scheme.
Space time development of the onset of a shallow-water vortex
Lin, J.-C.; Ozgoren, M.; Rockwell, D.
2003-06-01
An impulsively started jet in shallow water gives rise to vortices having a characteristic diameter larger than the water depth. A technique of high-image-density particle image velocimetry allows characterization of the space time development of the instantaneous flow patterns along planes representing the quasi-two-dimensional and three-dimensional vortex structure. The quasi-two-dimensional patterns exhibit different categories of vortex development and interaction, depending upon the depth of the shallow water layer. Despite these distinctions, the variations of normalized vortex position, diameter, and circulation, as well as peak vorticity within the vortex, are very similar for sufficiently small water depth.
Shallow water cnoidal wave interactions
Directory of Open Access Journals (Sweden)
A. R. Osborne
1994-01-01
Full Text Available The nonlinear dynamics of cnoidal waves, within the context of the general N-cnoidal wave solutions of the periodic Korteweg-de Vries (KdV and Kadomtsev-Petvishvilli (KP equations, are considered. These equations are important for describing the propagation of small-but-finite amplitude waves in shallow water; the solutions to KdV are unidirectional while those of KP are directionally spread. Herein solutions are constructed from the 0-function representation of their appropriate inverse scattering transform formulations. To this end a general theorem is employed in the construction process: All solutions to the KdV and KP equations can be written as the linear superposition of cnoidal waves plus their nonlinear interactions. The approach presented here is viewed as significant because it allows the exact construction of N degree-of-freedom cnoidal wave trains under rather general conditions.
Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach
Camassa, R.; Falqui, G.; Ortenzi, G.
2017-02-01
The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite two-dimensional channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids’ inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, albeit in a non-trivial way. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, a family of approximate constants of the motion are explicitly constructed and used to find local solutions of the evolution equations by means of hodograph-like formulae.
Shallow-water vortex equilibria and their stability
Płotka, H.; Dritschel, D. G.
2011-12-01
We first describe the equilibrium form and stability of steadily-rotating simply-connected vortex patches in the single-layer quasi-geostrophic model of geophysical fluid dynamics. This model, valid for rotating shallow-water flow in the limit of small Rossby and Froude numbers, has an intrinsic length scale LD called the "Rossby deformation length" relating the strength of stratification to that of the background rotation rate. Specifically, LD = c/f where is a characteristic gravity-wave speed, g is gravity (or "reduced" gravity in a two-layer context where one layer is infinitely deep), H is the mean active layer depth, and f is the Coriolis frequency (here constant). We next introduce ageostrophic effects by using the full shallow-water model to generate what we call "quasi-equilibria". These equilibria are not strictly steady, but radiate such weak gravity waves that they are steady for all practical purposes. Through an artificial ramping procedure, we ramp up the potential vorticity anomaly of the fluid particles in our quasi-geostrophic equilibria to obtain shallow-water quasi-equilibria at finite Rossby number. We show a few examples of these states in this paper.
Shallow-water vortex equilibria and their stability
Energy Technology Data Exchange (ETDEWEB)
Plotka, H; Dritschel, D G, E-mail: hanna@mcs.st-andrews.ac.uk, E-mail: dgd@mcs.st-andrews.ac.uk [School of Mathematics and Statistics, University of St Andrews, North Haugh, St. Andrews KY16 9SS (United Kingdom)
2011-12-22
We first describe the equilibrium form and stability of steadily-rotating simply-connected vortex patches in the single-layer quasi-geostrophic model of geophysical fluid dynamics. This model, valid for rotating shallow-water flow in the limit of small Rossby and Froude numbers, has an intrinsic length scale L{sub D} called the 'Rossby deformation length' relating the strength of stratification to that of the background rotation rate. Specifically, L{sub D} = c/f where c={radical}gH is a characteristic gravity-wave speed, g is gravity (or 'reduced' gravity in a two-layer context where one layer is infinitely deep), H is the mean active layer depth, and f is the Coriolis frequency (here constant). We next introduce ageostrophic effects by using the full shallow-water model to generate what we call 'quasi-equilibria'. These equilibria are not strictly steady, but radiate such weak gravity waves that they are steady for all practical purposes. Through an artificial ramping procedure, we ramp up the potential vorticity anomaly of the fluid particles in our quasi-geostrophic equilibria to obtain shallow-water quasi-equilibria at finite Rossby number. We show a few examples of these states in this paper.
An Explicit High Resolution Scheme for Nonlinear Shallow Water Equations
Institute of Scientific and Technical Information of China (English)
FANG Ke-zhao; ZOU Zhi-li; WANG Yan
2005-01-01
The present study develops a numerical model of the two-dimensional fully nonlinear shallow water equations (NSWE) for the wave run-up on a beach. The finite volume method (FVM) is used to solve the equations, and a second-order explicit scheme is developed to improve the computation efficiency. The numerical fluxes are obtained by the two dimensional Roe's flux function to overcome the errors caused by the use of one dimensional fluxes in dimension splitting methods. The high-resolution Godunov-type TVD upwind scheme is employed and a second-order accuracy is achieved based on monotonic upstream schemes for conservation laws (MUSCL) variable extrapolation; a nonlinear limiter is applied to prevent unwanted spurious oscillation. A simple but efficient technique is adopted to deal with the moving shoreline boundary. The verification of the solution technique is carried out by comparing the model output with documented results and it shows that the solution technique is robust.
Evaluation of 2D shallow-water model for spillway flow with a complex geometry
Although the two-dimensional (2D) shallow water model is formulated based on several assumptions such as hydrostatic pressure distribution and vertical velocity is negligible, as a simple alternative to the complex 3D model, it has been used to compute water flows in which these assumptions may be ...
Adaptive Finite Volume Method for the Shallow Water Equations on Triangular Grids
Directory of Open Access Journals (Sweden)
Sudi Mungkasi
2016-01-01
Full Text Available This paper presents a numerical entropy production (NEP scheme for two-dimensional shallow water equations on unstructured triangular grids. We implement NEP as the error indicator for adaptive mesh refinement or coarsening in solving the shallow water equations using a finite volume method. Numerical simulations show that NEP is successful to be a refinement/coarsening indicator in the adaptive mesh finite volume method, as the method refines the mesh or grids around nonsmooth regions and coarsens them around smooth regions.
Simulation of a viscous fluid spreading by a bidimensional shallow water model
Di Martino, Bernard; Paoli, Jean-Martin; Simonnet, Pierre; 10.1016/j.apm.2011.01.015
2011-01-01
In this paper we propose a numerical method to solve the Cauchy problem based on the viscous shallow water equations in an horizontally moving domain. More precisely, we are interested in a flooding and drying model, used to modelize the overflow of a river or the intrusion of a tsunami on ground. We use a non conservative form of the two-dimensional shallow water equations, in eight velocity formulation and we build a numerical approximation, based on the Arbitrary Lagrangian Eulerian formulation, in order to compute the solution in the moving domain.
A moist Boussinesq shallow water equations set for testing atmospheric models
Zerroukat, M.; Allen, T.
2015-06-01
The shallow water equations have long been used as an initial test for numerical methods applied to atmospheric models with the test suite of Williamson et al. [1] being used extensively for validating new schemes and assessing their accuracy. However the lack of physics forcing within this simplified framework often requires numerical techniques to be reworked when applied to fully three dimensional models. In this paper a novel two-dimensional shallow water equations system that retains moist processes is derived. This system is derived from three-dimensional Boussinesq approximation of the hydrostatic Euler equations where, unlike the classical shallow water set, we allow the density to vary slightly with temperature. This results in extra (or buoyancy) terms for the momentum equations, through which a two-way moist-physics dynamics feedback is achieved. The temperature and moisture variables are advected as separate tracers with sources that interact with the mean-flow through a simplified yet realistic bulk moist-thermodynamic phase-change model. This moist shallow water system provides a unique tool to assess the usually complex and highly non-linear dynamics-physics interactions in atmospheric models in a simple yet realistic way. The full non-linear shallow water equations are solved numerically on several case studies and the results suggest quite realistic interaction between the dynamics and physics and in particular the generation of cloud and rain.
Statistical mechanics of the shallow water system
Chavanis, P H
2000-01-01
We extend the formalism of the statistical theory developed for the 2D Euler equation to the case of shallow water system. Relaxation equations towards the maximum entropy state are proposed, which provide a parametrization of sub-grid scale eddies in 2D compressible turbulence.
Floating offshore wind turbines for shallow waters
Bulder, B.H.; Henderson, A.; Huijsmans, R.H.M.; Peeringa, J.M.; Pierik, J.T.G.; Snijders, E.J.B.; Hees, M.Th. van; Wijnants, G.H.; Wolf, M.J.
2003-01-01
Bottom mounted Offshore wind turbines seem to have a promising future but they are restricted to shallow waters of Northern Europe. Many projects are planned or are in the phase of construction on the North Sea and the Baltic Sea. All projects that are planned have a water depth up to approximately
A robust implicit shallow water equations solver on unstructured grid
Energy Technology Data Exchange (ETDEWEB)
Komaei, S.
2004-07-01
Flows in open channels are often modelled by a set of hyperbolic partial differential equations, i.e. the well known shallow water equations (SWE). Algorithms for solving SWE on structured grids have become widespread in recent years (Delis, Skeels and Ryrie 2000; Fennema and Chaudhry 1989; Panagiotopoulos and Soulis 2000; Valiani, Caleffi and Zanni 1999). However, these algorithms have shown difficulties in predicting satisfactory results in complex geometries due to mesh irregularities. As a result, attention has turned to the development of solution algorithms on arbitrary unstructured grids. The target of the present research is to develop an implicit robust scheme for solving two-dimensional SWE on unstructured grids. The proposed scheme should have capabilities to model flows in channels and natural rivers, flood propagation problems and flow over irregular beds. To achieve this goal, the following steps are necessary: 1. Studying the channel and river flows and flood propagation phenomena. 2. Developing an implicit two-dimensional hydrodynamic model on unstructured grids. 3. Verifying and validating the present model by experimental measurements, field data and the other numerical models. (orig.)
McRae, Andrew T T
2013-01-01
This paper presents a family of spatial discretisations of the nonlinear rotating shallow-water equations that conserve both energy and potential enstrophy. These are based on two-dimensional mixed finite element methods, and hence, unlike some finite difference methods, do not require an orthogonal grid. Numerical verification of the aforementioned properties is also provided.
Shear instabilities in shallow-water magnetohydrodynamics
Mak, Julian; Hughes, D W
2016-01-01
Within the framework of shallow-water magnetohydrodynamics, we investigate the linear instability of horizontal shear flows, influenced by an aligned magnetic field and stratification. Various classical instability results, such as H{\\o}iland's growth rate bound and Howard's semi-circle theorem, are extended to this shallow-water system for quite general profiles. Two specific piecewise-constant velocity profiles, the vortex sheet and the rectangular jet, are studied analytically and asymptotically; it is found that the magnetic field and stratification (as measured by the Froude number) are generally both stabilising, but weak instabilities can be found at arbitrarily large Froude number. Numerical solutions are computed for corresponding smooth velocity profiles, the hyperbolic-tangent shear layer and the Bickley jet, for a uniform background field. A generalisation of the long-wave asymptotic analysis of Drazin & Howard (1962) is employed in order to understand the instability characteristics for both ...
Wave Numerical Model for Shallow Water
Institute of Scientific and Technical Information of China (English)
徐福敏; 严以新; 张长宽; 宋志尧; 茅丽华
2000-01-01
The history of forecasting wind waves by wave energy conservation equation is briefly described. Several currently used wave numerical models for shallow water based on different wave theories are discussed. Wave energy conservation models for the simulation of shallow water waves are introduced,with emphasis placed on the SWAN model, which takes use of the most advanced wave research achievements and has been applied to several theoretical and field conditions. The characteristics and applicability of the model, the finite difference numerical scheme of the action balance equation and its source terms computing methods are described in detail. The model has been verified with the propagation refraction numerical experiments for waves propagating in following and opposing currents; finally, the model is applied to the Haian Gulf area to simulate the wave height and wave period field there, and the results are compared with observed data.
Blind estimation of shallow water acoustic channel
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This paper proposed a method for blind estimation of underwater channels in shallow water environment by using received data at a single hydrophone or from single beam.First, the received signal is used for source signal reconstruction by means of signal-dependent TF (Time-Frequency) distribution, in association with instantaneous frequency estimation and TF inversion. Then the shallow-water channel estimation is achieved via WRELAX technique by use of the received signal and the estimated source signal. Finally, the results of numerical simulation and experimental test from real data taken in South China Sea trial have proved satisfactory. It is shown that the proposed method is useful for underwater channel estimation.
Shallow Water Laser Bathymetry: Accomplishments and Applications
2016-05-12
differential time -of-flight of an optical pulse transmitted from the aircraft to the water bottom through the air-water interface. Laser -generated optical... laser sources and computer available COTS (commercial, off-t positive implications for future A reduced cost. Figure 1 Fort Pierce Inlet...Shallow Water Laser Bathymetry: Accomplishments and Applications A. Grant Cunningham Optech Incorporated Toronto, Ontario Canada M3J 2Z9
Adaptive Control and Synchronization of the Shallow Water Model
Directory of Open Access Journals (Sweden)
P. Sangapate
2012-01-01
Full Text Available The shallow water model is one of the important models in dynamical systems. This paper investigates the adaptive chaos control and synchronization of the shallow water model. First, adaptive control laws are designed to stabilize the shallow water model. Then adaptive control laws are derived to chaos synchronization of the shallow water model. The sufficient conditions for the adaptive control and synchronization have been analyzed theoretically, and the results are proved using a Barbalat's Lemma.
Equilibrium solutions of the shallow water equations
Weichman, P B; Weichman, Peter B.; Petrich, Dean M.
2000-01-01
A statistical method for calculating equilibrium solutions of the shallow water equations, a model of essentially 2-d fluid flow with a free surface, is described. The model contains a competing acoustic turbulent {\\it direct} energy cascade, and a 2-d turbulent {\\it inverse} energy cascade. It is shown, nonetheless that, just as in the corresponding theory of the inviscid Euler equation, the infinite number of conserved quantities constrain the flow sufficiently to produce nontrivial large-scale vortex structures which are solutions to a set of explicitly derived coupled nonlinear partial differential equations.
On a shallow water wave equation
Clarkson, P A; Peter A Clarkson; Elizabeth L Mansfield
1994-01-01
In this paper we study a shallow water equation derivable using the Boussinesq approximation, which includes as two special cases, one equation discussed by Ablowitz et. al. [Stud. Appl. Math., 53 (1974) 249--315] and one by Hirota and Satsuma [J. Phys. Soc. Japan}, 40 (1976) 611--612]. A catalogue of classical and nonclassical symmetry reductions, and a Painleve analysis, are given. Of particular interest are families of solutions found containing a rich variety of qualitative behaviours. Indeed we exhibit and plot a wide variety of solutions all of which look like a two-soliton for t>0 but differ radically for t<0. These families arise as nonclassical symmetry reduction solutions and solutions found using the singular manifold method. This example shows that nonclassical symmetries and the singular manifold method do not, in general, yield the same solution set. We also obtain symmetry reductions of the shallow water equation solvable in terms of solutions of the first, third and fifth Painleve equations...
Double criticality and the two-way Boussinesq equation in stratified shallow water hydrodynamics
Bridges, Thomas J.; Ratliff, Daniel J.
2016-06-01
Double criticality and its nonlinear implications are considered for stratified N-layer shallow water flows with N = 1, 2, 3. Double criticality arises when the linearization of the steady problem about a uniform flow has a double zero eigenvalue. We find that there are two types of double criticality: non-semisimple (one eigenvector and one generalized eigenvector) and semi-simple (two independent eigenvectors). Using a multiple scales argument, dictated by the type of singularity, it is shown that the weakly nonlinear problem near double criticality is governed by a two-way Boussinesq equation (non-semisimple case) and a coupled Korteweg-de Vries equation (semisimple case). Parameter values and reduced equations are constructed for the examples of two-layer and three-layer stratified shallow water hydrodynamics.
MHD Shallow Water Waves: Linear Analysis
Heng, Kevin
2009-01-01
We present a linear analysis of inviscid, incompressible, magnetohydrodynamic (MHD) shallow water systems. In spherical geometry, a generic property of such systems is the existence of five wave modes. Three of them (two magneto-Poincare modes and one magneto-Rossby mode) are previously known. The other two wave modes are strongly influenced by the magnetic field and rotation, and have substantially lower angular frequencies; as such, we term them "magnetostrophic modes". We obtain analytical functions for the velocity, height and magnetic field perturbations in the limit that the magnitude of the MHD analogue of Lamb's parameter is large. On a sphere, the magnetostrophic modes reside near the poles, while the other modes are equatorially confined. Magnetostrophic modes may be an ingredient in explaining the frequency drifts observed in Type I X-ray bursts from neutron stars.
Remarks on rotating shallow-water magnetohydrodynamics
Directory of Open Access Journals (Sweden)
V. Zeitlin
2013-10-01
Full Text Available We show how the rotating shallow-water MHD model, which was proposed in the solar tachocline context, may be systematically derived by vertical averaging of the full MHD equations for the rotating magneto fluid under the influence of gravity. The procedure highlights the main approximations and the domain of validity of the model, and allows for multi-layer generalizations and, hence, inclusion of the baroclinic effects. A quasi-geostrophic version of the model, both in barotropic and in baroclinic cases, is derived in the limit of strong rotation. The basic properties of the model(s are sketched, including the stabilizing role of magnetic fields in the baroclinic version.
Osserman, Robert
2011-01-01
The basic component of several-variable calculus, two-dimensional calculus is vital to mastery of the broader field. This extensive treatment of the subject offers the advantage of a thorough integration of linear algebra and materials, which aids readers in the development of geometric intuition. An introductory chapter presents background information on vectors in the plane, plane curves, and functions of two variables. Subsequent chapters address differentiation, transformations, and integration. Each chapter concludes with problem sets, and answers to selected exercises appear at the end o
Juday, Richard D. (Inventor)
1992-01-01
A two-dimensional vernier scale is disclosed utilizing a cartesian grid on one plate member with a polar grid on an overlying transparent plate member. The polar grid has multiple concentric circles at a fractional spacing of the spacing of the cartesian grid lines. By locating the center of the polar grid on a location on the cartesian grid, interpolation can be made of both the X and Y fractional relationship to the cartesian grid by noting which circles coincide with a cartesian grid line for the X and Y direction.
Shallow-water loading tides in Japan from superconducting gravimetry
DEFF Research Database (Denmark)
Khan, Shfaqat Abbas; Hoyer, J.L.
2004-01-01
Gravity observations from superconducting gravimeters are used to observe loading effects from shallow-water tides on the Japanese cast and west coasts. Non-linear third-diurnal and higher-frequency shallow-water tides are identified in the tide-gauge observations from these coastal areas. The most...
Shallow-water loading tides in Japan from superconducting gravimetry
DEFF Research Database (Denmark)
Khan, Shfaqat Abbas; Hoyer, J.L.
2004-01-01
Gravity observations from superconducting gravimeters are used to observe loading effects from shallow-water tides on the Japanese cast and west coasts. Non-linear third-diurnal and higher-frequency shallow-water tides are identified in the tide-gauge observations from these coastal areas. The mo...
Extreme waves and wave loading in shallow water
Klopman, G.; Stive, M.J.F.
1989-01-01
As an alternative to a more or less standard derivation procedure for design wave heights in relatively shallow water, two improvements of the procedure are suggested which lead to less conservative results. These improvements are based on observations of shallow water effects on both the decay of t
Shallow water model for horizontal centrifugal casting
Boháček, J.; Kharicha, A.; Ludwig, A.; Wu, M.
2012-07-01
A numerical model was proposed to simulate the solidification process of an outer shell of work roll made by the horizontal centrifugal casting technique. Shallow water model was adopted to solve the 2D average flow dynamics of melt spreading and the average temperature distribution inside the centrifugal casting mould by considering the centrifugal force, Coriolis force, viscous force due to zero velocity on the mould wall, gravity, and energy transport by the flow. Additionally, a 1D sub-model was implemented to consider the heat transfer in the radial direction from the solidifying shell to the mould. The solidification front was tracked by fulfilling the Stefan condition. Radiative and convective heat losses were included from both, the free liquid surface and the outer wall of the mould. Several cases were simulated with the following assumed initial conditions: constant height of the liquid metal (10, 20, and 30 mm), uniform temperature of the free liquid surface (1755 K). The simulation results have shown that while the solidification front remained rather flat, the free surface was disturbed by waves. The amplitude of waves increased with the liquid height. Free surface waves diminished as the solidification proceeded.
A modified siphon sampler for shallow water
Diehl, Timothy H.
2008-01-01
A modified siphon sampler (or 'single-stage sampler') was developed to sample shallow water at closely spaced vertical intervals. The modified design uses horizontal rather than vertical sample bottles. Previous siphon samplers are limited to water about 20 centimeters (cm) or more in depth; the modified design can sample water 10 cm deep. Several mounting options were used to deploy the modified siphon sampler in shallow bedrock streams of Middle Tennessee, while minimizing alteration of the stream bed. Sampling characteristics and limitations of the modified design are similar to those of the original design. Testing showed that the modified sampler collects unbiased samples of suspended silt and clay. Similarity of the intake to the original siphon sampler suggests that the modified sampler would probably take downward-biased samples of suspended sand. Like other siphon samplers, it does not sample isokinetically, and the efficiency of sand sampling can be expected to change with flow velocity. The sampler needs to be located in the main flow of the stream, and is subject to damage from rapid flow and floating debris. Water traps were added to the air vents to detect the flow of water through the sampler, which can cause a strong upward bias in sampled suspended-sediment concentration. Water did flow through the sampler, in some cases even when the top of the air vent remained above water. Air vents need to be extended well above maximum water level to prevent flow through the sampler.
Polarization of light in shallow waters
Gilerson, Alexander; Ibrahim, Amir; Stepinski, Jan; Ahmed, Samir
2013-10-01
Measurements of the upwelling polarized radiance in relatively shallow waters of varying depths and benthic conditions are compared to simulationsrevealing the depolarizing nature of the seafloor. Significant correlations between simulations and measurements are attained when the appropriate unpolarized, Lambertian bottoms are included in the radiative transfer model. The bottoms used in this study produce realistic upwelling radiance distributions as well as ranges of the degree of linear polarization (DoLP) that peak between 10 and 30%. This study specifically finds that polarization in upwelling radiance is best preserved at long wavelengths in clear waters and also at short wavelengths in phytoplankton- and CDOM-rich waters. These results can thus facilitate the detection of benthic materials as well as future studies of camouflage by benthic biota.The DoLPwas found to be highly sensitive to benthic reflectance, but the angle of polarization (AoLP), which quantifies the orientation of polarization, is independent of it. The AoLP could therefore be used to communicate and sense direction underwater.
Two-dimensional optical spectroscopy
Cho, Minhaeng
2009-01-01
Discusses the principles and applications of two-dimensional vibrational and optical spectroscopy techniques. This book provides an account of basic theory required for an understanding of two-dimensional vibrational and electronic spectroscopy.
Joint forces and torques when walking in shallow water.
Orselli, Maria Isabel Veras; Duarte, Marcos
2011-04-01
This study reports for the first time an estimation of the internal net joint forces and torques on adults' lower limbs and pelvis when walking in shallow water, taking into account the drag forces generated by the movement of their bodies in the water and the equivalent data when they walk on land. A force plate and a video camera were used to perform a two-dimensional gait analysis at the sagittal plane of 10 healthy young adults walking at comfortable speeds on land and in water at a chest-high level. We estimated the drag force on each body segment and the joint forces and torques at the ankle, knee, and hip of the right side of their bodies using inverse dynamics. The observed subjects' apparent weight in water was about 35% of their weight on land and they were about 2.7 times slower when walking in water. When the subjects walked in water compared with walking on land, there were no differences in the angular displacements but there was a significant reduction in the joint torques which was related to the water's depth. The greatest reduction was observed for the ankle and then the knee and no reduction was observed for the hip. All joint powers were significantly reduced in water. The compressive and shear joint forces were on average about three times lower during walking in water than on land. These quantitative results substantiate the use of water as a safe environment for practicing low-impact exercises, particularly walking.
Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water
Energy Technology Data Exchange (ETDEWEB)
Blake, R W [Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada)], E-mail: blake@zoology.ubc.ca
2009-03-01
The origins and effects of wave drag at and near the surface and in shallow water are discussed in terms of the dispersive waves generated by streamlined technical bodies of revolution and by semi-aquatic and aquatic animals with a view to bearing on issues regarding the design and function of autonomous surface and underwater vehicles. A simple two-dimensional model based on energy flux, allowing assessment of drag and its associated wave amplitude, is applied to surface swimming in Lesser Scaup ducks and is in good agreement with measured values. It is argued that hydrodynamic limitations to swimming at speeds associated with the critical Froude number ({approx}0.5) and hull speed do not necessarily set biological limitations as most behaviours occur well below the hull speed. From a comparative standpoint, the need for studies on the hull displacement of different forms is emphasized. For forms in surface proximity, drag is a function of both Froude and Reynolds numbers. Whilst the depth dependence of wave drag is not particularly sensitive to Reynolds number, its magnitude is, with smaller and slower forms subject to relatively less drag augmentation than larger, faster forms that generate additional resistance due to ventilation and spray. A quasi-steady approach to the hydrodynamics of swimming in shallow water identifies substantial drag increases relative to the deeply submerged case at Froude numbers of about 0.9 that could limit the performance of semi-aquatic and aquatic animals and autonomous vehicles. A comparative assessment of fast-starting trout and upside down catfish shows that the energy losses of fast-starting fish are likely to be less for fish in surface proximity in deep water than for those in shallow water. Further work on unsteady swimming in both circumstances is encouraged. Finally, perspectives are offered as to how autonomous surface and underwater vehicles in surface proximity and shallow water could function to avoid prohibitive
Tidal modulation of two-layer hydraulic exchange flows
Directory of Open Access Journals (Sweden)
L. M. Frankcombe
2006-11-01
Full Text Available Time-dependent, two layer hydraulic exchange flow is studied using an idealised shallow water model. It is found that barotropic time-dependent perturbations, representing tidal forcing, increase the baroclinic exchange flux above the steady hydraulic limit, with flux increasing monotonically with tidal amplitude (measured either by height or flux amplitude over a tidal period. Exchange flux also depends on the non-dimensional tidal period, γ, which was introduced by Helfrich (1995. Resonance complicates the relationship between exchange flux and height amplitude, but, when tidal strength is characterised by flux amplitude, exchange flux is a monotonic function of γ.
This paper presents a depth-averaged two-dimensional shallow water model for simulating long waves in vegetated water bodies under breaking and non-breaking conditions. The effects of rigid vegetation are modelled in the form of drag and inertia forces as sink terms in the momentum equations. The dr...
Shallow-Water Benthic Habitats of Southwest Puerto Rico
National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...
Shallow-water Benthic Habitats in Jobos Bay
National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of Jobos Bay, Puerto Rico were mapped and characterized using visual interpretation...
Sediment Transport at Density Fronts in Shallow Water
2012-09-30
in the Hudson occurred at multiple locations along the salinity gradient rather than a single interface between salty and fresh water . The fronts in...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sediment Transport at Density Fronts in Shallow Water ...suspended sediment concentration at density fronts in shallow water (< 1 m), - characterize flow and suspended sediment at a density front through the
Dynamic Pressure of Seabed around Buried Pipelines in Shallow Water
Changjing Fu; Guoying Li; Tianlong Zhao; Donghai Guan
2015-01-01
Due to the obvious nonlinear effect caused by the shallow waves, the nonlinear wave loads have a great influence on the buried pipelines in shallow water. In order to ensure their stability, the forces on the pipelines that resulted from nonlinear waves should be considered thoroughly. Based on the Biot consolidation theory and the first-order approximate cnoidal wave theory, analytical solutions of the pore water pressure around the buried pipelines in shallow water caused by waves are first...
Statistical distribution of nonlinear random wave height in shallow water
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Here we present a statistical model of random wave,using Stokes wave theory of water wave dynamics,as well as a new nonlinear probability distribution function of wave height in shallow water.It is more physically logical to use the wave steepness of shallow water and the factor of shallow water as the parameters in the wave height distribution.The results indicate that the two parameters not only could be parameters of the distribution function of wave height but also could reflect the degree of wave height distribution deviation from the Rayleigh distribution.The new wave height distribution overcomes the problem of Rayleigh distribution that the prediction of big wave is overestimated and the general wave is underestimated.The prediction of small probability wave height value of new distribution is also smaller than that of Rayleigh distribution.The effect of wave steepness in shallow water is similar to that in deep water;but the factor of shallow water lowers the wave height distribution of the general wave with the reduced factor of wave steepness.It also makes the wave height distribution of shallow water more centralized.The results indicate that the new distribution fits the in situ measurements much better than other distributions.
Space and Time Coherence of Acoustic Field in Shallow Water
Institute of Scientific and Technical Information of China (English)
GUO Liang-Hao; GONG Zai-Xiao; Wu Li-Xin
2001-01-01
New experimental measurements of signal coherence in shallow water are presented. For signals with Iow fre quencies of about 500 Hz in iso-velocity shallow water with a silt-sand bottom and a water depth of about 45 tn, the vertical coherence has no distinct depth dependence at ranges of 18.5, 55.5 and 92.5 kin, but it has obvious range dependence. The horizontal coherence lengths are all greater than 40 wavelengths, and the time coherence lengths are all greater than 510s at these ranges. These experimental results show that a low-frequency acoustic field has strong spatial coherence and temporal stability in iso-velocity shallow water.
A shallow-water theory for annular sections of Keplerian Disks
Umurhan, O M
2008-01-01
A scaling argument is presented that leads to a shallow water theory of non-axisymmetric disturbances in annular sections of thin Keplerian disks. The aims of this study is to develop a theoretical construction that will aid in physically understanding the relationship of known two-dimensional vortex dynamics to their three-dimensional counterparts in Keplerian disks. Using asymptotic scaling arguments varicose disturbances of a Keplerian disk are considered on radial and vertical scales consistent with the height of the disk while the azimuthal scales are the full $2\\pi$ angular extent of the disk. For simplicity perturbations are assumed to be homentropic according to a polytropic equation of state. The timescales considered are long compared to the local disk rotation time. The scalings lead to dynamics which are radially geostrophic and vertically hydrostatic. It follows that a potential vorticity quantity emerges and is shown to be conserved in a Lagrangian sense. Uniform potential vorticity solutions, b...
AN UNSTRUCTURED FINITE-VOLUME ALGORITHM FOR NONLINEAR TWO-DIMENSIOAL SHALLOW WATER EQUATION
Institute of Scientific and Technical Information of China (English)
WANG Zhi-li; GENG Yan-fen; JIN Sheng
2005-01-01
An unstructured finite-volume numerical algorithm was presented for solution of the two-dimensional shallow water equations, based on triangular or arbitrary quadrilateral meshes. The Roe type approximate Riemann solver was used to the system. A second-order TVD scheme with the van Leer limiter was used in the space discretization and a two-step Runge-Kutta approach was used in the time discretization. An upwind, as opposed to a pointwise, treatment of the slope source terms was adopted and the semi-implicit treatment was used for the friction source terms. Verification for two-dimension dam-break problems are carried out by comparing the present results with others and very good agreement is shown.
A Review About SAR Technique for Shallow Water Bathymetry Surveys
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Synthetic Aperture Radar (SAR) has become one of the important tools for shallow water bathymetry surveys. This has significant economic efficiency compared with the traditional bathymetry surveys. Numerical models have been developed to simulate shallow water bathymetry SAR images. Inversion of these models makes it possible to assess the water depths from SAR images. In this paper, these numerical models of SAR technique are reviewed, and examples are illustrated including in the coastal areas of China. Some issues about SAR technique available and the research orientation in future are also discussed.
Implicit Parallel FEM Analysis of Shallow Water Equations
Institute of Scientific and Technical Information of China (English)
JIANG Chunbo; LI Kai; LIU Ning; ZHANG Qinghai
2005-01-01
The velocity field in the Wu River at Chongqing was simulated using the shallow water equation implemented on clustered workstations. The parallel computing technique was used to increase the computing power. The shallow water equation was discretized to a linear system of equations with a direct parallel generalized minimum residual algorithm (GMRES) used to solve the linear system. Unlike other parallel GMRES methods, the direct GMRES method does not alter the sequential algorithm, but bases the parallelization on basic operations such as the matrix-vector product. The computed results agree well with observed results. The parallel computing technique significantly increases the solution speed for this large-scale problem.
Simulation of arrested salt wedges with a multi-layer Shallow Water Lattice Boltzmann model
Prestininzi, P.; Montessori, A.; La Rocca, M.; Sciortino, G.
2016-10-01
The ability to accurately and efficiently model the intrusion of salt wedges into river beds is crucial to assay its interaction with human activities and the natural environment. We present a 2D multi-layer Shallow Water Lattice Boltzmann (SWLB) model able to predict the salt wedge intrusion in river estuaries. The formulation usually employed for the simulation of gravity currents is here equipped with proper boundary conditions to handle both the downstream seaside outlet and the upstream river inlet. Firstly, the model is validated against highly accurate semi-analytical solutions of the steady state 1D two-layer Shallow Water model. Secondly, the model is applied to a more complex, fully 3D geometry, to assess its capability to handle realistic cases. The simple formulation proposed for the shear interlayer stress is proven to be consistent with the general 3D viscous solution. In addition to the accuracy, the model inherits the efficiency of the Lattice Boltzmann approach to fluid dynamics problems.
Time integration of the shallow water equations in spherical geometry
D. Lanser; J.G. Blom (Joke); J.G. Verwer (Jan)
2000-01-01
textabstractThe shallow water equations in spherical geometry provide a prototype for developing and testing numerical algorithms for atmospheric circulation models. In a previous paper we have studied a spatial discretization of these equations based on an Osher-type finite-volume method on stereog
Streamline curvature and bed resistance in shallow water flow
De Vriend, H.J.
1979-01-01
The relationship between streamline curvature and bed resistance in shallow water flow with little side constraint, as derived in 1970 by H.J. Schoemaker, is reconsidered. Schoemaker concluded that the bed resistance causes the curvature of a free streamline to grow exponentially with the distance a
Shallow water wave spectral characteristics along the eastern Arabian Sea
Digital Repository Service at National Institute of Oceanography (India)
SanilKumar, V.; Shanas, P.R.; Dubhashi, K.K.
The spectral characteristics of shallow water waves were studied at two locations along the eastern Arabian Sea during 2011. Wave spectra were single-peaked from June to October and predominantly double-peaked during the rest of the year. Even...
Computing nonhydrostatic shallow-water flow over steep terrain
Denlinger, R.P.; O'Connell, D. R. H.
2008-01-01
Flood and dambreak hazards are not limited to moderate terrain, yet most shallow-water models assume that flow occurs over gentle slopes. Shallow-water flow over rugged or steep terrain often generates significant nonhydrostatic pressures, violating the assumption of hydrostatic pressure made in most shallow-water codes. In this paper, we adapt a previously published nonhydrostatic granular flow model to simulate shallow-water flow, and we solve conservation equations using a finite volume approach and an Harten, Lax, Van Leer, and Einfeldt approximate Riemann solver that is modified for a sloping bed and transient wetting and drying conditions. To simulate bed friction, we use the law of the wall. We test the model by comparison with an analytical solution and with results of experiments in flumes that have steep (31??) or shallow (0.3??) slopes. The law of the wall provides an accurate prediction of the effect of bed roughness on mean flow velocity over two orders of magnitude of bed roughness. Our nonhydrostatic, law-of-the-wall flow simulation accurately reproduces flume measurements of front propagation speed, flow depth, and bed-shear stress for conditions of large bed roughness. ?? 2008 ASCE.
Onboard Prediction of Propagation Loss in Shallow Water
1981-09-16
substrate roughn*p, (4) modal coupling, and (6) biologia scAtterers;,6. Grain asiz distribution Is not an adequate predctor of acoustical properties; heuce...INTRODUCTION ......................................... 1 GENERAL COMMENTS ................................... 2 SEDIMENT SOUND SPEED AND DENSITY...for an onboard perfor- mance prediction capability in shallow water. There is a general requirement for an onboard performance prediction capability
Several Dynamical Properties for a Nonlinear Shallow Water Equation
Directory of Open Access Journals (Sweden)
Ls Yong
2014-01-01
Full Text Available A nonlinear third order dispersive shallow water equation including the Degasperis-Procesi model is investigated. The existence of weak solutions for the equation is proved in the space L1(R∩BV (R under certain assumptions. The Oleinik type estimate and L2N(R (N is a natural number estimate for the solution are obtained.
Time integration of the shallow water equations in spherical geometry
Lanser, D.; Blom, J.G.; Verwer, J.G.
2000-01-01
The shallow water equations in spherical geometry provide a prototype for developing and testing numerical algorithms for atmospheric circulation models. In a previous paper we have studied a spatial discretization of these equations based on an Osher-type finite-volume method on stereographic and l
Shallow water modeling of Antarctic Bottom Water crossing the equator
Choboter, Paul F.; Swaters, Gordon E.
2004-03-01
The dynamics of abyssal equator-crossing flows are examined by studying simplified models of the flow in the equatorial region in the context of reduced-gravity shallow water theory. A simple "frictional geostrophic" model for one-layer cross-equatorial flow is described, in which geostrophy is replaced at the equator by frictional flow down the pressure gradient. This model is compared via numerical simulations to the one-layer reduced-gravity shallow water model for flow over realistic equatorial Atlantic Ocean bottom topography. It is argued that nonlinear advection is important at key locations where it permits the current to flow against a pressure gradient, a mechanism absent in the frictional geostrophic model and one of the reasons this model predicts less cross-equatorial flow than the shallow water model under similar conditions. Simulations of the shallow water model with an annually varying mass source reproduce the correct amplitude of observed time variability of cross-equatorial flow. The time evolution of volume transport across specific locations suggests that mass is stored in an equatorial basin, which can reduce the amplitude of time dependence of fluid actually proceeding into the Northern Hemisphere as compared to the amount entering the equatorial basin. Observed time series of temperature data at the equator are shown to be consistent with this hypothesis.
Robust Source Localization in Shallow Water Based on Vector Optimization
Institute of Scientific and Technical Information of China (English)
SONG Hai-yan; SHI Jie; LIU Bo-sheng
2013-01-01
Owing to the multipath effect,the source localization in shallow water has been an area of active interest.However,most methods for source localization in shallow water are sensitive to the assumed model of the underwater environment and have poor robustness against the underwater channel uncertainty,which limit their further application in practical engineering.In this paper,a new method of source localization in shallow water,based on vector optimization concept,is described,which is highly robust against environmental factors affecting the localization,such as the channel depth,the bottom reflection coefficients,and so on.Through constructing the uncertainty set of the source vector errors and extracting the multi-path sound rays from the sea surface and bottom,the proposed method can accurately localize one or more sources in shallow water dominated by multipath propagation.It turns out that the natural formulation of our approach involves minimization of two quadratic functions subject to infinitely many nonconvex quadratic constraints.It shows that this problem (originally intractable) can be reformulated in a convex form as the so-called second-order cone program (SOCP) and solved efficiently by using the well-established interior point method,such as the software tool,SeDuMi.Computer simulations show better performance of the proposed method as compared with existing algorithms and establish a theoretical foundation for the practical engineering application.
Robust Source Localization in a Random Shallow Water Channel
Sazontov, Alexander; Matveyev, Alexander
2014-01-01
This paper addresses source localization problem in a random shallow water channel. We present an extension of the generalized MUSIC method to the case, %in which when the signal correlation matrix is imprecisely known. The algorithm is validated by %simulations and its application to the experimental data observed in the Barents Sea. It has been found that the approach proposed demonstrates its excellent performance.
Coupling conditions for the shallow water equations on a network
Caputo, Jean-Guy; Gleyse, Bernard
2015-01-01
We study numerically and analytically how nonlinear shallow water waves propagate in a fork. Using a homothetic reduction procedure, conservation laws and numerical analysis in a 2D domain, we obtain angle dependent coupling conditions for the water height and the velocity. We compare these to the ones for a class of scalar nonlinear wave equations for which the angle plays no role.
Acoustic MIMO Communications in a Very Shallow Water Channel
Institute of Scientific and Technical Information of China (English)
Yuehai Zhou; Xiuling Cao; Feng Tong
2015-01-01
Underwater acoustic channels pose a great difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple-input multiple-output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.
Robust source localization in shallow water based on vector optimization
Song, Hai-yan; Shi, Jie; Liu, Bo-sheng
2013-06-01
Owing to the multipath effect, the source localization in shallow water has been an area of active interest. However, most methods for source localization in shallow water are sensitive to the assumed model of the underwater environment and have poor robustness against the underwater channel uncertainty, which limit their further application in practical engineering. In this paper, a new method of source localization in shallow water, based on vector optimization concept, is described, which is highly robust against environmental factors affecting the localization, such as the channel depth, the bottom reflection coefficients, and so on. Through constructing the uncertainty set of the source vector errors and extracting the multi-path sound rays from the sea surface and bottom, the proposed method can accurately localize one or more sources in shallow water dominated by multipath propagation. It turns out that the natural formulation of our approach involves minimization of two quadratic functions subject to infinitely many nonconvex quadratic constraints. It shows that this problem (originally intractable) can be reformulated in a convex form as the so-called second-order cone program (SOCP) and solved efficiently by using the well-established interior point method, such as the software tool, SeDuMi. Computer simulations show better performance of the proposed method as compared with existing algorithms and establish a theoretical foundation for the practical engineering application.
Broadband matched-field inversion for shallow water environment parameters
Institute of Scientific and Technical Information of China (English)
YANG Kunde; MA Yuanliang
2003-01-01
In this paper, broadband multi-frequencies matched-field inversion method is used to determine the environmental parameters in shallow water. According to different conditions, several broadband objective functions are presented. Using ASIAEX2001 experiment data and genetic algorithms, environmental parameters are obtained, especially in sediment.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
of this thesis is on online comprehensive two-dimensional liquid chromatography (online LC×LC) with reverse phase in both dimensions (online RP×RP). Since online RP×RP has not been attempted before within this research group, a significant part of this thesis consists of knowledge and experience gained...
Guinot, Vincent
2017-09-01
The Integral Porosity and Dual Integral Porosity two-dimensional shallow water models have been proposed recently as efficient upscaled models for urban floods. Very little is known so far about their consistency and wave propagation properties. Simple numerical experiments show that both models are unusually sensitive to the computational grid. In the present paper, a two-dimensional consistency and characteristic analysis is carried out for these two models. The following results are obtained: (i) the models are almost insensitive to grid design when the porosity is isotropic, (ii) anisotropic porosity fields induce an artificial polarization of the mass/momentum fluxes along preferential directions when triangular meshes are used and (iii) extra first-order derivatives appear in the governing equations when regular, quadrangular cells are used. The hyperbolic system is thus mesh-dependent, and with it the wave propagation properties of the model solutions. Criteria are derived to make the solution less mesh-dependent, but it is not certain that these criteria can be satisfied at all computational points when real-world situations are dealt with.
Stewart, Andrew L.; Dellar, Paul J.
2016-05-01
We present an energy- and potential enstrophy-conserving scheme for the non-traditional shallow water equations that include the complete Coriolis force and topography. These integral conservation properties follow from material conservation of potential vorticity in the continuous shallow water equations. The latter property cannot be preserved by a discretisation on a fixed Eulerian grid, but exact conservation of a discrete energy and a discrete potential enstrophy seems to be an effective substitute that prevents any distortion of the forward and inverse cascades in quasi-two dimensional turbulence through spurious sources and sinks of energy and potential enstrophy, and also increases the robustness of the scheme against nonlinear instabilities. We exploit the existing Arakawa-Lamb scheme for the traditional shallow water equations, reformulated by Salmon as a discretisation of the Hamiltonian and Poisson bracket for this system. The non-rotating, traditional, and our non-traditional shallow water equations all share the same continuous Hamiltonian structure and Poisson bracket, provided one distinguishes between the particle velocity and the canonical momentum per unit mass. We have determined a suitable discretisation of the non-traditional canonical momentum, which includes additional coupling between the layer thickness and velocity fields, and modified the discrete kinetic energy to suppress an internal symmetric computational instability that otherwise arises for multiple layers. The resulting scheme exhibits the expected second-order convergence under spatial grid refinement. We also show that the drifts in the discrete total energy and potential enstrophy due to temporal truncation error may be reduced to machine precision under suitable refinement of the timestep using the third-order Adams-Bashforth or fourth-order Runge-Kutta integration schemes.
Modified Shallow Water Equations for significantly varying bottoms
Dutykh, Denys
2012-01-01
In the present study we propose an modified version of the nonlinear shallow water (Saint-Venant) equations for the case when the bottom undergoes some significant variations in space and time. The model is derived from a variational principle by choosing the appropriate shallow water ansatz and imposing some constraints. Our derivation procedure does not explicitly involve any small parameter and is straightforward. The novel system is a non-dispersive, and non-hydrostatic extension of the classical Saint-Venant equations. We also propose a finite volume discretization of the obtained hyperbolic system. Several test-cases are presented to highlight the added value of the new model. Some implications to tsunami wave modelling are also discussed.
A nonlinear RDF model for waves propagating in shallow water
Institute of Scientific and Technical Information of China (English)
王厚杰; 杨作升; 李瑞杰; 张军
2001-01-01
In this paper, a composite explicit nonlinear dispersion relation is presented with reference to Stokes 2nd order dispersion relation and the empirical relation of Hedges. The explicit dispersion relation has such advantages that it can smoothly match the Stokes relation in deep and intermediate water and Hedgs’s relation in shallow water. As an explicit formula, it separates the nonlinear term from the linear dispersion relation. Therefore it is convenient to obtain the numerical solution of nonlinear dispersion relation. The present formula is combined with the modified mild-slope equation including nonlinear effect to make a Refraction-Diffraction (RDF) model for wave propagating in shallow water. This nonlinear model is verified over a complicated topography with two submerged elliptical shoals resting on a slope beach. The computation results compared with those obtained from linear model show that at present the nonlinear RDF model can predict the nonlinear characteristics and the combined refracti
Geometric Derivation of Energy Consistent Shallow Water Equations
Blender, Richard
2016-01-01
The dynamical equations of the shallow water model are re-derived using conservation laws (CLs) for total energy and potential enstrophy. Different mechanisms, such as vortical flows and emission of gravity waves, emerge from different components of the CLs. The equations are constructed using exterior differential forms and self-adjoint operators and result in the sum of two Nambu brackets, one for the vortical flow and one for the wave-mean flow interaction, and a Poisson bracket representing the interaction between divergence and geostrophic imbalance. The advantages of this approach are the derivation of the equations from CLs and the direct derivation of their Hamiltonian and Nambu forms. The approach demonstrates that two CLs and three dynamical variables are sufficient to setup the shallow water model.
Two dimensional unstable scar statistics.
Energy Technology Data Exchange (ETDEWEB)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Kotulski, Joseph Daniel; Lee, Kelvin S. H. (ITT Industries/AES Los Angeles, CA)
2006-12-01
This report examines the localization of time harmonic high frequency modal fields in two dimensional cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This paper examines the enhancements for these unstable orbits when the opposing mirrors are both convex and concave. In the latter case the construction includes the treatment of interior foci.
Juday, Richard D.
1992-01-01
Modified vernier scale gives accurate two-dimensional coordinates from maps, drawings, or cathode-ray-tube displays. Movable circular overlay rests on fixed rectangular-grid overlay. Pitch of circles nine-tenths that of grid and, for greatest accuracy, radii of circles large compared with pitch of grid. Scale enables user to interpolate between finest divisions of regularly spaced rule simply by observing which mark on auxiliary vernier rule aligns with mark on primary rule.
Discrete Boltzmann model of shallow water equations with polynomial equilibria
Meng, Jianping; Emerson, David R; Peng, Yong; Zhang, Jianmin
2016-01-01
A hierarchy of discrete Boltzmann model is proposed for simulating shallow water flows. By using the Hermite expansion and Gauss-Hermite quadrature, the conservation laws are automatically satisfied without extra effort. Moreover, the expansion order and quadrature can be chosen flexibly according to the problem for striking the balance of accuracy and efficiency. The models are then tested using the classical one-dimensional dam-breaking problem, and successes are found for both supercritical and subcritical flows.
Validation of Numerical Shallow Water Models for Tidal Lagoons
Energy Technology Data Exchange (ETDEWEB)
Eliason, D.; Bourgeois, A.
1999-11-01
An analytical solution is presented for the case of a stratified, tidally forced lagoon. This solution, especially its energetics, is useful for the validation of numerical shallow water models under stratified, tidally forced conditions. The utility of the analytical solution for validation is demonstrated for a simple finite difference numerical model. A comparison is presented of the energetics of the numerical and analytical solutions in terms of the convergence of model results to the analytical solution with increasing spatial and temporal resolution.
Shallow water equations: viscous solutions and inviscid limit
Chen, Gui-Qiang; Perepelitsa, Mikhail
2012-12-01
We establish the inviscid limit of the viscous shallow water equations to the Saint-Venant system. For the viscous equations, the viscosity terms are more degenerate when the shallow water is close to the bottom, in comparison with the classical Navier-Stokes equations for barotropic gases; thus, the analysis in our earlier work for the classical Navier-Stokes equations does not apply directly, which require new estimates to deal with the additional degeneracy. We first introduce a notion of entropy solutions to the viscous shallow water equations and develop an approach to establish the global existence of such solutions and their uniform energy-type estimates with respect to the viscosity coefficient. These uniform estimates yield the existence of measure-valued solutions to the Saint-Venant system generated by the viscous solutions. Based on the uniform energy-type estimates and the features of the Saint-Venant system, we further establish that the entropy dissipation measures of the viscous solutions for weak entropy-entropy flux pairs, generated by compactly supported C 2 test-functions, are confined in a compact set in H -1, which yields that the measure-valued solutions are confined by the Tartar-Murat commutator relation. Then, the reduction theorem established in Chen and Perepelitsa [5] for the measure-valued solutions with unbounded support leads to the convergence of the viscous solutions to a finite-energy entropy solution of the Saint-Venant system with finite-energy initial data, which is relative with respect to the different end-states of the bottom topography of the shallow water at infinity. The analysis also applies to the inviscid limit problem for the Saint-Venant system in the presence of friction.
Model-Based Detection in a Shallow Water Ocean Environment
Energy Technology Data Exchange (ETDEWEB)
Candy, J V
2001-07-30
A model-based detector is developed to process shallow water ocean acoustic data. The function of the detector is to adaptively monitor the environment and decide whether or not a change from normal has occurred. Here we develop a processor incorporating both a normal-mode ocean acoustic model and a vertical hydrophone array. The detector is applied to data acquired from the Hudson Canyon experiments at various ranges and its performance is evaluated.
An improved shallow water equation model for water animation
Ai, Mingjing; Du, Anding; Xu, Han; Niu, Jianwei
2017-03-01
In this paper, we proposed a new scheme for simulating water flows under shallow water assumption. The method is an extension of traditional shallow water equations. In contrast to traditional methods, we design a dynamic coordinate system for modeling in order to efficiently simulate water flows. Within this system, we derive our specialized shallow water equations directly from the Navier-Stockes equation. At the same time, we develop an implicit mechanism for solving the advection term and a vector projection operator for solving the external forces acting on water. We also present a two-way coupling method for simulating the interaction between water and rigid solid. The experimental results show that the proposed scheme can achieve a more realistic and accurate water model compared with the traditional methods, especially when the solid surfaces are too steep. Also we demonstrate the efficiency of our method in several scenes, all run at least 50 frames per second on average which allows real-time simulation.
Two-dimensional liquid chromatography
DEFF Research Database (Denmark)
Græsbøll, Rune
Two-dimensional liquid chromatography has received increasing interest due to the rise in demand for analysis of complex chemical mixtures. Separation of complex mixtures is hard to achieve as a simple consequence of the sheer number of analytes, as these samples might contain hundreds or even...... dimensions. As a consequence of the conclusions made within this thesis, the research group has, for the time being, decided against further development of online LC×LC systems, since it was not deemed ideal for the intended application, the analysis of the polar fraction of oil. Trap-and...
Two-dimensional capillary origami
Energy Technology Data Exchange (ETDEWEB)
Brubaker, N.D., E-mail: nbrubaker@math.arizona.edu; Lega, J., E-mail: lega@math.arizona.edu
2016-01-08
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid. - Highlights: • Full solution set of the two-dimensional capillary origami problem. • Fluid does not necessarily wet the entire plate. • Global energy approach provides exact differential equations satisfied by minimizers. • Bifurcation diagrams highlight three different regimes. • Conditions for spontaneous encapsulation are identified.
Stochastic simulation of acoustic communication in turbulent shallow water
DEFF Research Database (Denmark)
Bjerrum-Niese, Christian; Lutzen, R.
2000-01-01
This paper presents a stochastic model of a turbulent shallow-water acoustic channel. The model utilizes a Monte Carlo realization method to predict signal transmission conditions. The main output from the model are statistical descriptions of the signal-to-multipath ratio (SMR) and signal fading....... Probability density functions of signal envelope are evaluated by Pearsons's Skew-Kurtosis Chart, generally predicting Ricean fading. Dynamic calculations of SMR by the model overcome the main inconveniences of deterministic calculations, providing “smooth” instead of “noisy” curves as a result. Dynamic...... calculations of SMR and fading are concluded to provide more intelligible and realistic results than deterministic calculations...
Nonlinear dynamics of rotating shallow water methods and advances
Zeitlin, Vladimir
2007-01-01
The rotating shallow water (RSW) model is of wide use as a conceptual tool in geophysical fluid dynamics (GFD), because, in spite of its simplicity, it contains all essential ingredients of atmosphere and ocean dynamics at the synoptic scale, especially in its two- (or multi-) layer version. The book describes recent advances in understanding (in the framework of RSW and related models) of some fundamental GFD problems, such as existence of the slow manifold, dynamical splitting of fast (inertia-gravity waves) and slow (vortices, Rossby waves) motions, nonlinear geostrophic adjustment and wa
Bistatic Reverberation in Shallow Water: Modelling and Data Comparison
Institute of Scientific and Technical Information of China (English)
李风华; 刘建军
2002-01-01
Bistatic and monostatic reverberation data were recorded in the 2001 Asian Sea International Acoustic Experiment (ASIAEX). A model based on the normal mode theory has been developed to calculate bistatic bottom reverberation in shallow water and to explain the recorded data. The comparisons between the monostatic and bistatic reverberation data are discussed, and the comparisons between model predictions and measured bistatic reverberation data are also presented. The numerical and experimental results show that the numericalpredictions from the bistatic reverberation model fit the experimental data well, and the long-range bistatic reverberation with a time delay can be approximately expressed by the monostatic reverberation data.
Adaptivity in space and time for shallow water equations
Morandi Cecchi, M.; Marcuzzi, F.
1999-09-01
In this paper, adaptive algorithms for time and space discretizations are added to an existing solution method previously applied to the Venice Lagoon Tidal Circulation problem. An analysis of the interactions between space and time discretizations adaptation algorithms is presented. In particular, it turns out that both error estimations in space and time must be present for maintaining the adaptation efficiency. Several advantages, for adaptivity and for time decoupling of the equations, offered by the operator-splitting adopted for shallow water equations solution are presented. Copyright
Boundary conditions control for a Shallow-Water model
Kazantsev, Eugene
2012-01-01
A variational data assimilation technique was used to estimate optimal discretization of interpolation operators and derivatives in the nodes adjacent to the rigid boundary. Assimilation of artificially generated observational data in the shallow-water model in a square box and assimilation of real observations in the model of the Black sea are discussed. It is shown in both experiments that controlling the discretization of operators near a rigid boundary can bring the model solution closer to observations as in the assimilation window and beyond the window. This type of control allows also to improve climatic variability of the model.
Diffusive Wave Approximation to the Shallow Water Equations: Computational Approach
Collier, Nathan
2011-05-14
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, in the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation.
Preliminary results from a shallow water benthic grazing study
Jones, N.L.; Monismith, Stephen G.; Thompson, Janet K.
2005-01-01
The nutrient-rich, shallow waters of San Francisco Bay support high rates of primary production, limited not by nutrients but by light availability and benthic grazing (Alpine and others 1992; Cloern 1982). Phytoplankton blooms are an important food source for upper trophic levels. Consequently animal populations, such as fish, may suffer under conditions of high benthic bivalve grazing. It has been hypothesized that several species of fish are suffering as a result of severe decreases in available phytoplankton since the introduction of Potamocorbula amurensis into San Francisco Bay (Feyrer 2003).
Marine mammal audibility of selected shallow-water survey sources.
MacGillivray, Alexander O; Racca, Roberto; Li, Zizheng
2014-01-01
Most attention about the acoustic effects of marine survey sound sources on marine mammals has focused on airgun arrays, with other common sources receiving less scrutiny. Sound levels above hearing threshold (sensation levels) were modeled for six marine mammal species and seven different survey sources in shallow water. The model indicated that odontocetes were most likely to hear sounds from mid-frequency sources (fishery, communication, and hydrographic systems), mysticetes from low-frequency sources (sub-bottom profiler and airguns), and pinnipeds from both mid- and low-frequency sources. High-frequency sources (side-scan and multibeam) generated the lowest estimated sensation levels for all marine mammal species groups.
Multipeakedness and groupiness of shallow water waves along Indian coast
Digital Repository Service at National Institute of Oceanography (India)
SanilKumar, V.; Anand, N.M.; AshokKumar, K.; Mandal, S.
that would be expected from an estimate based on a completely random successive of the wave heights. Grouping ofhigh waves (H s = 2 m) in a long travelled swell recorded at a shallow water location ofwest coast of India was examined by THOMAS et al. (1986... to be succeeded by large waves, while small waves tend to be succeeded by other small waves. For the long travelled swell, GODA (1983) found a mean correlation of 0.65 between successive waves and 0.35, 0.18 and 0.07 for the following waves. THOMAS et at. (1986...
Wetzel, Alfredo N; Cerovecki, Ivana; Hendershott, Myrl C; Karsten, Richard H; Miller, Peter D
2013-01-01
In this study the influence of stratification on surface tidal elevations in a two-layer analytical model is examined. The model assumes linearized, non-rotating, shallow-water dynamics in one dimension with astronomical forcing and allows for arbitrary topography. Both large scale (barotropic) and small scale (baroclinic) components of the surface tidal elevation are shown to be affected by stratification. It is also shown that the topography and basin boundaries affect the sensitivity of the barotropic surface tide to stratification significantly. In a companion paper it is shown that the barotropic tide in two-layer numerical models run in realistic global domains differs from its value in one-layer numerical models by amounts qualitatively consistent with analytic predictions from this paper. The analytical model also roughly predicts the sensitivity to perturbations in stratification in the two-layer domain model. Taken together, this paper and the companion paper therefore provide a framework to underst...
Two-dimensional quantum repeaters
Wallnöfer, J.; Zwerger, M.; Muschik, C.; Sangouard, N.; Dür, W.
2016-11-01
The endeavor to develop quantum networks gave rise to a rapidly developing field with far-reaching applications such as secure communication and the realization of distributed computing tasks. This ultimately calls for the creation of flexible multiuser structures that allow for quantum communication between arbitrary pairs of parties in the network and facilitate also multiuser applications. To address this challenge, we propose a two-dimensional quantum repeater architecture to establish long-distance entanglement shared between multiple communication partners in the presence of channel noise and imperfect local control operations. The scheme is based on the creation of self-similar multiqubit entanglement structures at growing scale, where variants of entanglement swapping and multiparty entanglement purification are combined to create high-fidelity entangled states. We show how such networks can be implemented using trapped ions in cavities.
Two-dimensional capillary origami
Brubaker, N. D.; Lega, J.
2016-01-01
We describe a global approach to the problem of capillary origami that captures all unfolded equilibrium configurations in the two-dimensional setting where the drop is not required to fully wet the flexible plate. We provide bifurcation diagrams showing the level of encapsulation of each equilibrium configuration as a function of the volume of liquid that it contains, as well as plots representing the energy of each equilibrium branch. These diagrams indicate at what volume level the liquid drop ceases to be attached to the endpoints of the plate, which depends on the value of the contact angle. As in the case of pinned contact points, three different parameter regimes are identified, one of which predicts instantaneous encapsulation for small initial volumes of liquid.
Two-dimensional cubic convolution.
Reichenbach, Stephen E; Geng, Frank
2003-01-01
The paper develops two-dimensional (2D), nonseparable, piecewise cubic convolution (PCC) for image interpolation. Traditionally, PCC has been implemented based on a one-dimensional (1D) derivation with a separable generalization to two dimensions. However, typical scenes and imaging systems are not separable, so the traditional approach is suboptimal. We develop a closed-form derivation for a two-parameter, 2D PCC kernel with support [-2,2] x [-2,2] that is constrained for continuity, smoothness, symmetry, and flat-field response. Our analyses, using several image models, including Markov random fields, demonstrate that the 2D PCC yields small improvements in interpolation fidelity over the traditional, separable approach. The constraints on the derivation can be relaxed to provide greater flexibility and performance.
Surface Towed CSEM Systems for Shallow Water Mapping
Sherman, J.; Constable, S.; Kannberg, P. K.
2015-12-01
We have developed a low-power, surface towed electric dipole-dipole system suitable for mapping seafloor geology in shallow water and deployable from small boats. The transmitter is capable of up to 50 amps output using 12 VDC from a 110/240 VAC power supply, and can generate an arbitrary GPS stabilized ternary waveform. Transmitter antennas are typically 50 to 100 m long. Receivers are built around the standard Scripps seafloor electrode, amplifier, and logging systems but housed in floating PVC cases and equipped with GPS timing and positioning, pitch/roll/heading sensors, and accelerometers. Receiver dipoles are 1.5 m long rigid booms held 1 m below the surface. As with the Scripps deep-towed Vulcan system, rigid antennas are used to avoid noise associated with flexible antennas moving across Earth's magnetic field. The tow cable is a simple floating rope up to 1000 m long. Water depth and conductivity are sampled continuously in order to provide constraints for apparent resistivity calculations and inversion, and moored seafloor recorders can be used to extend transmitter/receiver offsets. The entire system can be air freighted and transported in one utility vehicle. We will present results from a study to map permafrost in shallow water off Prudhoe Bay, Alaska.
Global dynamical behaviors in a physical shallow water system
Tchakoutio Nguetcho, Aurélien Serge; Li, Jibin; Bilbault, Jean-Marie
2016-07-01
The theory of bifurcations of dynamical systems is used to investigate the behavior of travelling wave solutions in an entire family of shallow water wave equations. This family is obtained by a perturbative asymptotic expansion for unidirectional shallow water waves. According to the parameters of the system, this family can lead to different sets of known equations such as Camassa-Holm, Korteweg-de Vries, Degasperis and Procesi and several other dispersive equations of the third order. Looking for possible travelling wave solutions, we show that different phase orbits in some regions of parametric planes are similar to those obtained with the model of the pressure waves studied by Li and Chen. Many other exact explicit travelling waves solutions are derived as well, some of them being in perfect agreement with solutions obtained in previous works by researchers using different methods. When parameters are varied, the conditions under which the above solutions appear are also shown. The dynamics of singular nonlinear travelling system is completely determined for each of the above mentioned equations. Moreover, we define sufficient conditions leading to the existence of propagating wave solutions and demonstrate how and why travelling waves lose their smoothness and develop into solutions with compact support or breaking waves.
Global solutions to the shallow-water system
Alexeenko, Sergey N; Pelinovsky, Dmitry E
2016-01-01
The classical system of shallow-water (Saint--Venant) equations describes long surface waves in an inviscid incompressible fluid of a variable depth. Although shock waves are expected in this quasilinear hyperbolic system for a wide class of initial data, we find a sufficient condition on the initial data that guarantees existence of a global classical solution continued from a local solution. The sufficient conditions can be easily satisfied for the fluid flow propagating in one direction with two characteristic velocities of the same sign and two monotonically increasing Riemann invariants. We prove that these properties persist in the time evolution of the classical solutions to the shallow-water equations and provide no shock wave singularities formed in a finite time over a half-line or an infinite line. On a technical side, we develop a novel method of an additional argument, which allows to obtain local and global solutions to the quasilinear hyperbolic systems in physical rather than characteristic va...
Frechet derivatives for shallow water ocean acoustic inverse problems
Odom, Robert I.
2003-04-01
For any inverse problem, finding a model fitting the data is only half the problem. Most inverse problems of interest in ocean acoustics yield nonunique model solutions, and involve inevitable trade-offs between model and data resolution and variance. Problems of uniqueness and resolution and variance trade-offs can be addressed by examining the Frechet derivatives of the model-data functional with respect to the model variables. Tarantola [Inverse Problem Theory (Elsevier, Amsterdam, 1987), p. 613] published analytical formulas for the basic derivatives, e.g., derivatives of pressure with respect to elastic moduli and density. Other derivatives of interest, such as the derivative of transmission loss with respect to attenuation, can be easily constructed using the chain rule. For a range independent medium the analytical formulas involve only the Green's function and the vertical derivative of the Green's function for the medium. A crucial advantage of the analytical formulas for the Frechet derivatives over numerical differencing is that they can be computed with a single pass of any program which supplies the Green's function. Various derivatives of interest in shallow water ocean acoustics are presented and illustrated by an application to the sensitivity of measured pressure to shallow water sediment properties. [Work supported by ONR.
Momentum balance in the shallow water equations on bottom discontinuities
Valiani, A.; Caleffi, V.
2017-02-01
This work investigates the topical problem of balancing the shallow water equations over bottom steps of different heights. The current approaches in the literature are essentially based on mathematical analysis of the hyperbolic system of balance equations and take into account the relevant progresses in treating the non-conservative form of the governing system in the framework of path-conservative schemes. An important problem under debate is the correct position of the momentum balance closure when the bottom elevation is discontinuous. Cases of technical interest are systematically analysed, consisting of backward-facing steps and forward-facing steps, tackled supercritical and subcritical flows; critical (sonic) conditions are also analysed and discussed. The fundamental concept governing the problem and supported by the present computations is that the energy-conserving approach is the only approach that is consistent with the classical shallow water equations formulated with geometrical source terms and that the momentum balance is properly closed if a proper choice of a conventional depth on the bottom step is performed. The depth on the step is shown to be included between the depths just upstream and just downstream of the step. It is also shown that current choices (as given in the literature) of the depth on (or in front of) the step can lead to unphysical configurations, similar to some energy-increasing solutions.
Mid frequency shallow water fine-grained sediment attenuation measurements.
Holland, Charles W; Dosso, Stan E
2013-07-01
Attenuation is perhaps the most difficult sediment acoustic property to measure, but arguably one of the most important for predicting passive and active sonar performance. Measurement techniques can be separated into "direct" measurements (e.g., via sediment probes, sediment cores, and laboratory studies on "ideal" sediments) which are typically at high frequencies, O(10(4)-10(5)) Hz, and "indirect" measurements where attenuation is inferred from long-range propagation or reflection data, generally O(10(2)-10(3)) Hz. A frequency gap in measurements exists in the 600-4000 Hz band and also a general acknowledgement that much of the historical measurements on fine-grained sediments have been biased due to a non-negligible silt and sand component. A shallow water measurement technique using long range reverberation is critically explored. An approximate solution derived using energy flux theory shows that the reverberation is very sensitive to depth-integrated attenuation in a fine-grained sediment layer and separable from most other unknown geoacoustic parameters. Simulation using Bayesian methods confirms the theory. Reverberation measurements across a 10 m fine-grained sediment layer yield an attenuation of 0.009 dB/m/kHz with 95% confidence bounds of 0.006-0.013 dB/m/kHz. This is among the lowest values for sediment attenuation reported in shallow water.
Assessing Tsunami Vulnerabilities of Geographies with Shallow Water Equations
Aras, Rifat; Shen, Yuzhong
2012-01-01
Tsunami preparedness is crucial for saving human lives in case of disasters that involve massive water movement. In this work, we develop a framework for visual assessment of tsunami preparedness of geographies. Shallow water equations (also called Saint Venant equations) are a set of hyperbolic partial differential equations that are derived by depth-integrating the Navier-Stokes equations and provide a great abstraction of water masses that have lower depths compared to their free surface area. Our specific contribution in this study is to use Microsoft's XNA Game Studio to import underwater and shore line geographies, create different tsunami scenarios, and visualize the propagation of the waves and their impact on the shore line geography. Most importantly, we utilized the computational power of graphical processing units (GPUs) as HLSL based shader files and delegated all of the heavy computations to the GPU. Finally, we also conducted a validation study, in which we have tested our model against a controlled shallow water experiment. We believe that such a framework with an easy to use interface that is based on readily available software libraries, which are widely available and easily distributable, would encourage not only researchers, but also educators to showcase ideas.
Discontinuous Galerkin Method with Numerical Roe Flux for Spherical Shallow Water Equations
Yi, T.; Choi, S.; Kang, S.
2013-12-01
In developing the dynamic core of a numerical weather prediction model with discontinuous Galerkin method, a numerical flux at the boundaries of grid elements plays a vital role since it preserves the local conservation properties and has a significant impact on the accuracy and stability of numerical solutions. Due to these reasons, we developed the numerical Roe flux based on an approximate Riemann problem for spherical shallow water equations in Cartesian coordinates [1] to find out its stability and accuracy. In order to compare the performance with its counterpart flux, we used the Lax-Friedrichs flux, which has been used in many dynamic cores such as NUMA [1], CAM-DG [2] and MCore [3] because of its simplicity. The Lax-Friedrichs flux is implemented by a flux difference between left and right states plus the maximum characteristic wave speed across the boundaries of elements. It has been shown that the Lax-Friedrichs flux with the finite volume method is more dissipative and unstable than other numerical fluxes such as HLLC, AUSM+ and Roe. The Roe flux implemented in this study is based on the decomposition of flux difference over the element boundaries where the nonlinear equations are linearized. It is rarely used in dynamic cores due to its complexity and thus computational expensiveness. To compare the stability and accuracy of the Roe flux with the Lax-Friedrichs, two- and three-dimensional test cases are performed on a plane and cubed-sphere, respectively, with various numbers of element and polynomial order. For the two-dimensional case, the Gaussian bell is simulated on the plane with two different numbers of elements at the fixed polynomial orders. In three-dimensional cases on the cubed-sphere, we performed the test cases of a zonal flow over an isolated mountain and a Rossby-Haurwitz wave, of which initial conditions are the same as those of Williamson [4]. This study presented that the Roe flux with the discontinuous Galerkin method is less
Classifying Two-dimensional Hyporeductive Triple Algebras
Issa, A Nourou
2010-01-01
Two-dimensional real hyporeductive triple algebras (h.t.a.) are investigated. A classification of such algebras is presented. As a consequence, a classification of two-dimensional real Lie triple algebras (i.e. generalized Lie triple systems) and two-dimensional real Bol algebras is given.
Analysis of triangular C-grid finite volume scheme for shallow water flows
Shirkhani, Hamidreza; Mohammadian, Abdolmajid; Seidou, Ousmane; Qiblawey, Hazim
2015-08-01
In this paper, a dispersion relation analysis is employed to investigate the finite volume triangular C-grid formulation for two-dimensional shallow-water equations. In addition, two proposed combinations of time-stepping methods with the C-grid spatial discretization are investigated. In the first part of this study, the C-grid spatial discretization scheme is assessed, and in the second part, fully discrete schemes are analyzed. Analysis of the semi-discretized scheme (i.e. only spatial discretization) shows that there is no damping associated with the spatial C-grid scheme, and its phase speed behavior is also acceptable for long and intermediate waves. The analytical dispersion analysis after considering the effect of time discretization shows that the Leap-Frog time stepping technique can improve the phase speed behavior of the numerical method; however it could not damp the shorter decelerated waves. The Adams-Bashforth technique leads to slower propagation of short and intermediate waves and it damps those waves with a slower propagating speed. The numerical solutions of various test problems also conform and are in good agreement with the analytical dispersion analysis. They also indicate that the Adams-Bashforth scheme exhibits faster convergence and more accurate results, respectively, when the spatial and temporal step size decreases. However, the Leap-Frog scheme is more stable with higher CFL numbers.
A well-balanced scheme for the shallow-water equations with topography or Manning friction
Michel-Dansac, Victor; Berthon, Christophe; Clain, Stéphane; Foucher, Françoise
2017-04-01
We consider the shallow-water equations with Manning friction or topography, as well as a combination of both these source terms. The main purpose of this work concerns the derivation of a non-negativity preserving and well-balanced scheme that approximates solutions of the system and preserves the associated steady states, including the moving ones. In addition, the scheme has to deal with vanishing water heights and transitions between wet and dry areas. To address such issues, a particular attention is paid to the study of the steady states related to the friction source term. Then, a Godunov-type scheme is obtained by using a relevant average of the source terms in order to enforce the required well-balance property. An implicit treatment of both topography and friction source terms is also exhibited to improve the scheme while dealing with vanishing water heights. A second-order well-balanced MUSCL extension is designed, as well as an extension for the two-dimensional case. Numerical experiments are performed in order to highlight the properties of the scheme.
Two-dimensional function photonic crystals
Wu, Xiang-Yao; Liu, Xiao-Jing; Liang, Yu
2016-01-01
In this paper, we have firstly proposed two-dimensional function photonic crystals, which the dielectric constants of medium columns are the functions of space coordinates $\\vec{r}$, it is different from the two-dimensional conventional photonic crystals constituting by the medium columns of dielectric constants are constants. We find the band gaps of two-dimensional function photonic crystals are different from the two-dimensional conventional photonic crystals, and when the functions form of dielectric constants are different, the band gaps structure should be changed, which can be designed into the appropriate band gaps structures by the two-dimensional function photonic crystals.
Investigation of Boundary Effects on the Natural Cavitating Flow around a 2D Wedge in Shallow Water
Directory of Open Access Journals (Sweden)
Xin Chen
2011-01-01
Full Text Available When a cavitated body moves in shallow water, both flexible free surface and rigid bottom wall will produce great influence on the cavity pattern and hydrodynamics to change the motion attitude and stability of the body. In this paper, a single-fluid multiphase flow method coupled with a natural cavitation model was employed to study the effects of two kinds of boundaries on the natural cavitating flow around a two-dimensional symmetry wedge in shallow water. Within the range of the cavitation number for computation (0.05 ~ 2.04, the cavity pattern would be divided into three types, namely, stable type, transition type and wake-vortex type. The shape of the free surface is fairly similar to that of the cavity's upper surface with well right-and-left symmetry. However, when the immersion depth and the cavitation number are decreasing, the symmetry of the cavity shape is destroyed due to the influence of bottom wall effects. When the cavitation number is less than about 0.1, with the immersion depth going down, free surface effects exerts a stronger influence on the drag coefficient of this 2D wedge, whereas wall effects bring a stronger influence on the lift coefficient.
Stability of shear shallow water flows with free surface
Chesnokov, Alexander; Gavrilyuk, Sergey; Pavlov, Maxim
2016-01-01
Stability of inviscid shear shallow water flows with free surface is studied in the framework of the Benney equations. This is done by investigating the generalized hyperbolicity of the integrodifferential Benney system of equations. It is shown that all shear flows having monotonic convex velocity profiles are stable. The hydrodynamic approximations of the model corresponding to the classes of flows with piecewise linear continuous and discontinuous velocity profiles are derived and studied. It is shown that these approximations possess Hamiltonian structure and a complete system of Riemann invariants, which are found in an explicit form. Sufficient conditions for hyperbolicity of the governing equations for such multilayer flows are formulated. The generalization of the above results to the case of stratified fluid is less obvious, however, it is established that vorticity has a stabilizing effect.
High-Frequency Acoustic Sediment Classification in Shallow Water
Bentrem, F W; Kalcic, M T; Duncan, M E; Bentrem, Frank W.; Sample, John; Kalcic, Maria T.; Duncan, Michael E.
2002-01-01
A geoacoustic inversion technique for high-frequency (12 kHz) multibeam sonar data is presented as a means to classify the seafloor sediment in shallow water (40-300 m). The inversion makes use of backscattered data at a variety of grazing angles to estimate mean grain size. The need for sediment type and the large amounts of multibeam data being collected with the Naval Oceanographic Office's Simrad EM 121A systems, have fostered the development of algorithms to process the EM 121A acoustic backscatter into maps of sediment type. The APL-UW (Applied Physics Laboratory at the University of Washington) backscattering model is used with simulated annealing to invert for six geoacoustic parameters. For the inversion, three of the parameters are constrained according to empirical correlations with mean grain size, which is introduced as an unconstrained parameter. The four unconstrained (free) parameters are mean grain size, sediment volume interaction, and two seafloor roughness parameters. Acoustic sediment cla...
The Shallow Waters of the Big-Bang
Laguna, P
2006-01-01
Loop quantum cosmology homogeneous models with a massless scalar field show that the big-bang singularity can be replaced by a big quantum bounce. To gain further insight on the nature of this bounce, we study the semi-discrete loop quantum gravity Hamiltonian constraint equation from the point of view of numerical analysis. We show that the bounce is closely related to the method for the temporal update of the system and demonstrate that, in particular, explicit time-updates in general yield bounces. These bounces can be understood as spurious reflections in finite difference discretizations of wave equations in nonuniform grids or, equivalently, as spurious reflections found when solving wave equations with varying coefficients, such as the shallow water equations. We present an implicit time-update devoid of bounces and show back-in-time, deterministic evolutions that reach and partially jump over the big-bang singularity.
Sensitivity of a Shallow-Water Model to Parameters
Kazantsev, Eugene
2011-01-01
An adjoint based technique is applied to a shallow water model in order to estimate the influence of the model's parameters on the solution. Among parameters the bottom topography, initial conditions, boundary conditions on rigid boundaries, viscosity coefficients Coriolis parameter and the amplitude of the wind stress tension are considered. Their influence is analyzed from three points of view: 1. flexibility of the model with respect to a parameter that is related to the lowest value of the cost function that can be obtained in the data assimilation experiment that controls this parameter; 2. possibility to improve the model by the parameter's control, i.e. whether the solution with the optimal parameter remains close to observations after the end of control; 3. sensitivity of the model solution to the parameter in a classical sense. That implies the analysis of the sensitivity estimates and their comparison with each other and with the local Lyapunov exponents that characterize the sensitivity of the mode...
Hyperspectral Remote Sensing for Shallow Waters. I. A Semianalytical Model
Lee, Zhongping; Carder, Kendall L.; Mobley, Curtis D.; Steward, Robert G.; Patch, Jennifer S.
1998-09-01
For analytical or semianalytical retrieval of shallow-water bathymetry and or optical properties of the water column from remote sensing, the contribution to the remotely sensed signal from the water column has to be separated from that of the bottom. The mathematical separation involves three diffuse attenuation coefficients: one for the downwelling irradiance ( K d ), one for the upwelling radiance of the water column ( K u C ), and one for the upwelling radiance from bottom reflection ( K u B ). Because of the differences in photon origination and path lengths, these three coefficients in general are not equal, although their equality has been assumed in many previous studies. By use of the Hydrolight radiative-transfer numerical model with a particle phase function typical of coastal waters, the remote-sensing reflectance above ( R rs ) and below ( r rs ) the surface is calculated for various combinations of optical properties, bottom albedos, bottom depths, and solar zenith angles. A semianalytical (SA) model for r rs of shallow waters is then developed, in which the diffuse attenuation coefficients are explicitly expressed as functions of in-water absorption ( a ) and backscattering ( b b ). For remote-sensing inversion, parameters connecting R rs and r rs are also derived. It is found that r rs values determined by the SA model agree well with the exact values computed by Hydrolight ( 3% error), even for Hydrolight r rs values calculated with different particle phase functions. The Hydrolight calculations included b b a values as high as 1.5 to simulate high-turbidity situations that are occasionally found in coastal regions.
Subsurface Characterization of Shallow Water Regions using Airborne Bathymetric Lidar
Bradford, B.; Neuenschwander, A. L.; Magruder, L. A.
2013-12-01
Understanding the complex interactions between air, land, and water in shallow water regions is becoming increasingly critical in the age of climate change. To effectively monitor and manage these zones, scientific data focused on changing water levels, quality, and subsurface topography are needed. Airborne remote sensing using light detection and ranging (LIDAR) is naturally suited to address this need as it can simultaneously provide detailed three-dimensional spatial data for both topographic and bathymetric applications in an efficient and effective manner. The key to useful data, however, is the correct interpretation of the incoming laser returns to distinguish between land, water, and objects. The full waveform lidar receiver captures the complete returning signal reflected from the Earth, which contains detailed information about the structure of the objects and surfaces illuminated by the beam. This study examines the characterization of this full waveform with respect to water surface depth penetration and subsurface classification, including sand, rock, and vegetation. Three assessments are performed to help characterize the laser interaction within the shallow water zone: evaluation of water surface backscatter as a function of depth and location, effects from water bottom surface roughness and reflectivity, and detection and classification of subsurface structure. Using the Chiroptera dual-laser lidar mapping system from Airborne Hydrography AB (AHAB), both bathymetric and topographic mapping are possible. The Chiroptera system combines a 1064nm near infrared topographic laser with a 515nm green bathymetric laser to seamlessly map the land/water interface in coastal areas. Two survey sites are examined: Lake Travis in Austin, Texas, USA, and Lake Vättern in Jönköping, Sweden. Water quality conditions were found to impact depth penetration of the lidar, as a maximum depth of 5.5m was recorded at Lake Travis and 11m at Lake Vättern.
Ocean color algorithms in optically shallow waters: limitations and improvements
Carder, Kendall L.; Cannizzaro, Jennifer P.; Lee, Zhongping
2005-08-01
Current ocean color algorithms based on remote-sensing reflectance spectra, Rrs(λ), overestimate chlorophyll a concentrations, Chl, and particulate backscattering coefficients, bbp(λ), in optically shallow oceanic waters due to increased bottom reflectance. Since such regions often contain important ecological resources and are heavily influenced by human populations, accurate estimates of Chl and bbp(λ) are essential for monitoring algal blooms (e.g. red tides), detecting sediment resuspension events and quantifying primary productivity. In this study, a large synthetic data set of 500 Rrs(λ) spectra is developed to examine limitations of ocean color algorithms for optically shallow waters and to develop alternative algorithms that can be applied to satellite (e.g. SeaWiFS and MODIS) and aircraft ocean color sensor data. Rrs(λ) spectra are simulated using a semi-analytic model for optically shallow waters. The model is parameterized with sand bottom albedo spectra, ρ(λ), using a wide range of chlorophyll a concentrations (0.03-30 mg m-3), bottom depths (2-50m) and bottom albedos (ρ(550)=0.01-0.30) to provide a robust data set that accurately represents and complements shipboard Rrs(λ) data from the Gulf of Mexico and Bahamian waters. The accuracy of a remotely-based technique developed recently from shipboard Rrs(λ) data is tested on the synthetic data for identifying waters with bottom reflectance contributions at Rrs(555) greater than 25%. Limitations and improvements regarding this method are discussed.
Instrumentation Suite for Acoustic Propagation Measurements in Complex Shallow Water Environments
Federal Laboratory Consortium — FUNCTION: Obtain at-sea measurements to test theoretical and modeling predictions of acoustic propagation in dynamic, inhomogeneous, and nonisotropic shallow water...
Derivation of asymptotic two-dimensional time-dependent equations for ocean wave propagation
Lannes, David
2007-01-01
A general method for the derivation of asymptotic nonlinear shallow water and deep water models is presented. Starting from a general dimensionless version of the water-wave equations, we reduce the problem to a system of two equations on the surface elevation and the velocity potential at the free surface. These equations involve a Dirichlet-Neumann operator and we show that all the asymptotic models can be recovered by a simple asymptotic expansion of this operator, in function of the shallowness parameter (shallow water limit) or the steepness parameter (deep water limit). Based on this method, a new two-dimensional fully dispersive model for small wave steepness is also derived, which extends to uneven bottom the approach developed by Matsuno \\cite{matsuno3} and Choi \\cite{choi}. This model is still valid in shallow water but with less precision than what can be achieved with Green-Naghdi model, when fully nonlinear waves are considered. The combination, or the coupling, of the new fully dispersive equati...
Hadamard States and Two-dimensional Gravity
Salehi, H
2001-01-01
We have used a two-dimensional analog of the Hadamard state-condition to study the local constraints on the two-point function of a linear quantum field conformally coupled to a two-dimensional gravitational background. We develop a dynamical model in which the determination of the state of the quantum field is essentially related to the determination of a conformal frame. A particular conformal frame is then introduced in which a two-dimensional gravitational equation is established.
Topological defects in two-dimensional crystals
Chen, Yong; Qi, Wei-Kai
2008-01-01
By using topological current theory, we study the inner topological structure of the topological defects in two-dimensional (2D) crystal. We find that there are two elementary point defects topological current in two-dimensional crystal, one for dislocations and the other for disclinations. The topological quantization and evolution of topological defects in two-dimensional crystals are discussed. Finally, We compare our theory with Brownian-dynamics simulations in 2D Yukawa systems.
Balance-characteristic scheme as applied to the shallow water equations over a rough bottom
Goloviznin, V. M.; Isakov, V. A.
2017-07-01
The CABARET scheme is used for the numerical solution of the one-dimensional shallow water equations over a rough bottom. The scheme involves conservative and flux variables, whose values at a new time level are calculated by applying the characteristic properties of the shallow water equations. The scheme is verified using a series of test and model problems.
Corrected SPH methods for solving shallow-water equations
Institute of Scientific and Technical Information of China (English)
陈善群; 廖斌; 黄涛
2016-01-01
The artificial viscosity in the traditional smoothed particle hydrodynamics (SPH) methodology concerns some empirical coefficients, which limits the capability of the SPH methodology. To overcome this disadvantage and further improve the accuracy of shock capturing, this paper introduces two other ways for numerical viscosity, which are the Lax-Friedrichs flux and the two- shock Riemann solver with MUSCL reconstruction to provide stability. Six SPH methods with different kinds of numerical viscosity are tested against the analytical solution for a 1-D dam break with a wet bed. The comparison shows that the Lax-Friedrichs flux with MUSCL reconstruction can capture the shock wave more accurate than other five methods. The Lax-Friedrichs flux and the artificial viscosity with MUSCL reconstruction are finally both applied to a 2-D dam-break test case in a L-shaped channel and the numerical results are compared with experimental data. It is concluded that this corrected SPH method can be used to solve shallow-water equations well.
Conservation laws and LETKF with 2D Shallow Water Model
Zeng, Yuefei; Janjic, Tijana
2016-04-01
Numerous approaches have been proposed to maintain physical conservation laws in the numerical weather prediction models. However, to achieve a reliable prediction, adequate initial conditions are also necessary, which are produced by a data assimilation algorithm. If an ensemble Kalman filters (EnKF) is used for this purpose, it has been shown that it could yield unphysical analysis ensemble that for example violates principles of mass conservation and positivity preservation (e.g. Janjic et al 2014) . In this presentation, we discuss the selection of conservation criteria for the analysis step, and start with testing the conservation of mass, energy and enstrophy. The simple experiments deal with nonlinear shallow water equations and simulated observations that are assimilated with LETKF (Localized Ensemble Transform Kalman Filter, Hunt et al. 2007). The model is discretized in a specific way to conserve mass, angular momentum, energy and enstrophy. The effects of the data assimilation on the conserved quantities (of mass, energy and enstrophy) depend on observation covarage, localization radius, observed variable and observation operator. Having in mind that Arakawa (1966) and Arakawa and Lamb (1977) showed that the conservation of both kinetic energy and enstrophy by momentum advection schemes in the case of nondivergent flow prevents systematic and unrealistic energy cascade towards high wave numbers, a cause of excessive numerical noise and possible eventual nonlinear instability, we test the effects on prediction depending on the type of errors in the initial condition. The performance with respect to nonlinear energy cascade is assessed as well.
High Resolution Marine Magnetic Survey of Shallow Water Littoral Area
Directory of Open Access Journals (Sweden)
Jacob Sharvit
2007-09-01
Full Text Available The purpose of this paper is to present a system developed for detection andaccurate mapping of ferro-metallic objects buried below the seabed in shallow waters. Thesystem comprises a precise magnetic gradiometer and navigation subsystem, both installedon a non-magnetic catamaran towed by a low-magnetic interfering boat. In addition wepresent the results of a marine survey of a near-shore area in the vicinity of Atlit, a townsituated on the Mediterranean coast of Israel, about 15 km south of Haifa. The primarypurpose of the survey was to search for a Harvard airplane that crashed into the sea in 1960.A magnetic map of the survey area (3.5 km2 on a 0.5 m grid was created revealing theanomalies at sub-meter accuracy. For each investigated target location a correspondingferro-metallic item was dug out, one of which turned to be very similar to a part of thecrashed airplane. The accuracy of location was confirmed by matching the position of theactual dug artifacts with the magnetic map within a range of Ã‚Â± 1 m, in a water depth of 9 m.
Non-classical dispersive shock waves in shallow water
Sprenger, Patrick; Hoefer, Mark
2016-11-01
A classical model for shallow water waves with strong surface tension is the Kawahara equation, which is the Korteweg-de Vries (KdV) including a fifth order derivative term. A particular problem of interest to these types of equations is step initial data, known as the Riemann problem, which results in a shock in finite time. Unlike classical shock waves, where a discontinuity is resolved by dissipation, the dispersive regularization results in the discontinuity resolved as a dispersive shock wave (DSW). When parameter choices result in non-convex dispersion, three distinct dynamic regimes are observed that can be characterized solely by the amplitude of the initial step. For small jumps, a perturbed KdV DSW with positive polarity and orientation is generated, accompanied by small amplitude radiation from an embedded solitary wave leading edge, termed a radiating DSW. For moderate jumps, a crossover regime is observed with waves propagating forward and backward from the sharp transition region. For sufficiently large jumps, a new type of DSW is observed we term a translating DSW were a partial, non-monotonic, negative solitary wave at the trailing edge is connected to an interior nonlinear periodic wave and exhibits features common to both dissipative and dispersive shock waves.
Progress in the development of shallow-water mapping systems
Bergeron, E.; Worley, C.R.; O'Brien, T.
2007-01-01
The USGS (US Geological Survey) Coastal and Marine Geology has deployed an advance autonomous shallow-draft robotic vehicle, Iris, for shallow-water mapping in Apalachicola Bay, Florida. The vehicle incorporates a side scan sonar system, seismic-reflection profiler, single-beam echosounder, and global positioning system (GPS) navigation. It is equipped with an onboard microprocessor-based motor controller, delivering signals for speed and steering to hull-mounted brushless direct-current thrusters. An onboard motion sensor in the Sea Robotics vehicle control system enclosure has been integrated in the vehicle to measure the vehicle heave, pitch, roll, and heading. Three water-tight enclosures are mounted along the vehicle axis for the Edgetech computer and electronics system including the Sea Robotics computer, a control and wireless communications system, and a Thales ZXW real-time kinematic (RTK) GPS receiver. The vehicle has resulted in producing high-quality seismic reflection and side scan sonar data, which will help in developing the baseline oyster habitat maps.
Theoretical Model of Acoustic Wave Propagation in Shallow Water
Directory of Open Access Journals (Sweden)
Kozaczka Eugeniusz
2017-06-01
Full Text Available The work is devoted to the propagation of low frequency waves in a shallow sea. As a source of acoustic waves, underwater disturbances generated by ships were adopted. A specific feature of the propagation of acoustic waves in shallow water is the proximity of boundaries of the limiting media characterised by different impedance properties, which affects the acoustic field coming from a source situated in the water layer “deformed” by different phenomena. The acoustic field distribution in the real shallow sea is affected not only by multiple reflections, but also by stochastic changes in the free surface shape, and statistical changes in the seabed shape and impedance. The paper discusses fundamental problems of modal sound propagation in the water layer over different types of bottom sediments. The basic task in this case was to determine the acoustic pressure level as a function of distance and depth. The results of the conducted investigation can be useful in indirect determination of the type of bottom.
New beach ridge type: severely limited fetch, very shallow water
Energy Technology Data Exchange (ETDEWEB)
Tanner, W.F.; Demirpolat, S.
1988-09-01
The southern end of Laguna Madre (Texas) north of the Rio Grande mouth is marked by very shallow water, wide tidal flats, lunettes, islands made of beach ridges, and lesser features. The number and variety of islands in the lagoon is remarkable. The lunettes (clay dunes) are made primarily of quartz sand and coarse silt. They are common 5-10 m high, irregular in shape, and steep sided. They were deposited from wind transport and did not migrate. Those that are islands in the lagoon predate present position of sea level. Islands made of beach ridges were built from the lagoon side. Photoanalysis, field work, and granulometry all show that this sand was not moved into these ridges by Gulf of Mexico waves. Trenches in 12 beach ridges showed horizontal bedding but neither low-angle nor steep cross-bedding (quite unlike swash-built beach ridges). The ridges were built by wind-tide lag effects, not from the swash. Therefore, these beach ridges are a new type, in addition to swash-built, eolian, and storm-surge ridges. Growth of the ridges appears to be completed.
Modeling rapid mass movements using the shallow water equations
Directory of Open Access Journals (Sweden)
S. Hergarten
2014-11-01
Full Text Available We propose a new method to model rapid mass movements on complex topography using the shallow water equations in Cartesian coordinates. These equations are the widely used standard approximation for the flow of water in rivers and shallow lakes, but the main prerequisite for their application – an almost horizontal fluid table – is in general not satisfied for avalanches and debris flows in steep terrain. Therefore, we have developed appropriate correction terms for large topographic gradients. In this study we present the mathematical formulation of these correction terms and their implementation in the open source flow solver GERRIS. This novel approach is evaluated by simulating avalanches on synthetic and finally natural topographies and the widely used Voellmy flow resistance law. The results are tested against analytical solutions and the commercial avalanche model RAMMS. The overall results are in excellent agreement with the reference system RAMMS, and the deviations between the different models are far below the uncertainties in the determination of the relevant fluid parameters and involved avalanche volumes in reality. As this code is freely available and open source, it can be easily extended by additional fluid models or source areas, making this model suitable for simulating several types of rapid mass movements. It therefore provides a valuable tool assisting regional scale natural hazard studies.
Strongly interacting two-dimensional Dirac fermions
Lim, L.K.; Lazarides, A.; Hemmerich, Andreas; de Morais Smith, C.
2009-01-01
We show how strongly interacting two-dimensional Dirac fermions can be realized with ultracold atoms in a two-dimensional optical square lattice with an experimentally realistic, inherent gauge field, which breaks time reversal and inversion symmetries. We find remarkable phenomena in a temperature
Topology optimization of two-dimensional waveguides
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2003-01-01
In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....
Couderc, F.; Duran, A.; Vila, J.-P.
2017-08-01
We present an explicit scheme for a two-dimensional multilayer shallow water model with density stratification, for general meshes and collocated variables. The proposed strategy is based on a regularized model where the transport velocity in the advective fluxes is shifted proportionally to the pressure potential gradient. Using a similar strategy for the potential forces, we show the stability of the method in the sense of a discrete dissipation of the mechanical energy, in general multilayer and non-linear frames. These results are obtained at first-order in space and time and extended using a second-order MUSCL extension in space and a Heun's method in time. With the objective of minimizing the diffusive losses in realistic contexts, sufficient conditions are exhibited on the regularizing terms to ensure the scheme's linear stability at first and second-order in time and space. The other main result stands in the consistency with respect to the asymptotics reached at small and large time scales in low Froude regimes, which governs large-scale oceanic circulation. Additionally, robustness and well-balanced results for motionless steady states are also ensured. These stability properties tend to provide a very robust and efficient approach, easy to implement and particularly well suited for large-scale simulations. Some numerical experiments are proposed to highlight the scheme efficiency: an experiment of fast gravitational modes, a smooth surface wave propagation, an initial propagating surface water elevation jump considering a non-trivial topography, and a last experiment of slow Rossby modes simulating the displacement of a baroclinic vortex subject to the Coriolis force.
From offshore to onshore: multiple origins of shallow-water corals from deep-sea ancestors.
Directory of Open Access Journals (Sweden)
Alberto Lindner
Full Text Available Shallow-water tropical reefs and the deep sea represent the two most diverse marine environments. Understanding the origin and diversification of this biodiversity is a major quest in ecology and evolution. The most prominent and well-supported explanation, articulated since the first explorations of the deep sea, holds that benthic marine fauna originated in shallow, onshore environments, and diversified into deeper waters. In contrast, evidence that groups of marine organisms originated in the deep sea is limited, and the possibility that deep-water taxa have contributed to the formation of shallow-water communities remains untested with phylogenetic methods. Here we show that stylasterid corals (Cnidaria: Hydrozoa: Stylasteridae--the second most diverse group of hard corals--originated and diversified extensively in the deep sea, and subsequently invaded shallow waters. Our phylogenetic results show that deep-water stylasterid corals have invaded the shallow-water tropics three times, with one additional invasion of the shallow-water temperate zone. Our results also show that anti-predatory innovations arose in the deep sea, but were not involved in the shallow-water invasions. These findings are the first robust evidence that an important group of tropical shallow-water marine animals evolved from deep-water ancestors.
Sankaranarayanan, S
2003-01-01
In the present study, an existing two-dimensional boundary-fitted model [J. Hydraul. Eng.-ASCE 122 (9) (1996) 512] is used to study the effect of grid non-orthogonality on the solution of shallow water equations using boundary-fitted grids. The linearized two-dimensional shallow water equations are expressed in terms of the grid angle and aspect ratio. The truncation errors of the finite difference approximations used in the solution of the governing equations are shown to be dependent on the grid angle and the aspect ratio. The coefficient of the truncation error was shown to increase, with the decrease in the grid angle. The RMS errors in model predicted surface elevations and velocities for the case of seiching in a rectangular basin are found to increase gradually, as the grid resolution decreases from 174 to 80 gridpoints per wavelength or as the grid angle decreases from 90 deg. to 50 deg. and increases rather sharply for a grid angle of 30 deg. at grid resolutions less than 80 gridpoints per wavelength...
Three-Dimensional Shallow Water Adaptive Hydraulics (ADH-SW3): Turbulence Closure
2015-06-01
ER D C/ CH L CR -1 5- 1 Three- Dimensional Shallow Water Adaptive Hydraulics (ADH-SW3): Turbulence Closure Co as ta l a nd H yd ra ul ic...library at http://acwc.sdp.sirsi.net/client/default. ERDC/CHL CR-15-1 June 2015 Three- Dimensional Shallow Water Adaptive Hydraulics (ADH-SW3...closure schemes into the three- dimensional shallow water module of the Adaptive Hydraulics (ADH-SW3) numerical code. The report also briefly
Beam-displacement ray-mode theory of sound propagation in shallow water
Institute of Scientific and Technical Information of China (English)
张仁和; 李风华
1999-01-01
A normal mode method for propagation modeling in common horizontally stratified shallow water, which is called beam-displacement ray-mode (BDRM) theory, is introduced. The peculiarity of this method is that the boundary effects on the sound field can be expressed by the equivalent boundary reflection coefficient, so BDRM theory can be extended to elastic bottom easily. Theoretical calculations of shallow-water sound field show that BDRM has high accuracy and fast speed. The pulse propagation in shallow water is also calculated by BDRM, and the calculated waveforms are in good agreement with the measured waveforms.
Two Dimensional Plasmonic Cavities on Moire Surfaces
Balci, Sinan; Kocabas, Askin; Karabiyik, Mustafa; Kocabas, Coskun; Aydinli, Atilla
2010-03-01
We investigate surface plasmon polariton (SPP) cavitiy modes on two dimensional Moire surfaces in the visible spectrum. Two dimensional hexagonal Moire surface can be recorded on a photoresist layer using Interference lithography (IL). Two sequential exposures at slightly different angles in IL generate one dimensional Moire surfaces. Further sequential exposure for the same sample at slightly different angles after turning the sample 60 degrees around its own axis generates two dimensional hexagonal Moire cavity. Spectroscopic reflection measurements have shown plasmonic band gaps and cavity states at all the azimuthal angles (omnidirectional cavity and band gap formation) investigated. The plasmonic band gap edge and the cavity states energies show six fold symmetry on the two dimensional Moire surface as measured in reflection measurements.
Two-dimensional function photonic crystals
Liu, Xiao-Jing; Liang, Yu; Ma, Ji; Zhang, Si-Qi; Li, Hong; Wu, Xiang-Yao; Wu, Yi-Heng
2017-01-01
In this paper, we have studied two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , that can become true easily by electro-optical effect and optical kerr effect. We calculated the band gap structures of TE and TM waves, and found the TE (TM) wave band gaps of function photonic crystals are wider (narrower) than the conventional photonic crystals. For the two-dimensional function photonic crystals, when the dielectric constant functions change, the band gaps numbers, width and position should be changed, and the band gap structures of two-dimensional function photonic crystals can be adjusted flexibly, the needed band gap structures can be designed by the two-dimensional function photonic crystals, and it can be of help to design optical devices.
Two-Dimensional Planetary Surface Lander
Hemmati, H.; Sengupta, A.; Castillo, J.; McElrath, T.; Roberts, T.; Willis, P.
2014-06-01
A systems engineering study was conducted to leverage a new two-dimensional (2D) lander concept with a low per unit cost to enable scientific study at multiple locations with a single entry system as the delivery vehicle.
Calculations of Asteroid Impacts into Deep and Shallow Water
Gisler, Galen; Weaver, Robert; Gittings, Michael
2011-06-01
near-field effects are more severe if the impact occurs in shallow water.
Shallow-water Benthic Habitat Map (2013) for Coral Bay, St. John
National Oceanic and Atmospheric Administration, Department of Commerce — This shapefile contains information about the shallow-water (<40 meters) geology and biology of the seafloor in Coral Bay, St. John in the U.S. Virgin Islands...
Geyer, Anna
2016-01-01
Following a general principle introduced by Ehrnstr\\"{o}m et.al. we prove that for an equation modeling the free surface evolution of moderate amplitude waves in shallow water, all symmetric waves are traveling waves.
Shallow-Water Benthic Habitats of Southwest Puerto Rico: GeoEye Image po_0100092_PS
National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...
Geyer, Anna
2016-01-01
Following a general principle introduced by Ehrnstr\\"{o}m et.al. we prove that for an equation modeling the free surface evolution of moderate amplitude waves in shallow water, all symmetric waves are traveling waves.
The influence of shallow water and hull form variations on inland ship resistance
Rotteveel, E.; Hekkenberg, R.G.
2015-01-01
Effects of a hull form variation and shallow water on a 110-meter inland ship are presented as preliminary results of the Top Ships project, which is initiated in order to improve inland ship design tools and design guidelines.
Powering Performance of a High-Speed Shallow-Water Craft
Institute of Scientific and Technical Information of China (English)
HEShu-long; XINGSheng-de; HEChun-rong
2004-01-01
Hull form of a high-speed shallow-water craft used in fresh water is presented in this paper.Model tests for this hull lines are conducted at different water depth in towing tank, and the effect of shallow water on craft performance is investigated.Test resalts show that powering performance of this craft is superior to other representativeplanningboat, no matter in deep or shallow water.Concept of double-inlet water-jet system is designed with one inlet in side and the other in bottom.This craft,combined with the double-inlet water-jet system, can run in deep water with high speed and safely run in shallow water.The critical water depth can almost be the same as the draft of this craft.
The influence of shallow water and hull form variations on inland ship resistance
Rotteveel, E.; Hekkenberg, R.G.
2015-01-01
Effects of a hull form variation and shallow water on a 110-meter inland ship are presented as preliminary results of the Top Ships project, which is initiated in order to improve inland ship design tools and design guidelines.
Shallow-Water Benthic Habitats of Southwest Puerto Rico: GeoEye Image po_1700252_PS
National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...
Shallow-Water Benthic Habitats of Southwest Puerto Rico: Accuracy Assessment Site Locations
National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...
Shallow-Water Benthic Habitats of Southwest Puerto Rico: GeoEye Image po_483895_PS
National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...
Shallow-Water Benthic Habitats of Southwest Puerto Rico: GeoEye Image po_0900172_PS
National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...
Shallow-Water Benthic Habitats of Southwest Puerto Rico: GeoEye Image po_502736_PS
National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...
Shallow-Water Benthic Habitats of Southwest Puerto Rico: Ground Validation Site Locations
National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...
Shallow-Water Benthic Habitats of Southwest Puerto Rico: GeoEye Image po_0072610_PS
National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (<30m) benthic habitat maps of the nearshore marine environment of two areas in Southwest Puerto Rico (PR), including the Guanica Bay/La Parguera...
Remarks on stability of the rotating shallow-water vortices in the frontal dynamics regime
Energy Technology Data Exchange (ETDEWEB)
Jelloul, M.B.; Zeitlin, V. [P. et M. Curie Univ., Paris (France). Lab. de Meteorologie Dynamique
1999-12-01
Stability properties of large-scale strongly nonlinear isolated vortices in the rotating shallow water on the f-plane are analysed. Working first in the framework of the balanced frontal dynamics equations, the authors demonstrate that vortices of arbitrary sign with monotonous profiles of the free-surface elevation are formally stable and establish criteria for nonlinear stability. Stability in the framework of the full rotating shallow-water equations is also discussed and a conditional stability criterion is obtained.
The Vertical Structure of Shallow Water Flow in the Surf Zone and Inner Shelf
2008-01-01
E. Richardson, 2008, Field verification of a CFD model for wave transformation and breaking in the surf zone, J. Waterw. Port Coastal Engrg., 134(2...The Vertical Structure of Shallow Water Flow in the Surf Zone and Inner Shelf Dr. Thomas C. Lippmann Center for Coastal...wave- and tidally-driven shallow water flows in the shallow depths of the inner shelf and surf zone. OBJECTIVES 1. Theoretical investigations of
Modeling of reverberation in shallow-water based on the beam tracing theory
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A reverberation intensity model and a reverberation series model in shallow-water based on the beam tracing theory were presented.The brief theoretical deduction to compute reverberation intensity was given,and the results were compatible with the measured data. The reverberation series simulation method was built and its characteristics were tested with the measured data and other results that had been verified.The studies show that the reverberation intensity model can be used to forecast shallow-water...
Conservation laws and symmetries of the shallow water system above rough bottom
Aksenov, A. V.; Druzhkov, K. P.
2016-06-01
The system of one-dimensional shallow water equations above the rough bottom is considered. All its hydrodynamic conservation laws are found, and a group classification is performed. A new conservation law additional to the two basic conservation laws is found. It is shown that the system of shallow water equations can be linearized by a point change of variables only in cases of constant and linear bottom profiles.
The Influence of the Shallow Water Internal Tide on the Properties of Acoustic Signals
2016-06-07
LONG-TERM GOAL Quantitatively relate the temporal and spatial properties of shallow water acoustic signals to the physical processes that cause the... quantitative measure of the tidally controlled water column variability on acoustic systems the response of a Bartlett matched field processor (vertical array...moved from shallow water (~ 35 m) to deeper water (~ 60 m). Shipboard ADCP data indicated the flow conditions to be caused by an ebb barotropic tide
Electronic structure of boron based single and multi-layer two dimensional materials
Miyazato, Itsuki; Takahashi, Keisuke
2017-09-01
Two dimensional nanosheets based on boron and Group VA elements are designed and characterized using first principles calculations. B-N, B-P, B-As, B-Sb, and B-Bi are found to possess honeycomb structures where formation energies indicate exothermic reactions. Contrary to B-N, the cases of B-P, B-As, B-Sb, and B-Bi nanosheets are calculated to possess narrow band gaps. In addition, calculations reveal that the electronegativity difference between B and Group VA elements in the designed materials is a good indicator to predict the charge transfer and band gap of the two dimensional materials. Hydrogen adsorption over defect-free B-Sb and B-Bi results in exothermic reactions, while defect-free B-N, B-P, and B-As result in endothermic reactions. The layerability of the designed two dimensional materials is also investigated where the electronic structure of two-layered two dimensional materials is strongly coupled with how the two dimensional materials are layered. Thus, one can consider that the properties of two dimensional materials can be controlled by the composition of two dimensional materials and the structure of layers.
Interpolation by two-dimensional cubic convolution
Shi, Jiazheng; Reichenbach, Stephen E.
2003-08-01
This paper presents results of image interpolation with an improved method for two-dimensional cubic convolution. Convolution with a piecewise cubic is one of the most popular methods for image reconstruction, but the traditional approach uses a separable two-dimensional convolution kernel that is based on a one-dimensional derivation. The traditional, separable method is sub-optimal for the usual case of non-separable images. The improved method in this paper implements the most general non-separable, two-dimensional, piecewise-cubic interpolator with constraints for symmetry, continuity, and smoothness. The improved method of two-dimensional cubic convolution has three parameters that can be tuned to yield maximal fidelity for specific scene ensembles characterized by autocorrelation or power-spectrum. This paper illustrates examples for several scene models (a circular disk of parametric size, a square pulse with parametric rotation, and a Markov random field with parametric spatial detail) and actual images -- presenting the optimal parameters and the resulting fidelity for each model. In these examples, improved two-dimensional cubic convolution is superior to several other popular small-kernel interpolation methods.
Lie symmetry analysis and exact solutions of the quasi-geostrophic two-layer problem
Bihlo, Alexander
2010-01-01
The quasi-geostrophic two-layer model is of superior interest in dynamic meteorology since it is one of the easiest ways to study baroclinic processes in geophysical fluid dynamics. The complete set of point symmetries of the two-layer equations is determined. An optimal set of one- and two-dimensional inequivalent subalgebras of the maximum Lie invariance algebra is constructed. On the basis of these subalgebras we exhaustively carry out group-invariant reduction and compute various classes of exact solutions. Where possible, reference to the physical meaning of the exact solutions is given.
Free surface simulation of a two-layer fluid by boundary element method
Directory of Open Access Journals (Sweden)
Weoncheol Koo
2010-09-01
Full Text Available A two-layer fluid with free surface is simulated in the time domain by a two-dimensional potential-based Numerical Wave Tank (NWT. The developed NWT is based on the boundary element method and a leap-frog time integration scheme. A whole domain scheme including interaction terms between two layers is applied to solve the boundary integral equation. The time histories of surface elevations on both fluid layers in the respective wave modes are verified with analytic results. The amplitude ratios of upper to lower elevation for various density ratios and water depths are also compared.
Modeling shallow-water hydrodynamics: Rotations, rips, and rivers
Long, Joseph W.
Hydrodynamic models are used as a diagnostic tool to understand the temporal variability of shallow-water processes that are difficult to completely resolve with traditional field measurements. For all simulations, modeled quantities are qualitatively or quantitatively compared with available measurements to gain confidence in conclusions derived from the modeled results. In this work we consider both vorticity motions and rip currents, which arise from alongshore inhomogeneities in the wave momentum flux but occur at much different time scales (O(min) vs. O(hours-weeks)). They each have an effect on sediment transport processes and dispersion of sediments or pollutants in the surf zone, which makes understanding their structure and persistence essential. The vorticity motions of interest here are associated with spatial and temporal wave height variations caused by wave grouping and can exist with either normally or obliquely incident wave conditions. We find that these flows persist for O(1000s) but their lifespan is controlled by the sequence of wave forcing rather than bottom friction as previously hypothesized. These motions can also be observed in combination with either stable or unstable alongshore currents. Our results suggest that, at times, these alongshore propagating wave group forced vortices are misinterpreted as instabilities of the alongshore current. Alternately, the rip currents considered in this research are controlled by strong wave height gradients in the surf zone generated by the refraction of incident waves over variable offshore depth contours. Thus, this type of circulation is governed by timescales associated with changing offshore wave conditions (O(hours - days)). We consider a four- week time period when variable offshore wave spectra were observed during a large-scale field experiment. The model and data are in good agreement for all wave conditions during the month and estimated model errors are similar to those found previously
The run-up of weakly-two-dimensional solitary pulses
Directory of Open Access Journals (Sweden)
M. Brocchini
1998-01-01
Full Text Available The run-up of solitary-type pulses propagating at a small angle with respect to the shore normal is analysed by means of a weakly-two-dimensional extension of a solution of the nonlinear shallow water equations for a non-breaking, solitary pulse incident and reflecting on an inclined plane beach similar to that of Synolakis (1987. A simple analytic expression for the longshore velocity of the solitarytype pulse is given along with examples of computations. The proposed solution can be employed in modelling run-up flow properties of solitary-type pulses (e.g. tsunamis, primary waves of wave groups propagating in shallow waters, .... The hodograph transformation that is used and the flow properties are illustrated in terms of contour plots. A limiting pulse amplitude is defined such that breakdown of the solution occurs. A solution for the run-up of multiplesolitary-pulses in shallow waters is also described. Some of the salient characteristics are illustrated and discussed. Breakdown conditions are analytically defined also for the multiple-solitary-pulses solution. A strong condition is given which couples information on both pulses amplitudes and distances. An easier (but weaker version of the criterion is given in terms of a pair of decoupled formulae one for the Pulses amplitudes and the second for their initial positions. Very large run-up is achieved because of the merging of two or more solitary pulses which are smaller than the limiting Pulse. The role of pulse separation within a group of solitary Pulses is also analysed in terms of both a 'nonlinearity parameter' N and a 'groupiness parameter' G. It is found that a critical distance exists between two pulses which minimizes the back-wash velocity and, as a consequence, the nonlinearity parameter N.
TWO-DIMENSIONAL TOPOLOGY OF COSMOLOGICAL REIONIZATION
Energy Technology Data Exchange (ETDEWEB)
Wang, Yougang; Xu, Yidong; Chen, Xuelei [Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Chinese Academy of Sciences, Beijing, 100012 China (China); Park, Changbom [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of); Kim, Juhan, E-mail: wangyg@bao.ac.cn, E-mail: cbp@kias.re.kr [Center for Advanced Computation, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722 (Korea, Republic of)
2015-11-20
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two-dimensional genus curve for the early, middle, and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometre Array.
Two dimensional topology of cosmological reionization
Wang, Yougang; Xu, Yidong; Chen, Xuelei; Kim, Juhan
2015-01-01
We study the two-dimensional topology of the 21-cm differential brightness temperature for two hydrodynamic radiative transfer simulations and two semi-numerical models. In each model, we calculate the two dimensional genus curve for the early, middle and late epochs of reionization. It is found that the genus curve depends strongly on the ionized fraction of hydrogen in each model. The genus curves are significantly different for different reionization scenarios even when the ionized faction is the same. We find that the two-dimensional topology analysis method is a useful tool to constrain the reionization models. Our method can be applied to the future observations such as those of the Square Kilometer Array.
Two-dimensional x-ray diffraction
He, Bob B
2009-01-01
Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea
Matching Two-dimensional Gel Electrophoresis' Spots
DEFF Research Database (Denmark)
Dos Anjos, António; AL-Tam, Faroq; Shahbazkia, Hamid Reza
2012-01-01
This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches. This ar......This paper describes an approach for matching Two-Dimensional Electrophoresis (2-DE) gels' spots, involving the use of image registration. The number of false positive matches produced by the proposed approach is small, when compared to academic and commercial state-of-the-art approaches...
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Zhang, Shuqing; Liu, Zhirong
2016-12-01
The carrier mobility of anisotropic two-dimensional semiconductors under longitudinal acoustic phonon scattering was theoretically studied using deformation potential theory. Based on the Boltzmann equation with the relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was derived, showing that the influence of effective mass on mobility anisotropy is larger than those of deformation potential constant or elastic modulus. Parameters were collected for various anisotropic two-dimensional materials (black phosphorus, Hittorf's phosphorus, BC2N , MXene, TiS3, and GeCH3) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio is overestimated by the previously described method.
Towards two-dimensional search engines
Ermann, Leonardo; Chepelianskii, Alexei D.; Shepelyansky, Dima L.
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Statistical properties of inf...
A Two-layer Model for the Simulation of the VARTM Process with Resin Distribution Layer
Young, Wen-Bin
2013-12-01
Vacuum assisted resin transfer molding (VARTM) is one of the important processes to fabricate high performance composites. In this process, resin is drawn into the mold to impregnate the fiber reinforcement to a form composite. A resin distribution layer with high permeability was often introduced on top of the fiber reinforcement to accelerate the filling speed. Due to the difference of the flow resistance in the resin distribution layer and the reinforcement as well as the resulting through thickness transverse flow, the filling flow field is intrinsically three-dimensional. This study developed a two-layer model with two-dimensional formulation to simulate the filling flow of the VARTM process with a resin distribution layer. Two-dimensional flow was considered in each layer and a transverse flow in the thickness direction was estimated between the two layers. Thermal analysis including the transverse convection was also performed to better simulate the temperature distribution.
Two layer asymptotic model for the wave propagation in the presence of vorticity
Kazakova, M. Yu; Noble, P.
2016-06-01
In the present study, we consider the system of two layers of the immiscible constant density fluids which are modeled by the full Euler equations. The domain of the flow is infinite in the horizontal directions and delimited above by a free surface. Bottom topography is taken into account. This is a simple model of the wave propagation in the ocean where the upper layer corresponds to the (thin) layer of fluid above the thermocline whereas the lower layer is under the thermocline. Though even this simple framework is computationally too expensive and mathematically too complicated to describe efficiently propagation of waves in the ocean. Modeling assumption such as shallowness, vanishing vorticity and hydrostatic pressure are usually made to get the bi-layer shallow water models that are mathematically more manageable. Though, they cannot describe correctly the propagation of both internal and free surface waves and dispersive/non hydrostatic must be added. Our goal is to consider the regime of medium to large vorticities in shallow water flow. We present the derivation of the model for internal and surface wave propagation in the case of constant and general vorticities in each layer. The model reduces to the classical Green-Naghdi equations in the case of vanishing vorticities.
Two-Layer Quantum Key Distribution
Ramos, Rubens Viana
2012-01-01
Recently a new quantum key distribution protocol using coherent and thermal states was proposed. In this work this kind of two-layer QKD protocol is formalized and its security against the most common attacks, including external control and Trojan horse attacks, is discussed.
Piezoelectricity in Two-Dimensional Materials
Wu, Tao
2015-02-25
Powering up 2D materials: Recent experimental studies confirmed the existence of piezoelectricity - the conversion of mechanical stress into electricity - in two-dimensional single-layer MoS2 nanosheets. The results represent a milestone towards embedding low-dimensional materials into future disruptive technologies. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA.
Kronecker Product of Two-dimensional Arrays
Institute of Scientific and Technical Information of China (English)
Lei Hu
2006-01-01
Kronecker sequences constructed from short sequences are good sequences for spread spectrum communication systems. In this paper we study a similar problem for two-dimensional arrays, and we determine the linear complexity of the Kronecker product of two arrays. Our result shows that similar good property on linear complexity holds for Kronecker product of arrays.
Two-Dimensional Toda-Heisenberg Lattice
Directory of Open Access Journals (Sweden)
Vadim E. Vekslerchik
2013-06-01
Full Text Available We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical Heisenberg and Toda-like lattices. In the framework of the Hirota direct approach, we present the field equations of this model as a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton solutions.
A novel two dimensional particle velocity sensor
Pjetri, Olti; Wiegerink, Remco J.; Lammerink, Theo S.; Krijnen, Gijs J.
2013-01-01
In this paper we present a two wire, two-dimensional particle velocity sensor. The miniature sensor of size 1.0x2.5x0.525 mm, consisting of only two crossed wires, shows excellent directional sensitivity in both directions, thus requiring no directivity calibration, and is relatively easy to fabrica
Two-dimensional microstrip detector for neutrons
Energy Technology Data Exchange (ETDEWEB)
Oed, A. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)
1997-04-01
Because of their robust design, gas microstrip detectors, which were developed at ILL, can be assembled relatively quickly, provided the prefabricated components are available. At the beginning of 1996, orders were received for the construction of three two-dimensional neutron detectors. These detectors have been completed. The detectors are outlined below. (author). 2 refs.
Two-dimensional magma-repository interactions
Bokhove, O.
2001-01-01
Two-dimensional simulations of magma-repository interactions reveal that the three phases --a shock tube, shock reflection and amplification, and shock attenuation and decay phase-- in a one-dimensional flow tube model have a precursor. This newly identified phase ``zero'' consists of the impact of
Two-dimensional subwavelength plasmonic lattice solitons
Ye, F; Hu, B; Panoiu, N C
2010-01-01
We present a theoretical study of plasmonic lattice solitons (PLSs) formed in two-dimensional (2D) arrays of metallic nanowires embedded into a nonlinear medium with Kerr nonlinearity. We analyze two classes of 2D PLSs families, namely, fundamental and vortical PLSs in both focusing and defocusing media. Their existence, stability, and subwavelength spatial confinement are studied in detai
A two-dimensional Dirac fermion microscope
DEFF Research Database (Denmark)
Bøggild, Peter; Caridad, Jose; Stampfer, Christoph
2017-01-01
in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2...
two - dimensional mathematical model of water flow in open ...
African Journals Online (AJOL)
ES Obe
1996-09-01
Sep 1, 1996 ... simplification of the system of the governing shallow water equations ... For optional design of the ... models. One of the facilities for preliminary appraisal of the ... distribution. ..... indicated for the individual methods, located ...
Development and validation of a two-dimensional fast-response flood estimation model
Energy Technology Data Exchange (ETDEWEB)
Judi, David R [Los Alamos National Laboratory; Mcpherson, Timothy N [Los Alamos National Laboratory; Burian, Steven J [UNIV OF UTAK
2009-01-01
A finite difference formulation of the shallow water equations using an upwind differencing method was developed maintaining computational efficiency and accuracy such that it can be used as a fast-response flood estimation tool. The model was validated using both laboratory controlled experiments and an actual dam breach. Through the laboratory experiments, the model was shown to give good estimations of depth and velocity when compared to the measured data, as well as when compared to a more complex two-dimensional model. Additionally, the model was compared to high water mark data obtained from the failure of the Taum Sauk dam. The simulated inundation extent agreed well with the observed extent, with the most notable differences resulting from the inability to model sediment transport. The results of these validation studies complex two-dimensional model. Additionally, the model was compared to high water mark data obtained from the failure of the Taum Sauk dam. The simulated inundation extent agreed well with the observed extent, with the most notable differences resulting from the inability to model sediment transport. The results of these validation studies show that a relatively numerical scheme used to solve the complete shallow water equations can be used to accurately estimate flood inundation. Future work will focus on further reducing the computation time needed to provide flood inundation estimates for fast-response analyses. This will be accomplished through the efficient use of multi-core, multi-processor computers coupled with an efficient domain-tracking algorithm, as well as an understanding of the impacts of grid resolution on model results.
Lie symmetry analysis and exact solutions of the quasigeostrophic two-layer problem
Bihlo, Alexander; Popovych, Roman O.
2011-03-01
The quasigeostrophic two-layer model is of superior interest in dynamic meteorology since it is one of the easiest ways to study baroclinic processes in geophysical fluid dynamics. The complete set of point symmetries of the two-layer equations is determined. An optimal set of one- and two-dimensional inequivalent subalgebras of the maximal Lie invariance algebra is constructed. On the basis of these subalgebras, we exhaustively carry out group-invariant reduction and compute various classes of exact solutions. Wherever possible, reference to the physical meaning of the exact solutions is given. In particular, the well-known baroclinic Rossby wave solutions in the two-layer model are rediscovered.
Electronics based on two-dimensional materials.
Fiori, Gianluca; Bonaccorso, Francesco; Iannaccone, Giuseppe; Palacios, Tomás; Neumaier, Daniel; Seabaugh, Alan; Banerjee, Sanjay K; Colombo, Luigi
2014-10-01
The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.
Two-dimensional ranking of Wikipedia articles
Zhirov, A. O.; Zhirov, O. V.; Shepelyansky, D. L.
2010-10-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists ab aeterno. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. While PageRank highlights very well known nodes with many ingoing links, CheiRank highlights very communicative nodes with many outgoing links. In this way the ranking becomes two-dimensional. Using CheiRank and PageRank we analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Two-Dimensional NMR Lineshape Analysis
Waudby, Christopher A.; Ramos, Andres; Cabrita, Lisa D.; Christodoulou, John
2016-04-01
NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions.
Towards two-dimensional search engines
Ermann, Leonardo; Shepelyansky, Dima L
2011-01-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way the ranking of nodes becomes two-dimensional that paves the way for development of two-dimensional search engines of new type. Information flow properties on PageRank-CheiRank plane are analyzed for networks of British, French and Italian Universities, Wikipedia, Linux Kernel, gene regulation and other networks. Methods of spam links control are also analyzed.
Toward two-dimensional search engines
Ermann, L.; Chepelianskii, A. D.; Shepelyansky, D. L.
2012-07-01
We study the statistical properties of various directed networks using ranking of their nodes based on the dominant vectors of the Google matrix known as PageRank and CheiRank. On average PageRank orders nodes proportionally to a number of ingoing links, while CheiRank orders nodes proportionally to a number of outgoing links. In this way, the ranking of nodes becomes two dimensional which paves the way for the development of two-dimensional search engines of a new type. Statistical properties of information flow on the PageRank-CheiRank plane are analyzed for networks of British, French and Italian universities, Wikipedia, Linux Kernel, gene regulation and other networks. A special emphasis is done for British universities networks using the large database publicly available in the UK. Methods of spam links control are also analyzed.
A two-dimensional Dirac fermion microscope
Bøggild, Peter; Caridad, José M.; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-01
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
A two-dimensional Dirac fermion microscope.
Bøggild, Peter; Caridad, José M; Stampfer, Christoph; Calogero, Gaetano; Papior, Nick Rübner; Brandbyge, Mads
2017-06-09
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities for realizing an analogy to electron microscopy in the solid state. Here we provide a perspective view on how a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented and operated, using graphene as a vacuum chamber for ballistic electrons. We use semiclassical simulations to propose concrete architectures and design rules of 2D electron guns, deflectors, tunable lenses and various detectors. The simulations show how simple objects can be imaged with well-controlled and collimated in-plane beams consisting of relativistic charge carriers. Finally, we discuss the potential of such microscopes for investigating edges, terminations and defects, as well as interfaces, including external nanoscale structures such as adsorbed molecules, nanoparticles or quantum dots.
Two-Dimensional Scheduling: A Review
Directory of Open Access Journals (Sweden)
Zhuolei Xiao
2013-07-01
Full Text Available In this study, we present a literature review, classification schemes and analysis of methodology for scheduling problems on Batch Processing machine (BP with both processing time and job size constraints which is also regarded as Two-Dimensional (TD scheduling. Special attention is given to scheduling problems with non-identical job sizes and processing times, with details of the basic algorithms and other significant results.
Two dimensional fermions in four dimensional YM
Narayanan, R
2009-01-01
Dirac fermions in the fundamental representation of SU(N) live on a two dimensional torus flatly embedded in $R^4$. They interact with a four dimensional SU(N) Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the size of the torus in units of $\\frac{1}{\\Lambda_{SU(N)}}$ is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit.
Two-dimensional Kagome photonic bandgap waveguide
DEFF Research Database (Denmark)
Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou;
2000-01-01
The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....
String breaking in two-dimensional QCD
Hornbostel, K J
1999-01-01
I present results of a numerical calculation of the effects of light quark-antiquark pairs on the linear heavy-quark potential in light-cone quantized two-dimensional QCD. I extract the potential from the Q-Qbar component of the ground-state wavefunction, and observe string breaking at the heavy-light meson pair threshold. I briefly comment on the states responsible for the breaking.
Two-dimensional supramolecular electron spin arrays.
Wäckerlin, Christian; Nowakowski, Jan; Liu, Shi-Xia; Jaggi, Michael; Siewert, Dorota; Girovsky, Jan; Shchyrba, Aneliia; Hählen, Tatjana; Kleibert, Armin; Oppeneer, Peter M; Nolting, Frithjof; Decurtins, Silvio; Jung, Thomas A; Ballav, Nirmalya
2013-05-07
A bottom-up approach is introduced to fabricate two-dimensional self-assembled layers of molecular spin-systems containing Mn and Fe ions arranged in a chessboard lattice. We demonstrate that the Mn and Fe spin states can be reversibly operated by their selective response to coordination/decoordination of volatile ligands like ammonia (NH3). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Equilibrium statistical mechanics and energy partition for the shallow water model
Renaud, Antoine; Bouchet, Freddy
2015-01-01
The aim of this paper is to use large deviation theory in order to compute the entropy of macrostates for the microcanonical measure of the shallow water system. The main prediction of this full statistical mechanics computation is the energy partition between a large scale vortical flow and small scale fluctuations related to inertia-gravity waves. We introduce for that purpose a discretized model of the continuous shallow water system, and compute the corresponding statistical equilibria. We argue that microcanonical equilibrium states of the discretized model in the continuous limit are equilibrium states of the actual shallow water system. We show that the presence of small scale fluctuations selects a subclass of equilibria among the states that were previously computed by phenomenological approaches that were neglecting such fluctuations. In the limit of weak height fluctuations, the equilibrium state can be interpreted as two subsystems in thermal contact: one subsystem corresponds to the large scale v...
On the Simulation of Shallow Water Tides in the Vicinity of the Taiwan Banks
Directory of Open Access Journals (Sweden)
Ming-Da Chiou
2010-01-01
Full Text Available The Taiwan Banks (Formosa Shoals, a large NE-SW oriented bathymetric feature near the southern end (23°N, 118 - 119°E of the Taiwan Strait, is a region of extremely shallow water that exerts a profound effect on the propagation of tidal waves. As such waves propagate over the Taiwan Banks, they become distorted and asymmetric due to bottom friction and contribute to the generation of shallow water tides. The POM model was used in present study to simulate the tides in the Taiwan Strait region. Shallow water tidal dynamics in the area of Taiwan Banks are focused. The numerical model was validated against sea level observations from 34 tidal stations located on the coast of Mainland China and Taiwan. Trajectory records from two SVP drifters are used to be compared with the simulations using wavelet-based rotary spectral analysis.
On the wind stress formulation over shallow waters in atmospheric models
Directory of Open Access Journals (Sweden)
P. A. Jiménez
2014-12-01
Full Text Available The wind stress formulation over shallow waters is investigated using year-long observations of the wind profile within the first 100 m of the atmosphere and mesoscale simulations. The model experiments use a range of planetary boundary layer parameterizations in order to quantify the uncertainty related to the turbulent closure assumptions, and thus isolate the dominant influence of the roughness formulation. Results indicate that a positive wind speed bias exists when the common open ocean formulation for roughness is adopted. An alternative formulation consistent with shallow water observations is necessary to reconcile model results with observations, providing the first modeling evidence supporting the increase of surface drag over shallow waters. Including ocean bathymetry as static input data to atmospheric models constitutes an area where further research should be oriented.
Two dimensional echocardiographic detection of intraatrial masses.
DePace, N L; Soulen, R L; Kotler, M N; Mintz, G S
1981-11-01
With two dimensional echocardiography, a left atrial mass was detected in 19 patients. Of these, 10 patients with rheumatic mitral stenosis had a left atrial thrombus. The distinctive two dimensional echocardiographic features of left atrial thrombus included a mass of irregular nonmobile laminated echos within an enlarged atrial cavity, usually with a broad base of attachment to the posterior left atrial wall. Seven patients had a left atrial myxoma. Usually, the myxoma appeared as a mottled ovoid, sharply demarcated mobile mass attached to the interatrial septum. One patient had a right atrial angiosarcoma that appeared as a nonmobile mass extending from the inferior vena caval-right atrial junction into the right atrial cavity. One patient had a left atrial leiomyosarcoma producing a highly mobile mass attached to the lateral wall of the left atrium. M mode echocardiography detected six of the seven myxomas, one thrombus and neither of the other tumors. Thus, two dimensional echocardiography appears to be the technique of choice in the detection, localization and differentiation of intraatrial masses.
The "shallow-waterness" of the wave climate in European coastal regions
Christensen, Kai Håkon; Carrasco, Ana; Bidlot, Jean-Raymond; Breivik, Øyvind
2016-01-01
In contrast to deep water waves, shallow water waves are influenced by bottom topography, which has consequences for the propagation of wave energy as well as for the energy and momentum exchange between the waves and the mean flow. The ERA-Interim reanalysis is used to assess the fraction of wave energy associated with shallow water waves in coastal regions in Europe. We show maps of the distribution of this fraction as well as time series statistics from 8 selected stations. There is a s...
ANTI-DIFFUSIVE FINITE DIFFERENCE WENO METHODS FOR SHALLOW WATER WITH TRANSPORT OF POLLUTANT
Institute of Scientific and Technical Information of China (English)
Zhengfu Xu; Chi-Wang Shu
2006-01-01
In this paper we further explore and apply our recent anti-diffusive flux corrected high order finite difference WENO schemes for conservation laws [18]to compute the Saint-Venant system of shallow water equations with pollutant propagation, which is described by a transport equation. The motivation is that the high order anti-diffusive WENOscheme for conservation laws produces sharp resolution of contact discontinuities while keeping high order accuracy for the approximation in the smooth region of the solution.The application of the anti-diffusive high order WENO scheme to the Saint-Venant system of shallow water equations with transport of pollutant achieves high resolution
High-Resolution Numerical Model for Shallow Water Flows and Pollutant Diffusions
Institute of Scientific and Technical Information of China (English)
王嘉松; 何友声
2002-01-01
A finite-volume high-resolution numerical model for coupling the shallow water flows and pollutant diffusions was presented based on using a hybrid TVD scheme in space discretization and a Runge-Kutta method in time discretization. Numerical simulations for modelling dam- break, enlarging open channel flow and pollutant dispersion were implemented and compared with experimental data or other published computations. The validation of this method shows that it can not only deal with the problem involving discontinuities and unsteady flows, but also solve the general shallow water flows and pollutant diffusions.
An optimal algorithm for single-mode close-loop excitation in shallow water
Institute of Scientific and Technical Information of China (English)
PENG Dayong; ZENG Juan; LI Haifeng; LIU Haijun; ZHAO Wenyao; GAO Tianfu
2011-01-01
An optimal algorithm for single-mode close-loop excitation in shallow water is presented. By analyzing the covariance of estimation value of Green＇s function matrix, an optimal source array weights matrix is presented to estimate Green＇s function matrix. The weights matrix is a unitary matrix, and absolute values of the matrix elements are equal. Algorithm based on the weights matrix makes single-mode excitation converge at maximum speed and be steady. Advantages of the algorithm are confirmed by numerical simulations. Finally, results of shallow water experiment are presented, and the energy ratio of single mode is higher than 97 percent.
Explicit Kinetic Flux Vector Splitting Scheme for the 2-D Shallow Water Wave Equations
Institute of Scientific and Technical Information of China (English)
施卫平; 黄明游; 王婷; 张小江
2004-01-01
Originally, the kinetic flux vector splitting (KFVS) scheme was developed as a numerical method to solve gas dynamic problems. The main idea in the approach is to construct the flux based on the microscopical description of the gas. In this paper, based on the analogy between the shallow water wave equations and the gas dynamic equations, we develop an explicit KFVS method for simulating the shallow water wave equations. A 1D steady flow and a 2D unsteady flow are presented to show the robust and accuracy of the KFVS scheme.
An Anti-multipath Frequency Hopped Communication Technique in Shallow-water Acoustic Channels
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
This paper introduces a frequency-hopped (FH) communication system to anti-intersymbol interferences (ISI) caused by the multipath propagation in shallow-water acoustic channels, and uses high-speed digital signal processor (DSP) and serial ADC (MAX121) chip to demodulate received signal efficiently based Fast Fourier Transform (FFT) algorithm. The field experimental results show: a data rate of 1Kbit/s with the bit error rates on the order of 10-4 is demonstrated at 2000 m in the shallow-water acoustic channel of Xiamen harbor, and the key techniques of the system is analyzed in the paper.
SWASHES: a library of Shallow Water Analytic Solutions for Hydraulic and Environmental Studies
Delestre, Olivier; Pierre-Antoine, Ksinant; Darboux, Frédéric; Christian, Laguerre; Vo, Thi Ngoc Tuoi; James, Francois; Cordier, Stephane
2013-01-01
A significant number of analytic solutions to the Shallow Water equations is discribed in a unified formalism. They encompass a wide variety of flow conditions (supercritical, subcritical, shock, etc.), in 1 or 2 space dimensions, with or without rain and soil friction, for transitory flow or steady state. An original feature is that the corresponding source codes are made available to the community (http://www.univ-orleans.fr/mapmo/soft/SWASHES), so that users of Shallow Water based models can easily find an adaptable benchmark library to validate numerical methods.
Understanding dynamics of large-scale atmospheric vortices with moist-convective shallow water model
Rostami, M.; Zeitlin, V.
2016-08-01
Atmospheric jets and vortices which, together with inertia-gravity waves, constitute the principal dynamical entities of large-scale atmospheric motions, are well described in the framework of one- or multi-layer rotating shallow water models, which are obtained by vertically averaging of full “primitive” equations. There is a simple and physically consistent way to include moist convection in these models by adding a relaxational parameterization of precipitation and coupling precipitation with convective fluxes with the help of moist enthalpy conservation. We recall the construction of moist-convective rotating shallow water model (mcRSW) model and give an example of application to upper-layer atmospheric vortices.
Directory of Open Access Journals (Sweden)
S. W. Lyon
2006-01-01
Full Text Available Shallow water tables near-streams often lead to saturated, overland flow generating areas in catchments in humid climates. While these saturated areas are assumed to be principal biogeochemical hot-spots and important for issues such as non-point pollution sources, the spatial and temporal behavior of shallow water tables, and associated saturated areas, is not completely understood. This study demonstrates how geostatistical methods can be used to characterize the spatial and temporal variation of the shallow water table for the near-stream region. Event-based and seasonal changes in the spatial structure of the shallow water table, which influences the spatial pattern of surface saturation and related runoff generation, can be identified and used in conjunction to characterize the hydrology of an area. This is accomplished through semivariogram analysis and indicator kriging to produce maps combining soft data (i.e., proxy information to the variable of interest representing general shallow water table patterns with hard data (i.e., actual measurements that represent variation in the spatial structure of the shallow water table per rainfall event. The area used was a hillslope in the Catskill Mountains region of New York State. The shallow water table was monitored for a 120 m×180 m near-stream region at 44 sampling locations on 15-min intervals. Outflow of the area was measured at the same time interval. These data were analyzed at a short time interval (15 min and at a long time interval (months to characterize the changes in the hydrologic behavior of the hillslope. Indicator semivariograms based on binary-transformed ground water table data (i.e., 1 if exceeding the time-variable median depth to water table and 0 if not were created for both short and long time intervals. For the short time interval, the indicator semivariograms showed a high degree of spatial structure in the shallow water table for the spring, with increased range
Weakly disordered two-dimensional Frenkel excitons
Boukahil, A.; Zettili, Nouredine
2004-03-01
We report the results of studies of the optical properties of weakly disordered two- dimensional Frenkel excitons in the Coherent Potential Approximation (CPA). An approximate complex Green's function for a square lattice with nearest neighbor interactions is used in the self-consistent equation to determine the coherent potential. It is shown that the Density of States is very much affected by the logarithmic singularities in the Green's function. Our CPA results are in excellent agreement with previous investigations by Schreiber and Toyozawa using the Monte Carlo simulation.
Two-dimensional photonic crystal surfactant detection.
Zhang, Jian-Tao; Smith, Natasha; Asher, Sanford A
2012-08-07
We developed a novel two-dimensional (2-D) crystalline colloidal array photonic crystal sensing material for the visual detection of amphiphilic molecules in water. A close-packed polystyrene 2-D array monolayer was embedded in a poly(N-isopropylacrylamide) (PNIPAAm)-based hydrogel film. These 2-D photonic crystals placed on a mirror show intense diffraction that enables them to be used for visual determination of analytes. Binding of surfactant molecules attaches ions to the sensor that swells the PNIPAAm-based hydrogel. The resulting increase in particle spacing red shifts the 2-D diffracted light. Incorporation of more hydrophobic monomers increases the sensitivity to surfactants.
Theory of two-dimensional transformations
Kanayama, Yutaka J.; Krahn, Gary W.
1998-01-01
The article of record may be found at http://dx.doi.org/10.1109/70.720359 Robotics and Automation, IEEE Transactions on This paper proposes a new "heterogeneous" two-dimensional (2D) transformation group ___ to solve motion analysis/planning problems in robotics. In this theory, we use a 3×1 matrix to represent a transformation as opposed to a 3×3 matrix in the homogeneous formulation. First, this theory is as capable as the homogeneous theory, Because of the minimal size, its implement...
Two-dimensional ranking of Wikipedia articles
Zhirov, A O; Shepelyansky, D L
2010-01-01
The Library of Babel, described by Jorge Luis Borges, stores an enormous amount of information. The Library exists {\\it ab aeterno}. Wikipedia, a free online encyclopaedia, becomes a modern analogue of such a Library. Information retrieval and ranking of Wikipedia articles become the challenge of modern society. We analyze the properties of two-dimensional ranking of all Wikipedia English articles and show that it gives their reliable classification with rich and nontrivial features. Detailed studies are done for countries, universities, personalities, physicists, chess players, Dow-Jones companies and other categories.
Mobility anisotropy of two-dimensional semiconductors
Lang, Haifeng; Liu, Zhirong
2016-01-01
The carrier mobility of anisotropic two-dimensional (2D) semiconductors under longitudinal acoustic (LA) phonon scattering was theoretically studied with the deformation potential theory. Based on Boltzmann equation with relaxation time approximation, an analytic formula of intrinsic anisotropic mobility was deduced, which shows that the influence of effective mass to the mobility anisotropy is larger than that of deformation potential constant and elastic modulus. Parameters were collected for various anisotropic 2D materials (black phosphorus, Hittorf's phosphorus, BC$_2$N, MXene, TiS$_3$, GeCH$_3$) to calculate their mobility anisotropy. It was revealed that the anisotropic ratio was overestimated in the past.
Sums of two-dimensional spectral triples
DEFF Research Database (Denmark)
Christensen, Erik; Ivan, Cristina
2007-01-01
construct a sum of two dimensional modules which reflects some aspects of the topological dimensions of the compact metric space, but this will only give the metric back approximately. At the end we make an explicit computation of the last module for the unit interval in. The metric is recovered exactly......, the Dixmier trace induces a multiple of the Lebesgue integral but the growth of the number of eigenvalues is different from the one found for the standard differential operator on the unit interval....
Binding energy of two-dimensional biexcitons
DEFF Research Database (Denmark)
Singh, Jai; Birkedal, Dan; Vadim, Lyssenko;
1996-01-01
Using a model structure for a two-dimensional (2D) biexciton confined in a quantum well, it is shown that the form of the Hamiltonian of the 2D biexciton reduces into that of an exciton. The binding energies and Bohr radii of a 2D biexciton in its various internal energy states are derived...... analytically using the fractional dimension approach. The ratio of the binding energy of a 2D biexciton to that of a 2D exciton is found to be 0.228, which agrees very well with the recent experimental value. The results of our approach are compared with those of earlier theories....
Dynamics of film. [two dimensional continua theory
Zak, M.
1979-01-01
The general theory of films as two-dimensional continua are elaborated upon. As physical realizations of such a model this paper examines: inextensible films, elastic films, and nets. The suggested dynamic equations have enabled us to find out the characteristic speeds of wave propagation of the invariants of external and internal geometry and formulate the criteria of instability of their shape. Also included herein is a detailed account of the equation describing the film motions beyond the limits of the shape stability accompanied by the formation of wrinkles. The theory is illustrated by examples.
Cairns, S.D.; Hoeksema, B.W.
1998-01-01
A new species of stylasterid coral, Distichopora vervoorti, is described from shallow water off Bali, Indonesia. Although similar to D. irregularis in having meandering pore rows, it differs from that species in colony and branch shape, coenosteal colour, and expression of the ampullae.
Impacts of ocean acidification on sediment processes in shallow waters of the Arctic Ocean
Gazeau, F.; van Rijswijk, P.; Pozzato, L.; Middelburg, J.J.
Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer
Impacts of Ocean Acidification on Sediment Processes in Shallow Waters of the Arctic Ocean
Gazeau, F.; van Rijswijk, P.; Pozzato, L.; Middelburg, J.J.
2014-01-01
Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer
Digital Repository Service at National Institute of Oceanography (India)
Rajasabapathy, R.; Mohandass, C.; Yoon, J.-H.; Dastager, S.G.; Liu, Q.; Khieu, T.-N.; Son, C.K.; Li, W.-J.; Colaco, A.
A novel, Gram-negative, non-motile, rod-shaped yellow pigmented bacterium, designated VBW088T was isolated from shallow water hydrothermal vent of Espalamaca, Azores. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain VBW088...
Siemes, K.; Snellen, M.; Simons, D.G.; Hermand, J.P.
2009-01-01
Shallow water naval operations require detailed knowledge of the environmental properties. In addition to parameters such as water depth, knowledge about the sediment properties is of high importance for a wide range of operations. In this context, the MREA BP'07 experiment was carried out in the Me
Using MBES backscatter strength measurements for assessing a shallow water soft sediment environment
Siemes, K.; Snellen, M.; Simons, D.G.; Hermand, J.P.
2009-01-01
Shallow water naval operations require detailed knowledge of the environmental characteristics. In this context, the BP’07 experiment was carried out in the Mediterranean Sea, south-east of Elba Island, in 2007. Measurements that were taken during this experiment employ a large set of sensors, there
Impacts of ocean acidification on sediment processes in shallow waters of the Arctic Ocean
Gazeau, F.; van Rijswijk, P.; Pozzato, L.; Middelburg, J.J.|info:eu-repo/dai/nl/079665373
2014-01-01
Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer wat
Impacts of Ocean Acidification on Sediment Processes in Shallow Waters of the Arctic Ocean
Gazeau, F.; van Rijswijk, P.; Pozzato, L.; Middelburg, J.J.
2014-01-01
Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer wat
Effect of shallow-water venting in Azores on a few marine biota
Digital Repository Service at National Institute of Oceanography (India)
Colaco, A.; Raghukumar, C.; Mohandass, C.; Cardigos, F.; Santos, R.S.
of this ecosystem. Several - algae and animals also inhabit this shallow water vent system. The heterogeneity of the vent fluids in the two contrasted areas is reflected by the differences found in the organisms collected and in accumulated metals in their tissues...
Questions Student Ask: Why Is It Harder to Paddle a Canoe in Shallow Water?
Physics Teacher, 1985
1985-01-01
Explains the effect that depth of water has on the speed of Olympic-style racing canoes and kayaks. Indicates that canoes are harder to paddle in shallow water because the skin friction drag increases appreciable when the water depth decreases. (DH)
A Three Dimensional Sea Facility for Deep and Shallow Water Waves
DEFF Research Database (Denmark)
Burcharth, Hans F.; Nielsen, Søren R.K.; Schaarup-Jensen, Kjeld
1986-01-01
The paper describes a low-cost wave tank for the testing of structures in short crested seas and current. The paddle system is of the snake type and used for the generation of both deep and shallow water waves. The quality of the waves and scale problems related to small scale tests are discussed...
Importance of shallow-water bay biotopes as nurseries for Caribbean reef fishes
Nagelkerken, I.A.
2000-01-01
Mangroves and seagrass beds can harbour high densities of mostly juvenile fishes. It has therefore long been assumed that these habitats function as nursery areas. In the present thesis the nursery function of mangroves, seagrass beds and other shallow-water biotopes, located in sheltered inland bay
A revision of the Shallow-water Azooxanthellate Scleractinia of the Western Atlantic
Cairns, Stephen D.
2000-01-01
CAIRNS, S. D., 2000. A revision of the shallow-water azooxanthellate Scleractinia of the western Atlantic. Studies Nat. Hist. Caribbean Region 75, Amsterdam, 2000: 1-231. This paper constitutes the second of a two part revision of the western Atlantic azooxanthellate Scleractinia — this part
Shallow-water acoustic communication with high bit rate BPSK signals
Gijzen, M.B. van; Walree, P.A. van
2000-01-01
BPSK signals have been defined for transmission through a shallow-water acoustic communication channel. The signals were accompanied by two displaced carriers to facilitate carrier recovery. To correct for the adverse effects of time spreading, a pseudo-random learning sequence was transmitted ahead
Viscous-flow calculations for KVLCC2 in deep and shallow water
Toxopeus, S.L.
2011-01-01
In the SIMMAN 2008 workshop, the capability of CFD tools to predict the flow around manoeuvring ships has been investigated. It was decided to continue this effort but to extend the work to the flow around ships in shallow water. In this paper, CFD calculations for the KLVCC2 are presented. The aim
Metabolic and Cardiovascular Response to Shallow Water Exercise in Young and Older Women.
Campbell, Jennifer A.; D'Acquisto, Leo J.; D'Acquisto, Debra M.; Cline, Michael G.
2003-01-01
Compared the metabolic and cardiovascular responses of young and older women while performing shallow water exercise (SWE). Overall, SWE elicited metabolic and cardiovascular responses that met American College of Sports Medicine's guidelines for establishing health benefits. Older females self-selected a greater relative exercise intensity during…
Viscous-flow calculations for KVLCC2 in deep and shallow water
Toxopeus, S.L.
2011-01-01
In the SIMMAN 2008 workshop, the capability of CFD tools to predict the flow around manoeuvring ships has been investigated. It was decided to continue this effort but to extend the work to the flow around ships in shallow water. In this paper, CFD calculations for the KLVCC2 are presented. The aim
Solitary and cnoidal wave scattering by a submerged horizontal plate in shallow water
Hayatdavoodi, Masoud; Ertekin, R. Cengiz; Valentine, Benjamin D.
2017-06-01
Solitary and cnoidal wave transformation over a submerged, fixed, horizontal rigid plate is studied by use of the nonlinear, shallow-water Level I Green-Naghdi (GN) equations. Reflection and transmission coefficients are defined for cnoidal and solitary waves to quantify the nonlinear wave scattering. Results of the GN equations are compared with the laboratory experiments and other theoretical solutions for linear and nonlinear waves in intermediate and deep waters. The GN equations are then used to study the nonlinear wave scattering by a plate in shallow water. It is shown that in deep and intermediate depths, the wave-scattering varies nonlinearly by both the wavelength over the plate length ratio, and the submergence depth. In shallow water, however, and for long-waves, only the submergence depth appear to play a significant role on wave scattering. It is possible to define the plate submergence depth and length such that certain wave conditions are optimized above, below, or downwave of the plate for different applications. A submerged plate in shallow water can be used as a means to attenuate energy, such as in wave breakers, or used for energy focusing, and in wave energy devices.
A Hamiltonian Particle-Mesh Method for the Rotating Shallow Water Equations
Frank, J.E.; Gottwald, G.A.; Reich, S.; Griebel, M.; Schweitzer, M.A.
2003-01-01
A new particle-mesh method is proposed for the rotating shallow-water equations. The spatially truncated equations are Hamiltonian and satisfy a Kelvin circulation theorem. The generation of non-smooth components in the layer-depth is avoided by applying a smoothing operator similar to what has rece
Impacts of Ocean Acidification on Sediment Processes in Shallow Waters of the Arctic Ocean
Gazeau, F.; van Rijswijk, P.; Pozzato, L.; Middelburg, J.J.
2014-01-01
Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer wat
Space-time discontinuous Galerkin discretization of rotating shallow water equations
Ambati, V.R.; Bokhove, Onno
2007-01-01
A space–time discontinuous Galerkin (DG) discretization is presented for the (rotating) shallow water equations over varying topography. We formulate the space–time DG finite element discretization in an efficient and conservative discretization. The HLLC flux is used as numerical flux through the
Space-time discontinuous Galerkin discretization of rotating shallow water equations on moving grids
Ambati, V.R.; Bokhove, Onno
2006-01-01
A space-time discontinuous Galerkin (DG) discretization is presented for the (rotating) shallow water equations over varying topography. We formulate the space-time DG finite element discretization in an efficient and conservative discretization. The HLLC flux is used as numerical flux through the
Shallow-water Mysidacea from the Lesser Antilles and other Caribbean regions
Brattegard, Torleiv
1975-01-01
This report is the seventh in a series of papers dealing with Mysidacea (Crustacea) from shallow water in the tropical and warm-temperate areas of the western Atlantic (BRATTEGARD 1969, 1970a, 1970b, 1973, 1974a, 1974b). Five of these are dealing with material collected by the author in southern Flo
NUMERICAL SIMULATION OF TWO-DIMENSIONAL DAM-BREAK FLOWS IN CURVED CHANNELS
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Two-dimensional transient dam-break flows in a river with bends were theoretically studied. The river was modeled as a curved channel with a constant width and a flat bottom. The water was assumed to be an incompressible and homogeneous fluid. A channel-fitted orthogonal curvilinear coordinate system was established and the corresponding two-dimensional shallow-water equations were derived for this system. The governing equations with well-posed initial and boundary conditions were numerically solved in a rectangular domain by use of the Godunov-type finite-difference scheme, which can capture the hydraulic jump of dam-break flows. The comparison between the obtained numerical results and the experimental data of Miller and Chaudry in a semicircle channel shows the validity of the present numerical scheme. The mathematical model and the numerical method were applied to the dam-break flows in channels with various curvatures. Based on the numerical results, the influence of river curvatures on the dam-break flows was analyzed in details.
Two-dimensional gauge theoretic supergravities
Cangemi, D.; Leblanc, M.
1994-05-01
We investigate two-dimensional supergravity theories, which can be built from a topological and gauge invariant action defined on an ordinary surface. One is the N = 1 supersymmetric extension of the Jackiw-Teitelboim model presented by Chamseddine in a superspace formalism. We complement the proof of Montano, Aoaki and Sonnenschein that this extension is topological and gauge invariant, based on the graded de Sitter algebra. Not only do the equations of motion correspond to the supergravity ones and do gauge transformations encompass local supersymmetries, but we also identify the ∫-theory with the superfield formalism action written by Chamseddine. Next, we show that the N = 1 supersymmetric extension of string-inspired two-dimensional dilaton gravity put forward by Park and Strominger cannot be written as a ∫-theory. As an alternative, we propose two topological and gauge theories that are based on a graded extension of the extended Poincaré algebra and satisfy a vanishing-curvature condition. Both models are supersymmetric extensions of the string-inspired dilaton gravity.
Two-Dimensional Theory of Scientific Representation
Directory of Open Access Journals (Sweden)
A Yaghmaie
2013-03-01
Full Text Available Scientific representation is an interesting topic for philosophers of science, many of whom have recently explored it from different points of view. There are currently two competing approaches to the issue: cognitive and non-cognitive, and each of them claims its own merits over the other. This article tries to provide a hybrid theory of scientific representation, called Two-Dimensional Theory of Scientific Representation, which has the merits of the two accounts and is free of their shortcomings. To do this, we will argue that although scientific representation needs to use the notion of intentionality, such a notion is defined and realized in a simply structural form contrary to what cognitive approach says about intentionality. After a short introduction, the second part of the paper is devoted to introducing theories of scientific representation briefly. In the third part, the structural accounts of representation will be criticized. The next step is to introduce the two-dimensional theory which involves two key components: fixing and structural fitness. It will be argued that fitness is an objective and non-intentional relation, while fixing is intentional.
Two-dimensional shape memory graphene oxide
Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe
2016-06-01
Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.
Institute of Scientific and Technical Information of China (English)
XU Quan; TIAN Qiang
2007-01-01
Two-dimensional compact-like discrete breathers in discrete two-dimensional monatomic square lattices are investigated by discussing a generafized discrete two-dimensional monatomic model.It is proven that the twodimensional compact-like discrete breathers exist not only in two-dimensional soft Ф4 potentials but also in hard two-dimensional Ф4 potentials and pure two-dimensional K4 lattices.The measurements of the two-dimensional compact-like discrete breather cores in soft and hard two-dimensional Ф4 potential are determined by coupling parameter K4,while those in pure two-dimensional K4 lattices have no coupling with parameter K4.The stabilities of the two-dimensional compact-like discrete breathers correlate closely to the coupling parameter K4 and the boundary condition of lattices.
Exploring a multi-resolution modeling approach within the shallow-water equations
Energy Technology Data Exchange (ETDEWEB)
Ringler, Todd [Los Alamos National Laboratory; Jacobsen, Doug [Florida State University; Gunzburger, Max [Florida State University; Ju, Lili [University of South Carolina; Duda, Michael [National Center for Atmospheric Research; Skamarock, William [National Center for Atmospheric Research
2011-01-01
The ability to solve the global shallow-water equations with a conforming, variable-resolution mesh is evaluated using standard shallow-water test cases. While the long-term motivation for this study is the creation of a global climate modeling framework capable of resolving different spatial and temporal scales in different regions, the process begins with an analysis of the shallow-water system in order to better understand the strengths and weaknesses of the approach developed herein. The multiresolution meshes are spherical centroidal Voronoi tessellations where a single, user-supplied density function determines the region(s) of fine- and coarsemesh resolution. The shallow-water system is explored with a suite of meshes ranging from quasi-uniform resolution meshes, where the grid spacing is globally uniform, to highly variable resolution meshes, where the grid spacing varies by a factor of 16 between the fine and coarse regions. The potential vorticity is found to be conserved to within machine precision and the total available energy is conserved to within a time-truncation error. This result holds for the full suite of meshes, ranging from quasi-uniform resolution and highly variable resolution meshes. Based on shallow-water test cases 2 and 5, the primary conclusion of this study is that solution error is controlled primarily by the grid resolution in the coarsest part of the model domain. This conclusion is consistent with results obtained by others.When these variable-resolution meshes are used for the simulation of an unstable zonal jet, the core features of the growing instability are found to be largely unchanged as the variation in the mesh resolution increases. The main differences between the simulations occur outside the region of mesh refinement and these differences are attributed to the additional truncation error that accompanies increases in grid spacing. Overall, the results demonstrate support for this approach as a path toward
Exploring a Multiresolution Modeling Approach within the Shallow-Water Equations
Energy Technology Data Exchange (ETDEWEB)
Ringler, Todd D.; Jacobsen, Doug; Gunzburger, Max; Ju, Lili; Duda, Michael; Skamarock, William
2011-11-01
The ability to solve the global shallow-water equations with a conforming, variable-resolution mesh is evaluated using standard shallow-water test cases. While the long-term motivation for this study is the creation of a global climate modeling framework capable of resolving different spatial and temporal scales in different regions, the process begins with an analysis of the shallow-water system in order to better understand the strengths and weaknesses of the approach developed herein. The multiresolution meshes are spherical centroidal Voronoi tessellations where a single, user-supplied density function determines the region(s) of fine- and coarsemesh resolution. The shallow-water system is explored with a suite of meshes ranging from quasi-uniform resolution meshes, where the grid spacing is globally uniform, to highly variable resolution meshes, where the grid spacing varies by a factor of 16 between the fine and coarse regions. The potential vorticity is found to be conserved to within machine precision and the total available energy is conserved to within a time-truncation error. This result holds for the full suite of meshes, ranging from quasi-uniform resolution and highly variable resolution meshes. Based on shallow-water test cases 2 and 5, the primary conclusion of this study is that solution error is controlled primarily by the grid resolution in the coarsest part of the model domain. This conclusion is consistent with results obtained by others.When these variable-resolution meshes are used for the simulation of an unstable zonal jet, the core features of the growing instability are found to be largely unchanged as the variation in the mesh resolution increases. The main differences between the simulations occur outside the region of mesh refinement and these differences are attributed to the additional truncation error that accompanies increases in grid spacing. Overall, the results demonstrate support for this approach as a path toward
Optimal excitation of two dimensional Holmboe instabilities
Constantinou, Navid C
2010-01-01
Highly stratified shear layers are rendered unstable even at high stratifications by Holmboe instabilities when the density stratification is concentrated in a small region of the shear layer. These instabilities may cause mixing in highly stratified environments. However these instabilities occur in tongues for a limited range of parameters. We perform Generalized Stability analysis of the two dimensional perturbation dynamics of an inviscid Boussinesq stratified shear layer and show that Holmboe instabilities at high Richardson numbers can be excited by their adjoints at amplitudes that are orders of magnitude larger than by introducing initially the unstable mode itself. We also determine the optimal growth that obtains for parameters for which there is no instability. We find that there is potential for large transient growth regardless of whether the background flow is exponentially stable or not and that the characteristic structure of the Holmboe instability asymptotically emerges for parameter values ...
Phonon hydrodynamics in two-dimensional materials.
Cepellotti, Andrea; Fugallo, Giorgia; Paulatto, Lorenzo; Lazzeri, Michele; Mauri, Francesco; Marzari, Nicola
2015-03-06
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
Probabilistic Universality in two-dimensional Dynamics
Lyubich, Mikhail
2011-01-01
In this paper we continue to explore infinitely renormalizable H\\'enon maps with small Jacobian. It was shown in [CLM] that contrary to the one-dimensional intuition, the Cantor attractor of such a map is non-rigid and the conjugacy with the one-dimensional Cantor attractor is at most 1/2-H\\"older. Another formulation of this phenomenon is that the scaling structure of the H\\'enon Cantor attractor differs from its one-dimensional counterpart. However, in this paper we prove that the weight assigned by the canonical invariant measure to these bad spots tends to zero on microscopic scales. This phenomenon is called {\\it Probabilistic Universality}. It implies, in particular, that the Hausdorff dimension of the canonical measure is universal. In this way, universality and rigidity phenomena of one-dimensional dynamics assume a probabilistic nature in the two-dimensional world.
Two-dimensional position sensitive neutron detector
Indian Academy of Sciences (India)
A M Shaikh; S S Desai; A K Patra
2004-08-01
A two-dimensional position sensitive neutron detector has been developed. The detector is a 3He + Kr filled multiwire proportional counter with charge division position readout and has a sensitive area of 345 mm × 345 mm, pixel size 5 mm × 5 mm, active depth 25 mm and is designed for efficiency of 70% for 4 Å neutrons. The detector is tested with 0.5 bar 3He + 1.5 bar krypton gas mixture in active chamber and 2 bar 4He in compensating chamber. The pulse height spectrum recorded at an anode potential of 2000 V shows energy resolution of ∼ 25% for the 764 keV peak. A spatial resolution of 8 mm × 6 mm is achieved. The detector is suitable for SANS studies in the range of 0.02–0.25 Å-1.
Two-dimensional heterostructures for energy storage
Pomerantseva, Ekaterina; Gogotsi, Yury
2017-07-01
Two-dimensional (2D) materials provide slit-shaped ion diffusion channels that enable fast movement of lithium and other ions. However, electronic conductivity, the number of intercalation sites, and stability during extended cycling are also crucial for building high-performance energy storage devices. While individual 2D materials, such as graphene, show some of the required properties, none of them can offer all properties needed to maximize energy density, power density, and cycle life. Here we argue that stacking different 2D materials into heterostructured architectures opens an opportunity to construct electrodes that would combine the advantages of the individual building blocks while eliminating the associated shortcomings. We discuss characteristics of common 2D materials and provide examples of 2D heterostructured electrodes that showed new phenomena leading to superior electrochemical performance. We also consider electrode fabrication approaches and finally outline future steps to create 2D heterostructured electrodes that could greatly expand current energy storage technologies.
Rationally synthesized two-dimensional polymers.
Colson, John W; Dichtel, William R
2013-06-01
Synthetic polymers exhibit diverse and useful properties and influence most aspects of modern life. Many polymerization methods provide linear or branched macromolecules, frequently with outstanding functional-group tolerance and molecular weight control. In contrast, extending polymerization strategies to two-dimensional periodic structures is in its infancy, and successful examples have emerged only recently through molecular framework, surface science and crystal engineering approaches. In this Review, we describe successful 2D polymerization strategies, as well as seminal research that inspired their development. These methods include the synthesis of 2D covalent organic frameworks as layered crystals and thin films, surface-mediated polymerization of polyfunctional monomers, and solid-state topochemical polymerizations. Early application targets of 2D polymers include gas separation and storage, optoelectronic devices and membranes, each of which might benefit from predictable long-range molecular organization inherent to this macromolecular architecture.
Janus Spectra in Two-Dimensional Flows
Liu, Chien-Chia; Cerbus, Rory T.; Chakraborty, Pinaki
2016-09-01
In large-scale atmospheric flows, soap-film flows, and other two-dimensional flows, the exponent of the turbulent energy spectra, α , may theoretically take either of two distinct values, 3 or 5 /3 , but measurements downstream of obstacles have invariably revealed α =3 . Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which α transitions from 3 to 5 /3 for the streamwise fluctuations but remains equal to 3 for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows.
Local doping of two-dimensional materials
Wong, Dillon; Velasco, Jr, Jairo; Ju, Long; Kahn, Salman; Lee, Juwon; Germany, Chad E.; Zettl, Alexander K.; Wang, Feng; Crommie, Michael F.
2016-09-20
This disclosure provides systems, methods, and apparatus related to locally doping two-dimensional (2D) materials. In one aspect, an assembly including a substrate, a first insulator disposed on the substrate, a second insulator disposed on the first insulator, and a 2D material disposed on the second insulator is formed. A first voltage is applied between the 2D material and the substrate. With the first voltage applied between the 2D material and the substrate, a second voltage is applied between the 2D material and a probe positioned proximate the 2D material. The second voltage between the 2D material and the probe is removed. The first voltage between the 2D material and the substrate is removed. A portion of the 2D material proximate the probe when the second voltage was applied has a different electron density compared to a remainder of the 2D material.
Two-dimensional fourier transform spectrometer
Energy Technology Data Exchange (ETDEWEB)
DeFlores, Lauren; Tokmakoff, Andrei
2016-10-25
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
FACE RECOGNITION USING TWO DIMENSIONAL LAPLACIAN EIGENMAP
Institute of Scientific and Technical Information of China (English)
Chen Jiangfeng; Yuan Baozong; Pei Bingnan
2008-01-01
Recently,some research efforts have shown that face images possibly reside on a nonlinear sub-manifold. Though Laplacianfaces method considered the manifold structures of the face images,it has limits to solve face recognition problem. This paper proposes a new feature extraction method,Two Dimensional Laplacian EigenMap (2DLEM),which especially considers the manifold structures of the face images,and extracts the proper features from face image matrix directly by using a linear transformation. As opposed to Laplacianfaces,2DLEM extracts features directly from 2D images without a vectorization preprocessing. To test 2DLEM and evaluate its performance,a series of ex-periments are performed on the ORL database and the Yale database. Moreover,several experiments are performed to compare the performance of three 2D methods. The experiments show that 2DLEM achieves the best performance.
Equivalency of two-dimensional algebras
Energy Technology Data Exchange (ETDEWEB)
Santos, Gildemar Carneiro dos; Pomponet Filho, Balbino Jose S. [Universidade Federal da Bahia (UFBA), BA (Brazil). Inst. de Fisica
2011-07-01
Full text: Let us consider a vector z = xi + yj over the field of real numbers, whose basis (i,j) satisfy a given algebra. Any property of this algebra will be reflected in any function of z, so we can state that the knowledge of the properties of an algebra leads to more general conclusions than the knowledge of the properties of a function. However structural properties of an algebra do not change when this algebra suffers a linear transformation, though the structural constants defining this algebra do change. We say that two algebras are equivalent to each other whenever they are related by a linear transformation. In this case, we have found that some relations between the structural constants are sufficient to recognize whether or not an algebra is equivalent to another. In spite that the basis transform linearly, the structural constants change like a third order tensor, but some combinations of these tensors result in a linear transformation, allowing to write the entries of the transformation matrix as function of the structural constants. Eventually, a systematic way to find the transformation matrix between these equivalent algebras is obtained. In this sense, we have performed the thorough classification of associative commutative two-dimensional algebras, and find that even non-division algebra may be helpful in solving non-linear dynamic systems. The Mandelbrot set was used to have a pictorial view of each algebra, since equivalent algebras result in the same pattern. Presently we have succeeded in classifying some non-associative two-dimensional algebras, a task more difficult than for associative one. (author)
On numerical evaluation of two-dimensional phase integrals
DEFF Research Database (Denmark)
Lessow, H.; Rusch, W.; Schjær-Jacobsen, Hans
1975-01-01
The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated.......The relative advantages of several common numerical integration algorithms used in computing two-dimensional phase integrals are evaluated....
Nonlinear dynamics at the interface of two-layer stratified flows over pronounced obstacles
Cabeza, C; Bove, I; Freire, D; Marti, Arturo C; Sarasua, L G; Usera, G; Montagne, R; Araújo, M
2008-01-01
The flow of a two--layer stratified fluid over an abrupt topographic obstacle, simulating relevant situations in oceanographic problems, is investigated numerically and experimentally in a simplified two--dimensional situation. Experimental results and numerical simulations are presented at low Froude numbers in a two-layer stratified flow and for two abrupt obstacles, semi--cylindrical and prismatic. We find four different regimes of the flow immediately past the obstacles: sub-critical (I), internal hydraulic jump (II), Kelvin-Helmholtz at the interface (III) and shedding of billows (IV). The critical condition for delimiting the experiments is obtained using the hydraulic theory. Moreover, the dependence of the critical Froude number on the geometry of the obstacle are investigated. The transition from regime III to regime IV is explained with a theoretical stability analysis. The results from the stability analysis are confirmed with the DPIV measurements. In regime (IV), when the velocity upstream is lar...
Nonstationary Axisymmetric Temperature Field in a Two-Layer Slab Under Mixed Heating Conditions
Turchin, I. N.; Timar, I.; Kolodii, Yu. A.
2015-09-01
With the use of the Laguerre and Hankel integral transforms, the solution of a two-dimensional initial-boundary-value heat conduction problem for a two-layer slab under mixed boundary conditions is constructed: one of the surfaces is heated by a heat flux distributed axisymmetrically in a circle of radius R and is cooled by the Newton law outside this circle. The solution of the problem is reduced to a sequence of infinite quasi-regular systems of algebraic equations. The results of numerical analysis of the temperature field in the two-layer slab made from an aluminum alloy and ceramicsare presented depending on the relative geometric properties of the components and cooling intensity.
Experimental Study of Turbulent Wake Behind a Sine Shaped Island in a Shallow-Water Layer
Institute of Scientific and Technical Information of China (English)
李玲; 李玉梁; 陈嘉范
2002-01-01
A series of experiments is conducted to study shallow-water flow in the wake of a sine shaped island. Digital particle imaging velocimetry (DPIV) is used to measure velocities in the turbulent wake behind a sine shaped island for different characteristic coefficients S. Flow streamlines are given for the wake flows. The measured results show that the characteristic coefficient S is uniquely related to the flow pattern around a sine shaped island in a shallow water layer. An S value of approximately 0.20 is the critical value for transition from a vortex street to unsteady flow and a value of approximately 0.40 is the critical value for transition from unsteady flow to steady flow.
Investigation on Touching Sea Bottom by a FPSO in Bohai Oilfield with Shallow Water
Institute of Scientific and Technical Information of China (English)
LI Xin; YANG Jianmin; FAN Mo
2005-01-01
As one of the key safety problems, the motion performance and touching sea bottom of a FPSO are paid much attention by the ocean oil companies when the FPSO is exposed to survival storms in the shallow-water working areas. In this paper, timedomain numerical simulations are carried out on a 160 kDWT FPSO with a Yoke mooting system moored in the BZ25-1 oilfield with a water depth of 16.7m. The results are compared with those of the corresponding model tests. Good agreement shows that the time-domain simulations can be used to predict the performance of the FPSO in shallow-water reasonably. It is found that the touch of seabed by a fully loaded FPSO occurred few times under survival storm conditions. Therefore, the FPSO should be less loaded than that in the fully loaded condition under the survival storms.
Directory of Open Access Journals (Sweden)
Brenda Lía Doti
2005-12-01
Full Text Available The shallow-water Asellota from the Beagle Channel were investigated, based on material collected at four localities in 2001-2002. A total of 3,124 asellotes were sorted, and three new species and 12 new records of distribution were reported. The Paramunnidae showed the highest species diversity and abundance (11 species and 1,463 specimens. The present research raises the number of species known from the Beagle Channel to 23; of these, 16 were previously reported from the Magellan Straits, representing 69% of similarity. Based on the present results and published data, the faunistic affinities for the shallow-water Asellota was 30% between the Magellan region and the Scotia Arc, and 26% between the Magellan region and the Antarctic Peninsula.
Directory of Open Access Journals (Sweden)
Ivana Koubov��
2010-01-01
Full Text Available The grey, grey-green, grey-brown claystone, silty claystone and silts yield foraminiferal association of Sarmatian (Upper Serravallian 12.7–11.6 Ma. The studied deposits belong to the Holíč Formation. The foraminiferal assemblages suggest a very shallow water depositional environment. In such conditions, the environment can change rapidly in dependence on tidal effects causing the repeated drying and inflow of fresh water. Therefore, it was not possible to rely on stratigraphical value of identified ecozones. The Sarmatian fauna was commonly regarded as a brackish-water community suffering from gradually decreasing salinity. However, our results allowed us to interpret very unstable marginal marine conditions, even hypersaline episodes. The foraminiferal associations document sedimentation in a very shallow water with several episodes of reduced oxygenation at the bottom, changing upward to hypo/hypersaline marshes, vegetated swamps and finally to the Glyptostrobus marsh.
A new spectral method using legendre wavelets for shallow water model in limited-area
Yin, Fukang; Song, Junqiang; Wu, Jianping; Cao, Xiaoqun
2017-02-01
This paper presents a new spectral method using Legendre wavelets (named LWSTCM), which complete the stepping in spectral space while deal with boundary conditions in grid-point space by collocation method, for the numerical solution of shallow water model in limited-area. In order to deal with the overlapping boundaries, some proper schemes are considered for exchanging the information on the boundaries between sub-domains. 1-D advection equation is used to analysis the exponential convergence property and error characteristics of LWSTCM. Finally, we study LWSTCM on 2-D shallow water equations for a more realistic application. The numerical results are compared with existing numerical solutions found in the literature and demonstrate the validity and applicability of the presented method.
Model Tests for Shallow-Water Ship Maneuverability in Three Gorges Reservoir
Directory of Open Access Journals (Sweden)
Cai Chuang
2015-09-01
Full Text Available This paper conducts calibration tests on the shallow-water maneuverability of 1:100 ship models for the typical navigation fleets in Three Gorges Reservoir. Major influential factors for the maneuverability similitude between models and prototypes and for scale effect were identified. A correction method for model scale was also established through model tests. Test results indicate that, by correcting the model scales of various fleets based on scale effect, the maneuverability indexes K’ (dimensionless of K and T’ (dimensionless of T of ship models are suitable for shallow-water tests, and properly reflect the maneuvering characteristics of prototypes. The findings provide an experimental basis for the navigation safety in Three Gorges Reservoir.
A HIGH RESOLUTION FINITE VOLUME METHOD FOR SOLVING SHALLOW WATER EQUATIONS
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A high-resolution finite volume numerical method for solving the shallow water equations is developed in this paper. In order to extend finite difference TVD scheme to finite volume method, a new geometry and topology of control bodies is defined by considering the corresponding relationships between nodes and elements. This solver is implemented on arbitrary quadrilateral meshes and their satellite elements, and based on a second-order hybrid type of TVD scheme in space discretization and a two-step Runge-Kutta method in time discretization. Then it is used to deal with two typical dam-break problems and very satisfactory results are obtained comparied with other numerical solutions. It can be considered as an efficient implement for the computation of shallow water problems, especially concerning those having discontinuities, subcritical and supercritical flows and complex geometries.
A modified Rusanov scheme for shallow water equations with topography and two phase flows
Mohamed, Kamel; Benkhaldoun, F.
2016-06-01
In this work, we introduce a finite volume method for numerical simulation of shallow water equations with source terms in one and two space dimensions, and one-pressure model of two-phase flows in one space dimension. The proposed method is composed of two steps. The first, called predictor step, depends on a local parameter allowing to control the numerical diffusion. A strategy based on limiters theory enables to control this parameter. The second step recovers the conservation equation. The scheme can thus be turned to order 1 in the regions where the flow has a strong variation, and order 2 in the regions where the flow is regular. The numerical scheme is applied to several test cases in one and two space dimensions. This scheme demonstrates its well-balanced property, and that it is an efficient and accurate approach for solving shallow water equations with and without source terms, and water faucet problem.
A Stability Notion for the viscous Shallow Water Lattice Boltzmann Equations
Banda, Mapundi K
2015-01-01
The stability of Lattice Boltzmann Equations modelling Shallow Water Equations in the special case of reduced gravity is investigated theoretically. A stability notion is defined as applied in incompressible Navier-Stokes equations in Banda, M. K., Yong, W.- A. and Klar, A: A stability notion for lattice Boltzmann equations. SIAM J. Sci. Comput. {\\bf 27(6)}, 2098-2111 (2006). It is found that to maintain stability a careful choice of the value of the reduced gravity must be made. The stability notion is employed to investigate different shallow water lattice Boltzmann Equations. The effect of the reduced gravity on the mechanism of instability is investigated. Results are tested using the Lattice Boltzmann Method for various values of the governing parameters of the flow. It is observed that even for the discrete model the reduced gravity has a significant effect on the stability.
The lantern shark's light switch: turning shallow water crypsis into midwater camouflage.
Claes, Julien M; Mallefet, Jérôme
2010-10-23
Bioluminescence is a common feature in the permanent darkness of the deep-sea. In fishes, light is emitted by organs containing either photogenic cells (intrinsic photophores), which are under direct nervous control, or symbiotic luminous bacteria (symbiotic photophores), whose light is controlled by secondary means such as mechanical occlusion or physiological suppression. The intrinsic photophores of the lantern shark Etmopterus spinax were recently shown as an exception to this rule since they appear to be under hormonal control. Here, we show that hormones operate what amounts to a unique light switch, by acting on a chromatophore iris, which regulates light emission by pigment translocation. This result strongly suggests that this shark's luminescence control originates from the mechanism for physiological colour change found in shallow water sharks that also involves hormonally controlled chromatophores: the lantern shark would have turned the initial shallow water crypsis mechanism into a midwater luminous camouflage, more efficient in the deep-sea environment.
Potential of Watch Buzzer as Underwater Navigation Device in Shallow Water Streams
Directory of Open Access Journals (Sweden)
M.O. Afolayan
2010-08-01
Full Text Available This study aim at developing low cost underwater navigation system suitable for shallow water environment. Spectral Plus 5.0 software running on two computers was used for generating and measuring sound pressure in open air and shallow water (350 mm deep using a pair of piezocrystals plates (2 cm diameter from old wristwatch buzzer. The best frequency response was found to be at 4.5 kHz without amplification. The setup was able to respond to obstacles placed in between them when spaced at experimental distance of 30 cm and 60 cm. Obstacles used are plywood, asbestos, PVC plastic and Iron sheet. It was found that the responses are material dependent.
HYDRODYNAMIC BEHAVIOR OF FPSO UNDER VARIUS LOADING IN SURVIVAL STORMS IN SHALLOW WATER
Institute of Scientific and Technical Information of China (English)
LI Xin; YANG Jian-min; XIAO Long-fei
2004-01-01
The motion performance and clearance between the hull and seabed of a FPSO (Floating, Production, Storage and Offloading units) in survival storm conditions are closely related to its safety during the operation in shallow water. As an example the behavior of a 160 kDWT FPSO with single point mooring system in shallow water was investigated in this paper. Calculation for the FPSO is made based on the 3-D linear potential flow theory and time-domain numerical simulation method and corresponding model test is carried out in the wave basin at Shanghai Jiaotong University. Both the calculated and experimental results indicate that the heave, roll and pitch motions of FPSO become lazy with the increase of the draft. And the fully loaded FPSO in survival storm touched seabed few times. Therefore, it is concluded that the FPSO should be less loaded than that in the fully loaded condition when the survival storm is coming.
Wind-Driven Ocean Circulation in Shallow Water Lattice Boltzmann Model
Institute of Scientific and Technical Information of China (English)
ZHONG Linhao; FENG Shide; GAO Shouting
2005-01-01
A lattice Boltzmann (LB) model with overall second-order accuracy is applied to the 1.5-layer shallow water equation for a wind-driven double-gyre ocean circulation. By introducing the second-order integral approximation for the collision operator, the model becomes fully explicit. In this case, any iterative technique is not needed. The Coriolis force and other external forces are included in the model with second-order accuracy, which is consistent with the discretized accuracy of the LB equation. The numerical results show correct physics of the ocean circulation driven by the double-gyre wind stress with different Reynolds numbers and different spatial resolutions. An intrinsic low-frequency variability of the shallow water model is also found. The wind-driven ocean circulation exhibits subannual and interannual oscillations, which are comparable to those of models in which the conventional numerical methods are used.
Dynamically adaptive Lattice Boltzmann simulation of shallow water flows with the Peano framework
Neumann, Philipp
2015-09-01
© 2014 Elsevier Inc. All rights reserved. We present a dynamically adaptive Lattice Boltzmann (LB) implementation for solving the shallow water equations (SWEs). Our implementation extends an existing LB component of the Peano framework. We revise the modular design with respect to the incorporation of new simulation aspects and LB models. The basic SWE-LB implementation is validated in different breaking dam scenarios. We further provide a numerical study on stability of the MRT collision operator used in our simulations.
New species and new records of bryozoans from shallow waters of Madeira Island.
Souto, Javier; Kaufmann, Manfred J; Canning-Clode, João
2015-03-03
Two new species of bryozoans encrusting subtidal rocks are described from the shallow waters of Madeira Island. We describe one cyclostome, Favosipora purpurea sp. nov., which represents the first record of this genus in the Atlantic Ocean, and one cheilostome, Rhynchozoon papuliferum sp. nov. In addition, one species, Beania maxilladentata, is recorded for the first time outside of Rio de Janeiro, Brazil. Six other species previously recorded in Madeira are redescribed to provide new data and SEM images.
2014-09-30
Vector Acoustics with Emphasis on Shallow Water Effects and the Sea Surface Peter H. Dahl Applied Physics Laboratory University of Washington...To understand and predict key properties of the signal intensity vector field as it propagates away from an active sound source, with emphasis is on...exploit acoustic vector field properties (velocity, acceleration, intensity) much more than today’s. Furthermore, advancement of current Navy
Analysis and numerical simulation of the diffusive wave approximation of the shallow water equations
Santillana, Mauricio
In this dissertation, the quantitative and qualitative aspects of modeling shallow water flow driven mainly by gravitational forces and dominated by shear stress, using an effective equation often referred to in the literature as the diffusive wave approximation of the shallow water equations (DSW) are presented. These flow conditions arise for example in overland flow and water flow in vegetated areas such as wetlands. The DSW equation arises in shallow water flow models when special assumptions are used to simplify the shallow water equations and contains as particular cases: the Porous Medium equation and the time evolution of the p-Laplacian. It has been successfully applied as a suitable model to simulate overland flow and water flow in vegetated areas such as wetlands; yet, no formal mathematical analysis has been carried out addressing, for example, conditions for which weak solutions may exist, and conditions for which a numerical scheme can be successful in approximating them. This thesis represents a first step in that direction. The outline of the thesis is as follows. First, a survey of relevant results coming from the studies of doubly nonlinear diffusion equations that can be applied to the DSW equation when topographic effects are ignored, is presented. Furthermore, an original proof of existence of weak solutions using constructive techniques that directly lead to the implementation of numerical algorithms to obtain approximate solutions is shown. Some regularity results about weak solutions are presented as well. Second, a numerical approach is proposed as a means to understand some properties of solutions to the DSW equation, when topographic effects are considered, and conditions for which the continuous and discontinuous Galerkin methods will succeed in approximating these weak solutions are established.
New records for the shallow-water chiton fauna (Mollusca, Polyplacophora of the Azores (NE Atlantic
Directory of Open Access Journals (Sweden)
Sérgio Ávila
2013-06-01
Full Text Available Published records, original data from recent field work on all of the islands of the Azores (NE Atlantic, and a revision of the entire mollusc collection deposited in the Department of Biology of the University of the Azores (DBUA were used to compile a checklist of the shallow-water Polyplacophora of the Azores. Lepidochitona cf. canariensis and Tonicella rubra are reported for the first time for this archipelago, increasing the recorded Azorean fauna to seven species.
Wave breaking and shock waves for a periodic shallow water equation.
Escher, Joachim
2007-09-15
This paper is devoted to the study of a recently derived periodic shallow water equation. We discuss in detail the blow-up scenario of strong solutions and present several conditions on the initial profile, which ensure the occurrence of wave breaking. We also present a family of global weak solutions, which may be viewed as global periodic shock waves to the equation under discussion.
An analytical solution of Shallow Water system coupled to Exner equation
Berthon, Christophe; Le, Minh H; Delestre, Olivier
2011-01-01
In this paper, an exact smooth solution for the equations modeling the bedload transport of sediment in Shallow Water is presented. This solution is valid for a large family of sedimentation laws which are widely used in erosion modeling such as the Grass model or those of Meyer-Peter & Muller. One of the main interest of this solution is the derivation of numerical benchmarks to valid the approximation methods.
Kinetic Flux Vector Splitting Method for the Shallow Water Wave Equations
Institute of Scientific and Technical Information of China (English)
施卫平; WeiShyy
2003-01-01
Based on the analogy to gas dynamics,the kinetic flux flux vector splitting (KFVS) method is used to stimulate the shallow water wave equations,The flus vectors of the equations are split on the basis of the local equilibrium Maxwell-Boltzmann distribution One dimensional examples including a dam breaking wave and flows over a ridge are calcualted.The solutions exhibit second-order accuracy with no spurious oscillation.
Experimental Verification of Range-Dependent Inversion: Shallow Water Experiment 2006
2016-06-07
TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Scientific Solutions, Inc,99 Perimeter Road,Nashua,NH,06063 8...Experimental Verification of Range-Dependent Inversion: Shallow Water Experiment 2006 Subramaniam D. Rajan Scientific Solutions, Inc., 99...1),,( QqPpzsc qp LL ==Δ p refers to the pth step in range and zq refers to the qth step in depth. WORK COMPLETED The inversion method
Shallow Water Dynamics in the Arabian Gulf and Gulf of Oman
2016-06-07
Shallow Water Dynamics in the Arabian Gulf and Gulf of Oman Dr. Cheryl Ann Blain Naval Research Laboratory, Ocean Dynamics and Prediction Branch...of a circulation model for the Arabian Gulf and connecting waters that realistically predicts the complex, 3-D circulation and mixing patterns in the...forcings in the region, a strong evaporative flux, seasonal wind forcing, and freshwater river discharge. Not only are realistic current fields sought but
Acoustic Projectors for AUV and UUV Applications in Shallow Water Regions
1999-04-01
middle frequencies as those in the frequency range of 10 kHz to 100 kHz. Most current AUV or UUV applications feature either tonpilz (piston) transducers ...100 kHz band by driving the 100 lcHz resonant transducer with an inversely shaped transformer. The presentation will conclude with a discussion of the...future development trends in shallow water transducers for AUV and UUV missions. Keywords: piezocomposite, broadband, cymbals, transducer , projector
Variational derivation of two-component Camassa-Holm shallow water system
Ionescu-Kruse, Delia
2012-01-01
By a variational approach in the Lagrangian formalism, we derive the nonlinear integrable two-component Camassa-Holm system (1). We show that the two-component Camassa-Holm system (1) with the plus sign arises as an approximation to the Euler equations of hydrodynamics for propagation of irrotational shallow water waves over a flat bed. The Lagrangian used in the variational derivation is not a metric.
Existence of global strong solutions for the shallow-water equations with large initial data
Haspot, Boris
2011-01-01
This work is devoted to the study of a viscous shallow-water system with friction and capillarity term. We prove in this paper the existence of global strong solutions for this system with some choice of large initial data when $N\\geq 2$ in critical spaces for the scaling of the equations. More precisely, we introduce as in \\cite{Hprepa} a new unknown,\\textit{a effective velocity} $v=u+\\mu\
Bathymetry Prediction in Shallow Water by the Satellite Altimetry-Derived Gravity Anomalies
Kim, Kwang Bae; Yun, Hong Sik
2017-04-01
The satellite altimetry-derived free-air gravity anomalies (SAFAGAs) are correlated with undulations of crustal density variations under the seafloor. In this study, shipborne bathymetry from the Korea Rural Community Corporation (KRC) and the SAFAGAs from Scripps Institution of Oceanography were combined to predict bathymetry in shallow water. Density contrast of 5.0 g/cm3 estimated by the check points method of the gravity-geologic method (GGM) between seawater and the seafloor topographic mass was applied to predict bathymetry in shallow water areas outside of the Saemangeum Seawall located on the southwest coast of the Korean peninsula. Bathymetry predicted by the GGM was compared with depth measurements on the shipborne locations to analyze the bathymetry accuracy. The root mean square error (RMSE) of the differences of bathymetry between GGM and KRC on the KRC shipborne tracks in shallow water around the Saemangeum Seawall is 0.55 m. The topographic effects in off-tracks extracted from SAFAGAs in the GGM can be effectively utilized to predict bathymetry by combining with shipborne depth data in shallow water where shipborne depth data are limited. In addition, bathymetry and the SAFAGAs have a linear correlation in the 20 160 km wavelength. The coherency analysis was performed by computing the cross-spectral coherence between satellite altimetry derived bathymetry and the SAFAGAs. Acknowledgement This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A3A11931032).
How to react to shallow water hydrodynamics: The larger benthic foraminifera solution
Briguglio, Antonino; Hohenegger, Johann
2011-01-01
Symbiont-bearing larger benthic foraminifera inhabit the photic zone to provide their endosymbiotic algae with light. Because of the hydrodynamic conditions of shallow water environments, tests of larger foraminifera can be entrained and transported by water motion. To resist water motion, these foraminifera have to build a test able to avoid transport or have to develop special mechanisms to attach themselves to substrate or to hide their test below sediment grains. For those species which r...
Well-balanced finite volume evolution Galerkin methods for the shallow water equations
Medvidová, Maria Lukáčová -; Noelle, Sebastian; Kraft, Marcus
2015-01-01
We present a new well-balanced finite volume method within the framework of the finite volume evolution Galerkin (FVEG) schemes. The methodology will be illustrated for the shallow water equations with source terms modelling the bottom topography and Coriolis forces. Results can be generalized to more complex systems of balance laws. The FVEG methods couple a finite volume formulation with approximate evolution operators. The latter are constructed using the bicharacteristics of multidimensio...
Well-balanced finite volume evolution Galerkin methods for the shallow water equations
Lukácová-Medvid'ová, Maria; Kraft, Marcus
2005-01-01
We present a new well-balanced finite volume method within the framework of the finite volume evolution Galerkin (FVEG) schemes. The methodology will be illustrated for the shallow water equations with source terms modelling the bottom topography and Coriolis forces. Results can be generalized to more complex systems of balance laws. The FVEG methods couple a finite volume formulation with approximate evolution operators. The latter are constructed using the bicharacteristics of the multidime...
Perspective: Two-dimensional resonance Raman spectroscopy
Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.
2016-11-01
Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.
Janus spectra in two-dimensional flows
Liu, Chien-Chia; Chakraborty, Pinaki
2016-01-01
In theory, large-scale atmospheric flows, soap-film flows and other two-dimensional flows may host two distinct types of turbulent energy spectra---in one, $\\alpha$, the spectral exponent of velocity fluctuations, equals $3$ and the fluctuations are dissipated at the small scales, and in the other, $\\alpha=5/3$ and the fluctuations are dissipated at the large scales---but measurements downstream of obstacles have invariably revealed $\\alpha = 3$. Here we report experiments on soap-film flows where downstream of obstacles there exists a sizable interval in which $\\alpha$ has transitioned from $3$ to $5/3$ for the streamwise fluctuations but remains equal to $3$ for the transverse fluctuations, as if two mutually independent turbulent fields of disparate dynamics were concurrently active within the flow. This species of turbulent energy spectra, which we term the Janus spectra, has never been observed or predicted theoretically. Our results may open up new vistas in the study of turbulence and geophysical flows...
Comparative Two-Dimensional Fluorescence Gel Electrophoresis.
Ackermann, Doreen; König, Simone
2018-01-01
Two-dimensional comparative fluorescence gel electrophoresis (CoFGE) uses an internal standard to increase the reproducibility of coordinate assignment for protein spots visualized on 2D polyacrylamide gels. This is particularly important for samples, which need to be compared without the availability of replicates and thus cannot be studied using differential gel electrophoresis (DIGE). CoFGE corrects for gel-to-gel variability by co-running with the sample proteome a standardized marker grid of 80-100 nodes, which is formed by a set of purified proteins. Differentiation of reference and analyte is possible by the use of two fluorescent dyes. Variations in the y-dimension (molecular weight) are corrected by the marker grid. For the optional control of the x-dimension (pI), azo dyes can be used. Experiments are possible in both vertical and horizontal (h) electrophoresis devices, but hCoFGE is much easier to perform. For data analysis, commercial software capable of warping can be adapted.
Two-dimensional hexagonal semiconductors beyond graphene
Nguyen, Bich Ha; Hieu Nguyen, Van
2016-12-01
The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.
Two-Dimensional Phononic Crystals: Disorder Matters.
Wagner, Markus R; Graczykowski, Bartlomiej; Reparaz, Juan Sebastian; El Sachat, Alexandros; Sledzinska, Marianna; Alzina, Francesc; Sotomayor Torres, Clivia M
2016-09-14
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
Two-dimensional topological photonic systems
Sun, Xiao-Chen; He, Cheng; Liu, Xiao-Ping; Lu, Ming-Hui; Zhu, Shi-Ning; Chen, Yan-Feng
2017-09-01
The topological phase of matter, originally proposed and first demonstrated in fermionic electronic systems, has drawn considerable research attention in the past decades due to its robust transport of edge states and its potential with respect to future quantum information, communication, and computation. Recently, searching for such a unique material phase in bosonic systems has become a hot research topic worldwide. So far, many bosonic topological models and methods for realizing them have been discovered in photonic systems, acoustic systems, mechanical systems, etc. These discoveries have certainly yielded vast opportunities in designing material phases and related properties in the topological domain. In this review, we first focus on some of the representative photonic topological models and employ the underlying Dirac model to analyze the edge states and geometric phase. On the basis of these models, three common types of two-dimensional topological photonic systems are discussed: 1) photonic quantum Hall effect with broken time-reversal symmetry; 2) photonic topological insulator and the associated pseudo-time-reversal symmetry-protected mechanism; 3) time/space periodically modulated photonic Floquet topological insulator. Finally, we provide a summary and extension of this emerging field, including a brief introduction to the Weyl point in three-dimensional systems.
Radiation effects on two-dimensional materials
Energy Technology Data Exchange (ETDEWEB)
Walker, R.C. II; Robinson, J.A. [Department of Materials Science, Penn State, University Park, PA (United States); Center for Two-Dimensional Layered Materials, Penn State, University Park, PA (United States); Shi, T. [Department of Mechanical and Nuclear Engineering, Penn State, University Park, PA (United States); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Silva, E.C. [GlobalFoundries, Malta, NY (United States); Jovanovic, I. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)
2016-12-15
The effects of electromagnetic and particle irradiation on two-dimensional materials (2DMs) are discussed in this review. Radiation creates defects that impact the structure and electronic performance of materials. Determining the impact of these defects is important for developing 2DM-based devices for use in high-radiation environments, such as space or nuclear reactors. As such, most experimental studies have been focused on determining total ionizing dose damage to 2DMs and devices. Total dose experiments using X-rays, gamma rays, electrons, protons, and heavy ions are summarized in this review. We briefly discuss the possibility of investigating single event effects in 2DMs based on initial ion beam irradiation experiments and the development of 2DM-based integrated circuits. Additionally, beneficial uses of irradiation such as ion implantation to dope materials or electron-beam and helium-beam etching to shape materials have begun to be used on 2DMs and are reviewed as well. For non-ionizing radiation, such as low-energy photons, we review the literature on 2DM-based photo-detection from terahertz to UV. The majority of photo-detecting devices operate in the visible and UV range, and for this reason they are the focus of this review. However, we review the progress in developing 2DMs for detecting infrared and terahertz radiation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Photodetectors based on two dimensional materials
Zheng, Lou; Zhongzhu, Liang; Guozhen, Shen
2016-09-01
Two-dimensional (2D) materials with unique properties have received a great deal of attention in recent years. This family of materials has rapidly established themselves as intriguing building blocks for versatile nanoelectronic devices that offer promising potential for use in next generation optoelectronics, such as photodetectors. Furthermore, their optoelectronic performance can be adjusted by varying the number of layers. They have demonstrated excellent light absorption, enabling ultrafast and ultrasensitive detection of light in photodetectors, especially in their single-layer structure. Moreover, due to their atomic thickness, outstanding mechanical flexibility, and large breaking strength, these materials have been of great interest for use in flexible devices and strain engineering. Toward that end, several kinds of photodetectors based on 2D materials have been reported. Here, we present a review of the state-of-the-art in photodetectors based on graphene and other 2D materials, such as the graphene, transition metal dichalcogenides, and so on. Project supported by the National Natural Science Foundation of China (Nos. 61377033, 61574132, 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences.
Asymptotics for Two-dimensional Atoms
DEFF Research Database (Denmark)
Nam, Phan Thanh; Portmann, Fabian; Solovej, Jan Philip
2012-01-01
We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E^{\\TF}(\\lambd......We prove that the ground state energy of an atom confined to two dimensions with an infinitely heavy nucleus of charge $Z>0$ and $N$ quantum electrons of charge -1 is $E(N,Z)=-{1/2}Z^2\\ln Z+(E^{\\TF}(\\lambda)+{1/2}c^{\\rm H})Z^2+o(Z^2)$ when $Z\\to \\infty$ and $N/Z\\to \\lambda$, where $E......^{\\TF}(\\lambda)$ is given by a Thomas-Fermi type variational problem and $c^{\\rm H}\\approx -2.2339$ is an explicit constant. We also show that the radius of a two-dimensional neutral atom is unbounded when $Z\\to \\infty$, which is contrary to the expected behavior of three-dimensional atoms....
Predicting Two-Dimensional Silicon Carbide Monolayers.
Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I
2015-10-27
Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.
On Classical Solutions to 2D Shallow Water Equations with Degenerate Viscosities
Li, Yachun; Pan, Ronghua; Zhu, Shengguo
2017-03-01
2D shallow water equations have degenerate viscosities proportional to surface height, which vanishes in many physical considerations, say, when the initial total mass, or energy are finite. Such a degeneracy is a highly challenging obstacle for development of well-posedness theory, even local-in-time theory remains open for a long time. In this paper, we will address this open problem with some new perspectives, independent of the celebrated BD-entropy (Bresch et al in Commun Math Phys 238:211-223, 2003, Commun Part Differ Eqs 28:843-868, 2003, Analysis and Simulation of Fluid Dynamics, 2007). After exploring some interesting structures of most models of 2D shallow water equations, we introduced a proper notion of solution class, called regular solutions, and identified a class of initial data with finite total mass and energy, and established the local-in-time well-posedness of this class of smooth solutions. The theory is applicable to most relatively physical shallow water models, broader than those with BD-entropy structures. We remark that our theory is on the local strong solutions, while the BD entropy is an essential tool for the global weak solutions. Later, a Beale-Kato-Majda type blow-up criterion is also established. This paper is mainly based on our early preprint (Li et al. in 2D compressible Navier-Stokes equations with degenerate viscosities and far field vacuum, preprint. arXiv:1407.8471, 2014).
The Role of Shallow Waters in the Life Cycle of the Bahrain Penaeid Shrimps
Abdulqader, E. A. A.
1999-08-01
Tubli Bay and shallow areas south of 'Fasht Al-Adhom' are known for their importance to Bahrain penaeid shrimps. The role of these shallow waters in the Bahrain penaeid shrimp life cycle was studied in Tubli Bay. Plankton, beam and otter trawl samples were collected on a biweekly basis from May 1991 to June 1992. Otter trawl sampling was extended to June 1993. Four penaeid species were found in the area. Ranked by decreasing abundance, these species are Penaeus semisulcatus De Haan 1844, Metapenaeus stebbingi Nobili 1904, M. kutchensisGeorge, George & Rao, 1963, and P. latisulcatus Kishinouye 1896. The presence of two egg types in the plankton collection, and mature females of both M. stebbingi and M. kutchensis indicate that both species spawned in these shallow waters. Tubli Bay is an important nursery ground for both P. semisulcatus and M. stebbingi. However, this bay does not support the entire stock of P. semisulcatus. Post-spawning return migration to shallow waters is noted for P. semisulcatus. Tubli Bay is of minor importance as a nursery ground for both P. latisulcatus and M. kutchensis. Other penaeid species found in Bahrain waters are not dependent on Tubli Bay during their life cycles. These species include, Trachypenaeus curvirostris Stimpson (1860), Metapenaeopsis stridulans Alcock (1905), and M. mogiensis Rathbun (1902).
Urban flood modeling using shallow water equations with depth-dependent anisotropic porosity
Özgen, Ilhan; Zhao, Jiaheng; Liang, Dongfang; Hinkelmann, Reinhard
2016-10-01
The shallow water model with anisotropic porosity conceptually takes into account the unresolved subgrid-scale features, e.g. microtopography or buildings. This enables computationally efficient simulations that can be run on coarser grids, whereas reasonable accuracy is maintained via the introduction of porosity. This article presents a novel numerical model for the depth-averaged equations with anisotropic porosity. The porosity is calculated using the probability mass function of the subgrid-scale features in each cell and updated in each time step. The model is tested in a one-dimensional theoretical benchmark before being evaluated against measurements and high-resolution predictions in three case studies: a dam-break over a triangular bottom sill, a dam-break through an idealized city and a rainfall-runoff event in an idealized urban catchment. The physical processes could be approximated relatively well with the anisotropic porosity shallow water model. The computational resolution influences the porosities calculated at the cell edges and therefore has a large influence on the quality of the solution. The computational time decreased significantly, on average three orders of magnitude, in comparison to the classical high-resolution shallow water model simulation.
Equilibrium Statistical Mechanics and Energy Partition for the Shallow Water Model
Renaud, A.; Venaille, A.; Bouchet, F.
2016-05-01
The aim of this paper is to use large deviation theory in order to compute the entropy of macrostates for the microcanonical measure of the shallow water system. The main prediction of this full statistical mechanics computation is the energy partition between a large scale vortical flow and small scale fluctuations related to inertia-gravity waves. We introduce for that purpose a semi-Lagrangian discrete model of the continuous shallow water system, and compute the corresponding statistical equilibria. We argue that microcanonical equilibrium states of the discrete model in the continuous limit are equilibrium states of the actual shallow water system. We show that the presence of small scale fluctuations selects a subclass of equilibria among the states that were previously computed by phenomenological approaches that were neglecting such fluctuations. In the limit of weak height fluctuations, the equilibrium state can be interpreted as two subsystems in thermal contact: one subsystem corresponds to the large scale vortical flow, the other subsystem corresponds to small scale height and velocity fluctuations. It is shown that either a non-zero circulation or rotation and bottom topography are required to sustain a non-zero large scale flow at equilibrium. Explicit computation of the equilibria and their energy partition is presented in the quasi-geostrophic limit for the energy-enstrophy ensemble. The possible role of small scale dissipation and shocks is discussed. A geophysical application to the Zapiola anticyclone is presented.
Institute of Scientific and Technical Information of China (English)
CHEN Yan; TANG Weilin; FAN Wei; FAN Jun
2012-01-01
A geometrical acoustic method based on image-source method and physicM acoustic method was developed to calculate the echo of targets submerged in the shallow water waveguide. The incident rays and the scattering rays are reflected by two boundaries for many times, and then the back rays become countless. The total backscattering field is obtained through summing up the scattering field produced by each combination of incident rays and back rays. The echo of the 10m-radius pressure release sphere in Pekeris waveguide with the range is calculated by the geometrical acoustic method. Compared with the results calculated by the wave acoustic method in the available literature, it shows that both are in accordance on average value and descend trend. The following results indicate that the difference between Effective Target Strength （ETS） in shallow water and the Target Strength （TS） in free space for spheres and certain other rounded objects is small. However, the ETS of some targets such as cone-shaped is quite different from TS in free space, which can lead to large errors in estimating a target＇s scattering property using traditional sonar equation. Compared with the method of wave acoustics, the geometrical acoustic method not only has the definite physical meaning but also can calculate the echo of complex objects in shallow water waveguide.
Shallow Water Effects on Surge Motion and Load of Soft Yoke Moored FPSO
Institute of Scientific and Technical Information of China (English)
XIAO Long-fei; YANG Jian-min; LI Xin
2007-01-01
Much attention should be paid to a large FPSO moored permanently in an oil field with water depth of only about 20 m, since shallow water effects on the hydrodynamics may bring about collision and damage. A 160kDWT FPSO with a permanent soft yoke mooring system is investigated with various shallow water depths and focuses are the low frequency surge motion and mooring load. Computation for the FPSO system is made based on linear 3-D potential fluid theory and time-domain numerical simulation method. Corresponding model test is carried out in the ocean engineering basin of Shanghai Jiao Tong University. It is shown that, in the surge natural period, low frequency surge motion and mooring force increase remarkably with the decrease of water depth. Especially, the smaller the ratio of water depth and draught is, the quicker the increase is. The shallow water effects should be taken into account carefully for determining the design load of a single point mooring system.
Biomechanical characteristics of adults walking in shallow water and on land.
Barela, Ana M F; Stolf, Sandro F; Duarte, Marcos
2006-06-01
Although water environment has been employed for different physical activities, there is little available information regarding the biomechanical characteristics of walking in shallow water. In the present study, we investigated the kinematics, ground reaction forces (GRF), and electromyographic (EMG) activation patterns of eight selected muscles of adults walking in shallow water and on land. Ten healthy adults were videotaped while walking at self-selected comfortable speeds on land and in water (at the Xiphoid process level). In both conditions there was a force plate embedded in the middle of each walkway to register the GRF components. Reflective markers were placed over main anatomical landmarks and they were digitalized later to obtain stride characteristics and joint angle information. In general, walking in water was different to walking on land in many aspects and these differences were attributed to the drag force, the apparent body weight reduction, and the lower comfortable speed during walking in shallow water. The joint range of motions (ROM) were not different, the segment ROM, magnitudes of GRF components, impact force, and impulse were different between the two conditions. The present results will contribute to a better understanding of this activity in the context of training and rehabilitation.
Tiffan, Kenneth F.; Connor, William P.
2012-01-01
The U.S. Army Corps of Engineers (COE) is preparing a long term management plan for sediments that affect the authorized project purposes of the Lower Granite, Little Goose, Lower Monumental, and Ice Harbor reservoirs (hereafter, the lower Snake River reservoirs), and the area from the mouth of the Snake River to Ice Harbor Dam. We conducted a study from spring 2010 through winter 2011 to describe the habitat use by juvenile Chinook salmon within a selected group of shallow water habitat complexes (areas increased. Reservoir-type juveniles (or fish likely destined to become reservoir-type juveniles) were present in the lower Snake River reservoirs from fall 2010 through winter 2011; however, use of shallow water habitat by reservoir-type juveniles was limited during our study. We only collected 38 reservoir-type juveniles in shallow water habitat sites in beach and lampara seines during the fall. Radiotelemetry data revealed that though many tagged fish passed shallow water habitat sites, relatively few fish entered them and the median time fish spent within a given site was less than 1.4 h. Fish located by mobile tracking away from study sites were pelagically oriented, and generally not found over shallow water or close to shore. The findings in this report: (1) support the selection of natural fall Chinook subyearlings as the indicator group for determining the potential benefits of using dredge spoils to create shallow water habitat, (2) provide evidence for shallow water habitat use by natural subyearlings, (3) provide evidence against large-scale use of shallow water habitat by reservoir-type juveniles, (4) suggest that the depth criterion for defining shallow water habitat (i.e., competition would help to better inform the long-term management plan.
Interaction of two-dimensional magnetoexcitons
Dumanov, E. V.; Podlesny, I. V.; Moskalenko, S. A.; Liberman, M. A.
2017-04-01
We study interaction of the two-dimensional magnetoexcitons with in-plane wave vector k→∥ = 0 , taking into account the influence of the excited Landau levels (ELLs) and of the external electric field perpendicular to the surface of the quantum well and parallel to the external magnetic field. It is shown that the account of the ELLs gives rise to the repulsion between the spinless magnetoexcitons with k→∥ = 0 in the Fock approximation, with the interaction constant g decreasing inverse proportional to the magnetic field strength B (g (0) ∼ 1 / B) . In the presence of the perpendicular electric field the Rashba spin-orbit coupling (RSOC), Zeeman splitting (ZS) and nonparabolicity of the heavy-hole dispersion law affect the Landau quantization of the electrons and holes. They move along the new cyclotron orbits, change their Coulomb interactions and cause the interaction between 2D magnetoexcitons with k→∥ = 0 . The changes of the Coulomb interactions caused by the electrons and by the holes moving with new cyclotron orbits are characterized by some coefficients, which in the absence of the electric field turn to be unity. The differences between these coefficients of the electron-hole pairs forming the magnetoexcitons determine their affinities to the interactions. The interactions between the homogeneous, semihomogeneous and heterogeneous magnetoexcitons forming the symmetric states with the same signs of their affinities are attractive whereas in the case of different sign affinities are repulsive. In the heterogeneous asymmetric states the interactions have opposite signs in comparison with the symmetric states. In all these cases the interaction constant g have the dependence g (0) 1 /√{ B} .
Two-dimensional materials and their prospects in transistor electronics.
Schwierz, F; Pezoldt, J; Granzner, R
2015-05-14
During the past decade, two-dimensional materials have attracted incredible interest from the electronic device community. The first two-dimensional material studied in detail was graphene and, since 2007, it has intensively been explored as a material for electronic devices, in particular, transistors. While graphene transistors are still on the agenda, researchers have extended their work to two-dimensional materials beyond graphene and the number of two-dimensional materials under examination has literally exploded recently. Meanwhile several hundreds of different two-dimensional materials are known, a substantial part of them is considered useful for transistors, and experimental transistors with channels of different two-dimensional materials have been demonstrated. In spite of the rapid progress in the field, the prospects of two-dimensional transistors still remain vague and optimistic opinions face rather reserved assessments. The intention of the present paper is to shed more light on the merits and drawbacks of two-dimensional materials for transistor electronics and to add a few more facets to the ongoing discussion on the prospects of two-dimensional transistors. To this end, we compose a wish list of properties for a good transistor channel material and examine to what extent the two-dimensional materials fulfill the criteria of the list. The state-of-the-art two-dimensional transistors are reviewed and a balanced view of both the pros and cons of these devices is provided.
Ultrafast two dimensional infrared chemical exchange spectroscopy
Fayer, Michael
2011-03-01
The method of ultrafast two dimensional infrared (2D IR) vibrational echo spectroscopy is described. Three ultrashort IR pulses tuned to the frequencies of the vibrational transitions of interest are directed into the sample. The interaction of these pulses with the molecular vibrational oscillators produces a polarization that gives rise to a fourth pulse, the vibrational echo. The vibrational echo pulse is combined with another pulse, the local oscillator, for heterodyne detection of the signal. For fixed time between the second and third pulses, the waiting time, the first pulse is scanned. Two Fourier transforms of the data yield a 2D IR spectrum. The waiting time is increased, and another spectrum is obtained. The change in the 2D IR spectra with increased waiting time provides information on the time evolution of the structure of the molecular system under observation. In a 2D IR chemical exchange experiment, two species A and B, are undergoing chemical exchange. A's are turning into B's, and B's are turning into A's, but the overall concentrations of the species are not changing. The kinetics of the chemical exchange on the ground electronic state under thermal equilibrium conditions can be obtained 2D IR spectroscopy. A vibration that has a different frequency for the two species is monitored. At very short time, there will be two peaks on the diagonal of the 2D IR spectrum, one for A and one for B. As the waiting time is increased, chemical exchange causes off-diagonal peaks to grow in. The time dependence of the growth of these off-diagonal peaks gives the chemical exchange rate. The method is applied to organic solute-solvent complex formation, orientational isomerization about a carbon-carbon single bond, migration of a hydrogen bond from one position on a molecule to another, protein structural substate interconversion, and water hydrogen bond switching between ions and water molecules. This work was supported by the Air Force Office of Scientific
Molecular assembly on two-dimensional materials
Kumar, Avijit; Banerjee, Kaustuv; Liljeroth, Peter
2017-02-01
Molecular self-assembly is a well-known technique to create highly functional nanostructures on surfaces. Self-assembly on two-dimensional (2D) materials is a developing field driven by the interest in functionalization of 2D materials in order to tune their electronic properties. This has resulted in the discovery of several rich and interesting phenomena. Here, we review this progress with an emphasis on the electronic properties of the adsorbates and the substrate in well-defined systems, as unveiled by scanning tunneling microscopy. The review covers three aspects of the self-assembly. The first one focuses on non-covalent self-assembly dealing with site-selectivity due to inherent moiré pattern present on 2D materials grown on substrates. We also see that modification of intermolecular interactions and molecule–substrate interactions influences the assembly drastically and that 2D materials can also be used as a platform to carry out covalent and metal-coordinated assembly. The second part deals with the electronic properties of molecules adsorbed on 2D materials. By virtue of being inert and possessing low density of states near the Fermi level, 2D materials decouple molecules electronically from the underlying metal substrate and allow high-resolution spectroscopy and imaging of molecular orbitals. The moiré pattern on the 2D materials causes site-selective gating and charging of molecules in some cases. The last section covers the effects of self-assembled, acceptor and donor type, organic molecules on the electronic properties of graphene as revealed by spectroscopy and electrical transport measurements. Non-covalent functionalization of 2D materials has already been applied for their application as catalysts and sensors. With the current surge of activity on building van der Waals heterostructures from atomically thin crystals, molecular self-assembly has the potential to add an extra level of flexibility and functionality for applications ranging
2012-03-30
... the most recent fisheries data in a timely fashion and would delay the closure of the shallow-water... Director, Office of Sustainable Fisheries, National Marine Fisheries Service. BILLING CODE 3510-22-P...
National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (generally, less than 30 meters) bank areas in the Northwestern Hawaiian Islands were identified using semi-automated image analysis of Landsat 7 ETM+...
National Oceanic and Atmospheric Administration, Department of Commerce — Shallow-water (generally, less than 30 meters) bank areas in the Northwestern Hawaiian Islands were identified using semi-automated image analysis of Landsat 7 ETM+...
Conde, Daniel; Canelas, Ricardo B.; Ferreira, Rui M. L.
2017-04-01
One of the most common challenges in hydrodynamic modelling is the trade off one must make between highly resolved simulations and the time required for their computation. In the particular case of urban floods, modelers are often forced to simplify the complex geometries of the problem, or to implicitly include some of its hydrodynamic effects, due to the typically very large spatial scales involved and limited computational resources. At CEris - Instituto Superior Técnico, Universidade de Lisboa - the STAV-2D shallow-water model, particularly suited for strong transient flows in complex and dynamic geometries, has been under development for the past recent years (Canelas et al., 2013 & Conde et al., 2013). The model is based on an explicit, first-order 2DH finite-volume discretization scheme for unstructured triangular meshes, in which a flux-splitting technique is paired with a reviewed Roe-Riemann solver, yielding a model applicable to discontinuous flows over time-evolving geometries. STAV-2D features solid transport in both Euleran and Lagrangian forms, with the first aiming at describing the transport of fine natural sediments and the latter aimed at large individual debris. The model has been validated with theoretical solutions and laboratory experiments (Canelas et al., 2013 & Conde et al., 2015). This work presents our most recent effort in STAV-2D: the re-design of the code in a modern Object-Oriented parallel framework for heterogeneous computations in CPUs and GPUs. The programming language of choice for this re-design was C++, due to its wide support of established and emerging parallel programming interfaces. The current implementation of STAV-2D provides two different levels of parallel granularity: inter-node and intra-node. Inter-node parallelism is achieved by distributing a simulation across a set of worker nodes, with communication between nodes being explicitly managed through MPI. At this level, the main difficulty is associated with the
Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach
Camassa, R; Ortenzi, G
2015-01-01
The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite 2D channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids' inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, and thence, in a non-trivial way, to the dispersionless non-linear Schr\\"odinger equation. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, it is shown that at first order the deformed system possesses an infinite sequence of constants of the motion, thus casting this system within the framework of comp...
de Graaf, Inge E. M.; van Beek, Rens L. P. H.; Gleeson, Tom; Moosdorf, Nils; Schmitz, Oliver; Sutanudjaja, Edwin H.; Bierkens, Marc F. P.
2017-04-01
Groundwater is the world's largest accessible source of freshwater to satisfy human water needs. Moreover, groundwater buffers variable precipitation rates over time, thereby effectively sustaining river flows in times of droughts and evaporation in areas with shallow water tables. In this study, building on previous work, we simulate groundwater head fluctuations and groundwater storage changes in both confined and unconfined aquifer systems using a global-scale high-resolution (5‧) groundwater model by deriving new estimates of the distribution and thickness of confining layers. Inclusion of confined aquifer systems (estimated 6-20% of the total aquifer area) improves estimates of timing and amplitude of groundwater head fluctuations and changes groundwater flow paths and groundwater-surface water interaction rates. Groundwater flow paths within confining layers are shorter than paths in the underlying aquifer, while flows within the confined aquifer can get disconnected from the local drainage system due to the low conductivity of the confining layer. Lateral groundwater flows between basins are significant in the model, especially for areas with (partially) confined aquifers were long flow paths crossing catchment boundaries are simulated, thereby supporting water budgets of neighboring catchments or aquifer systems. The developed two-layer transient groundwater model is used to identify hot-spots of groundwater depletion. Global groundwater depletion is estimated as 7013 km3 (137 km3y-1) over 1960-2010, which is consistent with estimates of previous studies.
Hamiltonian structure for two-dimensional extended Green-Naghdi equations
Matsuno, Yoshimasa
2016-06-01
The two-dimensional Green-Naghdi (GN) shallow-water model for surface gravity waves is extended to incorporate the arbitrary higher-order dispersive effects. This can be achieved by developing a novel asymptotic analysis applied to the basic nonlinear water wave problem. The linear dispersion relation for the extended GN system is then explored in detail. In particular, we use its characteristics to discuss the well-posedness of the linearized problem. As illustrative examples of approximate model equations, we derive a higher-order model that is accurate to the fourth power of the dispersion parameter in the case of a flat bottom topography, and address the related issues such as the linear dispersion relation, conservation laws and the pressure distribution at the fluid bottom on the basis of this model. The original Green-Naghdi (GN) model is then briefly described in the case of an uneven bottom topography. Subsequently, the extended GN system presented here is shown to have the same Hamiltonian structure as that of the original GN system. Last, we demonstrate that Zakharov's Hamiltonian formulation of surface gravity waves is equivalent to that of the extended GN system by rewriting the former system in terms of the momentum density instead of the velocity potential at the free surface.
Aricò, Costanza; Lo Re, Carlo
2016-12-01
We extend a recently proposed 2D depth-integrated Finite Volume solver for the nonlinear shallow water equations with non-hydrostatic pressure distribution. The proposed model is aimed at simulating both nonlinear and dispersive shallow water processes. We split the total pressure into its hydrostatic and dynamic components and solve a hydrostatic problem and a non-hydrostatic problem sequentially, in the framework of a fractional time step procedure. The dispersive properties are achieved by incorporating the non-hydrostatic pressure component in the governing equations. The governing equations are the depth-integrated continuity equation and the depth-integrated momentum equations along the x, y and z directions. Unlike the previous non-hydrostatic shallow water solver, in the z momentum equation, we retain both the vertical local and convective acceleration terms. In the former solver, we keep only the local vertical acceleration term. In this paper, we investigate the effects of these convective terms and the possible improvements of the computed solution when these terms are not neglected in the governing equations, especially in strongly nonlinear processes. The presence of the convective terms in the vertical momentum equation leads to a numerical solution procedure, which is quite different from the one of the previous solver, in both the hydrostatic and dynamic steps. We discretize the spatial domain using unstructured triangular meshes satisfying the Generalized Delaunay property. The numerical solver is shock capturing and easily addresses wetting/drying problems, without any additional equation to solve at wet/dry interfaces. We present several numerical applications for challenging flooding processes encountered in practical aspects over irregular topography, including a new set of experiments carried out at the Hydraulics Laboratory of the University of Palermo.
Modeling wind waves from deep to shallow waters in Lake Michigan using unstructured SWAN
Mao, Miaohua; van der Westhuysen, André J.; Xia, Meng; Schwab, David J.; Chawla, Arun
2016-06-01
Accurate wind-wave simulations are vital for evaluating the impact of waves on coastal dynamics, especially when wave observations are sparse. It has been demonstrated that structured-grid models have the ability to capture the wave dynamics of large-scale offshore domains, and the recent emergence of unstructured meshes provides an opportunity to better simulate shallow-water waves by resolving the complex geometry along islands and coastlines. For this study, wind waves in Lake Michigan were simulated using the unstructured-grid version of Simulating Waves Nearshore (un-SWAN) model with various types of wind forcing, and the model was calibrated using in situ wave observations. Sensitivity experiments were conducted to investigate the key factors that impact wave growth and dissipation processes. In particular, we considered (1) three wind field sources, (2) three formulations for wind input and whitecapping, (3) alternative formulations and coefficients for depth-induced breaking, and (4) various mesh types. We find that un-SWAN driven by Global Environmental Multiscale (GEM) wind data reproduces significant wave heights reasonably well using previously proposed formulations for wind input, recalibrated whitecapping parameters, and alternative formulations for depth-induced breaking. The results indicate that using GEM wind field data as input captures large waves in the midlake most accurately, while using the Natural Neighbor Method wind field reproduces shallow-water waves more accurately. Wind input affects the simulated wave evolution across the whole lake, whereas whitecapping primarily affects wave dynamics in deep water. In shallow water, the process of depth-induced breaking is dominant and highly dependent upon breaker indices and mesh types.
The convolution theorem for two-dimensional continuous wavelet transform
Institute of Scientific and Technical Information of China (English)
ZHANG CHI
2013-01-01
In this paper , application of two -dimensional continuous wavelet transform to image processes is studied. We first show that the convolution and correlation of two continuous wavelets satisfy the required admissibility and regularity conditions ,and then we derive the convolution and correlation theorem for two-dimensional continuous wavelet transform. Finally, we present numerical example showing the usefulness of applying the convolution theorem for two -dimensional continuous wavelet transform to perform image restoration in the presence of additive noise.
Optical tsunamis: shoaling of shallow water rogue waves in nonlinear fibers with normal dispersion
Wabnitz, Stefan
2013-01-01
In analogy with ocean waves running up towards the beach, shoaling of prechirped optical pulses may occur in the normal group-velocity dispersion regime of optical fibers. We present exact Riemann wave solutions of the optical shallow water equations and show that they agree remarkably well with the numerical solutions of the nonlinear Schr\\"odinger equation, at least up to the point where a vertical pulse front develops. We also reveal that extreme wave events or optical tsunamis may be generated in dispersion tapered fibers in the presence of higher-order dispersion.
Time adaptivity in the diffusive wave approximation to the shallow water equations
Collier, Nathaniel Oren
2013-05-01
We discuss the use of time adaptivity applied to the one dimensional diffusive wave approximation to the shallow water equations. A simple and computationally economical error estimator is discussed which enables time-step size adaptivity. This robust adaptive time discretization corrects the initial time step size to achieve a user specified bound on the discretization error and allows time step size variations of several orders of magnitude. In particular, the one dimensional results presented in this work feature a change of four orders of magnitudes for the time step over the entire simulation. © 2011 Elsevier B.V.
A LARGE EDDY SIMULATION TURBULENCE MODEL FOR COASTAL SEAS AND SHALLOW WATER PROBLEMS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In large scale motions of circulations in coastal seas and shallow-water problems, different characteristics of flow in the horizontal plane and in the vertical direction are expected. In this paper, a new large eddy simulation model was proposed. There are some differences between the present method and the other LES models. The philosophy of the large eddy simulation and the directional eddy viscosity method were applied in the horizontal plane and in the vertical direction, respectively. Comparied with the other LES models in which there is no difference between horizontal viscosity and vertical viscosity, the proposed method is resonable.
Conditional short-crested waves in shallow water and with superimposed current
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2002-01-01
For bottom-supported offshore structures like oil drilling rigs and oil production platforms, a deterministic design wave approach is often applied using a regular non-linear Stokes´ wave. Thereby, the procedure accounts for non-linear effects in the wave loading but the randomness of the ocean...... wave, given the value of the wave crest at a specific point in time or space. In the present paper a derivation of the expected linear short-crested wave riding on a uniform current is given. The analysis is based on the conventional shallow water Airy wave theory and the direction of the main wind...
On the integrability and quasi-periodic wave solutions of the Boussinesq equation in shallow water
Ma, Pan-Li; Tian, Shou-Fu; Tu, Jian-Min; Xu, Mei-Juan
2015-05-01
In this paper, the complete integrability of the Boussinesq equation in shallow water is systematically investigated. By using generalized Bell's polynomials, its bilinear formalism, bilinear Bäcklund transformations, Lax pairs of the Boussinesq equation are constructed, respectively. By virtue of its Lax equations, we find its infinite conservation laws. All conserved densities and fluxes are obtained by lucid recursion formulas. Furthermore, based on multidimensional Riemann theta functions, we construct periodic wave solutions of the Boussinesq equation. Finally, the relations between the periodic wave solutions and soliton solutions are strictly constructed. The asymptotic behaviors of the periodic waves are also analyzed by a limiting procedure.
To Split or Not to Split, That Is the Question in Some Shallow Water Equations
Martínez, Vicente
2012-01-01
In this paper we analyze the use of time splitting techniques for solving shallow water equation. We discuss some properties that these schemes should satisfy so that interactions between the source term and the shock waves are controlled. This paper shows that these schemes must be well balanced in the meaning expressed by Greenberg and Leroux [5]. More speci?cally, we analyze in what cases it is enough to verify an Approximate C-property and in which cases it is required to verify an Exact C-property (see [1], [2]). We also include some numerical tests in order to justify our reasoning.
Symmetry analysis of a system of modified shallow-water equations
Szatmari, Simon
2012-01-01
We revise the symmetry analysis of a modified system of one-dimensional shallow-water equations (MSWE) recently considered by Raja Sekhar and Sharma [Commun. Nonlinear Sci. Numer. Simulat. 20 (2012) 630-636]. Only a finite dimensional subalgebra of the maximal Lie invariance algebra of the MSWE, which in fact is infinite dimensional, was found in the aforementioned paper. The MSWE can be linearized using a hodograph transformation. An optimal list of inequivalent one-dimensional subalgebras of the maximal Lie invariance algebra is constructed and used for Lie reductions. Non-Lie solutions are found from solutions of the linearized MSWE.
Preliminary Computational Fluid Dynamics (CFD) Simulation of EIIB Push Barge in Shallow Water
Beneš, Petr; Kollárik, Róbert
2011-12-01
This study presents preliminary CFD simulation of EIIb push barge in inland conditions using CFD software Ansys Fluent. The RANSE (Reynolds Averaged Navier-Stokes Equation) methods are used for the viscosity solution of turbulent flow around the ship hull. Different RANSE methods are used for the comparison of their results in ship resistance calculations, for selecting the appropriate and removing inappropriate methods. This study further familiarizes on the creation of geometrical model which considers exact water depth to vessel draft ratio in shallow water conditions, grid generation, setting mathematical model in Fluent and evaluation of the simulations results.
Multi-Order Exact Solutions for a generalized shallow water wave equation and other nonlinear PDEs
Bagchi, Bijan; Ganguly, Asish
2011-01-01
We seek multi-order exact solutions of a generalized shallow water wave equation along with those corresponding to a class of nonlinear systems described by the KdV, modified KdV, Boussinesq, Klein-Gordon and modified Benjamin-Bona-Mahony equation. We employ a modified version of a generalized Lame equation and subject it to a perturbative treatment identifying the solutions order by order in terms of Jacobi elliptic functions. Our solutions are new and hold the key feature that they are expressible in terms of an auxiliary function f in a generic way. For appropriate choices of f we recover the previous results reported in the literature.
Energy Technology Data Exchange (ETDEWEB)
Klimachkov, D.A., E-mail: klimachkovdmitry@gmail.com [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Petrosyan, A.S. [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Moscow Institute of Physics and Technology (State University), 9 Institutskyi per., Dolgoprudny, Moscow Region, 141700 (Russian Federation)
2017-01-15
This article deals with magnetohydrodynamic (MHD) flows of a thin rotating layer of astrophysical plasma in external magnetic field. We use the shallow water approximation to describe thin rotating plasma layer with a free surface in a vertical external magnetic field. The MHD shallow water equations with external vertical magnetic field are revised by supplementing them with the equations that are consequences of the magnetic field divergence-free conditions and reveal the existence of third component of the magnetic field in such approximation providing its relation with the horizontal magnetic field. It is shown that the presence of a vertical magnetic field significantly changes the dynamics of the wave processes in astrophysical plasma compared to the neutral fluid and plasma layer in a toroidal magnetic field. The equations for the nonlinear wave packets interactions are derived using the asymptotic multiscale method. The equations for three magneto-Poincare waves interactions, for three magnetostrophic waves interactions, for the interactions of two magneto-Poincare waves and for one magnetostrophic wave and two magnetostrophic wave and one magneto-Poincare wave interactions are obtained. The existence of parametric decay and parametric amplifications is predicted. We found following four types of parametric decay instabilities: magneto-Poincare wave decays into two magneto-Poincare waves, magnetostrophic wave decays into two magnetostrophic waves, magneto-Poincare wave decays into one magneto-Poincare wave and one magnetostrophic wave, magnetostrophic wave decays into one magnetostrophic wave and one magneto-Poincare wave. Following mechanisms of parametric amplifications are found: parametric amplification of magneto-Poincare waves, parametric amplification of magnetostrophic waves, magneto-Poincare wave amplification in magnetostrophic wave presence and magnetostrophic wave amplification in magneto-Poincare wave presence. The instabilities growth rates
GENERAL CAUCHY PROBLEM FOR THE LINEAR SHALLOW -WATER EQUATIONS ON AN EQUATORIAL BETA-PLANE
Institute of Scientific and Technical Information of China (English)
SHEN Chun; SHI Wei-hui
2006-01-01
Based on the theory of stratification, the well-posedness of the initial value problem for the linear shallow-water equations on an equatorial beta-plane was discussed. The sufficient and necessary conditions of the existence and uniqueness for the local solution of the equations were presented and the existence conditions for formal solutions of the equations were also given. For the Cauchy problem on the hyper-plane, the local analytic solution were worked out and a special case was discussed. Finally, an example was used to explain the variety of formal solutions for the ill-posed problem.
A Stability notion for the viscous Shallow Water Discrete-Velocity Boltzmann Equations
Banda, Mapundi K.; Uoane, Tumelo R. A.
2015-01-01
The stability of Lattice Boltzmann Equations modelling Shallow Water Equations in the special case of reduced gravity is investigated theoretically. A stability notion is defined as applied in incompressible Navier-Stokes equations in Banda, M. K., Yong, W.- A. and Klar, A: A stability notion for lattice Boltzmann equations. SIAM J. Sci. Comput. {\\bf 27(6)}, 2098-2111 (2006). It is found that to maintain stability a careful choice of the value of the reduced gravity must be made. The stabilit...
ADAPTIVE FINITE ELEMENT METHOD FOR ANALYSIS OF POLLUTANT DISPERSION IN SHALLOW WATER
Institute of Scientific and Technical Information of China (English)
Somboon Otarawanna; Pramote Dechaumphai
2005-01-01
A finite element method for analysis of pollutant dispersion in shallow water is presented. The analysis is divided into two parts: ( 1 ) computation of the velocity flow field and water surface elevation, and (2) computation of the pollutant concentration field from the dispersion model. The method was combined with an adaptive meshing technique to increase the solution accuracy ,as well as to reduce the computational time and computer memory. The finite element formulation and the computer programs were validated by several examples that have known solutions. In addition, the capability of the combined method was demonstrated by analyzing pollutant dispersion in Chao Phraya River near the gulf of Thailand.
STABILITY AND MIXING CHARACTER FOR BUOYANT JETS IN QUIESCENT SHALLOW WATER
Institute of Scientific and Technical Information of China (English)
ZENG Yu-hong
2005-01-01
The near field stability and mixing characteristics of buoyant jets produced by thermal diffuse in quiescent shallow water are investigated numerically to predict under what combinations of discharge and ambient characteristics the near field will be stable or unstable.Analyses for different discharging types show that the discharge stability is purely dependent on the near-field behavior of the jets, or the dynamic interaction of the buoyant jet region, the surface impingement region and the internal hydraulic jump region, and is independent of the far-field geometry of the receiving water.The stability criterion is a function of the relative submerged depth, and source densimetric Froude number.
Cluster-level tuning of a shallow water equation solver on the Intel MIC architecture
2014-01-01
The paper demonstrates the optimization of the execution environment of a hybrid OpenMP+MPI computational fluid dynamics code (shallow water equation solver) on a cluster enabled with Intel Xeon Phi coprocessors. The discussion includes: (1) Controlling the number and affinity of OpenMP threads to optimize access to memory bandwidth; (2) Tuning the inter-operation of OpenMP and MPI to partition the problem for better data locality; (3) Ordering the MPI ranks in a way that directs some of the ...
The representation of boundary currents in a finite element shallow water model
Düben, Peter D
2015-01-01
We evaluate the influence of local resolution, eddy viscosity, coastline structure, and boundary conditions on the numerical representation of boundary currents in a finite element shallow-water model. The use of finite element discretization methods offers a higher flexibility compared to finite difference and finite volume methods, that are mainly used in previous publications. This is true for the geometry of the coast lines and for the realization of boundary conditions. For our investigations we simulate steady separation of western boundary currents from idealized and realistic coast lines. The use of grid refinement allows a detailed investigation of boundary separation at reasonable numerical cost.
Integrability of an extended (2+1)-dimensional shallow water wave equation with Bell polynomials
Institute of Scientific and Technical Information of China (English)
Wang Yun-Hu; Chen Yong
2013-01-01
We investigate the extended (2+1)-dimensional shallow water wave equation.The binary Bell polynomials are used to construct bilinear equation,bilinear B(a)cklund transformation,Lax pair,and Darboux covariant Lax pair for this equation.Moreover,the infinite conservation laws of this equation are found by using its Lax pair.All conserved densities and fluxes are given with explicit recursion formulas.The N-soliton solutions are also presented by means of the Hirota bilinear method.
Travelling wave solutions for some two-component shallow water models
Dutykh, Denys; Ionescu-Kruse, Delia
2016-07-01
In the present study we perform a unified analysis of travelling wave solutions to three different two-component systems which appear in shallow water theory. Namely, we analyze the celebrated Green-Naghdi equations, the integrable two-component Camassa-Holm equations and a new two-component system of Green-Naghdi type. In particular, we are interested in solitary and cnoidal-type solutions, as two most important classes of travelling waves that we encounter in applications. We provide a complete phase-plane analysis of all possible travelling wave solutions which may arise in these models. In particular, we show the existence of new type of solutions.
The shallow water equations on the sphere and their Lagrange- Galerkin-solution
Heinze, T
2002-01-01
The shallow water equations are formulated on the sphere in a three- dimensional coordinate system with the aid of tangential velocity components and differential operators. We introduce a modified semi- Lagrangian scheme for the discretization in time. The discretization in space is solved by linear finite elements. The grids we use are regular refinements of a macro triangulation which itself is derived from a highly symmetric polyeder also known as a bucky or soccer ball. The good numerical results show that this combination is a promising approach. The numerical algorithm is stable and its strength is the conservation of mass and energy. (16 refs).
Kröger, Tim; Lukáčová-Medvid'ová, Mária
2005-06-01
In this paper we propose a new finite volume evolution Galerkin (FVEG) scheme for the shallow water magnetohydrodynamic (SMHD) equations. We apply the exact integral equations already used in our earlier publications to the SMHD system. Then, we approximate these integral equation in a general way which does not exploit any particular property of the SMHD equations and should thus be applicable to arbitrary systems of hyperbolic conservation laws in two space dimensions. In particular, we investigate more deeply the approximation of the spatial derivatives which appear in the integral equations. The divergence free condition is satisfied discretely, i.e. at each vertex. First numerical results confirm reliability of the numerical scheme.
Finite Volume Evolution Galerkin Methods for the Shallow Water Equations with Dry Beds
Bollermann, Andreas; Noelle, Sebastian; Medvidová, Maria Lukáčová -
2015-01-01
We present a new Finite Volume Evolution Galerkin (FVEG) scheme for the solution of the shallow water equations (SWE) with the bottom topography as a source term. Our new scheme will be based on the FVEG methods presented in (Luk\\'a\\v{c}ov\\'a, Noelle and Kraft, J. Comp. Phys. 221, 2007), but adds the possibility to handle dry boundaries. The most important aspect is to preserve the positivity of the water height. We present a general approach to ensure this for arbitrary finite volume schemes...
Interference structure of shallow water reverberation in time-frequency distribution
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The striations of the reverberation spectrum in the time-frequency distribution were observed in a shallow water acoustic experiment in 2002. A model following the coherent reverberation model developed in 2002 is presented to explain the observed striations. To examine the consistency between the measured data and numerical predictions, we have used a method based on Radon transform for determining the slope of the striations to the measured reverberation data and numerical predictions. The results indicate that the previously developed coherent reverberation model can predict the interference structure of the reverberation intensity in the time-frequency distribution.
Interfacial Stability in a Two-Layer Benard Problem.
1985-04-01
STABILITY IN A TWO-LAYER BENARD PROBLEM Yuriko Renardy Technical Summary Report #2814 April 1985 I cti- Work Unit Number 2 - Physical Mathematics...34•"• -••’-’• ^ ••’••• VI , •• W -•- • •- ’•"• INTERFACIAL STABILITY IN A TWO-LAYER BENARD PROBLEM Yuriko Renardy I. INTRODUCTION Two layers of fluids are...Subtltl») INTERFACIAL STABILITY IN A TWO-LAYER BENARD PROBLEM 7. AUTMORf.; Yuriko Renardy »• PERFORMING ORGANIZATION NAME AND ADDRESS
A two-layer flow model to represent ice-ocean interactions beneath Antarctic ice shelves
Lee, V.; Payne, A. J.; Gregory, J. M.
2011-01-01
We develop a two-dimensional two-layer flow model that can calculate melt rates beneath ice shelves from ocean temperature and salinity fields at the shelf front. The cavity motion is split into two layers where the upper plume layer represents buoyant meltwater-rich water rising along the underside of the ice to the shelf front, while the lower layer represents the ambient water connected to the open ocean circulating beneath the plume. Conservation of momentum has been reduced to a frictional geostrophic balance, which when linearized provides algebraic equations for the plume velocity. The turbulent exchange of heat and salt between the two layers is modelled through an entrainment rate which is directed into the faster flowing layer. The numerical model is tested using an idealized geometry based on the dimensions of Pine Island Ice Shelf. We find that the spatial distribution of melt rates is fairly robust. The rates are at least 2.5 times higher than the mean in fast flowing regions corresponding to the steepest section of the underside of the ice shelf close to the grounding line and to the converged geostrophic flow along the rigid lateral boundary. Precise values depend on a combination of entrainment and plume drag coefficients. The flow of the ambient is slow and the spread of ocean scalar properties is dominated by diffusion.
A two-layer flow model to represent ice-ocean interactions beneath Antarctic ice shelves
Directory of Open Access Journals (Sweden)
V. Lee
2011-01-01
Full Text Available We develop a two-dimensional two-layer flow model that can calculate melt rates beneath ice shelves from ocean temperature and salinity fields at the shelf front. The cavity motion is split into two layers where the upper plume layer represents buoyant meltwater-rich water rising along the underside of the ice to the shelf front, while the lower layer represents the ambient water connected to the open ocean circulating beneath the plume. Conservation of momentum has been reduced to a frictional geostrophic balance, which when linearized provides algebraic equations for the plume velocity. The turbulent exchange of heat and salt between the two layers is modelled through an entrainment rate which is directed into the faster flowing layer.
The numerical model is tested using an idealized geometry based on the dimensions of Pine Island Ice Shelf. We find that the spatial distribution of melt rates is fairly robust. The rates are at least 2.5 times higher than the mean in fast flowing regions corresponding to the steepest section of the underside of the ice shelf close to the grounding line and to the converged geostrophic flow along the rigid lateral boundary. Precise values depend on a combination of entrainment and plume drag coefficients. The flow of the ambient is slow and the spread of ocean scalar properties is dominated by diffusion.
Species Diversity of Shallow Water Zoanthids (Cnidaria: Anthozoa: Hexacorallia in Florida
Directory of Open Access Journals (Sweden)
James Davis Reimer
2012-01-01
Full Text Available Shallow water zooxanthellate zoanthids are a common component of the coral reef ecosystems of the Caribbean. Despite this, their species diversity remains poorly understood. In this study, collected Palythoa, Zoanthus, Isaurus, and Terrazoanthus specimens from the waters of Florida were phylogenetically examined to obtain a better understanding of zoanthid species diversity in the Caribbean. Surprisingly, the results from analyses utilizing three DNA markers (mitochondrial 16S ribosomal DNA, cytochrome oxidase subunit I, and the internal transcribed spacer of ribosomal DNA showed the presence of at least eleven species, of which up to four appear undescribed. Additionally, the presence of the genus Terrazoanthus in the Caribbean was confirmed for the first time. Attempts to match phylogenetic species or clades with original literature were hampered by vague and short original descriptions, and it is clear that for Atlantic Palythoa and Zoanthus species an in-depth and multidisciplinary investigation is needed to reconcile recent phylogenetic results such as in this study with traditional taxonomy. Furthermore, most shallow water zoanthid species from Florida were observed to have close, sister-species relationships with previously investigated species in the Pacific Ocean. These results indicate that many brachycnemic zoanthid species likely had a Caribbean-Pacific distribution until the formation of the Isthmus of Panama. However, due to inadvertent redescriptions, overall species diversity in these two common genera is likely much lower than literature indicates.
Energy Technology Data Exchange (ETDEWEB)
Williamson, D.L.; Hack, J.J.; Jakob, R.; Swarztrauber, P.N. (National Center for Atmospheric Research, Boulder, CO (United States)); Drake, J.B. (Oak Ridge National Lab., TN (United States))
1991-08-01
A suite of seven test cases is proposed for the evaluation of numerical methods intended for the solution of the shallow water equations in spherical geometry. The shallow water equations exhibit the major difficulties associated with the horizontal dynamical aspects of atmospheric modeling on the spherical earth. These cases are designed for use in the evaluation of numerical methods proposed for climate modeling and to identify the potential trade-offs which must always be made in numerical modeling. Before a proposed scheme is applied to a full baroclinic atmospheric model it must perform well on these problems in comparison with other currently accepted numerical methods. The cases are presented in order of complexity. They consist of advection across the poles, steady state geostrophically balanced flow of both global and local scales, forced nonlinear advection of an isolated low, zonal flow impinging on an isolated mountain, Rossby-Haurwitz waves and observed atmospheric states. One of the cases is also identified as a computer performance/algorithm efficiency benchmark for assessing the performance of algorithms adapted to massively parallel computers. 31 refs.
POD/DEIM Nonlinear model order reduction of an ADI implicit shallow water equations model
Stefanescu, Razvan
2012-01-01
In the present paper we consider a 2-D shallow-water equations (SWE) model on a $\\beta$-plane solved using an alternating direction fully implicit (ADI) finite-difference scheme on a rectangular domain. The scheme was shown to be unconditionally stable for the linearized equations. The discretization yields a number of nonlinear systems of algebraic equations. We then use a proper orthogonal decomposition (POD) to reduce the dimension of the SWE model. Due to the model nonlinearities, the computational complexity of the reduced model still depends on the number of variables of the full shallow - water equations model. By employing the discrete empirical interpolation method (DEIM) we reduce the computational complexity of the reduced order model due to its depending on the nonlinear full dimension model and regain the full model reduction expected from the POD model. To emphasize the CPU gain in performance due to use of POD/DEIM, we also propose testing an explicit Euler finite difference scheme (EE) as an a...
Spatiotemporal variation of shallow water fish assemblages along the coastline of Çanakkale, Turkey
Institute of Scientific and Technical Information of China (English)
AytacAltin; Ozcan Ozen; HakanAyyildiz
2016-01-01
Objective: To determine the shallow water fish species richness of Çanakkale and to analyse the spatiotemporal variations of these fish assemblages. Methods: Samplings were carried out monthly with a beach seine between January and December 2007. Samples were collected from 6 stations (No. 1, 2, 3, 4, 5, 6). Stations 1 and 4 located in the Çanakkale Strait, 2 and 5 in North Aegean Sea, 3 and 6 in Sea of Marmara. Results: A total of 112 fish species were sampled and the two most common species were Atherina boyeri and Pomatoschistus marmoratus. A total of 93 species were sampled in the Çanakkale Strait, 85 in the Aegean Sea, and 77 in the Sea of Marmara. Shannon diversity index was the highest in the Aegean Sea. Dominant species were caused significant differences of both regional and seasonal fish assemblage fluctuations. Species richness and abundances decreased significantly in winter. Although more species were caught at night and a greater abundance of fishes was obtained during the day, no significant differences were found between day and night in terms of species richness and abundance. Conclusions: The results supported the biogeographical differences between the Aegean Sea, the Çanakkale Strait and the Sea of Marmara in terms of the shallow water fish community. The inventory in the current study can serve as baseline data prior to management strategies to ensure sustainable conservation of the area.
Jia, C; Huang, J; Kershaw, S; Luo, G; Farabegoli, E; Perri, M C; Chen, L; Bai, X; Xie, S
2012-01-01
Previous work indicates that a variety of microbes bloomed in the oceans after the end-Permian faunal mass extinction, but evidence is sporadically documented. Thus, the nature and geographic distribution of such microbes and their associations are unclear, addressed in this study using a series of biomarker groups. On the basis of microbial biomarker records of the 2-methylhopane index, evidence is presented for cyanobacterial blooms in both the western and eastern Tethys Sea and in both shallow and deep waters, after the mass extinction. The enhanced relative abundance of C(28) (expressed by the C(28) /C(29) ratio of) regular steranes suggests a bloom of prasinophyte algae occurred immediately after the end-Permian faunal extinction, comparable with those observed in some other mass extinctions in Phanerozoic. Significantly, cyanobacteria and prasinophyte algae show a synchronized onset of bloom in the shallow water Bulla section, north Italy, inferring for the first time their coupled response to the biotic crisis and the associated environmental conditions. However, in Meishan of Zhejiang Province in south China, the bloom declined earlier than in Bulla. The association of increased 2-methylhopane index with a negative shift in the nitrogen isotope composition infers a scenario of enhanced nitrogen fixation by cyanobacteria immediately after the faunal mass extinction. N(2) fixation by cyanobacteria is here interpreted to have provided prasinophyte algae with ammonium in nutrient-limited shallow waters, and thus caused their associated blooms.
Directory of Open Access Journals (Sweden)
ARIF MOHAMMAD SIDDIQ
2016-04-01
Full Text Available Abstract. Siddiq AM, Atmowidi T, Qayim I. 2015. The diversity and distribution of Holothuroidea in shallow waters of Baluran National Park, Indonesia. Biodiversitas 17: 55-60. A study of the diversity and distribution of sea cucumber (Holothuroidea in shallow waters at Baluran National Park, East Java, Indonesia was carried out from July until September 2015. The method used in this study was systematic transect in low tide condition. Samples were collected by hands at intertidal sites. Identification of sea cucumber species based on morphological ossicles. Twenty one species of Holothuroidea belonging two orders and four families were found in this study. The most dominant family found was Holothuriidae (16 species, followed by Stichopodidae (2 species, Synaptidae (2 species, and Chiridotidae (1 spesies. Four species (Holothuria olivacea, H. verrucosa, Labidodemas rugosum, and Chiridota smirnovi are new record for Java waters and one species (H. papillifera is a new record for Indonesian waters. Two morphospecies (H. aff. macroperona and Stichopus cf. monotuberculatus need reconfirmation to species level. The highest abundance species of Holothuroidea was found at under rock with 15 species. Whereas, the highest number of individuals was found in seagrass areas with 5457 individuals. H. atra has extensive habitat distribution, such as seagrass, macroalgae, coral reef, dead coral, sand, and under rock.
A central-upwind scheme with artificial viscosity for shallow-water flows in channels
Hernandez-Duenas, Gerardo; Beljadid, Abdelaziz
2016-10-01
We develop a new high-resolution, non-oscillatory semi-discrete central-upwind scheme with artificial viscosity for shallow-water flows in channels with arbitrary geometry and variable topography. The artificial viscosity, proposed as an alternative to nonlinear limiters, allows us to use high-resolution reconstructions at a low computational cost. The scheme recognizes steady states at rest when a delicate balance between the source terms and flux gradients occurs. This balance in irregular geometries is more complex than that taking place in channels with vertical walls. A suitable technique is applied by properly taking into account the effects induced by the geometry. Incorporating the contributions of the artificial viscosity and an appropriate time step restriction, the scheme preserves the positivity of the water's depth. A description of the proposed scheme, its main properties as well as the proofs of well-balance and the positivity of the scheme are provided. Our numerical experiments confirm stability, well-balance, positivity-preserving properties and high resolution of the proposed method. Comparisons of numerical solutions obtained with the proposed scheme and experimental data are conducted, showing a good agreement. This scheme can be applied to shallow-water flows in channels with complex geometry and variable bed topography.
Analysis of nonlinear shallow water waves in a tank by concentrated mass model
Ishikawa, Satoshi; Kondou, Takahiro; Matsuzaki, Kenichiro; Yamamura, Satoshi
2016-06-01
The sloshing of liquid in a tank is an important engineering problem. For example, liquid storage tanks in industrial facilities can be damaged by earthquakes, and conversely liquid tanks, called tuned liquid damper, are often used as passive mechanical dampers. The water depth is less often than the horizontal length of the tank. In this case, shallow water wave theory can be applied, and the results indicate that the surface waveform in a shallow excited tank exhibits complex behavior caused by nonlinearity and dispersion of the liquid. This study aims to establish a practical analytical model for this phenomenon. A model is proposed that consists of masses, connecting nonlinear springs, connecting dampers, base support dampers, and base support springs. The characteristics of the connecting nonlinear springs are derived from the static and dynamic pressures. The advantages of the proposed model are that nonlinear dispersion is considered and that the problem of non-uniform water depth can be addressed. To confirm the validity of the model, numerical results obtained from the model are compared with theoretical values of the natural frequencies of rectangular and triangular tanks. Numerical results are also compared with experimental results for a rectangular tank. All computational results agree well with the theoretical and experimental results. Therefore, it is concluded that the proposed model is valid for the numerical analysis of nonlinear shallow water wave problems.
A global finite-element shallow-water model supporting continuous and discontinuous elements
Directory of Open Access Journals (Sweden)
P. A. Ullrich
2014-08-01
Full Text Available This paper presents a novel nodal finite element method for either continuous and discontinuous elements, as applied to the 2-D shallow-water equations on the cubed-sphere. The cornerstone of this method is the construction of a robust derivative operator which can be applied to compute discrete derivatives even over a discontinuous function space. A key advantage of the robust derivative is that it can be applied to partial differential equations in either conservative or non-conservative form. However, it is also shown that discontinuous penalization is required to recover the correct order of accuracy for discontinuous elements. Two versions with discontinuous elements are examined, using either the g1 and g2 flux correction function for distribution of boundary fluxes and penalty across nodal points. Scalar and vector hyperviscosity operators valid for both continuous and discontinuous elements are also derived for stabilization and removal of grid-scale noise. This method is validated using three standard shallow-water test cases, including geostrophically balanced flow, a mountain-induced Rossby wave train and a barotropic instability. The results show that although the discontinuous basis requires a smaller time step size than that required for continuous elements, the method exhibits better stability and accuracy properties in the absence of hyperviscosity.
Simulation of upward flux from shallow water-table using UPFLOW model
Directory of Open Access Journals (Sweden)
M. H. Ali
2013-11-01
Full Text Available The upward movement of water by capillary rise from shallow water-table to the root zone is an important incoming flux. For determining exact amount of irrigation requirement, estimation of capillary flux or upward flux is essential. Simulation model can provide a reliable estimate of upward flux under variable soil and climatic conditions. In this study, the performance of model UPFLOW to estimate upward flux was evaluated. Evaluation of model performance was performed with both graphical display and statistical criteria. In distribution of simulated capillary rise values against observed field data, maximum data points lie around the 1:1 line, which means that the model output is reliable and reasonable. The coefficient of determination between observed and simulated values was 0.806 (r = 0.93, which indicates a good inter-relation between observed and simulated values. The relative error, model efficiency, and index of agreement were found as 27.91%, 85.93% and 0.96, respectively. Considering the graphical display of observed and simulated upward flux and statistical indicators, it can be concluded that the overall performance of the UPFLOW model in simulating actual upward flux from a crop field under variable water-table condition is satisfactory. Thus, the model can be used to estimate capillary rise from shallow water-table for proper estimation of irrigation requirement, which would save valuable water from over-irrigation.
Effects of once-weekly shallow water aerobic exercise on functional performance in elderly women
Directory of Open Access Journals (Sweden)
Veronika Kramperová
2016-12-01
Full Text Available The purpose of this study was to examine the effects of 24-week shallow-water aerobic exercise on functional performance in postmenopausal women. Thirty-seven women aged 60+ (mean age 67.2 ± 4.8 years were self-selected to a water exercise group (n = 21 or to a comparison group (n = 16. The training consisted of a 24-week (60 min.day−1, 1 d.wk−1 supervised and guided exercise programme that included aerobic and strength training using an aquatic noodle in shallow water (1.2 m. Outcome measures were 30-s chair stand and 30-s arm curl tests, assessed at baseline and 24 weeks. Significant differences between groups were analyzed using Fisher’s exact test. At 24 weeks there was a significantly (p < 0.05 greater improvement in measure of upper-body strength in the water exercise group. Arm curling improved by 15.8 versus 14.3% in the water exercise and comparison groups, respectively.
Existence of strong solutions in a larger space for the shallow-water system
Charve, Frédéric
2011-01-01
This paper is dedicated to the study of both viscous compressible barotropic fluids and Navier-Stokes equation with dependent density, when the viscosity coefficients are variable, in dimension $d\\geq2$. We aim at proving the local and global well-posedness for respectively {\\it large} and \\textit{small} initial data having critical Besov regularity and more precisely we are interested in extending the class of initial data velocity when we consider the shallow water system, improving the results in \\cite{CMZ1,H2} and \\cite{arma}. Our result relies on the fact that the velocity $u$ can be written as the sum of the solution $u_{L}$ of the associated linear system and a remainder velocity term $\\bar{u}$; then in the specific case of the shallow-water system the remainder term $\\bar{u}$ is more regular than $u_{L}$ by taking into account the regularizing effects induced on the bilinear convection term. In particular we are able to deal with initial velocity in $\\dot{H}^{\\N-1}$ as Fujita and Kato for the incompre...
Initial phenomenon of roll wave of shallow water on inclined channel
Arai, M.
2015-12-01
1. INTRODUCTION Intermittent surges of debris flows are observed in mountain regions. This type of flow is considered to be characterized by developing roll waves (surges) due to flow instabilities and by a weak sediment concentrations. For a understanding of initial phenomenon and fluctuation of the flow depth, wave equations and understanding characteristics of the solutions are needed. It is presented a wave equation and some solutions of roll waves based on shallow water momentum equation. These results show an improved understanding of the phenomena and wave equation of developing roll wave. 2. WAVE EQUATION AND SOME SOLUTIONS Considering momentam equation of shallow water on inclined channel and using reductive perturbation method, a wave equation which is a kind of KdV-Burgers equation was obtained. For on long wave velocity, some analitical solutions and numerical solutions ware obtained. Relationships of wave equation, it's solutions and phenomenon are discussed. 3. CONCLUSION A wave of minute disturbance on long wave velocity is governed by Burgers equation. For not fixed boundary condition and initial wave condition of not multiple wave number, an initial wave is deformed to a wave which wave number is one. The wave is caused a phase and the phenomena is shifted from Burgers equation to KdV-Burgers equation which has the characteristic of the solitary wave.
Shallow water benthic imaging and substrate characterization using recreational-grade sidescan-sonar
Buscombe, Daniel D.
2017-01-01
In recent years, lightweight, inexpensive, vessel-mounted ‘recreational grade’ sonar systems have rapidly grown in popularity among aquatic scientists, for swath imaging of benthic substrates. To promote an ongoing ‘democratization’ of acoustical imaging of shallow water environments, methods to carry out geometric and radiometric correction and georectification of sonar echograms are presented, based on simplified models for sonar-target geometry and acoustic backscattering and attenuation in shallow water. Procedures are described for automated removal of the acoustic shadows, identification of bed-water interface for situations when the water is too turbid or turbulent for reliable depth echosounding, and for automated bed substrate classification based on singlebeam full-waveform analysis. These methods are encoded in an open-source and freely-available software package, which should further facilitate use of recreational-grade sidescan sonar, in a fully automated and objective manner. The sequential correction, mapping, and analysis steps are demonstrated using a data set from a shallow freshwater environment.
Travel-time tomography in shallow water: experimental demonstration at an ultrasonic scale.
Roux, Philippe; Iturbe, Ion; Nicolas, Barbara; Virieux, Jean; Mars, Jérôme I
2011-09-01
Acoustic tomography in a shallow ultrasonic waveguide is demonstrated at the laboratory scale between two source-receiver arrays. At a 1/1,000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. Two coplanar arrays record the transfer matrix in the time domain of the waveguide between each pair of source-receiver transducers. A time-domain, double-beamforming algorithm is simultaneously performed on the source and receiver arrays that projects the multi-reflected acoustic echoes into an equivalent set of eigenrays, which are characterized by their travel times and their launch and arrival angles. Travel-time differences are measured for each eigenray every 0.1 s when a thermal plume is generated at a given location in the waveguide. Travel-time tomography inversion is then performed using two forward models based either on ray theory or on the diffraction-based sensitivity kernel. The spatially resolved range and depth inversion data confirm the feasibility of acoustic tomography in shallow water. Comparisons are made between inversion results at 1 and 3 MHz with the inversion procedure using ray theory or the finite-frequency approach. The influence of surface fluctuations at the air-water interface is shown and discussed in the framework of shallow-water ocean tomography.
The Chandrasekhar's Equation for Two-Dimensional Hypothetical White Dwarfs
De, Sanchari
2014-01-01
In this article we have extended the original work of Chandrasekhar on the structure of white dwarfs to the two-dimensional case. Although such two-dimensional stellar objects are hypothetical in nature, we strongly believe that the work presented in this article may be prescribed as Master of Science level class problem for the students in physics.
Beginning Introductory Physics with Two-Dimensional Motion
Huggins, Elisha
2009-01-01
During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…
Spatiotemporal surface solitons in two-dimensional photonic lattices.
Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S
2007-11-01
We analyze spatiotemporal light localization in truncated two-dimensional photonic lattices and demonstrate the existence of two-dimensional surface light bullets localized in the lattice corners or the edges. We study the families of the spatiotemporal surface solitons and their properties such as bistability and compare them with the modes located deep inside the photonic lattice.
Explorative data analysis of two-dimensional electrophoresis gels
DEFF Research Database (Denmark)
Schultz, J.; Gottlieb, D.M.; Petersen, Marianne Kjerstine;
2004-01-01
Methods for classification of two-dimensional (2-DE) electrophoresis gels based on multivariate data analysis are demonstrated. Two-dimensional gels of ten wheat varieties are analyzed and it is demonstrated how to classify the wheat varieties in two qualities and a method for initial screening...
Mechanics of Apparent Horizon in Two Dimensional Dilaton Gravity
Cai, Rong-Gen
2016-01-01
In this article, we give a definition of apparent horizon in a two dimensional general dilaton gravity theory. With this definition, we construct the mechanics of the apparent horizon by introducing a quasi-local energy of the theory. Our discussion generalizes the apparent horizons mechanics in general spherically symmetric spactimes in four or higher dimensions to the two dimensional dilaton gravity case.
Topological aspect of disclinations in two-dimensional crystals
Institute of Scientific and Technical Information of China (English)
Qi Wei-Kai; Zhu Tao; Chen Yong; Ren Ji-Rong
2009-01-01
By using topological current theory, this paper studies the inner topological structure of disclinations during the melting of two-dimensional systems. From two-dimensional elasticity theory, it finds that there are topological currents for topological defects in homogeneous equation. The evolution of disclinations is studied, and the branch conditions for generating, annihilating, crossing, splitting and merging of disclinations are given.
Invariant Subspaces of the Two-Dimensional Nonlinear Evolution Equations
Directory of Open Access Journals (Sweden)
Chunrong Zhu
2016-11-01
Full Text Available In this paper, we develop the symmetry-related methods to study invariant subspaces of the two-dimensional nonlinear differential operators. The conditional Lie–Bäcklund symmetry and Lie point symmetry methods are used to construct invariant subspaces of two-dimensional differential operators. We first apply the multiple conditional Lie–Bäcklund symmetries to derive invariant subspaces of the two-dimensional operators. As an application, the invariant subspaces for a class of two-dimensional nonlinear quadratic operators are provided. Furthermore, the invariant subspace method in one-dimensional space combined with the Lie symmetry reduction method and the change of variables is used to obtain invariant subspaces of the two-dimensional nonlinear operators.
Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice
Institute of Scientific and Technical Information of China (English)
XU Quan; QIANG Tian
2009-01-01
We study the existence and stability of two-dimensional discrete breathers in a two-dimensional discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling.Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive)and the center of the two-dimensional gap breather (on a light or a heavy atom).
Klimachkov, D. A.; Petrosyan, A. S.
2016-09-01
Shallow water magnetohydrodynamic (MHD) theory describing incompressible flows of plasma is generalized to the case of compressible flows. A system of MHD equations is obtained that describes the flow of a thin layer of compressible rotating plasma in a gravitational field in the shallow water approximation. The system of quasilinear hyperbolic equations obtained admits a complete simple wave analysis and a solution to the initial discontinuity decay problem in the simplest version of nonrotating flows. In the new equations, sound waves are filtered out, and the dependence of density on pressure on large scales is taken into account that describes static compressibility phenomena. In the equations obtained, the mass conservation law is formulated for a variable that nontrivially depends on the shape of the lower boundary, the characteristic vertical scale of the flow, and the scale of heights at which the variation of density becomes significant. A simple wave theory is developed for the system of equations obtained. All self-similar discontinuous solutions and all continuous centered self-similar solutions of the system are obtained. The initial discontinuity decay problem is solved explicitly for compressible MHD equations in the shallow water approximation. It is shown that there exist five different configurations that provide a solution to the initial discontinuity decay problem. For each configuration, conditions are found that are necessary and sufficient for its implementation. Differences between incompressible and compressible cases are analyzed. In spite of the formal similarity between the solutions in the classical case of MHD flows of an incompressible and compressible fluids, the nonlinear dynamics described by the solutions are essentially different due to the difference in the expressions for the squared propagation velocity of weak perturbations. In addition, the solutions obtained describe new physical phenomena related to the dependence of the
Institute of Scientific and Technical Information of China (English)
WEN Xiao-Yong; MENG Xiang-Hua
2013-01-01
In this paper,the (2+1)-dimensional generalization of shallow water wave equation,which may be used to describe the propagation of ocean waves,is analytically investigated.With the aid of symbolic computation,we prove that the (2+1)-dimensional generalization of shallow water wave equation possesses the Painlevé property under a certain condition,and its Lax pair is constructed by applying the singular manifold method.Based on the obtained Lax representation,the Darboux transformation (DT) is constructed.The first iterated solution,second iterated solution and a special N-soliton solution with an arbitrary function are derived with the resulting DT.Relevant properties are graphically illustrated,which might be helpful to understanding the propagation processes for ocean waves in shallow water.
Directory of Open Access Journals (Sweden)
Daniel eWagner
2015-05-01
Full Text Available The shallow-water (<150 m antipatharian fauna of the Hawaiian Archipelago is described and illustrated based on a systematic examination of skeletal spine morphology, polyp morphology, colony branching pattern and in situ photographs. A total of 172 black coral specimens were examined, including all available type material of species previously reported from shallow waters off Hawaiʻi. The examined specimens were assigned to three families (Antipathidae, Aphanipathidae and Myriopathidae, six genera (Antipathes, Cirrhipathes, Stichopathes, Aphanipathes, Acanthopathes and Myriopathes, and eight species: Antipathes griggi Opresko, 2009, Antipathes grandis Verrill, 1928, Cirrhipathes cf. anguina (Dana, 1846, Stichopathes echinulata Brook, 1889, Stichopathes? sp., Aphanipathes verticillata mauiensis Opresko et al., 2012, Acanthopathes undulata (Van Pesch 1914 andMyriopathes cf. ulex (Ellis and Solander 1786. The biogeographical distribution of Hawaiian shallow-water black corals is presented and discussed.
Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway
2012-09-01
ER D C/ CH L TR -1 2 -2 0 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway C oa st al a n d H yd ra u lic s La b or at...distribution is unlimited. ERDC/CHL TR-12-20 September 2012 Two Dimensional Hydrodynamic Analysis of the Moose Creek Floodway Stephen H. Scott, Jeremy A...A two-dimensional Adaptive Hydraulics (AdH) hydrodynamic model was developed to simulate the Moose Creek Floodway. The Floodway is located
RESEARCH ON TWO-DIMENSIONAL LDA FOR FACE RECOGNITION
Institute of Scientific and Technical Information of China (English)
Han Ke; Zhu Xiuchang
2006-01-01
The letter presents an improved two-dimensional linear discriminant analysis method for feature extraction. Compared with the current two-dimensional methods for feature extraction, the improved two-dimensional linear discriminant analysis method makes full use of not only the row and the column direction information of face images but also the discriminant information among different classes. The method is evaluated using the Nanjing University of Science and Technology (NUST) 603 face database and the Aleix Martinez and Robert Benavente (AR) face database. Experimental results show that the method in the letter is feasible and effective.
ONE-DIMENSIONAL AND TWO-DIMENSIONAL LEADERSHIP STYLES
Directory of Open Access Journals (Sweden)
Nikola Stefanović
2007-06-01
Full Text Available In order to motivate their group members to perform certain tasks, leaders use different leadership styles. These styles are based on leaders' backgrounds, knowledge, values, experiences, and expectations. The one-dimensional styles, used by many world leaders, are autocratic and democratic styles. These styles lie on the two opposite sides of the leadership spectrum. In order to precisely define the leadership styles on the spectrum between the autocratic leadership style and the democratic leadership style, leadership theory researchers use two dimensional matrices. The two-dimensional matrices define leadership styles on the basis of different parameters. By using these parameters, one can identify two-dimensional styles.
Geostrophic balance preserving interpolation in mesh adaptive shallow-water ocean modelling
Maddison, James R; Farrell, Patrick E
2010-01-01
The accurate representation of geostrophic balance is an essential requirement for numerical modelling of geophysical flows. Significant effort is often put into the selection of accurate or optimal balance representation by the discretisation of the fundamental equations. The issue of accurate balance representation is particularly challenging when applying dynamic mesh adaptivity, where there is potential for additional imbalance injection when interpolating to new, optimised meshes. In the context of shallow-water modelling, we present a new method for preservation of geostrophic balance when applying dynamic mesh adaptivity. This approach is based upon interpolation of the Helmholtz decomposition of the Coriolis acceleration. We apply this in combination with a discretisation for which states in geostrophic balance are exactly steady solutions of the linearised equations on an f-plane; this method guarantees that a balanced and steady flow on a donor mesh remains balanced and steady after interpolation on...
High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water
DEFF Research Database (Denmark)
Madsen, Per A.; Fuhrman, David R.
2010-01-01
In this work, we start with a review of the development of Boussinesq theory for water waves covering the period from 1872 to date. Previous reviews have been given by Dingemans,1 Kirby,2,3 and Madsen & Schäffer.4 Next, we present our most recent high-order Boussinesq-type formulation valid...... for fully nonlinear and highly dispersive waves traveling over a rapidly varying bathymetry. Finally, we cover applications of this Boussinesq model, and we study a number of nonlinear wave phenomena in deep and shallow water. These include (1) Kinematics in highly nonlinear progressive deep-water waves; (2......) Kinematics in progressive solitary waves; (3) Reflection of solitary waves from a vertical wall; (4) Reflection and diffraction around a vertical plate; (5) Quartet and quintet interactions and class I and II instabilities; (6) Extreme events from focused directionally spread waveelds; (7) Bragg scattering...
Parallelization of a Three-Dimensional Shallow-Water Estuary Model on the KSR-1
Directory of Open Access Journals (Sweden)
C. FalcÓ Korn
1995-01-01
Full Text Available Flows in estuarial and coastal regions may be described by the shallow-water equations. The processes of pollution transport, sediment transport, and plume dispersion are driven by the underlying hydrodynamics. Accurate resolution of these processes requires a three-dimensional formulation with turbulence modeling, which is very demanding computationally. A numerical scheme has been developed which is both stable and accurate – we show that this scheme is also well suited to parallel processing, making the solution of massive complex problems a practical computing possibility. We describe the implementation of the numerical scheme on a Kendall Square Research KSR-1 multiprocessor, and present experimental results which demonstrate that a problem requiring 600,000 mesh points and 6,000 time steps can be solved in under 8 hours using 32 processors.
Novel Slope Source Term Treatment for Preservation of Quiescent Steady States in Shallow Water Flows
Directory of Open Access Journals (Sweden)
Khawar Rehman
2016-10-01
Full Text Available This paper proposes a robust method for modeling shallow-water flows and near shore tsunami propagation, applicable for both simple and complex geometries with uneven beds. The novel aspect of the model includes the introduction of a new method for slope source terms treatment to preserve quiescent equilibrium over uneven topographies, applicable to both structured and unstructured mesh systems with equal accuracy. Our model is based on the Godunov-type finite volume numerical approximation. Second-order spatial and temporal accuracy is achieved through high resolution gradient reconstruction and the predictor-corrector method, respectively. The approximate Riemann solver of Harten, Lax, and van Leer with contact wave restoration (HLLC is used to compute fluxes. Comparisons of the model’s results with analytical, experimental, and published numerical solutions show that the proposed method is capable of accurately predicting experimental and real-time tsunami propagation/inundation, and dam-break flows over varying topographies.
On the assimilation of SWOT type data into 2D shallow-water models
Frédéric, Couderc; Denis, Dartus; Pierre-André, Garambois; Ronan, Madec; Jérôme, Monnier; Jean-Paul, Villa
2013-04-01
In river hydraulics, assimilation of water level measurements at gauging stations is well controlled, while assimilation of images is still delicate. In the present talk, we address the richness of satellite mapped information to constrain a 2D shallow-water model, but also related difficulties. 2D shallow models may be necessary for small scale modelling in particular for low-water and flood plain flows. Since in both cases, the dynamics of the wet-dry front is essential, one has to elaborate robust and accurate solvers. In this contribution we introduce robust second order, stable finite volume scheme [CoMaMoViDaLa]. Comparisons of real like tests cases with more classical solvers highlight the importance of an accurate flood plain modelling. A preliminary inverse study is presented in a flood plain flow case, [LaMo] [HoLaMoPu]. As a first step, a 0th order data processing model improves observation operator and produces more reliable water level derived from rough measurements [PuRa]. Then, both model and flow behaviours can be better understood thanks to variational sensitivities based on a gradient computation and adjoint equations. It can reveal several difficulties that a model designer has to tackle. Next, a 4D-Var data assimilation algorithm used with spatialized data leads to improved model calibration and potentially leads to identify river discharges. All the algorithms are implemented into DassFlow software (Fortran, MPI, adjoint) [Da]. All these results and experiments (accurate wet-dry front dynamics, sensitivities analysis, identification of discharges and calibration of model) are currently performed in view to use data from the future SWOT mission. [CoMaMoViDaLa] F. Couderc, R. Madec, J. Monnier, J.-P. Vila, D. Dartus, K. Larnier. "Sensitivity analysis and variational data assimilation for geophysical shallow water flows". Submitted. [Da] DassFlow - Data Assimilation for Free Surface Flows. Computational software http
High-resolution simulations of freely decaying shallow-water turbulence on a rotating sphere
Energy Technology Data Exchange (ETDEWEB)
Iacono, R.; Struglia, M.V.; Nicastro, S. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Gruppo di Dinamica Atmosferica e Oceanica; Ronchi, C.
1999-12-01
Results of high-resolution, long-time numerical integrations of the unforced shallow-water equations on a rotating sphere are presented. A new accurate and efficient grid point method is used for these simulations, that allows to easily reach very high spatial resolutions. It is found that, for small values of the Rossby deformation radius L{sub D}, the final quasi-steady states of the free evolution are characterized by the formation of robust westward (retrograde) equatorial jets, whose strengths and widths depend on L{sub D} and on the rotation speed. It is also shown that the presence of a westward equatorial jet is related to the global prevalence of anticyclonic vorticity.
A note on relative equilibria in a rotating shallow water layer
Ait Abderrahmane, Hamid
2013-05-08
Relative equilibria of two and three satellite vortices in a rotating shallow water layer have been recorded via particle image velocimetry (PIV) and their autorotation speed was estimated. This study shows that these equilibria retain the fundamental characteristics of Kelvin\\'s equilibria, and could be adequately described by the classical idealized point vortex theory. The same conclusion can also be inferred using the experimental dataset of Bergmann etÂ al.Â (J.Â FluidÂ Mech., vol. 679, 2011, pp. 415-431; J. Fluid Mech., vol. 691, 2012, pp. 605-606) if the assigned field\\'s contribution to pattern rotation is included. © 2013 Cambridge University Press.
On shallow water waves in a medium with time-dependent
Directory of Open Access Journals (Sweden)
Hamdy I. Abdel-Gawad
2015-07-01
Full Text Available In this paper, we studied the progression of shallow water waves relevant to the variable coefficient Korteweg–de Vries (vcKdV equation. We investigated two kinds of cases: when the dispersion and nonlinearity coefficients are proportional, and when they are not linearly dependent. In the first case, it was shown that the progressive waves have some geometric structures as in the case of KdV equation with constant coefficients but the waves travel with time dependent speed. In the second case, the wave structure is maintained when the nonlinearity balances the dispersion. Otherwise, water waves collapse. The objectives of the study are to find a wide class of exact solutions by using the extended unified method and to present a new algorithm for treating the coupled nonlinear PDE’s.
AN INTEGRAL EQUATION DESCRIBING RIDING WAVES IN SHALLOW WATER OF FINITE DEPTH
Institute of Scientific and Technical Information of China (English)
An Shu-ping; Le Jia-chun; Dai Shi-qiang
2003-01-01
An integral equation describing riding waves, i.e., small-scale perturbation waves superposed on unperturbed surface waves, in shallow water of finite depth was studied via explicit Hamiltonian formulation, and the water was regarded as ideal incompressible fluid of uniform density. The kinetic energy, density of the perturbed fluid motion was formulated with Hamiltonian canonical variables[1], elevation of the free surface and the velocity potential at the free surface. Then the variables were expanded to the first order at the free surface of unperturbed waves. An integal equation for velocity potential of perturbed waves on the unperturbed free surface was derived by conformal mapping and the Fourier transformation. The integral equation could replace the Hamiltonian canonical equations which are difficult to solve. An explicit expression of Lagrangian density function could be obtained by solving the integral equation. The method used in this paper provides a new path to study the Hamiltonian formulation of riding waves and wave interaction problems.
Coste, C; Lund, F; Coste, Christophe; Umeki, Makoto; Lund, Fernando
1999-01-01
When a surface wave interacts with a vertical vortex in shallow water the latter induces a dislocation in the incident wavefronts that is analogous to what happens in the Aharonov-Bohm effect for the scattering of electrons by a confined magnetic field. In addition to this global similarity between these two physical systems there is scattering. This paper reports a detailed calculation of this scattering, which is quantitatively different from the electronic case in that a surface wave penetrates the inside of a vortex while electrons do not penetrate a solenoid. This difference, together with an additional difference in the equations that govern both physical systems lead to a quite different scattering in the case of surface waves, whose main characteristic is a strong asymmetry in the scattering cross section. The assumptions and approximations under which these effects happen are carefully considered, and their applicability to the case of scattering of acoustic waves by vorticity is noted.
Observation of dispersive shock waves developing from initial depressions in shallow water
Trillo, S.; Klein, M.; Clauss, G. F.; Onorato, M.
2016-10-01
We investigate surface gravity waves in a shallow water tank, in the limit of long wavelengths. We report the observation of non-stationary dispersive shock waves rapidly expanding over a 90 m flume. They are excited by means of a wave maker that allows us to launch a controlled smooth (single well) depression with respect to the unperturbed surface of the still water, a case that contains no solitons. The dynamics of the shock waves are observed at different levels of nonlinearity equivalent to a different relative smallness of the dispersive effect. The observed undulatory behavior is found to be in good agreement with the dynamics described in terms of a Korteweg-de Vries equation with evolution in space, though in the most nonlinear cases the description turns out to be improved over the quasi linear trailing edge of the shock by modeling the evolution in terms of the integro-differential (nonlocal) Whitham equation.
Stability Analysis of Numerical Methods for a 1.5-Layer Shallow-Water Ocean Model
Directory of Open Access Journals (Sweden)
Guang-an Zou
2013-01-01
Full Text Available A 1.5-layer reduced-gravity shallow-water ocean model in spherical coordinates is described and discretized in a staggered grid (standard Arakawa C-grid with the forward-time central-space (FTCS method and the Leap-frog finite difference scheme. The discrete Fourier analysis method combined with the Gershgorin circle theorem is used to study the stability of these two finite difference numerical models. A series of necessary conditions of selection criteria for the time-space step sizes and model parameters are obtained. It is showed that these stability conditions are more accurate than the Courant-Friedrichs-Lewy (CFL condition and other two criterions (Blumberg and Mellor, 1987; Casulli, 1990, 1992. Numerical experiments are proposed to test our stability results, and numerical model that is designed is also used to simulate the ocean current.
Shiryaeva, E V
2014-01-01
In paper [S.I. Senashov, A. Yakhno. 2012. SIGMA. Vol.8. 071] the variant of the hodograph method based on the conservation laws for two hyperbolic quasilinear equations of the first order is described. Using these results we propose a method which allows to reduce the Cauchy problem for the two quasilinear PDE's to the Cauchy problem for ODE's. The proposed method is actually some similar method of characteristics for a system of two hyperbolic quasilinear equations. The method can be used effectively in all cases, when the linear hyperbolic equation in partial derivatives of the second order with variable coefficients, resulting from the application of the hodograph method, has an explicit expression for the Riemann-Green function. One of the method's features is the possibility to construct a multi-valued solutions. In this paper we present examples of method application for solving the classical shallow water equations.
Muerte por sumersión debida a shallow water blackout
Directory of Open Access Journals (Sweden)
J.L. Palomo Rando
2014-09-01
Full Text Available El llamado shallow water blackout, o síncope de las aguas superficiales, es un accidente que pueden sufrir los buceadores y llevarles a la muerte por sumersión. La natación sumergido (buceando precedida de hiperventilación crea una situación en la que el sujeto puede sufrir hipoxia antes de que la concentración en sangre arterial de dióxido de carbono alcance el nivel que le obligue a salir a la superficie a respirar. En esta situación, el sujeto inconsciente puede respirar bajo el agua y morir por sumersión.
Institute of Scientific and Technical Information of China (English)
LI Fenghua; LIU Jianjun; LI Zhenglin; ZHANG Renhe
2005-01-01
An oscillation phenomenon of the low frequency reverberation intensity was observed in several shallow water reverberation experiments. This phenomenon cannot be explained by the widely used incoherent reverberation theory. In this paper, to explain the observed oscillation phenomenon, a normal mode based coherent reverberation theory is presented. The theoretical analysis and numerical results show that modal interference can cause the regular oscillation phenomenon of the low frequency reverberation intensity, and the oscillation frequency is determined by the normal mode eigen-values. A new method to estimate the bottom sound speed based on the oscillation frequency of reverberation intensity was presented in this paper. The experimental results at three different sites indicate that the bottom sound speed estimated from the oscillation frequency of reverberation intensity agrees with that inverted from Matched Field Processing (MFP) well.
Green-Naghdi Theory,Part A: Green-Naghdi (GN) Equations for Shallow Water Waves
Institute of Scientific and Technical Information of China (English)
William C. Webster; Wenyang Duan; Binbin Zhao
2011-01-01
In this work,Green-Naghdi (GN) equations with general weight functions were derived in a simple way.A wave-absorbing beach was also considered in the general GN equations.A numerical solution for a level higher than 4 was not feasible in the past with the original GN equations.The GN equations for shallow water waves were simplified here,which make the application of high level (higher than 4) equations feasible.The linear dispersion relationships of the first seven levels were presented.The accuracy of dispersion relationships increased as the level increased.Level 7 GN equations are capable of simulating waves out to wave number times depth kd ＜ 26.Numerical simulation of nonlinear water waves was performed by use of Level 5 and 7 GN equations,which will be presented in the next paper.
Conditional Short-crested second order waves in shallow water and with superimposed current
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2004-01-01
For bottom-supported offshore structures like oil drilling rigs and oil production platforms, a deterministic design wave approach is often applied using a regular non-linear Stokes' wave. Thereby, the procedure accounts for non-linear effects in the wave loading but the randomness of the ocean...... wave, given the value of the wave crest at a specific point in time or space. In the present paper a derivation of the expected second order short-crested wave riding on a uniform current is given. The analysis is based on the second order Sharma and Dean shallow water wave theory and the direction...... of the main wind direction can make any direction with the current. Numerical results showing the importance of the water depth, the directional spreading and the current on the conditional mean wave profile and the associated wave kinematics are presented. A discussion of the use of the conditional wave...
Conditional short-crested waves in shallow water and with superimposed current
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2002-01-01
For bottom-supported offshore structures like oil drilling rigs and oil production platforms, a deterministic design wave approach is often applied using a regular non-linear Stokes´ wave. Thereby, the procedure accounts for non-linear effects in the wave loading but the randomness of the ocean...... wave, given the value of the wave crest at a specific point in time or space. In the present paper a derivation of the expected linear short-crested wave riding on a uniform current is given. The analysis is based on the conventional shallow water Airy wave theory and the direction of the main wind...... direction can make any direction with the current. A consistent derivation of the wave spectrum taking into account current and finite water depth is used. The numerical results show a significant effect of the water depth, the directional spreading and the current on the conditional mean wave profile...
High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water
DEFF Research Database (Denmark)
Madsen, Per A.; Fuhrman, David R.
2010-01-01
In this work, we start with a review of the development of Boussinesq theory for water waves covering the period from 1872 to date. Previous reviews have been given by Dingemans,1 Kirby,2,3 and Madsen & Schäffer.4 Next, we present our most recent high-order Boussinesq-type formulation valid...... for fully nonlinear and highly dispersive waves traveling over a rapidly varying bathymetry. Finally, we cover applications of this Boussinesq model, and we study a number of nonlinear wave phenomena in deep and shallow water. These include (1) Kinematics in highly nonlinear progressive deep-water waves; (2......) Kinematics in progressive solitary waves; (3) Reflection of solitary waves from a vertical wall; (4) Reflection and diffraction around a vertical plate; (5) Quartet and quintet interactions and class I and II instabilities; (6) Extreme events from focused directionally spread waveelds; (7) Bragg scattering...
An unstructured grid, three-dimensional model based on the shallow water equations
Casulli, V.; Walters, R.A.
2000-01-01
A semi-implicit finite difference model based on the three-dimensional shallow water equations is modified to use unstructured grids. There are obvious advantages in using unstructured grids in problems with a complicated geometry. In this development, the concept of unstructured orthogonal grids is introduced and applied to this model. The governing differential equations are discretized by means of a semi-implicit algorithm that is robust, stable and very efficient. The resulting model is relatively simple, conserves mass, can fit complicated boundaries and yet is sufficiently flexible to permit local mesh refinements in areas of interest. Moreover, the simulation of the flooding and drying is included in a natural and straightforward manner. These features are illustrated by a test case for studies of convergence rates and by examples of flooding on a river plain and flow in a shallow estuary. Copyright ?? 2000 John Wiley & Sons, Ltd.
Analytical Models of Exoplanetary Atmospheres: Atmospheric Dynamics via the Shallow Water System
Heng, Kevin
2014-01-01
Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical and spherical), rotation, magnetic tension and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag and magnetic drag) and magnetic tension are included. The global atmospheric structure is largely controlled by a single, key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag varies significantly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulatio...
Method of moving frames to solve the shallow water equations on arbitrary rotating curved surfaces
Chun, S.; Eskilsson, C.
2017-03-01
A novel numerical scheme is proposed to solve the shallow water equations (SWEs) on arbitrary rotating curved surfaces. Based on the method of moving frames (MMF) in which the geometry is represented by orthonormal vectors, the proposed scheme not only has the fewest dimensionality both in space and time, but also does not require either of metric tensors, composite meshes, or the ambient space. The MMF-SWE formulation is numerically discretized using the discontinuous Galerkin method of arbitrary polynomial order p in space and an explicit Runge-Kutta scheme in time. The numerical model is validated against six standard tests on the sphere and the optimal order of convergence of p + 1 is numerically demonstrated. The MMF-SWE scheme is also demonstrated for its efficiency and stability on the general rotating surfaces such as ellipsoid, irregular, and non-convex surfaces.
Conditional Short-crested second order waves in shallow water and with superimposed current
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2004-01-01
wave, given the value of the wave crest at a specific point in time or space. In the present paper a derivation of the expected second order short-crested wave riding on a uniform current is given. The analysis is based on the second order Sharma and Dean shallow water wave theory and the direction......For bottom-supported offshore structures like oil drilling rigs and oil production platforms, a deterministic design wave approach is often applied using a regular non-linear Stokes' wave. Thereby, the procedure accounts for non-linear effects in the wave loading but the randomness of the ocean...... waves is poorly represented, as the shape of the wave spectrum does not enter the wave kinematics. To overcome this problem and still keep the simplicity of a deterministic approach, Tromans, Anaturk and Hagemeijer (1991) suggested the use of a deterministic wave, defined as the expected linear Airy...
Notch Effect and Frequency Compensation of Dual-Sensor OBC Data in Shallow Water
Institute of Scientific and Technical Information of China (English)
Dongkai Wang; Siyou Tong; Huaishan Liu; Weiqiang Zhu
2015-01-01
Reverberation is significant in shallow water and produces obvious notches in OBC spec-tra. It also degrades the quality of sections and increases the difficulty of processing and interpretation. This article presents the relationship between notch, shooting depth, and seabed depth based on the seismic convolution model. Forward modelling based on wave equation theory is used to verify this re-lationship. Dual-sensor summation is applied to suppress receiver-side multiples and remove notches according to the opposite response of geophones and hydrophones to down-going wave fields based on a detailed analysis of the OBC technique. The good results obtained in practical applications reveal the effectiveness of this method.
Competing turbulent cascades and eddy-wave interactions in shallow water equilibria
Weichman, Peter B
2016-01-01
In recent work, Renaud, Venaille, and Bouchet (RVB) revisit the equilibrium statistical mechanics theory of the shallow water equations, within a microcanonical approach, focusing on a more careful treatment of the energy partition between inertial gravity wave and eddy motions in the equilibrium state, and deriving joint probability distributions for the corresponding dynamical degrees of freedom. The authors derive a Liouville theorem that determines the underlying phase space statistical measure, but then, through some physical arguments, actually compute the equilibrium statistics using a measure that \\emph{violates} this theorem. Here, using a more convenient, but essentially equivalent, grand canonical approach, the full statistical theory consistent with the Liouville theorem is derived. The results reveal several significant differences from the previous results: (1) The microscale wave motions lead to a strongly fluctuating thermodynamics, including long-ranged correlations, in contrast to the mean-f...
Modified Predictor-Corrector WAF Method for the Shallow Water Equations with Source Terms
Directory of Open Access Journals (Sweden)
Montri Maleewong
2011-01-01
Full Text Available A modified predictor-corrector scheme combining with the depth gradient method (DGM and the weighted average flux (WAF method has been presented to solve the one-dimensional shallow water equations with source terms. Approximate solutions in the predictor step are obtained by the DGM with piecewise-linear reconstructions in each cell volume. The source terms can then be calculated directly by these predicted values at the corresponding half-time step. In the corrector step, the TVD version of the WAF method is applied to calculate the numerical fluxes at the same half-time step for each cell face. The accuracy of numerical solutions is shown by applying the method to solve various test cases in both steady and unsteady problems with and without source terms. It shows that the numerical results are in good agreement with the existing analytical solutions as well as experimental data in some test cases.
Well-balanced finite volume evolution Galerkin methods for the shallow water equations
Lukáčová-Medvid'ová, M.; Noelle, S.; Kraft, M.
2007-01-01
We present a new well-balanced finite volume method within the framework of the finite volume evolution Galerkin (FVEG) schemes. The methodology will be illustrated for the shallow water equations with source terms modelling the bottom topography and Coriolis forces. Results can be generalized to more complex systems of balance laws. The FVEG methods couple a finite volume formulation with approximate evolution operators. The latter are constructed using the bicharacteristics of multidimensional hyperbolic systems, such that all of the infinitely many directions of wave propagation are taken into account explicitly. We derive a well-balanced approximation of the integral equations and prove that the FVEG scheme is well-balanced for the stationary steady states as well as for the steady jets in the rotational frame. Several numerical experiments for stationary and quasi-stationary states as well as for steady jets confirm the reliability of the well-balanced FVEG scheme.
Numerical simulation of flood inundation processes by 2D shallow water equations
Institute of Scientific and Technical Information of China (English)
ZHANG Xinhua; LONG Wenfei; XIE Heping; ZHU Jiahua; WANG Jiangping
2007-01-01
In order to strengthen flood risk management in a river basin,to upgrade the capability of flood control,and to reduce the loss of lives and properties in urban areas,a numerical simulation model using 2D shallow water equations was proposed in this study.A satisfactory result has been obtained by applying the model in the Fuji River basin in central Japan.The result indicates that the numerical:simulation model proposed can be adopted not only in the risk management of a river basin,but also in the study of realtime operations of rescue jobs and evacuation routes in a municipal region suffering from a serious flooding event.
Shallow-water acoustic tomography from angle measurements instead of travel-time measurements.
Aulanier, Florian; Nicolas, Barbara; Mars, Jérôme I; Roux, Philippe; Brossier, Romain
2013-10-01
For shallow-water waveguides and mid-frequency broadband acoustic signals, ocean acoustic tomography (OAT) is based on the multi-path aspect of wave propagation. Using arrays in emission and reception and advanced array processing, every acoustic arrival can be isolated and matched to an eigenray that is defined not only by its travel time but also by its launch and reception angles. Classically, OAT uses travel-time variations to retrieve sound-speed perturbations; this assumes very accurate source-to-receiver clock synchronization. This letter uses numerical simulations to demonstrate that launch-and-reception-angle tomography gives similar results to travel-time tomography without the same requirement for high-precision synchronization.
Remote sensing of water depths in shallow waters via artificial neural networks
Ceyhun, Özçelik; Yalçın, Arısoy
2010-09-01
Determination of the water depths in coastal zones is a common requirement for the majority of coastal engineering and coastal science applications. However, production of high quality bathymetric maps requires expensive field survey, high technology equipment and expert personnel. Remotely sensed images can be conveniently used to reduce the cost and labor needed for bathymetric measurements and to overcome the difficulties in spatial and temporal depth provision. An Artificial Neural Network (ANN) methodology is introduced in this study to derive bathymetric maps in shallow waters via remote sensing images and sample depth measurements. This methodology provides fast and practical solution for depth estimation in shallow waters, coupling temporal and spatial capabilities of remote sensing imagery with modeling flexibility of ANN. Its main advantage in practice is that it enables to directly use image reflectance values in depth estimations, without refining depth-caused scatterings from other environmental factors (e.g. bottom material and vegetation). Its function-free structure allows evaluating nonlinear relationships between multi-band images and in-situ depth measurements, therefore leads more reliable depth estimations than classical regressive approaches. The west coast of the Foca, Izmir/Turkey was used as a test bed. Aster first three band images and Quickbird pan-sharpened images were used to derive ANN based bathymetric maps of this study area. In-situ depth measurements were supplied from the General Command of Mapping, Turkey (HGK). Two models were set, one for Aster and one for Quickbird image inputs. Bathymetric maps relying solely on in-situ depth measurements were used to evaluate resultant derived bathymetric maps. The efficiency of the methodology was discussed at the end of the paper. It is concluded that the proposed methodology could decrease spatial and repetitive depth measurement requirements in bathymetric mapping especially for
Reuter, Markus; Piller, Werner E; Brandano, Marco; Harzhauser, Mathias
2013-12-01
Shallow-marine sediment records have the strong potential to display sensitive environmental changes in sedimentary geometries and skeletal content. However, the time resolution of most neritic carbonate records is not high enough to be compared with climatic events as recorded in the deep-sea sediment archives. In order to resolve the paleoceanographic and paleoclimatic changes during the Oligocene-Miocene transition in the Mediterranean shallow water carbonate systems with the best possible time resolution, we re-evaluated the Decontra section on the Maiella Platform (central Apennines, Italy), which acts as a reference for the correlation of Oligocene-Miocene shallow water deposits in the Mediterranean region. The 120-m-thick late Oligocene-late Miocene carbonate succession is composed of larger foraminiferal, bryozoan and corallinacean limestones interlayered with distinct planktonic foraminiferal carbonates representing a mostly outer neritic setting. Integrated multi-proxy and facies analyses indicate that CaCO3 and total organic carbon contents as well as gamma-ray display only local to regional processes on the carbonate platform and are not suited for stratigraphic correlation on a wider scale. In contrast, new biostratigraphic data correlate the Decontra stable carbon isotope record to the global deep-sea carbon isotope record. This links relative sea level fluctuations, which are reflected by facies and magnetic susceptibility changes, to third-order eustatic cycles. The new integrated bio-, chemo-, and sequence stratigraphic framework enables a more precise timing of environmental changes within the studied time interval and identifies Decontra as an important locality for correlating not only shallow and deep water sediments of the Mediterranean region but also on a global scale.
A New Approach to Quantify Shallow Water Hydrologic Exchanges in a Large Regulated River Reach
Energy Technology Data Exchange (ETDEWEB)
Zhou, Tian; Huang, Maoyi; Bao, Jie; Hou, Zhangshuan; Arntzen, Evan V.; Mackley, Robert D.; Crump, Alex R.; Goldman, Amy E.; Song, Xuehang; Xu, Yi; Zachara, John M.
2017-09-15
Hyporheic exchange is a crucial component in the water cycle. The strength of the exchange directly affects the biogeochemical and ecological processes occurred in the hyporheic zone from micro to reach scale. Hyporheic fluxes can be quantified using many direct and indirect measurements as well as analytical and numerical modeling tools. However, in a relatively large river, these methods are limited by accessibility, the difficulty of performing representative sampling, and complexity of geomorphologic features and subsurface properties. In rivers regulated by hydroelectric dams, quantifying hyporheic fluxes becomes more challenging due to frequent hydropeaking events, featured by hourly to daily variations in flow and river stages created by dam operations(Hancock 2002). In this study, we developed and validated methods that based on field measurements to estimate shallow water hyporheic fluxes across the river bed at five locations along the shoreline of the Columbia River. Vertical thermal profiles measured by self-recording thermistors were combined with time series of hydraulic gradients derived from river stage and water level at in-land wells to estimate the hyporheic flux rate. The results suggested that the hyporheic exchange rate had high spatial and temporal heterogeneities over the riverbed, with predicted flux rate varies from +1×10-6 m s-1 to -1.5×10-6 m s-1 under various flow conditions at the some locations, and with a magnitude of fluxes 6-9 times higher in the primary channel than that in the secondary channel. The variations on shallow water hyporheic flow dynamics may further lead to different biogeochemical and ecological consequences at different river segments.
Jeschke, Anja; Behrens, Jörn
2015-04-01
In tsunami modeling, two different systems of dispersive long wave equations are common: The nonhydrostatic pressure correction for the shallow water equations derived out of the depth-integrated 3D Reynolds-averaged Navier-Stokes equations, and the category of Boussinesq-type equations obtained by an expansion in the nondimensional parameters for nonlinearity and dispersion in the Euler equations. The first system uses as an assumption a linear vertical interpolation of the nonhydrostatic pressure, whereas the second system's derivation includes an quadratic vertical interpolation for the nonhydrostatic pressure. In this case the analytical dispersion relations do not coincide. We show that the nonhydrostatic correction with a quadratic vertical interpolation yields an equation set equivalent to the Serre equations, which are 1D Boussinesq-type equations for the case of a horizontal bottom. Now, both systems yield the same analytical dispersion relation according up to the first order with the reference dispersion relation of the linear wave theory. The adjusted model is also compared to other Boussinesq-type equations. The numerical model with the nonhydrostatic correction for the shallow water equations uses Leapfrog timestepping stabilized with the Asselin filter and the P1-PNC1 finite element space discretization. The numerical dispersion relations are computed and compared by employing a testcase of a standing wave in a closed basin. All numerical values match their theoretical expectations. This work is funded by project ASTARTE - Assessment, Strategy And Risk Reduction for Tsunamis in Europe - FP7-ENV2013 6.4-3, Grant 603839. We acknowledge the support given by Geir K. Petersen from the University of Oslo.
The shallow water hard corals of Pulau Weh, Aceh Province, Indonesia
Directory of Open Access Journals (Sweden)
Andrew H. Baird
2012-03-01
Full Text Available The corals reefs of Aceh, Indonesia, are one of the few areas of the world where the fauna, in particular the scleractinian corals, haveyet to be described. The area is likely to be of high biogeographical significance due to its position at the northern tip of Sumatra on the boundaryof three major water bodies, the Indian Ocean, the Andaman Sea and the Straits of Malacca. Here, we present the quantitative descriptionof the assemblage structure of the shallow water scleractinian corals of Pulau Weh. Carbonate reefs are rare on the island, the exception beingsome fringing reef development in shallow water in at least two locations. Most colonies are attached to granite boulders which make up theocean floor at most sites on the north and west coast, or rest in the sandy substrates that dominate the ocean floor on the east coast. Coral coverin February 2009 was over 40% at most sites, ranging from 21% ± 3.0 SE to 80% ± 2.4. Coral assemblage structure varied widely around PulauWeh with assemblages from the western and northern sites being dominated by Acropora spp. in particular, species with digitate, encrustingarborescentand tabular morphologies. In contrast, coral assemblages on the west coast were dominated by massive Porites spp. and Heliopora.The Acropora fauna is dominated by species with digitate and encrusting arborescent morphologies, very different from many other regions inIndonesia. This unusual species composition plus the presence of a high proportion of endemics indicates that the region should be a high priorityfor conservation efforts. Further taxonomic studies at depth and further afield are required to fully describe this unique fauna that supportsa small diving industry and a number of fisheries.
AIRBORNE LASER BATHYMETRY FOR DOCUMENTATION OF SUBMERGED ARCHAEOLOGICAL SITES IN SHALLOW WATER
Directory of Open Access Journals (Sweden)
M. Doneus
2015-04-01
Full Text Available Knowledge of underwater topography is essential to the understanding of the organisation and distribution of archaeological sites along and in water bodies. Special attention has to be paid to intertidal and inshore zones where, due to sea-level rise, coastlines have changed and many former coastal sites are now submerged in shallow water. Mapping the detailed inshore topography is therefore important to reconstruct former coastlines, identify sunken archaeological structures and locate potential former harbour sites. However, until recently archaeology has lacked suitable methods to provide the required topographical data of shallow underwater bodies. Our research shows that airborne topo-bathymetric laser scanner systems are able to measure surfaces above and below the water table over large areas in high detail using very short and narrow green laser pulses, even revealing sunken archaeological structures in shallow water. Using an airborne laser scanner operating at a wavelength in the green visible spectrum (532 nm two case study areas in different environmental settings (Kolone, Croatia, with clear sea water; Lake Keutschach, Austria, with turbid water were scanned. In both cases, a digital model of the underwater topography with a planimetric resolution of a few decimeters was measured. While in the clear waters of Kolone penetration depth was up to 11 meters, turbid Lake Keutschach allowed only to document the upper 1.6 meters of its underwater topography. Our results demonstrate the potential of this technique to map submerged archaeological structures over large areas in high detail providing the possibility for systematic, large scale archaeological investigation of this environment.
Shallow-water habitat use by Bering Sea flatfishes along the central Alaska Peninsula
Hurst, Thomas P.
2016-05-01
Flatfishes support a number of important fisheries in Alaskan waters and represent major pathways of energy flow through the ecosystem. Despite their economic and ecological importance, little is known about the use of habitat by juvenile flatfishes in the eastern Bering Sea. This study describes the habitat characteristics of juvenile flatfishes in coastal waters along the Alaska Peninsula and within the Port Moller-Herendeen Bay system, the largest marine embayment in the southern Bering Sea. The two most abundant species, northern rock sole and yellowfin sole, differed slightly in habitat use with the latter occupying slightly muddier substrates. Both were more common along the open coastline than they were within the bay, whereas juvenile Alaska plaice were more abundant within the bay than along the coast and used shallow waters with muddy, high organic content sediments. Juvenile Pacific halibut showed the greatest shift in distribution between age classes: age-0 fish were found in deeper waters (~ 30 m) along the coast, whereas older juveniles were found in the warmer, shallow waters within the bay, possibly due to increased thermal opportunities for growth in this temperature-sensitive species. Three other species, starry flounder, flathead sole, and arrowtooth flounder, were also present, but at much lower densities. In addition, the habitat use patterns of spring-spawning flatfishes (northern rock sole, Pacific halibut, and Alaska plaice) in this region appear to be strongly influenced by oceanographic processes that influence delivery of larvae to coastal habitats. Overall, use of the coastal embayment habitats appears to be less important to juvenile flatfishes in the Bering Sea than in the Gulf of Alaska.
PROPERTIES OF NATURAL CAVITATION FLOWS AROUND A 2-D WEDGE IN SHALLOW WATER
Institute of Scientific and Technical Information of China (English)
CHEN Xin; LU Chuan-jing; LI Jie; CHEN Ying
2011-01-01
When a body navigates with cavity in shallow water,both flexible free surface and rigid bottom wall will produce great influences on the cavity shape and hydrodynamic performances,and further affect the motion attitude and stability of the body.In the present work,characteristics of the natural cavitating flow around a 2-D symmetrical wedge in shallow water were investigated and the influences of two type boundaries on the flow pattern were analyzed.The Volume Of Fluid (VOF) multiphaseflow method which is suitable for free surface problems was utilized,coupled with a natural cavitation model to deal with the mass-transfer process between liquid and vapor phases.Within the range of the cavitation number for computation (0.07-1.81),the cavity configurations would be divided into three types,viz.,stable type,transition type and wake-vortex type.In this article,the shapes of the free surface and the cavity surface,and the hydrodynamic performance of the wedge were discussed under the conditions of relatively small cavitation number ( ＜ 0.256 ).The present numerical cavity lengths generally accord with experimental data.When the cavitation number was decreased,the cavity was found to become longer and thicker,and the scope of the deformation of the free surface also gradually extends.The free surface and the upper cavity surface correspond fairly to their shapes.However,the lower side of the cavity surface was rather leveled due to the influence of wall boundary.The lift and drag coefficients of this 2-D wedge basically keep linear relations with the natural cavitation number smaller than 0.157,whereas direct proportion for drag and inverse proportion for lift.
Roy-Leveillee, Pascale; Burn, Christopher R.
2017-05-01
It is generally assumed that permafrost is preserved beneath shallow lakes and ponds in the Western North American Arctic where water depth is less than about two thirds of the late-winter lake ice thickness. Here we present field observations of talik development beneath water as shallow as 0.2 m despite a lake ice thickness of 1.5 m, in Old Crow Flats (OCF), YT. Conditions leading to the initiation and development of taliks beneath shallow water were investigated with field measurements of shore erosion rates, bathymetry, ice thickness, snow accumulation, and lake bottom temperature near the shores of two expanding lakes in OCF. The sensitivity of talik development to variations in lake bottom thermal regime was then investigated numerically. Where ice reached the lake bottom, talik development was controlled by the ratio of freezing degree days to thawing degree days at the lake bottom (FDDlb/TDDlb). In some cases, spatial variations in on-ice snow depth had a minimal effect on annual mean lake bottom temperature (Tlb) but caused sufficient variations in FDDlb/TDDlb to influence talik development. Where Tlb was close to but greater than 0°C simulations indicated that the thermal offset allowed permafrost aggradation to occur under certain conditions, resulting in irregular near-shore talik geometries. The results highlight the sensitivity of permafrost to small changes in lake bottom thermal conditions where the water column freezes through in early winter and indicate the occurrence of permafrost degradation beneath very shallow water in the near-shore zone of Arctic ponds and lakes.
Fast and Parallel Spectral Transform Algorithms for Global Shallow Water Models
Jakob, Ruediger
1993-01-01
This dissertation examines spectral transform algorithms for the solution of the shallow water equations on the sphere and studies their implementation and performance on shared memory vector multiprocessors. Beginning with the standard spectral transform algorithm in vorticity divergence form and its implementation in the Fortran based parallel programming language Force, two modifications are researched. First, the transforms and matrices associated with the meridional derivatives of the associated Legendre functions are replaced by corresponding operations with the spherical harmonic coefficients. Second, based on the fast Fourier transform and the fast multipole method, a lower complexity algorithm is derived that uses fast transformations between Legendre and interior Fourier nodes, fast surface spherical truncation and a fast spherical Helmholtz solver. The first modification is fully implemented, and comparative performance data are obtained for varying resolution and number of processes, showing a significant storage saving and slightly reduced execution time on a Cray Y -MP 8/864. The important performance parameters for the spectral transform algorithm and its implementation on vector multiprocessors are determined and validated with the measured performance data. The second modification is described at the algorithmic level, but only the novel fast surface spherical truncation algorithm is implemented. This new multipole algorithm has lower complexity than the standard algorithm, and requires asymptotically only order N ^2log N operations per time step for a grid with order N^2 points. Because the global shallow water equations are similar to the horizontal dynamical component of general circulation models, the results can be applied to spectral transform numerical weather prediction and climate models. In general, the derived algorithms may speed up the solution of time dependent partial differential equations in spherical geometry. A performance model
Klimachkov, D. A.; Petrosyan, A. S.
2017-01-01
This article deals with magnetohydrodynamic (MHD) flows of a thin rotating layer of astrophysical plasma in external magnetic field. We use the shallow water approximation to describe thin rotating plasma layer with a free surface in a vertical external magnetic field. The MHD shallow water equations with external vertical magnetic field are revised by supplementing them with the equations that are consequences of the magnetic field divergence-free conditions and reveal the existence of third component of the magnetic field in such approximation providing its relation with the horizontal magnetic field. It is shown that the presence of a vertical magnetic field significantly changes the dynamics of the wave processes in astrophysical plasma compared to the neutral fluid and plasma layer in a toroidal magnetic field. The equations for the nonlinear wave packets interactions are derived using the asymptotic multiscale method. The equations for three magneto-Poincare waves interactions, for three magnetostrophic waves interactions, for the interactions of two magneto-Poincare waves and for one magnetostrophic wave and two magnetostrophic wave and one magneto-Poincare wave interactions are obtained. The existence of parametric decay and parametric amplifications is predicted. We found following four types of parametric decay instabilities: magneto-Poincare wave decays into two magneto-Poincare waves, magnetostrophic wave decays into two magnetostrophic waves, magneto-Poincare wave decays into one magneto-Poincare wave and one magnetostrophic wave, magnetostrophic wave decays into one magnetostrophic wave and one magneto-Poincare wave. Following mechanisms of parametric amplifications are found: parametric amplification of magneto-Poincare waves, parametric amplification of magnetostrophic waves, magneto-Poincare wave amplification in magnetostrophic wave presence and magnetostrophic wave amplification in magneto-Poincare wave presence. The instabilities growth rates
Fracturing and flow: Investigations on the formation of shallow water sills on Europa
Craft, Kathleen L.; Patterson, G. Wes; Lowell, Robert P.; Germanovich, Leonid
2016-08-01
Double ridge tectonic features appear prominently and ubiquitously across the surface of Jupiter's icy moon Europa. Previous studies have interpreted flanking fractures observed along some of the ridges as indicators of stress resulting from the ridge loading and flexing of the ice shell above a shallow water body. Here, we investigate a shallow water sill emplacement process at a time when the shell is cooling and thickening and explore the conditions that would make such a system feasible on timescales of ridge formation. Results show that fracture initiation and transport of ocean water to shallow depths can realistically occur, although horizontal fracturing and sill lifetimes prove challenging. Finite element models demonstrate that mechanical layering or a fractured shell do not provide enough stress change to promote horizontal fracturing, but tidal forcing does result in a small amount of turn. Assuming it is possible for a shallow sill to form, a sill would convect internally and conduct heat out quickly, resulting in a short lifetime in comparison to an estimated flexure timeframe of 100 kyr suggested required for double ridge formation. Consideration of heat transfer and residence in the overlying ice, however, extends the flexure timeframe and multiple sill intrusions or replenishment with warm ocean water could prolong the effective sill lifetime. Though challenges still remain for sill formation at Europa, these analyses constrain the potential mechanisms for emplacement and indicate sills can act as viable options for supplying the heat needed for surface flexure. Further analyses and future missions to Europa will help to increase our understanding of these enigmatic processes.
2-DE combined with two-layer feature selection accurately establishes the origin of oolong tea.
Chien, Han-Ju; Chu, Yen-Wei; Chen, Chi-Wei; Juang, Yu-Min; Chien, Min-Wei; Liu, Chih-Wei; Wu, Chia-Chang; Tzen, Jason T C; Lai, Chien-Chen
2016-11-15
Taiwan is known for its high quality oolong tea. Because of high consumer demand, some tea manufactures mix lower quality leaves with genuine Taiwan oolong tea in order to increase profits. Robust scientific methods are, therefore, needed to verify the origin and quality of tea leaves. In this study, we investigated whether two-dimensional gel electrophoresis (2-DE) and nanoscale liquid chromatography/tandem mass spectroscopy (nano-LC/MS/MS) coupled with a two-layer feature selection mechanism comprising information gain attribute evaluation (IGAE) and support vector machine feature selection (SVM-FS) are useful in identifying characteristic proteins that can be used as markers of the original source of oolong tea. Samples in this study included oolong tea leaves from 23 different sources. We found that our method had an accuracy of 95.5% in correctly identifying the origin of the leaves. Overall, our method is a novel approach for determining the origin of oolong tea leaves.
SELF-SIMILAR SOLUTIONS AND BLOW-UP PHENOMENA FOR A TWO-COMPONENT SHALLOW WATER SYSTEM
Institute of Scientific and Technical Information of China (English)
Shouming ZHOU; Chunlai MU; Liangchen WANG
2013-01-01
In this article,we consider a two-component nonlinear shallow water system,which includes the famous 2-component Camassa-Holm and Degasperis-Procesi equations as special cases.The local well-posedess for this equations is established.Some sufficient conditions for blow-up of the solutions in finite time are given.Moreover,by separation method,the self-similar solutions for the nonlinear shallow water equations are obtained,and which local or global behavior can be determined by the corresponding Emden equation.
Augenbaum, J. M.
1985-01-01
A Lagrangian scheme using the Voronoi mesh is applied to study shallow water flow on a sphere. Discrete approximations to the shallow water equations are obtained for the surfaces of a nonrotating and a rotating sphere, and discrete differential operators are defined for the gradient and the divergence on the sphere. Dissipation is put into the model, when needed, by merging fluid points when they get too close to each other. The full numerical scheme is described and results of numerical computations on various test cases are given, including zonal flow and the Riemann problem.
Theoretical Permeability of Two-layered Nonwoven Geotextiles
Institute of Scientific and Technical Information of China (English)
LIU Li-fang; CHU Cai-yuan
2006-01-01
The two-layered nonwoven geotextile, which consists of a layer constructed with fine fibers for providing optimal filtration characteristics and another layer constructed with coarse fibers for providing the required mechanical properties, is desirable for drainage and filtration system.Based on Darcy's law and drag force theory, a mathematical model on vertical permeability coefficient of two-layered nonwoven geotextile is estabilished. Comparison with experimental results shows that the present model possesses 83.6% accuracy for needle-punched two-layered nonwoven geotextiles. And experimental results also show that with the increasing of needle density the vertical permeability coefficient of two-layered nonwoven geotextiless firstly decreases and then increases, reaching the smallest value at 470 p/cm2.
A study of two-dimensional magnetic polaron
Institute of Scientific and Technical Information of China (English)
LIU; Tao; ZHANG; Huaihong; FENG; Mang; WANG; Kelin
2006-01-01
By using the variational method and anneal simulation, we study in this paper the self-trapped magnetic polaron (STMP) in two-dimensional anti-ferromagnetic material and the bound magnetic polaron (BMP) in ferromagnetic material. Schwinger angular momentum theory is applied to changing the problem into a coupling problem of carriers and two types of Bosons. Our calculation shows that there are single-peak and multi-peak structures in the two-dimensional STMP. For the ferromagnetic material, the properties of the two-dimensional BMP are almost the same as that in one-dimensional case; but for the anti-ferromagnetic material, the two-dimensional STMP structure is much richer than the one-dimensional case.
UPWIND DISCONTINUOUS GALERKIN METHODS FOR TWO DIMENSIONAL NEUTRON TRANSPORT EQUATIONS
Institute of Scientific and Technical Information of China (English)
袁光伟; 沈智军; 闫伟
2003-01-01
In this paper the upwind discontinuous Galerkin methods with triangle meshes for two dimensional neutron transport equations will be studied.The stability for both of the semi-discrete and full-discrete method will be proved.
Two-Dimensionally-Modulated, Magnetic Structure of Neodymium Metal
DEFF Research Database (Denmark)
Lebech, Bente; Bak, P.
1979-01-01
The incipient magnetic order of dhcp Nd is described by a two-dimensional, incommensurably modulated structure ("triple-q" structure). The ordering is accompanied by a lattice distortion that forms a similar pattern....
Entanglement Entropy for time dependent two dimensional holographic superconductor
Mazhari, N S; Myrzakulov, Kairat; Myrzakulov, R
2016-01-01
We studied entanglement entropy for a time dependent two dimensional holographic superconductor. We showed that the conserved charge of the system plays the role of the critical parameter to have condensation.
Decoherence in a Landau Quantized Two Dimensional Electron Gas
Directory of Open Access Journals (Sweden)
McGill Stephen A.
2013-03-01
Full Text Available We have studied the dynamics of a high mobility two-dimensional electron gas as a function of temperature. The presence of satellite reflections in the sample and magnet can be modeled in the time-domain.
Quantization of Two-Dimensional Gravity with Dynamical Torsion
Lavrov, P M
1999-01-01
We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.
Spatiotemporal dissipative solitons in two-dimensional photonic lattices.
Mihalache, Dumitru; Mazilu, Dumitru; Lederer, Falk; Kivshar, Yuri S
2008-11-01
We analyze spatiotemporal dissipative solitons in two-dimensional photonic lattices in the presence of gain and loss. In the framework of the continuous-discrete cubic-quintic Ginzburg-Landau model, we demonstrate the existence of novel classes of two-dimensional spatiotemporal dissipative lattice solitons, which also include surface solitons located in the corners or at the edges of the truncated two-dimensional photonic lattice. We find the domains of existence and stability of such spatiotemporal dissipative solitons in the relevant parameter space, for both on-site and intersite lattice solitons. We show that the on-site solitons are stable in the whole domain of their existence, whereas most of the intersite solitons are unstable. We describe the scenarios of the instability-induced dynamics of dissipative solitons in two-dimensional lattices.
Bound states of two-dimensional relativistic harmonic oscillators
Institute of Scientific and Technical Information of China (English)
Qiang Wen-Chao
2004-01-01
We give the exact normalized bound state wavefunctions and energy expressions of the Klein-Gordon and Dirac equations with equal scalar and vector harmonic oscillator potentials in the two-dimensional space.
A two-dimensional polymer prepared by organic synthesis.
Kissel, Patrick; Erni, Rolf; Schweizer, W Bernd; Rossell, Marta D; King, Benjamin T; Bauer, Thomas; Götzinger, Stephan; Schlüter, A Dieter; Sakamoto, Junji
2012-02-05
Synthetic polymers are widely used materials, as attested by a production of more than 200 millions of tons per year, and are typically composed of linear repeat units. They may also be branched or irregularly crosslinked. Here, we introduce a two-dimensional polymer with internal periodicity composed of areal repeat units. This is an extension of Staudinger's polymerization concept (to form macromolecules by covalently linking repeat units together), but in two dimensions. A well-known example of such a two-dimensional polymer is graphene, but its thermolytic synthesis precludes molecular design on demand. Here, we have rationally synthesized an ordered, non-equilibrium two-dimensional polymer far beyond molecular dimensions. The procedure includes the crystallization of a specifically designed photoreactive monomer into a layered structure, a photo-polymerization step within the crystal and a solvent-induced delamination step that isolates individual two-dimensional polymers as free-standing, monolayered molecular sheets.
Second invariant for two-dimensional classical super systems
Indian Academy of Sciences (India)
S C Mishra; Roshan Lal; Veena Mishra
2003-10-01
Construction of superpotentials for two-dimensional classical super systems (for ≥ 2) is carried out. Some interesting potentials have been studied in their super form and also their integrability.
Extreme paths in oriented two-dimensional percolation
Andjel, E. D.; Gray, L. F.
2016-01-01
International audience; A useful result about leftmost and rightmost paths in two dimensional bond percolation is proved. This result was introduced without proof in \\cite{G} in the context of the contact process in continuous time. As discussed here, it also holds for several related models, including the discrete time contact process and two dimensional site percolation. Among the consequences are a natural monotonicity in the probability of percolation between different sites and a somewha...
Two Dimensional Nucleation Process by Monte Carlo Simulation
T., Irisawa; K., Matsumoto; Y., Arima; T., Kan; Computer Center, Gakushuin University; Department of Physics, Gakushuin University
1997-01-01
Two dimensional nucleation process on substrate is investigated by Monte Carlo simulation, and the critical nucleus size and its waiting time are measured with a high accuracy. In order to measure the critical nucleus with a high accuracy, we calculate the attachment and the detachment rate to the nucleus directly, and define the critical nucleus size when both rate are equal. Using the kinematical nucleation theory by Nishioka, it is found that, our obtained kinematical two dimensional criti...
Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers
2016-06-15
polymers . 2. Introduction . Research objectives: This research aims to study the physical (van der Waals forces: crystal epitaxy and π-π...AFRL-AFOSR-JP-TR-2016-0071 Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers Cheolmin Park YONSEI UNIVERSITY...Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-14-1-4054 5c. PROGRAM ELEMENT
Two-Dimensional Weak Pseudomanifolds on Eight Vertices
Indian Academy of Sciences (India)
Basudeb Datta; Nandini Nilakantan
2002-05-01
We explicitly determine all the two-dimensional weak pseudomanifolds on 8 vertices. We prove that there are (up to isomorphism) exactly 95 such weak pseudomanifolds, 44 of which are combinatorial 2-manifolds. These 95 weak pseudomanifolds triangulate 16 topological spaces. As a consequence, we prove that there are exactly three 8-vertex two-dimensional orientable pseudomanifolds which allow degree three maps to the 4-vertex 2-sphere.
Two-Dimensional Materials for Sensing: Graphene and Beyond
Directory of Open Access Journals (Sweden)
Seba Sara Varghese
2015-09-01
Full Text Available Two-dimensional materials have attracted great scientific attention due to their unusual and fascinating properties for use in electronics, spintronics, photovoltaics, medicine, composites, etc. Graphene, transition metal dichalcogenides such as MoS2, phosphorene, etc., which belong to the family of two-dimensional materials, have shown great promise for gas sensing applications due to their high surface-to-volume ratio, low noise and sensitivity of electronic properties to the changes in the surroundings. Two-dimensional nanostructured semiconducting metal oxide based gas sensors have also been recognized as successful gas detection devices. This review aims to provide the latest advancements in the field of gas sensors based on various two-dimensional materials with the main focus on sensor performance metrics such as sensitivity, specificity, detection limit, response time, and reversibility. Both experimental and theoretical studies on the gas sensing properties of graphene and other two-dimensional materials beyond graphene are also discussed. The article concludes with the current challenges and future prospects for two-dimensional materials in gas sensor applications.
Implementation (II) of the numerical shallow water wave hindcast model HISWA
Herbers, T.H.C.; Booij, N.; Holthuijsen, L.H.
1984-01-01
Development of a two-dimensional model to hindcast spectral wave parameters in an estuary with tidal flats on the basis of bottomtopography, current and wind data. Diffraction-like propagation has been implemented and tested. Tests indicate that this type of propagation cannot.be used for most appli
Wang, Ying; Guo, Yunxi
2017-09-01
In this paper, we developed, for the first time, the exact expressions of several periodic travelling wave solutions and a solitary wave solution for a shallow water wave model of moderate amplitude. Then, we present the existence theorem of the global weak solutions. Finally, we prove the stability of solution in L1(R) space for the Cauchy problem of the equation.
Directory of Open Access Journals (Sweden)
Arthur José da Silva Rocha
2015-03-01
Full Text Available Series of biomonitoring surveys were undertaken weekly in February 2012 to investigate the genotoxicity of the shallow waters around the Brazilian Antarctic Station "Comandante Ferraz" (EACF. The comet assay was applied to assess the damage to the DNA of hemocytes of the crustacean amphipods Gondogeneia antarctica collected from shallow waters near the Fuel Tanks (FT and Sewage Treatment Outflow (STO of the research station, and compare it to the DNA damage of animals from Punta Plaza (PPL and Yellow Point (YP, natural sites far from the EACF defined as experimental controls. The damage to the DNA of hemocytes of G. antarctica was not significantly different between sites in the biomonitoring surveys I and II. In survey III, the damage to the DNA of animals captured in shallow waters near the Fuel Tanks (FT and Sewage Treatment Outflow (STO was significantly higher than that of the control site of Punta Plaza (PPL. In biomonitoring survey IV, a significant difference was detected only between the FT and PPL sites. Results demonstrated that the shallow waters in front of the station may be genotoxic and that the comet assay and hemocytes of G. antarctica are useful tools for assessing genotoxicity in biomonitoring studies of Antarctic marine coastal habitats.
Lim, S.-C.; Voogd, de N.J.; Tan, K.-S.
2012-01-01
A surprisingly high number of shallow water sponge species (197) were recorded from extensive sampling of natural intertidal and subtidal habitats in Singapore (Southeast Asia) from May 2003 to June 2010. This is in spite of a highly modified coastline that encompasses one of the world’s largest con
Digital Repository Service at National Institute of Oceanography (India)
Kurtarkar, S.R.; Linshy, V.N.; Saraswat, R.; Nigam, R.
in the laboratory. In the present work, shallow water benthic foraminiferal species, Rosalina sp. and Pararotalia nipponica were subjected to different combinations of seawater temperature (25�C to 35�C) and salinity (25 psu to 37 psu) in the laboratory to assess...
Boekschoten, G.J.; Borel Best, M.
1988-01-01
Miocene hermatypic corals are listed from Madeira and Porto Santo. Pleistocene and recent shallow water corals are described from the Cape Verde archipelago. The Miocene fauna was part of the Western Tethyan reef association, which went nearly completely extinct by the development of a cool water cu
Institute of Scientific and Technical Information of China (English)
Tang Ya-Ning; Ma Wen-Xiu; Xu Wei
2012-01-01
Based on the Grammian and Pfaffian derivative formulae,Grammian and Pfaffian solutions are obtained for a (3+1)-dimensional generalized shallow water equation in the Hirota bilinear form.Moreover,a Pfaffian extension ismade for the equation by means of the Pfaffianization procedure,the Wronski-type and Gramm-type Pfaffian solutions of the resulting coupled system are presented.
Bokhove, O.
2003-01-01
Free boundaries in shallow-water equations demarcate the time-dependent water line between ``flooded'' and ``dry'' topography. A novel numerical algorithm to treat flooding and drying in a formally second-order explicit space discontinuous finite element discretization of the one-dimensional or symm
Nakamura, Koichiro; Akiyama, Tadashi
2015-08-05
A new species of pycnogonid recorded from the shallow waters of Ogasawara (Bonin) Island, Japan, Cheilopallene ogasawarensis n. sp. is described, illustrated and compared with similar species. Cheilopallene ogasawarensis is only the third pycnogonid species recorded from these islands. Morphological characters clearly distinguish the new species from its geographically closest congener C. nodulosa Hong and Kim, 1987, also recorded from Japanese waters.
Che, Jiahang; Chen, Li; Duan, Ben; Luo, Zhen
2016-12-01
In this paper, motivated by the chemotaxis-Navier-Stokes system arising from mathematical biology [43], a modified shallow water type chemotactic model is derived. For large initial data allowing vacuum, the local existence of strong solutions together with the blow-up criterion is established.
Wang, Ying; Guo, Yunxi
2016-07-01
In this paper, we developed, for the first time, the exact expressions of several periodic travelling wave solutions and a solitary wave solution for a shallow water wave model of moderate amplitude. Then, we present the existence theorem of the global weak solutions. Finally, we prove the stability of solution in L1(R) space for the Cauchy problem of the equation.
Li, Zhiyong; Wang, Yuezhu; Li, Jinlong; Liu, Fang; He, Liming; He, Ying; Wang, Shenyue
2016-12-01
Sponges host complex symbiotic communities, but to date, the whole picture of the metabolic potential of sponge microbiota remains unclear, particularly the difference between the shallow-water and deep-sea sponge holobionts. In this study, two completely different sponges, shallow-water sponge Theonella swinhoei from the South China Sea and deep-sea sponge Neamphius huxleyi from the Indian Ocean, were selected to compare their whole symbiotic communities and metabolic potential, particularly in element transformation. Phylogenetically diverse bacteria, archaea, fungi, and algae were detected in both shallow-water sponge T. swinhoei and deep-sea sponge N. huxleyi, and different microbial community structures were indicated between these two sponges. Metagenome-based gene abundance analysis indicated that, though the two sponge microbiota have similar core functions, they showed different potential strategies in detailed metabolic processes, e.g., in the transformation and utilization of carbon, nitrogen, phosphorus, and sulfur by corresponding microbial symbionts. This study provides insight into the putative metabolic potentials of the microbiota associated with the shallow-water and deep-sea sponges at the whole community level, extending our knowledge of the sponge microbiota's functions, the association of sponge- microbes, as well as the adaption of sponge microbiota to the marine environment.
Yücel, Mustafa; Sievert, Stefan; Giovanelli, Donato; Foustoukos, Dionysis; DeForce, Emelia; Thomas, François; Vetriani, Constantino; Le Bris, Nadine
2014-05-01
Shallow-water hydrothermal vents share many characteristics with their deep-sea analogs. However, despite ease of access, much less is known about the dynamics of these systems. Here, we report on the spatial and temporal chemical variability of a shallow-water vent system at Paleochori Bay, Milos Island, Greece, and on the bacterial and archaeal diversity of associated sandy sediments. Our multi-analyte voltammetric profiles of dissolved O2 and hydrothermal tracers (e.g. Fe2+, FeSaq, Mn2+) on sediment cores taken along a transect in hydrothermally affected sediments indicate three different areas: the central vent area (highest temperature) with a deeper penetration of oxygen into the sediment, and a lack of dissolved Fe2+ and Mn2+; a middle area (0.5 m away) rich in dissolved Fe2+ and Mn2+ (exceeding 2 mM) and high free sulfide with potential for microbial sulfide oxidation as suggested by the presence of white mats at the sediment surface; and, finally, an outer rim area (1-1.5 m away) with lower concentrations of Fe2+ and Mn2+ and higher signals of FeSaq, indicating an aged hydrothermal fluid contribution. In addition, high-frequency temperature series and continuous in situ H2S measurements with voltammetric sensors over a 6-day time period at a distance 0.5 m away from the vent center showed substantial temporal variability in temperature (32 to 46 ºC ) and total sulfide (488 to 1329 µM) in the upper sediment layer. Analysis of these data suggests that tides, winds, and abrupt geodynamic events generate intermittent mixing conditions lasting for several hours to days. Despite substantial variability, the concentration of sulfide available for chemoautotrophic microbes remained high. These findings are consistent with the predominance of Epsilonproteobacteria in the hydrothermally influenced sediments Diversity and metagenomic analyses on sediments and biofilm collected along a transect from the center to the outer rim of the vent provide further insights on
Shallow water mud-mounds of the Early Devonian Buchan Group, East Gippsland, Australia
Tosolini, A.-M. P.; Wallace, M. W.; Gallagher, S. J.
2012-12-01
The Lower Devonian Rocky Camp Member of the Murrindal Limestone, Buchan Group of southeastern Australia consists of a series of carbonate mud-mounds and smaller lagoonal bioherms. The Rocky Camp mound is the best exposed of the mud-mounds and has many characteristics in common with Waulsortian (Carboniferous) mounds. Detailed paleoecological and sedimentological studies indicate that the mound initially accumulated in the photic zone, in contrast to most of the previously recorded mud-mounds. Five facies are present in the mud-mound: a Dasycladacean Wackestone Facies at the base of the mound represents a moderate energy, shallow water bank environment within the photic zone. A Crinioidal Wackestone Facies was deposited in a laterally equivalent foreslope setting. A Poriferan-Crinoidal Mudstone Facies developed in a quiet, deeper water, lee-side mound setting associated with a minor relative sea-level rise. A Stromatoporoid-Coralline Packstone Facies in the upper part of the mound deposited in a high-energy, fair-weather wave base, mound-front environment. The crest of the mound is represented by a Crinoidal-Receptaculitid Packstone Facies indicative of a moderate-energy mound-top environment in the photic zone, sheltered by the mound-front stromatoporoid-coral communities. A mound flank facies is present on the southern side of the mound and this consists of high-energy crinoidal grainstones. Mud-mound deposition was terminated by a transgression that deposited dark gray, fossil-poor marl of the overlying Taravale Formation. The Rocky Camp mound appears to have originated in shallow water photic zone conditions and grew into a high-energy environment, with the mound being eventually colonized by corals and stromatoporoids. The indications of a high-energy environment during later mound growth (growth form of colonial metazoans and grainstones of the flanking facies) suggest that the micrite in the mound was autochthonous and implies the presence of an energy
Directory of Open Access Journals (Sweden)
Juan L. Torres-Pérez
2012-11-01
Full Text Available The coloration of tropical reef corals is mainly due to their association with photosynthetic dinoflagellates commonly known as zooxanthellae. Combining High Performance Liquid Chromatography (HPLC, spectroscopy and derivative analysis we provide a novel approach to discriminate between the Caribbean shallow-water corals Acropora cervicornis and Porites porites based on their associated pigments. To the best of our knowledge, this is the first time that the total array of pigments found within the coral holobiont is reported. A total of 20 different pigments were identified including chlorophylls, carotenes and xanthophylls. Of these, eleven pigments were common to both species, eight were present only in A. cervicornis, and three were present only in P. porites. Given that these corals are living in similar physical conditions, we hypothesize that this pigment composition difference is likely a consequence of harboring different zooxanthellae clades with a possible influence of endolithic green or brown algae. We tested the effect of this difference in pigments on the reflectance spectra of both species. An important outcome was the correlation of total pigment concentration with coral reflectance spectra up to a 97% confidence level. Derivative analysis of the reflectance curves showed particular differences between species at wavelengths where several chlorophylls, carotenes and xanthophylls absorb. Within species variability of spectral features was not significant while interspecies variability was highly significant. We recognize that the detection of such differences with actual airborne or satellite remote sensors is extremely difficult. Nonetheless, based on our results, the combination of these techniques (HPLC, spectroscopy and derivative analysis can be used as a robust approach for the development of a site specific spectral library for the identification of shallow-water coral species. Studies (Torres-Pérez, NASA Postdoctoral
Potential of a novel airborne hydrographic laser scanner for capturing shallow water bodies
Mandlburger, G.; Pfennigbauer, M.; Steinbacher, F.; Pfeifer, N.
2012-04-01
In this paper, we present the general design of a hydrographic laser scanner (prototype instrument) manufactured by the company Riegl Laser Measurement Systems in cooperation with the University of Innsbruck, Unit of Hydraulic Engineering. The instrument utilizes very short laser pulses (1 ns) in the green wavelength domain (λ=532 nm) capable of penetrating the water column. The backscattered signal is digitized in a waveform recorder at high frequency enabling sophisticated waveform processing, both, online during the flight and in post processing. In combination with a traditional topographic airborne laser scanner (λ=1500 nm) mounted on the same platform a complete hydrographic and topographic survey of the riparian foreland, the water surface and river bed can be carried out in a single campaign. In contrast to existing bathymetric LiDAR systems, the presented system uses only medium pulse energy but a high pulse repetition rate of up to 250 kHz and, thus, focuses on a detailed description of shallow water bodies under clear water conditions. Different potential fields of applications of the instrument (hydraulic modelling, hydro-morphology, hydro-biology, ecology, river restoration and monitoring) are discussed and the results of first real-world test flights in Austria and Germany are presented. It is shown that: (i) the high pulse repetition rate enables a point density on the ground of the water body of 10-20 pts/m2, (ii) the short laser pulses together with waveform processing enable a discrimination between water and ground reflections at a water depth of less than 25 cm, (iii) the combination of a topographic and hydrographic laser scanner enable the acquisition of the geometry data for hydraulic modeling in a single survey, thus, providing a much more homogeneous data basis compared to traditional techniques, and (iv) the high point density and the ranging accuracy of less than 10 cm enable a detailed and precise description of the river bed
A New Microbial Player on the Iron Redox Court of Shallow-Water Hydrothermal Vents
Perez-Rodriguez, I. M.; Rawls, M.; Coykendall, D. K.; Foustoukos, D.
2015-12-01
The Fe(III)/Fe(II) couple is thought to have been a significant early energy metabolism involved in some of the first biogeochemical processes on Earth (Weber et al., 2006). The early evolving and metal-rich nature of modern hydrothermal systems remain particularly significant for Fe-based activities (Vargas et al., 1998). Documented evidence from such systems show a variety of yet unknown microbial lineages potentially linked to the history of Fe (i.e., Meyer-Dombard and Amend, 2014). Here we describe a novel microbe that reduces Fe(III) at shallow-water hydrothermal vents in Milos Island, Greece. Our laboratory experiments show this strain, MAG-PB1T, to reduce Fe(III) between 30 - 70 °C, 0 - 50 g NaCl l-1 and pH 5.5 - 8.0. Shortest generation time occurred under optimal conditions (60 °C, ~1.8 g NaCl l-1, pH 6.0) with H2 as the energy source, CO2 as the carbon source and Fe(III) as electron acceptor. Its metabolic characteristics are, however, not limited to this pathway. Strain MAG-PB1T can also reduce Mn(IV), arsenate and selenate. Its use of at least 9 organic substrates as energy or carbon sources also demonstrates its mixotrophy. Phylogenetic 16S rRNA gene analyses place strain MAG-PB1T within the Deltaproteobacteria, with the closest match (99%) being an uncultured microbe from hydrothermal springs in Ambitle Island, Papua New Guinea (Meyer-Dombard and Amend, 2014). Its next closest match (97%) is Deferrisoma camini, isolated from a deep-sea vent in the Eastern Lau Spreading Center (Slobodkina et al. 2012). Our strain represents a novel species, which we named Deferrisoma paleochoriense. The occurrence of D. paleochoriense in the shallow-water vents of Milos and Ambitle islands coincides with high arsenic, iron and sulfide contents (Akerman et al., 2011; Price et al., 2013; Yücel et al., 2013). Consequently, our study provides important physiological and metabolic evidence of the feedback between metal chemistry and life in hydrothermal sytems rich in
Directory of Open Access Journals (Sweden)
Ziliang Liu
Full Text Available A large, shallow braided river delta sedimentary system developed in the Yanchang Formation during the Triassic in the southwest of the Ordos basin. In this braided delta system, abundant oil and gas resources have been observed, and the area is a hotspot for oil and gas resource exploration. Through extensive field work on outcrops and cores and analyses of geophysical data, it was determined that developments in the Late Triassic produced favorable geological conditions for the development of shallow water braided river deltas. Such conditions included a large basin, flat terrain, and wide and shallow water areas; wet and dry cyclical climate changes; ancient water turbulence; dramatic depth cycle changes; ancient uplift development; strong weathering of parent rock; and abundant supply. The shallow water braided river delta showed grain sediment granularity, plastic debris, and sediment with mature composition and structure that reflected the strong hydrodynamic environment of large tabular cross-bedding, wedge cross-bedding, and multiple positive rhythms superimposed to form a thick sand body layer. The branch river bifurcation developed underwater, and the thickness of the sand body increased further, indicating that the slope was slow and located in shallow water. The seismic responses of the braided river delta reflected strong shallow water performance, indicated by a progradation seismic reflection phase axis that was relatively flat; in addition, the seismic reflection amplitude was strong and continuous with a low angle and extended over considerable distances (up to 50 km. The sedimentary center was close to the provenance, the width of the river was large, and a shallow sedimentary structure and a sedimentary rhythm were developed. The development of the delta was primarily controlled by tectonic activity and changes in the lake level; as a result, the river delta sedimentary system eventually presented a "small plain, big front
Starks, T. A.; Long, James M.; Dzialowski, Andrew R.
2016-01-01
Anthropogenic alterations to aquatic ecosystems have greatly reduced and homogenized riverine habitat, especially those used by larval and juvenile fishes. Creation of shallow-water habitats is used as a restoration technique in response to altered conditions in several studies globally, but only recently in the USA. In the summer of 2012, the U.S. Army Corps of Engineers sampled larval and juvenile fishes at six paired sites (mainstem and constructed chute shallow-water habitats) along a section of the Missouri River between Rulo, NE and St. Louis, MO, USA. From those samples, we enumerated and identified a total of 7622 fishes representing 12 families. Community responses of fishes to created shallow-water habitats were assessed by comparisons of species richness and diversity measures between paired sites and among sampling events. Shannon entropy measures were transformed, and gamma diversity (total diversity) was partitioned into two components, alpha (within community) and beta (between community) diversity using a multiplicative decomposition method. Mantel test results suggest site location, time of sampling event and habitat type were drivers of larval and juvenile community structure. Paired t-test results indicated little to no differences in beta diversity between habitat types; however, chute habitats had significantly higher alpha and gamma diversity as well as increased abundances of Asian carp larvae when compared with mainstem shallow-water habitat. Our results not only show the importance of created shallow-water habitat in promoting stream fish diversity but also highlight the role space and time may play in future restoration and management efforts.
Improved efficient routing strategy on two-layer complex networks
Ma, Jinlong; Han, Weizhan; Guo, Qing; Zhang, Shuai; Wang, Junfang; Wang, Zhihao
2016-10-01
The traffic dynamics of multi-layer networks has become a hot research topic since many networks are comprised of two or more layers of subnetworks. Due to its low traffic capacity, the traditional shortest path routing (SPR) protocol is susceptible to congestion on two-layer complex networks. In this paper, we propose an efficient routing strategy named improved global awareness routing (IGAR) strategy which is based on the betweenness centrality of nodes in the two layers. With the proposed strategy, the routing paths can bypass hub nodes of both layers to enhance the transport efficiency. Simulation results show that the IGAR strategy can bring much better traffic capacity than the SPR and the global awareness routing (GAR) strategies. Because of the significantly improved traffic performance, this study is helpful to alleviate congestion of the two-layer complex networks.
Tracking dynamics of two-dimensional continuous attractor neural networks
Fung, C. C. Alan; Wong, K. Y. Michael; Wu, Si
2009-12-01
We introduce an analytically solvable model of two-dimensional continuous attractor neural networks (CANNs). The synaptic input and the neuronal response form Gaussian bumps in the absence of external stimuli, and enable the network to track external stimuli by its translational displacement in the two-dimensional space. Basis functions of the two-dimensional quantum harmonic oscillator in polar coordinates are introduced to describe the distortion modes of the Gaussian bump. The perturbative method is applied to analyze its dynamics. Testing the method by considering the network behavior when the external stimulus abruptly changes its position, we obtain results of the reaction time and the amplitudes of various distortion modes, with excellent agreement with simulation results.
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.
Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S
2012-11-01
The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Hamiltonian formalism of two-dimensional Vlasov kinetic equation.
Pavlov, Maxim V
2014-12-08
In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.
Control Operator for the Two-Dimensional Energized Wave Equation
Directory of Open Access Journals (Sweden)
Sunday Augustus REJU
2006-07-01
Full Text Available This paper studies the analytical model for the construction of the two-dimensional Energized wave equation. The control operator is given in term of space and time t independent variables. The integral quadratic objective cost functional is subject to the constraint of two-dimensional Energized diffusion, Heat and a source. The operator that shall be obtained extends the Conjugate Gradient method (ECGM as developed by Hestenes et al (1952, [1]. The new operator enables the computation of the penalty cost, optimal controls and state trajectories of the two-dimensional energized wave equation when apply to the Conjugate Gradient methods in (Waziri & Reju, LEJPT & LJS, Issues 9, 2006, [2-4] to appear in this series.
Two-Dimensional Electronic Spectroscopy Using Incoherent Light: Theoretical Analysis
Turner, Daniel B; Sutor, Erika J; Hendrickson, Rebecca A; Gealy, M W; Ulness, Darin J
2012-01-01
Electronic energy transfer in photosynthesis occurs over a range of time scales and under a variety of intermolecular coupling conditions. Recent work has shown that electronic coupling between chromophores can lead to coherent oscillations in two-dimensional electronic spectroscopy measurements of pigment-protein complexes measured with femtosecond laser pulses. A persistent issue in the field is to reconcile the results of measurements performed using femtosecond laser pulses with physiological illumination conditions. Noisy-light spectroscopy can begin to address this question. In this work we present the theoretical analysis of incoherent two-dimensional electronic spectroscopy, I(4) 2D ES. Simulations reveal diagonal peaks, cross peaks, and coherent oscillations similar to those observed in femtosecond two-dimensional electronic spectroscopy experiments. The results also expose fundamental differences between the femtosecond-pulse and noisy-light techniques; the differences lead to new challenges and opp...
A two-dimensional spin liquid in quantum kagome ice.
Carrasquilla, Juan; Hao, Zhihao; Melko, Roger G
2015-06-22
Actively sought since the turn of the century, two-dimensional quantum spin liquids (QSLs) are exotic phases of matter where magnetic moments remain disordered even at zero temperature. Despite ongoing searches, QSLs remain elusive, due to a lack of concrete knowledge of the microscopic mechanisms that inhibit magnetic order in materials. Here we study a model for a broad class of frustrated magnetic rare-earth pyrochlore materials called quantum spin ices. When subject to an external magnetic field along the [111] crystallographic direction, the resulting interactions contain a mix of geometric frustration and quantum fluctuations in decoupled two-dimensional kagome planes. Using quantum Monte Carlo simulations, we identify a set of interactions sufficient to promote a groundstate with no magnetic long-range order, and a gap to excitations, consistent with a Z2 spin liquid phase. This suggests an experimental procedure to search for two-dimensional QSLs within a class of pyrochlore quantum spin ice materials.
Spectral Radiative Properties of Two-Dimensional Rough Surfaces
Xuan, Yimin; Han, Yuge; Zhou, Yue
2012-12-01
Spectral radiative properties of two-dimensional rough surfaces are important for both academic research and practical applications. Besides material properties, surface structures have impact on the spectral radiative properties of rough surfaces. Based on the finite difference time domain algorithm, this paper studies the spectral energy propagation process on a two-dimensional rough surface and analyzes the effect of different factors such as the surface structure, angle, and polarization state of the incident wave on the spectral radiative properties of the two-dimensional rough surface. To quantitatively investigate the spatial distribution of energy reflected from the rough surface, the concept of the bidirectional reflectance distribution function is introduced. Correlation analysis between the reflectance and different impact factors is conducted to evaluate the influence degree. Comparison between the theoretical and experimental data is given to elucidate the accuracy of the computational code. This study is beneficial to optimizing the surface structures of optoelectronic devices such as solar cells.
Two dimensional convolute integers for machine vision and image recognition
Edwards, Thomas R.
1988-01-01
Machine vision and image recognition require sophisticated image processing prior to the application of Artificial Intelligence. Two Dimensional Convolute Integer Technology is an innovative mathematical approach for addressing machine vision and image recognition. This new technology generates a family of digital operators for addressing optical images and related two dimensional data sets. The operators are regression generated, integer valued, zero phase shifting, convoluting, frequency sensitive, two dimensional low pass, high pass and band pass filters that are mathematically equivalent to surface fitted partial derivatives. These operators are applied non-recursively either as classical convolutions (replacement point values), interstitial point generators (bandwidth broadening or resolution enhancement), or as missing value calculators (compensation for dead array element values). These operators show frequency sensitive feature selection scale invariant properties. Such tasks as boundary/edge enhancement and noise or small size pixel disturbance removal can readily be accomplished. For feature selection tight band pass operators are essential. Results from test cases are given.
Optical modulators with two-dimensional layered materials
Sun, Zhipei; Wang, Feng
2016-01-01
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that two-dimensional layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this review, we cover the state-of-the-art of optical modulators based on two-dimensional layered materials including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as two-dimensional heterostructures, plasmonic structures, and silicon/fibre integrated structures. We also take a look at future perspectives and discuss the potential of yet relatively unexplored mechanisms such as magneto-optic and acousto-optic modulation.
Behavior of 210Po and 210Pb in Shallow Water Region of Mersing Estuary, Johor, Malaysia
Directory of Open Access Journals (Sweden)
Noor Affizah Bujang Saili
2014-06-01
Full Text Available 210Po and 210Pb activities were determined in dissolved and particulate phases in order to understand the behavior of both natural radionuclides in shallow water regions such as Mersing Estuary. Strong statistical correlations between the distribution coefficient values of polonium and lead in dissolved phases with SPM proved that the natural nuclides of polonium and lead have a high affinity to suspended particle materials in the water column, where the SPM acts as a carrier to transport and remove natural isotopes of polonium and lead from their geochemical behavior. However a low statistical correlation (r=0.414 found between chlorophyll-a with an activity ratio of 210Po/210Pb and SPM implies that the enrichment of 210Po was not associated with the abundance of chlorophyll-a. But a strong correlation between soluble reactive phosphorus (SRP and 210Po in the dissolved phase proved that the contribution of phosphate element as catalysis increasing the activity levels of 210Po at coastal waters.
Eythorsdottir, Arnheidur; Omarsdottir, Sesselja; Einarsson, Hjorleifur
2016-06-01
Marine sponges and other sessile macro-organisms were collected at a shallow water hydrothermal site in Eyjafjörður, Iceland. Bacteria were isolated from the organisms using selective media for actinomycetes, and the isolates were screened for antimicrobial activity. A total of 111 isolates revealed antimicrobial activity displaying different antimicrobial patterns which indicates production of various compounds. Known test strains were grown in the presence of ethyl acetate extracts from one selected isolate, and a clear growth inhibition of Staphylococcus aureus was observed down to 0.1 % extract concentration in the medium. Identification of isolates shows different species of Actinobacteria with Streptomyces sp. playing the largest role, but also members of Bacilli, Alphaproteobacteria and Gammaproteobacteria. Sponges have an excellent record regarding production of bioactive compounds, often involving microbial symbionts. At the hydrothermal vents, however, the majority of active isolates originated from other invertebrates such as sea anemones or algae. The results indicate that antimicrobial assays involving isolates in full growth can detect activity not visible by other methods. The macro-organisms inhabiting the Eyjafjörður hydrothermal vent area host diverse microbial species in the phylum Actinobacteria with antimicrobial activity, and the compounds responsible for the activity will be subject to further research.
Vertical amplitude phase structure of a low-frequency acoustic field in shallow water
Kuznetsov, G. N.; Lebedev, O. V.; Stepanov, A. N.
2016-11-01
We obtain in integral and analytic form the relations for calculating the amplitude and phase characteristics of an interference structure of orthogonal projections of the oscillation velocity vector in shallow water. For different frequencies and receiver depths, we numerically study the source depth dependences of the effective phase velocities of an equivalent plane wave, the orthogonal projections of the sound pressure phase gradient, and the projections of the oscillation velocity vector. We establish that at low frequencies in zones of interference maxima, independently of source depth, weakly varying effective phase velocity values are observed, which exceed the sound velocity in water by 5-12%. We show that the angles of arrival of the equivalent plane wave and the oscillation velocity vector in the general case differ; however, they virtually coincide in the zone of the interference maximum of the sound pressure under the condition that the horizontal projections of the oscillation velocity appreciably exceed the value of the vertical projection. We give recommendations on using the sound field characteristics in zones with maximum values for solving rangefinding and signal-detection problems.
Habitat suitability ofScapharca subcrenata (Lischke) in the shallow water of the Xiaoheishan Island
Institute of Scientific and Technical Information of China (English)
ZHOU Jian; SONG Jingjing; BAI Qianling; LIU Chengyue; ZHANG Zhipeng; TANG Haitian
2016-01-01
The habitat suitability index (HSI) model was used to identify potential sites for sustainable restoration of ark shell,Scapharca subcrenata (Lischke), in the shallow water of Xiaoheishan Island, using a geographic information system framework. The seven input variables of the HSI model were sediment composition, water temperature, salinity, dissolved oxygen, water depth, pH, and ammonia. A non-linear suitability function for each variable factor was used to transform the value into a normalized quality index ranging from 0 (non-suitability) to 1 (best suitability). In present study, the analysis of habitat suitability was conducted for four seasons respectively. The majority of the study area has a high HSI value (>0.6) year round, which implies a strong suitability for restoration, with the optimal habitat located on the eastern side of the island. Correspondence analysis indicated that water temperature was the main factor causing seasonal variation, while sediment composition and water depth were the two major reasons for the differences in sites. The results of this work could provide support for restoration decision making through identification of potential sites for sustainable establishment ofS. subcrenata.
Verma, Devendra; Tomar, Vikas
2014-11-01
The present investigation focuses on understanding the influence of change from wet to dry environment on nanomechanical properties of shallow water shrimp exoskeleton. Scanning Electron Microscopy (SEM) based measurements suggest that the shrimp exoskeleton has Bouligand structure, a key characteristic of the crustaceans. As expected, wet samples are found to be softer than dry samples. Reduced modulus values of dry samples are found to be 24.90 ± 1.14 GPa as compared to the corresponding values of 3.79 ± 0.69 GPa in the case of wet samples. Hardness values are found to be 0.86 ± 0.06 GPa in the case of dry samples as compared to the corresponding values of 0.17 ± 0.02 GPa in the case of wet samples. In order to simulate the influence of underwater pressure on the exoskeleton strength, constant load creep experiments as a function of wet and dry environments are performed. The switch in deformation mechanism as a function of environment is explained based on the role played by water molecules in assisting interface slip and increased ductility of matrix material in wet environment in comparison to the dry environment.
Vargas-Magaña, Rosa; Panayotaros, Panayotis
2015-11-01
We study the problem of wave propagation in a long-wave asymptotic regime over variable bottom of an ideal irrotational fluid in the framework of the Hamiltonian formulation in which the non-local Dirichlet-Neumann (DtN) operator appears explicitly in the Hamiltonian. We propose a non-local Hamiltonian model for bidirectional wave propagation in shallow water that involves pseudodifferential operators that approximate the DtN operator for variable depth. These models generalize the Boussinesq system as they include the exact dispersion relation in the case of constant depth. We present results for the normal modes and eigenfrequencies of the linearized problem. We see that variable topography introduces effects such as steepening of normal modes with increasing variation of depth, as well as amplitude modulation of the normal modes in certain wavelength ranges. Numerical integration shows that the constant depth nonlocal Boussinesq model with quadratic nonlinearity can capture the evolution obtained with higher order approximations of the DtN operator. In the case of variable depth we observe certain oscillations in width of the crest and also some interesting textures in the evolution of wave crests during the passage from obstacles.
Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters
Giordano, Francesco; Mattei, Gaia; Parente, Claudio; Peluso, Francesco; Santamaria, Raffaele
2015-01-01
This paper demonstrates that accurate data concerning bathymetry as well as environmental conditions in shallow waters can be acquired using sensors that are integrated into the same marine vehicle. An open prototype of an unmanned surface vessel (USV) named MicroVeGA is described. The focus is on the main instruments installed on-board: a differential Global Position System (GPS) system and single beam echo sounder; inertial platform for attitude control; ultrasound obstacle-detection system with temperature control system; emerged and submerged video acquisition system. The results of two cases study are presented, both concerning areas (Sorrento Marina Grande and Marechiaro Harbour, both in the Gulf of Naples) characterized by a coastal physiography that impedes the execution of a bathymetric survey with traditional boats. In addition, those areas are critical because of the presence of submerged archaeological remains that produce rapid changes in depth values. The experiments confirm that the integration of the sensors improves the instruments’ performance and survey accuracy. PMID:26729117
MIMO Underwater Acoustic Communications in Ports and Shallow Waters at Very High Frequency
Directory of Open Access Journals (Sweden)
Gaultier Real
2013-10-01
Full Text Available Hermes is a Single-Input Single-Output (SISO underwater acoustic modem that achieves very high-bit rate digital communications in ports and shallow waters. Here, the authors study the capability of Hermes to support Multiple-Input-Multiple-Output (MIMO technology. A least-square channel estimation algorithm is used to evaluate multiple MIMO channel impulse responses at the receiver end. A deconvolution routine is used to separate the messages coming from different sources. This paper covers the performance of both the channel estimation and the MIMO deconvolution processes using either simulated data or field data. The MIMO equalization performance is measured by comparing three relative root mean-squared errors (RMSE, obtained by calculations between the source signal (a pseudo-noise sequence and the corresponding received MIMO signal at various stages of the deconvolution process; prior to any interference removal, at the output of the Linear Equalization (LE process and at the output of an interference cancellation process with complete a priori knowledge of the transmitted signal. Using the simulated data, the RMSE using LE is −20.5 dB (where 0 dB corresponds to 100% of relative error while the lower bound value is −33.4 dB. Using experimental data, the LE performance is −3.3 dB and the lower bound RMSE value is −27 dB.
Solution of shallow-water equations using least-squares finite-element method
Institute of Scientific and Technical Information of China (English)
Shin-Jye Liang; Jyh-Haw Tang; Ming-Shun Wu
2008-01-01
A least-squares finite-element method (LSFEM) for the non-conservative shallow-water equations is pre-sented. The model is capable of handling complex topogra-phy, steady and unsteady flows, subcritical and supercritical flows, and flows with smooth and sharp gradient changes. Advantages of the model include: (1) sources terms, such as the bottom slope, surface stresses and bed frictions, can be treated easily without any special treatment; (2) upwind scheme is no needed; (3) a single approximating space can be used for all variables, and its choice of approximating space is not subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) condition; and (4) the resulting system of equations is sym-metric and positive-definite (SPD) which can be solved effi-ciently with the preconditioned conjugate gradient method. The model is verified with flow over a bump, tide induced flow, and dam-break. Computed results are compared with analytic solutions or other numerical results, and show the model is conservative and accurate. The model is then used to simulate flow past a circular cylinder. Important flow charac-teristics, such as variation of water surface around the cylin-der and vortex shedding behind the cylinder are investigated. Computed results compare well with experiment data and other numerical results.
Dynamics of turbulent western-boundary currents at low latitude in a shallow-water model
Akuetevi, C. Q. C.; Wirth, A.
2015-06-01
The dynamics of low latitude turbulent western-boundary currents (WBCs) crossing the Equator are considered using numerical results from integrations of a reduced-gravity shallow-water model. For viscosity values of 1000 m2 s-1 and greater, the boundary layer dynamics compares well to the analytical Munk-layer solution. When the viscosity is reduced, the boundary layer becomes turbulent and coherent structures in the form of anticyclonic eddies, bursts (violent detachments of the viscous sub-layer, VSL) and dipoles appear. Three distinct boundary layers emerge, the VSL, the advective boundary layer and the extended boundary layer. The first is characterized by a dominant vorticity balance between the viscous transport and the advective transport of vorticity; the second by a balance between the advection of planetary vorticity and the advective transport of relative vorticity. The extended boundary layer is the area to which turbulent motion from the boundary extends. The scaling of the three boundary layer thicknesses with viscosity is evaluated. Characteristic scales of the dynamics and dissipation are determined. A pragmatic approach to determine the eddy viscosity diagnostically for coarse-resolution numerical models is proposed.
Relative Pigment Composition and Remote Sensing Reflectance of Caribbean Shallow-Water Corals.
Directory of Open Access Journals (Sweden)
Juan L Torres-Pérez
Full Text Available Reef corals typically contain a number of pigments, mostly due to their symbiotic relationship with photosynthetic dinoflagellates. These pigments usually vary in presence and concentration and influence the spectral characteristics of corals. We studied the variations in pigment composition among seven Caribbean shallow-water Scleractinian corals by means of High Performance Liquid Chromatography (HPLC analysis to further resolve the discrimination of corals. We found a total of 27 different pigments among the coral species, including some alteration products of the main pigments. Additionally, pigments typically found in endolithic algae were also identified. A Principal Components Analysis and a Hierarchical Cluster Analysis showed the separation of coral species based on pigment composition. All the corals were collected under the same physical environmental conditions. This suggests that pigment in the coral's symbionts might be more genetically-determined than influenced by prevailing physical conditions of the reef. We further investigated the use of remote sensing reflectance (Rrs as a tool for estimating the total pigment concentration of reef corals. Depending on the coral species, the Rrs and the total symbiont pigment concentration per coral tissue area correlation showed 79.5-98.5% confidence levels demonstrating its use as a non-invasive robust technique to estimate pigment concentration in studies of coral reef biodiversity and health.
A Direct Solution Approach to the Inverse Shallow-Water Problem
Directory of Open Access Journals (Sweden)
Alelign Gessese
2012-01-01
Full Text Available The study of open channel flow modelling often requires an accurate representation of the channel bed topography to accurately predict the flow hydrodynamics. Experimental techniques are the most widely used approaches to measure the bed topographic elevation of open channels. However, they are usually cost and time consuming. Free surface measurement is, on the other hand, relatively easy to obtain using airborne photographic techniques. We present in this work an easy to implement and fast to solve numerical technique to identify the underlying bedrock topography from given free surface elevation data in shallow open channel flows. The main underlying idea is to derive explicit partial differential equations which govern this inverse reconstruction problem. The technique described here is a “one-shot technique” in the sense that the solution of the partial differential equation provides the solution to the inverse problem directly. The idea is tested on a set of artificial data obtained by first solving the forward problem governed by the shallow-water equations. Numerical results show that the channel bed topographic elevation can be reconstructed with a level of accuracy less than 3%. The method is also shown to be robust when noise is present in the input data.
Detachment of sprayed colloidal copper oxychloride-metalaxyl fungicides by a shallow water flow.
Pose-Juan, Eva; Paradelo-Pérez, Marcos; Rial-Otero, Raquel; Simal-Gándara, Jesus; López-Periago, José E
2009-06-01
Flow shear stress induced by rainfall promotes the loss of the pesticides sprayed on crops. Some of the factors influencing the losses of colloidal-size particulate fungicides are quantified by using a rotating shear system model. With this device it was possible to analyse the flow shear influencing washoff of a commercial fungicide formulation based on a copper oxychloride-metalaxyl mixture that was sprayed on a polypropylene surface. A factor plan with four variables, i.e. water speed and volume (both variables determining flow boundary stress in the shear device), formulation dosage and drying temperature, was set up to monitor colloid detachment. This experimental design, together with sorption experiments of metalaxyl on copper oxychloride, and the study of the dynamics of metalaxyl and copper oxychloride washoff, made it possible to prove that metalaxyl washoff from a polypropylene surface is controlled by transport in solution, whereas that of copper oxychloride occurs by particle detachment and transport of particles. Average losses for metalaxyl and copper oxychloride were, respectively, 29 and 50% of the quantity applied at the usual recommended dosage for crops. The key factors affecting losses were flow shear and the applied dosage. Empirical models using these factors provided good estimates of the percentage of fungicide loss. From the factor analysis, the main mechanism for metalaxyl loss induced by a shallow water flow is solubilisation, whereas copper loss is controlled by erosion of copper oxychloride particles.
FullSWOF: A free software package for the simulation of shallow water flows
Delestre, Olivier; James, Francois; Lucas, Carine; Laguerre, Christian; Cordier, Stephane
2014-01-01
Numerical simulations of flows are required for numerous applications, and are usually carried out using shallow water equations. We describe the FullSWOF software which is based on up-to-date finite volume methods and well-balanced schemes to solve this kind of equations. It consists of a set of open source C++ codes, freely available to the community, easy to use, and open for further development. Several features make FullSWOF particularly suitable for applications in hydrology: small water heights and wet-dry transitions are robustly handled, rainfall and infiltration are incorporated, and data from grid-based digital topographies can be used directly. A detailed mathematical description is given here, and the capabilities of FullSWOF are illustrated based on analytic solutions and datasets of real cases. The codes, available in 1D and 2D versions, have been validated on a large set of benchmark cases, which are available together with the download information and documentation at http://www.univ-orleans....
Continuity and asymptotic behaviors for a shallow water wave model with moderate amplitude
Zhou, Shouming; Qiao, Zhijun; Mu, Chunlai; Wei, Long
2017-07-01
In this paper, we study continuity and persistence for a nonlinear evolution equation describing the free surface of shallow water wave with a moderate amplitude, which was proposed by Constantin and Lannes [7]. By the approach for approximate solutions and well-posedness estimates, we obtain two sequences of solution for Constantin-Lannes equation, which are bounded in the Sobolev space Hs (R) with s > 3 / 2, and the distance between the two sequences is lower-bounded by a positive constant for any time t, but converges to zero at the initial time. This implies that the solution map is not uniformly continuous. Furthermore, the solution map for Constantin-Lannes equation is shown Hölder-continuous in Hr-topology for all 0 ≤ r < s with exponent α depending on s and r. In addition, we also investigate the asymptotic behaviors of the strong solutions to Constantin-Lannes equation at infinity within its lifespan provided the initial data in weighted Lϕp : =Lp (R ,ϕp dx) spaces.
The Analysis of Motion Dynamics and Resistance of the Multipurpose Boat Operating in Shallow Water
Directory of Open Access Journals (Sweden)
Jan Kulczyk
2014-09-01
Full Text Available Polish market of small boats has been developed very dynamically in recent years. Market competition forces the shipyards to build new more efficient hull forms and to cut the cost of production as well. This is why modern computer simulation programs are used more often by naval architects. Another trend is to design more universal ships that may be used by larger number of diversified customers. This paper presents project proposal of multipurpose boat hull form. The boat was design to fulfil the requirements imposed by public services like water police, fire brigades, and border guards. It is supposed to be operated on unexplored floodplains and other type shallow waters. The analysis of boat’s motion was based on computer simulations. The resistance curve was evaluated with two methods: comparison study of model test results of similar ships and CFD methods. The results obtained from Ansys Fluent and FINE/Marine systems were compared in this paper. It was shown that taking into consideration dynamic trim and sinkage has a significant impact on free surface capture and resistance values.