WorldWideScience

Sample records for two-layer mixing-length turbulence

  1. Multilayer Numerical Modeling of Flows through Vegetation Using a Mixing-Length Turbulence Model

    Directory of Open Access Journals (Sweden)

    Hector Barrios-Piña

    2014-07-01

    Full Text Available This work focuses on the effects of vegetation on a fluid flow pattern. In this numerical research, we verify the applicability of a simpler turbulence model than the commonly used k-" model to predict the mean flow through vegetation. The novel characteristic of this turbulence model is that the horizontal mixing-length is explicitly calculated and coupled with a multi-layer approach for the vertical mixing-length, within a general three-dimensional eddy-viscosity formulation. This mixing-length turbulence model has been validated in previous works for different kinds of non-vegetated flows. The hydrodynamic numerical model used for simulations is based on the Reynolds-averaged Navier–Stokes equations for shallow water flows, where a vegetation shear stress term is considered to reproduce the effects of drag forces on flow. A second-order approximation is used for spatial discretization and a semi-implicit Lagrangian–Eulerian scheme is used for time discretization. In order to validate the numerical results, we compare them against experimental data reported in the literature. The comparisons are carried out for two cases of study: submerged vegetation and submerged and emergent vegetation, both within an open channel flow.

  2. Implementation of a Mixing Length Turbulence Formulation Into the Dynamic Wake Meandering Model

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; Veldkamp, Dick; Aagaard Madsen, Helge

    2012-01-01

    The work presented in this paper focuses on improving the description of wake evolution due to turbulent mixing in the dynamic wake meandering (DWM) model. From wake investigations performed with high-fidelity actuator line simulations carried out in ELLIPSYS3D, it is seen that the current DWM...... description, where the eddy viscosity is assumed to be constant in each cross-section of the wake, is insufficient. Instead, a two-dimensional eddy viscosity formulation is proposed to model the shear layer generated turbulence in the wake, based on the classical mixing length model. The performance...... from 3 to 12 diameters behind the rotor, is reduced by 27% by using the new eddy viscosity formulation. ©2012 American Society of Mechanical Engineers...

  3. A Lie-group derivation of a multi-layer mixing length formula for turbulent channel and pipe flow

    CERN Document Server

    She, Zhen-Su; Hussain, Fazle

    2011-01-01

    A novel Lie-group analysis of the (unclosed) mean momentum equation (MME) for turbulent channel and pipe flows yields an analytic multi-layer formula for the mixing length (hence the mean velocity profile) as a candidate invariant solution. Two kinds of local invariant solutions are proposed: one describing viscous sublayer, buffer layer, log-layer, and a newly discovered central core, and the other describing the bulk zone where a quasi-balance is established between turbulent production and dissipation. In particular, a simple form, 1-r^m, is derived for describing the mixing length in the bulk zone of channel (m=4) and pipe (m=5) flows. Furthermore, an ansatz based on a relation between prolonged Lie-group invariants is proposed to derive composite invariant solutions to the MME, yielding the entire mixing length profile. The theory proposes a thorough quantification of commonly recognized multi-layer structure using three kinds of parameters: scaling, layer thickness and transition sharpness. All the abov...

  4. Magnetic Quenching of Turbulent Diffusivity: Reconciling Mixing-length Theory Estimates with Kinematic Dynamo Models of the Solar Cycle

    CERN Document Server

    Muñoz-Jaramillo, Andrés; Martens, Petrus C H

    2010-01-01

    The turbulent magnetic diffusivity in the solar convection zone is one of the most poorly constrained ingredients of mean-field dynamo models. This lack of constraint has previously led to controversy regarding the most appropriate set of parameters, as different assumptions on the value of turbulent diffusivity lead to radically different solar cycle predictions. Typically, the dynamo community uses double step diffusivity profiles characterized by low values of diffusivity in the bulk of the convection zone. However, these low diffusivity values are not consistent with theoretical estimates based on mixing-length theory -- which suggest much higher values for turbulent diffusivity. To make matters worse, kinematic dynamo simulations cannot yield sustainable magnetic cycles using these theoretical estimates. In this work we show that magnetic cycles become viable if we combine the theoretically estimated diffusivity profile with magnetic quenching of the diffusivity. Furthermore, we find that the main featur...

  5. A mixing-length model for the prediction of convex curvature effects on turbulent boundary layers. [for turbine blade convective heat transfer prediction

    Science.gov (United States)

    Adams, E. W.; Johnston, J. P.

    1983-01-01

    A mixing-length model is developed for the prediction of turbulent boundary layers with convex streamwise curvature. For large layer thickness ratio, delta/R greater than 0.05, the model scales mixing length on the wall radius of curvature, R. For small delta/R, ordinary flat wall modeling is used for the mixing-length profile with curvature corrections, following the recommendations of Eide and Johnston (1976). Effects of streamwise change of curvature are considered; a strong lag from equilibrium is required when R increases downstream. Fifteen separate data sets were compared, including both hydrodynamic and heat transfer results. Six of these computations are presented and compared to experiment.

  6. Review of mixing length estimates and effects of toroidicity in a fluid model for turbulent transport in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, J., E-mail: elfjw@chalmers.se [Chalmers University of Technology and EURATOM-VR Association (Sweden)

    2016-05-15

    Basic aspects of turbulent transport in toroidal magnetized plasmas are discussed. In particular the fluid closure has strong effects on zonal flows which are needed to create an absorbing boundary for long wave lengths and also to obtain the Dimits nonlinear upshift. The fluid resonance in the energy equation is found to be instrumental for generating the L–H transition, the spin-up of poloidal rotation in internal transport barriers, as well as the nonlinear Dimits upshift. The difference between the linearly fastest growing mode number and the corresponding longer nonlinear correlation length is also addressed. It is found that the Kadomtsev mixing length result is consistent with the non-Markovian diagonal limit of the transport at the nonlinearly obtained correlation length.

  7. Wave turbulence in a two-layer fluid: coupling between free surface and interface waves

    CERN Document Server

    Issenmann, Bruno; Falcon, Eric

    2016-01-01

    We experimentally study gravity-capillary wave turbulence on the interface between two immiscible fluids of close density with free upper surface. We locally measure the wave height at the interface between both fluids by means of a highly sensitive laser Doppler vibrometer. We show that the inertial range of the capillary wave turbulence regime is significantly extended when the upper fluid depth is increased: The crossover frequency between the gravity and capillary wave turbulence regimes is found to decrease whereas the dissipative cut-off frequency of the spectrum is found to increase. We explain most of these observations by the progressive decoupling between waves propagating at the interface and the ones at the free surface, using the full dispersion relation of gravity-capillary waves in a two-layer fluid of finite depths.s.

  8. A Modification of Mixing Length in Turbulent Pipe Flow%一种圆管紊流混合长度理论的修正

    Institute of Scientific and Technical Information of China (English)

    陈雷; 刘刚; 张国忠; 贾琳; 张丽萍

    2013-01-01

      对普朗特混合长度理论在圆管紊流流动中的应用进行了修正。基于尼古拉兹的圆管紊流速度分布实验结果:在除管中心及其附近位置外的紊流核心区内精确符合对数分布,结合力平衡方程,得出混合长度表达式;考虑圆管紊流实际情况,对混合长度表达式进行合理假设并引入阻尼函数进行改进,形成适用于圆管不同半径位置处的混合长度计算公式,修正后的混合长度表达式在整个圆管半径范围内光滑连续。基于修正后的混合长度表达式,推导出圆管剪切速率分布函数,并得出速度分布沿半径是一条存在二阶导数的光滑曲线;对剪切速率分布函数进行数值积分,计算某一流动状态下的管道速度分布,与实验结果精确吻合,且在圆管中心位置和层流子层区边界不再存在速度突变,更符合流体实际流动情况。%Modification of Prandtle mixing length theory in turbulent pipe flow was made. According to Nikuradse’s classical experimental results, the velocity profile in turbulent core area except the area near pipe center is confirmed to follow logarithmic distribution accurately. A new mixing length theory was proposed by combining force balance equation with the logarithmic velocity distribution. Reasonable hypothesis was put forward and a damping factor was introduced to modify the new mixing length expression. The modified mixing length function is smooth, continuous and applicative in the whole pipe radius range. Based on the modified mixing length, the distribution function of shear rate was worked out and the corresponding velocity profile was proved to be a smooth curve with second-order derivatives. On the basis of shear rate function, velocity distribution in a certain flow condition was computed by numerical integral method and it agrees well with Nikuradse’s classical experimental data. What’s more, there is no abrupt velocity

  9. Dynamics and flow-coupling in two-layer turbulent thermal convection

    CERN Document Server

    Xie, Yi-Chao

    2015-01-01

    We present an experimental investigation of the dynamics and flow-coupling of convective turbulent flows in a cylindrical Rayleigh-Benard convection cell with two immiscible fluids, water and fluorinert FC-77 electronic liquid (FC77). It is found that one large-scale circulation (LSC) roll exists in each of the fluid layers, and that their circulation planes have two preferred azimuthal orientations separated by $\\sim\\pi$. A surprising finding of the study is that cessations/reversals of the LSC in FC77 of the two-layer system occur much more frequently than they do in single-layer turbulent RBC, and that a cessation is most likely to result in a flow reversal of the LSC, which is in sharp contrast with the uniform distribution of the orientational angular change of the LSC before and after cessations in single-layer turbulent RBC. This implies that the dynamics governing cessations and reversals in the two systems are very different. Two coupling modes, thermal coupling (flow directions of the two LSCs are o...

  10. Long-time Behavior of a Two-layer Model of Baroclinic Quasi-geostrophic Turbulence

    CERN Document Server

    Farhat, Aseel; Titi, Edriss S; Ziane, Mohammed

    2012-01-01

    We study a viscous two-layer quasi-geostrophic beta-plane model that is forced by imposition of a spatially uniform vertical shear in the eastward (zonal) component of the layer flows, or equivalently a spatially uniform north-south temperature gradient. We prove that the model is linearly unstable, but that non-linear solutions are bounded in time by a bound which is independent of the initial data and is determined only by the physical parameters of the model. We further prove, using arguments first presented in the study of the Kuramoto-Sivashinsky equation, the existence of an absorbing ball in appropriate function spaces, and in fact the existence of a compact finite-dimensional attractor, and provide upper bounds for the fractal and Hausdorff dimensions of the attractor. Finally, we show the existence of an inertial manifold for the dynamical system generated by the model's solution operator. Our results provide rigorous justification for observations made by Panetta based on long-time numerical integra...

  11. Spectral evolution of two-layer weak geostrophic turbulence. Part I: Typical scenarios

    Directory of Open Access Journals (Sweden)

    T. Soomere

    1996-01-01

    Full Text Available Long-time evolution of large-scale geophysical flows is considered in a β-plane approximation. Motions in an infinite 2-layer model ocean are treated as a system of weakly nonlinear Rossby waves (weak geostrophic turbulence. The evolution of the energy spectrum of the barotropic and the baroclinic modes is investigated on the basis of numerical experiments with the kinetic equation for baroclinic Rossby waves. The basic features of free (nonforced inviscid spectral evolution of baroclinic flows are similar to those of the barotropic motions. A portion of the energy is transferred to a sharp spectral peak while the rest of it is isotropically distributed. The peak corresponds to an intensive nearly zonal barotropic flow. Typically, this well-defined barotropic zonal anisotropy inhibits the reinforcement of its baroclinic analogy. For a certain set of initial conditions (in particular, if the barotropic zonal flow is not present initially, a zonal anisotropy of both modes is generated. The interplay between the multimodal nearly zonal flow components leads to the excitation of large-scale (several times exceeding the scale of the initial state, mostly meridional, baroclinic motions at the expense of the barotropic nearly zonal flow. The underlying mechanism is explained on the level of elementary mixed-triad interaction. The whole wave field retains its essentially baroclinic as well as spectrally broad nature. It evidently tends towards a thermodynamically equilibrated final state, consisting of the superposition of a (usually barotropic, but occasionally multimodal zonal flow and a wave system with a Raleigh-Jeans spectrum. This evolution takes place as a multi-staged process, with fast convergence of the modal spectra to a local equilibrium followed by a more gradual adjustment of the energy balance between the modes.

  12. Entraining Flow of a Concentrated Benthic Suspension: Computations with the Prandtl Mixing-Length Model

    NARCIS (Netherlands)

    Kranenburg, C.

    1999-01-01

    The Prandtl mixing-length model of turbulent exchange of mass and momentum is applied to calculate the entrainment of overlying water into a layer of suspended fine sediment at a horizontal bed. In the field the flow and turbulence in such a concentrated benthic suspension (CBS) are driven by a

  13. Stellar mixing length theory with entropy rain

    CERN Document Server

    Brandenburg, Axel

    2015-01-01

    Stellar mixing length theory is modified to include the effects of a nongradient term that originates from the motion of convective elements with entropy perturbations of either sign. It is argued that such a term, first studied by Deardorff in the meteorological context, represents the effects of thin intense downdrafts caused by the rapid cooling in the granulation layer at the top of the convection zone. They transport heat nonlocally, as originally anticipated by Spruit in the 1990s, who describes the convection in the strongly stratified simulations of Stein & Nordlund as entropy rain. Although our model has ill-determined free parameters, it demonstrates that solutions can be found that look similar to the original ones, except that the deeper layers are now Schwarzschild stable, so no giant cells are produced and the typical convective scale is that of granules even at larger depth. Consequences for modeling solar differential, the global dynamo, and sunspots are briefly discussed.

  14. Beyond Mixing-length Theory: a step toward 321D

    CERN Document Server

    Arnett, W David; Viallet, Maxime; Campbell, Simon W; Lattanzio, John; Moćak, Miroslav

    2015-01-01

    We present a physical basis for algorithms to replace mixing-length theory (MLT) in stellar evolutionary computations. The 321D procedure is based on three-dimensional (3D) time-dependent solutions of the Navier-Stokes equations, including the Kolmogorov cascade as a sub-grid model of dissipation (implicit large eddy simulations; ILES). We use Reynolds-averaged Navier-Stokes (RANS) averaging to make 3D simulation data concise, and use 3D simulations to give RANS closure. We sketch a simple algorithm, which is non-local and time-dependent, with both MLT and the Lorenz convective roll as particular subsets of solutions. The damping length is determined from a balance between the large-scale driving and damping at the Kolmogorov scale. We find that (1) braking regions (boundary layers in which mixing occurs) automatically appear {\\it beyond} the edges of convection as defined by the Schwarzschild criterion, (2) dynamic (non-local) terms imply a non-zero turbulent kinetic energy flux (unlike MLT), (3) the effects...

  15. Theory of stellar convection: Removing the Mixing-Length Parameter

    CERN Document Server

    Pasetto, S; Cropper, M; Grebel, E K

    2014-01-01

    Stellar convection is customarily described by Mixing-Length Theory, which makes use of the mixing-length scale to express the convective flux, velocity, and temperature gradients of the convective elements and stellar medium. The mixing-length scale is taken to be proportional to the local pressure scale height, and the proportionality factor (the mixing-length parameter) must be determined by comparing the stellar models to some calibrator, usually the Sun. No strong arguments exist to suggest that the mixing-length parameter is the same in all stars and at all evolutionary phases. Because of this, all stellar models in literature are hampered by this basic uncertainty. The aim of this study is to present a new theory of stellar convection that does not require the mixing length parameter. We present a self-consistent analytical formulation of stellar convection that determines the properties of stellar convection as a function of the physical behaviour of the convective elements themselves and the surround...

  16. On the use of the Prandtl mixing length model in the cutting torch modeling

    Energy Technology Data Exchange (ETDEWEB)

    Mancinelli, B [Grupo de Descargas Electricas, Departamento Ing. Electromecanica, Universidad Tecnologica Nacional, Regional Venado Tuerto, Laprida 651, Venado Tuerto (2600), Santa Fe (Argentina); Minotti, F O; Kelly, H, E-mail: bmancinelli@arnet.com.ar [Instituto de Fisica del Plasma (CONICET), Departamento de Fisica, Facultad de Ciencias Exactas y Naturales (UBA) Ciudad Universitaria Pab. I, 1428 Buenos Aires (Argentina)

    2011-05-01

    The Prandtl mixing length model has been used to take into account the turbulent effects in a 30 A high-energy density cutting torch model. In particular, the model requires the introduction of only one adjustable coefficient c corresponding to the length of action of the turbulence. It is shown that the c value has little effect on the plasma temperature profiles outside the nozzle (the differences being less than 10 %), but severely affects the plasma velocity distribution, with differences reaching about 100% at the middle of the nozzle-anode gap. Within the experimental uncertainties it was also found that the value c = 0.08 allows to reproduce both, the experimental data of velocity and temperature

  17. Comparing mixing-length models of the diabatic wind profile over homogeneous terrain

    Science.gov (United States)

    Peña, Alfredo; Gryning, Sven-Erik; Hasager, Charlotte Bay

    2010-05-01

    Models of the diabatic wind profile over homogeneous terrain for the entire atmospheric boundary layer are developed using mixing-length theory and are compared to wind speed observations up to 300 m at the National Test Station for Wind Turbines at Høvsøre, Denmark. The measurements are performed within a wide range of atmospheric stability conditions, which allows a comparison of the models with the average wind profile computed in seven stability classes, showing a better agreement than compared to the traditional surface-layer wind profile. The wind profile is measured by combining cup anemometer and lidar observations, showing good agreement at the overlapping heights. The height of the boundary layer, a parameter required for the wind profile models, is estimated under neutral and stable conditions using surface-layer turbulence measurements, and under unstable conditions based on the aerosol backscatter profile from ceilometer observations.

  18. Does the mixing length parameter depend on metallicity?

    CERN Document Server

    Palmieri, R; Saviane, I; Girardi, L; Castellani, V; Palmieri, Rossella; Piotto, Giampaolo; Saviane, Ivo; Girardi, Leo; Castellani, Vittorio

    2002-01-01

    This paper is a further step in the investigation of the morphology of the color-magnitude diagram of Galactic globular clusters, and the fine-tuning of theoretical models, made possible by the recent observational efforts to build homogeneous photometric databases. In particular, we examine here the calibration of the morphological parameter W(HB) vs. metallicity, originally proposed by Brocato et al. (1998), which essentially measures the color position of the red-giant branch. We show that the parameter can be used to have a first-order estimate of the cluster metallicity, since the dispersion around the mean trend with [Fe/H] is compatible with the measurement errors. The tight W(HB)-[Fe/H] relation is then used to show that variations in helium content or age do not affect the parameter, whereas it is strongly influenced by the mixing-length parameter alpha (as expected). This fact allows us, for the first time, to state that there is no trend of alpha with the metal content of a cluster. A thorough exam...

  19. Observations on the non-mixed length and unsteady shock motion in a two dimensional supersonic ejector

    Science.gov (United States)

    Rao, Srisha M. V.; Jagadeesh, Gopalan

    2014-03-01

    Key features that drive the operation of a supersonic ejector are the complex gasdynamic interactions of the primary and secondary flows within a variable area duct and the phenomenon of compressible turbulent mixing between them, which have to be understood at a fundamental level. An experimental study has been carried out on the mixing characteristics of a two dimensional supersonic ejector with a supersonic primary flow (air) of Mach number 2.48 and the secondary flow (subsonic) which is induced from the ambient. The non-mixed length, which is the length within the ejector for which the primary and secondary flow remain visually distinct is used to characterize the mixing in the ejector. The operating pressures, flow rates and wall static pressures along the ejector have been measured. Two flow visualization tools have been implemented—time resolved schlieren and laser scattering flow visualization. An important contribution has been the development of in-house image processing algorithms on the MATLAB platform to detect the non-mixed length from the schlieren and laser scattering images. The ratio of mass flow rates of the secondary flow to primary flow (entrainment ratio) has been varied in a range of 0.15-0.69 for two locations of the primary nozzle in the ejector duct. Representative cases have been computed using commercial CFD tool (Fluent) to supplement the experiments. Significant outcomes of the study are—the non-mixed length quantified from the flow visualization images is observed to lie within 4.5 to 5.2 times the height of the mixing duct which is confirmed by the wall static pressure profiles. The flow through the supersonic ejector in the mixed regime is explained using corroborative evidences from different diagnostic tools. A reduction of the non-mixed length by 46.7% is observed at operating conditions when the nozzle is sufficiently overexpanded. The disturbance caused to the mixing layer due to unsteady shock-boundary layer interactions

  20. Turbulence

    CERN Document Server

    Bailly, Christophe

    2015-01-01

    This book covers the major problems of turbulence and turbulent processes, including  physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...

  1. Turbulence

    Institute of Scientific and Technical Information of China (English)

    Z. Lin; R.E. Waltz

    2007-01-01

    @@ Turbulent transport driven by plasma pressure gradients [Tangl978] is one of the most important scientific challenges in burning plasma experiments since the balance between turbulent transport and the self-heating by the fusion products (a-particles) determines the performance of a fusion reactor like ITER.

  2. Comparing mixing-length models of the diabatic wind profile over homogeneous terrain

    DEFF Research Database (Denmark)

    Pena Diaz, Alfredo; Gryning, Sven-Erik; Hasager, Charlotte Bay

    2010-01-01

    Models of the diabatic wind profile over homogeneous terrain for the entire atmospheric boundary layer are developed using mixing-length theory and are compared to wind speed observations up to 300 m at the National Test Station for Wind Turbines at Høvsøre, Denmark. The measurements are performed...

  3. A theory of nonlocal mixing-length convection. I - The moment formalism. [in stellar interior

    Science.gov (United States)

    Grossman, Scott A.; Narayan, Ramesh; Arnett, David

    1993-01-01

    A flexible and potentially powerful theory of convection, based on the mixing length picture, is developed to make unbiased self-consistent predictions about overshooting and other complicated phenomena in convection. The basic formalism is set up, and the method's power is demonstrated by showing that a simplified version of the theory reproduces all the standard results of local convection. The second-order equations of the theory are considered in the limit of a steady state and vanishing third moments, and it is shown that they reproduce all the standard results of local mixing-length convection. There is a particular value of the superadiabatic gradient, below which the only possible steady state of a fluid is nonconvecting. Above this critical value, a fluid is convectively unstable. Two distinct regimes of convection, which are identified as efficient and inefficient convection, are determined.

  4. A theory of nonlocal mixing-length convection. I - The moment formalism. [in stellar interior

    Science.gov (United States)

    Grossman, Scott A.; Narayan, Ramesh; Arnett, David

    1993-01-01

    A flexible and potentially powerful theory of convection, based on the mixing length picture, is developed to make unbiased self-consistent predictions about overshooting and other complicated phenomena in convection. The basic formalism is set up, and the method's power is demonstrated by showing that a simplified version of the theory reproduces all the standard results of local convection. The second-order equations of the theory are considered in the limit of a steady state and vanishing third moments, and it is shown that they reproduce all the standard results of local mixing-length convection. There is a particular value of the superadiabatic gradient, below which the only possible steady state of a fluid is nonconvecting. Above this critical value, a fluid is convectively unstable. Two distinct regimes of convection, which are identified as efficient and inefficient convection, are determined.

  5. Two-Layer Quantum Key Distribution

    CERN Document Server

    Ramos, Rubens Viana

    2012-01-01

    Recently a new quantum key distribution protocol using coherent and thermal states was proposed. In this work this kind of two-layer QKD protocol is formalized and its security against the most common attacks, including external control and Trojan horse attacks, is discussed.

  6. CALIBRATION OF THE MIXING-LENGTH THEORY FOR CONVECTIVE WHITE DWARF ENVELOPES

    Energy Technology Data Exchange (ETDEWEB)

    Tremblay, P.-E. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Ludwig, H.-G. [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg (Germany); Freytag, B. [Department of Physics and Astronomy at Uppsala University, Regementsvägen 1, Box 516, SE-75120 Uppsala (Sweden); Fontaine, G.; Brassard, P. [Département de Physique, Université de Montréal, C. P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7 (Canada); Steffen, M., E-mail: tremblay@stsci.edu [Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam (Germany)

    2015-02-01

    A calibration of the mixing-length parameter in the local mixing-length theory (MLT) is presented for the lower part of the convection zone in pure-hydrogen-atmosphere white dwarfs. The parameterization is performed from a comparison of three-dimensional (3D) CO5BOLD simulations with a grid of one-dimensional (1D) envelopes with a varying mixing-length parameter. In many instances, the 3D simulations are restricted to the upper part of the convection zone. The hydrodynamical calculations suggest, in those cases, that the entropy of the upflows does not change significantly from the bottom of the convection zone to regions immediately below the photosphere. We rely on this asymptotic entropy value, characteristic of the deep and adiabatically stratified layers, to calibrate 1D envelopes. The calibration encompasses the convective hydrogen-line (DA) white dwarfs in the effective temperature range 6000 ≤ T {sub eff} (K) ≤15, 000 and the surface gravity range 7.0 ≤ log g ≤ 9.0. It is established that the local MLT is unable to reproduce simultaneously the thermodynamical, flux, and dynamical properties of the 3D simulations. We therefore propose three different parameterizations for these quantities. The resulting calibration can be applied to structure and envelope calculations, in particular for pulsation, chemical diffusion, and convective mixing studies. On the other hand, convection has no effect on the white dwarf cooling rates until there is a convective coupling with the degenerate core below T {sub eff} ∼ 5000 K. In this regime, the 1D structures are insensitive to the MLT parameterization and converge to the mean 3D results, hence they remain fully appropriate for age determinations.

  7. Velocity distribution of flow with submerged flexible vegetations based on mixing-length approach

    Institute of Scientific and Technical Information of China (English)

    Wen-xin HUAI; Jie HAN; Yu-hong ZENG; Xiang AN; Zhong-dong QIAN

    2009-01-01

    By choosing a PVC slice to simulate flexible vegetation, we carried out ex-periments in an open channel with submerged flexible vegetation. A 3D acoustic Doppler velocimeter (micro ADV) was used to measure local flow velocities and Reynolds stress. The results show that hydraulic characteristics in non-vegetation and vegetation layers are totally different. In a region above the vegetation, Reynolds stress distribution is linear, and the measured velocity profile is a classical logarithmic one. Based on the concept of new-riverbed, the river compression parameter representing the impact of vegetation on river is given, and a new assumption of mixing length expression is made. The formula for time-averaged velocity derived from the expression requires less parameters and simple calculation, and is useful in applications.

  8. Saturation Concentrations of Suspended Fine Sediment: Computations with the Prandtl Mixing-Length Model

    NARCIS (Netherlands)

    Kranenburg, C.

    1998-01-01

    Adopting a 1DV numerical model including the standard k-eps turbulence model, Winterwerp et al. (1999) calculated a saturation concentration for an initially uniform distribution of fine sediment concentration in steady flow. At concentrations exceeding the saturation concentration the concentration

  9. The Stagger-grid: A grid of 3D stellar atmosphere models - III. The relation to mixing length convection theory

    CERN Document Server

    Magic, Zazralt; Asplund, Martin

    2014-01-01

    We investigate the relation between 1D atmosphere models that rely on the mixing length theory and models based on full 3D radiative hydrodynamic (RHD) calculations to describe convection in the envelopes of late-type stars. The adiabatic entropy value of the deep convection zone, s_bot, and the entropy jump, {\\Delta}s, determined from the 3D RHD models, are matched with the mixing length parameter, {\\alpha}_MLT, from 1D hydrostatic atmosphere models with identical microphysics (opacities and equation-of-state). We also derive the mass mixing length, {\\alpha}_m, and the vertical correlation length of the vertical velocity, C[v_z,v_z], directly from the 3D hydrodynamical simulations of stellar subsurface convection. The calibrated mixing length parameter for the Sun is {\\alpha}_MLT (s_bot) = 1.98. For different stellar parameters, {\\alpha}_MLT varies systematically in the range of 1.7 - 2.4. In particular, {\\alpha}_MLT decreases towards higher effective temperature, lower surface gravity and higher metallicity...

  10. The Stagger-grid: A grid of 3D stellar atmosphere models. III. The relation to mixing length convection theory

    Science.gov (United States)

    Magic, Z.; Weiss, A.; Asplund, M.

    2015-01-01

    Aims: We investigate the relation between 1D atmosphere models that rely on the mixing length theory and models based on full 3D radiative hydrodynamic (RHD) calculations to describe convection in the envelopes of late-type stars. Methods: The adiabatic entropy value of the deep convection zone, sbot, and the entropy jump, Δs, determined from the 3D RHD models, were matched with the mixing length parameter, αMLT, from 1D hydrostatic atmosphere models with identical microphysics (opacities and equation-of-state). We also derived the mass mixing length parameter, αm, and the vertical correlation length of the vertical velocity, C[vz,vz], directly from the 3D hydrodynamical simulations of stellar subsurface convection. Results: The calibrated mixing length parameter for the Sun is α๏MLT (Sbot) = 1.98. . For different stellar parameters, αMLT varies systematically in the range of 1.7 - 2.4. In particular, αMLT decreases towards higher effective temperature, lower surface gravity and higher metallicity. We find equivalent results for α๏MLT (ΔS). In addition, we find a tight correlation between the mixing length parameter and the inverse entropy jump. We derive an analytical expression from the hydrodynamic mean-field equations that motivates the relation to the mass mixing length parameter, αm, and find that it qualitatively shows a similar variation with stellar parameter (between 1.6 and 2.4) with the solar value of α๏m = 1.83.. The vertical correlation length scaled with the pressure scale height yields 1.71 for the Sun, but only displays a small systematic variation with stellar parameters, the correlation length slightly increases with Teff. Conclusions: We derive mixing length parameters for various stellar parameters that can be used to replace a constant value. Within any convective envelope, αm and related quantities vary strongly. Our results will help to replace a constant αMLT. Appendices are available in electronic form at http

  11. NUMERICAL STUDY OF WAVE EFFECTS ON SURFACE WIND STRESS AND SURFACE MIXING LENGTH BY THREE-DIMENSIONAL CIRCULATION MODELING

    Institute of Scientific and Technical Information of China (English)

    LIANG Bing-chen; LI Hua-jun; LEE Dong-yong

    2006-01-01

    The effects of waves on Surface Drag Coefficient (SDC) and surface mixing length were analyzed and discussed by carrying out three-dimensional current modeling for the Bohai Sea in the present work. A three- dimensional coupled hydrodynamical-ecological model for regional and shelf seas (COHERENS) incorporating the influences of wave-current interactions was coupled with the third-generation wave model swan taking into account time-varying currents. The effects of waves on currents were included in the SDC, surface mixing length and bottom drag coefficient. Firstly, the formulations in Donelan were incorporated into the COHERENS to account for wave-dependent SDC. In order to compare simulation results for the wave-dependent SDC, the simulation for wind-dependent SDC was also carried out. Second, Wave-Induced Surface Mixing Length (described as WISML sometimes in this paper) was incorporated into the COHERENS. Four numerical experiments were conducted to discuss the effects of two kinds of wave processes. Generally, the values of time series of current velocity and water surface elevation given by the simulation with all of the three wave processes have a good agreement with observed data. The existence of WISML changes obviously current vertical profiles and the existence of the wave dependent SDC modifies the current field of both top and bottom layers with the wind-dependent SDC.

  12. Interfacial Stability in a Two-Layer Benard Problem.

    Science.gov (United States)

    1985-04-01

    STABILITY IN A TWO-LAYER BENARD PROBLEM Yuriko Renardy Technical Summary Report #2814 April 1985 I cti- Work Unit Number 2 - Physical Mathematics...34•"• -••’-’• ^ ••’••• VI , •• W -•- • •- ’•"• INTERFACIAL STABILITY IN A TWO-LAYER BENARD PROBLEM Yuriko Renardy I. INTRODUCTION Two layers of fluids are...Subtltl») INTERFACIAL STABILITY IN A TWO-LAYER BENARD PROBLEM 7. AUTMORf.; Yuriko Renardy »• PERFORMING ORGANIZATION NAME AND ADDRESS

  13. Development of an algebraic stress/two-layer model for calculating thrust chamber flow fields

    Science.gov (United States)

    Chen, C. P.; Shang, H. M.; Huang, J.

    1993-01-01

    Following the consensus of a workshop in Turbulence Modeling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data, to account for the non-isotropic turbulence effects.

  14. Theoretical Permeability of Two-layered Nonwoven Geotextiles

    Institute of Scientific and Technical Information of China (English)

    LIU Li-fang; CHU Cai-yuan

    2006-01-01

    The two-layered nonwoven geotextile, which consists of a layer constructed with fine fibers for providing optimal filtration characteristics and another layer constructed with coarse fibers for providing the required mechanical properties, is desirable for drainage and filtration system.Based on Darcy's law and drag force theory, a mathematical model on vertical permeability coefficient of two-layered nonwoven geotextile is estabilished. Comparison with experimental results shows that the present model possesses 83.6% accuracy for needle-punched two-layered nonwoven geotextiles. And experimental results also show that with the increasing of needle density the vertical permeability coefficient of two-layered nonwoven geotextiless firstly decreases and then increases, reaching the smallest value at 470 p/cm2.

  15. A two-layer flow model to represent ice-ocean interactions beneath Antarctic ice shelves

    Science.gov (United States)

    Lee, V.; Payne, A. J.; Gregory, J. M.

    2011-01-01

    We develop a two-dimensional two-layer flow model that can calculate melt rates beneath ice shelves from ocean temperature and salinity fields at the shelf front. The cavity motion is split into two layers where the upper plume layer represents buoyant meltwater-rich water rising along the underside of the ice to the shelf front, while the lower layer represents the ambient water connected to the open ocean circulating beneath the plume. Conservation of momentum has been reduced to a frictional geostrophic balance, which when linearized provides algebraic equations for the plume velocity. The turbulent exchange of heat and salt between the two layers is modelled through an entrainment rate which is directed into the faster flowing layer. The numerical model is tested using an idealized geometry based on the dimensions of Pine Island Ice Shelf. We find that the spatial distribution of melt rates is fairly robust. The rates are at least 2.5 times higher than the mean in fast flowing regions corresponding to the steepest section of the underside of the ice shelf close to the grounding line and to the converged geostrophic flow along the rigid lateral boundary. Precise values depend on a combination of entrainment and plume drag coefficients. The flow of the ambient is slow and the spread of ocean scalar properties is dominated by diffusion.

  16. A two-layer flow model to represent ice-ocean interactions beneath Antarctic ice shelves

    Directory of Open Access Journals (Sweden)

    V. Lee

    2011-01-01

    Full Text Available We develop a two-dimensional two-layer flow model that can calculate melt rates beneath ice shelves from ocean temperature and salinity fields at the shelf front. The cavity motion is split into two layers where the upper plume layer represents buoyant meltwater-rich water rising along the underside of the ice to the shelf front, while the lower layer represents the ambient water connected to the open ocean circulating beneath the plume. Conservation of momentum has been reduced to a frictional geostrophic balance, which when linearized provides algebraic equations for the plume velocity. The turbulent exchange of heat and salt between the two layers is modelled through an entrainment rate which is directed into the faster flowing layer.

    The numerical model is tested using an idealized geometry based on the dimensions of Pine Island Ice Shelf. We find that the spatial distribution of melt rates is fairly robust. The rates are at least 2.5 times higher than the mean in fast flowing regions corresponding to the steepest section of the underside of the ice shelf close to the grounding line and to the converged geostrophic flow along the rigid lateral boundary. Precise values depend on a combination of entrainment and plume drag coefficients. The flow of the ambient is slow and the spread of ocean scalar properties is dominated by diffusion.

  17. Improved efficient routing strategy on two-layer complex networks

    Science.gov (United States)

    Ma, Jinlong; Han, Weizhan; Guo, Qing; Zhang, Shuai; Wang, Junfang; Wang, Zhihao

    2016-10-01

    The traffic dynamics of multi-layer networks has become a hot research topic since many networks are comprised of two or more layers of subnetworks. Due to its low traffic capacity, the traditional shortest path routing (SPR) protocol is susceptible to congestion on two-layer complex networks. In this paper, we propose an efficient routing strategy named improved global awareness routing (IGAR) strategy which is based on the betweenness centrality of nodes in the two layers. With the proposed strategy, the routing paths can bypass hub nodes of both layers to enhance the transport efficiency. Simulation results show that the IGAR strategy can bring much better traffic capacity than the SPR and the global awareness routing (GAR) strategies. Because of the significantly improved traffic performance, this study is helpful to alleviate congestion of the two-layer complex networks.

  18. Turbulent Convection in Stellar Interiors. II. The Velocity Field

    CERN Document Server

    Arnett, David; Young, P A

    2008-01-01

    We analyze stellar convection with the aid of 3D hydrodynamic simulations, introducing the turbulent cascade into our theoretical analysis. We devise closures of the Reynolds-decomposed mean field equations by simple physical modeling of the simulations (we relate temperature and density fluctuations via coefficients); the procedure (CABS, Convection Algorithms Based on Simulations) is terrestrially testable and is amenable to systematic improvement. We develop a turbulent kinetic energy equation which contains both nonlocal and time dependent terms, and is appropriate if the convective transit time is shorter than the evolutionary time scale. The interpretation of mixing-length theory (MLT) as generally used in astrophysics is incorrect; MLT forces the mixing length to be an imposed constant. Direct tests show that the damping associated with the flow is that suggested by Kolmogorov. The eddy size is approximately the depth of the convection zone, and this dissipation length corresponds to the "mixing length...

  19. Synchronization of Stochastic Two-Layer Geophysical Flows

    Institute of Scientific and Technical Information of China (English)

    HAN Yongqian

    2011-01-01

    In this paper, the two-layer quasigeostrophic flow model under stochastic wind forcing is considered. It is shown that when the layer depth or density difference across the layers tends to zero, the dynamics on both layers synchronizes to an averaged geophysical flow model.

  20. Linear waves in two-layer fluids over periodic bottoms

    NARCIS (Netherlands)

    Yu, J.; Maas, L.R.M.

    2016-01-01

    A new, exact Floquet theory is presented for linear waves in two-layer fluidsover a periodic bottom of arbitrary shape and amplitude. A method of conformaltransformation is adapted. The solutions are given, in essentially analytical form, forthe dispersion relation between wave frequency and general

  1. Linear waves in two-layer fluids over periodic bottoms

    NARCIS (Netherlands)

    Yu, Jie; Maas, L.R.M.

    2016-01-01

    A new, exact Floquet theory is presented for linear waves in two-layer fluids over a periodic bottom of arbitrary shape and amplitude. A method of conformal transformation is adapted. The solutions are given, in essentially analytical form, for the dispersion relation between wave frequency and gene

  2. Development of a Complete Model of Turbulence Revisited.

    Science.gov (United States)

    1983-12-01

    model have been those of Bush and Fendell (Ref 14 - for the mixing-length model) and Wilcox and Traci. In neither case were effects of pressure gradient...Second Edition (1976). - - - ---. ~A 14. Bush, .B. and Fendell , F.E., "Asymptotic Analysis of Turbulent Channel and Boundary-Layer Flow," JFM, Vol 56

  3. Pattern Synchronization in a Two-Layer Neuronal Network

    Institute of Scientific and Technical Information of China (English)

    SUN Xiao-Juan; LU Qi-Shao

    2009-01-01

    Pattern synchronization in a two-layer neuronal network is studied.For a single-layer network of Rulkov map neurons,there are three kinds of patterns induced by noise.Additive noise can induce ordered patterns at some intermediate noise intensities in a resonant way;however,for small and large noise intensities there exist excitable patterns and disordered patterns,respectively.For a neuronal network coupled by two single-layer networks with noise intensity differences between layers,we find that the two-layer network can achieve synchrony as the interlayer coupling strength increases.The synchronous states strongly depend on the interlayer coupling strength and the noise intensity difference between layers.

  4. TWO-LAYER MODEL DESCRIPTION OF POLYMER THIN FILM DYNAMICS

    Institute of Scientific and Technical Information of China (English)

    Dong-dong Peng; Ran-xing Nancy Li; Chi-hang Lam; Ophelia K.C.Tsui

    2013-01-01

    Experiments in the past two decades have shown that the glass transition temperature of polymer films can become noticeably different from that of the bulk when the film thickness is decreased below ca.100 nm.It is broadly believed that these observations are caused by a nanometer interfacial layer with dynamics faster or slower than that of the bulk.In this paper,we examine how this idea may be realized by using a two-layer model assuming a hydrodynamic coupling between the interfacial layer and the remaining,bulk-like layer in the film.Illustrative examples will be given showing how the two-layer model is applied to the viscosity measurements of polystyrene and polymethylmethacrylate films supported by silicon oxide,where divergent thickness dependences are observed.

  5. Some considerations on numerical schemes for treating hyperbolicity issues in two-layer models

    Science.gov (United States)

    Sarno, L.; Carravetta, A.; Martino, R.; Papa, M. N.; Tai, Y.-C.

    2017-02-01

    Multi-layer depth-averaged models are widely employed in various hydraulic engineering applications. Yet, such models are not strictly hyperbolic. Their equation systems typically lose hyperbolicity when the relative velocities between layers become too large, which is associated with Kelvin-Helmholtz instabilities involving turbulent momentum exchanges between the layers. Focusing on the two-layer case, we present a numerical improvement that locally avoids the loss of hyperbolicity. The proposed modification introduces an additional momentum exchange between layers, whose value is iteratively calculated to be strictly sufficient to keep the system hyperbolic. The approach can be easily implemented in any finite volume scheme and there is no limitation concerning the density ratio between layers. Numerical examples, employing both HLL-type and Roe-type approximate Riemann solvers, are reported to validate the method and its key features.

  6. Training two-layered feedforward networks with variable projection method.

    Science.gov (United States)

    Kim, C T; Lee, J J

    2008-02-01

    The variable projection (VP) method for separable nonlinear least squares (SNLLS) is presented and incorporated into the Levenberg-Marquardt optimization algorithm for training two-layered feedforward neural networks. It is shown that the Jacobian of variable projected networks can be computed by simple modification of the backpropagation algorithm. The suggested algorithm is efficient compared to conventional techniques such as conventional Levenberg-Marquardt algorithm (LMA), hybrid gradient algorithm (HGA), and extreme learning machine (ELM).

  7. Electromagnetic Scattering in a Two-layered Medium

    Institute of Scientific and Technical Information of China (English)

    FENG LI-XIN; LI YUAN; Ma Fu-ming

    2011-01-01

    The object of this paper is to investigate the three-dimensional electro-magnetic scattering problems in a two-layered background medium.These problems have an important application in today's technology,such as to detect objects that are buried in soil.Here,we model both the exterior impedance problem and the inhomogeneous medium problem in R3.We establish uniqueness and existence for the solution of the two scattering problems,respectively.

  8. NUMERICAL SIMULATION OF HEAD-CUT WITH A TWO-LAYERED BED

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Gully erosion is one of the main causes of top soil loss, land deterioration and sources of sediment deposition in streams. Headcut often occurs in the gully erosion process when erodability of the soil layers varies, and the gully cuts through a hard layer at a point. A scouring hole appears downstream of the head cut which migrates upstream due to strong erosion in the scour hole. This paper presents numerical analyses of turbulent flow and sediment transport processes of a head-cut associated with a two-layer soil stratigraphic formation. The flow in the scour hole is three-dimensional induced by the water jet from the brink of the top layer; the sediment transport model considers sediment entrainment by the impinging jet, erosion underneath the hard layer and the retreat of the brink of the hard layer. The 3D flow simulation in the scour hole and the scouring process was verified with physical model data. The two-layer head cut migration is simulated with different flow and soil parameters, the trends of the simulated results reasonably revealed contributions of these parameters to the scouring and migration process.

  9. Two-Layer Feedback Neural Networks with Associative Memories

    Institute of Scientific and Technical Information of China (English)

    WU Gui-Kun; ZHAO Hong

    2008-01-01

    We construct a two-layer feedback neural network by a Monte Carlo based algorithm to store memories as fixed-point attractors or as limit-cycle attractors. Special attention is focused on comparing the dynamics of the network with limit-cycle attractors and with fixed-point attractors. It is found that the former has better retrieval property than the latter. Particularly, spurious memories may be suppressed completely when the memories are stored as a long-limit cycle. Potential application of limit-cycle-attractor networks is discussed briefly.

  10. Tidal modulation of two-layer hydraulic exchange flows

    Directory of Open Access Journals (Sweden)

    L. M. Frankcombe

    2006-11-01

    Full Text Available Time-dependent, two layer hydraulic exchange flow is studied using an idealised shallow water model. It is found that barotropic time-dependent perturbations, representing tidal forcing, increase the baroclinic exchange flux above the steady hydraulic limit, with flux increasing monotonically with tidal amplitude (measured either by height or flux amplitude over a tidal period. Exchange flux also depends on the non-dimensional tidal period, γ, which was introduced by Helfrich (1995. Resonance complicates the relationship between exchange flux and height amplitude, but, when tidal strength is characterised by flux amplitude, exchange flux is a monotonic function of γ.

  11. Baroclinic instability in the two-layer model. Interpretations

    Energy Technology Data Exchange (ETDEWEB)

    Egger, Joseph [Meteorological Inst., Univ. of Munich (Germany)

    2009-10-15

    Two new interpretations of the wellknown instability criterion of the two-layer model of baroclinic instability are given whereby also a slight generalization of this model is introduced by admitting an interface on top with a reduced gravity g. It is found that instability sets in when the horizontal potential temperature advection by the barotropic mode becomes more important than the vertical temperature advection due to this mode. The second interpretation is based on potential vorticity (PV) thinking. Instability implies a dominance of the vertical PV coupling coefficient compared to horizontal mean state PV advection generated at the same level. The interface damps with decreasing g. (orig.)

  12. Interference testing of a two-layer commingled reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Onur, M.; Reynolds, A.C. (Tulsa Univ., OK (USA))

    1989-12-01

    A two-well system in an infinite-acting, commingled, two-layer reservoir is considered. One well, the active well, is produced at a constant total rate, and the second well, the observation well, is shut in at all times. An analytical solution in Laplace space is presented, and the parametric groups that uniquely determine the pressure and rate solutions are identified. Results regarding crossflow through the observation well are presented. Conditions under which the line-source solution can be used to analyze observations-well pressure data are delineated.

  13. Spatial frequency domain spectroscopy of two layer media

    Science.gov (United States)

    Yudovsky, Dmitry; Durkin, Anthony J.

    2011-10-01

    Monitoring of tissue blood volume and oxygen saturation using biomedical optics techniques has the potential to inform the assessment of tissue health, healing, and dysfunction. These quantities are typically estimated from the contribution of oxyhemoglobin and deoxyhemoglobin to the absorption spectrum of the dermis. However, estimation of blood related absorption in superficial tissue such as the skin can be confounded by the strong absorption of melanin in the epidermis. Furthermore, epidermal thickness and pigmentation varies with anatomic location, race, gender, and degree of disease progression. This study describes a technique for decoupling the effect of melanin absorption in the epidermis from blood absorption in the dermis for a large range of skin types and thicknesses. An artificial neural network was used to map input optical properties to spatial frequency domain diffuse reflectance of two layer media. Then, iterative fitting was used to determine the optical properties from simulated spatial frequency domain diffuse reflectance. Additionally, an artificial neural network was trained to directly map spatial frequency domain reflectance to sets of optical properties of a two layer medium, thus bypassing the need for iteration. In both cases, the optical thickness of the epidermis and absorption and reduced scattering coefficients of the dermis were determined independently. The accuracy and efficiency of the iterative fitting approach was compared with the direct neural network inversion.

  14. Nonlinear topographic effects in two-layer flows

    Directory of Open Access Journals (Sweden)

    Peter George Baines

    2016-02-01

    Full Text Available We consider the nature of non-linear flow of a two-layer fluid with a rigid lid over a long obstacle, such that the flow may be assumed to be hydrostatic. Such flows can generate hydraulic jumps upstream, and the model uses a new model of internal hydraulic jumps, which results in corrections to flows that have been computed using earlier models of jumps that are now known to be incorrect. The model covers the whole range of ratios of the densities of the two fluids, and is not restricted to the Boussinesq limit. The results are presented in terms of flow types in various regions of a Froude number-obstacle height (F0 – Hm diagram, in which the Froude number F0 is based on the initial flow conditions. When compared with single-layer flow, and some previous results with two layers, some surprising and novel patterns emerge on these diagrams. Specifically, in parts of the diagram where the flow may be supercritical (F0 > 1, there are regions where hysteresis may occur, implying that the flow may have two and sometimes three multiple flow states for the same conditions (i.e. values of F0 and Hm.

  15. Two-Layer Elastographic 3-D Traction Force Microscopy

    Science.gov (United States)

    Álvarez-González, Begoña; Zhang, Shun; Gómez-González, Manuel; Meili, Ruedi; Firtel, Richard A.; Lasheras, Juan C.; Del Álamo, Juan C.

    2017-01-01

    Cellular traction force microscopy (TFM) requires knowledge of the mechanical properties of the substratum where the cells adhere to calculate cell-generated forces from measurements of substratum deformation. Polymer-based hydrogels are broadly used for TFM due to their linearly elastic behavior in the range of measured deformations. However, the calculated stresses, particularly their spatial patterns, can be highly sensitive to the substratum’s Poisson’s ratio. We present two-layer elastographic TFM (2LETFM), a method that allows for simultaneously measuring the Poisson’s ratio of the substratum while also determining the cell-generated forces. The new method exploits the analytical solution of the elastostatic equation and deformation measurements from two layers of the substratum. We perform an in silico analysis of 2LETFM concluding that this technique is robust with respect to TFM experimental parameters, and remains accurate even for noisy measurement data. We also provide experimental proof of principle of 2LETFM by simultaneously measuring the stresses exerted by migrating Physarum amoeboae on the surface of polyacrylamide substrata, and the Poisson’s ratio of the substrata. The 2LETFM method could be generalized to concurrently determine the mechanical properties and cell-generated forces in more physiologically relevant extracellular environments, opening new possibilities to study cell-matrix interactions.

  16. Ribbon Turbulence

    CERN Document Server

    Venaille, Antoine; Vallis, Geoffrey K

    2014-01-01

    We investigate the non-linear equilibration of a two-layer quasi-geostrophic flow in a channel forced by an imposed unstable zonal mean flow, paying particular attention to the role of bottom friction. In the limit of low bottom friction, classical theory of geostrophic turbulence predicts an inverse cascade of kinetic energy in the horizontal with condensation at the domain scale and barotropization on the vertical. By contrast, in the limit of large bottom friction, the flow is dominated by ribbons of high kinetic energy in the upper layer. These ribbons correspond to meandering jets separating regions of homogenized potential vorticity. We interpret these result by taking advantage of the peculiar conservation laws satisfied by this system: the dynamics can be recast in such a way that the imposed mean flow appears as an initial source of potential vorticity levels in the upper layer. The initial baroclinic instability leads to a turbulent flow that stirs this potential vorticity field while conserving the...

  17. Design and analysis of two-layer anonymous communication system

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-ping; WANG Jian-xin

    2007-01-01

    A new architecture for scalable anonymous communication system(SACS) was proposed. The users were divided into several subgroups managed by different sub-blenders, and all sub-blenders were managed by the main-blender using two layers management scheme. The identity information of members are distributed on different sub-blenders, which makes each member keep much less information and network overload greatly reduce. The anonymity and the overhead of the new scheme were analyzed and compared with that of Crowds, which shows the cost of storage and network overhead for the new scheme largely decreases while the anonymity is little degraded. The experiment results also show that the new system architecture is well scalable. The ratio of management cost of SACS to that of Crowds is about 1:25 while the value of P(I|H1+) only increases by 0.001-0.020, which shows that SACS keeps almost the same anonymity with Crowds.

  18. Laboratory Research of the Two-Layer Liquid Dynamics at the Wind Surge in a Strait Canal

    Directory of Open Access Journals (Sweden)

    S.F. Dotsenko

    2017-06-01

    Full Text Available The results of laboratory experiments in a straight aerohydrocanal of the rectangular cross-section filled with the two-layer (fresh-salty liquid are represented. The disturbance generator is the air flow directed to the area above the canal. The cases of the two-layer liquid dynamics in the canal with the horizontal flat bottom and in the presence of the bottom obstacle of finite width are considered. It is shown that during the surge in the straight canal, one of the possible exchange mechanisms on the boundary of fresh and salty layers may consist in the salt water emissions (resulted from the Kelvin-Helmholtz instability to the upper freshwater layer. The subsequent eviction can possibly be accompanied by occurrence of undulations at the interface. Besides, the evictions can be followed by formation of the oscillating layer, i.e. the layer with maximum density gradient the oscillations of which propagate to the overlying layers. Presence of the bottom obstacle complicates the structure of the two-layer liquid motions. In particular, it results in emergence of the mixed layers and transformation of the flow behind the obstacle into a turbulent one, formation of the wave-like disturbances over the obstacle, sharp change of the interface position and occurrence of large-scale vortices with the horizontal axes. It is revealed that the maximum peak of the flow velocity horizontal component is shifted upstream from the obstacle.

  19. In vivo spatial frequency domain spectroscopy of two layer media

    Science.gov (United States)

    Yudovsky, Dmitry; Nguyen, John Quan M.; Durkin, Anthony J.

    2012-10-01

    Monitoring of tissue blood volume and local oxygen saturation can inform the assessment of tissue health, healing, and dysfunction. These quantities can be estimated from the contribution of oxyhemoglobin and deoxyhemoglobin to the absorption spectrum of the dermis. However, estimation of blood related absorption in skin can be confounded by the strong absorption of melanin in the epidermis and epidermal thickness and pigmentation varies with anatomic location, race, gender, and degree of disease progression. Therefore, a method is desired that decouples the effect of melanin absorption in the epidermis from blood absorption in the dermis for a large range of skin types and thicknesses. A previously developed inverse method based on a neural network forward model was applied to simulated spatial frequency domain reflectance of skin for multiple wavelengths in the near infrared. It is demonstrated that the optical thickness of the epidermis and absorption and reduced scattering coefficients of the dermis can be determined independently and with minimal coupling. Then, the same inverse method was applied to reflectance measurements from a tissue simulating phantom and in vivo human skin. Oxygen saturation and total hemoglobin concentrations were estimated from the volar forearms of weakly and strongly pigmented subjects using a standard homogeneous model and the present two layer model.

  20. Designing Two-Layer Optical Networks with Statistical Multiplexing

    Science.gov (United States)

    Addis, B.; Capone, A.; Carello, G.; Malucelli, F.; Fumagalli, M.; Pedrin Elli, E.

    The possibility of adding multi-protocol label switching (MPLS) support to transport networks is considered an important opportunity by telecom carriers that want to add packet services and applications to their networks. However, the question that arises is whether it is suitable to have MPLS nodes just at the edge of the network to collect packet traffic from users, or also to introduce MPLS facilities on a subset of the core nodes in order to exploit packet switching flexibility and multiplexing, thus providing induction of a better bandwidth allocation. In this article, we address this complex decisional problem with the support of a mathematical programming approach. We consider two-layer networks where MPLS is overlaid on top of transport networks-synchronous digital hierarchy (SDH) or wavelength division multiplexing (WDM)-depending on the required link speed. The discussions' decisions take into account the trade-off between the cost of adding MPLS support in the core nodes and the savings in the link bandwidth allocation due to the statistical multiplexing and the traffic grooming effects induced by MPLS nodes. The traffic matrix specifies for each point-to-point request a pair of values: a mean traffic value and an additional one. Using this traffic model, the effect of statistical multiplexing on a link allows the allocation of a capacity equal to the sum of all the mean values of the traffic demands routed on the link and only the highest additional one. The proposed approach is suitable to solve real instances in reasonable time.

  1. Multilayer scaling of mean velocity and thermal fields of compressible turbulent boundary layer

    Science.gov (United States)

    Bi, Weitao; Wu, Bin; Zhang, Yousheng; Hussain, Fazle; She, Zhen-Su

    2014-11-01

    Recently, a symmetry based structural ensemble dynamics (SED) theory was proposed by She et al. for canonical wall bounded turbulent flows, yielding prediction of the mean velocity profile at an unprecedented accuracy (99%). Here, we extend the theory to compressible turbulent boundary layers (TBL) at supersonic and hypersonic Mach numbers. The flows are acquired by spatially evolving direct numerical simulations (DNS). A momentum mixing length displays a four layer structure and quantitatively obeys the dilation group invariance as for the incompressible TBL. In addition, a temperature mixing length behaves very similarly to the momentum mixing length when the wall is adiabatic, with a small difference in the scaling exponents in the buffer layer - consistent with the strong Reynolds analogy. The Lie group based formulization of the two mixing lengths yields a multilayer model for the turbulent Prandtl number, along with predictions to the mean thermal and velocity profiles, both in good agreement with the DNS. Thus, we assert that the compressible TBLs are governed by the same symmetry principle as that in the canonical wall bounded turbulent flows, and its mean fields can be accurately described by the SED theory.

  2. A k-Model for Stably Stratified Nearly Horizontal Turbulent Flows

    NARCIS (Netherlands)

    Kranenburg, C.

    1985-01-01

    A k-model is formulated that consists of the turbulent kinetic energy equation and an algebraic expression for the mixing length taking into account the influence of stratification. Applicability of the model is restricted to shallow, nearly horizontal flows. For local-equilibrium flows the model re

  3. Dynamics of turbulent falling films

    Science.gov (United States)

    O'Naraigh, Lennon; Matar, Omar

    2012-11-01

    The dynamics of laminar falling films have received considerable attention over the past several decades. In contrast, turbulent falling films have been the subject of far fewer studies. We seek to redress this balance by studying the stability of falling films which have already undergone a transition from a laminar to a turbulent flow regime. We derive a uniform-film base-state for this flow by assuming the averaged turbulent velocity field to be steady and fully-developed, and by employing a modified version of mixing-length theory. The latter features an interpolation function for the eddy viscosity, and van Driest-type functions for turbulence-damping near the wall and interface regions. The predicted base-state streamwise velocity component is in good agreement with experimental data. A linear stability analysis of this base-state is then carried out by solving a modified version of the Orr-Sommerfeld equation. Our results suggest that the unstable mode is a long-wave one. This provides motivation for the derivation of long-wave equations for the nonlinear evolution of the film.

  4. Improved solar models constructed with a formulation of convection for stellar structure and evolution calculations without the mixing-length theory approximations

    Science.gov (United States)

    Lydon, Thomas J.; Fox, Peter A.; Sofia, Sabatino

    1993-01-01

    We have updated a previous attempt to incorporate within a solar model a treatment of convection based upon numerical simulations of convection rather than mixing-length theory (MLT). We have modified our formulation of convection for a better treatment of the kinetic energy flux. Our solar model has been updated to include a complete range of OPAL opacities, the Debye-Hueckel correction to the equation of state, helium diffusion due to gravitational settling, and atmospheres by Kurucz. We construct a series of models using both MLT and our revised formulation of convection and the compared results to measurements of the solar radius, the solar luminosity, and the depth of the solar convection zone as inferred from helioseismology. We find X(solar) = 0.702 +/- 0.005, Y(solar) = 0.278 +/- 0.005, and Z(solar) = 0.0193 +/- 0.0005.

  5. Reflected light intensity profile of two-layer tissues: phantom experiments.

    Science.gov (United States)

    Ankri, Rinat; Taitelbaum, Haim; Fixler, Dror

    2011-08-01

    Experimental measurements of the reflected light intensity from two-layer phantoms are presented. We report, for the first time, an experimental observation of a typical reflected light intensity behavior for the two-layer structure characterized by two different slopes in the reflected light profile of the irradiated tissue. The point in which the first slope changes to the second slope, named as the crossover point, depends on the upper layer thickness as well as on the ratio between the absorption coefficients of the two layers. Since similar experiments from one-layer phantoms present a monotonic decay behavior, the existence and the location of the crossover point can be used as a diagnostic fingerprint for two-layer tissue structures. This pertains to two layers with greater absorptivity in the upper layer, which is the typical biological case in tissues like skin.

  6. Disentangling discrepancies between stellar evolution theory and sub-solar mass stars. The influence of the mixing length parameter for the UV Psc binary

    CERN Document Server

    Lastennet, E; Valls-Gabaud, D; Oblak, E

    2003-01-01

    Serious discrepancies have recently been observed between predictions of stellar evolution models in the 0.7-1.1 M_sun mass range and accurately measured properties of binary stars with components in this mass range. We study one of these objects, the eclipsing binary UV Piscium, which is particularly interesting because Popper (1997) derived age estimates for each component which differed by more than a factor of two. In an attempt to solve this significant discrepancy (a difference in age of 11 Gyr), we compute a large grid of stellar evolution models with the CESAM code for each component. By fixing the masses to their accurately determined values (relative error smaller than 1% for both stars), we consider a wide range of possible metallicities Z (0.01 to 0.05), and Helium content Y (0.25 to 0.34) uncorrelated to Z. In addition, the mixing length parameter alpha_MLT is left as another free parameter. We obtain a best fit in the T_eff-radius diagram for a common chemical composition (Z, Y)=(0.012, 0.31), b...

  7. Investigations of Two-Layer Earth Parameters at Low Voltage: Measurements and Calculations

    National Research Council Canada - National Science Library

    E. Ramdan; N. M. Nor; K. Ramar

    2009-01-01

    Problem statement: The two-layer soil model at low magnitude voltage is assumed to be accurate for the measurement and calculation of the earth resistance of a combined grid-multiple rods electrode...

  8. Further improvements of a new model for turbulent convection in stars

    Science.gov (United States)

    Canuto, V. M.; Mazzitelli, I.

    1992-01-01

    The effects of including a variable molecular weight and of using the newest opacities of Rogers and Iglesias (1991) as inputs to a recent model by Canuto and Mazzitelli (1991) for stellar turbulent convection are studied. Solar evolutionary tracks are used to conclude that the the original model for turbulence with mixing length Lambda = z, Giuli's variable Q unequal to 1 and the new opacities yields a fit to solar T(eff) within 0.5 percent. A formulation of Lambda is proposed that extends the purely nonlocal Lambda = z expression to include local effects. A new expression for Lambda is obtained which generalizes both the mixing length theory (MLT) phenomenological expression for Lambda as well as the model Lambda = z. It is argued that the MLT should now be abandoned.

  9. Turbulence and diffusion fossil turbulence

    CERN Document Server

    Gibson, C H

    2000-01-01

    Fossil turbulence processes are central to turbulence, turbulent mixing, and turbulent diffusion in the ocean and atmosphere, in astrophysics and cosmology, and in most other natural flows. George Gamov suggested in 1954 that galaxies might be fossils of primordial turbulence produced by the Big Bang. John Woods showed that breaking internal waves on horizontal dye sheets in the interior of the stratified ocean form highly persistent remnants of these turbulent events, which he called fossil turbulence. The dark mixing paradox of the ocean refers to undetected mixing that must exist somewhere to explain why oceanic scalar fields like temperature and salinity are so well mixed, just as the dark matter paradox of galaxies refers to undetected matter that must exist to explain why rotating galaxies don't fly apart by centrifugal forces. Both paradoxes result from sampling techniques that fail to account for the extreme intermittency of random variables involved in self-similar, nonlinear, cascades over a wide ra...

  10. Process analysis of two-layered tube hydroforming with analytical and experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Seyedkashi, S. M. Hossein [The University of Birjand, Birjand (Iran, Islamic Republic of); Panahizadeh R, Valiollah [Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Xu, Haibin; Kim, Sang Yun; Moon, Young Hoon [Pusan National University, Busan (Korea, Republic of)

    2013-01-15

    Two-layered tubular joints are suitable for special applications. Designing and manufacturing of two layered components require enough knowledge about the tube material behavior during the hydroforming process. In this paper, hydroforming of two-layered tubes is investigated analytically, and the results are verified experimentally. The aim of this study is to derive an analytical model which can be used in the process design. Fundamental equations are written for both of the outer and inner tubes, and the total forming pressure is obtained from these equations. Hydroforming experiments are carried out on two different combinations of materials for inner and outer tubes; case 1: copper/aluminum and case 2: carbon steel/stainless steel. It is observed that experimental results are in good agreement with the theoretical model obtained for estimation of forming pressure able to avoid wrinkling.

  11. Lie symmetry analysis and exact solutions of the quasigeostrophic two-layer problem

    Science.gov (United States)

    Bihlo, Alexander; Popovych, Roman O.

    2011-03-01

    The quasigeostrophic two-layer model is of superior interest in dynamic meteorology since it is one of the easiest ways to study baroclinic processes in geophysical fluid dynamics. The complete set of point symmetries of the two-layer equations is determined. An optimal set of one- and two-dimensional inequivalent subalgebras of the maximal Lie invariance algebra is constructed. On the basis of these subalgebras, we exhaustively carry out group-invariant reduction and compute various classes of exact solutions. Wherever possible, reference to the physical meaning of the exact solutions is given. In particular, the well-known baroclinic Rossby wave solutions in the two-layer model are rediscovered.

  12. On stratification, barotropic tides, and secular changes in surface tidal elevations: Two-layer analytical models

    CERN Document Server

    Wetzel, Alfredo N; Cerovecki, Ivana; Hendershott, Myrl C; Karsten, Richard H; Miller, Peter D

    2013-01-01

    In this study the influence of stratification on surface tidal elevations in a two-layer analytical model is examined. The model assumes linearized, non-rotating, shallow-water dynamics in one dimension with astronomical forcing and allows for arbitrary topography. Both large scale (barotropic) and small scale (baroclinic) components of the surface tidal elevation are shown to be affected by stratification. It is also shown that the topography and basin boundaries affect the sensitivity of the barotropic surface tide to stratification significantly. In a companion paper it is shown that the barotropic tide in two-layer numerical models run in realistic global domains differs from its value in one-layer numerical models by amounts qualitatively consistent with analytic predictions from this paper. The analytical model also roughly predicts the sensitivity to perturbations in stratification in the two-layer domain model. Taken together, this paper and the companion paper therefore provide a framework to underst...

  13. Wave scattering by undulating bed topography in a two-layer ocean

    Institute of Scientific and Technical Information of China (English)

    P. MAITI; B. N. MANDAL; U. BASU

    2009-01-01

    The problem of wave scattering by undulating bed topography in a two-layer ocean is investigated on the basis of linear theory. In a two-layer fluid with the upper layer having a free surface, there exist two modes of waves propagating at both the free surface of the upper layer and the interface between the two layers. Due to a wave train of a particular mode incident on an obstacle which is bottom-standing on the lower layer, reflected and transmitted waves of both modes are created by the obstacle. For small undulations on the bottom of the lower layer, a perturbation method is employed to obtain first-order reflection and transmission coefficients of both modes for incident wave trains of again both modes in terms of integrals involving the bed-shape function. For sinusoidal undulations, numerical results are presented graphically to illustrate the energy transfer between the waves of different modes by the undulating bed.

  14. THE WAVE-MAKING CHARACTERISTICS OF A MOVING BODY IN A TWO-LAYER FLUID

    Institute of Scientific and Technical Information of China (English)

    ZHU Wei

    2005-01-01

    The Wave-making characteristics of a moving body in a two-layer fluid with free surface is investigated numerically and experimentally. The numerical analysis is based on the modified layered boundary integral equation system. The wave characteristics on the free surface and interface generated by a moving sphere and an ellipsoid is numerically simulated in both finite depth and infinite depth of lower layer model. The numerical results of the sphere are compared with the analytical results for a dipole with the same velocity in a two-layer fluid of finite depth. The dependence of the wave systems and structures on the characteristic quantities is discussed. Three kinds of measurement techniques are used in model experiments on the internal waves generated by a sphere advancing in a two-layer fluid. The effects of the varying velocity and stratification on the wavelength, wave amplitudes and the maximum half angles of internal waves are analyzed qualitatively.

  15. Band splitting and relative spin alignment in two-layer systems

    CERN Document Server

    Ovchinnikov, A A

    2002-01-01

    It is shown that the single-particle spectra of the low Hubbard zone in the two-layer correlated 2D-systems sharply differ in the case of different relative alignment of the layers spin systems. The behavior of the two-layer splitting in the Bi sub 2 Sr sub 2 CaCu sub 2 O sub 8 sub + subdelta gives all reasons for the hypothesis on the possible rearrangement of the F sub z -> AF sub z alignment configuration, occurring simultaneously with the superconducting transition. The effects of the spin alignment on the magnetic excitations spectrum, as the way for studying the spin structure of the two-layer systems, are discussed by the example of homogenous solutions for the effective spin models

  16. Ultrasound evaluation of the cesarean scar: comparison between one- and two layer uterotomy closure

    DEFF Research Database (Denmark)

    Glavind, Julie; Madsen, Lene Duch; Uldbjerg, Niels

    Objectives: To compare the residual myometrial thickness and the size of the cesarean scar defect after one- and two layer uterotomy closure. Methods: From July 2010 a continuous two-layer uterotomy closure technique replaced a continuous one-layer technique after cesarean delivery...... at the Department of Obstetrics and Gynecology at Aarhus University Hospital. A total of 149 consecutively invited women (68 women with one-layer and 81 women with two-layer closure) had their cesarean scar examined with 2D transvaginal sonography (TVS) 6-16 months post partum. Inclusion criteria were non......-pregnant women with one previous elective cesarean, no post-partum uterine infection or uterine re-operation, and no type 1 diabetes. Scar defect width, depth, and residual myometrial thickness were measured on the sagittal plane, and scar defect length was measured on the transverse plane. Results: The median...

  17. Design of two-layer switching rule for stabilization of switched linear systems with mismatched switching

    Institute of Scientific and Technical Information of China (English)

    Dan MA

    2014-01-01

    A two-layer switching architecture and a two-layer switching rule for stabilization of switched linear control systems are proposed, under which the mismatched switching between switched systems and their candidate hybrid controllers can be allowed. In the low layer, a state-dependent switching rule with a dwell time constraint to exponentially stabilize switched linear systems is given;in the high layer, supervisory conditions on the mismatched switching frequency and the mismatched switching ratio are presented, under which the closed-loop switched system is still exponentially stable in case of the candidate controller switches delay with respect to the subsystems. Different from the traditional switching rule, the two-layer switching architecture and switching rule have robustness, which in some extend permit mismatched switching between switched subsystems and their candidate controllers.

  18. Random Boundary Simulation of Pumping Groundwater on Two-layer Soft Soil Structure with Porous Media

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on random theory,fluid dynamics,porous media and soil mechanics,the porosity and random characteristic of the two-layer soft soil in Wuhan region were studied in this paper.The random seepage coefficient on the two-layer soft soil was analyzed,and the seepage model and its random distribution function were given.The groundwater flow differential equations related to the two layer soft soil structure were also established.The evaluation procedure of effect boundary on the pumping water in deep foundation pit was put forward.Moreover,with an engineering example,the probability distribution on random boundary prediction for pumping water of foundation pit was computed.

  19. The theory of gyrokinetic turbulence: A multiple-scales approach

    CERN Document Server

    Plunk, Gabriel G

    2009-01-01

    Gyrokinetics is a rich and rewarding playground to study some of the mysteries of modern physics. In this thesis I present work, motivated by the quest for fusion energy, which seeks to uncover some of the inner workings of turbulence in magnetized plasmas. I begin with the fundamental theory of gyrokinetics, and a novel formulation of its extension to the equations for mean-scale transport -- the equations which must be solved to determine the performance of magnetically confined fusion devices. The second project presents gyrokinetic secondary instability theory as a mechanism to bring about saturation of the basic instabilities that drive gyrokinetic turbulence. Emphasis is put on the ability for this analytic theory to predict basic properties of the nonlinear state, which can be applied to a mixing length phenomenology of transport. The final project is an application of the methods from inertial range understanding of fluid turbulence, to describe the stationary state of fully developed two-dimensional ...

  20. Metallicity dependence of turbulent pressure and macroturbulence in stellar envelopes

    CERN Document Server

    Grassitelli, Luca; Langer, Norbert; Simon-Diaz, Sergio; Castro, Norberto; Sanyal, Debashis

    2016-01-01

    Macroturbulence, introduced as a fudge to reproduce the width and shape of stellar absorption lines, reflects gas motions in stellar atmospheres. While in cool stars, it is thought to be caused by convection zones immediately beneath the stellar surface, the origin of macroturbulence in hot stars is still under discussion. Recent works established a correlation between the turbulent-to-total pressure ratio inside the envelope of stellar models and the macroturbulent velocities observed in corresponding Galactic stars. To probe this connection further, we evaluated the turbulent pressure that arises in the envelope convective zones of stellar models in the mass range 1-125 Msun based on the mixing-length theory and computed for metallicities of the Large and Small Magellanic Cloud. We find that the turbulent pressure contributions in models with these metallicities located in the hot high-luminosity part of the Hertzsprung-Russel (HR) diagram is lower than in similar models with solar metallicity, whereas the ...

  1. Lie symmetry analysis and exact solutions of the quasi-geostrophic two-layer problem

    CERN Document Server

    Bihlo, Alexander

    2010-01-01

    The quasi-geostrophic two-layer model is of superior interest in dynamic meteorology since it is one of the easiest ways to study baroclinic processes in geophysical fluid dynamics. The complete set of point symmetries of the two-layer equations is determined. An optimal set of one- and two-dimensional inequivalent subalgebras of the maximum Lie invariance algebra is constructed. On the basis of these subalgebras we exhaustively carry out group-invariant reduction and compute various classes of exact solutions. Where possible, reference to the physical meaning of the exact solutions is given.

  2. Free surface simulation of a two-layer fluid by boundary element method

    Directory of Open Access Journals (Sweden)

    Weoncheol Koo

    2010-09-01

    Full Text Available A two-layer fluid with free surface is simulated in the time domain by a two-dimensional potential-based Numerical Wave Tank (NWT. The developed NWT is based on the boundary element method and a leap-frog time integration scheme. A whole domain scheme including interaction terms between two layers is applied to solve the boundary integral equation. The time histories of surface elevations on both fluid layers in the respective wave modes are verified with analytic results. The amplitude ratios of upper to lower elevation for various density ratios and water depths are also compared.

  3. The Generalized Energy Equation and Instability in the Two-layer Barotropic Vortex

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The linear two-layer barotropic primitive equations in cylindrical coordinates are used to derive a generalized energy equation, which is subsequently applied to explain the instability of the spiral wave in the model. In the two-layer model, there are not only the generalized barotropic instability and the super highspeed instability, but also some other new instabilities, which fall into the range of the Kelvin-Helmholtz instability and the generalized baroclinic instability, when the upper and lower basic flows are different.They are perhaps the mechanisms of the generation of spiral cloud bands in tropical cyclones as well.

  4. One-dimensional Turbulence Models of Type I X-ray Bursts

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Chen [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-01-06

    Type I X-ray bursts are caused by thermonuclear explosions occurring on the surface of an accreting neutron star in a binary star system. Observations and simulations of these phenomena are of great importance for understanding the fundamental properties of neutron stars and dense matter because the equation of state for cold dense matter can be constrained by the mass-radius relationship of neutron stars. During the bursts, turbulence plays a key role in mixing the fuels and driving the unstable nuclear burning process. This dissertation presents one-dimensional models of photospheric radius expansion bursts with a new approach to simulate turbulent advection. Compared with the traditional mixing length theory, the one-dimensional turbulence (ODT) model represents turbulent motions by a sequence of maps that are generated according to a stochastic process. The light curves I obtained with the ODT models are in good agreement with those of the KEPLER model in which the mixing length theory and various diffusive processes are applied. The abundance comparison, however, indicates that the differences in turbulent regions and turbulent diffusivities result in more 12C survival during the bursts in the ODT models, which can make a difference in the superbursts phenomena triggered by unstable carbon burning.

  5. Intense sediment transport: Collisional to turbulent suspension

    Science.gov (United States)

    Berzi, Diego; Fraccarollo, Luigi

    2016-02-01

    A recent simple analytical approach to the problem of steady, uniform transport of sediment by a turbulent shearing fluid dominated by interparticle collisions is extended to the case in which the mean turbulent lift may partially or totally support the weight of the sediment. We treat the granular-fluid mixture as a continuum and make use of constitutive relations of kinetic theory of granular gases to model the particle phase and a simple mixing-length approach for the fluid. We focus on pressure-driven flows over horizontal, erodible beds and divide the flow itself into layers, each dominated by different physical mechanisms. This permits a crude analytical integration of the governing equations and to obtain analytical expressions for the distribution of particle concentration and velocity. The predictions of the theory are compared with existing laboratory measurements on the flow of glass spheres and sand particles in water. We also show how to build a regime map to distinguish between collisional, turbulent-collisional, and fully turbulent suspensions.

  6. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation

    Science.gov (United States)

    Frost, W.; Harper, W. L.; Fichtl, G. H.

    1975-01-01

    Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Mean-flow results are compared with those given in a previous paper where the same problem was attacked using a Prandtl mixing-length hypothesis. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow. They highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient.

  7. A two-layered approach to recognize high-level human activities

    NARCIS (Netherlands)

    N. Hu; G. Englebienne; B. Kröse

    2014-01-01

    Automated human activity recognition is an essential task for Human Robot Interaction (HRI). A successful activity recognition system enables an assistant robot to provide precise services. In this paper, we present a two-layered approach that can recognize sub-level activities and high-level activi

  8. Novel procedure to compute a contact zone magnitude of vibrations of two-layered uncoupled plates

    Directory of Open Access Journals (Sweden)

    Awrejcewicz J.

    2005-01-01

    Full Text Available A novel iteration procedure for dynamical problems, where in each time step, a contacting plates' zone is improved, is proposed. Therefore, a zone and magnitude of a contact load are also improved. Investigations of boundary conditions' influence on externally driven vibrations of uncoupled two-layer plates, where for each of the layers, the Kirchhoff hypothesis holds, are carried out.

  9. Learning behavior and temporary minima of two-layer neural networks

    NARCIS (Netherlands)

    Annema, Anne J.; Hoen, Klaas; Hoen, Klaas; Wallinga, Hans

    1994-01-01

    This paper presents a mathematical analysis of the occurrence of temporary minima during training of a single-output, two-layer neural network, with learning according to the back-propagation algorithm. A new vector decomposition method is introduced, which simplifies the mathematical analysis of

  10. Bilateral telemanipulation With time delays: a two-layer approach combining passivity and transparency

    NARCIS (Netherlands)

    Franken, Michel; Stramigioli, Stefano; Misra, Sarthak; Secchi, Cristian; Macchelli, Alessandro

    2011-01-01

    In this paper, a two-layer approach is presented to guarantee the stable behavior of bilateral telemanipulation sys- tems in the presence of time-varying destabilizing factors such as hard contacts, relaxed user grasps, stiff control settings, and/or communication delays. The approach splits the con

  11. Coupling of Flexural and Longitudinal Damped Vibration in a Two-Layered Beam

    Directory of Open Access Journals (Sweden)

    F. Pourroy

    1998-01-01

    Full Text Available In dynamics, the effect of varying the constitutive materials’ thickness of a two-layered beam is investigated. Resonance frequencies and damping variations are determined. It is shown that for specific thicknesses the coupling of longitudinal and flexural vibrations influences the global modal damping ratio significantly.

  12. Two-layer sheet of gelatin: A new topical hemostatic agent.

    Science.gov (United States)

    Takagi, Toshitaka; Tsujimoto, Hiroyuki; Torii, Hiroko; Ozamoto, Yuki; Hagiwara, Akeo

    2016-11-02

    Uncontrolled surgical bleeding is associated with increased morbidity, mortality, and hospital cost. Topical hemostatic agents available today have problems controlling hemostatic effects; furthermore, their handling is difficult and they are unsafe. We devised a new hemostatic agent comprising gelatin sponge and film designed to be applied to the bleeding site, thereby creating a topical hemostatic agent made of gelatin alone. The gelatin was prepared by alkali treatment to eliminate viral activity. Hemostatic effects, surgical handling, and tissue reactions of the materials, namely a two-layer sheet of gelatin, TachoSil, and gelatin sponge, were evaluated using 21 dogs' spleens. The two-layer gelatin sheet and gelatin sponge exhibited superior hemostatic effects (100% hemostasis completed) compared with TachoSil (0-17% hemostasis). The gelatin matrix immediately absorbed blood flowing from wounds and activated the autologous components in the absorbed blood that promoted coagulation at the bleeding site. The two-layer gelatin sheet had the best surgical handling among the evaluated materials. Materials made of gelatin were associated with fewer inflammatory reactions compared with materials of TachoSil. The two-layer sheet of gelatin is a useful topical agent because of its superior hemostatic effects and usability, and is associated with a lower risk of transmitting diseases and inflammatory reactions. Copyright © 2016. Published by Elsevier Taiwan.

  13. Injection-induced turbulence in stagnation-point boundary layers

    Science.gov (United States)

    Park, C.

    1984-02-01

    A theory is developed for the stagnation point boundary layer with injection under the hypothesis that turbulence is produced at the wall by injection. From the existing experimental heat transfer rate data obtained in wind tunnels, the wall mixing length is deduced to be a product of a time constant and an injection velocity. The theory reproduces the observed increase in heat transfer rates at high injection rates. For graphite and carbon-carbon composite, the time constant is determined to be 0.0002 sec from the existing ablation data taken in an arc-jet tunnel and a balistic range.

  14. An eddy viscosity calculation method for a turbulent duct flow

    Science.gov (United States)

    Antonia, R. A.; Bisset, D. K.; Kim, J.

    1991-01-01

    The mean velocity profile across a fully developed turbulent duct flow is obtained from an eddy viscosity relation combined with an empirical outer region wake function. Results are in good agreement with experiments and with direct numerical simulations in the same flow at two Reynolds numbers. In particular, the near-wall trend of the Reynolds shear stress and its variation with Reynolds number are similar to those of the simulations. The eddy viscosity method is more accurate than previous mixing length or implicit function methods.

  15. Single-layer versus two-layer stamps for reduced pressure thermal nanoimprint

    Science.gov (United States)

    Papenheim, Marc; Dhima, Khalid; Wang, Si; Steinberg, Christian; Scheer, Hella-Christin

    2015-11-01

    Low-pressure imprint is interesting to avoid stamp deformation, stamp failure as well as polymer recovery. When large-area stamps are prepared with a stepping procedure, low pressure is required to optimize the stitching. However, with low-pressure imprint, conformal contact between stamp and substrate is critical. Admittedly, the imprint pressure required for conformal contact depends on the stamp material and its thickness. To get an idea to which extent the imprint pressure can be reduced with a flexible stamp, we compared different stamp materials and stamp architectures, single-layer stamps and two-layer stamps. The two-layer stamps are replica stamps, where the structures were replicated in a thin layer of OrmoStamp, fixed by a backplane. On the background of plate theory, we deduce the pressure reduction compared to a Si stamp by calculating the respective pressure ratio, independent from geometries. In addition, temperature-induced issues are addressed which are of relevance for a thermal imprint process. These issues are related to the mismatch between the thermal expansion coefficients of the stamp and the substrate, and in case of a two-layer stamp, to the mismatch between the backplane material and the top layer. The latter results in temperature-induced stamp bending. On the basis of simple analytical calculations, the potential of single-layer stamps and two-layer stamps with respect to thermal imprint at reduced pressure is discussed and guidelines are provided to assess the imprint situation when replica stamps are used for imprint. The results demonstrate the attractiveness of two-layer stamps for reduced pressure nanoimprint, even in a temperature-based process.

  16. Plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W. [Univ. of Texas, Austin, TX (United States). Inst. for Fusion Studies; Hu, G. [Globalstar LP, San Jose, CA (United States)

    1998-07-01

    The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.

  17. High Turbulence

    CERN Multimedia

    EuHIT, Collaboration

    2015-01-01

    As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.

  18. Waves induced by a submerged moving dipole in a two-layer fluid of finite depth

    Institute of Scientific and Technical Information of China (English)

    Gang Wei; Dongqiang Lu; Shiqiang Dai

    2005-01-01

    The waves induced by a moving dipole in a twofluid system are analytically and experimentally investigated.The velocity potential of a dipole moving horizontally in the lower layer of a two-layer fluid with finite depth is derived by superposing Green's functions of sources (or sinks). The far-field waves are studied by using the method of stationary phase. The effects of two resulting modes, i.e. the surfaceand internal-wave modes, on both the surface divergence field and the interfacial elevation are analyzed. A laboratory study on the internal waves generated by a moving sphere in a two-layer fluid is conducted in a towing tank under the same conditions as in the theoretical approach. The qualitative consistency between the present theory and the laboratory study is examined and confirmed.

  19. Analysis of Two-Layered Random Interfaces for Two Dimensional Widom-Rowlinson's Model

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2011-01-01

    Full Text Available The statistical behaviors of two-layered random-phase interfaces in two-dimensional Widom-Rowlinson's model are investigated. The phase interfaces separate two coexisting phases of the lattice Widom-Rowlinson model; when the chemical potential μ of the model is large enough, the convergence of the probability distributions which describe the fluctuations of the phase interfaces is studied. In this paper, the backbones of interfaces are introduced in the model, and the corresponding polymer chains and cluster expansions are developed and analyzed for the polymer weights. And the existence of the free energy for two-layered random-phase interfaces of the two-dimensional Widom-Rowlinson model is given.

  20. Nonlinear dynamics at the interface of two-layer stratified flows over pronounced obstacles

    CERN Document Server

    Cabeza, C; Bove, I; Freire, D; Marti, Arturo C; Sarasua, L G; Usera, G; Montagne, R; Araújo, M

    2008-01-01

    The flow of a two--layer stratified fluid over an abrupt topographic obstacle, simulating relevant situations in oceanographic problems, is investigated numerically and experimentally in a simplified two--dimensional situation. Experimental results and numerical simulations are presented at low Froude numbers in a two-layer stratified flow and for two abrupt obstacles, semi--cylindrical and prismatic. We find four different regimes of the flow immediately past the obstacles: sub-critical (I), internal hydraulic jump (II), Kelvin-Helmholtz at the interface (III) and shedding of billows (IV). The critical condition for delimiting the experiments is obtained using the hydraulic theory. Moreover, the dependence of the critical Froude number on the geometry of the obstacle are investigated. The transition from regime III to regime IV is explained with a theoretical stability analysis. The results from the stability analysis are confirmed with the DPIV measurements. In regime (IV), when the velocity upstream is lar...

  1. Nonstationary Axisymmetric Temperature Field in a Two-Layer Slab Under Mixed Heating Conditions

    Science.gov (United States)

    Turchin, I. N.; Timar, I.; Kolodii, Yu. A.

    2015-09-01

    With the use of the Laguerre and Hankel integral transforms, the solution of a two-dimensional initial-boundary-value heat conduction problem for a two-layer slab under mixed boundary conditions is constructed: one of the surfaces is heated by a heat flux distributed axisymmetrically in a circle of radius R and is cooled by the Newton law outside this circle. The solution of the problem is reduced to a sequence of infinite quasi-regular systems of algebraic equations. The results of numerical analysis of the temperature field in the two-layer slab made from an aluminum alloy and ceramicsare presented depending on the relative geometric properties of the components and cooling intensity.

  2. A Two-layer Model for the Simulation of the VARTM Process with Resin Distribution Layer

    Science.gov (United States)

    Young, Wen-Bin

    2013-12-01

    Vacuum assisted resin transfer molding (VARTM) is one of the important processes to fabricate high performance composites. In this process, resin is drawn into the mold to impregnate the fiber reinforcement to a form composite. A resin distribution layer with high permeability was often introduced on top of the fiber reinforcement to accelerate the filling speed. Due to the difference of the flow resistance in the resin distribution layer and the reinforcement as well as the resulting through thickness transverse flow, the filling flow field is intrinsically three-dimensional. This study developed a two-layer model with two-dimensional formulation to simulate the filling flow of the VARTM process with a resin distribution layer. Two-dimensional flow was considered in each layer and a transverse flow in the thickness direction was estimated between the two layers. Thermal analysis including the transverse convection was also performed to better simulate the temperature distribution.

  3. Estimation of apparent soil resistivity for two-layer soil structure

    Energy Technology Data Exchange (ETDEWEB)

    Nassereddine, M.; Rizk, J.; Nagrial, M.; Hellany, A. [School of Computing, Engineering and Mathematics, University of Western Sydney (Australia)

    2013-07-01

    High voltage (HV) earthing design is one of the key elements when it comes to safety compliance of a system. High voltage infrastructure exposes workers and people to unsafe conditions. The soil structure plays a vital role in determining the allowable and actual step/touch voltage. This paper presents vital information when working with two-layer soil structure. It shows the process as to when it is acceptable to use a single layer instead of a two-layer structure. It also discusses the simplification of the soil structure approach depending on the reflection coefficient. It introduces the reflection coefficient K interval which determines if single layer approach is acceptable. Multiple case studies are presented to address the new approach and its accuracy.

  4. TAILING WAVETRAIN GENERATION IN PRECURSOR SOLITON GENERATION IN TWO-LAYER FLOW

    Institute of Scientific and Technical Information of China (English)

    Xu Zhaoting; Xu Hao; Samuel Shan-pu Shen

    2000-01-01

    A theory of tailing wavetrain generation for the precursor soliton generation in two-layer flow is presented by using averaged KdV equations(AKdV),which are derived by the authors in terms of Whitham's method of averaging[1,2].From the AKdV equations,group velocities of the tailing wavetrain generation are obtained by means of generating conditions of the tailing wavetrains,furthermore an analytical solution of the tailing wavetrain generation is found theoretically.A comparison between the theoretical and numerical results is carried out in the present paper,which shows that the theoretical results are in good agreement with the numerical ones,obtained from the fKdV equation in two-layer flow with the depth of unity in the rest.

  5. Asymptotic Modelling of Crystallisation in Two Layers Systems. Application to Methane Hydrate Formation in Batch Reactor.

    OpenAIRE

    Cournil, Michel; Herri, Jean-Michel

    2002-01-01

    6 pages; This paper proposes to re-visit the problem of gas-liquid crystallization in the framework of a two-layer model and with the help of data coming from experiments on methane hydrate crystallization in a semi-batch reactor. Preliminary quantitative discussion of the order of magnitude of different effects makes possible realistic simplifications in the theoretical models. In particular, the role of the interfacial film is clearly defined. As previous authors did, we use a formulation i...

  6. Unidirectional light propagation through two-layer nanostructures based on optical near-field interactions

    CERN Document Server

    Naruse, Makoto; Ishii, Satoshi; Drezet, Aurélien; Huant, Serge; Hoga, Morihisa; Ohyagi, Yasuyuki; Matsumoto, Tsutomu; Tate, Naoya; Ohtsu, Motoichi

    2014-01-01

    We theoretically demonstrate direction-dependent polarization conversion efficiency, yielding unidirectional light transmission, through a two-layer nanostructure by using the angular spectrum representation of optical near-fields. The theory provides results that are consistent with electromagnetic numerical simulations. This study reveals that optical near-field interactions among nanostructured matter can provide unique optical properties, such as the unidirectionality observed here, and offers fundamental guiding principles for understanding and engineering nanostructures for realizing novel functionalities.

  7. Two-layer cold storage method for pancreas and islet cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Yasuhiro; Fujino

    2010-01-01

    The two-layer cold storage method (TLM) was f irst reported in 1988, consisting of a perfluorochemical (PFC) and initially Euro-Collins' solution, which was later replaced by University of Wisconsin solution (UW). PFC is a biologically inert liquid and acts as an oxygen-supplying agent. A pancreas preserved using the TLM is oxygenated through the PFC and substrates are supplied by the UW solution. This allows the pancreas preserved using the TLM to generate adenosine triphosphate during storage, prolonging ...

  8. SH-TM mathematical analogy for the two-layer case. A magnetotellurics application

    OpenAIRE

    J. Carcione; F. Poletto

    2017-01-01

    The same mathematical formalism of the wave equation can be used to describe anelastic and electromagnetic wave propagation. In this work, we obtain the mathematical analogy for the reflection/refraction (transmission) problem of two layers, considering the presence of anisotropy and attenuation -- viscosity in the viscoelastic case and resistivity in the electromagnetic case. The analogy is illustrated for SH (shear-horizontally polarised) and TM (transverse-magnetic) waves. In particular, w...

  9. On Theory of Dispersive Transport in a Two-Layer Polymer Structure

    Science.gov (United States)

    Sibatov, R. T.; Morozova, E. V.

    2016-09-01

    Dispersive transport of charge carriers in a two-layer polymer structure is modeled on the basis of the integrodifferential equation of hereditary diffusion. The model of multiple trapping in a bilayer is generalized to the case of an arbitrary density of localized states. With the help of an efficient Monte Carlo algorithm, curves of the transient current are calculated and their features are explained within the framework of a stochastic interpretation of the process.

  10. On two-layer models and the similarity functions for the PBL

    Science.gov (United States)

    Brown, R. A.

    1982-01-01

    An operational Planetary Boundary Layer model which employs similarity principles and two-layer patching to provide state-of-the-art parameterization for the PBL flow is used to study the popularly used similarity functions, A and B. The expected trends with stratification are shown. The effects of baroclinicity, secondary flow, humidity, latitude, surface roughness variation and choice of characteristic height scale are discussed.

  11. Two-layer cold storage method for pancreas and islet cell transplantation

    OpenAIRE

    Fujino, Yasuhiro

    2010-01-01

    The two-layer cold storage method (TLM) was first reported in 1988, consisting of a perfluorochemical (PFC) and initially Euro-Collins’ solution, which was later replaced by University of Wisconsin solution (UW). PFC is a biologically inert liquid and acts as an oxygen-supplying agent. A pancreas preserved using the TLM is oxygenated through the PFC and substrates are supplied by the UW solution. This allows the pancreas preserved using the TLM to generate adenosine triphosphate during storag...

  12. A Two Layer Approach to the Computability and Complexity of Real Functions

    DEFF Research Database (Denmark)

    Lambov, Branimir Zdravkov

    2003-01-01

    We present a new model for computability and complexity of real functions together with an implementation that it based on it. The model uses a two-layer approach in which low-type basic objects perform the computation of a real function, but, whenever needed, can be complemented with higher type...... in computable analysis, while the efficiency of the implementation is not compromised by the need to create and maintain higher-type objects....

  13. Phase transitions and kinetic properties of gold nanoparticles confined between two-layer graphene nanosheets

    Science.gov (United States)

    Wang, Gang; Wu, Nanhua; Chen, Jionghua; Wang, Jinjian; Shao, Jingling; Zhu, Xiaolei; Lu, Xiaohua; Guo, Lucun

    2016-11-01

    The thermodynamic and kinetic behaviors of gold nanoparticles confined between two-layer graphene nanosheets (two-layer-GNSs) are examined and investigated during heating and cooling processes via molecular dynamics (MD) simulation technique. An EAM potential is applied to represent the gold-gold interactions while a Lennard-Jones (L-J) potential is used to describe the gold-GNS interactions. The MD melting temperature of 1345 K for bulk gold is close to the experimental value (1337 K), confirming that the EAM potential used to describe gold-gold interactions is reliable. On the other hand, the melting temperatures of gold clusters supported on graphite bilayer are corrected to the corresponding experimental values by adjusting the εAu-C value. Therefore, the subsequent results from current work are reliable. The gold nanoparticles confined within two-layer GNSs exhibit face center cubic structures, which is similar to those of free gold clusters and bulk gold. The melting points, heats of fusion, and heat capacities of the confined gold nanoparticles are predicted based on the plots of total energies against temperature. The density distribution perpendicular to GNS suggests that the freezing of confined gold nanoparticles starts from outermost layers. The confined gold clusters exhibit layering phenomenon even in liquid state. The transition of order-disorder in each layer is an essential characteristic in structure for the freezing phase transition of the confined gold clusters. Additionally, some vital kinetic data are obtained in terms of classical nucleation theory.

  14. Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches

    Science.gov (United States)

    Li, Hailong; Boufadel, Michel C.

    2010-02-01

    Oil spilled from the tanker Exxon Valdez in 1989 (refs 1, 2) persists in the subsurface of gravel beaches in Prince William Sound, Alaska. The contamination includes considerable amounts of chemicals that are harmful to the local fauna. However, remediation of the beaches was stopped in 1992, because it was assumed that the disappearance rate of oil was large enough to ensure a complete removal of oil within a few years. Here we present field data and numerical simulations of a two-layered beach with a small freshwater recharge in the contaminated area, where a high-permeability upper layer is underlain by a low-permeability lower layer. We find that the upper layer temporarily stored the oil, while it slowly and continuously filled the lower layer wherever the water table dropped below the interface of the two layers, as a result of low freshwater recharge from the land. Once the oil entered the lower layer, it became entrapped by capillary forces and persisted there in nearly anoxic conditions that are a result of the tidal hydraulics in the two-layered beaches. We suggest that similar dynamics could operate on tidal gravel beaches around the world, which are particularly common in mid- and high-latitude regions, with implications for locating spilled oil and for its biological remediation.

  15. Steady internal waves in an exponentially stratified two-layer fluid

    Science.gov (United States)

    Makarenko, Nikolay; Maltseva, Janna; Ivanova, Kseniya

    2016-04-01

    The problem on internal waves in a weakly stratified two-layered fluid is studied analytically. We suppose that the fluid possess exponential stratification in both the layers, and the fluid density has discontinuity jump at the interface. By that, we take into account the influence of weak continuous stratification outside of sharp pycnocline. The model equation of strongly nonlinear interfacial waves propagating along the pycnocline is considered. This equation extends approximate models [1-3] suggested for a two-layer fluid with one homogeneous layer. The derivation method uses asymptotic analysis of fully nonlinear Euler equations. The perturbation scheme involves the long wave procedure with a pair of the Boussinesq parameters. First of these parameters characterizes small density slope outside of pycnocline and the second one defines small density jump at the interface. Parametric range of solitary wave solutions is characterized, including extreme regimes such as plateau-shape solitary waves. This work was supported by RFBR (grant No 15-01-03942). References [1] N. Makarenko, J. Maltseva. Asymptotic models of internal stationary waves, J. Appl. Mech. Techn. Phys, 2008, 49(4), 646-654. [2] N. Makarenko, J. Maltseva. Phase velocity spectrum of internal waves in a weakly-stratified two-layer fluid, Fluid Dynamics, 2009, 44(2), 278-294. [3] N. Makarenko, J. Maltseva. An analytical model of large amplitude internal solitary waves, Extreme Ocean Waves, 2nd ed. Springer 2015, E.Pelinovsky and C.Kharif (Eds), 191-201.

  16. A two-layer optimization model for high-speed railway line planning

    Institute of Scientific and Technical Information of China (English)

    Li WANG; Li-min JIA; Yong QIN; Jie XU; Wen-ring MO

    2011-01-01

    Line planning is the first important strategic element in the railway operation planning process,which will directly affect the successive planning to determine the efficiency of the whole railway system.A two-layer optimization model is proposed within a simulation framework to deal with the high-speed railway (HSR) line planning problem.In the model,the top layer aims at achieving an optimal stop-schedule set with the service frequencies,and is formulated as a nonlinear program,solved by genetic algorithm.The objective of top layer is to minimize the total operation cost and unserved passenger volume.Given a specific stop-schedule,the bottom layer focuses on weighted passenger flow assignment,formulated as a mixed integer program with the objective of maximizing the served passenger volume and minimizing the total travel time for all passengers.The case study on Taiwan HSR shows that the proposed two-layer model is better than the existing techniques.In addition,this model is also illustrated with the Beijing-Shanghai HSR in China.The result shows that the two-layer optimization model can reduce computation complexity and that an optimal set of stop-schedules can always be generated with less calculation time.

  17. Diffraction of Water Waves by A Vertically Floating Cylinder in A Two-Layer Fluid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, the diffraction of water waves by a vertically floating cylinder in a two-layer luid of a finite depth is studied. Analytical expressions for the hydrodynamic loads on the vertically floating cylinder are obtained by use of the method of eigenfunction expansions. The hydrodynamic loads on the vertically floating cylinder in a two-layer fluid include not only the surge, heave and pitch exciting forces due to the incident wave of the surface-wave mode, but also those due to the incident wave of the internal-wave mode. This is different from the case of a homogenous fluid. Some given examples show that, for a two-layer fluid system with a small density difference, the hydrodynamic loads for the surface-wave mode do not differ significantly from those due to surface waves in a single-layer fluid, but the hydrodynamic loads for the internal-wave mode are important over a wide range of frequencies. Moreover, also considered are the free surface and interface elevations generated by the diffraction wave due to the incident wave of the surface-wave and internal-wave modes, and transfer of energy between modes.

  18. INTERSTELLAR TURBULENCE

    Directory of Open Access Journals (Sweden)

    D. Falceta-Gonçalves

    2011-01-01

    Full Text Available The Interstellar Medium (ISM is a complex, multi-phase system, where the history of the stars occurs. The processes of birth and death of stars are strongly coupled to the dynamics of the ISM. The observed chaotic and diffusive motions of the gas characterize its turbulent nature. Understanding turbulence is crucial for understanding the star-formation process and the energy-mass feedback from evolved stars. Magnetic fields, threading the ISM, are also observed, making this effort even more difficult. In this work, I briefly review the main observations and the characterization of turbulence from these observable quantities. Following on, I provide a review of the physics of magnetized turbulence. Finally, I will show the main results from theoretical and numerical simulations, which can be used to reconstruct observable quantities, and compare these predictions to the observations.

  19. Wall Turbulence.

    Science.gov (United States)

    Hanratty, Thomas J.

    1980-01-01

    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  20. GEOMETRIC TURBULENCE

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2014-05-01

    Full Text Available In this article we have investigated the solutions of Maxwell's equations, Navier-Stokes equations and the Schrödinger associated with the solutions of Einstein's equations for empty space. It is shown that in some cases the geometric instability leading to turbulence on the mechanism of alternating viscosity, which offered by N.N. Yanenko. The mechanism of generation of matter from dark energy due to the geometric turbulence in the Big Bang has been discussed

  1. Modeling Turbulent Mixing/Combustion of Bio Agents Behind Detonations: Effect of Instabilities, Dense Clustering, and Trace Survivability

    Science.gov (United States)

    2017-06-01

    scale (at which species mix and react), the nano-scale (at which nucle- ation, surface growth and chemistry , and Brownian aggregation occurs), the...recently towards developing and validating a generalized simulation capability that accounts for particle-turbulence-shock/detonation- chemistry interac... history of the normalized mixing length in single-mode RMI at the same grid resolutions ("x1, "x2) with a comparison to the nonlinear theory of Sadot et al

  2. Observational consequences of turbulent pressure in the envelopes of massive stars

    CERN Document Server

    Grassitelli, Luca; Simon-Diaz, Sergio; Langer, Norbert; Castro, Norberto; Sanyal, Debashis

    2015-01-01

    The major mass fraction of the envelope of hot luminous stars is radiatively stable. However, the partial ionisation of hydrogen, helium and iron gives rise to extended sub-surface convection zones in all of them. In this work, we investigate the effect of the pressure induced by the turbulent motion in these zones based on the mixing length theory, and search for observable consequences. We find that the turbulent pressure fraction can amount up to ~5% in OB supergiants, and to ~30% in cooler supergiants. The resulting structural changes are, however, not significantly affecting the evolutionary tracks compared to previous calculations. Instead, a comparison of macroturbulent velocities derived from high quality spectra of OB stars with the turbulent pressure fraction obtained in corresponding stellar models reveals a strong correlation of these two quantities. We discuss a possible physical connection, and conclude that turbulent pressure fluctuations may drive high-order oscillations, which - as conjecture...

  3. Modeling turbulent mixing and sand distribution in the bottom boundary layer

    CERN Document Server

    Absi, Rafik

    2011-01-01

    For the calculation of turbulent mixing in the bottom boundary layer, we present simple analytical tools for the mixing velocity wm and the mixing length lm. Based on observations of turbulence intensity measurements, the mixing velocity wm is represented by an exponential function decaying with z. We suggest two theoretical functions for the mixing length, a first lm1 obtained from the k-equation written as a constant modeled fluctuating kinetic energy flux and a second lm2 based on von K\\'arm\\'an's similarity hypothesis. These analytical tools were used in the finite-mixing-length model of Nielsen and Teakle (2004). The modeling of time-mean sediment concentration profiles C(z) over wave ripples shows that at the opposite of the second equation lm2 which increases the upward convexity of C(z), the first equation lm1 increases the upward concavity of C(z) and is able to reproduce the shape of the measured concentrations for coarse sand.

  4. Turbulence and turbulent mixing in natural fluids

    CERN Document Server

    Gibson, Carl H

    2010-01-01

    Turbulence and turbulent mixing in natural fluids begins with big bang turbulence powered by spinning combustible combinations of Planck particles and Planck antiparticles. Particle prograde accretion on a spinning pair releases 42% of the particle rest mass energy to produce more fuel for turbulent combustion. Negative viscosity and negative turbulence stresses work against gravity, creating mass-energy and space-time from the vacuum. Turbulence mixes cooling temperatures until a quark-gluon strong-force SF freeze-out. Gluon-viscosity anti-gravity ({\\Lambda}SF) exponentially inflates the fireball to preserve big bang turbulence information at scales larger than ct as the first fossil turbulence. Cosmic microwave background CMB temperature anisotropies show big bang turbulence fossils along with fossils of weak plasma turbulence triggered (10^12 s) as plasma viscous forces permit gravitational fragmentation on supercluster to galaxy mass scales (10^13 s). Turbulent morphologies and viscous-turbulent lengths a...

  5. FINITE ELEMENT FOR STRESS-STRAIN STATE MODELING OF TWO-LAYERED AXIALLY SYMMETRIC SHELLS

    Directory of Open Access Journals (Sweden)

    K. S. Kurochka

    2015-07-01

    Full Text Available Subject of Research. Computation of composite material designs requires application of numerical methods. The finiteelement method usage is connected with surface approximation problems. Application of volumetric and laminar elements leads to systems with large sizes and a great amount of computation. The objective of this paper is to present an equivalent two-layer mathematical model for evaluation of displacements and stresses of cross-ply laminated cone shells subjected to uniformly distributed load. An axially symmetric element for shell problems is described. Method. Axially symmetric finite element is proposed to be applied in calculations with use of correlation for the inner work of each layer separately. It gives the possibility to take into account geometric and physical nonlinearities and non-uniformity in the layers of the shell. Discrete mathematical model is created on the base of the finite-element method with the use of possible motions principle and Kirchhoff–Love assumptions. Hermite element is chosen as a finite one. Cone shell deflection is considered as the quantity sought for. Main Results. One-layered and two-layered cone shells have been considered for proposed mathematical model verification with known analytical and numerical analytical solutions, respectively. The axial displacements of the two-layered cone are measured with an error not exceeding 5.4 % for the number of finite elements equal to 30. The proposed mathematical model requires fewer nodes to define the finite element meshing of the system and much less computation time. Thereby time for finding solution decreases considerably. Practical Relevance. Proposed model is applicable for computation of multilayered designs under axially symmetric loads: composite high-pressure bottles, cylinder shaped fiberglass pipes, reservoirs for explosives and flammable materials, oil and gas storage tanks.

  6. PECULIARITIES OF LAMB WAVE PROPAGATION THROUGH TWO-LAYERED THIN PLATE MATERIALS

    Directory of Open Access Journals (Sweden)

    A. R. Baev

    2008-01-01

    Full Text Available Peculiarities of the plate wave propagation through two-layered thin plate have been analyzed and formulas for velocity determination of the quickest plate mode have been proposed.  The ascertained interaction makes it possible   to determine coating layer thickness in accordance with the given and known elastic parameters of contacting materials. On the basis of the developed methodology experiments have been carried out that revealed qualitative and quantitative correspondence  between theoretical and experimental data. The paper shows a principle possibility for assessment  of  material separation surface by time propagation data of the investigated mode .

  7. Determination of homeostatic elastic moduli in two layers of the esophagus

    DEFF Research Database (Denmark)

    Gregersen, Hans; Liao, Donghua; Fung, Yuan Cheng

    2008-01-01

    for determination of incremental moduli in circumferential, axial, and cross directions in the two layers. The experiments are inflation, axial stretching, circumferential bending, and axial bending. The analysis takes advantage of knowing the esophageal zero-stress state (an open sector with an opening angle of 59......The function of the esophagus is mechanical. To understand the function, it is necessary to know how the stress and strain in the esophagus can be computed, and how to determine the stress-strain relationship of the wall materials. The present article is devoted to the issue of determining...

  8. A novel two-layer compact electromagnetic bandgap (EBG) structure and its applications in microwave circuits

    Institute of Scientific and Technical Information of China (English)

    YANG; Ning(杨宁); CHEN; Zhining; (陈志宁); WANG; Yunyi; (王蕴仪); Chia; M.; Y.; W.

    2003-01-01

    This paper presents a novel two-layer electromagnetic bandgap (EBG) structure. The studies on the characteristics of the cell are carried out numerically and experimentally. A lumped-LC equivalent circuit extracted from the numerical simulation is used to model the bandgap characteristics of the proposed EBG structure. The influences of geometric parameters on the operation frequency and equivalent LC parameters are discussed. A meander line high performance bandstop filter and a notch type duplexer are designed and measured. These EBG structures are shown to have potential applications in microwave and RF systems.

  9. A Two-Layered Model for Dynamic Supply Chain Management Considering Transportation Constraint

    Science.gov (United States)

    Tanimizu, Yoshitaka; Harada, Kana; Ozawa, Chisato; Iwamura, Koji; Sugimura, Nobuhiro

    This research proposes a two-layered model for dynamic supply chain management considering transportation constraint. The model provides a method for suppliers to estimate suitable prices and delivery times of products based on not only production schedules but also transportation plans in consideration of constraints about shipping times and loading capacities for transportation. A prototype of dynamic supply chain simulation system was developed and some computational experiments were carried out in order to verify the effectiveness of the model. The prototype system is available to determine suitable shipping times and loading capacities of transportation vehicles.

  10. Flows induced by sorption on fibrous material in a two-layer oil-water system

    Science.gov (United States)

    Chaplina, T. O.; Chashechkin, Yu. D.; Stepanova, E. V.

    2016-09-01

    The processes of sorption on fibrous materials in the open elliptic cell filled with a two-layer oil-water liquid at rest are investigated experimentally. When the sorption efficiency dependent on the type of material proves to be reasonably high, large-scale flows are formed in the liquid. In this case, the uniformity of distribution of oil is violated and the free surface of the water is partially restored. The trajectories of motion of individual oil droplets on a released water surface are tracked, and the transfer rates are calculated in various phases of the process.

  11. SH-TM mathematical analogy for the two-layer case. A magnetotellurics application

    Directory of Open Access Journals (Sweden)

    J. Carcione

    2017-02-01

    Full Text Available The same mathematical formalism of the wave equation can be used to describe anelastic and electromagnetic wave propagation. In this work, we obtain the mathematical analogy for the reflection/refraction (transmission problem of two layers, considering the presence of anisotropy and attenuation -- viscosity in the viscoelastic case and resistivity in the electromagnetic case. The analogy is illustrated for SH (shear-horizontally polarised and TM (transverse-magnetic waves. In particular, we illustrate examples related to the magnetotelluric method applied to geothermal systems and consider the effects of anisotropy. The solution is tested with the classical solution for stratified isotropic media.

  12. Solitary SH waves in two-layered traction-free plates

    Science.gov (United States)

    Djeran-Maigre, Irini; Kuznetsov, Sergey

    2008-01-01

    A solitary wave, resembling a soliton wave, is observed when analyzing the linear problem of polarized shear (SH) surface acoustic waves propagating in elastic orthotropic two-layered traction-free plates. The analysis is performed by applying a special complex formalism and the Modified Transfer Matrix (MTM) method. Conditions for the existence of solitary SH waves are obtained. Analytical expressions for the phase speed of the solitary wave are derived. To cite this article: I. Djeran-Maigre, S. Kuznetsov, C. R. Mecanique 336 (2008).

  13. Turbulence and turbulent mixing in natural fluids

    OpenAIRE

    2010-01-01

    Turbulence and turbulent mixing in natural fluids begins with big bang turbulence powered by spinning combustible combinations of Planck particles and Planck antiparticles. Particle prograde accretions on a spinning pair releases 42% of the particle rest mass energy to produce more fuel for turbulent combustion. Negative viscous stresses and negative turbulence stresses work against gravity, extracting mass-energy and space-time from the vacuum. Turbulence mixes cooling temperatures until str...

  14. Theories of multiple equilibria and weather regimes : A critical reexamination. II - Baroclinic two-layer models

    Science.gov (United States)

    Cehelsky, Priscilla; Tung, Ka Kit

    1987-01-01

    Previous results based on low- and intermediate-order truncations of the two-layer model suggest the existence of multiple equilibria and/or multiple weather regimes for the extratropical large-scale flow. The importance of the transient waves in the synoptic scales in organizing the large-scale flow and in the maintenance of weather regimes was emphasized. The result shows that multiple equilibria/weather regimes that are present in lower-order models examined disappear when a sufficient number of modes are kept in the spectral expansion of the solution to the governing partial differential equations. Much of the chaotic behavior of the large-scale flow that is present in intermediate-order models is now found to be spurious. Physical reasons for the drastic modification are offered. A peculiarity in the formulation of most existing two-layer models is noted that also tends to exaggerate the importance of baroclinic processes and increase the degree of unpredictability of the large-scale flow.

  15. Photoacoustic investigation of the effective diffusivity of two-layer semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Medina, J; Gurevich, Yu. G; Logvinov G, N; Rodriguez, P; Gonzalez de la Cruz, G. [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)

    2001-08-01

    In this work, the problem of the effective thermal diffusivity of two-layer systems is investigated using the photoacoustic spectroscopy. The experimental results are examined in terms of the effective thermal parameters of the composite system determined from an homogeneous material which produces the same physical response under an external perturbation in the detector device. It is shown, that the effective thermal conductivity is not symmetric under exchange of the two layers of the composite; i.e., the effective thermal parameters depend upon which layer is illuminated in the photoacoustic experiments. Particular emphasis is given to the characterization of the interface thermal conductivity between the layer-system. [Spanish] En el presente trabajo se utiliza la espectroscopia fotoacustica para medir la difusividad termica de un sistema de dos capas. Los resultados experimentales son analizados en terminos de los parametros termicos efectivos determinados a partir de un material homogeneo, el cual produce la misma respuesta fisica bajo una perturbacion externa. Se puso particular enfasis en la caracterizacion de los efectos de interfase en el flujo de calor en el sistema de dos capas. Los resultados experimentales se comparan con el modelo teorico propuesto en este trabajo.

  16. Modelling of fast jet formation under explosion collision of two-layer alumina/copper tubes

    Directory of Open Access Journals (Sweden)

    I Balagansky

    2017-09-01

    Full Text Available Under explosion collapse of two-layer tubes with an outer layer of high-modulus ceramics and an inner layer of copper, formation of a fast and dense copper jet is plausible. We have performed a numerical simulation of the explosion collapse of a two-layer alumina/copper tube using ANSYS AUTODYN software. The simulation was performed in a 2D-axis symmetry posting on an Eulerian mesh of 3900x1200 cells. The simulation results indicate two separate stages of the tube collapse process: the nonstationary and the stationary stage. At the initial stage, a non-stationary fragmented jet is moving with the velocity of leading elements up to 30 km/s. The collapse velocity of the tube to the symmetry axis is about 2 km/s, and the pressure in the contact zone exceeds 700 GPa. During the stationary stage, a dense jet is forming with the velocity of 20 km/s. Temperature of the dense jet is about 2000 K, jet failure occurs when the value of effective plastic deformation reaches 30.

  17. Validation of the Two-Layer Model for Correcting Clear Sky Reflectance Near Clouds

    Science.gov (United States)

    Wen, Guoyong; Marshak, Alexander; Evans, K. Frank; Vamal, Tamas

    2014-01-01

    A two-layer model was developed in our earlier studies to estimate the clear sky reflectance enhancement near clouds. This simple model accounts for the radiative interaction between boundary layer clouds and molecular layer above, the major contribution to the reflectance enhancement near clouds for short wavelengths. We use LES/SHDOM simulated 3D radiation fields to valid the two-layer model for reflectance enhancement at 0.47 micrometer. We find: (a) The simple model captures the viewing angle dependence of the reflectance enhancement near cloud, suggesting the physics of this model is correct; and (b) The magnitude of the 2-layer modeled enhancement agree reasonably well with the "truth" with some expected underestimation. We further extend our model to include cloud-surface interaction using the Poisson model for broken clouds. We found that including cloud-surface interaction improves the correction, though it can introduced some over corrections for large cloud albedo, large cloud optical depth, large cloud fraction, large cloud aspect ratio. This over correction can be reduced by excluding scenes (10 km x 10km) with large cloud fraction for which the Poisson model is not designed for. Further research is underway to account for the contribution of cloud-aerosol radiative interaction to the enhancement.

  18. Risks of an epidemic in a two-layered railway-local area traveling network

    Science.gov (United States)

    Ruan, Zhongyuan; Hui, Pakming; Lin, Haiqing; Liu, Zonghua

    2013-01-01

    In view of the huge investments into the construction of high speed rails systems in USA, Japan, and China, we present a two-layer traveling network model to study the risks that the railway network poses in case of an epidemic outbreak. The model consists of two layers with one layer representing the railway network and the other representing the local-area transportation subnetworks. To reveal the underlying mechanism, we also study a simplified model that focuses on how a major railway affects an epidemic. We assume that the individuals, when they travel, take on the shortest path to the destination and become non-travelers upon arrival. When an infection process co-evolves with the traveling dynamics, the railway serves to gather a crowd, transmit the disease, and spread infected agents to local area subnetworks. The railway leads to a faster initial increase in infected agents and a higher steady state infection, and thus poses risks; and frequent traveling leads to a more severe infection. These features revealed in simulations are in agreement with analytic results of a simplified version of the model.

  19. Traffic dynamics on two-layer complex networks with limited delivering capacity

    Science.gov (United States)

    Ma, Jinlong; Han, Weizhan; Guo, Qing; Wang, Zhenyong

    2016-08-01

    The traffic dynamics of multi-layer networks has attracted a great deal of interest since many real networks are comprised of two or more layers of subnetworks. Due to its low traffic capacity, the average delivery capacity allocation strategy is susceptible to congestion with the wildly used shortest path routing protocol on two-layer complex networks. In this paper, we introduce a delivery capacity allocation strategy into the traffic dynamics on two-layer complex networks and focus on its effect on the traffic capacity measured by the critical point Rc of phase transition from free flow to congestion. When the total nodes delivering capacity is fixed, the delivering capacity of each node in physical layer is assigned to the degree distributions of both the physical and logical layers. Simulation results show that the proposed strategy can bring much better traffic capacity than that with the average delivery capacity allocation strategy. Because of the significantly improved traffic performance, this work may be useful for optimal design of networked traffic dynamics.

  20. Investigations of Two-Layer Earth Parameters at Low Voltage: Measurements and Calculations

    Directory of Open Access Journals (Sweden)

    E. Ramdan

    2009-01-01

    Full Text Available Problem statement: The two-layer soil model at low magnitude voltage is assumed to be accurate for the measurement and calculation of the earth resistance of a combined grid-multiple rods electrode. The aim of this study is to measure and calculate the earth resistance of a combined grid-multiple rods electrode buried in a two-layer soil and to confirm the simplicity and accuracy of the used formula. Approach: Soil resistivity was measured using Wenner four point method. Advanced earth resistivity measurement interpretation techniques which include graphical curve matching based on master curves and an advanced computer program based on a genetic algorithm are used in this study. Results: Based on the resistivity data, the earth resistance value was calculated using the formulas obtained from the literature. Measurements of the earth resistance of the earthing system were also conducted using the fall of potential method. Conclusion/Recommendations: A very good agreement was obtained between the measured and calculated earth resistance values. This research is the first time ever conducted where the measured earth resistance values are compared directly with the calculated earth values.

  1. Numerical simulation and analysis of complex patterns in a two-layer coupled reaction diffusion system

    Institute of Scientific and Technical Information of China (English)

    李新政; 白占国; 李燕; 贺亚峰; 赵昆

    2015-01-01

    The resonance interaction between two modes is investigated using a two-layer coupled Brusselator model. When two different wavelength modes satisfy resonance conditions, new modes will appear, and a variety of superlattice patterns can be obtained in a short wavelength mode subsystem. We find that even though the wavenumbers of two Turing modes are fixed, the parameter changes have infl uences on wave intensity and pattern selection. When a hexagon pattern occurs in the short wavelength mode layer and a stripe pattern appears in the long wavelength mode layer, the Hopf instability may happen in a nonlinearly coupled model, and twinkling-eye hexagon and travelling hexagon patterns will be obtained. The symmetries of patterns resulting from the coupled modes may be different from those of their parents, such as the cluster hexagon pattern and square pattern. With the increase of perturbation and coupling intensity, the nonlinear system will con-vert between a static pattern and a dynamic pattern when the Turing instability and Hopf instability happen in the nonlinear system. Besides the wavenumber ratio and intensity ratio of the two different wavelength Turing modes, perturbation and coupling intensity play an important role in the pattern formation and selection. According to the simulation results, we find that two modes with different symmetries can also be in the spatial resonance under certain conditions, and complex patterns appear in the two-layer coupled reaction diffusion systems.

  2. Two-Layer Tight Frame Sparsifying Model for Compressed Sensing Magnetic Resonance Imaging

    Science.gov (United States)

    Peng, Xi; Dong, Pei

    2016-01-01

    Compressed sensing magnetic resonance imaging (CSMRI) employs image sparsity to reconstruct MR images from incoherently undersampled K-space data. Existing CSMRI approaches have exploited analysis transform, synthesis dictionary, and their variants to trigger image sparsity. Nevertheless, the accuracy, efficiency, or acceleration rate of existing CSMRI methods can still be improved due to either lack of adaptability, high complexity of the training, or insufficient sparsity promotion. To properly balance the three factors, this paper proposes a two-layer tight frame sparsifying (TRIMS) model for CSMRI by sparsifying the image with a product of a fixed tight frame and an adaptively learned tight frame. The two-layer sparsifying and adaptive learning nature of TRIMS has enabled accurate MR reconstruction from highly undersampled data with efficiency. To solve the reconstruction problem, a three-level Bregman numerical algorithm is developed. The proposed approach has been compared to three state-of-the-art methods over scanned physical phantom and in vivo MR datasets and encouraging performances have been achieved. PMID:27747226

  3. Analysis and Control of Two-Layer Frenkel-Kontorova Model

    Institute of Scientific and Technical Information of China (English)

    TANG Wen-Yan; QU Zhi-Hua; GUO Yi

    2011-01-01

    A one-dimensional two-layer Frenkel-Kontorova model is studied.Firstly,a feedback tracking control law is given.Then,the boundedness result for the error states of single particles of the model is derived using the Lyapunov Method.Especially,the motion of single particles can be approximated analytically for the case of sufficiently large targeted velocity.Simulations illustrate the accuracy of the derived results.Recently,the Frenkel-Kontorova (FK) model,which describes a chain of classical particles interacting with its nearest neighbors and subjected to a periodic one-site potential,has become a useful tool to study nanotribology.[1-6] There are several generalizations of the FK model that have been introduced with the hope of understanding friction dynamics at nanoscale.These models include a manylayer model with harmonic interactions,the FrenkelKontorova-Tomlinson model (FKT) and the singlelayer model with harmonic interactions.%A one-dimensional two-layer Frenkel-Kontorova model is studied. Firstly, a feedback tracking control law is given. Then, the boundedness result for the error states of single particles of the model is derived using the Lyapunov Method. Especially, the motion of single particles can be approximated analytically for the case of sufficiently large targeted velocity. Simulations illustrate the accuracy of the derived results.

  4. Reverse-feeding effect of epidemic by propagators in two-layered networks

    Science.gov (United States)

    Dayu, Wu; Yanping, Zhao; Muhua, Zheng; Jie, Zhou; Zonghua, Liu

    2016-02-01

    Epidemic spreading has been studied for a long time and is currently focused on the spreading of multiple pathogens, especially in multiplex networks. However, little attention has been paid to the case where the mutual influence between different pathogens comes from a fraction of epidemic propagators, such as bisexual people in two separated groups of heterosexual and homosexual people. We here study this topic by presenting a network model of two layers connected by impulsive links, in contrast to the persistent links in each layer. We let each layer have a distinct pathogen and their interactive infection is implemented by a fraction of propagators jumping between the corresponding pairs of nodes in the two layers. By this model we show that (i) the propagators take the key role to transmit pathogens from one layer to the other, which significantly influences the stabilized epidemics; (ii) the epidemic thresholds will be changed by the propagators; and (iii) a reverse-feeding effect can be expected when the infective rate is smaller than its threshold of isolated spreading. A theoretical analysis is presented to explain the numerical results. Project supported by the National Natural Science Foundation of China (Grant Nos. 11135001, 11375066, and 11405059) and the National Basic Key Program of China (Grant No. 2013CB834100).

  5. Two-layer wireless distributed sensor/control network based on RF

    Science.gov (United States)

    Feng, Li; Lin, Yuchi; Zhou, Jingjing; Dong, Guimei; Xia, Guisuo

    2006-11-01

    A project of embedded Wireless Distributed Sensor/Control Network (WDSCN) based on RF is presented after analyzing the disadvantages of traditional measure and control system. Because of high-cost and complexity, such wireless techniques as Bluetooth and WiFi can't meet the needs of WDSCN. The two-layer WDSCN is designed based on RF technique, which operates in the ISM free frequency channel with low power and high transmission speed. Also the network is low cost, portable and moveable, integrated with the technologies of computer network, sensor, microprocessor and wireless communications. The two-layer network topology is selected in the system; a simple but efficient self-organization net protocol is designed to fit the periodic data collection, event-driven and store-and-forward. Furthermore, adaptive frequency hopping technique is adopted for anti-jamming apparently. The problems about power reduction and synchronization of data in wireless system are solved efficiently. Based on the discussion above, a measure and control network is set up to control such typical instruments and sensors as temperature sensor and signal converter, collect data, and monitor environmental parameters around. This system works well in different rooms. Experiment results show that the system provides an efficient solution to WDSCN through wireless links, with high efficiency, low power, high stability, flexibility and wide working range.

  6. Metallicity dependence of turbulent pressure and macroturbulence in stellar envelopes

    Science.gov (United States)

    Grassitelli, L.; Fossati, L.; Langer, N.; Simón-Díaz, S.; Castro, N.; Sanyal, D.

    2016-08-01

    Macroturbulence, introduced as a fudge to reproduce the width and shape of stellar absorption lines, reflects gas motions in stellar atmospheres. While in cool stars, it is thought to be caused by convection zones immediately beneath the stellar surface, the origin of macroturbulence in hot stars is still under discussion. Recent works established a correlation between the turbulent-to-total pressure ratio inside the envelope of stellar models and the macroturbulent velocities observed in corresponding Galactic stars. To probe this connection further, we evaluated the turbulent pressure that arises in the envelope convective zones of stellar models in the mass range 1-125 M⊙ based on the mixing-length theory and computed for metallicities of the Large and Small Magellanic Cloud. We find that the turbulent pressure contributions in models with these metallicities located in the hot high-luminosity part of the Hertzsprung-Russel (HR) diagram is lower than in similar models with solar metallicity, whereas the turbulent pressure in low-metallicity models populating the cool part of the HR-diagram is not reduced. Based on our models, we find that the currently available observations of hot massive stars in the Magellanic Clouds appear to support a connection between macroturbulence and the turbulent pressure in stellar envelopes. Multidimensional simulations of sub-surface convection zones and a larger number of high-quality observations are necessary to test this idea more rigorously.

  7. New perspectives on superparameterization for geophysical turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Majda, Andrew J. [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States); Center for Prototype Climate Modelling, NYU Abu Dhabi, Abu Dhabi (United Arab Emirates); Grooms, Ian, E-mail: grooms@cims.nyu.edu [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States)

    2014-08-15

    This is a research expository paper regarding superparameterization, a class of multi-scale numerical methods designed to cope with the intermittent multi-scale effects of inhomogeneous geophysical turbulence where energy often inverse-cascades from the unresolved scales to the large scales through the effects of waves, jets, vortices, and latent heat release from moist processes. Original as well as sparse space–time superparameterization algorithms are discussed for the important case of moist atmospheric convection including the role of multi-scale asymptotic methods in providing self-consistent constraints on superparameterization algorithms and related deterministic and stochastic multi-cloud parameterizations. Test models for the statistical numerical analysis of superparameterization algorithms are discussed both to elucidate the performance of the basic algorithms and to test their potential role in efficient multi-scale data assimilation. The very recent development of grid-free seamless stochastic superparameterization methods for geophysical turbulence appropriate for “eddy-permitting” mesoscale ocean turbulence is presented here including a general formulation and illustrative applications to two-layer quasigeostrophic turbulence, and another difficult test case involving one-dimensional models of dispersive wave turbulence. This last test case has randomly generated solitons as coherent structures which collapse and radiate wave energy back to the larger scales, resulting in strong direct and inverse turbulent energy cascades.

  8. Transient thermal response of turbulent compressible boundary layers

    DEFF Research Database (Denmark)

    Li, Hongwei; Nalim, M. Razi; Merkle, Charles L.

    2011-01-01

    and Smith, and the turbulent Prandtl number formulation originally developed by Kays and Crawford. The governing differential equations are discretized with the Keller-box method. The numerical accuracy is validated through grid-independence studies and comparison with the steady state solution......-dimensional semi-infinite flat plate. The compressible Reynolds-averaged boundary layer equations are transformed into incompressible form through the Dorodnitsyn-Howarth transformation and then solved with similarity transformations. Turbulence is modeled using a two-layer eddy viscosity model developed by Cebeci....... In turbulent flow as in laminar, the transient heat transfer rates are very different from that obtained from quasi-steady analysis. It is found that the time scale for response of the turbulent boundary layer to far-field temperature changes is 40% less than for laminar flow, and the turbulent local Nusselt...

  9. Turbulence Modeling

    Science.gov (United States)

    1991-10-01

    and complexity of thermochemistry . Accordingly a practical viewpoint is required to meet near-term work required for use in advanced CFD codes...teachers the opportunity to learn/explore/ teach turbulence issues. While such a product could be an invaluable eductaional tool (university), it also

  10. Turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  11. Burgers turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Bec, Jeremie [Laboratoire Cassiopee UMR6202, CNRS, OCA, BP4229, 06304 Nice Cedex 4 (France)]. E-mail: jeremie.bec@obs-nice.fr; Khanin, Konstantin [Department of Mathematics, University of Toronto, Toronto, Ont., M5S 3G3 (Canada)]. E-mail: khanin@math.toronto.edu

    2007-08-15

    The last decades witnessed a renewal of interest in the Burgers equation. Much activities focused on extensions of the original one-dimensional pressureless model introduced in the thirties by the Dutch scientist J.M. Burgers, and more precisely on the problem of Burgers turbulence, that is the study of the solutions to the one- or multi-dimensional Burgers equation with random initial conditions or random forcing. Such work was frequently motivated by new emerging applications of Burgers model to statistical physics, cosmology, and fluid dynamics. Also Burgers turbulence appeared as one of the simplest instances of a nonlinear system out of equilibrium. The study of random Lagrangian systems, of stochastic partial differential equations and their invariant measures, the theory of dynamical systems, the applications of field theory to the understanding of dissipative anomalies and of multiscaling in hydrodynamic turbulence have benefited significantly from progress in Burgers turbulence. The aim of this review is to give a unified view of selected work stemming from these rather diverse disciplines.

  12. Barotropic Turbulence on a Beta-Plane with Quadratic Bottom Drag

    Science.gov (United States)

    Kong, H.; Jansen, M.

    2016-12-01

    Geostrophic turbulent eddies are crucial in the oceans because they play a major role in transporting and mixing physical quantities and chemical constituents. However, it would be too computationally expensive for current IPCC-class models to fully resolve them, calling for proper parameterizations. Many of the key properties of geostrophic turbulence are captured by barotropic (2D) turbulence, which thus serves as a useful model to develop a fundamental understanding of meso-scale turbulence in the ocean. Although barotropic turbulence has received significant attention in the literature, the arguably most realistic case of beta-plane turbulence with quadratic bottom drag remains unexplored. The beta-effect and bottom drag both affect the halting scale of the inverse energy cascade - while quadratic drag can halt the cascade by removing eddy kinetic energy (EKE) out of the system, the beta effect introduces a wave-turbulence crossover and causes a channeling of energy into zonal jets. The characteristics of the flow are governed by a single non-dimensional parameter, which can be expressed as the ratio of the frictional halting scale and the wave-turbulence crossover scale. In a regime most relevant to Earth's ocean, we find that the eddy mixing length is significantly suppressed by the beta-effect and well approximated by the Rhines scale. The EKE level instead remains controlled by the bottom drag. This allows us to derive a parameterization for the eddy diffusivity which agrees well with the eddy diffusivity diagnosed from our model.

  13. Spin-3/2 Ising model AFM/AFM two-layer lattice with crystal field

    Institute of Scientific and Technical Information of China (English)

    Erhan Albayrak; Ali Yigit

    2009-01-01

    The spin-3/2 Ising model is investigated for the case of antiferromagnetic (AFM/AFM) interactions on the two-layer Bethe lattice by using the exact recursion relations in the pairwise approach for given coordination numbers q = 3, 4 and 6 when the layers are under the influences of equal external magnetic and equal crystal fields. The ground state, (GS) phase diagrams are obtained on the different planes in detail and then the temperature-dependent phase diagrams of the system are calculated accordingly. It is observed that the system presents both second- and first-order phase transitions for all q, therefore, tricritical points. It is also found that the system exhibits double-critical end points and isolated points. The model aiso presents two Néel temperatures, T_N, and the existence of which leads to the reentrant behaviour.

  14. Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach

    Science.gov (United States)

    Camassa, R.; Falqui, G.; Ortenzi, G.

    2017-02-01

    The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite two-dimensional channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids’ inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, albeit in a non-trivial way. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, a family of approximate constants of the motion are explicitly constructed and used to find local solutions of the evolution equations by means of hodograph-like formulae.

  15. Central-Upwind Schemes for Two-Layer Shallow Water Equations

    KAUST Repository

    Kurganov, Alexander

    2009-01-01

    We derive a second-order semidiscrete central-upwind scheme for one- and two-dimensional systems of two-layer shallow water equations. We prove that the presented scheme is well-balanced in the sense that stationary steady-state solutions are exactly preserved by the scheme and positivity preserving; that is, the depth of each fluid layer is guaranteed to be nonnegative. We also propose a new technique for the treatment of the nonconservative products describing the momentum exchange between the layers. The performance of the proposed method is illustrated on a number of numerical examples, in which we successfully capture (quasi) steady-state solutions and propagating interfaces. © 2009 Society for Industrial and Applied Mathematics.

  16. Two-layer fragile watermarking method secured with chaotic map for authentication of digital Holy Quran.

    Science.gov (United States)

    Khalil, Mohammed S; Kurniawan, Fajri; Khan, Muhammad Khurram; Alginahi, Yasser M

    2014-01-01

    This paper presents a novel watermarking method to facilitate the authentication and detection of the image forgery on the Quran images. Two layers of embedding scheme on wavelet and spatial domain are introduced to enhance the sensitivity of fragile watermarking and defend the attacks. Discrete wavelet transforms are applied to decompose the host image into wavelet prior to embedding the watermark in the wavelet domain. The watermarked wavelet coefficient is inverted back to spatial domain then the least significant bits is utilized to hide another watermark. A chaotic map is utilized to blur the watermark to make it secure against the local attack. The proposed method allows high watermark payloads, while preserving good image quality. Experiment results confirm that the proposed methods are fragile and have superior tampering detection even though the tampered area is very small.

  17. Transient response of a vertical electric dipole (VED) on a two-layer medium

    Science.gov (United States)

    Poh, S. Y.; Kong, J. A.

    The transient electromagnetic radiation by a vertical electric dipole on a two-layer medium is analyzed using the double deformation technique, which is a modal technique based on identification of singularities in the complex frequency and wavenumber planes. Previous application of the double deformation technique to the solution of this problem is incomplete in the early time response. In this paper it is shown that the existence of a pole locus on the negative imaginary frequency axis, which dominates the early time response, proves crucial in obtaining the solution for all times. A variety of combinations of parameters are used to illustrate the double deformation technique, and results will be compared with those obtained via explicit inversion, and a single deformation method.

  18. Two-Layer Coding Rate Optimization in Relay-Aided Systems

    DEFF Research Database (Denmark)

    Sun, Fan

    2011-01-01

    We consider a three-node transmission system, where a source node conveys a data block to a destination node with the help of a half-duplex decode and-forward (DF) relay node. The whole data block is transmitted as a sequence of packets. For reliable transmission in the three-node system, a two......-layer coding scheme is proposed, where physical layer channel coding is utilized within each packet for error-correction and random network coding is applied on top of channel coding for network error-control. There is a natural tradeoff between the physical layer coding rate and the network coding rate given...... requirement. Numerical results are also provided to show the optimized physical layer coding and network coding rate pairs in different system scenarios....

  19. The peak effect (PE) region of the antiferromagnetic two layer Ising nanographene

    Energy Technology Data Exchange (ETDEWEB)

    Şarlı, Numan, E-mail: numansarli82@gmail.com [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Akbudak, Salih [Department of Physics, Adiyaman University, 02100 Adiyaman (Turkey); Department of Nanotechnology and Nanomedicine, Hacettepe University, 06800 Ankara (Turkey); Ellialtıoğlu, Mehmet Recai [Department of Physics Engineering, Hacettepe University, 06800 Ankara (Turkey)

    2014-11-01

    In this work, the magnetic properties of the ferromagnetic and antiferromagnetic two layer spin-1/2 Ising nanographene systems are investigated within the effective field theory. We find that the magnetizations and the hysteresis behaviors of the central graphene atoms are similar to those of the edge graphene atoms in the ferromagnetic case. But, they are quite different in the antiferromagnetic case. The antiferromagnetic central graphene atoms exhibit type II superconductivity and they have triple hysteresis loop. The peak effect (PE) region is observed on the hysteresis curves of the antiferromagnetic Ising nanographene system. Therefore, we suggest that there is a strong relationship between the antiferromagnetism and the peak effect. Our results are in agreement with some experimental works in recent literature.

  20. STRESS ANALYSIS AND BURST PRESSURE DETERMINATION OF TWO LAYER COMPOUND PRESSURE VESSEL

    Directory of Open Access Journals (Sweden)

    HARERAM LOHAR

    2013-02-01

    Full Text Available Multilayer pressure vessel is designed to work under high-pressure condition. This paper introduces the stress analysis and the burst pressure calculation of a two-layer shrink fitted pressure vessel. In the shrink-fitting problems, considering long hollow cylinders, the plane strain hypothesis can be regarded as more natural. Generally hoops stress distribution is non-linear and sharply reduced toward the outer surface. By shrink fitting concentric shells towards the inner shells are placed in residual compression so that the initial compressive hoop stress must be relieved by internal pressure before hoop tensile stress are developed. Therefore the maximum hoop stress will be reduced, resulting more burst pressure. The analytical results of stress distribution and burst pressure is calculated and validated by ANSYS Workbench results.

  1. Testing the Two-Layer Model for Correcting Clear Sky Reflectance near Clouds

    Science.gov (United States)

    Wen, Guoyong; Marshak, Alexander; Evans, Frank; Varnai, Tamas; Levy, Rob

    2015-01-01

    A two-layer model (2LM) was developed in our earlier studies to estimate the clear sky reflectance enhancement due to cloud-molecular radiative interaction at MODIS at 0.47 micrometers. Recently, we extended the model to include cloud-surface and cloud-aerosol radiative interactions. We use the LES/SHDOM simulated 3D true radiation fields to test the 2LM for reflectance enhancement at 0.47 micrometers. We find: The simple model captures the viewing angle dependence of the reflectance enhancement near cloud, suggesting the physics of this model is correct; the cloud-molecular interaction alone accounts for 70 percent of the enhancement; the cloud-surface interaction accounts for 16 percent of the enhancement; the cloud-aerosol interaction accounts for an additional 13 percent of the enhancement. We conclude that the 2LM is simple to apply and unbiased.

  2. Study of electronic and optical properties of two-layered hydrogenated aluminum nitrate nanosheet

    Science.gov (United States)

    Faghihzadeh, Somayeh; Shahtahmasebi, Nasser; Rezaee Roknabadi, Mahmood

    2017-09-01

    First principle calculations based on density functional theory using GW approximation and two particle Bethe-Salpeter equation with electron-hole effect were performed to investigate electronic structure and optical properties of two-layered hydrogenated AlN. According to many body green function due to decrease in dimension and considering electron-electron effect, direct (indirect) band gap change from 2 (1.01) eV to 4.83 (3.62) eV. The first peak in imaginary part of dielectric function was observed in parallel direction to a plane obtaining 3.4 was achieved by bound exciton states possess 1.39 eV. The first absorption peak was seen in two parallel and perpendicular directions to a plane which are in UV region.

  3. Initial stresses in two-layer metal domes due to imperfections of their production and assemblage

    Directory of Open Access Journals (Sweden)

    Lebed Evgeniy Vasil’evich

    2015-04-01

    Full Text Available The process of construction of two-layer metal domes is analyzed to illustrate the causes of initial stresses in the bars of their frames. It has been noticed that it is impossible to build such structures with ideal geometric parameters because of imperfections caused by objective reasons. These imperfections cause difficulties in the process of connection of the elements in the joints. The paper demonstrates the necessity of fitting operations during assemblage that involve force fitting and yield initial stresses due to imperfections. The authors propose a special method of computer modeling of enforced elimination of possible imperfections caused by assemblage process and further confirm the method by an analysis of a concrete metal dome.

  4. Analysis of data recorded by the LCTPC equipped with a two layer GEM-system

    CERN Document Server

    Ljunggren, M

    2012-01-01

    wire based readout. The prototype TPC is placed in a 1 Tesla magnet at DESY and tested using an electron beam. Analyses of data taken during two different measurement series, in 2009 and 2010, are presented here. The TPC was instrumented with a two layer GEM system and read out using modified electronics from the ALICE experiment, including the programmable charge sensitive preamp-shaper PCA16. The PCA16 chip has a number of programmable parameters which allows studies to determine the settings optimal to the final TPC. Here, the impact of the shaping time on the space resolution in the drift direction was studied. It was found that a shaping time of 60 ns is the b...

  5. INFLUENCE OF TEMPERATURE ON BEHAVIOR OF THE INTERFACIAL CRACK BETWEEN THE TWO LAYERS

    Directory of Open Access Journals (Sweden)

    Jelena M Djoković

    2010-01-01

    Full Text Available In this paper is considered a problem of the semi-infinite crack at the interface between the two elastic isotropic layers in conditions of the environmental temperature change. The energy release rate needed for the crack growth along the interface was determined, for the case when the two-layered sample is cooled from the temperature of the layers joining down to the room temperature. It was noticed that the energy release rate increases with the temperature difference increase. In the paper is also presented the distribution of stresses in layers as a function of the temperature and the layers' thickness variations. Analysis is limited to the case when the bimaterial sample is exposed to uniform temperature.

  6. High Performance Hybrid Two Layer Router Architecture for FPGAs Using Network On Chip

    CERN Document Server

    Ezhumalai, P; Arun, C; Sakthivel, P; Sridharan, D

    2010-01-01

    Networks on Chip is a recent solution paradigm adopted to increase the performance of Multicore designs. The key idea is to interconnect various computation modules (IP cores) in a network fashion and transport packets simultaneously across them, thereby gaining performance. In addition to improving performance by having multiple packets in flight, NoCs also present a host of other advantages including scalability, power efficiency, and component reuse through modular design. This work focuses on design and development of high performance communication architectures for FPGAs using NoCs Once completely developed, the above methodology could be used to augment the current FPGA design flow for implementing multicore SoC applications. We design and implement an NoC framework for FPGAs, MultiClock OnChip Network for Reconfigurable Systems (MoCReS). We propose a novel microarchitecture for a hybrid two layer router that supports both packetswitched communications, across its local and directional ports, as well as...

  7. The fuzzy coat of pathological human Tau fibrils is a two-layered polyelectrolyte brush.

    Science.gov (United States)

    Wegmann, Susanne; Medalsy, Izhar D; Mandelkow, Eckhard; Müller, Daniel J

    2013-01-22

    The structure and properties of amyloid-like Tau fibrils accumulating in neurodegenerative diseases have been debated for decades. Although the core of Tau fibrils assembles from short β-strands, the properties of the much longer unstructured Tau domains protruding from the fibril core remain largely obscure. Applying immunogold transmission EM, and force-volume atomic force microscopy (AFM), we imaged human Tau fibrils at high resolution and simultaneously mapped their mechanical and adhesive properties. Tau fibrils showed a ≈ 16-nm-thick fuzzy coat that resembles a two-layered polyelectrolyte brush, which is formed by the unstructured short C-terminal and long N-terminal Tau domains. The mechanical and adhesive properties of the fuzzy coat are modulated by electrolytes and pH, and thus by the cellular environment. These unique properties of the fuzzy coat help in understanding how Tau fibrils disturb cellular interactions and accumulate in neurofibrillary tangles.

  8. Sparse/DCT (S/DCT) two-layered representation of prediction residuals for video coding.

    Science.gov (United States)

    Kang, Je-Won; Gabbouj, Moncef; Kuo, C-C Jay

    2013-07-01

    In this paper, we propose a cascaded sparse/DCT (S/DCT) two-layer representation of prediction residuals, and implement this idea on top of the state-of-the-art high efficiency video coding (HEVC) standard. First, a dictionary is adaptively trained to contain featured patterns of residual signals so that a high portion of energy in a structured residual can be efficiently coded via sparse coding. It is observed that the sparse representation alone is less effective in the R-D performance due to the side information overhead at higher bit rates. To overcome this problem, the DCT representation is cascaded at the second stage. It is applied to the remaining signal to improve coding efficiency. The two representations successfully complement each other. It is demonstrated by experimental results that the proposed algorithm outperforms the HEVC reference codec HM5.0 in the Common Test Condition.

  9. Cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate

    Institute of Scientific and Technical Information of China (English)

    Xiang Yan-Xun; Deng Ming-Xi

    2008-01-01

    The physical process of cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate is presented by using the second-order perturbation and the technique of nonlinear reflection of acoustic waves at an interface.In general,the cumulative second-harmonic generation of a dispersive guided wave propagation does not occur.However,the present paper shows that the second-harmonic of Lamb wave propagation arising from the nonlinear interaction of the partial bulk acoustic waves and the restriction of the three boundaries of the solid plates does have a cumulative growth effect if some conditions are satisfied.Through boundary condition and initial condition of excitation,the analytical expression of cumulative second-harmonic of Lamb waves propagation is determined.Numerical results show the cumulative effect of Lamb waves on second-harmonic field patterns.

  10. Convergent flow in a two-layer system and mountain building

    CERN Document Server

    Perazzo, Carlos Alberto

    2009-01-01

    With the purpose of modelling the process of mountain building, we investigate the evolution of the ridge produced by the convergent motion of a system consisting of two layers of liquids that differ in density and viscosity to simulate the crust and the upper mantle that form a lithospheric plate. We assume that the motion is driven by basal traction. Assuming isostasy, we derive a nonlinear differential equation for the evolution of the thickness of the crust. We solve this equation numerically to obtain the profile of the range. We find an approximate self-similar solution that describes reasonably well the process and predicts simple scaling laws for the height and width of the range as well as the shape of the transversal profile. We compare the theoretical results with the profiles of real mountain belts and find and excellent agreement.

  11. TWO-LAYER SECURE PREVENTION MECHANISM FOR REDUCING E-COMMERCE SECURITY RISKS

    Directory of Open Access Journals (Sweden)

    Sen-Tarng Lai

    2015-12-01

    Full Text Available E-commerce is an important information system in the network and digital age. However, the network intrusion, malicious users, virus attack and system security vulnerabilities have continued to threaten the operation of the e-commerce, making e-commerce security encounter serious test. How to improve ecommerce security has become a topic worthy of further exploration. Combining routine security test and security event detection procedures, this paper proposes the Two-Layer Secure Prevention Mechanism (TLSPM. Applying TLSPM, routine security test procedure can identify security vulnerability and defect, and develop repair operations. Security event detection procedure can timely detect security event, and assist follow repair. TLSPM can enhance the e-commerce security and effectively reduce the security risk of e-commerce critical data and asset.

  12. Calculation of AC loss in two-layer superconducting cable with equal currents in the layers

    Science.gov (United States)

    Erdogan, Muzaffer

    2016-12-01

    A new method for calculating AC loss of two-layer SC power transmission cables using the commercial software Comsol Multiphysics, relying on the approach of the equal partition of current between the layers is proposed. Applying the method to calculate the AC-loss in a cable composed of two coaxial cylindrical SC tubes, the results are in good agreement with the analytical ones of duoblock model. Applying the method to calculate the AC-losses of a cable composed of a cylindrical copper former, surrounded by two coaxial cylindrical layers of superconducting tapes embedded in an insulating medium with tape-on-tape and tape-on-gap configurations are compared. A good agreement between the duoblock model and the numerical results for the tape-on-gap cable is observed.

  13. 2-DE combined with two-layer feature selection accurately establishes the origin of oolong tea.

    Science.gov (United States)

    Chien, Han-Ju; Chu, Yen-Wei; Chen, Chi-Wei; Juang, Yu-Min; Chien, Min-Wei; Liu, Chih-Wei; Wu, Chia-Chang; Tzen, Jason T C; Lai, Chien-Chen

    2016-11-15

    Taiwan is known for its high quality oolong tea. Because of high consumer demand, some tea manufactures mix lower quality leaves with genuine Taiwan oolong tea in order to increase profits. Robust scientific methods are, therefore, needed to verify the origin and quality of tea leaves. In this study, we investigated whether two-dimensional gel electrophoresis (2-DE) and nanoscale liquid chromatography/tandem mass spectroscopy (nano-LC/MS/MS) coupled with a two-layer feature selection mechanism comprising information gain attribute evaluation (IGAE) and support vector machine feature selection (SVM-FS) are useful in identifying characteristic proteins that can be used as markers of the original source of oolong tea. Samples in this study included oolong tea leaves from 23 different sources. We found that our method had an accuracy of 95.5% in correctly identifying the origin of the leaves. Overall, our method is a novel approach for determining the origin of oolong tea leaves.

  14. A Two-Layer Mathematical Modelling of Drug Delivery to Biological Tissues

    CERN Document Server

    Chakravarty, Koyel

    2016-01-01

    Local drug delivery has received much recognition in recent years, yet it is still unpredictable how drug efficacy depends on physicochemical properties and delivery kinetics. The purpose of the current study is to provide a useful mathematical model for drug release from a drug delivery device and consecutive drug transport in biological tissue, thereby aiding the development of new therapeutic drug by a systemic approach. In order to study the complete process, a two-layer spatio-temporal model depicting drug transport between the coupled media is presented. Drug release is described by considering solubilisation dynamics of drug particle, diffusion of the solubilised drug through porous matrix and also some other processes like reversible dissociation / recrystallization, drug particle-receptor binding and internalization phenomena. The model has led to a system of partial differential equations describing the important properties of drug kinetics. This model contributes towards the perception of the roles...

  15. A TWO-LAYER RECURRENT NEURAL NETWORK BASED APPROACH FOR OVERLAY MULTICAST

    Institute of Scientific and Technical Information of China (English)

    Liu Shidong; Zhang Shunyi; Zhou Jinquan; Qiu Gong'an

    2008-01-01

    Overlay multicast has become one of the most promising multicast solutions for IP network, and Neutral Network(NN) has been a good candidate for searching optimal solutions to the constrained shortest routing path in virtue of its powerful capacity for parallel computation. Though traditional Hopfield NN can tackle the optimization problem, it is incapable of dealing with large scale networks due to the large number of neurons. In this paper, a neural network for overlay multicast tree computation is presented to reliably implement routing algorithm in real time. The neural network is constructed as a two-layer recurrent architecture, which is comprised of Independent Variable Neurons (IDVN) and Dependent Variable Neurons (DVN), according to the independence of the decision variables associated with the edges in directed graph. Compared with the heuristic routing algorithms, it is characterized as shorter computational time, fewer neurons, and better precision.

  16. Two-layer networked learning control using self-learning fuzzy control algorithms

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Since the existing single-layer networked control systems have some inherent limitations and cannot effectively handle the problems associated with unreliable networks, a novel two-layer networked learning control system (NLCS) is proposed in this paper. Its lower layer has a number of local controllers that are operated independently, and its upper layer has a learning agent that communicates with the independent local controllers in the lower layer. To implement such a system, a packet-discard strategy is firstly developed to deal with network-induced delay and data packet loss. A cubic spline interpolator is then employed to compensate the lost data. Finally, the output of the learning agent based on a novel radial basis function neural network (RBFNN) is used to update the parameters of fuzzy controllers. A nonlinear heating, ventilation and air-conditioning (HVAC) system is used to demonstrate the feasibility and effectiveness of the proposed system.

  17. Artery buckling analysis using a two-layered wall model with collagen dispersion.

    Science.gov (United States)

    Mottahedi, Mohammad; Han, Hai-Chao

    2016-07-01

    Artery buckling has been proposed as a possible cause for artery tortuosity associated with various vascular diseases. Since microstructure of arterial wall changes with aging and diseases, it is essential to establish the relationship between microscopic wall structure and artery buckling behavior. The objective of this study was to developed arterial buckling equations to incorporate the two-layered wall structure with dispersed collagen fiber distribution. Seven porcine carotid arteries were tested for buckling to determine their critical buckling pressures at different axial stretch ratios. The mechanical properties of these intact arteries and their intima-media layer were determined via pressurized inflation test. Collagen alignment was measured from histological sections and modeled by a modified von-Mises distribution. Buckling equations were developed accordingly using microstructure-motivated strain energy function. Our results demonstrated that collagen fibers disperse around two mean orientations symmetrically to the circumferential direction (39.02°±3.04°) in the adventitia layer; while aligning closely in the circumferential direction (2.06°±3.88°) in the media layer. The microstructure based two-layered model with collagen fiber dispersion described the buckling behavior of arteries well with the model predicted critical pressures match well with the experimental measurement. Parametric studies showed that with increasing fiber dispersion parameter, the predicted critical buckling pressure increases. These results validate the microstructure-based model equations for artery buckling and set a base for further studies to predict the stability of arteries due to microstructural changes associated with vascular diseases and aging.

  18. Quantification of the specific yield in a two-layer hard-rock aquifer model

    Science.gov (United States)

    Durand, Véronique; Léonardi, Véronique; de Marsily, Ghislain; Lachassagne, Patrick

    2017-08-01

    Hard rock aquifers (HRA) have long been considered to be two-layer systems, with a mostly capacitive layer just below the surface, the saprolite layer, and a mainly transmissive layer underneath, the fractured layer. Although this hydrogeological conceptual model is widely accepted today within the scientific community, it is difficult to quantify the respective storage properties of each layer with an equivalent porous medium model. Based on an HRA field site, this paper attempts to quantify in a distinct manner the respective values of the specific yield (Sy) in the saprolite and the fractured layer, with the help of a deterministic hydrogeological model. The study site is the Plancoët migmatitic aquifer located in north-western Brittany, France, with piezometric data from 36 observation wells surveyed every two weeks for eight years. Whereas most of the piezometers (26) are located where the water table lies within the saprolite, thus representing the specific yield of the unconfined layer (Sy1), 10 of them are representative of the unconfined fractured layer (Sy2), due to their position where the saprolite is eroded or unsaturated. The two-layer model, based on field observations of the layer geometry, runs with the MODFLOW code. 81 values of the Sy1/Sy2 parameter sets were tested manually, as an inverse calibration was not able to calibrate these parameters. In order to calibrate the storage properties, a new quality-of-fit criterion called ;AdVar; was also developed, equal to the mean squared deviation of the seasonal piezometric amplitude variation. Contrary to the variance, AdVar is able to select the best values for the specific yield in each layer. It is demonstrated that the saprolite layer is about 2.5 times more capacitive than the fractured layer, with Sy1 = 10% (7% < Sy1 < 15%) against Sy2 = 2% (1% < Sy2 < 3%), in this particular example.

  19. Turbulent Mixing in Clusters of Galaxies

    CERN Document Server

    Kim, W T; Kim, Woong-Tae; Narayan, Ramesh

    2003-01-01

    We present a model of galaxy clusters in which radiative cooling from the hot gas is balanced by heat transport through turbulent mixing. We describe the turbulent heat diffusion by means of a mixing length prescription with a dimensionless parameter alpha_mix. Models with alpha_mix ~ 0.01-0.03 yield reasonably good fits to the observed density and temperature profiles of several cooling flow clusters. The model clusters do not experience any serious thermal instability: they are either completely stable or have growth times considerably longer than the Hubble time. With the assumption that alpha_mix is roughly the same for all clusters, the model reproduces remarkably well the observed scalings of X-ray luminosity, gas mass fraction and entropy with temperature. The break in the scaling relations at kT ~ 1-2 keV is explained by the break in the cooling function at around this temperature, and the entropy floor observed in galaxy groups is reproduced naturally.

  20. Single- and Two-Layer Coatings of Metal Blends onto Carbon Steel: Mechanical, Wear, and Friction Characterizations

    Science.gov (United States)

    Yilbas, Bekir Sami; Kumar, Aditya; Bhushan, Bharat

    2014-01-01

    Single- and two-layer coatings were deposited onto carbon steel using a high-velocity oxy-fuel deposition gun. The two-layer coating consisted of a top layer of tungsten carbide cobalt/nickel alloy blend that provides wear resistance and a bottom layer of iron/molybdenum blend that provides corrosion resistance. The morphological changes in the single- and two-layer coatings were examined using scanning electron microscopy. The residual stresses formed on the surface of various coatings were determined from x-ray diffraction data. Nanomechanical properties were measured using the nanoindentation technique. Microhardness and fracture toughness were measured incorporating the microindentation tests. Macrowear and macrofriction characteristics were measured using the pin-on-disk testing apparatus. The goal of this study was to ensure that the mechanical properties, friction, and wear resistance of the two-layer coating are similar to that of the single-layer coating.

  1. Turbulence Model

    DEFF Research Database (Denmark)

    Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens

    2011-01-01

    In this report a new turbulence model is presented.In contrast to the bulk of modern work, the model is a classical continuum model with a relatively simple constitutive equation. The constitutive equation is, as usual in continuum mechanics, entirely empirical. It has the usual Newton or Stokes...... term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence....... The model is in a virgin state, but a number of numerical tests have been carried out with good results. It is published to encourage other researchers to study the model in order to find its merits and possible limitations....

  2. Controlling turbulence

    Science.gov (United States)

    Kühnen, Jakob; Hof, Björn

    2015-11-01

    We show that a simple modification of the velocity profile in a pipe can lead to a complete collapse of turbulence and the flow fully relaminarises. The annihilation of turbulence is achieved by a steady manipulation of the streamwise velocity component alone, greatly reducing control efforts. Several different control techniques are presented: one with a local modification of the flow profile by means of a stationary obstacle, one employing a nozzle injecting fluid through a small gap at the pipe wall and one with a moving wall, where a part of the pipe is shifted in the streamwise direction. All control techniques act on the flow such that the streamwise velocity profile becomes more flat and turbulence gradually grows faint and disappears. In a smooth straight pipe the flow remains laminar downstream of the control. Hence a reduction in skin friction by a factor of 8 and more can be accomplished. Stereoscopic PIV-measurements and movies of the development of the flow during relaminarisation are presented.

  3. Synergies between Asteroseismology and Three-dimensional Simulations of Stellar Turbulence

    Science.gov (United States)

    Arnett, W. David; Moravveji, E.

    2017-02-01

    Turbulent mixing of chemical elements by convection has fundamental effects on the evolution of stars. The standard algorithm at present, mixing-length theory (MLT), is intrinsically local, and must be supplemented by extensions with adjustable parameters. As a step toward reducing this arbitrariness, we compare asteroseismically inferred internal structures of two Kepler slowly pulsating B stars (SPBs; M∼ 3.25{M}ȯ ) to predictions of 321D turbulence theory, based upon well-resolved, truly turbulent three-dimensional simulations that include boundary physics absent from MLT. We find promising agreement between the steepness and shapes of the theoretically predicted composition profile outside the convective region in 3D simulations and in asteroseismically constrained composition profiles in the best 1D models of the two SPBs. The structure and motion of the boundary layer, and the generation of waves, are discussed.

  4. Storage capacity and learning algorithms for two-layer neural networks

    Science.gov (United States)

    Engel, A.; Köhler, H. M.; Tschepke, F.; Vollmayr, H.; Zippelius, A.

    1992-05-01

    A two-layer feedforward network of McCulloch-Pitts neurons with N inputs and K hidden units is analyzed for N-->∞ and K finite with respect to its ability to implement p=αN random input-output relations. Special emphasis is put on the case where all hidden units are coupled to the output with the same strength (committee machine) and the receptive fields of the hidden units either enclose all input units (fully connected) or are nonoverlapping (tree structure). The storage capacity is determined generalizing Gardner's treatment [J. Phys. A 21, 257 (1988); Europhys. Lett. 4, 481 (1987)] of the single-layer perceptron. For the treelike architecture, a replica-symmetric calculation yields αc~ √K for a large number K of hidden units. This result violates an upper bound derived by Mitchison and Durbin [Biol. Cybern. 60, 345 (1989)]. One-step replica-symmetry breaking gives lower values of αc. In the fully connected committee machine there are in general correlations among different hidden units. As the limit of capacity is approached, the hidden units are anticorrelated: One hidden unit attempts to learn those patterns which have not been learned by the others. These correlations decrease as 1/K, so that for K-->∞ the capacity per synapse is the same as for the tree architecture, whereas for small K we find a considerable enhancement for the storage per synapse. Numerical simulations were performed to explicitly construct solutions for the tree as well as the fully connected architecture. A learning algorithm is suggested. It is based on the least-action algorithm, which is modified to take advantage of the two-layer structure. The numerical simulations yield capacities p that are slightly more than twice the number of degrees of freedom, while the fully connected net can store relatively more patterns than the tree. Various generalizations are discussed. Variable weights from hidden to output give the same results for the storage capacity as does the committee

  5. Optical measurements of absorption changes in two-layered diffusive media

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, Francesco [Department of Biomedical Engineering, Bioengineering Center, Tufts University, 4 Colby Street, Medford, MA 02155 (United States); Sassaroli, Angelo [Department of Biomedical Engineering, Bioengineering Center, Tufts University, 4 Colby Street, Medford, MA 02155 (United States); Henry, Michael E [McLean Hospital and Department of Psychiatry, Harvard Medical School, 115 Mill Street, Belmont, MA 02478 (United States); Fantini, Sergio [Department of Biomedical Engineering, Bioengineering Center, Tufts University, 4 Colby Street, Medford, MA 02155 (United States)

    2004-04-07

    We have used Monte Carlo simulations for a two-layered diffusive medium to investigate the effect of a superficial layer on the measurement of absorption variations from optical diffuse reflectance data processed by using: (a) a multidistance, frequency-domain method based on diffusion theory for a semi-infinite homogeneous medium; (b) a differential-pathlength-factor method based on a modified Lambert-Beer law for a homogeneous medium and (c) a two-distance, partial-pathlength method based on a modified Lambert-Beer law for a two-layered medium. Methods (a) and (b) lead to a single value for the absorption variation, whereas method (c) yields absorption variations for each layer. In the simulations, the optical coefficients of the medium were representative of those of biological tissue in the near-infrared. The thickness of the first layer was in the range 0.3-1.4 cm, and the source-detector distances were in the range 1-5 cm, which is typical of near-infrared diffuse reflectance measurements in tissue. The simulations have shown that (1) method (a) is mostly sensitive to absorption changes in the underlying layer, provided that the thickness of the superficial layer is {approx}0.6 cm or less; (2) method (b) is significantly affected by absorption changes in the superficial layer and (3) method (c) yields the absorption changes for both layers with a relatively good accuracy of {approx}4% for the superficial layer and {approx}10% for the underlying layer (provided that the absorption changes are less than 20-30% of the baseline value). We have applied all three methods of data analysis to near-infrared data collected on the forehead of a human subject during electroconvulsive therapy. Our results suggest that the multidistance method (a) and the two-distance partial-pathlength method (c) may better decouple the contributions to the optical signals that originate in deeper tissue (brain) from those that originate in more superficial tissue layers.

  6. Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations

    Directory of Open Access Journals (Sweden)

    S. Nishizawa

    2015-10-01

    Full Text Available We examine the influence of the grid aspect ratio of horizontal to vertical grid spacing on turbulence in the planetary boundary layer (PBL in a large-eddy simulation (LES. In order to clarify and distinguish them from other artificial effects caused by numerical schemes, we used a fully compressible meteorological LES model with a fully explicit scheme of temporal integration. The influences are investigated with a series of sensitivity tests with parameter sweeps of spatial resolution and grid aspect ratio. We confirmed that the mixing length of the eddy viscosity and diffusion due to sub-grid-scale turbulence plays an essential role in reproducing the theoretical −5/3 slope of the energy spectrum. If we define the filter length in LES modeling based on consideration of the numerical scheme, and introduce a corrective factor for the grid aspect ratio into the mixing length, the theoretical slope of the energy spectrum can be obtained; otherwise, spurious energy piling appears at high wave numbers. We also found that the grid aspect ratio has influence on the turbulent statistics, especially the skewness of the vertical velocity near the top of the PBL, which becomes spuriously large with large aspect ratio, even if a reasonable spectrum is obtained.

  7. Graphic Turbulence Guidance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...

  8. Graphical Turbulence Guidance - Composite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...

  9. Thermal properties of composite two-layer systems with a fractal inclusion structure

    Science.gov (United States)

    Reyes-Salgado, J. J.; Dossetti, V.; Bonilla-Capilla, B.; Carrillo, J. L.

    2015-01-01

    In this work, we study the thermal transport properties of platelike composite two-layer samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy and thermal relaxation, their effective thermal diffusivity and conductivity were experimentally measured. The composite layers were prepared under the action of a static magnetic field, resulting in anisotropic (fractal) inclusion structures with the formation of chain-like magnetite aggregates parallel to the faces of the layers. In one kind of the bilayers, a composite layer was formed on top of a resin layer while their relative thickness was varied. These samples can be described by known models. In contrast, bilayers with the same concentration of inclusions and the same thickness on both sides, where only the angle between their inclusion structures was systematically varied, show a nontrivial behaviour of their thermal conductivity as a function of this angle. Through a multifractal and lacunarity analysis, we explain the observed thermal response in terms of the complexity of the interface between the layers.

  10. Two layer asymptotic model for the wave propagation in the presence of vorticity

    Science.gov (United States)

    Kazakova, M. Yu; Noble, P.

    2016-06-01

    In the present study, we consider the system of two layers of the immiscible constant density fluids which are modeled by the full Euler equations. The domain of the flow is infinite in the horizontal directions and delimited above by a free surface. Bottom topography is taken into account. This is a simple model of the wave propagation in the ocean where the upper layer corresponds to the (thin) layer of fluid above the thermocline whereas the lower layer is under the thermocline. Though even this simple framework is computationally too expensive and mathematically too complicated to describe efficiently propagation of waves in the ocean. Modeling assumption such as shallowness, vanishing vorticity and hydrostatic pressure are usually made to get the bi-layer shallow water models that are mathematically more manageable. Though, they cannot describe correctly the propagation of both internal and free surface waves and dispersive/non hydrostatic must be added. Our goal is to consider the regime of medium to large vorticities in shallow water flow. We present the derivation of the model for internal and surface wave propagation in the case of constant and general vorticities in each layer. The model reduces to the classical Green-Naghdi equations in the case of vanishing vorticities.

  11. Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach

    CERN Document Server

    Camassa, R; Ortenzi, G

    2015-01-01

    The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite 2D channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids' inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, and thence, in a non-trivial way, to the dispersionless non-linear Schr\\"odinger equation. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, it is shown that at first order the deformed system possesses an infinite sequence of constants of the motion, thus casting this system within the framework of comp...

  12. Method of the Moulding Sands Binding Power Assessment in Two-Layer Moulds Systems

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2014-07-01

    Full Text Available More and more foundry plants applying moulding sands with water-glass or its substitutes for obtaining the high-quality casting surface at the smallest costs, consider the possibility of implementing two-layer moulds, in which e.g. the facing sand is a sand with an organic binder (no-bake type and the backing sand is a sand with inorganic binder. Both kinds of sands must have the same chemical reaction. The most often applied system is the moulding sand on the water-glass or geopolymer bases - as the backing sand and the moulding sand from the group of self-hardening sands with a resol resin - as the facing sand. Investigations were performed for the system: moulding sand with inorganic GEOPOL binder or moulding sand with water glass (as a backing sand and moulding sand, no-bake type, with a resol resin originated from various producers: Rezolit AM, Estrofen, Avenol NB 700 (as a facing sand. The LUZ apparatus, produced by Multiserw Morek, was adapted for investigations. A special partition with cuts was mounted in the attachment for making test specimens for measuring the tensile strength. This partition allowed a simultaneous compaction of two kinds of moulding sands. After 24 hours of hardening the highest values were obtained for the system: Geopol binder - Avenol resin.

  13. Display of the β-effect in the Black Sea Two-Layer Model

    Directory of Open Access Journals (Sweden)

    A.A. Pavlushin

    2016-10-01

    Full Text Available The research is a continuation of a series of numerical experiments on modeling formation of wind currents and eddies in the Black Sea within the framework of a two-layer eddy-resolving model. The main attention is focused on studying the β-effect role. The stationary cyclonic wind is used as an external forcing and the bottom topography is not considered. It is shown that at the β-effect being taken into account, the Rossby waves propagating from east to west are observed both during the currents’ formation and at the statistical equilibrium mode when the mesoscale eddies are formed. In the integral flows’ field the waves are visually manifested in a form of the alternate large-scale cyclonic gyres and zones in which the meso-scale anti-cyclones are formed. This spatial pattern constantly propagates to the west that differs from the results of calculations using the constant Coriolis parameter when the spatially alternate cyclonic and anti-cyclonic vortices are formed, but hold a quasi-stationary position. The waves with the parameters of the Rossby wave first barotropic mode for the closed basin are most clearly pronounced. Interaction of the Rossby waves with large-scale circulation results in intensification of the of the currents’ hydrodynamic instability and in formation of the mesoscale eddies. Significant decrease of kinetic and available potential energy as compared to the values obtained at the constant Coriolis parameter is also a consequence of the eddy formation intensification.

  14. Inferring topologies via driving-based generalized synchronization of two-layer networks

    Science.gov (United States)

    Wang, Yingfei; Wu, Xiaoqun; Feng, Hui; Lu, Jun-an; Xu, Yuhua

    2016-05-01

    The interaction topology among the constituents of a complex network plays a crucial role in the network’s evolutionary mechanisms and functional behaviors. However, some network topologies are usually unknown or uncertain. Meanwhile, coupling delays are ubiquitous in various man-made and natural networks. Hence, it is necessary to gain knowledge of the whole or partial topology of a complex dynamical network by taking into consideration communication delay. In this paper, topology identification of complex dynamical networks is investigated via generalized synchronization of a two-layer network. Particularly, based on the LaSalle-type invariance principle of stochastic differential delay equations, an adaptive control technique is proposed by constructing an auxiliary layer and designing proper control input and updating laws so that the unknown topology can be recovered upon successful generalized synchronization. Numerical simulations are provided to illustrate the effectiveness of the proposed method. The technique provides a certain theoretical basis for topology inference of complex networks. In particular, when the considered network is composed of systems with high-dimension or complicated dynamics, a simpler response layer can be constructed, which is conducive to circuit design. Moreover, it is practical to take into consideration perturbations caused by control input. Finally, the method is applicable to infer topology of a subnetwork embedded within a complex system and locate hidden sources. We hope the results can provide basic insight into further research endeavors on understanding practical and economical topology inference of networks.

  15. Extreme events statistics in a two-layer quasi-geostrophic atmospheric model

    Science.gov (United States)

    Galfi, Vera Melinda; Bodai, Tamas; Lucarini, Valerio

    2016-04-01

    Extreme events statistics provides a theoretical framework to analyze and predict extreme events based on the convergence of the distribution of the extremes to some limiting distribution. In this work we analyze the convergence of the distribution of extreme events to the Generalized Extreme Value (GEV) distribution and to the Generalized Pareto Distribution (GPD), using a two-layer quasi-geostrophic atmospheric model, and compare our results with theoretical findings from the field of extreme value theory for dynamical systems. We study the behavior of the GEV shape parameter by increasing the block size and of the GPD shape parameter by increasing the threshold, and compare the inferred parameters with a theoretical shape parameter that depends only on the geometrical properties of the attractor. The main objective is to find out whether this theoretical shape parameter can be used to evaluate extreme event analysis based on model output. For this, we perform very long simulations. We run our system with two different levels of forcing determined by two different meridional temperature gradients, one inducing a medium level of chaos and the other one a high level of chaos. We analyze in both cases extremes of energy variables.

  16. Deposition, Heat Treatment And Characterization of Two Layer Bioactive Coatings on Cylindrical PEEK.

    Science.gov (United States)

    Durham, John W; Rabiei, Afsaneh

    2016-09-15

    Polyether ether ketone (PEEK) rods were coated via ion beam asssited deposition (IBAD) at room temperature. The coating consists of a two-layer design of yttria-stabilized zirconia (YSZ) as a heat-protection layer, and hydroxyapatite (HA) as a top layer to increase bioactivity. A rotating substrate holder was designed to deposit an even coating on the cylindrical surface of PEEK rods; the uniformity is verified by cross-sectional measurements using scanning electron microscopy (SEM). Deposition is followed by heat treatment of the coating using microwave annealing and autoclaving. Transmission electron microscopy (TEM) showed a dense, uniform columnar grain structure in the YSZ layer that is well bonded to the PEEK substrate, while the calcium phosphate layer was amorphous and pore-free in its as-deposited state. Subsequent heat treatment via microwave energy introduced HA crystallization in the calcium phosphate layer and additional autoclaving further expanded the crystallization of the HA layer. Chemical composition evaluation of the coating indicated the Ca/P ratios of the HA layer to be near that of stoichiometric HA, with minor variations through the HA layer thickness. The adhesion strength of as-deposited HA/YSZ coatings on smooth, polished PEEK surfaces was mostly unaffected by microwave heat treatment, but decreased with additional autoclave treatment. Increasing surface roughness showed improvement of bond strength.

  17. A novel approach to ECG classification based upon two-layered HMMs in body sensor networks.

    Science.gov (United States)

    Liang, Wei; Zhang, Yinlong; Tan, Jindong; Li, Yang

    2014-03-27

    This paper presents a novel approach to ECG signal filtering and classification. Unlike the traditional techniques which aim at collecting and processing the ECG signals with the patient being still, lying in bed in hospitals, our proposed algorithm is intentionally designed for monitoring and classifying the patient's ECG signals in the free-living environment. The patients are equipped with wearable ambulatory devices the whole day, which facilitates the real-time heart attack detection. In ECG preprocessing, an integral-coefficient-band-stop (ICBS) filter is applied, which omits time-consuming floating-point computations. In addition, two-layered Hidden Markov Models (HMMs) are applied to achieve ECG feature extraction and classification. The periodic ECG waveforms are segmented into ISO intervals, P subwave, QRS complex and T subwave respectively in the first HMM layer where expert-annotation assisted Baum-Welch algorithm is utilized in HMM modeling. Then the corresponding interval features are selected and applied to categorize the ECG into normal type or abnormal type (PVC, APC) in the second HMM layer. For verifying the effectiveness of our algorithm on abnormal signal detection, we have developed an ECG body sensor network (BSN) platform, whereby real-time ECG signals are collected, transmitted, displayed and the corresponding classification outcomes are deduced and shown on the BSN screen.

  18. MHD two-layered unsteady fluid flow and heat transfer through a horizontal channel between

    Directory of Open Access Journals (Sweden)

    Raju T. Linga

    2014-02-01

    Full Text Available An unsteady magnetohydrodynamic (MHD two-layered fluids flow and heat transfer in a horizontal channel between two parallel plates in the presence of an applied magnetic and electric field is investigated, when the whole system is rotated about an axis perpendicular to the flow. The flow is driven by a constant uniform pressure gradient in the channel bounded by two parallel insulating plates, when both fluids are considered as electrically conducting, incompressible with variable properties, viz. different viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperatures. The governing partial differential equations are then reduced to the ordinary linear differential equations using two-term series. Closed form solutions for primary and secondary velocity, also temperature distributions are obtained in both the fluid regions of the channel. Profiles of these solutions are plotted to discuss the effects of the flow and heat transfer characteristics, and their dependence on the governing parameters involved, such as the Hartmann number, rotation parameter, ratios of the viscosities, heights, electrical and thermal conductivities

  19. A Two-Layer Method for Sedentary Behaviors Classification Using Smartphone and Bluetooth Beacons.

    Science.gov (United States)

    Cerón, Jesús D; López, Diego M; Hofmann, Christian

    2017-01-01

    Among the factors that outline the health of populations, person's lifestyle is the more important one. This work focuses on the caracterization and prevention of sedentary lifestyles. A sedentary behavior is defined as "any waking behavior characterized by an energy expenditure of 1.5 METs (Metabolic Equivalent) or less while in a sitting or reclining posture". To propose a method for sedentary behaviors classification using a smartphone and Bluetooth beacons considering different types of classification models: personal, hybrid or impersonal. Following the CRISP-DM methodology, a method based on a two-layer approach for the classification of sedentary behaviors is proposed. Using data collected from a smartphones' accelerometer, gyroscope and barometer; the first layer classifies between performing a sedentary behavior and not. The second layer of the method classifies the specific sedentary activity performed using only the smartphone's accelerometer and barometer data, but adding indoor location data, using Bluetooth Low Energy (BLE) beacons. To improve the precision of the classification, both layers implemented the Random Forest algorithm and the personal model. This study presents the first available method for the automatic classification of specific sedentary behaviors. The layered classification approach has the potential to improve processing, memory and energy consumption of mobile devices and wearables used.

  20. A two-layer $\\alpha\\omega$ dynamo model, and its implications for 1-D dynamos

    CERN Document Server

    Roald, C B

    1999-01-01

    I will discuss an attempt at representing an interface dynamo in a simplified, essentially 1D framework. The operation of the dynamo is broken up into two 1D layers, one containing the $\\alpha$ effect and the other containing the $\\omega$ effect, and these two layers are allowed to communicate with each other by the simplest possible representation of diffusion, an analogue of Newton's law of cooling. Dynamical back-reaction of the magnetic field on them with diagrams I computed for a comparable purely 1D model. The bifurcation structure shows remarkable similarity, but a couple of subtle changes imply dramatically different physical behaviour for the model. In particular, the solar-like dynamo mode found in the 1-layer model is not stable in the 2-layer version; instead there is an (apparent) homoclinic bifurcation and a sequence of periodic, quasiperiodic, and chaotic modes. I argue that the fragility of these models makes them effectively useless as predictors or interpreters of more complex dynamos.

  1. Two-Layer Linear MPC Approach Aimed at Walking Beam Billets Reheating Furnace Optimization

    Directory of Open Access Journals (Sweden)

    Silvia Maria Zanoli

    2017-01-01

    Full Text Available In this paper, the problem of the control and optimization of a walking beam billets reheating furnace located in an Italian steel plant is analyzed. An ad hoc Advanced Process Control framework has been developed, based on a two-layer linear Model Predictive Control architecture. This control block optimizes the steady and transient states of the considered process. Two main problems have been addressed. First, in order to manage all process conditions, a tailored module defines the process variables set to be included in the control problem. In particular, a unified approach for the selection on the control inputs to be used for control objectives related to the process outputs is guaranteed. The impact of the proposed method on the controller formulation is also detailed. Second, an innovative mathematical approach for stoichiometric ratios constraints handling has been proposed, together with their introduction in the controller optimization problems. The designed control system has been installed on a real plant, replacing operators’ mental model in the conduction of local PID controllers. After two years from the first startup, a strong energy efficiency improvement has been observed.

  2. A global-scale two-layer transient groundwater model: Development and application to groundwater depletion

    Science.gov (United States)

    de Graaf, Inge E. M.; van Beek, Rens L. P. H.; Gleeson, Tom; Moosdorf, Nils; Schmitz, Oliver; Sutanudjaja, Edwin H.; Bierkens, Marc F. P.

    2017-04-01

    Groundwater is the world's largest accessible source of freshwater to satisfy human water needs. Moreover, groundwater buffers variable precipitation rates over time, thereby effectively sustaining river flows in times of droughts and evaporation in areas with shallow water tables. In this study, building on previous work, we simulate groundwater head fluctuations and groundwater storage changes in both confined and unconfined aquifer systems using a global-scale high-resolution (5‧) groundwater model by deriving new estimates of the distribution and thickness of confining layers. Inclusion of confined aquifer systems (estimated 6-20% of the total aquifer area) improves estimates of timing and amplitude of groundwater head fluctuations and changes groundwater flow paths and groundwater-surface water interaction rates. Groundwater flow paths within confining layers are shorter than paths in the underlying aquifer, while flows within the confined aquifer can get disconnected from the local drainage system due to the low conductivity of the confining layer. Lateral groundwater flows between basins are significant in the model, especially for areas with (partially) confined aquifers were long flow paths crossing catchment boundaries are simulated, thereby supporting water budgets of neighboring catchments or aquifer systems. The developed two-layer transient groundwater model is used to identify hot-spots of groundwater depletion. Global groundwater depletion is estimated as 7013 km3 (137 km3y-1) over 1960-2010, which is consistent with estimates of previous studies.

  3. A Novel Approach to ECG Classification Based upon Two-Layered HMMs in Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wei Liang

    2014-03-01

    Full Text Available This paper presents a novel approach to ECG signal filtering and classification. Unlike the traditional techniques which aim at collecting and processing the ECG signals with the patient being still, lying in bed in hospitals, our proposed algorithm is intentionally designed for monitoring and classifying the patient’s ECG signals in the free-living environment. The patients are equipped with wearable ambulatory devices the whole day, which facilitates the real-time heart attack detection. In ECG preprocessing, an integral-coefficient-band-stop (ICBS filter is applied, which omits time-consuming floating-point computations. In addition, two-layered Hidden Markov Models (HMMs are applied to achieve ECG feature extraction and classification. The periodic ECG waveforms are segmented into ISO intervals, P subwave, QRS complex and T subwave respectively in the first HMM layer where expert-annotation assisted Baum-Welch algorithm is utilized in HMM modeling. Then the corresponding interval features are selected and applied to categorize the ECG into normal type or abnormal type (PVC, APC in the second HMM layer. For verifying the effectiveness of our algorithm on abnormal signal detection, we have developed an ECG body sensor network (BSN platform, whereby real-time ECG signals are collected, transmitted, displayed and the corresponding classification outcomes are deduced and shown on the BSN screen.

  4. A two-layer recurrent neural network for nonsmooth convex optimization problems.

    Science.gov (United States)

    Qin, Sitian; Xue, Xiaoping

    2015-06-01

    In this paper, a two-layer recurrent neural network is proposed to solve the nonsmooth convex optimization problem subject to convex inequality and linear equality constraints. Compared with existing neural network models, the proposed neural network has a low model complexity and avoids penalty parameters. It is proved that from any initial point, the state of the proposed neural network reaches the equality feasible region in finite time and stays there thereafter. Moreover, the state is unique if the initial point lies in the equality feasible region. The equilibrium point set of the proposed neural network is proved to be equivalent to the Karush-Kuhn-Tucker optimality set of the original optimization problem. It is further proved that the equilibrium point of the proposed neural network is stable in the sense of Lyapunov. Moreover, from any initial point, the state is proved to be convergent to an equilibrium point of the proposed neural network. Finally, as applications, the proposed neural network is used to solve nonlinear convex programming with linear constraints and L1 -norm minimization problems.

  5. Convergence of Extreme Value Statistics in a Two-Layer Quasi-Geostrophic Atmospheric Model

    Directory of Open Access Journals (Sweden)

    Vera Melinda Gálfi

    2017-01-01

    Full Text Available We search for the signature of universal properties of extreme events, theoretically predicted for Axiom A flows, in a chaotic and high-dimensional dynamical system. We study the convergence of GEV (Generalized Extreme Value and GP (Generalized Pareto shape parameter estimates to the theoretical value, which is expressed in terms of the partial information dimensions of the attractor. We consider a two-layer quasi-geostrophic atmospheric model of the mid-latitudes, adopt two levels of forcing, and analyse the extremes of different types of physical observables (local energy, zonally averaged energy, and globally averaged energy. We find good agreement in the shape parameter estimates with the theory only in the case of more intense forcing, corresponding to a strong chaotic behaviour, for some observables (the local energy at every latitude. Due to the limited (though very large data size and to the presence of serial correlations, it is difficult to obtain robust statistics of extremes in the case of the other observables. In the case of weak forcing, which leads to weaker chaotic conditions with regime behaviour, we find, unsurprisingly, worse agreement with the theory developed for Axiom A flows.

  6. Critical properties of XY model on two-layer Villain-ferromagnetic lattice

    Institute of Scientific and Technical Information of China (English)

    Wang Yi; R. Quartu; Liu Xiao-Yan; Han Ru-Qi; Horiguchi Tsuyoshi

    2004-01-01

    We investigate phase transitions of the XY model on a two-layer square lattice which consists of a Villain plane(J) and a ferromagnetic plane (I), using Monte Carlo simulations and a histogram method. Depending on the values of interaction parameters (I, J), the system presents three phases: namely, a Kosterlitz-Thouless (KT) phase in which the two planes are critical for I predominant over J, a chiral phase in which the two planes have a chiral order for J predominant over I and a new phase in which only the Villain plane has a chiral order and the ferromagnetic plane is paramagnetic with a small value of chirality. We clarify the nature of phase transitions by using a finite size scaling method. We find three different kinds of transitions according to the values of (I, J): the KT transition, the Ising transition and an XY-Ising transition with v = 0.849(3). It turns out that the Ising or XY-Ising transition is associated with the disappearance of the chiral order in the Villain plane.

  7. Powerful Amplification Cascades of FRET-Based Two-Layer Nonenzymatic Nucleic Acid Circuits.

    Science.gov (United States)

    Quan, Ke; Huang, Jin; Yang, Xiaohai; Yang, Yanjing; Ying, Le; Wang, He; Xie, Nuli; Ou, Min; Wang, Kemin

    2016-06-07

    Nucleic acid circuits have played important roles in biological engineering and have increasingly attracted researchers' attention. They are primarily based on nucleic acid hybridizations and strand displacement reactions between nucleic acid probes of different lengths. Signal amplification schemes that do not rely on protein enzyme show great potential in analytical applications. While the single amplification circuit often achieves linear amplification that may not meet the need for detection of target in a very small amount, it is very necessary to construct cascade circuits that allow for larger amplification of inputs. Herein, we have successfully engineered powerful amplification cascades of FRET-based two-layer nonenzymatic nucleic acid circuits, in which the outputs of catalyzed hairpin assembly (CHA) activate hybridization chain reactions (HCR) circuits to induce repeated hybridization, allowing real-time monitoring of self-assembly process by FRET signal. The cascades can yield 50000-fold signal amplification with the help of the well-designed and high-quality nucleic acid circuit amplifiers. Subsequently, with coupling of structure-switching aptamer, as low as 200 pM adenosine is detected in buffer, as well as in human serum. To our knowledge, we have for the first time realized real-time monitoring adaptation of HCR to CHA circuits and achieved amplified detection of nucleic acids and small molecules with relatively high sensitivity.

  8. Formation of turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Struminskii, V.V. (Sektor Mekhaniki Neodnorodnykh Sred, Moscow (USSR))

    1989-01-01

    Two essentially different forms of turbulence are identified in liquids and gases: (1) turbulent flow in the vicinity of solid or liquid boundaries and (2) turbulent flows evolving far from the walls. The generation mechanisms and principal characteristics of the two types of turbulent flows are discussed. It is emphasized that the two types of turbulent flows are caused by different physical mechanisms and should be considered separately in turbulence studies. 14 refs.

  9. Lattice Boltzmann equation calculation of internal, pressure-driven turbulent flow

    CERN Document Server

    Hammond, L A; Care, C M; Stevens, A

    2002-01-01

    We describe a mixing-length extension of the lattice Boltzmann approach to the simulation of an incompressible liquid in turbulent flow. The method uses a simple, adaptable, closure algorithm to bound the lattice Boltzmann fluid incorporating a law-of-the-wall. The test application, of an internal, pressure-driven and smooth duct flow, recovers correct velocity profiles for Reynolds number to 1.25 x 10 sup 5. In addition, the Reynolds number dependence of the friction factor in the smooth-wall branch of the Moody chart is correctly recovered. The method promises a straightforward extension to other curves of the Moody chart and to cylindrical pipe flow.

  10. Explosive turbulent magnetic reconnection.

    Science.gov (United States)

    Higashimori, K; Yokoi, N; Hoshino, M

    2013-06-21

    We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This fast turbulent reconnection is achieved by the localization of turbulent diffusion. Additionally, localized structure forms through the interaction of the mean field and turbulence.

  11. Dependences of optical properties of spherical two-layered nanoparticles on parameters of gold core and material shell

    Science.gov (United States)

    Pustovalov, V. K.; Astafyeva, L. G.; Zharov, V. P.

    2013-12-01

    Modeling of nonlinear dependences of optical properties of spherical two-layered gold core and some material shell nanoparticles (NPs) placed in water on parameters of core and shell was carried out on the basis of the extended Mie theory. Efficiency cross-sections of absorption, scattering and extinction of radiation with wavelength 532 nm by core-shell NPs in the ranges of core radii r00=5-40 nm and of relative NP radii r1/r00=1-8 were calculated (r1-radius of two-layered nanoparticle). Shell materials were used with optical indexes in the ranges of refraction n1=0.2-1.5 and absorption k1=0-3.5 for the presentation of optical properties of wide classes of shell materials (including dielectrics, metals, polymers, vapor shell around gold core). Results show nonlinear dependences of optical properties of two-layered NPs on optical indexes of shell material, core r00 and relative NP r1/r00 radii. Regions with sharp decrease and increase of absorption, scattering and extinction efficiency cross-sections with changing of core and shell parameters were investigated. These dependences should be taken into account for applications of two-layered NPs in laser nanomedicine and optical diagnostics of tissues. The results can be used for experimental investigation of shell formation on NP core and optical determination of geometrical parameters of core and shell of two-layered NPs.

  12. THE SEMI-GEOSTROPHIC ADAPTATION PROCESS WITH TWO-LAYER BAROCLINIC MODEL IN LOW LATITUDE ATMOSPHERE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, the adaptation process in low latitude atmosphere is discussed by means of a two-layer baroclinic model on the equator β plane, showing that the adaptation process in low latitude is mainly dominated by the internal inertial gravity waves. The initial ageostrophic energy is dispersed by the internal inertial gravity waves, and as a result, the geostrophic motion is obtained in zonal direction while the ageostrophic motion maintains in meridional direction, which can be called semi-geostrophic balance in barotropic model as well as semi-thermal-wind balance in baroclinic model. The vertical motion is determined both by the distribution of the initial vertical motion and that of the initial vertical motion tendency, but it is unrelated to the initial potential vorticity. Finally, the motion tends to be horizontal. The discussion of the physical mechanism of the semi-thermal-wind balance in low latitude atmosphere shows that the achievement of the semi-thermal-wind balance is due to the adjustment between the stream field and the temperature field through the horizontal convergence and divergence which is related to the vertical motion excited by the internal inertial gravity waves. The terminal adaptation state obtained shows that the adaptation direction between the mean temperature field and the shear flow field is determined by the ratio of the scale of the initial ageostrophic disturbance to the scale of one character scale related to the baroclinic Rossby radius of deformation. The shear stream field adapts to the mean temperature field when the ratio is greater than 1, and the mean temperature field adapts to the shear stream field when the ratio is smaller than 1.

  13. Convective instability in a two-layer system of reacting fluids with concentration-dependent diffusion

    Science.gov (United States)

    Aitova, E. V.; Bratsun, D. A.; Kostarev, K. G.; Mizev, A. I.; Mosheva, E. A.

    2016-12-01

    The development of convective instability in a two-layer system of miscible fluids placed in a narrow vertical gap has been studied theoretically and experimentally. The upper and lower layers are formed with aqueous solutions of acid and base, respectively. When the layers are brought into contact, the frontal neutralization reaction begins. We have found experimentally a new type of convective instability, which is characterized by the spatial localization and the periodicity of the structure observed for the first time in the miscible systems. We have tested a number of different acid-base systems and have found a similar patterning there. In our opinion, it may indicate that the discovered effect is of a general nature and should be taken into account in reaction-diffusion-convection problems as another tool with which the reaction can govern the movement of the reacting fluids. We have shown that, at least in one case (aqueous solutions of nitric acid and sodium hydroxide), a new type of instability called as the concentration-dependent diffusion convection is responsible for the onset of the fluid flow. It arises when the diffusion coefficients of species are different and depend on their concentrations. This type of instability can be attributed to a variety of double-diffusion convection. A mathematical model of the new phenomenon has been developed using the system of reaction-diffusion-convection equations written in the Hele-Shaw approximation. It is shown that the instability can be reproduced in the numerical experiment if only one takes into account the concentration dependence of the diffusion coefficients of the reagents. The dynamics of the base state, its linear stability and nonlinear development of the instability are presented. It is also shown that by varying the concentration of acid in the upper layer one can achieve the occurrence of chemo-convective solitary cell in the bulk of an almost immobile fluid. Good agreement between the

  14. Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhov, Evgeny A., E-mail: ryzhovea@poi.dvo.ru [Pacific Oceanological Institute of FEB RAS, 43, Baltiyskaya Street, Vladivostok 690041 (Russian Federation); Koshel, Konstantin V., E-mail: kvkoshel@poi.dvo.ru [Pacific Oceanological Institute of FEB RAS, 43, Baltiyskaya Street, Vladivostok 690041 (Russian Federation); Far Eastern Federal University, 8, Sukhanova Street, Vladivostok 690950 (Russian Federation)

    2015-10-15

    In a two-layer quasi-geostrophic approximation, we study the irregular dynamics of fluid particles arising due to two interacting point vortices embedded in a deformation flow consisting of shear and rotational components. The two vortices are arranged within the bottom layer, but an emphasis is on the upper-layer fluid particle motion. Vortices moving in one layer induce stirring of passive scalars in the other layer. This is of interest since point vortices induce singular velocity fields in the layer they belong to; however, in the other layer, they induce regular velocity fields that generally result in a change in passive particle stirring. If the vortices are located at stagnation points, there are three different types of the fluid flow. We examine how properties of each flow configuration are modified if the vortices are displaced from the stagnation points and thus circulate in the immediate vicinity of these points. To that end, an analysis of the steady-state configurations is presented with an emphasis on the frequencies of fluid particle oscillations about the elliptic stagnation points. Asymptotic relations for the vortex and fluid particle zero–oscillation frequencies are derived in the vicinity of the corresponding elliptic points. By comparing the frequencies of fluid particles with the ones of the vortices, relations between the parameters that lead to enhanced stirring of fluid particles are established. It is also demonstrated that, if the central critical point is elliptic, then the fluid particle trajectories in its immediate vicinity are mostly stable making it harder for the vortex perturbation to induce stirring. Change in the type of the central point to a hyperbolic one enhances drastically the size of the chaotic dynamics region. Conditions on the type of the central critical point also ensue from the derived asymptotic relations.

  15. An operational two-layer remote sensing model to estimate surface flux in regional scale: Physical background

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Renhua; SUN; Xiaomin; WANG; Weimin; XU; Jinping; ZH

    2005-01-01

    Based on the improved interaction mechanism of two-layer model, this paper proposed Pixel Component Arranging and Comparing Algorithm (PCACA) and theoretically positioning algorithm, estimated the true temperature of mixed pixel in four extreme points in combination with the measurements of dry and wet points in calibration fields and improved the reliability of positioning dry and wet line. A new two-layer energy-separation algorithm was proposed,which was simple and direct without resistance network parameters for each pixel. We also proposed a new thought about the effect of advection. The albedo of mixed pixel was also separated with PCACA. In combination with two-layer energy-separation algorithm, the net radiation of mixed pixel was separated to overcome the uncertainty of conventional energy-separation algorithm using Beer's Law. Through the validation of retrieval result, this method is proved to be feasible and operational. At the same time, the uncertainty of this algorithm was objectively analyzed.

  16. Statistical turbulence theory and turbulence phenomenology

    Science.gov (United States)

    Herring, J. R.

    1973-01-01

    The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.

  17. Stochastic superparameterization in quasigeostrophic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Grooms, Ian, E-mail: grooms@cims.nyu.edu [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States); Majda, Andrew J., E-mail: jonjon@cims.nyu.edu [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States); Center for Prototype Climate Modelling, NYU-Abu Dhabi (United Arab Emirates)

    2014-08-15

    In this article we expand and develop the authors' recent proposed methodology for efficient stochastic superparameterization algorithms for geophysical turbulence. Geophysical turbulence is characterized by significant intermittent cascades of energy from the unresolved to the resolved scales resulting in complex patterns of waves, jets, and vortices. Conventional superparameterization simulates large scale dynamics on a coarse grid in a physical domain, and couples these dynamics to high-resolution simulations on periodic domains embedded in the coarse grid. Stochastic superparameterization replaces the nonlinear, deterministic eddy equations on periodic embedded domains by quasilinear stochastic approximations on formally infinite embedded domains. The result is a seamless algorithm which never uses a small scale grid and is far cheaper than conventional SP, but with significant success in difficult test problems. Various design choices in the algorithm are investigated in detail here, including decoupling the timescale of evolution on the embedded domains from the length of the time step used on the coarse grid, and sensitivity to certain assumed properties of the eddies (e.g. the shape of the assumed eddy energy spectrum). We present four closures based on stochastic superparameterization which elucidate the properties of the underlying framework: a ‘null hypothesis’ stochastic closure that uncouples the eddies from the mean, a stochastic closure with nonlinearly coupled eddies and mean, a nonlinear deterministic closure, and a stochastic closure based on energy conservation. The different algorithms are compared and contrasted on a stringent test suite for quasigeostrophic turbulence involving two-layer dynamics on a β-plane forced by an imposed background shear. The success of the algorithms developed here suggests that they may be fruitfully applied to more realistic situations. They are expected to be particularly useful in providing accurate and

  18. Explosive Turbulent Magnetic Reconnection

    OpenAIRE

    Higashimori, Katsuaki; Yokoi, Nobumitsu; Hoshino, Masahiro

    2013-01-01

    We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This ...

  19. Airfoils in Turbulent Inflow

    DEFF Research Database (Denmark)

    Gilling, Lasse

    of resolved inflow turbulence on airfoil simulations in CFD. The detached-eddy simulation technique is used because it can resolve the inflow turbulence without becoming too computationally expensive due to its limited requirements for mesh resolution in the boundary layer. It cannot resolve the turbulence...... synthetic turbulence in arbitrary domains. The purpose is to generate a synthetic turbulence field corresponding to the field encountered by a rotating blade....

  20. Electromagnetic fields due to a horizontal electric dipole antenna laid on the surface of a two-layer medium

    Science.gov (United States)

    Tsang, L.; Kong, J. A.

    1974-01-01

    With applications to geophysical subsurface probings, electromagnetic fields due to a horizontal electric dipole laid on the surface of a two-layer medium are solved by a combination of analytic and numerical methods. Interference patterns are calculated for various layer thickness. The results are interpreted in terms of normal modes, and the accuracies of the methods are discussed.

  1. [Two-layer adhesive film Diplen-denta C--a new compound containing polymer base and active component Solcoseryl].

    Science.gov (United States)

    Abakarova, D S

    2007-01-01

    Characteristics of the main components of a new effective long-lasting dosage form--biopolymer two-layer adhesive solcoseryl containing film Diplen-denta C--are presented. It has a potent wound-healing action on oral mucosa, retains therapeutic properties during long time, is self dissolving and can be easily fixed on oral mucous membrane.

  2. Screen-Capturing System with Two-Layer Display for PowerPoint Presentation to Enhance Classroom Education

    Science.gov (United States)

    Lai, Yen-Shou; Tsai, Hung-Hsu; Yu, Pao-Ta

    2011-01-01

    This paper proposes a new presentation system integrating a Microsoft PowerPoint presentation in a two-layer method, called the TL system, to promote learning in a physical classroom. With the TL system, teachers can readily control hints or annotations as a way of making them visible or invisible to students so as to reduce information load. In…

  3. Hamiltonian Particle-Mesh Method for Two-Layer Shallow-Water Equations Subject to the Rigid-Lid Approximation

    NARCIS (Netherlands)

    Cotter, C.J.; Frank, J.E.; Reich, S.

    2004-01-01

    We develop a particle-mesh method for two-layer shallow-water equations subject to the rigid-lid approximation. The method is based on the recently proposed Hamiltonian particle-mesh (HPM) method and the interpretation of the rigid-lid approximation as a set of holonomic constraints. The suggested s

  4. Fossil turbulence revisited

    CERN Document Server

    Gibson, C H

    1999-01-01

    A theory of fossil turbulence presented in the 11th Liege Colloquium on Marine turbulence is "revisited" in the 29th Liege Colloquium "Marine Turbulence Revisited". The Gibson (1980) theory applied universal similarity theories of turbulence and turbulent mixing to the vertical evolution of an isolated patch of turbulence in a stratified fluid as it is constrained and fossilized by buoyancy forces. Towed oceanic microstructure measurements of Schedvin (1979) confirmed the predicted universal constants. Universal constants, spectra, hydrodynamic phase diagrams (HPDs) and other predictions of the theory have been reconfirmed by a wide variety of field and laboratory observations. Fossil turbulence theory has many applications; for example, in marine biology, laboratory and field measurements suggest phytoplankton species with different swimming abilities adjust their growth strategies differently by pattern recognition of several days of turbulence-fossil-turbulence dissipation and persistence times above thres...

  5. Reynolds shear stress and heat flux calculations in a fully developed turbulent duct flow

    Science.gov (United States)

    Antonia, R. A.; Kim, J.

    1991-01-01

    The use of a modified form of the Van Driest mixing length for a fully developed turbulent channel flow leads to mean velocity and Reynolds stress distributions that are in close agreement with data obtained either from experiments or direct numerical simulations. The calculations are then extended to a nonisothermal flow by assuming a constant turbulent Prandtl number, the value of which depends on the molecular Prandtl number. Calculated distributions of mean temperature and lateral heat flux are in reasonable agreement with the simulations. The extension of the calculations to higher Reynolds numbers provides some idea of the Reynolds number required for scaling on wall variables to apply in the inner region of the flow.

  6. ATLAS-TPX: a two-layer pixel detector setup for neutron detection and radiation field characterization

    Science.gov (United States)

    Bergmann, B.; Caicedo, I.; Leroy, C.; Pospisil, S.; Vykydal, Z.

    2016-10-01

    A two-layer pixel detector setup (ATLAS-TPX), designed for thermal and fast neutron detection and radiation field characterization is presented. It consists of two segmented silicon detectors (256 × 256 pixels, pixel pitch 55 μm, thicknesses 300 μm and 500 μm) facing each other. To enhance the neutron detection efficiency a set of converter layers is inserted in between these detectors. The pixelation and the two-layer design allow a discrimination of neutrons against γs by pattern recognition and against charged particles by using the coincidence and anticoincidence information. The neutron conversion and detection efficiencies are measured in a thermal neutron field and fast neutron fields with energies up to 600 MeV. A Geant4 simulation model is presented, which is validated against the measured detector responses. The reliability of the coincidence and anticoincidence technique is demonstrated and possible applications of the detector setup are briefly outlined.

  7. Preparation of Two-Layer Anion-Exchange Poly(ethersulfone Based Membrane: Effect of Surface Modification

    Directory of Open Access Journals (Sweden)

    Lucie Zarybnicka

    2016-01-01

    Full Text Available The present work deals with the surface modification of a commercial microfiltration poly(ethersulfone membrane by graft polymerization technique. Poly(styrene-co-divinylbenzene-co-4-vinylbenzylchloride surface layer was covalently attached onto the poly(ethersulfone support layer to improve the membrane electrochemical properties. Followed by amination, a two-layer anion-exchange membrane was prepared. The effect of surface layer treatment using the extraction in various solvents on membrane morphological and electrochemical characteristics was studied. The membranes were tested from the point of view of water content, ion-exchange capacity, specific resistance, permselectivity, FT-IR spectroscopy, and SEM analysis. It was found that the two-layer anion-exchange membranes after the extraction using tetrahydrofuran or toluene exhibited smooth and porous surface layer, which resulted in improved ion-exchange capacity, electrical resistance, and permselectivity of the membranes.

  8. Tensile Properties with or without Heat Dispersion of Automotive Needlepunched Carpets Made up of Two Layers of Different Materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yunqing; GUO Zhiying; DONG Xianghuai; LI Dequn

    2008-01-01

    Tensile properties of automotive needlepunched carpets made up of two layers of different materials (a fabric layer and a foam layer) in their thermoforming temperatures ranges with or without heat dispersion were discussed. Effects of forming temperature, extensile speed and fiber orientation on the tensile properties were studied based on an orthogonal experiment design. The experimental results show that automotive carpets are rate-dependent anisotropic materials and more strongly depend on forming temperature than the extensile speed and fiber orientation. Furthermore,contributions of the fabric layer and the foam layer to the overall tensile performance were investigated by comparing the tensile results of single fabric layer with those of the overall carpet. Both the fabric layer and the foam layer show positive effects on the overall tensile strength which is the combination of the two layers' tensile strength and independent of temperature, extensile speed and fiber orientation.On the other hand, their influences on the overall deformation are relatively complicated.

  9. Determining particle size distribution and refractive index in a two-layer tissue phantom by linearly polarized light

    Institute of Scientific and Technical Information of China (English)

    Yong Deng; Qiang Lu; Qingming Luo

    2006-01-01

    We report a new method for measuring particle size distribution (PSD) and refractive index of the top layer in a two-layer tissue phantom simulated epithelium tissue by varying the azimuth angle of incident linearly polarized light. The polarization gating technique is used to decouple the single and multiple scattering components in the returned signal. The theoretical model based on Mie theory is presented and a nonlinear inversion method - floating genetic algorithm - is applied to inverting the azimuth dependence of component of polarization light backscattered. The experiment results demonstrate that the size distribution and refractive index of the scatters of the top layer can be determined by measuring and analyzing the differential signal of the parallel and perpendicular components from a two-layer tissue phantom. The method implies to detect precancerous changes in human epithelial tissue.

  10. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. II - Wall shear stress

    Science.gov (United States)

    Liou, M. S.; Adamson, T. C., Jr.

    1980-01-01

    Asymptotic methods are used to calculate the shear stress at the wall for the interaction between a normal shock wave and a turbulent boundary layer on a flat plate. A mixing length model is used for the eddy viscosity. The shock wave is taken to be strong enough that the sonic line is deep in the boundary layer and the upstream influence is thus very small. It is shown that unlike the result found for laminar flow an asymptotic criterion for separation is not found; however, conditions for incipient separation are computed numerically using the derived solution for the shear stress at the wall. Results are compared with available experimental measurements.

  11. Two-layer critical dimensions and overlay process window characterization and improvement in full-chip computational lithography

    Science.gov (United States)

    Sturtevant, John L.; Liubich, Vlad; Gupta, Rachit

    2016-04-01

    Edge placement error (EPE) was a term initially introduced to describe the difference between predicted pattern contour edge and the design target for a single design layer. Strictly speaking, this quantity is not directly measurable in the fab. What is of vital importance is the relative edge placement errors between different design layers, and in the era of multipatterning, the different constituent mask sublayers for a single design layer. The critical dimensions (CD) and overlay between two layers can be measured in the fab, and there has always been a strong emphasis on control of overlay between design layers. The progress in this realm has been remarkable, accelerated in part at least by the proliferation of multipatterning, which reduces the available overlay budget by introducing a coupling of overlay and CD errors for the target layer. Computational lithography makes possible the full-chip assessment of two-layer edge to edge distances and two-layer contact overlap area. We will investigate examples of via-metal model-based analysis of CD and overlay errors. We will investigate both single patterning and double patterning. For single patterning, we show the advantage of contour-to-contour simulation over contour to target simulation, and how the addition of aberrations in the optical models can provide a more realistic CD-overlay process window (PW) for edge placement errors. For double patterning, the interaction of 4-layer CD and overlay errors is very complex, but we illustrate that not only can full-chip verification identify potential two-layer hotspots, the optical proximity correction engine can act to mitigate such hotspots and enlarge the joint CD-overlay PW.

  12. Dynamics of the outflow and its effect on the hydraulics of two-layer exchange flows in a channel

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper reports that an experimental study is conducted to examine the dynamics of the outflow in two-layer exchange flows in a channel connecting between two water bodies with a small density difference. The experiments reveal the generation of Kelvin-Helmholtz (KH) instabilities within the hydraulically sub-critical flow region of the channel. During maximal exchange, those KH instabilities develops into large-amplitude KH waves as they escape the channel exit into the reservoir. The propagation speed ...

  13. Recovery of a supersonic turbulent boundary layer after an expansion corner

    Science.gov (United States)

    Sun, Ming-bo; Hu, Zhiwei; Sandham, Neil D.

    2017-07-01

    Supersonic turbulent flows at Mach 2.7 over expansion corners with deflection angles of 0° (flat plate), 2°, and 4° have been studied using direct numerical simulation. Distributions of skin friction, pressure, velocity, and boundary layer growth show that the turbulent boundary layer experiences a recovery from a non-equilibrium to an equilibrium state downstream of the expansion corner. Analysis of velocity profiles indicates that the streamwise velocity undergoes a reduction in the near-wall region even though the velocity in the core part of the boundary layer is accelerated after the expansion corner. Growth of the boundary layer was evaluated and a higher shape factor was found in the expansion cases. Turbulence was found to be mostly suppressed downstream of the corner, and throughout the recovery region, even though turbulence is regenerated in the near-wall region. The expansion ramp increases the near-wall streak spacing compared to a flat plate, and turbulent kinetic energy profiles and budgets exhibit a characteristic two-layer structure. Near-wall turbulence recovers to a balance between the local production and dissipation equilibrium more quickly in the inner layer than in the outer layer. The two-layer structure is due to a history effect of turbulence decay in the outer part of the boundary layer downstream of the expansion corner, with limited momentum and energy exchange between the inner layer and the main stream.

  14. Two-Layer Microstructures Fabricated by One-Step Anisotropic Wet Etching of Si in KOH Solution

    Directory of Open Access Journals (Sweden)

    Han Lu

    2016-01-01

    Full Text Available Anisotropic etching of silicon in potassium hydroxide (KOH is an important technology in micromachining. The residue deposition from KOH etching of Si is typically regarded as a disadvantage of this technology. In this report, we make use of this residue as a second masking layer to fabricate two-layer complex structures. Square patterns with size in the range of 15–150 μm and gap distance of 5 μm have been designed and tested. The residue masking layer appears when the substrate is over-etched in hydrofluoric acid (HF solution over a threshold. The two-layer structures of micropyramids surrounded by wall-like structures are obtained according to the two different masking layers of SiO2 and residue. The residue masking layer is stable and can survive over KOH etching for long time to achieve deep Si etching. The process parameters of etchant concentration, temperature, etching time and pattern size have been investigated. With well-controlled two-layer structures, useful structures could be designed for applications in plasmonic and microfluidic devices in the future.

  15. Distributed Processing System for Restoration of Electric Power Distribution Network Using Two-Layered Contract Net Protocol

    Science.gov (United States)

    Kodama, Yu; Hamagami, Tomoki

    Distributed processing system for restoration of electric power distribution network using two-layered CNP is proposed. The goal of this study is to develop the restoration system which adjusts to the future power network with distributed generators. The state of the art of this study is that the two-layered CNP is applied for the distributed computing environment in practical use. The two-layered CNP has two classes of agents, named field agent and operating agent in the network. In order to avoid conflicts of tasks, operating agent controls privilege for managers to send the task announcement messages in CNP. This technique realizes the coordination between agents which work asynchronously in parallel with others. Moreover, this study implements the distributed processing system using a de-fact standard multi-agent framework, JADE(Java Agent DEvelopment framework). This study conducts the simulation experiments of power distribution network restoration and compares the proposed system with the previous system. We confirmed the results show effectiveness of the proposed system.

  16. Turbulence and wind turbines

    DEFF Research Database (Denmark)

    Brand, Arno J.; Peinke, Joachim; Mann, Jakob

    2011-01-01

    The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....

  17. MHD Turbulence, Turbulent Dynamo and Applications

    CERN Document Server

    Beresnyak, Andrey

    2014-01-01

    MHD Turbulence is common in many space physics and astrophysics environments. We first discuss the properties of incompressible MHD turbulence. A well-conductive fluid amplifies initial magnetic fields in a process called small-scale dynamo. Below equipartition scale for kinetic and magnetic energies the spectrum is steep (Kolmogorov -5/3) and is represented by critically balanced strong MHD turbulence. In this paper we report the basic reasoning behind universal nonlinear small-scale dynamo and the inertial range of MHD turbulence. We measured the efficiency of the small-scale dynamo $C_E=0.05$, Kolmogorov constant $C_K=4.2$ and anisotropy constant $C_A=0.63$ for MHD turbulence in high-resolution direct numerical simulations. We also discuss so-called imbalanced or cross-helical MHD turbulence which is relevant for in many objects, most prominently in the solar wind. We show that properties of incompressible MHD turbulence are similar to the properties of Alfv\\'enic part of MHD cascade in compressible turbul...

  18. Turbulent Soret Effect

    CERN Document Server

    Mitra, Dhrubaditya; Rogachevskii, Igor

    2016-01-01

    We show, by direct numerical simulations, that heavy inertial particles (with Stokes number ${\\rm St}$) in inhomogeneously forced statistically stationary turbulent flows cluster at the minima of turbulent kinetic energy. We further show that two turbulent transport processes, turbophoresis and turbulent diffusion together determine the spatial distribution of the particles. The ratio of the corresponding transport coefficient -- the turbulent Soret coefficient -- increases with ${\\rm St}$ for small ${\\rm St}$, reaches a maxima for ${\\rm St}\\approx 10$ and decreases as $\\sim {\\rm St}^{-0.33}$ for large ${\\rm St}$.

  19. Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue.

    Directory of Open Access Journals (Sweden)

    Bertan Hallacoglu

    Full Text Available We introduce a multi-distance, frequency-domain, near-infrared spectroscopy (NIRS method to measure the optical coefficients of two-layered media and the thickness of the top layer from diffuse reflectance measurements. This method features a direct solution based on diffusion theory and an inversion procedure based on the Levenberg-Marquardt algorithm. We have validated our method through Monte Carlo simulations, experiments on tissue-like phantoms, and measurements on the forehead of three human subjects. The Monte Carlo simulations and phantom measurements have shown that, in ideal two-layered samples, our method accurately recovers the top layer thickness (L, the absorption coefficient (µ a and the reduced scattering coefficient (µ' s of both layers with deviations that are typically less than 10% for all parameters. Our method is aimed at absolute measurements of hemoglobin concentration and saturation in cerebral and extracerebral tissue of adult human subjects, where the top layer (layer 1 represents extracerebral tissue (scalp, skull, dura mater, subarachnoid space, etc. and the bottom layer (layer 2 represents cerebral tissue. Human subject measurements have shown a significantly greater total hemoglobin concentration in cerebral tissue (82±14 µM with respect to extracerebral tissue (30±7 µM. By contrast, there was no significant difference between the hemoglobin saturation measured in cerebral tissue (56%±10% and extracerebral tissue (62%±6%. To our knowledge, this is the first time that an inversion procedure in the frequency domain with six unknown parameters with no other prior knowledge is used for the retrieval of the optical coefficients and top layer thickness with high accuracy on two-layered media. Our absolute measurements of cerebral hemoglobin concentration and saturation are based on the discrimination of extracerebral and cerebral tissue layers, and they can enhance the impact of NIRS for cerebral hemodynamics and

  20. Radiative transfer theory for passive microwave remote sensing of a two-layer random medium with cylindrical structures

    Science.gov (United States)

    Chuang, S. L.; Kong, J. A.; Tsang, L.

    1980-01-01

    A model of the vegetation layer as a two-layer random medium with a small correlation length l sub rho in the horizontal direction, and a large correlation length l sub z in the vertical direction, is presented for fields with cylindrical structures. As l sub z approaches infinity, closed form solutions are derived for the brightness temperatures; the kernels in the scattering terms of the radiative transfer equations result in delta functions showing that forward scattering is dominant over all other directions. The results are compared with the Gaussian quadrature method data for numerical solution of the radiative transfer equations.

  1. WAVES GENERATED BY A 3D MOVING BODY IN A TWO-LAYER FLUID OF FINITE DEPTH

    Institute of Scientific and Technical Information of China (English)

    ZHU Wei; YOU Yun-xiang; MIAO Guo-ping; ZHAO Feng; ZHANG Jun

    2005-01-01

    This paper is concerned with the waves generated by a 3-D body advancing beneath the free surface with constant speed in a two-layer fluid of finite depth. By applying Green's theorem, a layered integral equation system based on the Rankine source for the perturbed velocity potential generated by the moving body was derived with the potential flow theory. A four-node isoparametric element method was used to treat with the solution of the layered integral equation system. The surface and interface waves generated by a moving ball were calculated numerically. The results were compared with the analytical results for a moving source with constant velocity.

  2. Quasi-two-layer finite-volume scheme for modeling shallow water flows with the presence of external forces

    CERN Document Server

    Karelsky, K V; Slavin, A G

    2011-01-01

    The numerical method for study of hydrodynamic flows over an arbitrary bed profile in the presence of external force is proposed in this paper. This method takes into account the external force effect, it uses the quasi-two-layer model of hydrodynamic flows over a stepwise boundary with consideration of features of the flow near the step. A distinctive feature of the proposed method is the consideration of the properties of the process of the waterfall, namely the fluid flow on the step in which the fluid does not wet part of the vertical wall of the step. The presence of dry zones in the vertical part of the step indicates violation of the conditions of hydrostatic flow. The quasi-two-layer approach allows to determine the size of the dry zone of the vertical component of the step. Consequently it gives an opportunity to figure out the amount of kinetic energy dissipation. There are performed the numerical simulations based on the proposed algorithm of various physical phenomena, such as a breakdown of the r...

  3. Linear and nonlinear properties of reduced two-layer models for non-hydrostatic free-surface flow

    Science.gov (United States)

    Bai, Yefei; Cheung, Kwok Fai

    2016-11-01

    A two-layer model with uniform non-hydrostatic pressure in the bottom produces favorable dispersion properties for coastal wave transformation at the computational requirements of a one-layer model. We derive the nonlinear governing equations and the corresponding dispersion relation, shoaling gradient, and super- and sub-harmonics to understand the theoretical performance of this reduced model. With the layer interface near the bottom, the dispersion relation shows an extended applicable range into deeper water at the expense of a slight overestimation of the celerity in intermediate water depth. The shoaling gradient rapidly converges to the exact solution in the shallow and intermediate depth range. These complementary characteristics allow identification of an optimal interface position for both linear wave properties. The resulting model exhibits good nonlinear performance in shallow and intermediate water depth and produces super- and sub-harmonics comparable to a two-layer model. Numerical tests involving standing waves show the reduced model has smaller discretization errors in the dispersion relation comparing to a one-layer model. Case studies of regular wave transformation over a submerged bar and a uniform slope provide comparison with laboratory data and demonstrate the linear and nonlinear properties derived from the governing equations. The good shoaling and nonlinear properties give rise to accurate waveforms in both cases, while dispersion errors from the governing equations and numerical schemes accumulate over time leading to phase shifts of the modeled waves.

  4. Acoustic scattering by a two-layer cylindrical tube immersed in a fluid medium: Existence of a pseudo wave.

    Science.gov (United States)

    Elhanaoui, Abdelkader; Aassif, Elhoucein; Maze, Gérard; Décultot, Dominique

    2016-02-01

    The present paper studies the acoustic signal backscattered by an air-filled copper–solid polymer two-layer cylindrical tube immersed in water. The work is done from the calculation of the backscattered pressure, an inverse Fourier Transform, which allows us to obtain an impulse signal. Smoothed pseudo Wigner–Ville and Concentrated spectrogram representations have been chosen to analyze the scattering phenomenon. For reduced frequencies ranging from 0.1 to 200, the resonance trajectories and time–frequency images have shown the presence of the guided waves. The bifurcation of the A0 wave into the A0(-) and the A0(+) waves has also been observed. The authors provide the phase and the group velocities of guided waves and investigate the differences between curves. The findings are then compared with those obtained for the copper and the solid polymer one-layer cylindrical tubes. Group velocity values have also been extracted from smoothed pseudo Wigner–Ville and Concentrated spectrogram time–frequency images. A good agreement with the theory has, therefore, been observed. The study of acoustic backscattering by a copper–solid polymer two-layer tube has revealed the interaction and the coupling of guided waves, specially the presence of a pseudo A1 wave; which is a very interesting, remarkable phenomenon.

  5. Modeling of PZT-induced Lamb wave propagation in structures by using a novel two-layer spectral finite element

    Science.gov (United States)

    Liu, Xiaotong; Zhou, Li; Ouyang, Qinghua

    2016-04-01

    This paper presents a novel two-layer spectral finite element model, consisting of PZT wafer and host structure, to simulate PZT-induced Lamb wave propagation in beam-like and plate-like structures. Based on the idea of equal displacement on the interface between PZT wafer and host structure, the one-dimensional spectral beam element of PZT-host beam and two-dimensional spectral plate element of PZT-host plate are considered as one hybrid element, respectively. A novel approach is proposed by taking the coupling effect of piezoelectric transducers in the thickness direction into account. The dynamic equation of the two-layer spectral element is derived from Hamilton's principle. Validity of the developed spectral finite element is verified through numerical simulation. The result indicates that, compared with the conventional finite element method (FEM) based on elasticity, the proposed spectral finite element is proved to have a high accuracy in modeling Lamb wave propagation, meanwhile, significantly improve the calculation efficiency.

  6. A Numerical Study on Water Waves Generated by A Submerged Moving Body in A Two-Layer Fluid System

    Institute of Scientific and Technical Information of China (English)

    YANG Jia-Zhen; NG Chiu-On; ZHANG Dao-Hua

    2009-01-01

    This is a numerical study on the time development of surface waves generated by a submerged body moving steadily in a two-layer fluid system, in which a layer of water is underlain by a layer of viscous mud. The fully nonlinear Navier-Stokes equations are solved on FLUENT with the Volume-of-Fluid (VOF) multiphase scheme in order to simulate the free surface waves as well as the water-mud interface waves as functions of time. The numerical model is validated by mimick-ing a reported experiment in a one-layer system before it is applied to a two-layer system, it is found that the presence of bottom mud in a water layer can lead to large viscous damping of the surface waves. For the investigation of the problem systematically, the effects of the Froude number and the mud layer thickness, density and viscosity relative to those of water are evaluated and discussed in detail.

  7. A two-layer structured PbI2 thin film for efficient planar perovskite solar cells

    Science.gov (United States)

    Ying, Chao; Shi, Chengwu; Wu, Ni; Zhang, Jincheng; Wang, Mao

    2015-07-01

    In this paper, a two-layer structured PbI2 thin film was constructed by the spin-coating procedure using a 0.80 M PbI2 solution in DMF and subsequent close-spaced vacuum thermal evaporation using PbI2 powder as a source. The bottom PbI2 thin film was compact with a sheet-like appearance, parallel to the FTO substrate, and can be easily converted to a compact perovskite thin film to suppress the charge recombination of the electrons of the TiO2 conduction band and the holes of the spiro-OMeTAD valence band. The top PbI2 thin film was porous with nano-sheet arrays, perpendicular to the FTO substrate, and can be easily converted to a porous perovskite thin film to improve the hole migration from the perovskite to spiro-OMeTAD and the charge separation at the perovskite/spiro-OMeTAD interface. The planar perovskite solar cells based on the two-layer structured PbI2 thin film exhibited a photoelectric conversion efficiency of 11.64%, along with an open-circuit voltage of 0.90 V, a short-circuit photocurrent density of 19.29 mA cm-2 and a fill factor of 0.67.

  8. Equivalent circuit models of two-layer flexure beams with excitation by temperature, humidity, pressure, piezoelectric or piezomagnetic interactions

    Directory of Open Access Journals (Sweden)

    U. Marschner

    2014-09-01

    Full Text Available Two-layer flexure beams often serve as basic transducers in actuators and sensors. In this paper a generalized description of their stimuli-influenced mechanical behavior is derived. For small deflection angles this description includes a multi-port circuit or network representation with lumped elements for a beam part of finite length. A number of coupled finite beam parts model the dynamic behavior including the first natural frequencies of the beam. For piezoelectric and piezomagnetic interactions, reversible transducer models are developed. The piezomagnetic two-layer beam model is extended to include solenoid and planar coils. Linear network theory is applied in order to determine network parameters and to simplify the circuit representation. The resulting circuit model is the basis for a fast simulation of the dynamic system behavior with advanced circuit simulators and, thus, the optimization of the system. It is also a useful tool for understanding and explaining this multi-domain system through basic principles of general system theory.

  9. Interaction of water waves with small undulations on a porous bed in a two-layer ice-covered fluid

    Science.gov (United States)

    Panda, Srikumar; Martha, S. C.

    2013-12-01

    The scattering problem involving water waves by small undulation on the porous ocean-bed in a two-layer fluid, is investigated within the framework of the two-dimensional linear water wave theory where the upper layer is covered by a thin uniform sheet of ice modeled as a thin elastic plate. In such a two-layer fluid there exist waves with two different modes, one with a lower wave number propagate along the ice-cover whilst those with a higher wave number propagate along the interface. An incident wave of a particular wave number gets reflected and transmitted over the bottom undulation into waves of both modes. Perturbation analysis in conjunction with the Fourier transform technique is used to derive the first-order corrections of reflection and transmission coefficients for both the modes due to incident waves of two different modes. One special type of bottom topography is considered as an example to evaluate the related coefficients in detail. These coefficients are depicted in graphical forms to demonstrate the transformation of wave energy between the two modes and also to illustrate the effects of the ice sheet and the porosity of the undulating bed.

  10. A constructive algorithm to solve "convex recursive deletion" (CoRD) classification problems via two-layer perceptron networks.

    Science.gov (United States)

    Cabrelli, C; Molter, U; Shonkwiler, R

    2000-01-01

    A sufficient condition that a region be classifiable by a two-layer feedforward neural net (a two-layer perceptron) using threshold activation functions is that either it be a convex polytope or that intersected with the complement of a convex polytope in its interior, or that intersected with the complement of a convex polytope in its interior or ... recursively. These have been called convex recursive deletion (CoRD) regions.We give a simple algorithm for finding the weights and thresholds in both layers for a feedforward net that implements such a region. The results of this work help in understanding the relationship between the decision region of a perceptron and its corresponding geometry in input space. Our construction extends in a simple way to the case that the decision region is the disjoint union of CoRD regions (requiring three layers). Therefore this work also helps in understanding how many neurons are needed in the second layer of a general three-layer network. In the event that the decision region of a network is known and is the union of CoRD regions, our results enable the calculation of the weights and thresholds of the implementing network directly and rapidly without the need for thousands of backpropagation iterations.

  11. Transient flexural-and capillary-gravity waves due to disturbances in two-layer density-stratified fluid

    Institute of Scientific and Technical Information of China (English)

    LU Dong-qiang; SUN Cui-zhi

    2013-01-01

    Generation of the transient flexural-and capillary-gravity waves by impulsive disturbances in a two-layer fluid is investigated analytically.The upper fluid is covered by a thin elastic plate or by an inertial surface with the capillary effect.The density of each of the two immiscible layers is constant.The fluids are assumed to be inviscid and incompressible and the motion be irrotational.A point force on the surface and simple mass sources in the upper and lower fluid layers are considered.A linear system is established within the framework of potential theory.The integral solutions for the surface and interfacial waves are obtained by means of the Laplace-Fourier transform.A new representation for the dispersion relation of flexural-and capillary-gravity waves in a two-layer fluid is derived.The asymptotic representations of the wave motions are derived for large time with a fixed distance-to-time ratio with the Stokes and Scorer methods of stationary phase.It is shown that there are two different modes,namely the surface and interfacial wave modes.The wave systems observed depend on the relation between the observer's moving speed and the intrinsic minimal and maximal group velocities.

  12. The first turbulent combustion

    CERN Document Server

    Gibson, C H

    2005-01-01

    The first turbulent combustion arises in a hot big bang cosmological model Gibson (2004) where nonlinear exothermic turbulence permitted by quantum mechanics, general relativity, multidimensional superstring theory, and fluid mechanics cascades from Planck to strong force freeze out scales with gravity balancing turbulent inertial-vortex forces. Interactions between Planck scale spinning and non-spinning black holes produce high Reynolds number turbulence and temperature mixing with huge Reynolds stresses driving the rapid inflation of space. Kolmogorovian turbulent temperature patterns are fossilized as strong-force exponential inflation stretches them beyond the scale of causal connection ct where c is light speed and t is time. Fossil temperature turbulence patterns seed nucleosynthesis, and then hydro-gravitational structure formation in the plasma epoch, Gibson (1996, 2000). Evidence about formation mechanisms is preserved by cosmic microwave background temperature anisotropies. CMB spectra indicate hydr...

  13. Planck-Kerr Turbulence

    CERN Document Server

    Gibson, C H

    2003-01-01

    A quantum gravitational instability is identified at Planck scales between non-spinning extreme Schwarzschild black holes and spinning extreme Kerr black holes, which produces a turbulent Planck particle gas. Planck inertial vortex forces balance gravitational forces as the Planck turbulence cascades to larger scales and the universe expands and cools. Turbulent mixing of temperature fluctuations and viscous dissipation of turbulent kinetic energy provide irreversibilities necessary to sustain the process to the strong force freeze out temperature where inflation begins. Turbulent temperature fluctuations are fossilized when they are stretched by inflation beyond the horizon scale of causal connection. As the horizon of the expanding universe grows, the fluctuations seed patterns of nucleosynthesis, and these seed the formation of structure in the plasma epoch. Fossil big bang turbulence is supported by extended self similarity coefficients computed for cosmic microwave background temperature anisotropies tha...

  14. One-dimensional turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Kerstein, A.R. [Sandia National Lab., Livermore, CA (United States)

    1996-12-31

    One-Dimensional Turbulence is a new turbulence modeling strategy involving an unsteady simulation implemented in one spatial dimension. In one dimension, fine scale viscous and molecular-diffusive processes can be resolved affordably in simulations at high turbulence intensity. The mechanistic distinction between advective and molecular processes is thereby preserved, in contrast to turbulence models presently employed. A stochastic process consisting of mapping {open_quote}events{close_quote} applied to a one-dimensional velocity profile represents turbulent advection. The local event rate for given eddy size is proportional to the velocity difference across the eddy. These properties cause an imposed shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbulent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive scalars introduced into these flows, are reproduced.

  15. Turbulence generation by waves

    Energy Technology Data Exchange (ETDEWEB)

    Kaftori, D.; Nan, X.S.; Banerjee, S. [Univ. of California, Santa Barbara, CA (United States)

    1995-12-31

    The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.

  16. The influence of near-wall density and viscosity gradients on turbulence in channel flows

    CERN Document Server

    Patel, Ashish; Pecnik, Rene

    2016-01-01

    The influence of near-wall density and viscosity gradients on near-wall turbulence in a channel are studied by means of Direct Numerical Simulation (DNS) of the low-Mach number approximation of the Navier--Stokes equations. Different constitutive relations for density and viscosity as a function of temperature are used in order to mimic a wide range of fluid behaviours and to develop a generalised framework for studying turbulence modulations in variable property flows. Instead of scaling the velocity solely based on local density, as done for the van Driest transformation, we derive an extension of the scaling that is based on gradients of the semi-local Reynolds number $Re_\\tau^*$. This extension of the van Driest transformation is able to collapse velocity profiles for flows with near-wall property gradients as a function of the semi-local wall coordinate. However, flow quantities like mixing length, turbulence anisotropy and turbulent vorticity fluctuations do not show a universal scaling very close to th...

  17. Evaluation of turbulence models in the PARC code for transonic diffuser flows

    Science.gov (United States)

    Georgiadis, N. J.; Drummond, J. E.; Leonard, B. P.

    1994-01-01

    Flows through a transonic diffuser were investigated with the PARC code using five turbulence models to determine the effects of turbulence model selection on flow prediction. Three of the turbulence models were algebraic models: Thomas (the standard algebraic turbulence model in PARC), Baldwin-Lomax, and Modified Mixing Length-Thomas (MMLT). The other two models were the low Reynolds number k-epsilon models of Chien and Speziale. Three diffuser flows, referred to as the no-shock, weak-shock, and strong-shock cases, were calculated with each model to conduct the evaluation. Pressure distributions, velocity profiles, locations of shocks, and maximum Mach numbers in the duct were the flow quantities compared. Overall, the Chien k-epsilon model was the most accurate of the five models when considering results obtained for all three cases. However, the MMLT model provided solutions as accurate as the Chien model for the no-shock and the weak-shock cases, at a substantially lower computational cost (measured in CPU time required to obtain converged solutions). The strong shock flow, which included a region of shock-induced flow separation, was only predicted well by the two k-epsilon models.

  18. Triggering filamentation using turbulence

    CERN Document Server

    Eeltink, D; Marchiando, N; Hermelin, S; Gateau, J; Brunetti, M; Wolf, J P; Kasparian, J

    2016-01-01

    We study the triggering of single filaments due to turbulence in the beam path for a laser of power below the filamenting threshold. Turbulence can act as a switch between the beam not filamenting and producing single filaments. This 'positive' effect of turbulence on the filament probability, combined with our observation of off-axis filaments suggests the underlying mechanism is modulation instability caused by transverse perturbations. We hereby experimentally explore the interaction of modulation instability and turbulence, commonly associated with multiple-filaments, in the single-filament regime.

  19. Two-layer anti-reflection coating with mullite and polyimide foam for large-diameter cryogenic infrared filters.

    Science.gov (United States)

    Inoue, Yuki; Hamada, Takaho; Hasegawa, Masaya; Hazumi, Masashi; Hori, Yasuto; Suzuki, Aritoki; Tomaru, Takayuki; Matsumura, Tomotake; Sakata, Toshifumi; Minamoto, Tomoyuki; Hirai, Tohru

    2016-12-01

    We have developed a novel two-layer anti-reflection (AR) coating method for large-diameter infrared (IR) filters made of alumina, for use at cryogenic temperatures in millimeter wave measurements. Thermally sprayed mullite and polyimide foam (Skybond Foam) are used as the AR material. An advantage of the Skybond Foam is that the index of refraction is chosen between 1.1 and 1.7 by changing the filling factor. Combination with mullite is suitable for wide-band millimeter wave measurements with sufficient IR cutoff capability. We present the material properties, fabrication of a large-diameter IR filter made of alumina with this AR coating method, and characterizations at cryogenic temperatures. This technology can be applied to a low-temperature receiver system with a large-diameter focal plane for next-generation cosmic microwave background polarization measurements, such as POLARBEAR-2 (PB-2).

  20. Identification of a Segment of the Yield Surface of a Two-Layer Pa38/M2R Composite

    Science.gov (United States)

    Uscinowicz, R. R.

    2016-05-01

    The aim of this study was to identify the initial yield surface of a two-layer aluminum alloy-copper composite in the range of small elastic-plastic deformations. Experimental tests in a plane stress state were conducted by loading tubular composite specimens with various combinations of axial forces and torque. The metal layers were joined together by using an epoxy resin. Independent studies were carried out for component of the composite under identical conditions. The yield surfaces obtained were compared with those given by the Huber-von Mises-Hencky and Tresca-Guest yield criteria. The yield criterion for the tested composite found by using a modified form of the rule of mixtures is presented. The yield surfaces of a Pa38/M2R composite and its components demonstrated the isotropic hardening.

  1. Two-layer radio frequency MEMS fractal capacitors in PolyMUMPS for S-band applications

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-23

    In this Letter, the authors fabricate for the first time MEMS fractal capacitors possessing two layers and compare their performance characteristics with the conventional parallel-plate capacitor and previously reported state-of-the-art single-layer MEMS fractal capacitors. Explicitly, a capacitor with a woven structure and another with an interleaved configuration were fabricated in the standard PolyMUMPS surface micromachining process and tested at S-band frequencies. The self-resonant frequencies of the fabricated capacitors were close to 10GHz, which is better than that of the parallel-plate capacitor, which measured only 5.5GHz. Further, the presented capacitors provided a higher capacitance when compared with the state-of-the-art-reported MEMS fractal capacitors created using a single layer at the expense of a lower quality factor. © 2012 The Institution of Engineering and Technology.

  2. Two-layer anti-reflection coating with mullite and polyimide foam for large-diameter cryogenic infrared filters

    CERN Document Server

    Inoue, Yuki; Hasegawa, Masaya; Hazumi, Masashi; Hori, Yasuto; Suzuki, Aritoki; Tomaru, Takayuki; Matsumura, Tomotake; Sakata, Toshifumi; Minamoto, Tomoyuki; Hirai, Tohru

    2016-01-01

    We have developed a novel two-layer anti-reflection (AR) coating method for large-diameter infrared (IR) filters made of alumina, for the use at cryogenic temperatures in millimeter wave measurements. Thermally- sprayed mullite and polyimide foam (Skybond Foam) are used as the AR material. An advantage of the Skybond Foam is that the index of refraction is chosen between 1.1 and 1.7 by changing the filling factor. Combination with mullite is suitable for wide-band millimeter wave measurements with sufficient IR cutoff capability. We present the material properties, fabrication of a large-diameter IR filter made of alumina with this AR coating method, and characterizations at cryogenic temperatures. This technology can be applied to a low-temperature receiver system with a large-diameter focal plane for next-generation cosmic microwave background (CMB) polarization measurements, such as POLARBEAR-2 (PB-2).

  3. Efficient and stable proton acceleration by irradiating a two-layer target with a linearly polarized laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. Y.; Yan, X. Q.; Chen, J. E.; He, X. T. [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China) and Key Lab of High Energy Density Physics Simulation, CAPT, Peking University, Beijing 100871 (China); Ma, W. J.; Bin, J. H.; Schreiber, J.; Tajima, T.; Habs, D. [Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Am Coulombwall 1, 85748 Garching (Germany) and Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching (Germany)

    2013-01-15

    We report an efficient and stable scheme to generate {approx}200 MeV proton bunch by irradiating a two-layer targets (near-critical density layer+solid density layer with heavy ions and protons) with a linearly polarized Gaussian pulse at intensity of 6.0 Multiplication-Sign 10{sup 20} W/cm{sup 2}. Due to self-focusing of laser and directly accelerated electrons in the near-critical density layer, the proton energy is enhanced by a factor of 3 compared to single-layer solid targets. The energy spread of proton is also remarkably reduced. Such scheme is attractive for applications relevant to tumor therapy.

  4. Hierarchical modeling and control of hybrid systems with two layers; Hierarchische Modellierung und Regelung hybrider Systeme auf zwei Ebenen

    Energy Technology Data Exchange (ETDEWEB)

    Stursberg, Olaf; Paschedag, Tina; Rungger, Matthias; Ding, Hao [Kassel Univ. (Germany). Fachgebiet Regelungs- und Systemtheorie

    2010-08-15

    While hybrid dynamic models are, to a certain degree, established for modeling systems with heterogeneous dynamics, most approaches for design and analysis of hybrid systems are restricted to monolithic models without hierarchy. This contribution first shows, how modular hybrid systems with two layers of decision, as appropriate for representing manufacturing systems for example, can be modeled systematically. The second part proposes a technique for fixing discrete inputs (for coordinating control) and continuous inputs (for embedded continuous controllers) in combination. The method uses a graph-based search on the upper decision layer, while principles of predictive control are used on the lower layer. The procedure of modeling and control is illustrated for a manufacturing process. (orig.)

  5. Two-layer optical model of skin for early, non-invasive detection of wound development on the diabetic foot

    Science.gov (United States)

    Yudovsky, Dmitry; Nouvong, Aksone; Schomacker, Kevin; Pilon, Laurent

    2010-02-01

    Foot ulceration is a debilitating comorbidity of diabetes that may result in loss of mobility and amputation. Optical detection of cutaneous tissue changes due to inflammation and necrosis at the preulcer site could constitute a preventative strategy. A commercial hyperspectral oximetry system was used to measure tissue oxygenation on the feet of diabetic patients. A previously developed predictive index was used to differentiate preulcer tissue from surrounding healthy tissue with a sensitivity of 92% and specificity of 80%. To improve prediction accuracy, an optical skin model was developed treating skin as a two-layer medium and explicitly accounting for (i) melanin content and thickness of the epidermis, (ii) blood content and hemoglobin saturation of the dermis, and (iii) tissue scattering in both layers. Using this forward model, an iterative inverse method was used to determine the skin properties from hyperspectral images of preulcerative areas. The use of this information in lowering the false positive rate was discussed.

  6. Oblique wave scattering by an undulating porous bottom in a two-layer ice-covered fluid

    Science.gov (United States)

    Panda, Srikumar

    2016-06-01

    The present study analyzes the reflection and transmission phenomenon of water-waves in a two-layer ice-covered system. The upper layer is covered by an ice-sheet, whereas the bottom of the lower layer is undulated and permeable. By using regular perturbation analysis and Fourier transform technique, the problem is solved and the first order reflection and transmission coefficients are determined. It is found that these coefficients depend on the shape as well as the permeability of the undulating bottom. Therefore, from the practical viewpoint, an undulating bottom topography is considered to determine all the aforesaid coefficients. The role of various system parameters, such as porosity, angle of incidence and ice parameters, are discussed to analyze the transformation of incident water wave energy from one layer to another layer. The outcomes are demonstrated in graphical forms.

  7. Synthesis and absorbing mechanism of two-layer microwave absorbers containing polycrystalline iron fibers and carbonyl iron

    Science.gov (United States)

    Ding, Qingwei; Zhang, Mingang; Zhang, Cunrui; Qian, Tianwei

    2013-04-01

    Polycrystalline iron fibers were fabricated by α-FeOOH fiber precursors. Two-layer microwave absorber had been prepared by as-prepared polycrystalline iron fibers and carbonyl iron. The structure, morphology and properties of the composites were characterized with X-ray diffraction, scanning electron microscope and Network Analyzer. The complex permittivity and reflection loss (dB) of the composites were measured employing vector network analyzer model PNA 3629D vector in the frequency range between 30 and 6000 MHz. The thickness effect of the carbonyl iron layer on the microwave loss properties of the composites was investigated. A possible microwave-absorbing mechanism of polycrystalline iron fibers/carbonyl iron composite was proposed. The polycrystalline iron fibers/carbonyl iron composite can find applications in suppression of electromagnetic interference, and reduction of radar signature.

  8. Synchronization in a coupled two-layer quasigeostrophic model of baroclinic instability – Part 1: Master-slave configuration

    Directory of Open Access Journals (Sweden)

    P. L. Read

    2009-08-01

    Full Text Available Synchronization is studied using a pair of diffusively-coupled, two-layer quasi-geostrophic systems each comprising a single baroclinic wave and a zonal flow. In particular, the coupling between the systems is in the well-known master-slave or one-way configuration. Nonlinear time series analysis, phase dynamics, and bifurcation diagrams are used to study the dynamics of the coupled system. Phase synchronization, imperfect synchronization (phase slips, or complete synchronization are found, depending upon the strength of coupling, when the systems are either in a periodic or a chaotic regime. The results of investigations when the dynamics of each system are in different regimes are also presented. These results also show evidence of phase synchronization and signs of chaos control.

  9. Monte carlo diffusion hybrid model for photon migration in a two-layer turbid medium in the frequency domain.

    Science.gov (United States)

    Alexandrakis, G; Farrell, T J; Patterson, M S

    2000-05-01

    We propose a hybrid Monte Carlo (MC) diffusion model for calculating the spatially resolved reflectance amplitude and phase delay resulting from an intensity-modulated pencil beam vertically incident on a two-layer turbid medium. The model combines the accuracy of MC at radial distances near the incident beam with the computational efficiency afforded by a diffusion calculation at further distances. This results in a single forward calculation several hundred times faster than pure MC, depending primarily on model parameters. Model predictions are compared with MC data for two cases that span the extremes of physiologically relevant optical properties: skin overlying fat and skin overlying muscle, both in the presence of an exogenous absorber. It is shown that good agreement can be achieved for radial distances from 0.5 to 20 mm in both cases. However, in the skin-on-muscle case the choice of model parameters and the definition of the diffusion coefficient can lead to some interesting discrepancies.

  10. A two-layer depth-averaged approach to describe the regime stratification in collapses of dry granular columns

    Science.gov (United States)

    Sarno, L.; Carravetta, A.; Martino, R.; Tai, Y. C.

    2014-10-01

    The dynamics of dry granular flows is still insufficiently understood. Several depth-averaged approaches, where the flow motion is described through hydrodynamic-like models with suitable resistance laws, have been proposed in the last decades to describe the propagation of avalanches and debris flows. Yet, some important features of the granular flow dynamics cannot be well delivered. For example, it is very challenging to capture the progressive deposition process, observed in collapses and dam-break flows over rough beds, where an upper surface flow is found to coexist with a lower creeping flow. The experimental observations of such flows suggest the existence of a flow regime stratification caused by different momentum transfer mechanisms. In this work, we propose a two-layer depth-averaged model, aiming at describing such a stratification regime inside the flowing granular mass. The model equations are derived for both two-dimensional plane and axi-symmetric flows. Mass and momentum balances of each layer are considered separately, so that different constitutive laws are introduced. The proposed model is equipped with a closure equation accounting for the mass flux at the interface between the layers. Numerical results are compared with experimental data of axi-symmetric granular collapses to validate the proposed approach. The model delivers sound agreement with experimental data when the initial aspect ratios are small. In case of large initial aspect ratios, it yields a significant improvement in predicting the final shape of deposit and also the run-out distances. Further comparisons with different numerical models show that the two-layer approach is capable of correctly describing the main features of the final deposit also in the case of two-dimensional granular collapses.

  11. Mem-ADSVM: A two-layer multi-label predictor for identifying multi-functional types of membrane proteins.

    Science.gov (United States)

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2016-06-07

    Identifying membrane proteins and their multi-functional types is an indispensable yet challenging topic in proteomics and bioinformatics. However, most of the existing membrane-protein predictors have the following problems: (1) they do not predict whether a given protein is a membrane protein or not; (2) they are limited to predicting membrane proteins with single-label functional types but ignore those with multi-functional types; and (3) there is still much room for improvement for their performance. To address these problems, this paper proposes a two-layer multi-label predictor, namely Mem-ADSVM, which can identify membrane proteins (Layer I) and their multi-functional types (Layer II). Specifically, given a query protein, its associated gene ontology (GO) information is retrieved by searching a compact GO-term database with its homologous accession number. Subsequently, the GO information is classified by a binary support vector machine (SVM) classifier to determine whether it is a membrane protein or not. If yes, it will be further classified by a multi-label multi-class SVM classifier equipped with an adaptive-decision (AD) scheme to determine to which functional type(s) it belongs. Experimental results show that Mem-ADSVM significantly outperforms state-of-the-art predictors in terms of identifying both membrane proteins and their multi-functional types. This paper also suggests that the two-layer prediction architecture is better than the one-layer for prediction performance. For reader׳s convenience, the Mem-ADSVM server is available online at http://bioinfo.eie.polyu.edu.hk/MemADSVMServer/.

  12. Improved lumped models for transient combined convective and radiative cooling of a two-layer spherical fuel element

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alice Cunha da; Su, Jian, E-mail: alicecs@poli.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The High Temperature Gas cooled Reactor (HTGR) is a fourth generation thermal nuclear reactor, graphite-moderated and helium cooled. The HTGRs have important characteristics making essential the study of these reactors, as well as its fuel element. Examples of these are: high thermal efficiency,low operating costs and construction, passive safety attributes that allow implication of the respective plants. The Pebble Bed Modular Reactor (PBMR) is a HTGR with spherical fuel elements that named the reactor. This fuel element is composed by a particulate region with spherical inclusions, the fuel UO2 particles, dispersed in a graphite matrix and a convective heat transfer by Helium happens on the outer surface of the fuel element. In this work, the transient heat conduction in a spherical fuel element of a pebble-bed high temperature reactor was studied in a transient situation of combined convective and radiative cooling. Improved lumped parameter model was developed for the transient heat conduction in the two-layer composite sphere subjected to combined convective and radiative cooling. The improved lumped model was obtained through two-point Hermite approximations for integrals. Transient combined convective and radiative cooling of the two-layer spherical fuel element was analyzed to illustrate the applicability of the proposed lumped model, with respect to die rent values of the Biot number, the radiation-conduction parameter, the dimensionless thermal contact resistance, the dimensionless inner diameter and coating thickness, and the dimensionless thermal conductivity. It was shown by comparison with numerical solution of the original distributed parameter model that the improved lumped model, with H2,1/H1,1/H0,0 approximation yielded significant improvement of average temperature prediction over the classical lumped model. (author)

  13. Fossil turbulence and fossil turbulence waves can be dangerous

    CERN Document Server

    Gibson, Carl H

    2012-01-01

    Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any other forces that tend to damp the eddies out. By this definition, turbulence always cascades from small scales where vorticity is created to larger scales where turbulence fossilizes. Fossil turbulence is any perturbation in a hydrophysical field produced by turbulence that persists after the fluid is no longer turbulent at the scale of the perturbation. Fossil turbulence patterns and fossil turbulence waves preserve and propagate energy and information about previous turbulence. Ignorance of fossil turbulence properties can be dangerous. Examples include the Osama bin Laden helicopter crash and the Air France 447 Airbus crash, both unfairly blamed on the pilots. Observations support the proposed definitions, and suggest even direct numerical simulations of turbulence require caution.

  14. Turbulence modelling; Modelisation de la turbulence isotherme

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, D. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)

    1997-12-31

    This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-{epsilon} two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the `standard` (R{sub ij}-{epsilon}) Reynolds tensions transport model and introduces more recent models called `feasible`. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author). 37 refs.

  15. Two-layer ZnO nanowire arrays: Fabrication and its photovoltaic property sensitized by CdSe and CdS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Jingzhi [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Wang, Jianxiong; Sun, Xiaowei [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore)

    2015-09-01

    Two-layer ZnO nanowire arrays have been synthesized by a low temperature hydrothermal method. The two-layer structure enables the absorption of CdSe and CdS quantum dots (QDs) on different nanostructured layers, respectively. Solar cell based on the QD sensitized ZnO nanowire arrays is fabricated. Because sequential light adsorption of different sensitizers happens in two different layers, the photoanode can reduce the interaction possibility among different QDs and extend the absorption range, and result in improved photovoltaic properties. - Highlights: • Two-layer ZnO nanowire array has been synthesized by a low temperature hydrothermal. • A two-layer quantum dot sensitized ZnO nanowire array solar cell has been fabricated. • The structure can reduce interaction possibility among different quantum dots. • The structure can extend the range of light absorption.

  16. Turbulence and dynamo interlinks

    Science.gov (United States)

    de Gouveia Dal Pino, E. M.; Santos-Lima, R.; Kowal, G.; Falceta-Gonçalves, D.

    2013-07-01

    The role of turbulence in astrophysical environments and its interplay with magnetic fields is still highly debated. In this lecture, we will discuss this issue in the framework of dynamo processes. We will first present a very brief summary of turbulent dynamo theories, then will focus on small scale turbulent dynamos and their particular relevance on the origin and maintenance of magnetic fields in the intra-cluster media (ICM) of galaxies. In these environments, the very low density of the flow requires a collisionless-MHD treatment. We will show the implications of this approach in the turbulent amplification of the magnetic fields in these environments. To finalize, we will also briefly address the connection between MHD turbulence and fast magnetic reconnection and its possible implications in the diffusion of magnetic flux in the dynamo process.

  17. Turbulence and Dynamo Interlinks

    CERN Document Server

    Pino, E M de Gouveia Dal

    2013-01-01

    The role of turbulence in astrophysical environments and its interplay with magnetic fields is still highly debated. In this lecture, we will discuss this issue in the framework of dynamo processes. We will first present a very brief summary of turbulent dynamo theories, then will focus on small scale turbulent dynamos and their particular relevance on the origin and maintenance of magnetic fields in the intra-cluster media (ICM) of galaxies. In these environments, the very low density of the flow requires a collisionless-MHD treatment. We will show the implications of this approach in the turbulent amplification of the magnetic fields in these environments. To finalize, we will also briefly address the connection between MHD turbulence and fast magnetic reconnection and its possible implications in the diffusion of magnetic flux in the dynamo process.

  18. Turbulence modelling of flow fields in thrust chambers

    Science.gov (United States)

    Chen, C. P.; Kim, Y. M.; Shang, H. M.

    1993-01-01

    Following the consensus of a workshop in Turbulence Modelling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows, and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data to account for the non-isotropic turbulence effects.

  19. A tutorial introduction to the statistical theory of turbulent plasmas, a half-century after Kadomtsev's Plasma Turbulence and the resonance-broadening theory of Dupree and Weinstock

    Science.gov (United States)

    Krommes, John A.

    2015-12-01

    > In honour of the 50th anniversary of the influential review/monograph on plasma turbulence by B. B. Kadomtsev as well as the seminal works of T. H. Dupree and J. Weinstock on resonance-broadening theory, an introductory tutorial is given about some highlights of the statistical-dynamical description of turbulent plasmas and fluids, including the ideas of nonlinear incoherent noise, coherent damping, and self-consistent dielectric response. The statistical closure problem is introduced. Incoherent noise and coherent damping are illustrated with a solvable model of passive advection. Self-consistency introduces turbulent polarization effects that are described by the dielectric function . Dupree's method of using to estimate the saturation level of turbulence is described; then it is explained why a more complete theory that includes nonlinear noise is required. The general theory is best formulated in terms of Dyson equations for the covariance and an infinitesimal response function , which subsumes . An important example is the direct-interaction approximation (DIA). It is shown how to use Novikov's theorem to develop an -space approach to the DIA that is complementary to the original -space approach of Kraichnan. A dielectric function is defined for arbitrary quadratically nonlinear systems, including the Navier-Stokes equation, and an algorithm for determining the form of in the DIA is sketched. The independent insights of Kadomtsev and Kraichnan about the problem of the DIA with random Galilean invariance are described. The mixing-length formula for drift-wave saturation is discussed in the context of closures that include nonlinear noise (shielded by ). The role of in the calculation of the symmetry-breaking (zonostrophic) instability of homogeneous turbulence to the generation of inhomogeneous mean flows is addressed. The second-order cumulant expansion and the stochastic structural stability theory are also discussed in that context. Various historical

  20. Turbulent thermal diffusion in strongly stratified turbulence: theory and experiments

    CERN Document Server

    Amir, G; Eidelman, A; Elperin, T; Kleeorin, N; Rogachevskii, I

    2016-01-01

    Turbulent thermal diffusion is a combined effect of the temperature stratified turbulence and inertia of small particles. It causes the appearance of a non-diffusive turbulent flux of particles in the direction of the turbulent heat flux. This non-diffusive turbulent flux of particles is proportional to the product of the mean particle number density and the effective velocity of inertial particles. The theory of this effect has been previously developed only for small temperature gradients and small Stokes numbers (Phys. Rev. Lett. {\\bf 76}, 224, 1996). In this study a generalized theory of turbulent thermal diffusion for arbitrary temperature gradients and Stokes numbers has been developed. The laboratory experiments in the oscillating grid turbulence and in the multi-fan produced turbulence have been performed to validate the theory of turbulent thermal diffusion in strongly stratified turbulent flows. It has been shown that the ratio of the effective velocity of inertial particles to the characteristic ve...

  1. Edge turbulence in tokamaks

    Science.gov (United States)

    Nedospasov, A. V.

    1992-12-01

    Edge turbulence is of decisive importance for the distribution of particle and energy fluxes to the walls of tokamaks. Despite the availability of extensive experimental data on the turbulence properties, its nature still remains a subject for discussion. This paper contains a review of the most recent theoretical and experimental studies in the field, including mainly the studies to which Wootton (A.J. Wooton, J. Nucl. Mater. 176 & 177 (1990) 77) referred to most in his review at PSI-9 and those published later. The available theoretical models of edge turbulence with volume dissipation due to collisions fail to fully interpret the entire combination of experimental facts. In the scrape-off layer of a tokamak the dissipation prevails due to the flow of current through potential shifts near the surface of limiters of divertor plates. The different origins of turbulence at the edge and in the core plasma due to such dissipation are discussed in this paper. Recent data on the electron temperature fluctuations enabled one to evaluate the electric probe measurements of turbulent flows of particles and heat critically. The latest data on the suppression of turbulence in the case of L-H transitions are given. In doing so, the possibility of exciting current instabilities in biasing experiments (rather than only to the suppression of existing turbulence) is given some attention. Possible objectives of further studies are also discussed.

  2. Direct Numerical Simulation and Theories of Wall Turbulence with a Range of Pressure Gradients

    Science.gov (United States)

    Coleman, G. N.; Garbaruk, A.; Spalart, P. R.

    2014-01-01

    A new Direct Numerical Simulation (DNS) of Couette-Poiseuille flow at a higher Reynolds number is presented and compared with DNS of other wall-bounded flows. It is analyzed in terms of testing semi-theoretical proposals for universal behavior of the velocity, mixing length, or eddy viscosity in pressure gradients, and in terms of assessing the accuracy of two turbulence models. These models are used in two modes, the traditional one with only a dependence on the wall-normal coordinate y, and a newer one in which a lateral dependence on z is added. For pure Couette flow and the Couette-Poiseuille case considered here, this z-dependence allows some models to generate steady streamwise vortices, which generally improves the agreement with DNS and experiment. On the other hand, it complicates the comparison between DNS and models.

  3. Numerical Studies of Quantum Turbulence

    Science.gov (United States)

    Tsubota, Makoto; Fujimoto, Kazuya; Yui, Satoshi

    2017-09-01

    We review numerical studies of quantum turbulence. Quantum turbulence is currently one of the most important problems in low temperature physics and is actively studied for superfluid helium and atomic Bose-Einstein condensates. A key aspect of quantum turbulence is the dynamics of condensates and quantized vortices. The dynamics of quantized vortices in superfluid helium are described by the vortex filament model, while the dynamics of condensates are described by the Gross-Pitaevskii model. Both of these models are nonlinear, and the quantum turbulent states of interest are far from equilibrium. Hence, numerical studies have been indispensable for studying quantum turbulence. In fact, numerical studies have contributed to revealing the various problems of quantum turbulence. This article reviews the recent developments in numerical studies of quantum turbulence. We start with the motivation and the basics of quantum turbulence and invite readers to the frontier of this research. Though there are many important topics in the quantum turbulence of superfluid helium, this article focuses on inhomogeneous quantum turbulence in a channel, which has been motivated by recent visualization experiments. Atomic Bose-Einstein condensates are a modern issue in quantum turbulence, and this article reviews a variety of topics in the quantum turbulence of condensates, e.g., two-dimensional quantum turbulence, weak wave turbulence, turbulence in a spinor condensate, some of which have not been addressed in superfluid helium and paves the novel way for quantum turbulence researches. Finally, we discuss open problems.

  4. Turbulence new approaches

    CERN Document Server

    Belotserkovskii, OM; Chechetkin, VM

    2005-01-01

    The authors present the results of numerical experiments carried out to examine the problem of development of turbulence and convection. On the basis of the results, they propose a physical model of the development of turbulence. Numerical algorithms and difference schema for carrying out numerical experiments in hydrodynamics, are proposed. Original algorithms, suitable for calculation of the development of the processes of turbulence and convection in different conditions, even on astrophysical objects, are presented. The results of numerical modelling of several important phenomena having both fundamental and applied importance are described.

  5. Turbulent current drive mechanisms

    Science.gov (United States)

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-08-01

    Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.

  6. Non-gaussian turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J. [NEG Micon Project Development A/S, Randers (Denmark); Hansen, K.S. [Denmarks Technical Univ., Dept. of Energy Engineering, Lyngby (Denmark); Pedersen, B.J. [VESTAS Wind Systems A/S, Lem (Denmark); Nielsen, M. [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)

    1999-03-01

    The pdf`s of atmospheric turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour is being investigated using data from a large WEB-database in order to quantify the amount of non-Gaussianity. Models for non-Gaussian turbulence have been developed, by which artificial turbulence can be generated with specified distributions, spectra and cross-correlations. The artificial time series will then be used in load models and the resulting loads in the Gaussian and the non-Gaussian cases will be compared. (au)

  7. Homogeneous turbulence theory

    Energy Technology Data Exchange (ETDEWEB)

    Bershadskii, A.G.

    1985-06-01

    An exact solution for the nonlinear problem of the spectral energy function of a homogeneous turbulence is derived under the assumption that energy transfer under the effect of inertial forces is determined mainly by the interactions among vortices whose wavenumbers are only slightly different from each other. The results are experimentally verified for turbulence behind grids. Similar problems are solved for MHD turbulence and for a nonstationary spectral energy function. It is shown that at the initial stage of degeneration, the spectral energy function is little influenced by the Stewart number; this agrees with experimental data for the damping of longitudinal velocity pulsations behind a grid in a longitudinal magnetic field. 15 references.

  8. Aviation turbulence processes, detection, prediction

    CERN Document Server

    Lane, Todd

    2016-01-01

    Anyone who has experienced turbulence in flight knows that it is usually not pleasant, and may wonder why this is so difficult to avoid. The book includes papers by various aviation turbulence researchers and provides background into the nature and causes of atmospheric turbulence that affect aircraft motion, and contains surveys of the latest techniques for remote and in situ sensing and forecasting of the turbulence phenomenon. It provides updates on the state-of-the-art research since earlier studies in the 1960s on clear-air turbulence, explains recent new understanding into turbulence generation by thunderstorms, and summarizes future challenges in turbulence prediction and avoidance.

  9. Modeling of turbulent chemical reaction

    Science.gov (United States)

    Chen, J.-Y.

    1995-01-01

    Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.

  10. High-Performanced Cathode with a Two-Layered R-P Structure for Intermediate Temperature Solid Oxide Fuel Cells.

    Science.gov (United States)

    Huan, Daoming; Wang, Zhiquan; Wang, Zhenbin; Peng, Ranran; Xia, Changrong; Lu, Yalin

    2016-02-01

    Driven by the mounting concerns on global warming and energy crisis, intermediate temperature solid-oxide fuel cells (IT-SOFCs) have attracted special attention for their high fuel efficiency, low toxic gas emission, and great fuel flexibility. A key obstacle to the practical operation of IT-SOFCs is their sluggish oxygen reduction reaction (ORR) kinetics. In this work, we applied a new two-layered Ruddlesden-Popper (R-P) oxide, Sr3Fe2O7-δ (SFO), as the material for oxygen ion conducting IT-SOFCs. Density functional theory calculation suggested that SFO has extremely low oxygen ion formation energy and considerable energy barrier for O(2-) diffusion. Unfortunately, the stable SrO surface of SFO was demonstrated to be inert to O2 adsorption and dissociation reaction, and thus restricts its catalytic activity toward ORR. Based on this observation, Co partially substituted SFO (SFCO) was then synthesized and applied to improve its surface vacancy concentration to accelerate the oxygen adsorptive reduction reaction rate. Electrochemical performance results suggested that the cell using the SFCO single phase cathode has a peak power density of 685 mW cm(-2) at 650 °C, about 15% higher than those when using LSCF cathode. Operating at 200 mA cm(-2), the new cell using SFCO is quite stable within the 100-h' test.

  11. Forced phase-locked states and information retrieval in a two-layer network of oscillatory neurons with directional connectivity

    Science.gov (United States)

    Kazantsev, Victor; Pimashkin, Alexey

    2007-09-01

    We propose two-layer architecture of associative memory oscillatory network with directional interlayer connectivity. The network is capable to store information in the form of phase-locked (in-phase and antiphase) oscillatory patterns. The first (input) layer takes an input pattern to be recognized and their units are unidirectionally connected with all units of the second (control) layer. The connection strengths are weighted using the Hebbian rule. The output (retrieved) patterns appear as forced-phase locked states of the control layer. The conditions are found and analytically expressed for pattern retrieval in response on incoming stimulus. It is shown that the system is capable to recover patterns with a certain level of distortions or noises in their profiles. The architecture is implemented with the Kuramoto phase model and using synaptically coupled neural oscillators with spikes. It is found that the spiking model is capable to retrieve patterns using the spiking phase that translates memorized patterns into the spiking phase shifts at different time scales.

  12. Spin torque driven dynamics of a coupled two-layer structure: Interplay between conservative and dissipative coupling

    Science.gov (United States)

    Romera, M.; Lacoste, B.; Ebels, U.; Buda-Prejbeanu, L. D.

    2016-09-01

    The general concepts of spin wave theory are adapted to the spin torque driven dynamics of a self-polarized system based on two layers coupled via interlayer exchange (conservative coupling) and mutual spin torque (dissipative coupling). An analytical description of the nonlinear dynamics is proposed and validated through numerical simulations. In contrast to the single layer model, the phase equation of the coupled system has a contribution coming from the dissipative part of the LLGS equation. It is shown that this is a major contribution to the frequency mandatory to describe well the most basic features of the dynamics of this coupled system. Using the proposed model a specific feature of coupled dynamics is addressed: the redshift to blueshift transition observed in the frequency current dependence of this kind of exchange coupled systems upon increasing the applied field. It is found that the blueshift regime can only occur in a region of field where the two linear eigenmodes contribute equally to the steady state mode (i.e., high mode hybridization). Finally, a general perturbed Hamiltonian equation for the coupled system is proposed.

  13. TargetCrys: protein crystallization prediction by fusing multi-view features with two-layered SVM.

    Science.gov (United States)

    Hu, Jun; Han, Ke; Li, Yang; Yang, Jing-Yu; Shen, Hong-Bin; Yu, Dong-Jun

    2016-11-01

    The accurate prediction of whether a protein will crystallize plays a crucial role in improving the success rate of protein crystallization projects. A common critical problem in the development of machine-learning-based protein crystallization predictors is how to effectively utilize protein features extracted from different views. In this study, we aimed to improve the efficiency of fusing multi-view protein features by proposing a new two-layered SVM (2L-SVM) which switches the feature-level fusion problem to a decision-level fusion problem: the SVMs in the 1st layer of the 2L-SVM are trained on each of the multi-view feature sets; then, the outputs of the 1st layer SVMs, which are the "intermediate" decisions made based on the respective feature sets, are further ensembled by a 2nd layer SVM. Based on the proposed 2L-SVM, we implemented a sequence-based protein crystallization predictor called TargetCrys. Experimental results on several benchmark datasets demonstrated the efficacy of the proposed 2L-SVM for fusing multi-view features. We also compared TargetCrys with existing sequence-based protein crystallization predictors and demonstrated that the proposed TargetCrys outperformed most of the existing predictors and is competitive with the state-of-the-art predictors. The TargetCrys webserver and datasets used in this study are freely available for academic use at: http://csbio.njust.edu.cn/bioinf/TargetCrys .

  14. A novel technique for chest drain removal using a two layer method with triclosan-coated sutures

    Science.gov (United States)

    Yokoyama, Yujiro; Nakagomi, Takahiro; Shikata, Daichi

    2017-01-01

    In thoracic surgery, a thoracic drain is always inserted after the surgical procedure. Repair of the wound after removal of the thoracic tube is performed postoperatively, but no universally standard methods currently exists for this tube removal. Here we report a technique using triclosan-coated sutures that is used in thoracic surgery in our hospital. There are several advantages of this technique. First, there is no need for stitches removal on follow-up. Second, it prevents the leakage of pleural exudate because of the tight two-layer sutures. In addition, it was observed to be superior in terms of both wound healing and cosmetic aspects, due to the layer-to-layer sutures. The use of triclosan-coated sutures helps prevent infection and empyema is quite unlikely to occur as the result of the tight ligating of the muscular layer using these sutures. We applied this method in 168 patients over a period of 24 months. There were no complications on removal of the chest tube such as infection, fluid leakage or opening of the surgical wound. PMID:28203426

  15. Diffraction of Oblique Water Waves by Small Uneven Channel-bed in a Two-layer Fluid

    Institute of Scientific and Technical Information of China (English)

    Smrutiranjan Mohapatra

    2014-01-01

    Obliquely incident water wave scattering by an uneven channel-bed in the form of a small bottom undulation in a two-layer fluid is investigated within the frame work of three-dimensional linear water wave theory. The upper fluid is assumed to be bounded above by a rigid lid, while the lower one is bounded below by a bottom surface having a small deformation and the channel is unbounded in the horizontal directions. Assuming irrotational motion, perturbation technique is employed to calculate the first-order corrections to the velocity potentials in the two fluids by using Fourier transform approximately, and also to calculate the reflection and transmission coefficients in terms of integrals involving the shape function representing the bottom deformation. Consideration of a patch of sinusoidal ripples shows that the reflection coefficient is an oscillatory function of the ratio of twice the component of the wave number along x-axis and the ripple wave number. When this ratio approaches one, the theory predicts a resonant interaction between the bed and interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this number is large.

  16. An analytical model for solute transport through a GCL-based two-layered liner considering biodegradation.

    Science.gov (United States)

    Guan, C; Xie, H J; Wang, Y Z; Chen, Y M; Jiang, Y S; Tang, X W

    2014-01-01

    An analytical model for solute advection and dispersion in a two-layered liner consisting of a geosynthetic clay liner (GCL) and a soil liner (SL) considering the effect of biodegradation was proposed. The analytical solution was derived by Laplace transformation and was validated over a range of parameters using the finite-layer method based software Pollute v7.0. Results show that if the half-life of the solute in GCL is larger than 1 year, the degradation in GCL can be neglected for solute transport in GCL/SL. When the half-life of GCL is less than 1 year, neglecting the effect of degradation in GCL on solute migration will result in a large difference of relative base concentration of GCL/SL (e.g., 32% for the case with half-life of 0.01 year). The 100-year solute base concentration can be reduced by a factor of 2.2 when the hydraulic conductivity of the SL was reduced by an order of magnitude. The 100-year base concentration was reduced by a factor of 155 when the half life of the contaminant in the SL was reduced by an order of magnitude. The effect of degradation is more important in approving the groundwater protection level than the hydraulic conductivity. The analytical solution can be used for experimental data fitting, verification of complicated numerical models and preliminary design of landfill liner systems.

  17. Multiresidue analysis of pesticides in vegetables and fruits using two-layered column with graphitized carbon and water absorbent polymer.

    Science.gov (United States)

    Obana, H; Akutsu, K; Okihashi, M; Hori, S

    2001-09-01

    A high-throughput multiresidue analysis of pesticides in non-fatty vegetables and fruits was developed. The method consisted of a single extraction and a single clean-up procedure. Food samples were extracted with ethyl acetate and the mixture of extract and food dregs were poured directly into the clean-up column. The clean-up column consisted of two layers of water-absorbent polymer (upper) and graphitized carbon (lower), which were packed in a reservoir (75 ml ) of a cartridge column. The polymer removed water in the extract while the carbon performed clean-up. In a recovery test, 110 pesticides were spiked and average recoveries were more than 95% from spinach and orange. Most pesticides were recovered in the range 70-115% with RSD usually < 10% for five experiments. The residue analyses were performed by the extraction of 12 pesticides from 13 samples. The two methods resulted in similar residue levels except chlorothalonil in celery, for which the result was lower with the proposed method. The results confirmed that the proposed method could be applied to monitoring of pesticide residue in foods.

  18. Thickness Determination for a Two-Layered Composite of a Film and a Plate by Low-Frequency Ultrasound

    Institute of Scientific and Technical Information of China (English)

    MAO Jie; LI Ming-Xuan; WANG Xiao-Min

    2007-01-01

    We present an ultrasonic method for determining the thickness of a composite consisting of a soft thin film attached to a hard plate substrate, by resonance spectra in the low frequency region. The interrogating waves can be incident only to the two-layered composite from the substrate side. The reflection spectra are obtained by FFT analysis of the compressive pulsed echoes from the composite, and the thicknesses of the film and the substrate are simultaneously inversed by the simulated annealing method from the resonant frequencies knowing other acoustical parameters in prior. The sensitivity of the method to individual thickness, its convergence and stability against experimental noises are studied. Experiment with interrogating wavelength 4 times larger than the film thickness in a sample of a polymer film (0.054 mm) on an aluminium plate (6.24 mm) verifies the validity of the method. The average relative errors in the measurement of the thicknesses of the film and the substrate are found to be -4.1% and -0.62%, respectively.

  19. Diffraction of oblique water waves by small uneven channel-bed in a two-layer fluid

    Science.gov (United States)

    Mohapatra, Smrutiranjan

    2014-09-01

    Obliquely incident water wave scattering by an uneven channel-bed in the form of a small bottom undulation in a two-layer fluid is investigated within the frame work of three-dimensional linear water wave theory. The upper fluid is assumed to be bounded above by a rigid lid, while the lower one is bounded below by a bottom surface having a small deformation and the channel is unbounded in the horizontal directions. Assuming irrotational motion, perturbation technique is employed to calculate the first-order corrections to the velocity potentials in the two fluids by using Fourier transform approximately, and also to calculate the reflection and transmission coefficients in terms of integrals involving the shape function representing the bottom deformation. Consideration of a patch of sinusoidal ripples shows that the reflection coefficient is an oscillatory function of the ratio of twice the component of the wave number along x-axis and the ripple wave number. When this ratio approaches one, the theory predicts a resonant interaction between the bed and interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this number is large.

  20. Reflection of a plane wave from a two-layered seafloor with non-parallel interface between the layers.

    Science.gov (United States)

    Papadakis, Panagiotis I; Piperakis, George S; Kalogerakis, Michael A

    2015-02-01

    This work studies the reflection coefficient of a plane wave incident on a seafloor consisting of two layers (sediment and substrate), whose interface is linear but not parallel to the water-sediment interface. This is an extension of the well-established and studied reflection coefficient concept for seafloors with parallel layers. Moreover this study introduces the concept of the Coherent Reflection Coefficient (CRC) that extends the usual Rayleigh reflection coefficient definition not only at the water-sediment interface but inside the water column as well. The mathematical formulation of the CRC is derived and its numerical implementation is explained. Based on this implementation a numerical code is developed and incorporated-among other codes-in a user-friendly graphics toolbox that was built to facilitate CRC calculations. Numerical examples for realistic seafloors are presented and the derived results are compared to similar ones for parallel layers, indicating that even for small inclination angles the reflection coefficient difference between parallel and slanted interface layers is substantial, hence cannot be ignored. An imminent application of the extended seafloor model and the CRC introduced in this work is the enhancement of geophysics inversion schemes for the estimation of the seafloor parameters.

  1. Calculation of the outcomes of remodeling of arteries subjected to sustained hypertension using a 3D two-layered model.

    Science.gov (United States)

    Rachev, Alexander; Taylor, W Robert; Vito, Raymond P

    2013-07-01

    Arteries manifest a remodeling response to long-term alterations in arterial pressure and blood flow by changing geometry, structure, and composition through processes driven by perturbations of the local stresses in the vascular wall from their baseline values. The objective of this study is twofold--to develop a general method for calculating the remodeling responses of an artery considered as a two-layered tube; and to provide results for adaptive and maladaptive remodeling of a coronary artery. By formulating an inverse problem of vascular mechanics, the geometrical dimensions and mechanical properties of an artery are calculated from a prescribed deformed configuration, stress field, structural stiffness, and applied load. As an illustrative example we consider a human LAD coronary artery in both a perfect and incomplete adaptive response to a sustained step-wise change in pressure and a maladaptive response due to impaired remodeling of adventitia. The results obtained show that adventitia plays an important role in vascular mechanics when an artery is subjected to high arterial pressure. In addition to its well-known short term function of preventing over-inflation of an artery, it seems reasonable to accept that the manner by which adventitia remodels in response to a chronic increase in pressure is essential for preserving normal arterial function or may lead to an increased risk of developing vascular disorders.

  2. Study of an unitised bidirectional vanadium/air redox flow battery comprising a two-layered cathode

    Science.gov (United States)

    grosse Austing, Jan; Nunes Kirchner, Carolina; Hammer, Eva-Maria; Komsiyska, Lidiya; Wittstock, Gunther

    2015-01-01

    The performance of a unitised bidirectional vanadium/air redox flow battery (VARFB) is described. It contains a two-layered cathode consisting of a gas diffusion electrode (GDE) with Pt/C catalyst for discharging and of an IrO2 modified graphite felt for charging. A simple routine is shown for the modification of a graphite felt with IrO2. A maximum energy efficiency of 41.7% at a current density of 20 mA cm-2 as well as an average discharge power density of 34.6 mW cm-2 at 40 mA cm-2 were obtained for VARFB operation at room temperature with the novel cathode setup. A dynamic hydrogen electrode was used to monitor half cell potentials during operation allowing to quantify the contribution of the cathode to the overall performance of the VARFB. Four consecutive cycles revealed that crossover of vanadium ions took place and irreversible degradation processes within the reaction unit lead to a performance decrease.

  3. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  4. Scrambled and Unscrambled Turbulence

    CERN Document Server

    Ramaprabhu, P; Lawrie, A G W

    2013-01-01

    The linked fluid dynamics videos depict Rayleigh-Taylor turbulence when driven by a complex acceleration profile involving two stages of acceleration interspersed with a stage of stabilizing deceleration. Rayleigh-Taylor (RT) instability occurs at the interface separating two fluids of different densities, when the lighter fluid is accelerated in to the heavier fluid. The turbulent mixing arising from the development of the miscible RT instability is of key importance in the design of Inertial Confinement Fusion capsules, and to the understanding of astrophysical events, such as Type Ia supernovae. By driving this flow with an accel-decel-accel profile, we have investigated how structures in RT turbulence are affected by a sudden change in the direction of the acceleration first from destabilizing acceleration to deceleration, and followed by a restoration of the unstable acceleration. By studying turbulence under such highly non-equilibrium conditions, we hope to develop an understanding of the response and ...

  5. Stochastic modelling of turbulence

    DEFF Research Database (Denmark)

    Sørensen, Emil Hedevang Lohse

    This thesis addresses stochastic modelling of turbulence with applications to wind energy in mind. The primary tool is ambit processes, a recently developed class of computationally tractable stochastic processes based on integration with respect to Lévy bases. The subject of ambit processes...... stochastic turbulence model based on ambit processes is proposed. It is shown how a prescribed isotropic covariance structure can be reproduced. Non-Gaussian turbulence models are obtained through non-Gaussian Lévy bases or through volatility modulation of Lévy bases. As opposed to spectral models operating...... is dissipated into heat due to the internal friction caused by viscosity. An existing stochastic model, also expressed in terms of ambit processes, is extended and shown to give a universal and parsimonious description of the turbulent energy dissipation. The volatility modulation, referred to above, has...

  6. Inflow Turbulence Generation Methods

    Science.gov (United States)

    Wu, Xiaohua

    2017-01-01

    Research activities on inflow turbulence generation methods have been vigorous over the past quarter century, accompanying advances in eddy-resolving computations of spatially developing turbulent flows with direct numerical simulation, large-eddy simulation (LES), and hybrid Reynolds-averaged Navier-Stokes–LES. The weak recycling method, rooted in scaling arguments on the canonical incompressible boundary layer, has been applied to supersonic boundary layer, rough surface boundary layer, and microscale urban canopy LES coupled with mesoscale numerical weather forecasting. Synthetic methods, originating from analytical approximation to homogeneous isotropic turbulence, have branched out into several robust methods, including the synthetic random Fourier method, synthetic digital filtering method, synthetic coherent eddy method, and synthetic volume forcing method. This article reviews major progress in inflow turbulence generation methods with an emphasis on fundamental ideas, key milestones, representative applications, and critical issues. Directions for future research in the field are also highlighted.

  7. Turbulence of swarming sperm

    Science.gov (United States)

    Creppy, Adama; Praud, Olivier; Druart, Xavier; Kohnke, Philippa L.; Plouraboué, Franck

    2015-09-01

    Collective motion of self-sustained swarming flows has recently provided examples of small-scale turbulence arising where viscous effects are dominant. We report the first observation of universal enstrophy cascade in concentrated swarming sperm consistent with a body of evidence built from various independent measurements. We found a well-defined k-3 power-law decay of a velocity field power spectrum and relative dispersion of small beads consistent with theoretical predictions in 2D turbulence. Concentrated living sperm displays long-range, correlated whirlpool structures of a size that provides an integral scale of turbulence. We propose a consistent explanation for this quasi-2D turbulence based on self-structured laminated flow forced by steric interactions and alignment, a state of active matter that we call "swarming liquid crystal." We develop scaling arguments consistent with this interpretation.

  8. Color of turbulence

    CERN Document Server

    Zare, Armin; Georgiou, Tryphon T

    2016-01-01

    Second-order statistics of turbulent flows can be obtained either experimentally or via direct numerical simulations. Statistics reflect fundamentals of flow physics and can be used to develop low-complexity turbulence models. Due to experimental or numerical limitations it is often the case that only partial flow statistics can be reliably known, i.e., only certain correlations between a limited number of flow field components are available. Thus, it is of interest to complete the statistical signature of the flow field in a way that is consistent with the known dynamics. This is an inverse problem and our approach utilizes stochastically-forced linearization around turbulent mean velocity profile. In general, white-in-time stochastic forcing is not sufficient to explain turbulent flow statistics. In contrast, colored-in-time forcing of the linearized equations allows for exact matching of available correlations. To accomplish this, we develop dynamical models that generate the required stochastic excitation...

  9. Dissipation in unsteady turbulence

    CERN Document Server

    Bos, Wouter

    2016-01-01

    Recent experiments and simulations have shown that unsteady turbulent flows, before reaching a dynamic equilibrium state, display a universal behaviour. We show that the observed universal non-equilibrium scaling can be explained using a non-equilibrium correction of Kolmogorov's energy spectrum. Given the universality of the experimental and numerical observations, the ideas presented here lay the foundation for the modeling of a wide class of unsteady turbulent flows.

  10. Stochastic tools in turbulence

    CERN Document Server

    Lumey, John L

    2012-01-01

    Stochastic Tools in Turbulence discusses the available mathematical tools to describe stochastic vector fields to solve problems related to these fields. The book deals with the needs of turbulence in relation to stochastic vector fields, particularly, on three-dimensional aspects, linear problems, and stochastic model building. The text describes probability distributions and densities, including Lebesgue integration, conditional probabilities, conditional expectations, statistical independence, lack of correlation. The book also explains the significance of the moments, the properties of the

  11. The impact of rotation on turbulent tidal friction in stellar and planetary convective regions

    CERN Document Server

    Mathis, Stéphane; Guenel, Mathieu; Gallet, Florian; Poncin-Lafitte, Christophe Le

    2016-01-01

    Turbulent friction in convective regions in stars and planets is one of the key physical mechanisms that drive the dissipation of the kinetic energy of tidal flows in their interiors and the evolution of their systems. This friction acts both on the equilibrium/non-wave like tide and on tidal inertial waves in these layers. It is thus necessary to obtain a robust prescription for this friction. In the current state-of-the-art, it is modeled by a turbulent eddy-viscosity coefficient, based on mixing-length theory, applied on velocities of tides. However, none of the current prescriptions take into account the action of rotation that can strongly affects turbulent convection. Therefore, we use theoretical scaling laws for convective velocities and characteristic lengthscales in rotating stars and planets that have been recently confirmed by 3-D high-resolution nonlinear Cartesian numerical simulations to derive a new prescription. A corresponding local model of tidal waves is used to understand the consequences...

  12. A symmetry based approach to quantifying the compressible turbulent boundary layer

    Science.gov (United States)

    Wu, Bin; Bi, Wei-Tao; She, Zhen-Su; Hussain, Fazle

    2015-11-01

    Developing analytical description of the compressible turbulent boundary layer (CTBL) is of great importance to many technological applications and to the understanding and modeling of compressible turbulence. Here a symmetry-based approach is applied to analyze the CTBL data acquired from DNS, covering a wide range of Reynolds number (Re), Mach number (Ma) and wall temperature. The Reynolds stress length scale displays a four-layer structure in the direction normal to the wall and obeys the dilation group invariance as in the incompressible TBL. A newly-identified turbulent heat flux length scale behaves similarly, which is the classical temperature mixing length weighted by the mean temperature. A significant result is the identification of three physical parameters for each length function to characterize the adiabatic flow: a bulk flow constant, a buffer layer thickness and a boundary layer edge, which vary with Re and Ma. For the diabatic flow, the sublayer thickness and the inner layer scaling exponents vary additionally with the wall temperature. These parameters are modeled empirically, leading to a highly accurate prediction of the mean fields of the CTBL. Thus we reveal that the symmetry principle found in canonical wall-bounded flows holds also for the CTBL, and a quantitative mean field theory is viable with appropriate symmetry considerations.

  13. Catalytic oxygen production mediated by smart capsules to modulate elastic turbulence under a laminar flow regime.

    Science.gov (United States)

    Zizzari, A; Bianco, M; Miglietta, R; del Mercato, L L; Carraro, M; Sorarù, A; Bonchio, M; Gigli, G; Rinaldi, R; Viola, I; Arima, V

    2014-11-21

    Liquid flow in microchannels is completely laminar and uniaxial, with a very low Reynolds number regime and long mixing lengths. To increase fluid mixing and solubility of reactants, as well as to reduce reaction time, complex three-dimensional networks inducing chaotic advection have to be designed. Alternatively, turbulence in the liquid can be generated by active mixing methods (magnetic, acoustic waves, etc.) or adding small quantities of elastic materials to the working liquid. Here, polyelectrolyte multilayer capsules embodying a catalytic polyoxometalate complex have been suspended in an aqueous solution and used to create elastic turbulence and to propel fluids inside microchannels as an alternative to viscoelastic polymers. The overall effect is enhanced and controlled by feeding the polyoxometalate-modified capsules with hydrogen peroxide, H2O2, thus triggering an on-demand propulsion due to oxygen evolution resulting from H2O2 decomposition. The quantification of the process is done by analysing some structural parameters of motion such as speed, pressure, viscosity, and Reynolds and Weissenberg numbers, directly obtained from the capillary dynamics of the aqueous mixtures with different concentrations of H2O2. The increases in fluid speed as well as the capsule-induced turbulence effects are proportional to the H2O2 added and therefore dependent on the kinetics of H2O2 dismutation.

  14. Turbulent current drive

    Science.gov (United States)

    Garbet, X.; Esteve, D.; Sarazin, Y.; Dif-Pradalier, G.; Ghendrih, P.; Grandgirard, V.; Latu, G.; Smolyakov, A.

    2014-11-01

    The Ohm's law is modified when turbulent processes are accounted for. Besides an hyper-resistivity, already well known, pinch terms appear in the electron momentum flux. Moreover it appears that turbulence is responsible for a source term in the Ohm's law, called here turbulent current drive. Two terms contribute to this source. The first term is a residual stress in the momentum flux, while the second contribution is an electro-motive force. A non zero average parallel wave number is needed to get a finite source term. Hence a symmetry breaking mechanism must be invoked, as for ion momentum transport. E × B shear flows and turbulence intensity gradients are shown to provide similar contributions. Moreover this source term has to compete with the collision friction term (resistivity). The effect is found to be significant for a large scale turbulence in spite of an unfavorable scaling with the ratio of the electron to ion mass. Turbulent current drive appears to be a weak effect in the plasma core, but could be substantial in the plasma edge where it may produce up to 10 % of the local current density.

  15. Turbulent Plasmoid Reconnection

    CERN Document Server

    Widmer, Fabien; Yokoi, Nobumitsu

    2016-01-01

    The plasmoid instability may lead to fast magnetic reconnection through long current sheets(CS). It is well known that large-Reynolds-number plasmas easily become turbulent. We address the question whether turbulence enhances the energy conversion rate of plasmoid-unstable current sheets. We carry out appropriate numerical MHD simulations, but resolving simultaneously the relevant large-scale (mean-) fields and the corresponding small-scale, turbulent, quantities by means of direct numerical simulations (DNS) is not possible. Hence we investigate the influence of small scale turbulence on large scale MHD processes by utilizing a subgrid-scale (SGS) turbulence model. We verify the applicability of our SGS model and then use it to investigate the influence of turbulence on the plasmoid instability. We start the simulations with Harris-type and force-free CS equilibria in the presence of a finite guide field in the direction perpendicular to the reconnection plane. We use the DNS results to investigate the growt...

  16. The theory of gyrokinetic turbulence: A multiple-scales approach

    Science.gov (United States)

    Plunk, Gabriel Galad

    Gyrokinetics is a rich and rewarding playground to study some of the mysteries of modern physics -- such as turbulence, universality, self-organization and dynamic criticality -- which are found in physical systems that are driven far from thermodynamic equilibrium. One such system is of particular importance, as it is central in the development of fusion energy -- this system is the turbulent plasma found in magnetically confined fusion device. In this thesis I present work, motivated by the quest for fusion energy, which seeks to uncover some of the inner workings of turbulence in magnetized plasmas. I present three projects, based on the work of me and my collaborators, which take a tour of different aspects and approaches to the gyrokinetic turbulence problem. I begin with the fundamental theory of gyrokinetics, and a novel formulation of its extension to the equations for mean-scale transport -- the equations which must be solved to determine the performance of Magnetically confined fusion devices. The results of this work include (1) the equations of evolution for the mean scale (equilibrium) density, temperature and magnetic field of the plasma, (2) a detailed Poynting's theorem for the energy balance and (3) the entropy balance equations. The second project presents gyrokinetic secondary instability theory as a mechanism to bring about saturation of the basic instabilities that drive gyrokinetic turbulence. Emphasis is put on the ability for this analytic theory to predict basic properties of the nonlinear state, which can be applied to a mixing length phenomenology of transport. The results of this work include (1) an integral equation for the calculation of the growth rate of the fully gyrokinetic secondary instability with finite Larmor radius (FLR) affects included exactly, (2) the demonstration of the robustness of the secondary instability at fine scales (krhoi for ion temperature gradient (ITG) turbulence and krhoe ≪ 1 for electron temperature

  17. On the stability of discrete tripole, quadrupole, Thomson' vortex triangle and square in a two-layer/homogeneous rotating fluid

    Science.gov (United States)

    Kurakin, Leonid G.; Ostrovskaya, Irina V.; Sokolovskiy, Mikhail A.

    2016-05-01

    A two-layer quasigeostrophic model is considered in the f-plane approximation. The stability of a discrete axisymmetric vortex structure is analyzed for the case when the structure consists of a central vortex of arbitrary intensity Γ and two/three identical peripheral vortices. The identical vortices, each having a unit intensity, are uniformly distributed over a circle of radius R in a single layer. The central vortex lies either in the same or in another layer. The problem has three parameters ( R, Γ, α), where α is the difference between layer thicknesses. A limiting case of a homogeneous fluid is also considered. A limiting case of a homogeneous fluid is also considered. The theory of stability of steady-state motions of dynamic systems with a continuous symmetry group G is applied. The two definitions of stability used in the study are Routh stability and G-stability. The Routh stability is the stability of a one-parameter orbit of a steady-state rotation of a vortex multipole, and the G-stability is the stability of a three-parameter invariant set O G , formed by the orbits of a continuous family of steady-state rotations of a multipole. The problem of Routh stability is reduced to the problem of stability of a family of equilibria of a Hamiltonian system. The quadratic part of the Hamiltonian and the eigenvalues of the linearization matrix are studied analytically. The cases of zero total intensity of a tripole and a quadrupole are studied separately. Also, the Routh stability of a Thomson vortex triangle and square was proved at all possible values of problem parameters. The results of theoretical analysis are sustained by numerical calculations of vortex trajectories.

  18. Testing the two-layer model for correcting near-cloud reflectance enhancement using LES/SHDOM-simulated radiances

    Science.gov (United States)

    Wen, Guoyong; Marshak, Alexander; Várnai, Tamás.; Levy, Robert

    2016-08-01

    A transition zone exists between cloudy skies and clear sky; such that, clouds scatter solar radiation into clear-sky regions. From a satellite perspective, it appears that clouds enhance the radiation nearby. We seek a simple method to estimate this enhancement, since it is so computationally expensive to account for all three-dimensional (3-D) scattering processes. In previous studies, we developed a simple two-layer model (2LM) that estimated the radiation scattered via cloud-molecular interactions. Here we have developed a new model to account for cloud-surface interaction (CSI). We test the models by comparing to calculations provided by full 3-D radiative transfer simulations of realistic cloud scenes. For these scenes, the Moderate Resolution Imaging Spectroradiometer (MODIS)-like radiance fields were computed from the Spherical Harmonic Discrete Ordinate Method (SHDOM), based on a large number of cumulus fields simulated by the University of California, Los Angeles (UCLA) large eddy simulation (LES) model. We find that the original 2LM model that estimates cloud-air molecule interactions accounts for 64% of the total reflectance enhancement and the new model (2LM + CSI) that also includes cloud-surface interactions accounts for nearly 80%. We discuss the possibility of accounting for cloud-aerosol radiative interactions in 3-D cloud-induced reflectance enhancement, which may explain the remaining 20% of enhancements. Because these are simple models, these corrections can be applied to global satellite observations (e.g., MODIS) and help to reduce biases in aerosol and other clear-sky retrievals.

  19. Oblique Water Wave Scattering by Bottom Undulation in a Two-layer Fluid Flowing Through a Channel

    Institute of Scientific and Technical Information of China (English)

    Smrutiranjan Mohapatra; Swaroop Nandan Bora

    2012-01-01

    The problem of oblique wave (internal wave) propagation over a small deformation in a channel flow consisting of two layers was considered.The upper fluid was assumed to be bounded above by a rigid lid,which is an approximation for the free surface,and the lower one was bounded below by an impermeable bottom surface having a small deformation; the channel was unbounded in the horizontal directions.Assuming irrotational motion,the perturbation technique was employed to calculate the first-order corrections of the velocity potential in the two fluids by using Green's integral theorem suitably with the introduction of appropriate Green's functions.Those functions help in calculating the reflection and transmission coefficients in terms of integrals involving the shape function c(x) representing the bottom deformation.Three-dimensional linear water wave theory was utilized for formulating the relevant boundary value problem.Two special examples of bottom deformation were considered to validate the results.Consideration of a patch of sinusoidal ripples (having the same wave number) shows that the reflection coefficient is an oscillatory function of the ratio of twice the x-component of the wave number to the ripple wave number.When this ratio approaches one,the theory predicts a resonant interaction between the bed and the interface,and the reflection coefficient becomes a multiple of the number of tipples.High reflection of incident wave energy occurs if this number is large.Similar results were observed for a patch of sinusoidal tipples having different wave numbers.It was also observed that for small angles of incidence,the reflected energy is greater compared to other angles of incidence up to π / 4.These theoretical observations are supported by graphical results.

  20. A two-layer ONIOM study of thiophene cracking catalyzed by proton- and cation-exchanged FAU zeolite.

    Science.gov (United States)

    Sun, Yingxin; Mao, Xinfeng; Pei, Supeng

    2016-02-01

    A two-layer ONIOM study on the hydrodesulfurization mechanism of thiophene in H-FAU and M-FAU (M = Li(+), Na(+), and K(+)) has been carried out. The calculated results reveal that in H-FAU, for a unimolecular mechanism, the rate-determining step is hydrogenation of alkoxide intermediate. The assistance of H2O and H2S molecules does not reduce the difficulty of the C-S bond cracking step more effectively. A bimolecular hydrodesulfurization mechanism is more favorable due to the lower activation barriers. The rate-determining step is the formation of 2-methylthiophene, not the C-S bond cracking of thiophene. Moreover, the ring opening of thiophene is much easier to occur than the desulfurization step. A careful analysis of energetics indicates that H2S, propene, and methyl thiophene are the major products for the hydrodesulfurization process of thiophene over H-FAU zeolite, in good agreement with experimental findings. In M-FAU zeolites, both unimolecular and bimolecular cracking processes are difficult to occur because of the high energy barriers. Compared to the case on H-FAU, the metal cations on M-FAU increase the difficulty of occurrence of bimolecular polymerization and subsequent C-S bond cracking steps. Graphical abstract Hydrodesulfurization process of thiophene can take place in H-FAU zeolite. Two different mechanisms, unimolecular and bimolecular ones, have been proposed and evaluated in detail. The bimolecular mechanism is more favorable due to lower activation barrier as described in the picture above. Our calculated data indicate that H2S, propene, and methylthiophene are the major products, in good agreement with experimental observations. The effect of metal cations on the reaction mechanism is also investigated in this work.

  1. Synchronization and chaos control in a periodically forced quasi-geostrophic two-layer model of baroclinic instability

    Directory of Open Access Journals (Sweden)

    F. J. R. Eccles

    2006-01-01

    Full Text Available Cyclic forcing on many timescales is believed to have a significant effect on various quasi-periodic, geophysical phenomena such as El Niño, the Quasi-Biennial Oscillation, and glacial cycles. This variability has been investigated by numerous previous workers, in models ranging from simple energy balance constructions to full general circulation models. We present a numerical study in which periodic forcing is applied to a highly idealised, two-layer, quasi-geostrophic model on a β-plane. The bifurcation structure and (unforced behaviour of this particular model has been extensively examined by Lovegrove et al. (2001 and Lovegrove et al. (2002. We identify from their work three distinct regimes on which we perform our investigations: a steady, travelling wave regime, a quasi-periodic, modulated wave regime and a chaotic regime. In the travelling wave regime a nonlinear resonance is found. In the periodic regime, Arnol'd tongues, frequency locking and a Devil's staircase is seen for small amplitudes of forcing. As the forcing is increased the Arnol'd tongues undergo a period doubling route to chaos, and for larger forcings still, the parameter space we explored is dominated by either period 1 behaviour or chaotic behaviour. In the chaotic regime we extract unstable periodic orbits (UPOs and add the periodic forcing at periods corresponding to integer multiples of the UPO periods. We find regions of synchronization, similar to Arnol'd tongue behaviour but more skewed and centred approximately on these periods. The regions where chaos suppression took place are smaller than the synchronization regions, and are contained within them.

  2. Turbulent Cells in Stars: I. Fluctuations in Kinetic Energy

    CERN Document Server

    Arnett, W David

    2010-01-01

    Three-dimensional (3D) hydrodynamic simulations of shell oxygen burning (Meakin and Arnett 2007) exhibit bursty, recurrent fluctuations in turbulent kinetic energy. These are shown to be due to a general instability of the convective cell, requiring only a localized source of heating or cooling. Such fluctuations are shown to be suppressed in simulations of stellar evolution which use mixing-length theory (MLT). Quantitatively similar behavior occurs in the model of a convective roll (cell) of (Lorenz 1963), which is known to have a strange attractor that gives rise to chaotic fluctuations in time. Study of simulations suggests that the Lorenz convective roll may approximate the behavior of a cell in the large scale convective flow. Other flow patterns are also of interest (Chandrasekhar 1961); here we examine some implications of this simplest case, which is not a unique solution, but may be representative. A direct derivation of the Lorenz equations from the general fluid-dynamic equations for stars is pres...

  3. Three-dimensional linear instability in pressure-driven two-layer channel flow of a Newtonian and a Herschel-Bulkley fluid

    Science.gov (United States)

    Sahu, K. C.; Matar, O. K.

    2010-11-01

    The three-dimensional linear stability characteristics of pressure-driven two-layer channel flow are considered, wherein a Newtonian fluid layer overlies a layer of a Herschel-Bulkley fluid. We focus on the parameter ranges for which Squire's theorem for the two-layer Newtonian problem does not exist. The modified Orr-Sommerfeld and Squire equations in each layer are derived and solved using an efficient spectral collocation method. Our results demonstrate the presence of three-dimensional instabilities for situations where the square root of the viscosity ratio is larger than the thickness ratio of the two layers; these "interfacial" mode instabilities are also present when density stratification is destabilizing. These results may be of particular interest to researchers studying the transient growth and nonlinear stability of two-fluid non-Newtonian flows. We also show that the "shear" modes, which are present at sufficiently large Reynolds numbers, are most unstable to two-dimensional disturbances.

  4. Turbulence and Fossil Turbulence in Oceans and Lakes

    Institute of Scientific and Technical Information of China (English)

    Pak-Tao Leung; Carl H. Gibson

    2004-01-01

    Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any of the other forces that tend to damp the eddies out. Energy cascades of irrotational flows from large scales to small are non-turbulent, even if they supply energy to turbulence. Turbulent flows are rotational and cascade from small scales to large, with feedback. Viscous forces limit the smallest turbulent eddy size to the Kolmogorov scale. In stratified fluids, buoyancy forces limit large vertical overturns to the Ozmidov scale and convert the largest turbulent eddies into a unique class of saturated, non-propagating, internal waves, termed fossil-vorticity-turbulence. These waves have the same energy but different properties and spectral forms than the original turbulence patch. The Gibson (1980, 1986) theory of fossil turbulence applies universal similarity theories of turbulence and turbulent mixing to the vertical evolution of an isolated patch of turbulence in a stratified fluid as its growth is constrained and fossilized by buoyancy forces. Quantitative hydrodynamic-phase-diagrams (HPDs) from the theory are used to classify microstructure patches according to their hydrodynamic states. When analyzed in HPD space, previously published oceanic datasets showed their dominant microstructure patches are fossilized at large scales in all layers. Laboratory and field measurements suggested phytoplankton species with different swimming abilities adjust their growth strategies by pattern recognition of turbulence-fossil-turbulence dissipation and persistence times that predict survival-relevant surface layer sea changes. New data collected near a Honolulu waste-water outfall showed the small-to-large evolution of oceanic turbulence microstructure from active to fossil states, and revealed the ability of fossil-density-turbulence patches to absorb, and vertically radiate, internal wave energy, information, and enhanced turbulent

  5. Finite element solution of 3-D turbulent Navier-Stokes equations for propeller-driven slender bodies

    Science.gov (United States)

    Thomas, Russell Hicks

    1987-12-01

    Three-dimensional turbulent flow over the aft end of a slender propeller driven body with the wake from a slender, planar appendage was calculated for 4 configurations. The finite element method in the form of the weak Galerkin formulation with the penalty method was used to solve the Reynolds averaged Navier-Stokes equations. The actual code was FIDAP, modified with a propeller body force and turbulence model, used for the solution. The turbulence model included an Inner Layer Integrated TKE model, and Outer Layer mixing length model, and a Planar Wake model. No separate boundary layer method was used for the body, rather modifications to the Integrated TKE model were made to account for the primary effects of the surface boundary layer on the flow. The flow was calculated at two levels of thrust and corresponding swirl, selfpropelled and 100 percent overthrust, as well as with selfpropelled thrust but no torque simulating an ideal rotor stator combination. Also, the selfpropelled case was calculated with a simplified turbulence model using only the Inner Layer and Planar Wake model. The results compared favorably with experiments.

  6. Unsteady turbulence cascades

    Science.gov (United States)

    Goto, Susumu; Vassilicos, J. C.

    2016-11-01

    We have run a total of 311 direct numerical simulations (DNSs) of decaying three-dimensional Navier-Stokes turbulence in a periodic box with values of the Taylor length-based Reynolds number up to about 300 and an energy spectrum with a wide wave-number range of close to -5 /3 power-law dependence at the higher Reynolds numbers. On the basis of these runs, we have found a critical time when (i) the rate of change of the square of the integral length scale turns from increasing to decreasing, (ii) the ratio of interscale energy flux to high-pass filtered turbulence dissipation changes from decreasing to very slowly increasing in the inertial range, (iii) the signature of large-scale coherent structures disappears in the energy spectrum, and (iv) the scaling of the turbulence dissipation changes from the one recently discovered in DNSs of forced unsteady turbulence and in wind tunnel experiments of turbulent wakes and grid-generated turbulence to the classical scaling proposed by G. I. Taylor [Proc. R. Soc. London, Ser. A 151, 421 (1935), 10.1098/rspa.1935.0158] and A. N. Kolmogorov [Dokl. Akad. Nauk SSSR 31, 538 (1941)]. Even though the customary theoretical basis for this Taylor-Kolmogorov scaling is a statistically stationary cascade where large-scale energy flux balances dissipation, this is not the case throughout the entire time range of integration in all our DNS runs. The recently discovered dissipation scaling can be reformulated physically as a situation in which the dissipation rates of the small and large scales evolve together. We advance two hypotheses that may form the basis of a theoretical approach to unsteady turbulence cascades in the presence of large-scale coherent structures.

  7. Theoretical research on enhancement of gain for Ni-like Ag 13.9 nm x-ray laser using a new two-layer target

    Institute of Scientific and Technical Information of China (English)

    Zhang Guo-Ping; Zhang Tan-Xin; Zheng Wu-Di; Qiao Xiu-Mei

    2007-01-01

    For experiments such as on Ni-like Ag x-ray laser, driven by 1ω laser, the gain region is only several nrn depth near the target surface, this paper proposes a new two-layer target, in which a thin layer (several nm depth) of silver is plated on the surface of some other materials. Furthermore, the Ni-like Ag 13.9 nm x-ray laser produced by three new kinds of two-layer target with CH, Al and Ge as foundation, was theoretically studied.

  8. Turbulence in Natural Environments

    Science.gov (United States)

    Banerjee, Tirtha

    Problems in the area of land/biosphere-atmosphere interaction, hydrology, climate modeling etc. can be systematically organized as a study of turbulent flow in presence of boundary conditions in an increasing order of complexity. The present work is an attempt to study a few subsets of this general problem of turbulence in natural environments- in the context of neutral and thermally stratified atmospheric surface layer, the presence of a heterogeneous vegetation canopy and the interaction between air flow and a static water body in presence of flexible protruding vegetation. The main issue addressed in the context of turbulence in the atmospheric surface layer is whether it is possible to describe the macro-states of turbulence such as mean velocity and turbulent velocity variance in terms of the micro-states of the turbulent flow, i.e., a distribution of turbulent kinetic energy across a multitude of scales. This has been achieved by a `spectral budget approach' which is extended for thermal stratification scenarios as well, in the process unifying the seemingly different and unrelated theories of turbulence such as Kolmogorov's hypothesis, Heisenberg's eddy viscosity, Monin Obukhov Similarity Theory (MOST) etc. under a common framework. In the case of a more complex scenario such as presence of a vegetation canopy with edges and gaps, the question that is addressed is in what detail the turbulence is needed to be resolved in order to capture the bulk flow features such as recirculation patterns. This issue is addressed by a simple numerical framework and it has been found out that an explicit prescription of turbulence is not necessary in presence of heterogeneities such as edges and gaps where the interplay between advection, pressure gradients and drag forces are sufficient to capture the first order dynamics. This result can be very important for eddy-covariance flux calibration strategies in non-ideal environments and the developed numerical model can be

  9. A theoretical, two-layer, reduced-gravity model for descending dense water flow on continental shelves/slopes

    Science.gov (United States)

    Wang, Jia; Ikeda, Moto; Saucier, Francois J.

    2003-05-01

    A theoretical, two-layer, reduced-gravity model for descending dense water flow on continental shelves/slopes has been developed to investigate the dynamics of bottom dense water plumes. The model is nonsteady state and includes vertical viscosity, the Coriolis force, and bottom friction. An integral solution rather than a perfect analytical expression is derived and, thus, the Simpson's 1/3 rule to approximate the integral is applied. At the very bottom, the dense water plume moves about 45° to the right (left) in the Northern (Southern) Hemisphere, looking downslope. From the bottom, the velocity vector rotates anticyclonically upward, indicating a bottom Ekman spiral that mimics the atmospheric Ekman boundary layer. The dense water within the bottom Ekman layer obeys a three-force balance, while the dense water above the bottom Ekman layer is governed by a two-force balance, which is a geostrophic flow with superimposed cycloidal inertial oscillations oriented from about 25° to 140° to the right (left) of the downslope direction in the Northern (Southern) Hemisphere. The transport within the bottom Ekman layer is directed about 60-70° to the right (left) of the downslope direction in the Northern (Southern) Hemisphere, forming an offshore (cross-isobath) transport in the absence of eddy flux and wind-forcing. The ratio of offshore transport to alongshore transport within the bottom Ekman layer is about 0.19 (19%), while the ratio above the bottom Ekman layer (i.e., geostrophic layer of the dense water) is only 3% (negligible compared to its alongshore transport), which, however, is equivalent in magnitude to its counterpart in the bottom Ekman layer if O(DE/h) ˜ 0.1 (where DE is the bottom Ekman layer thickness and h is the dense water layer thickness). In other words, the bottom Ekman layer and the geostrophic (dense) layer contribute equivalent dense water offshore (each contributes 50%). The magnitude of the descending dense water velocity depends

  10. Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies.

    Science.gov (United States)

    Kao, C M; Chen, S C; Wang, J Y; Chen, Y L; Lee, S Z

    2003-01-01

    The industrial solvent tetrachloroethylene (PCE) is among the most ubiquitous chlorinated compounds found in groundwater contamination. The objective of this study was to develop an in situ two-layer biobarrier system consisting of an organic-releasing material layer followed by an oxygen-releasing material layer. The organic-releasing material, which contained sludge cakes from a domestic wastewater treatment plant, is able to release biodegradable organics continuously. The oxygen-releasing material, which contained calcium peroxide, is able to release oxygen continuously upon contact with water. The first organic-releasing material layer was to supply organics (primary substrates) to reductively dechlorinate PCE in situ. The second oxygen-releasing material layer was to release oxygen to aerobic biodegrade or cometabolize PCE degradation byproducts from the first anaerobic layer. Batch experiments were conducted to design and identify the components of the organic and oxygen-releasing materials, and evaluate the organic substrate (presented as chemical oxygen demand (COD) equivalent) and oxygen release rates from the organic-releasing material and oxygen-releasing materials, respectively. The observed oxygen and COD release rates were approximately 0.0368 and 0.0416 mg/d/g of material, respectively. A laboratory-scale column experiment was then conducted to evaluate the feasibility of this proposed system for the bioremediation of PCE-contaminated groundwater. This system was performed using a series of continuous-flow glass columns including a soil column, an organic-releasing material column, two consecutive soil columns, and an oxygen-releasing material column, followed by two other consecutive soil columns. Anaerobic acclimated sludges were inoculated in the first four columns, and aerobic acclimated sludges were inoculated in the last three columns to provide microbial consortia for contaminant biodegradation. Simulated PCE-contaminated groundwater with a

  11. Turbulent complex (dusty) plasma

    Science.gov (United States)

    Zhdanov, Sergey; Schwabe, Mierk

    2017-04-01

    As a paradigm of complex system dynamics, solid particles immersed into a weakly ionized plasma, so called complex (dusty) plasmas, were (and continue to be) a subject of many detailed studies. Special types of dynamical activity have been registered, in particular, spontaneous pairing, entanglement and cooperative action of a great number of particles resulting in formation of vortices, self-propelling, tunneling, and turbulent movements. In the size domain of 1-10 mkm normally used in experiments with complex plasmas, the characteristic dynamic time-scale is of the order of 0.01-0.1 s, and these particles can be visualized individually in real time, providing an atomistic (kinetic) level of investigations. The low-R turbulent flow induced either by the instability in a complex plasma cloud or formed behind a projectile passing through the cloud is a typical scenario. Our simulations showed formation of a fully developed system of vortices and demonstrated that the velocity structure functions scale very close to the theoretical predictions. As an important element of self-organization, cooperative and turbulent particle motions are present in many physical, astrophysical, and biological systems. Therefore, experiments with turbulent wakes and turbulent complex plasma oscillations are a promising mean to observe and study in detail the anomalous transport on the level of individual particles.

  12. Turbulence and Stochastic Processes

    Science.gov (United States)

    Celani, Antonio; Mazzino, Andrea; Pumir, Alain

    sec:08-1In 1931 the monograph Analytical Methods in Probability Theory appeared, in which A.N. Kolmogorov laid the foundations for the modern theory of Markov processes [1]. According to Gnedenko: "In the history of probability theory it is difficult to find other works that changed the established points of view and basic trends in research work in such a decisive way". Ten years later, his article on fully developed turbulence provided the framework within which most, if not all, of the subsequent theoretical investigations have been conducted [2] (see e.g. the review by Biferale et al. in this volume [3]. Remarkably, the greatest advances made in the last few years towards a thorough understanding of turbulence developed from the successful marriage between the theory of stochastic processes and the phenomenology of turbulent transport of scalar fields. In this article we will summarize these recent developments which expose the direct link between the intermittency of transported fields and the statistical properties of particle trajectories advected by the turbulent flow (see also [4], and, for a more thorough review, [5]. We also discuss the perspectives of the Lagrangian approach beyond passive scalars, especially for the modeling of hydrodynamic turbulence.

  13. Multifluid magnetohydrodynamic turbulent decay

    CERN Document Server

    Downes, Turlough P

    2011-01-01

    It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation which occurs within them. Non-ideal magnetohydrodynamic effects are known to influence the nature of this turbulence. We present the results of a suite of 512-cubed resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power-law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingl...

  14. Turbulence introduction to theory and applications of turbulent flows

    CERN Document Server

    Westerweel, Jerry; Nieuwstadt, Frans T M

    2016-01-01

    This book provides a general introduction to the topic of turbulent flows. Apart from classical topics in turbulence, attention is also paid to modern topics. After studying this work, the reader will have the basic knowledge to follow current topics on turbulence in scientific literature. The theory is illustrated with a number of examples of applications, such as closure models, numerical simulations and turbulent diffusion, and experimental findings. The work also contains a number of illustrative exercises.

  15. Effect of the mixing fields on the stability and structure of turbulent partially premixed flames in a concentric flow conical nozzle burner

    KAUST Repository

    Mansour, Mohy S.

    2016-10-22

    The mixing field is known to be one of the key parameters that affect the stability and structure of partially premixed flames. Data in these flames are now available covering the effects of turbulence, combustion system geometry, level of partially premixing and fuel type. However, quantitative analyses of the flame structure based on the mixing field are not yet available. The aim of this work is to present a comprehensive study of the effects of the mixing fields on the structure and stability of partially premixed methane flames. The mixing field in a concentric flow conical nozzle (CFCN) burner with well-controlled mechanism of the mixing is investigated using Rayleigh scattering technique. The flame stability, structure and flow field of some selected cases are presented using LIF of OH and PIV. The experimental data of the mixing field cover wide ranges of Reynolds number, equivalence ratio and mixing length. The data show that the mixing field is significantly affected by the mixing length and the ratio of the air-to-fuel velocities. The Reynolds number has a minimum effect on the mixing field in high turbulent flow regime and the stability is significantly affected by the turbulence level. The temporal fluctuations of the range of mixture fraction within the mixing field correlate with the flame stability. The highest point of stability occurs at recess distances where fluid mixtures near the jet exit plane are mostly within the flammability limits. This paper provides some correlations between the stability range in mixture fraction space and the turbulence level for different equivalence ratios.

  16. Turbulence in complex terrain

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Jakob [Risoe National Lab., Wind Energy and Atmosheric Physics Dept., Roskilde (Denmark)

    1999-03-01

    The purpose of this work is to develop a model of the spectral velocity-tensor in neutral flow over complex terrain. The resulting equations are implemented in a computer code using the mean flow generated by a linear mean flow model as input. It estimates turbulence structure over hills (except on the lee side if recirculation is present) in the so-called outer layer and also models the changes in turbulence statistics in the vicinity roughness changes. The generated turbulence fields are suitable as input for dynamic load calculations on wind turbines and other tall structures and is under implementation in the collection of programs called WA{sup s}P Engineering. (au) EFP-97; EU-JOULE-3. 15 refs.

  17. Turbulent black holes.

    Science.gov (United States)

    Yang, Huan; Zimmerman, Aaron; Lehner, Luis

    2015-02-27

    We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.

  18. Turbulence in the Interstellar Medium

    CERN Document Server

    Falceta-Goncalves, D; Falgarone, E; Chian, A C -L

    2014-01-01

    Turbulence is ubiquitous in the insterstellar medium and plays a major role in several processes such as the formation of dense structures and stars, the stability of molecular clouds, the amplification of magnetic fields, and the re-acceleration and diffusion of cosmic rays. Despite its importance, interstellar turbulence, alike turbulence in general, is far from being fully understood. In this review we present the basics of turbulence physics, focusing on the statistics of its structure and energy cascade. We explore the physics of compressible and incompressible turbulent flows, as well as magnetized cases. The most relevant observational techniques that provide quantitative insights of interstellar turbulence are also presented. We also discuss the main difficulties in developing a three-dimensional view of interstellar turbulence from these observations. Finally, we briefly present what could be the the main sources of turbulence in the interstellar medium.

  19. Numerical Investigation of Developing Turbulent Flow in a Helical Square Duct with Large Curvature

    Institute of Scientific and Technical Information of China (English)

    Gao Hui; Guo Liejin

    2001-01-01

    A fully elliptic numerical study has been carried out to investigate the three-dimensional turbulent developing flow in a helical square duct with large curvature. A two-layer zonal model is proposed and used, in which the whole region is divided into a viscosity-affected near wall layer and a fully turbulent region. A DSM closure is applied in the former, and a one-equation model is solved in the latter. The results presented in this paper cover a Reynolds number range of (1 ~ 10) x 104. The development of flow is found to be dominated by radial pressure gradient and Dean-type secondary motion. The distribution of Reynolds stresses in fully developed flow exhibit a complex pattern of turbulence anisotropy. The development of peripherally averaged friction factor and the distribution of local friction factor in fully developed flow are given and discussed.

  20. Turbulence Measurements in Swirling Flows

    Directory of Open Access Journals (Sweden)

    V. M. Domkundwar

    1981-10-01

    Full Text Available Investigation have been conducted to find out the region of high turbulent intensities in a swirling jet passing through a divergent passage. A hot wire anemometer is used to measure the turbulence intensity using a four position method. It has been concluded that the jet spreads with increasing diffuser angle and the region of high turbulent intensity also spreads. The high turbulence intensity region lies around the recirculation zone and it decays rapidly along the main flow direction.

  1. Joint Agency Turbulence Experiment.

    Science.gov (United States)

    1985-01-21

    Time Series of Aircraft Longitudinal Gust Data For Penetration 1 on 1 July 1981 63 C5. Time Series of Turbulence Severity Estimates Derived From 400 m...spectral analysis of aircraft longitudinal gust data is shown in Figure B1. Figure B2 shows a modeled turbulence field. The model displays the expected...centered about Location C o %-. -. °,4 0- S E - oo -12 -4 - to 20 so O so s 7D -U. TIME (sec) Figure C4. Time Series of Aircraft Longitudinal Gust Data

  2. Localized turbulence in pipe flow

    NARCIS (Netherlands)

    Kuik, D.J.

    2011-01-01

    In this thesis the transition to turbulence in pipe flow is investigated. At low Reynolds numbers, the flow returns to the laminar state spontaneously. At high Reynolds number a small perturbation causes the flow to suddenly become turbulent. In the intermediate regime localized turbulence is observ

  3. Turbulent diffusion and galactic magnetism

    CERN Document Server

    Brandenburg, Axel

    2009-01-01

    Using the test-field method for nearly irrotational turbulence driven by spherical expansion waves it is shown that the turbulent magnetic diffusivity increases with magnetic Reynolds numbers. Its value levels off at several times the rms velocity of the turbulence multiplied by the typical radius of the expansion waves. This result is discussed in the context of the galactic mean-field dynamo.

  4. A two Layer Convecting Mantle With Exchange : A Unified Model Based on Geochemical, Seismic and Heat Flow Observations

    Science.gov (United States)

    Allègre, C. J.; Jaupart, C.; Nolet, G.

    2007-12-01

    -penetrating slabs as emphasized by Fukao and al.(2001) and the recent observation of the large energy spectrum differences at 670 km depth (Gu and al., 2006). We discuss the problem of return flow, which is crucial for both energy budget and convection regime. The recent work on plume by Montelli and al. (2004, 2006) shows the existence of broad plumes in the lower mantle and thin plumes in the upper mantle. d) The estimate of heat flow coming from the lower mantle of 35-32 TW. The work of Davies(1990) and Sleep(1992) shows clearly that this transfer is not the result of plumes reaching the surface, because they correspond at most to 3TW. At the reverse the estimated heat flow carried by the lower mantle plumes is much higher (Nolet and al., 2006). We also discuss the heat flow paradox to explain a Urey ratio of 0.4 with whole mantle convection. In conclusion, we propose mantle with two layers convecting separately but with some exchange of matter, this global exchange corresponding to 1.1024kg since 4.4 Gy. Plume genesis is a two-stage process. Lower mantle plumes heat the Mesosphere boundary layer generating second generation plumes which reach the surface (Allègre and Turcotte; 1983; Allègre, 1987). In the upper mantle itself, we have to distinguish between a vigorously convecting asthenosphere and a sluggish convecting transition zone, both convecting in same cells.

  5. Diffusion of matter in the wall turbulent flow. 5th Report. Local similarity of the fluctuating concentration field of the plume from a wall point source in a turbulent pipe flow; Hekimen sendanryuchu no busshitsu kakusan no kenkyu. 5. Enkannai hekimen tengen kakusan no hendo nodoba no kyokusho sojisei

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, M.; Sakai, Y.; Nakamura, I. [Nagoya University, Nagoya (Japan)

    1997-05-25

    In this report. we extend the similarity argument previously used to the mean square concentration fluctuation equation on the symmetrical plane of the wall point source plume in a turbulent pipe flow to find the similar solution for the mean square concentration fluctuation distribution. The main assumptions are the Lagrangean similar hypothesis and an appropriate eddy diffusivity distribution to the triple correlation term and the mixing length theory. It is found that the distribution of the similar solution shows good agreement with experimental data in a pipe flow. In the case of a wall point source in a turbulent boundary layer on a flat plate, the same argument is appliciable, and the similar solution obtained shows good agreement with the experimental data. And the budget of the fluctuating concentration intensity is investigated on the basis of the similar solution and the mean square concentration fluctuation equation. 16 refs., 8 figs.

  6. Turbulence, bubbles and drops

    NARCIS (Netherlands)

    Veen, van der Roeland Cornelis Adriaan

    2016-01-01

    In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study t

  7. Multilevel turbulence simulations

    Energy Technology Data Exchange (ETDEWEB)

    Tziperman, E. [Princeton Univ., NJ (United States)

    1994-12-31

    The authors propose a novel method for the simulation of turbulent flows, that is motivated by and based on the Multigrid (MG) formalism. The method, called Multilevel Turbulence Simulations (MTS), is potentially more efficient and more accurate than LES. In many physical problems one is interested in the effects of the small scales on the larger ones, or in a typical realization of the flow, and not in the detailed time history of each small scale feature. MTS takes advantage of the fact that the detailed simulation of small scales is not needed at all times, in order to make the calculation significantly more efficient, while accurately accounting for the effects of the small scales on the larger scale of interest. In MTS, models of several resolutions are used to represent the turbulent flow. The model equations in each coarse level incorporate a closure term roughly corresponding to the tau correction in the MG formalism that accounts for the effects of the unresolvable scales on that grid. The finer resolution grids are used only a small portion of the simulation time in order to evaluate the closure terms for the coarser grids, while the coarse resolution grids are then used to accurately and efficiently calculate the evolution of the larger scales. The methods efficiency relative to direct simulations is of the order of the ratio of required integration time to the smallest eddies turnover time, potentially resulting in orders of magnitude improvement for a large class of turbulence problems.

  8. Spirituality in Turbulent Times.

    Science.gov (United States)

    Wheatley, Margaret J.

    2002-01-01

    Discusses the importance of spiritual leadership in turbulent, uncertain times. Describes several spiritual principles--for example, life is cyclical; all life is interconnected. Offers six suggestions for personal health: Start day peacefully, learn to be mindful, slow things down, create own measures, expect surprise, practice gratefulness. (PKP)

  9. Chemically Reacting Turbulent Flow.

    Science.gov (United States)

    1987-04-14

    two stages of gen I tubes equipped with P-47 phosphor screens The detector chosen for the camera was a Reticon RL128S* line detectoI- .,hich consists...the Stud’, of Turbulent Mixing," William M. Pitts, Nuclear Engineering Seminar of the Department of Chemical and Nuclear Engineering, University of

  10. Incremental Similarity and Turbulence

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.; Hedevang, Emil; Schmiegel, Jürgen

    This paper discusses the mathematical representation of an empirically observed phenomenon, referred to as Incremental Similarity. We discuss this feature from the viewpoint of stochastic processes and present a variety of non-trivial examples, including those that are of relevance for turbulence...

  11. Non-Gaussian turbulence

    DEFF Research Database (Denmark)

    Højstrup, Jørgen; Hansen, Kurt S.; Pedersen, Bo Juul;

    1999-01-01

    The pdf's of atmosperic turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour has been investigated using data from a large WEB-database in order to quantify the amount of non-gaussianity. Models for non-...

  12. Heart rate turbulence.

    Science.gov (United States)

    Cygankiewicz, Iwona

    2013-01-01

    Heart rate turbulence (HRT) is a baroreflex-mediated biphasic reaction of heart rate in response to premature ventricular beats. Heart rate turbulence is quantified by: turbulence onset (TO) reflecting the initial acceleration of heart rate following premature beat and turbulence slope (TS) describing subsequent deceleration of heart rate. Abnormal HRT identifies patients with autonomic dysfunction or impaired baroreflex sensitivity due to variety of disorders, but also may reflect changes in autonomic nervous system induced by different therapeutic modalities such as drugs, revascularization, or cardiac resynchronization therapy. More importantly, impaired HRT has been shown to identify patients at high risk of all-cause mortality and sudden death, particularly in postinfarction and congestive heart failure patients. It should be emphasized that abnormal HRT has a well-established role in stratification of postinfarction and heart failure patients with relatively preserved left ventricular ejection fraction. The ongoing clinical trials will document whether HRT can be used to guide implantation of cardioverter-defibrillators in this subset of patients, not covered yet by ICD guidelines. This review focuses on the current state-of-the-art knowledge regarding clinical significance of HRT in detection of autonomic dysfunction and regarding the prognostic significance of this parameter in predicting all-cause mortality and sudden death. © 2013.

  13. Analysis of turbulent boundary layers

    CERN Document Server

    Cebeci, Tuncer

    1974-01-01

    Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati

  14. Vertical Convection in Turbulent Accretion Disks and Light Curves of the A0620-00 1975 Outburst

    CERN Document Server

    Malanchev, Konstantin

    2015-01-01

    We present a model of the non-stationary $\\alpha$-disk with account for the irradiation and the vertical convection in the outer accretion disk where hydrogen is partially ionized. We include the viscous energy generation in the mix-length convection equations in accretion disks. The optical and X-ray light curves of X-ray nova A0620-00 are investigated in terms of this model. The turbulent viscosity parameter of the accretion disk is estimated, $\\alpha = 0.5 \\div 0.6$, which is necessary to explain the luminosity decay rate on the descending branch of the X-ray light curve for the A0620-00 1975 outburst. The secondary luminosity maximum on the light curves is explained by assuming an additional injection of matter into the accretion disk from the optical companion.

  15. Static magnetic fields enhance turbulence

    CERN Document Server

    Pothérat, Alban

    2015-01-01

    More often than not, turbulence occurs under the influence of external fields, mostly rotation and magnetic fields generated either by planets, stellar objects or by an industrial environment. Their effect on the anisotropy and the dissipative behaviour of turbulence is recognised but complex, and it is still difficult to even tell whether they enhance or dampen turbulence. For example, externally imposed magnetic fields suppress free turbulence in electrically conducting fluids (Moffatt 1967), and make it two-dimensional (2D) (Sommeria & Moreau 1982); but their effect on the intensity of forced turbulence, as in pipes, convective flows or otherwise, is not clear. We shall prove that since two-dimensionalisation preferentially affects larger scales, these undergo much less dissipation and sustain intense turbulent fluctuations. When higher magnetic fields are imposed, quasi-2D structures retain more kinetic energy, so that rather than suppressing forced turbulence, external magnetic fields indirectly enha...

  16. Expressing oceanic turbulence parameters by atmospheric turbulence structure constant.

    Science.gov (United States)

    Baykal, Yahya

    2016-02-20

    The parameters composing oceanic turbulence are the wavelength, link length, rate of dissipation of kinetic energy per unit mass of fluid, rate of dissipation of mean-squared temperature, Kolmogorov microscale, and the ratio of temperature to salinity contributions to the refractive index spectrum. The required physical entities such as the average intensity and the scintillation index in the oceanic medium are formulated by using the power spectrum of oceanic turbulence, which is described by oceanic turbulence parameters. On the other hand, there exists a rich archive of formulations and results for the above-mentioned physical entities in atmospheric turbulence, where the parameters describing the turbulence are the wavelength, the link length, and the structure constant. In this paper, by equating the spherical wave scintillation index solutions in the oceanic and atmospheric turbulences, we have expressed the oceanic turbulence parameters by an equivalent structure constant used in turbulent atmosphere. Such equivalent structure constant will help ease reaching solutions of similar entities in an oceanic turbulent medium by employing the corresponding existing solutions, which are valid in an atmospheric turbulent medium.

  17. An updated length-scale formulation for turbulent mixing in clear and cloudy boundary layers

    Science.gov (United States)

    Lenderink, G.; Holtslag, A. A. M.

    2004-10-01

    A new mixing-length scale is presented for turbulence-closure schemes, with special emphasis on neutral-to-convective conditions in clear and cloudy boundary layers. The length scale is intended for a prognostic turbulent-kinetic-energy closure. It is argued that present-day length-scale formulations may easily fail in one of two limiting situations. Schemes based on a local stability measure (e.g.the Richardson number) display unrealistic behaviour and instabilities in the convective limit. This strongly limits the representation of mixing in cloudy boundary layers. On the other hand, it is shown that non-local parcel methods may misrepresent mixing near the surface. The new length-scale formulation combines local and non-local stability in a new way; it uses vertical integrals over the stability (the Richardson number) in a simple 'parcel' framework. The length scale matches with surface-layer similarity for near-neutral conditions and displays a realistic convective limit. The use of the length-scale formulation can be extended easily to cloudy boundary layers. The scheme is numerically stable and computationally cheap. The behaviour of the length scale is evaluated in a single-column model (SCM) and in a high-resolution limited-area model (LAM). The SCM shows good behaviour in three cases with and without boundary-layer clouds. The prediction of the near-surface wind and temperature in the LAM compares favourably with tower measurements at Cabauw (the Netherlands).

  18. Creating and controlling overlap in two-layer networks. Application to a mean-field SIS epidemic model with awareness dissemination

    CERN Document Server

    Juher, David

    2015-01-01

    We study the properties of the potential overlap between two networks $A,B$ sharing the same set of $N$ nodes (a two-layer network) whose respective degree distributions $p_A(k), p_B(k)$ are given. Defining the overlap coefficient $\\alpha$ as the Jaccard index, we derive upper bounds for the minimum and maximum overlap coefficient in terms of $p_A(k)$, $p_B(k)$ and $N$. We also present an algorithm based on cross-rewiring of links to obtain a two-layer network with any prescribed $\\alpha$ inside the permitted range. Finally, to illustrate the importance of the overlap for the dynamics of interacting contagious processes, we derive a mean-field model for the spread of an SIS epidemic with awareness against infection over a two-layer network, containing $\\alpha$ as a parameter. A simple analytical relationship between $\\alpha$ and the basic reproduction number follows. Stochastic simulations are presented to assess the accuracy of the upper bounds of $\\alpha$ and the predictions of the mean-field epidemic model...

  19. Unconventional but tunable phase transition above the percolation threshold by two-layer conduction in electroless-deposited Au nanofeatures on silicon substrate.

    Science.gov (United States)

    Lee, Seung-Hoon; Shin, Muncheol; Hwang, Seongpil; Jang, Jae-Won

    2015-12-18

    Previous research has shown that disorder, dislocation, and carrier concentration are the main factors impacting transitions in the traditional metal-insulator transition (MIT) and metal-semiconductor transition (MST). In this study, it is demonstrated that a non-traditional metal-semiconductor transition governed by two-layer conduction is possible by tuning the conducting channel of one layer of the two-layer conduction system. By means of the electroless deposition method we produced Au nanofeatures (AuNFs) on p-type silicon (p-Si) as the two-layer conduction system, controlling AuNF coverage (Au%) below and above the percolation threshold (p c). Even when the AuNF coverage percentage is larger than p c, the resistivities of the AuNFs on p-Si show MST as the temperature increases. To demonstrate this finding, we present a conduction model based upon two predominant parallel conductions by AuNFs and p-Si in the present paper. In the results, we show how the temperature of the MST (T MST) is tuned from 145 to 232 K as Au% is changed from 82.7 to 54.3%.

  20. Optimisation on the two-layer stack gamma detectors of CsI(Tl) coupled with a pin photodiode for non-destructive testing.

    Science.gov (United States)

    Bai, Jin Hyoung; Whang, Joo Ho

    2011-07-01

    This paper proposed the two-layer stack scintillator-coupled photodiode detector to improve the measurement accuracy of the gamma-ray scanning. Both MCNPX and DETECT97 code were used to design the detector. The two manufactured two-layer stack gamma detectors were used to measure the density profile of the distillation column of the radiographic non-intrusive process diagnostic area. To compare the measurement accuracy of the density profile through the non-destructive transmission test, the relative error of the four fluids used for the process diagnostics was analysed. To summarise the measurement results with regard to the relative error of the NaI(Tl) detector and the manufactured detector by material as well as the total relative error, the total relative error of the NaI(Tl) detector was about 15.7 %, whereas that of the two-layer stack CsI(Tl) with photodiode detectors were about 5 %. This paper confirmed that the measurement accuracy of the detector proposed was improved by about three times as compared with the NaI(Tl) detector mostly used for non-destructive testing.

  1. Oscillating grids turbulence generator for turbulent transport studies

    Directory of Open Access Journals (Sweden)

    A. Eidelman

    2002-01-01

    Full Text Available An oscillating grids turbulence generator was constructed for studies of two new effects associated with turbulent transport of particles, turbulent thermal diffusion and clustering instability. These effects result in formation of large-scale and small-scale inhomogeneities in the spatial distribution of particles. The advantage of this experimental set-up is the feasibility to study turbulent transport in mixtures with controllable composition and unlimited observation time. For flow measurements we used Particle Image Velocimetry with the adaptive multi-pass algorithm to determine a turbulent velocity field and its statistical characteristics. Instantaneous velocity vector maps, flow streamlines and probability density function of velocity field demonstrate properties of turbulence generated in the device.

  2. A turbulent premixed flame on fractal-grid generated turbulence

    CERN Document Server

    Soulopoulos, Nikos; Beyrau, Frank; Hardalupas, Yannis; Taylor, A M K P; Vassilicos, J Christos

    2010-01-01

    A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent combustion experiment. In contrast to the power law decay of a standard turbulence grid, the downstream turbulence intensity of the fractal grid increases until it reaches a peak at some distance from the grid before it finally decays. The effective mesh size and the solidity are the same as those of a standard square mesh grid with which it is compared. It is found that, for the same flow rate and stoichiometry, the fractal generated turbulence enhances the burning rate and causes the flame to further increase its area. Using a flame fractal model, an attempt is made to highlight differences between the flames established at the two different turbulent fields.

  3. VNAP2: a computer program for computation of two-dimensional, time-dependent, compressible, turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Cline, M.C.

    1981-08-01

    VNAP2 is a computer program for calculating turbulent (as well as laminar and inviscid), steady, and unsteady flow. VNAP2 solves the two-dimensional, time-dependent, compressible Navier-Stokes equations. The turbulence is modeled with either an algebraic mixing-length model, a one-equation model, or the Jones-Launder two-equation model. The geometry may be a single- or a dual-flowing stream. The interior grid points are computed using the unsplit MacCormack scheme. Two options to speed up the calculations for high Reynolds number flows are included. The boundary grid points are computed using a reference-plane-characteristic scheme with the viscous terms treated as source functions. An explicit artificial viscosity is included for shock computations. The fluid is assumed to be a perfect gas. The flow boundaries may be arbitrary curved solid walls, inflow/outflow boundaries, or free-jet envelopes. Typical problems that can be solved concern nozzles, inlets, jet-powered afterbodies, airfoils, and free-jet expansions. The accuracy and efficiency of the program are shown by calculations of several inviscid and turbulent flows. The program and its use are described completely, and six sample cases and a code listing are included.

  4. Area of turbulence

    CERN Multimedia

    Anaïs Schaeffer

    2015-01-01

    As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.   The last day of data collection, tired but satisfied after seven intense days of measurements. Around the cryostat, from left to right: Philippe-E. Roche, Éléonore Rusaouen (CNRS),
Olivier Pirotte, Jean-Marc Quetsch (CERN), Nicolas Friedlin (CERN),
Vladislav Benda (CERN). Not in the photo: Laurent Le Mao (CERN), Jean-Marc Debernard (CERN), 
Jean-Paul Lamboy (CERN), Nicolas Guillotin (CERN), Benoit Chabaud (Grenoble Uni), and Gregory Garde (CNRS). CERN has a unique cryogenic facility in hall SM18, consisting of 21 liquid-helium-cooled test stations. While this equipment was, of course, designed for testing parts of CERN's acce...

  5. Controlled-Turbulence Bioreactors

    Science.gov (United States)

    Wolf, David A.; Schwartz, Ray; Trinh, Tinh

    1989-01-01

    Two versions of bioreactor vessel provide steady supplies of oxygen and nutrients with little turbulence. Suspends cells in environment needed for sustenance and growth, while inflicting less damage from agitation and bubbling than do propeller-stirred reactors. Gentle environments in new reactors well suited to delicate mammalian cells. One reactor kept human kidney cells alive for as long as 11 days. Cells grow on carrier beads suspended in liquid culture medium that fills cylindrical housing. Rotating vanes - inside vessel but outside filter - gently circulates nutrient medium. Vessel stationary; magnetic clutch drives filter cylinder and vanes. Another reactor creates even less turbulence. Oxygen-permeable tubing wrapped around rod extending along central axis. Small external pump feeds oxygen to tubing through rotary coupling, and oxygen diffuses into liquid medium.

  6. Polymer Stretching by Turbulence

    CERN Document Server

    Chertkov, M

    2000-01-01

    The stretching of a polymer chain by a large scale chaotic flow is considered. The steady state which emerges as a balance of the turbulent stretching and anharmonic resistance of the chain is quantitatively described, i.e. the dependency on the flow parameters (Lyapunov exponent statistics) and the chain characteristics (the number of beads and the inter-bead elastic potential) is made explicit. Implications for the drag reduction theory are discussed.

  7. Random functions and turbulence

    CERN Document Server

    Panchev, S

    1971-01-01

    International Series of Monographs in Natural Philosophy, Volume 32: Random Functions and Turbulence focuses on the use of random functions as mathematical methods. The manuscript first offers information on the elements of the theory of random functions. Topics include determination of statistical moments by characteristic functions; functional transformations of random variables; multidimensional random variables with spherical symmetry; and random variables and distribution functions. The book then discusses random processes and random fields, including stationarity and ergodicity of random

  8. Turbulent General Magnetic Reconnection

    CERN Document Server

    Eyink, Gregory L

    2014-01-01

    Plasma flows with an MHD-like turbulent inertial range, such as the solar wind, require a generalization of General Magnetic Reconnection (GMR) theory. We introduce the slip-velocity source vector, which gives the rate of development of slip velocity per unit arc length of field line. The slip source vector is the ratio of the curl of the non ideal electric field in the Generalized Ohm's Law and the magnetic field strength. It diverges at magnetic nulls, unifying GMR with magnetic null-point reconnection. Only under restrictive assumptions is the slip velocity related to the gradient of the quasi potential (integral of parallel electric field along field lines). In a turbulent inertial range the curl becomes extremely large while the parallel component is tiny, so that line slippage occurs even while ideal MHD becomes accurate. The resolution of this paradox is that ideal MHD is valid for a turbulent inertial-range only in a weak sense which does not imply magnetic line freezing. The notion of weak solution i...

  9. Controllability of flow turbulence.

    Science.gov (United States)

    Guan, Shuguang; Wei, G W; Lai, C-H

    2004-06-01

    In this paper, we study the controllability of real-world flow turbulence governed by the two-dimensional Navier-Stokes equations, using strategies developed in chaos control. A case of control/synchronization of turbulent dynamics is observed when only one component of the velocity field vector is unidirectionally coupled to a target state, while the other component is uncoupled. Unlike previous results, it is shown that the dynamics of the whole velocity field cannot be completely controlled/synchronized to the target, even in the limit of long time and strong coupling strength. It is further revealed that the controlled component of the velocity field can be fully controlled/synchronized to the target, but the other component, which is not directly coupled to the target, can only be partially controlled/synchronized to the target. By extending an auxiliary method to distributed dynamic systems, the partial synchronization of two turbulent orbits in the present study can be categorized in the domain of generalized synchronization of spatiotemporal dynamics.

  10. Statistical Properties of Turbulence: An Overview

    CERN Document Server

    Pandit, Rahul; Ray, Samriddhi Sankar

    2009-01-01

    We present an introductory overview of several challenging problems in the statistical characterisation of turbulence. We provide examples from fluid turbulence in three and two dimensions, from the turbulent advection of passive scalars, turbulence in the one-dimensional Burgers equation, and fluid turbulence in the presence of polymer additives.

  11. Statistical properties of turbulence: An overview

    Indian Academy of Sciences (India)

    Rahul Pandit; Prasad Perlekar; Samriddhi Sankar Ray

    2009-07-01

    We present an introductory overview of several challenging problems in the statistical characterization of turbulence. We provide examples from fluid turbulence in three and two dimensions, from the turbulent advection of passive scalars, turbulence in the one-dimensional Burgers equation, and fluid turbulence in the presence of polymer additives.

  12. Turbulence and fossil turbulence lead to life in the universe

    CERN Document Server

    Gibson, Carl H

    2012-01-01

    Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than all the other forces that tend to damp the eddies out. Fossil turbulence is a perturbation produced by turbulence that persists after the fluid ceases to be turbulent at the scale of the perturbation. Because vorticity is produced at small scales, turbulence must cascade from small scales to large, providing a consistent physical basis for Kolmogorovian universal similarity laws. Oceanic and astrophysical mixing and diffusion are dominated by fossil turbulence and fossil turbulent waves. Observations from space telescopes show turbulence and vorticity existed in the beginning of the universe and that their fossils persist. Fossils of big bang turbulence include spin and the dark matter of galaxies: clumps of ~ 10^12 frozen hydrogen planets that make globular star clusters as seen by infrared and microwave space telescopes. When the planets were hot gas, they hosted the formation of life i...

  13. Modeling the turbulent kinetic energy equation for compressible, homogeneous turbulence

    Science.gov (United States)

    Aupoix, B.; Blaisdell, G. A.; Reynolds, William C.; Zeman, Otto

    1990-01-01

    The turbulent kinetic energy transport equation, which is the basis of turbulence models, is investigated for homogeneous, compressible turbulence using direct numerical simulations performed at CTR. It is shown that the partition between dilatational and solenoidal modes is very sensitive to initial conditions for isotropic decaying turbulence but not for sheared flows. The importance of the dilatational dissipation and of the pressure-dilatation term is evidenced from simulations and a transport equation is proposed to evaluate the pressure-dilatation term evolution. This transport equation seems to work well for sheared flows but does not account for initial condition sensitivity in isotropic decay. An improved model is proposed.

  14. Suppression of turbulent resistivity in turbulent Couette flow

    Energy Technology Data Exchange (ETDEWEB)

    Si, Jiahe, E-mail: jsi@nmt.edu; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe [New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Colgate, Stirling A.; Li, Hui [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Nornberg, Mark D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2015-07-15

    Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.

  15. Turbulence in the solar wind

    CERN Document Server

    Bruno, Roberto

    2016-01-01

    This book provides an overview of solar wind turbulence from both the theoretical and observational perspective. It argues that the interplanetary medium offers the best opportunity to directly study turbulent fluctuations in collisionless plasmas. In fact, during expansion, the solar wind evolves towards a state characterized by large-amplitude fluctuations in all observed parameters, which resembles, at least at large scales, the well-known hydrodynamic turbulence. This text starts with historical references to past observations and experiments on turbulent flows. It then introduces the Navier-Stokes equations for a magnetized plasma whose low-frequency turbulence evolution is described within the framework of the MHD approximation. It also considers the scaling of plasma and magnetic field fluctuations and the study of nonlinear energy cascades within the same framework. It reports observations of turbulence in the ecliptic and at high latitude, treating Alfvénic and compressive fluctuations separately in...

  16. Transition to turbulence in ferrofluids

    CERN Document Server

    Altmeyer, Sebastian; Lai, Ying-Cheng

    2015-01-01

    It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids. This is established by extensive computational ferrohydrodynamics through a detailed bifurcation analysis and characterization of behaviors of physical quantities such as the energy, the wave number, and the angular momentum through the bifurcations. A striking finding is that, as the magnetic field is increased, the onset of turbulence can be determined accurately and reliably. Our results imply that experimental investigation of turbulence can be greatly facilitated by using ferrofluids, opening up...

  17. Turbulence measurements in fusion plasmas

    Science.gov (United States)

    Conway, G. D.

    2008-12-01

    Turbulence measurements in magnetically confined toroidal plasmas have a long history and relevance due to the detrimental role of turbulence induced transport on particle, energy, impurity and momentum confinement. The turbulence—the microscopic random fluctuations in particle density, temperature, potential and magnetic field—is generally driven by radial gradients in the plasma density and temperature. The correlation between the turbulence properties and global confinement, via enhanced diffusion, convection and direct conduction, is now well documented. Theory, together with recent measurements, also indicates that non-linear interactions within the turbulence generate large scale zonal flows and geodesic oscillations, which can feed back onto the turbulence and equilibrium profiles creating a complex interdependence. An overview of the current status and understanding of plasma turbulence measurements in the closed flux surface region of magnetic confinement fusion devices is presented, highlighting some recent developments and outstanding problems.

  18. Helicopter response to atmospheric turbulence

    Science.gov (United States)

    Riaz, J.; Prasad, J. V. R.; Schrage, D. P.; Gaonkar, G. H.

    1992-01-01

    A new time-domain method for simulating cyclostationary turbulence as seen by a translating and rotating blade element has recently been developed for the case of one-dimensional spectral distribution. This paper extends the simulation method to the cases of two- and three-dimensional spectral distributions and presents validation results for the two-dimensional case. The statistics of an isolated rigid blade flapping response to turbulence are computed using a two-dimensional spectral representation of the von Karman turbulence model, and the results are compared with those obtained using the conventional space-fixed turbulence analysis. The new turbulence simulation method is used for predicting the Black Hawk helicopter response to atmospheric turbulence.

  19. 4th European Turbulence Conference

    CERN Document Server

    1993-01-01

    The European Turbulence Conferences have been organized under the auspices of the European Mechanics Committee (Euromech) to provide a forum for discussion and exchange of recent and new results in the field of turbulence. The first conference was organized in Lyon in 1986 with 152 participants. The second and third conferences were held in Berlin (1988) and Stockholm (1990) with 165 and 172 participants respectively. The fourth was organized in Delft from 30 June to 3 July 1992 by the J.M. Burgers Centre. There were 214 participants from 22 countries. This steadily growing number of participants demonstrates both the success and need for this type of conference. The main topics of the Fourth European Turbulence Conference were: Dynamical Systems and Transition; Statistical Physics and Turbulence; Experiments and Novel Experimental Techniques; Particles and Bubbles in Turbulence; Simulation Methods; Coherent Structures; Turbulence Modelling and Compressibility Effects. In addition a special session was held o...

  20. Experimental Investigation of Turbulence-Chemistry Interaction in High-Reynolds-Number Turbulent Partially Premixed Flames

    Science.gov (United States)

    2016-06-23

    AFRL-AFOSR-VA-TR-2016-0277 Experimental Investigation of Turbulence- Chemistry Interaction in High-Reynolds-Number Turbulent Partially Premixed...4. TITLE AND SUBTITLE [U] Experimental investigation of turbulence- chemistry interaction in high-Reynolds-number 5a. CONTRACT NUMBER turbulent...flames. Mixture fraction is an important variable in understanding and modeling turbulent mixing and turbulence- chemistry interaction, two key

  1. Turbulent drag reduction by polymers

    Energy Technology Data Exchange (ETDEWEB)

    Bonn, Daniel [Van der Waals-Zeeman Instituut, University of Amsterdam, Valckenierstraat 65 1018, XE Amsterdam (Netherlands); Amarouchene, Yacine [CPMOH, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence cedex (France); Wagner, Christian [Institut fuer Experimentalphysik, Universitaet des Saarlandes, Saarbruecken (Germany); Douady, Stephane [Laboratoire de Physique Statistique de l' ENS, 24 rue Lhomond, 75231 Paris cedex 05 (France); Cadot, Olivier [ENSTA, Chemin de la Huniere, 91761 Palaiseau cedex (France)

    2005-04-13

    The reduction of turbulent energy dissipation by addition of polymers is studied experimentally. We first address the question of where the action of the polymers is taking place. Subsequently, we show that there is a direct correlation of drag reduction with the elongational viscosity of the polymers. For this, the reduction of turbulent energy dissipation by addition of the biopolymer DNA is studied. These results open the way for a direct visualization study of the polymer conformation in a turbulent boundary layer.

  2. Galactic turbulence and paleoclimate variability

    CERN Document Server

    Bershadskii, A

    2010-01-01

    The wavelet regression detrended fluctuations of the reconstructed temperature for the past three ice ages: approximately 340000 years (Antarctic ice cores isotopic data), exhibit clear evidences of the galactic turbulence modulation up to 2500 years time-scales. The observed strictly Kolmogorov turbulence features indicates the Kolmogorov nature of galactic turbulence, and provide explanation to random-like fluctuations of the global temperature on the millennial time scales.

  3. Quantum Ghost Imaging through Turbulence

    CERN Document Server

    Dixon, P Ben; Chan, Kam Wai Clifford; O'Sullivan-Hale, Colin; Rodenburg, Brandon; Hardy, Nicholas D; Shapiro, Jeffrey H; Simon, D S; Sergienko, A V; Boyd, R W; Howell, John C

    2011-01-01

    We investigate the effect of turbulence on quantum ghost imaging. We use entangled photons and demonstrate that for a novel experimental configuration the effect of turbulence can be greatly diminished. By decoupling the entangled photon source from the ghost imaging central image plane, we are able to dramatically increase the ghost image quality. When imaging a test pattern through turbulence, this method increased the imaged pattern visibility from V = 0.14 +/- 0.04 to V = 0.29 +/- 0.04.

  4. Turbulent wakes of fractal objects.

    Science.gov (United States)

    Staicu, Adrian; Mazzi, Biagio; Vassilicos, J C; van de Water, Willem

    2003-06-01

    Turbulence of a windtunnel flow is stirred using objects that have a fractal structure. The strong turbulent wakes resulting from three such objects which have different fractal dimensions are probed using multiprobe hot-wire anemometry in various configurations. Statistical turbulent quantities are studied within inertial and dissipative range scales in an attempt to relate changes in their self-similar behavior to the scaling of the fractal objects.

  5. Dynamic multiscaling in magnetohydrodynamic turbulence

    CERN Document Server

    Ray, Samriddhi Sankar; Pandit, Rahul

    2016-01-01

    We present the first study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic magnetohydrodynamic (MHD) turbulence in three dimensions. We generalize the formalism that has been developed for analogous studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents.

  6. Dynamic multiscaling in magnetohydrodynamic turbulence.

    Science.gov (United States)

    Ray, Samriddhi Sankar; Sahoo, Ganapati; Pandit, Rahul

    2016-11-01

    We present a study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic magnetohydrodynamic (MHD) turbulence in three dimensions. We generalize the formalism that has been developed for analogous studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents.

  7. An evaluation and parameterization of stably stratified turbulence: Insights on the atmospheric boundary layer and implications for wind energy

    Science.gov (United States)

    Wilson, Jordan M.

    This research focuses on the dynamics of turbulent mixing under stably stratified flow conditions. Velocity fluctuations and instabilities are suppressed by buoyancy forces limiting mixing as stability increases and turbulence decreases until the flow relaminarizes. Theories that ubiquitously assume turbulence collapse above a critical value of the gradient Richardson number (e.g. Ri > Ric) are common in meteorological and oceanographic communities. However, most theories were developed from results of small-scale laboratory and numerical experiments with energetic levels several orders of magnitude less than geophysical flows. Geophysical flows exhibit strong turbulence that enhances the transport of momentum and scalars. The mixing length for the turbulent momentum field, L M, serves as a key parameter in assessing large-scale, energy-containing motions. For a stably stratified turbulent shear flow, the shear production of turbulent kinetic energy, P, is here considered to be of greater relevance than the dissipation rate of turbulent kinetic energy, epsilon. Thus, the turbulent Reynolds number can be recast as Re ≡ k2/(nuP) where k is the turbulent kinetic energy, allowing for a new perspective on flow energetics. Using an ensemble data set of high quality direct numerical simulation (DNS) results, large-eddy simulation (LES) results, laboratory experiments, and observational field data of the stable atmospheric boundary layer (SABL), the dichotomy of data becomes apparent. High mixing rates persist to strong stability (e.g. Ri ≈ 10) in the SABL whereas numerical and laboratory results confirm turbulence collapse for Ri ˜ O(1). While this behavior has been alluded to in literature, this direct comparison of data elucidates the disparity in universal theories of stably stratified turbulence. From this theoretical perspective, a Reynolds-averaged framework is employed to develop and evaluate parameterizations of turbulent mixing based on the competing forces

  8. Turbulent Dynamos and Magnetic Helicity

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Hantao

    1999-04-01

    It is shown that the turbulent dynamo alpha-effect converts magnetic helicity from the turbulent field to the mean field when the turbulence is electromagnetic while the magnetic helicity of the mean-field is transported across space when the turbulence is elcetrostatic or due to the elcetron diamagnetic effect. In all cases, however, the dynamo effect strictly conserves the total helicity expect for a battery effect which vanishes in the limit of magnetohydrodynamics. Implications for astrophysical situations, especially for the solar dynamo, are discussed.

  9. Wave turbulence in magnetized plasmas

    Directory of Open Access Journals (Sweden)

    S. Galtier

    2009-02-01

    Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.

  10. The Calern atmospheric turbulence station

    Science.gov (United States)

    Chabé, Julien; Ziad, Aziz; Fantéï-Caujolle, Yan; Aristidi, Éric; Renaud, Catherine; Blary, Flavien; Marjani, Mohammed

    2016-07-01

    From its long expertise in Atmospheric Optics, the Observatoire de la Côte d'Azur and the J.L. Lagrange Laboratory have equipped the Calern Observatory with a station of atmospheric turbulence measurement (CATS: Calern Atmospheric Turbulence Station). The CATS station is equipped with a set of complementary instruments for monitoring atmospheric turbulence parameters. These new-generation instruments are autonomous within original techniques for measuring optical turbulence since the first meters above the ground to the borders of the atmosphere. The CATS station is also a support for our training activities as part of our Masters MAUCA and OPTICS, through the organization of on-sky practical works.

  11. A stability condition for turbulence model: From EMMS model to EMMS-based turbulence model

    CERN Document Server

    Zhang, Lin; Wang, Limin; Li, Jinghai

    2013-01-01

    The closure problem of turbulence is still a challenging issue in turbulence modeling. In this work, a stability condition is used to close turbulence. Specifically, we regard single-phase flow as a mixture of turbulent and non-turbulent fluids, separating the structure of turbulence. Subsequently, according to the picture of the turbulent eddy cascade, the energy contained in turbulent flow is decomposed into different parts and then quantified. A turbulence stability condition, similar to the principle of the energy-minimization multi-scale (EMMS) model for gas-solid systems, is formulated to close the dynamic constraint equations of turbulence, allowing the heterogeneous structural parameters of turbulence to be optimized. We call this model the `EMMS-based turbulence model', and use it to construct the corresponding turbulent viscosity coefficient. To validate the EMMS-based turbulence model, it is used to simulate two classical benchmark problems, lid-driven cavity flow and turbulent flow with forced con...

  12. Preparing for an explosion: Hydrodynamic instabilities and turbulence in presupernovae

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Nathan; Arnett, W. David, E-mail: nathans@as.arizona.edu, E-mail: darnett@as.arizona.edu [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2014-04-20

    Both observations and numerical simulations are discordant with predictions of conventional stellar evolution codes for the latest stages of a massive star's life before core collapse. The most dramatic example of this disconnect is in the eruptive mass loss occurring in the decade preceding Type IIn supernovae. We outline the key empirical evidence that indicates severe pre-supernova instability in massive stars, and we suggest that the chief reason that these outbursts are absent in stellar evolution models may lie in the treatment of turbulent convection in these codes. The mixing length theory that is used ignores (1) finite amplitude fluctuations in velocity and temperature and (2) their nonlinear interaction with nuclear burning. Including these fluctuations is likely to give rise to hydrodynamic instabilities in the latest burning sequences, which prompts us to discuss a number of far-reaching implications for the fates of massive stars. In particular, we explore connections to enhanced pre-supernova mass loss, unsteady nuclear burning and consequent eruptions, swelling of the stellar radius that may trigger violent interactions with a companion star, and potential modifications to the core structure that could dramatically alter calculations of the core-collapse explosion mechanism itself. These modifications may also impact detailed nucleosynthesis and measured isotopic anomalies in meteorites, as well as the interpretation of young core-collapse supernova remnants. Understanding these critical instabilities in the final stages of evolution may make possible the development of an early warning system for impending core collapse, if we can identify their asteroseismological or eruptive signatures.

  13. Turbulence closure: turbulence, waves and the wave-turbulence transition – Part 1: Vanishing mean shear

    Directory of Open Access Journals (Sweden)

    H. Z. Baumert

    2009-03-01

    Full Text Available This paper extends a turbulence closure-like model for stably stratified flows into a new dynamic domain in which turbulence is generated by internal gravity waves rather than mean shear. The model turbulent kinetic energy (TKE, K balance, its first equation, incorporates a term for the energy transfer from internal waves to turbulence. This energy source is in addition to the traditional shear production. The second variable of the new two-equation model is the turbulent enstrophy (Ω. Compared to the traditional shear-only case, the Ω-equation is modified to account for the effect of the waves on the turbulence time and space scales. This modification is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean shear when turbulence is produced exclusively by internal waves. This paper is part 1 of a continuing theoretical development. It accounts for mean shear- and internal wave-driven mixing only in the two limits of mean shear and no waves and waves but no mean shear, respectively.

    The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000b. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E2. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E1. This is observed, for example, in the highly energetic tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.

  14. Simulating the effects of stellarator geometry on gyrokinetic drift-wave turbulence

    Science.gov (United States)

    Baumgaertel, Jessica Ann

    match neoclassical theory predictions at inner radii, but are too large for neoclassical predictions at outer radii. Results from GS2 linear simulations show that the outer location has higher gyrokinetic instability growth rates than at the inner one. Mixing-length estimates of the heat flux are within a factor of 3 of the experimental measurements, indicating that gyrokinetic turbulence may be responsible for the higher transport measured by the experiment in the outer regions. Future nonlinear simulations can explore this question in more detail. This work is supported by the Princeton Plasma Physics Laboratory, which is operated by Princeton University for the U.S. Department of Energy under Contract No. DE-AC02-09CH11466, and the SciDAC Center for the Study of Plasma Microturbulence.

  15. A computational study of turbulent kinetic energy transport in barotropic turbulence on the f-plane

    Energy Technology Data Exchange (ETDEWEB)

    Grooms, Ian, E-mail: ian.grooms@colorado.edu [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)

    2015-10-15

    Energy transport by eddies is diagnosed from a series of simulations of stochastically forced, inhomogeneous two-dimensional turbulence—barotropic dynamics on the f-plane. The divergence of the energy flux is compared to diffusive models, both fractional and harmonic, and the inferred diffusivity κ is compared to a mixing-length model κ ∝ Vℓ where V and ℓ are eddy velocity and length scales, respectively. The flux-divergence is found to be well approximated by Laplacian diffusion with a mixing-length approximation. This study provides some support for diffusive modeling of mesoscale eddy energy transport in ocean model parameterizations.

  16. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and

  17. Global simulations of magnetorotational turbulence II: turbulent energetics

    CERN Document Server

    Parkin, E R

    2013-01-01

    Magnetorotational turbulence draws its energy from gravity and ultimately releases it via dissipation. However, the quantitative details of this energy flow have not been assessed for global disk models. In this work we examine the energetics of a well-resolved, three-dimensional, global magnetohydrodynamic accretion disk simulation by evaluating statistically-averaged mean-field equations for magnetic, kinetic, and internal energy using simulation data. The results reveal that turbulent magnetic (kinetic) energy is primarily injected by the correlation between Maxwell (Reynolds) stresses and shear in the (almost Keplerian) mean flow, and removed by dissipation. This finding differs from previous work using local (shearing-box) models, which indicated that turbulent kinetic energy was primarily sourced from the magnetic energy reservoir. Lorentz forces provide the bridge between the magnetic and kinetic energy reservoirs, converting ~ 1/5 of the total turbulent magnetic power input into turbulent kinetic ener...

  18. A replication study for genome-wide gene expression levels in two layer lines elucidates differentially expressed genes of pathways involved in bone remodeling and immune responsiveness.

    Directory of Open Access Journals (Sweden)

    Christin Habig

    Full Text Available The current replication study confirmed significant differences in gene expression profiles of the cerebrum among the two commercial layer lines Lohmann Selected Leghorn (LSL and Lohmann Brown (LB. Microarray analyses were performed for 30 LSL and another 30 LB laying hens kept in the small group housing system Eurovent German. A total of 14,103 microarray probe sets using customized Affymetrix ChiGene-1_0-st Arrays with 20,399 probe sets were differentially expressed among the two layer lines LSL and LB (FDR adjusted P-value <0.05. An at least 2-fold change in expression levels could be observed for 388 of these probe sets. In LSL, 214 of the 388 probe sets were down- and 174 were up-regulated and vice versa for the LB layer line. Among the 174 up-regulated probe sets in LSL, we identified 51 significantly enriched Gene ontology (GO terms of the biological process category. A total of 63 enriched GO-terms could be identified for the 214 down-regulated probe sets of the layer line LSL. We identified nine genes significantly differentially expressed between the two layer lines in both microarray experiments. These genes play a crucial role in protection of neuronal cells from oxidative stress, bone mineral density and immune response among the two layer lines LSL and LB. Thus, the different regulation of these genes may significantly contribute to phenotypic trait differences among these layer lines. In conclusion, these novel findings provide a basis for further research to improve animal welfare in laying hens and these layer lines may be of general interest as an animal model.

  19. Heat absorbtion by earth coil systems placed in two layers in one trench. [Heat pumps]. Varmeoptagelse fra jordslanger i to lag i samme grav

    Energy Technology Data Exchange (ETDEWEB)

    Willumsen, O.

    1989-01-01

    The aim of the project is to evaluate the performance of a new technique of installing earth coil systems for heat pumps. In order to reduce the costs of an efficient heat absorber, two coils were placed in the same trench in two different levels, generally in a depth of 0.7 and 1.1 metres. Usually the total pipe length was increased with 20 - 30% compared to the one-layer design. The digging expences, however, were still smaller than those of the one-layer design. The evaluation is based on measurements on 4 heat pump installations using the two-layer concept, where the extracted heat energy from the higher and lower earth coils were metered individually on a monthly basis. Furthermore, the in- and outlet temperature of the coils and the energy comsumption of the heat pump was measured. The main conclusions of the project are: - A two-layer design leads to a slightly cheaper earth coil. The performance of the earth coil is not negatively affected by this technique, provided that the vertical distance between the coils is at least 0.4 metres at any place. - Two-layer coils may be designed with the same total length as used in one-layer coils - which means half the trench length. This design gives a more intensive exploitation of the available soil area, without decreasing the performance of the heat pump. - The disadvantage of the technique is an increasing risk of earth elevation due to freezing. This risk should be minimized by keeping a minimum distance of 0.40 meters between the individual pipes and thermal insulation if more than two pipes are placed near to each other. (AB).

  20. 双层界面重磁联合反演方法研究%Joint inversion of gravity and magnetic data for a two-layer model

    Institute of Scientific and Technical Information of China (English)

    江凡; 吴健生; 王家林

    2008-01-01

    Based on the synchronous joint gravity and magnetic inversion of single interface by Pilkington and the need of revealing Cenozoic and crystalline basement thickness in the new round of oil-gas exploration, we propose a joint gravity and magnetic inversion method for two-layer models by concentrating on the relationship between the change of thickness and position of the middle layer and anomaly and discuss the effects of the key parameters. Model tests and application to field data show the validity of this method.

  1. Protein fold recognition with a two-layer method based on SVM-SA, WP-NN and C4.5 (TLM-SNC).

    Science.gov (United States)

    Zangooei, Mohammad Hossein; Jalili, Saeed

    2013-01-01

    The structural knowledge of protein is crucial in understanding its biological role. An effort is made to assign a fold to a given protein in a protein fold recognition problem. A computational Two-Layer Method (TLM) based on the Support Vector Machine (SVM), the Neural Network (NN) and the Decision Tree (C4.5) has been developed in this study for the assignment of a protein sequence to a folding class in SCOP. Prediction accuracy is measured on a dataset and the accuracy of the proposed method is very promising in comparison with other classification methods.

  2. The turbulent diffusion of toroidal magnetic flux as inferred from properties of the sunspot butterfly diagram

    Science.gov (United States)

    Cameron, R. H.; Schüssler, M.

    2016-06-01

    Context. In order to match observed properties of the solar cycle, flux-transport dynamo models require the toroidal magnetic flux to be stored in a region of low magnetic diffusivity, typically located at or below the bottom of the convection zone. Aims: We infer the turbulent magnetic diffusivity affecting the toroidal field on the basis of empirical data. Methods: We considered the time evolution of mean latitude and width of the activity belts of solar cycles 12-23 and their dependence on cycle strength. We interpreted the decline phase of the cycles as a diffusion process. Results: The activity level of a given cycle begins to decline when the centers of its equatorward propagating activity belts come within their (full) width (at half maximum) from the equator. This happens earlier for stronger cycles because their activity belts are wider. From that moment on, the activity and the belt width decrease in the same manner for all cycles, independent of their maximum activity level. In terms of diffusive cancellation of opposite-polarity toroidal flux across the equator, we infer the turbulent diffusivity experienced by the toroidal field, wherever it is located, to be in the range 150-450 km2 s-1. Strong diffusive latitudinal spreading of the toroidal flux underneath the activity belts can be inhibited by an inflow toward the toroidal field bands in the convection zone with a magnitude of several meters per second. Conclusions: The inferred value of the turbulent magnetic diffusivity affecting the toroidal field agrees, to order of magnitude, with estimates based on mixing-length models for the solar convection zone. This is at variance with the requirement of flux-transport dynamo models. The inflows required to keep the toroidal field bands together before they approach the equator are similar to the inflows toward the activity belts observed with local helioseismology.

  3. High-fidelity numerical simulations of compressible turbulence and mixing generated by hydrodynamic instabilities

    Science.gov (United States)

    Movahed, Pooya

    . Using a novel set-up, I perform direct numerical simulations of freely decaying turbulent multi-material mixing starting from an unperturbed material interface between two fluids in a pre-existing isotropic turbulent velocity field in the presence and absence of gravity. In the absence of gravity, the energy dissipation rate is matched in each fluid, such that anisotropy in the initial set-up solely comes from the density gradient. At large scales, the mixing region grows self-similarly after an initial transient period; a one-dimensional turbulence diffusion model in conjunction with Prandtl's mixing length theory is applied to describe the growth of the mixing region. In this regime, the growth of the mixing regions scales as time to the power of 2/7 for Batchelor turbulence, as predicted by energy budget arguments for large Reynolds numbers. At small scales, flow isotropy and intermittency are measured. Results suggest that a large density ratio between the two fluids is required to produce anisotropy at the Taylor microscale, while the flow remains isotropic at the dissipation (Kolmogorov) scales. Having identified the role of density gradient alone, I revisit the problem in the presence of gravity in a Rayleigh-Taylor unstable configuration. Now, the baroclinic vorticity due to the gravitational field provides energy that drives the initially decaying turbulent field. Flow dynamics are characterized by the two important competing time scales of the problem, corresponding to the decay of the initial turbulent field and the Rayleigh-Taylor development. The resulting turbulence is found to be anisotropic across all scales. The velocity field is highly intermittent at the bubble and spike fronts.

  4. User's guide for the computer code COLTS for calculating the coupled laminar and turbulent flow over a Jovian entry probe

    Science.gov (United States)

    Kumar, A.; Graeves, R. A.

    1980-06-01

    A user's guide for a computer code 'COLTS' (Coupled Laminar and Turbulent Solutions) is provided which calculates the laminar and turbulent hypersonic flows with radiation and coupled ablation injection past a Jovian entry probe. Time-dependent viscous-shock-layer equations are used to describe the flow field. These equations are solved by an explicit, two-step, time-asymptotic finite-difference method. Eddy viscosity in the turbulent flow is approximated by a two-layer model. In all, 19 chemical species are used to describe the injection of carbon-phenolic ablator in the hydrogen-helium gas mixture. The equilibrium composition of the mixture is determined by a free-energy minimization technique. A detailed frequency dependence of the absorption coefficient for various species is considered to obtain the radiative flux. The code is written for a CDC-CYBER-203 computer and is capable of providing solutions for ablated probe shapes also.

  5. Advances in compressible turbulent mixing

    Energy Technology Data Exchange (ETDEWEB)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  6. Quantitative evaluation of turbulence compensation

    NARCIS (Netherlands)

    Eekeren, A.W.M. van; Schutte, K.; Dijk, J.; Schwering, P.B.W.

    2013-01-01

    A well-known phenomena that diminishes the recognition range in infrared imagery is atmospheric turbulence. In literature many methods are described that try to compensate for the distortions caused by atmospheric turbulence. Most of these methods use a global processing approach in which they assum

  7. Energy spectra in bubbly turbulence

    CERN Document Server

    Prakash, Vivek N; Ramos, Fabio Ernesto Mancilla; Tagawa, Yoshiyuki; Lohse, Detlef; Sun, Chao

    2013-01-01

    We conduct experiments in a turbulent bubbly flow to study the unknown nature of the transition between the classical -5/3 energy spectrum scaling for a single-phase turbulent flow and the -3 scaling for a swarm of bubbles rising in a quiescent liquid and of bubble-dominated turbulence. The bubblance parameter, b, which measures the ratio of the bubble-induced kinetic energy to the kinetic energy induced by the turbulent liquid fluctuations before bubble injection, is used to characterise the bubbly flow. We vary b from $b = \\infty$ (pseudo-turbulence) to b = 0 (single-phase flow) over 2-3 orders of magnitude: ~O(0.01, 0.1, 5) to study its effect on the turbulent energy spectrum and liquid velocity fluctuations. The experiments are conducted in a multi-phase turbulent water tunnel with air bubbles of diameters 2-4 mm and 3-5 mm. An active-grid is used to generate nearly homogeneous and isotropic turbulence in the liquid flow. The liquid speeds and gas void fractions are varied to achieve the above mentioned b...

  8. Conditional Eddies in Plasma Turbulence

    DEFF Research Database (Denmark)

    Johnsen, Helene; Pécseli, Hans; Trulsen, J.

    1986-01-01

    Conditional structures, or eddies, in turbulent flows are discussed with special attention to electrostatic turbulence in plasmas. The potential variation of these eddies is obtained by sampling the fluctuations only when a certain condition is satisfied in a reference point. The resulting...

  9. Stochastic Subspace Modelling of Turbulence

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Pedersen, B. J.; Nielsen, Søren R.K.

    2009-01-01

    Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper...

  10. Evaluation of turbulence mitigation methods

    NARCIS (Netherlands)

    Eekeren, A.W.M. van; Huebner, C.S.; Dijk, J.; Schutte, K.; Schwering, P.B.W.

    2014-01-01

    Atmospheric turbulence is a well-known phenomenon that diminishes the recognition range in visual and infrared image sequences. There exist many different methods to compensate for the effects of turbulence. This paper focuses on the performance of two software-based methods to mitigate the effects

  11. MHD turbulence and distributed chaos

    CERN Document Server

    Bershadskii, A

    2016-01-01

    It is shown, using results of recent direct numerical simulations, that spectral properties of distributed chaos in MHD turbulence with zero mean magnetic field are similar to those of hydrodynamic turbulence. An exception is MHD spontaneous breaking of space translational symmetry, when the stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$ has $\\beta=4/7$.

  12. Magnetohydrodynamic Turbulence and the Geodynamo

    Science.gov (United States)

    Shebalin, John V.

    2016-01-01

    Recent research results concerning forced, dissipative, rotating magnetohydrodynamic (MHD) turbulence will be discussed. In particular, we present new results from long-time Fourier method (periodic box) simulations in which forcing contains varying amounts of magnetic and kinetic helicity. Numerical results indicate that if MHD turbulence is forced so as to produce a state of relatively constant energy, then the largest-scale components are dominant and quasistationary, and in fact, have an effective dipole moment vector that aligns closely with the rotation axis. The relationship of this work to established results in ideal MHD turbulence, as well as to models of MHD turbulence in a spherical shell will also be presented. These results appear to be very pertinent to understanding the Geodynamo and the origin of its dominant dipole component. Our conclusion is that MHD turbulence, per se, may well contain the origin of the Earth's dipole magnetic field.

  13. Shell Models of Magnetohydrodynamic Turbulence

    CERN Document Server

    Plunian, Franck; Frick, Peter

    2012-01-01

    Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accu...

  14. Mixing in Supersonic Turbulence

    CERN Document Server

    Pan, Liubin

    2010-01-01

    In many astrophysical environments, mixing of heavy elements occurs in the presence of a supersonic turbulent velocity field. Here we carry out the first systematic numerical study of such passive scalar mixing in isothermal supersonic turbulence. Our simulations show that the ratio of the scalar mixing timescale, $\\tau_{\\rm c}$, to the flow dynamical time, $\\tau_{\\rm dyn}$ (defined as the flow driving scale divided by the rms velocity), increases with the Mach number, $M$, for $M \\lsim3$, and becomes essentially constant for $M \\gsim3.$ This trend suggests that compressible modes are less efficient in enhancing mixing than solenoidal modes. However, since the majority of kinetic energy is contained in solenoidal modes at all Mach numbers, the overall change in $\\tau_{\\rm c}/\\tau_{\\rm dyn}$ is less than 20\\% over the range $1 \\lsim M \\lsim 6$. At all Mach numbers, if pollutants are injected at around the flow driving scale, $\\tau_{\\rm c}$ is close to $\\tau_{\\rm dyn}.$ This suggests that scalar mixing is drive...

  15. Efficient calculation of potential distribution in two-layer earth; Niso kozo daichikei ni okeru denki tansa no tame no koritsuteki den`i keisan shuho

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, M.; Okamoto, Y. [Chiba Institute of Technology, Chiba (Japan); Endo, M.; Noguchi, K. [Waseda University, Tokyo (Japan); Teramachi, Y.; Akabane, H. [University of Industrial Technology, Kanagawa (Japan); Agu, M. [Ibaraki University, Ibaraki (Japan)

    1997-05-27

    An efficient calculation method of potential distribution in the presence of an embedded body in multi-layer earth has been proposed by expanding the method of image with a consideration of multiple reflection between the ground surface and each underground boundary. For this method, when solving boundary integral equation with the potential of embedded body surface as only one unknown, i.e., when obtaining discretization equation, ordinary boundary element program developed for analyzing the finite closed region can be used. As an example, numerical calculation was conducted for the two-layer earth. The analysis expression of potential distribution in the case of the certain embedded body in two-layer earth has never published. Accordingly, the calculated results were compared with those by the integral equation method. As a result, it was concluded that the primary potential obtained from the present method agreed well with that obtained from the integral equation method. However, there was a disregarded difference in the secondary potential. For confirming the effectiveness, it was necessary to compare with another numerical calculation method, such as finite element method. 5 refs., 5 figs.

  16. 两层损耗土壤媒质附近HEMP环境%HEMP Environment Over Two-layer Lossy Soil

    Institute of Scientific and Technical Information of China (English)

    孙蓓云; 周辉

    2013-01-01

    To understand the HEMP environment near ground is important for HEMP effects research of ground -base electrical system.The methods to calculate the reflection wave of plane wave and electromagnetic environment over two-layer lossy media are presented.The reflection wave and electromagnetic environment of HEMP over two-layered soil are calculated.The results indicate that there are two peaks in the reflection wave and the time of the second peak is determined by the thickness of the first layer soil.The tail-wave amplitude of x-direction HEMP environment is reduced than one layer's,and the tail-wave amplitude of z-direction is increased.%介绍了分层损耗媒质反射波的计算方法,计算了大地由一定厚度的干土和湿土构成时,x方向和z方向的HEMP反射波及地面附近电磁环境.计算结果表明x方向和z方向的反射波都有双峰,第2个峰出现的时间与第1层土壤的厚度有关;地面附近x方向HEMP环境场波尾的幅度较单层的会有下降,而z方向较单层的会有增加.

  17. On the Transformation Mechanism for Formulating a Multiproduct Two-Layer Supply Chain Network Design Problem as a Network Flow Model

    Directory of Open Access Journals (Sweden)

    Mi Gan

    2014-01-01

    Full Text Available The multiproduct two-layer supply chain is very common in various industries. In this paper, we introduce a possible modeling and algorithms to solve a multiproduct two-layer supply chain network design problem. The decisions involved are the DCs location and capacity design decision and the initial distribution planning decision. First we describe the problem and give a mixed integer programming (MIP model; such problem is NP-hard and it is not easy to reduce the complexity. Inspired by it, we develop a transformation mechanism of relaxing the fixed cost and adding some virtual nodes and arcs to the original network. Thus, a network flow problem (NFP corresponding to the original problem has been formulated. Given that we could solve the NFP as a minimal cost flow problem. The solution procedures and network simplex algorithm (INS are discussed. To verify the effectiveness and efficiency of the model and algorithms, the performance measure experimental has been conducted. The experiments and result showed that comparing with MIP model solved by genetic algorithm (GA and Benders, decomposition algorithm (BD the NFP model and INS are also effective and even more efficient for both small-scale and large-scale problems.

  18. A Two-Layered Diffusion Model Traces the Dynamics of Information Processing in the Valuation-and-Choice Circuit of Decision Making

    Directory of Open Access Journals (Sweden)

    Pietro Piu

    2014-01-01

    Full Text Available A circuit of evaluation and selection of the alternatives is considered a reliable model in neurobiology. The prominent contributions of the literature to this topic are reported. In this study, valuation and choice of a decisional process during Two-Alternative Forced-Choice (TAFC task are represented as a two-layered network of computational cells, where information accrual and processing progress in nonlinear diffusion dynamics. The evolution of the response-to-stimulus map is thus modeled by two linked diffusive modules (2LDM representing the neuronal populations involved in the valuation-and-decision circuit of decision making. Diffusion models are naturally appropriate for describing accumulation of evidence over the time. This allows the computation of the response times (RTs in valuation and choice, under the hypothesis of ex-Wald distribution. A nonlinear transfer function integrates the activities of the two layers. The input-output map based on the infomax principle makes the 2LDM consistent with the reinforcement learning approach. Results from simulated likelihood time series indicate that 2LDM may account for the activity-dependent modulatory component of effective connectivity between the neuronal populations. Rhythmic fluctuations of the estimate gain functions in the delta-beta bands also support the compatibility of 2LDM with the neurobiology of DM.

  19. BIPOLAR MAGNETIC SPOTS FROM DYNAMOS IN STRATIFIED SPHERICAL SHELL TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Jabbari, Sarah; Brandenburg, Axel; Kleeorin, Nathan; Mitra, Dhrubaditya; Rogachevskii, Igor, E-mail: sarahjab@kth.se [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2015-06-01

    Recent work by Mitra et al. (2014) has shown that in strongly stratified forced two-layer turbulence with helicity and corresponding large-scale dynamo action in the lower layer, and nonhelical turbulence in the upper, a magnetic field occurs in the upper layer in the form of sharply bounded bipolar magnetic spots. Here we extend this model to spherical wedge geometry covering the northern hemisphere up to 75° latitude and an azimuthal extent of 180°. The kinetic helicity and therefore also the large-scale magnetic field are strongest at low latitudes. For moderately strong stratification, several bipolar spots form that eventually fill the full longitudinal extent. At early times, the polarity of spots reflects the orientation of the underlying azimuthal field, as expected from Parker’s Ω-shaped flux loops. At late times their tilt changes such that there is a radial field of opposite orientation at different latitudes separated by about 10°. Our model demonstrates the spontaneous formation of spots of sizes much larger than the pressure scale height. Their tendency to produce filling factors close to unity is argued to be reminiscent of highly active stars. We confirm that strong stratification and strong scale separation are essential ingredients behind magnetic spot formation, which appears to be associated with downflows at larger depths.

  20. NUMERICAL SIMULATION OF TURBULENT JETS WITH LATERAL INJECTION INTO A CROSSFLOW

    Institute of Scientific and Technical Information of China (English)

    GUO Ting-ting; LI Shao-hua; XU Zhong

    2006-01-01

    In this paper, Numerical simulations of mean velocity and turbulent kinetic energy fields are presented for three-dimensional lateral jet in crossflow, at the injection angles of -60° and -30°. The RNG k-ε turbulence model, with the two-layer wall function method, is adopted to simulate the characteristics of this flow at the jet-to-crossflow velocity ratios, 1, 2 and 4. The results show that the injection angle and jet-to-crossflow velocity ratio can change the flow fields, and the range upstream affected by jet injected laterally increase and the curvature of jet trajectories varies along the flow direction. Furthermore, the separation events in the lee of the jet exit and behind the jet bending-segment have been found, and the mechanisms of two vortex systems are analyzed.

  1. Coherence in Turbulence: New Perspective

    Science.gov (United States)

    Levich, Eugene

    2009-07-01

    It is claimed that turbulence in fluids is inherently coherent phenomenon. The coherence shows up clearly as strongly correlated helicity fluctuations of opposite sign. The helicity fluctuations have cellular structure forming clusters that are actually observed as vorticity bands and coherent structures in laboratory turbulence, direct numerical simulations and most obviously in atmospheric turbulence. The clusters are named BCC - Beltrami Cellular Clusters - because of the observed nearly total alignment of the velocity and vorticity fields in each particular cell, and hence nearly maximal possible helicity in each cell; although when averaged over all the cells the residual mean helicity in general is small and does not play active dynamical role. The Beltrami like fluctuations are short-lived and stabilize only in small and generally contiguous sub-domains that are tending to a (multi)fractal in the asymptotic limit of large Reynolds numbers, Re → ∞. For the model of homogeneous isotropic turbulence the theory predicts the leading fractal dimension of BCC to be: DF = 2.5. This particular BCC is responsible for generating the Kolmogorov -5/3 power law energy spectrum. The most obvious role that BCC play dynamically is that the nonlinear interactions in them are relatively reduced, due to strong spatial alignment between the velocity field v(r, t) and the vorticity field ω(r, t) = curlv(r, t), while the physical quantities typically best characterizing turbulence intermittency, such as entrophy, vorticity stretching and generation, and energy dissipation are maximized in and near them. The theory quantitatively relates the reduction of nonlinear inter-actions to the BCC fractal dimension DF and subsequent turbulence intermittency. It is further asserted that BCC is a fundamental feature of all turbulent flows, e.g., wall bounded turbulent flows, atmospheric and oceanic flows, and their leading fractal dimension remains invariant and universal in these flows

  2. DNS study on shock/turbulence interaction in homogeneous isotropic turbulence at low turbulent Mach number

    Science.gov (United States)

    Tanaka, Kento; Watanabe, Tomoaki; Nagata, Koji; Sasoh, Akihiro; Sakai, Yasuhiko; Hayase, Toshiyuki; Nagoya Univ Collaboration

    2016-11-01

    The interaction between homogeneous isotropic turbulence and normal shock wave is investigated by direct numerical simulations (DNSs). In the DNSs, a normal shock wave with a shock Mach number 1.1 passes through homogeneous isotropic turbulence with a low turbulent Mach number and a moderate turbulent Reynolds number. The statistics are calculated conditioned on the distance from the shock wave. The results showed that the shock wave makes length scales related to turbulence small. This effect is significant for the Taylor microscale defined with the velocity derivative orthogonal to the shock wave. The decrease in the Kolmogorov scale is also found. Statistics of velocity derivative are found to be changed by the shock wave propagation. The shock wave causes enstrophy amplification due to the dilatation/vorticity interaction. By this interaction, the vorticity components parallel to the shock wave is more amplified than the normal component. The strain rate is also amplified by the shock wave.

  3. A study on turbulence modulation via an analysis of turbulence anisotropy-invariants

    Institute of Scientific and Technical Information of China (English)

    Michael; MANHART

    2010-01-01

    We investigate the turbulence modulation by particles in a turbulent two-phase channel flow via an analysis of turbulence anisotropy-invariants. The fluid turbulence is calculated by a large eddy simulation with a point-force two-way coupling model and particles are tracked by the Lagrangian trajectory method. The channel turbulence follows the two-component turbulence state within the viscous sub-layer region and outside the region the turbulence tends to follow the right curve of the anisotropy-invariant. The channel turbulence, interacting with heavy particles, is modulated to the two-component turbulence limit state near the wall and is separate from the axisymmetric turbulence state in the turbulence anisotropy-invariants map. The fluctuations of streamwise component are transferred to the other two components and hence the anisotropy decreases due to particle modulation. The study has deepened the understanding of the turbulence modulation mechanism in two-phase turbulent flows.

  4. Numerical methods for turbulent flow

    Science.gov (United States)

    Turner, James C., Jr.

    1988-01-01

    It has generally become accepted that the Navier-Strokes equations predict the dynamic behavior of turbulent as well as laminar flows of a fluid at a point in space away form a discontinuity such as a shock wave. Turbulence is also closely related to the phenomena of non-uniqueness of solutions of the Navier-Strokes equations. These second order, nonlinear partial differential equations can be solved analytically for only a few simple flows. Turbulent flow fields are much to complex to lend themselves to these few analytical methods. Numerical methods, therefore, offer the only possibility of achieving a solution of turbulent flow equations. In spite of recent advances in computer technology, the direct solution, by discrete methods, of the Navier-Strokes equations for turbulent flow fields is today, and in the foreseeable future, impossible. Thus the only economically feasible way to solve practical turbulent flow problems numerically is to use statistically averaged equations governing mean-flow quantities. The objective is to study some recent developments relating to the use of numerical methods to study turbulent flow.

  5. Magnetohydrodynamics turbulence: An astronomical perspective

    Indian Academy of Sciences (India)

    S Sridhar

    2011-07-01

    Early work on magnetohydrodynamic (MHD) turbulence in the 1960s due, independently, to Iroshnikov and Kraichnan (IK) considered isotropic inertial-range spectra. Whereas laboratory experiments were not in a position to measure the spectral index, they showed that the turbulence was strongly anisotropic. Theoretical horizons correspondingly expanded in the 1980s, to accommodate both the isotropy of the IK theory and the anisotropy suggested by the experiments. Since the discovery of pulsars in 1967, many years of work on interstellar scintillation suggested that small-scale interstellar turbulence must have a hydromagnetic origin; but the IK spectrum was too flat and the ideas on anisotropic spectra too qualitative to explain the observations. In response, new theories of balanced MHD turbulence were proposed in the 1990s, which argued that the IK theory was incorrect, and made quantitative predictions of anisotropic inertial-range spectra; these theories have since found applications in many areas of astrophysics. Spacecraft measurements of solar-wind turbulence show that there is more power in Alfvén waves that travel away from the Sun than towards it. Theories of imbalanced MHD turbulence have now been proposed to address interplanetary turbulence. This very active area of research continues to be driven by astronomy.

  6. Comparison of turbulence mitigation algorithms

    Science.gov (United States)

    Kozacik, Stephen T.; Paolini, Aaron; Sherman, Ariel; Bonnett, James; Kelmelis, Eric

    2017-07-01

    When capturing imagery over long distances, atmospheric turbulence often degrades the data, especially when observation paths are close to the ground or in hot environments. These issues manifest as time-varying scintillation and warping effects that decrease the effective resolution of the sensor and reduce actionable intelligence. In recent years, several image processing approaches to turbulence mitigation have shown promise. Each of these algorithms has different computational requirements, usability demands, and degrees of independence from camera sensors. They also produce different degrees of enhancement when applied to turbulent imagery. Additionally, some of these algorithms are applicable to real-time operational scenarios while others may only be suitable for postprocessing workflows. EM Photonics has been developing image-processing-based turbulence mitigation technology since 2005. We will compare techniques from the literature with our commercially available, real-time, GPU-accelerated turbulence mitigation software. These comparisons will be made using real (not synthetic), experimentally obtained data for a variety of conditions, including varying optical hardware, imaging range, subjects, and turbulence conditions. Comparison metrics will include image quality, video latency, computational complexity, and potential for real-time operation. Additionally, we will present a technique for quantitatively comparing turbulence mitigation algorithms using real images of radial resolution targets.

  7. Turbulent deflagrations, autoignitions, and detonations

    KAUST Repository

    Bradley, Derek

    2012-09-01

    Measurements of turbulent burning velocities in fan-stirred explosion bombs show an initial linear increase with the fan speed and RMS turbulent velocity. The line then bends over to form a plateau of high values around the maximum attainable burning velocity. A further increase in fan speed leads to the eventual complete quenching of the flame due to increasing localised extinctions because of the flame stretch rate. The greater the Markstein number, the more readily does flame quenching occur. Flame propagation along a duct closed at one end, with and without baffles to increase the turbulence, is subjected to a one-dimensional analysis. The flame, initiated at the closed end of the long duct, accelerates by the turbulent feedback mechanism, creating a shock wave ahead of it, until the maximum turbulent burning velocity for the mixture is attained. With the confining walls, the mixture is compressed between the flame and the shock plane up to the point where it might autoignite. This can be followed by a deflagration to detonation transition. The maximum shock intensity occurs with the maximum attainable turbulent burning velocity, and this defines the limit for autoignition of the mixture. For more reactive mixtures, autoignition can occur at turbulent burning velocities that are less than the maximum attainable one. Autoignition can be followed by quasi-detonation or fully developed detonation. The stability of ensuing detonations is discussed, along with the conditions that may lead to their extinction. © 2012 by Pleiades Publishing, Ltd.

  8. Is Navier-Stokes turbulence chaotic?

    Science.gov (United States)

    Deissler, R. G.

    1986-01-01

    Whether turbulent solutions of the Navier-Stokes equations are chaotic is considered. Initially neighboring solutions for a low-Reynolds-number fully developed turbulence are compared. The turbulence is sustained by a nonrandom time-independent external force. The solutions separate exponentially with time, having a positive Liapunov characteristic exponent. Thus the turbulence is characterized as chaotic.

  9. Saturation of the turbulent dynamo.

    Science.gov (United States)

    Schober, J; Schleicher, D R G; Federrath, C; Bovino, S; Klessen, R S

    2015-08-01

    The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k☆ which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm≫1 and between 2.43% and 0.135% for Pm≪1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

  10. Unsteady turbulent buoyant plumes

    CERN Document Server

    Woodhouse, Mark J; Hogg, Andrew J

    2015-01-01

    We model the unsteady evolution of turbulent buoyant plumes following temporal changes to the source conditions. The integral model is derived from radial integration of the governing equations expressing the conservation of mass, axial momentum and buoyancy. The non-uniform radial profiles of the axial velocity and density deficit in the plume are explicitly described by shape factors in the integral equations; the commonly-assumed top-hat profiles lead to shape factors equal to unity. The resultant model is hyperbolic when the momentum shape factor, determined from the radial profile of the mean axial velocity, differs from unity. The solutions of the model when source conditions are maintained at constant values retain the form of the well-established steady plume solutions. We demonstrate that the inclusion of a momentum shape factor that differs from unity leads to a well-posed integral model. Therefore, our model does not exhibit the mathematical pathologies that appear in previously proposed unsteady i...

  11. Seasonality in submesoscale turbulence.

    Science.gov (United States)

    Callies, Jörn; Ferrari, Raffaele; Klymak, Jody M; Gula, Jonathan

    2015-04-21

    Although the strongest ocean surface currents occur at horizontal scales of order 100 km, recent numerical simulations suggest that flows smaller than these mesoscale eddies can achieve important vertical transports in the upper ocean. These submesoscale flows, 1-100 km in horizontal extent, take heat and atmospheric gases down into the interior ocean, accelerating air-sea fluxes, and bring deep nutrients up into the sunlit surface layer, fueling primary production. Here we present observational evidence that submesoscale flows undergo a seasonal cycle in the surface mixed layer: they are much stronger in winter than in summer. Submesoscale flows are energized by baroclinic instabilities that develop around geostrophic eddies in the deep winter mixed layer at a horizontal scale of order 1-10 km. Flows larger than this instability scale are energized by turbulent scale interactions. Enhanced submesoscale activity in the winter mixed layer is expected to achieve efficient exchanges with the permanent thermocline below.

  12. Piezoelectric Resonator with Two Layers

    Science.gov (United States)

    Stephanou, Philip J. (Inventor); Black, Justin P. (Inventor)

    2013-01-01

    A piezoelectric resonator device includes: a top electrode layer with a patterned structure, a top piezoelectric layer adjacent to the top layer, a middle metal layer adjacent to the top piezoelectric layer opposite the top layer, a bottom piezoelectric layer adjacent to the middle layer opposite the top piezoelectric layer, and a bottom electrode layer with a patterned structure and adjacent to the bottom piezoelectric layer opposite the middle layer. The top layer includes a first plurality of electrodes inter-digitated with a second plurality of electrodes. A first one of the electrodes in the top layer and a first one of the electrodes in the bottom layer are coupled to a first contact, and a second one of the electrodes in the top layer and a second one of the electrodes in the bottom layer are coupled to a second contact.

  13. Turbulent mixing condensation nucleus counter

    Science.gov (United States)

    Mavliev, Rashid

    The construction and operating principles of the Turbulent Mixing Condensation Nucleus Counter (TM CNC) are described. Estimations based on the semiempirical theory of turbulent jets and the classical theory of nucleation and growth show the possibility of detecting particles as small as 2.5 nm without the interference of homogeneous nucleation. This conclusion was confirmed experimentally during the International Workshop on Intercomparison of Condensation Nuclei and Aerosol Particle Counters (Vienna, Austria). Number concentration, measured by the Turbulent Mixing CNC and other participating instruments, is found to be essentially equal.

  14. Bumblebee flight in heavy turbulence

    CERN Document Server

    Engels, T; Schneider, K; Lehmann, F -O; Sesterhenn, J

    2016-01-01

    High-resolution numerical simulations of a tethered model bumblebee in forward flight are performed superimposing homogeneous isotropic turbulent fluctuations to the uniform inflow. Despite tremendous variation in turbulence intensity, between 17% and 99% with respect to the mean flow, we do not find significant changes in cycle-averaged aerodynamic forces, moments or flight power when averaged over realizations, compared to laminar inflow conditions. The variance of aerodynamic measures, however, significantly increases with increasing turbulence intensity, which may explain flight instabilities observed in freely flying bees.

  15. Wind energy impact of turbulence

    CERN Document Server

    Hölling, Michae; Ivanell, Stefan

    2014-01-01

    This book presents the results of the seminar ""Wind Energy and the Impact of Turbulence on the Conversion Process"" which was supported from three societies, namely the EUROMech, EAWE and ERCOFATC and took place in Oldenburg, Germany in spring 2012.The seminar was one of the first scientific meetings devoted to the common topic of wind energy and basic turbulence. The established community of researchers working on the challenging puzzle of turbulence for decades met the quite young community of researchers, who face the upcoming challenges in the fast growing field of wind energy application

  16. On Lean Turbulent Combustion Modeling

    Directory of Open Access Journals (Sweden)

    Constantin LEVENTIU

    2014-06-01

    Full Text Available This paper investigates a lean methane-air flame with different chemical reaction mechanisms, for laminar and turbulent combustion, approached as one and bi-dimensional problem. The numerical results obtained with Cantera and Ansys Fluent software are compared with experimental data obtained at CORIA Institute, France. First, for laminar combustion, the burn temperature is very well approximated for all chemical mechanisms, however major differences appear in the evaluation of the flame front thickness. Next, the analysis of turbulence-combustion interaction shows that the numerical predictions are suficiently accurate for small and moderate turbulence intensity.

  17. Subcritical excitation of plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, K.; Itoh, S.; Yagi, M.; Fukuyama, A.

    1996-01-01

    Theory of current-diffusive interchange mode turbulence in plasmas is developed in the presence of collisional transport. Double-valued amplitude of stationary fluctuations is expressed in terms of the pressure gradient. The backward bifurcation is shown to appear near the linear stability boundary. The subcritical nature of the turbulence is explicitly illustrated. Critical pressure gradient at which the transition from collisional transport to the turbulent one is to occur is predicted. This provides a prototype of the transport theory for nonlinear-non-equilibrium systems. (author).

  18. Fundamentals of premixed turbulent combustion

    CERN Document Server

    Lipatnikov, Andrei

    2012-01-01

    Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine engines. This book highlights the phenomenology of premixed turbulent flames. The text provides experimental data on the general appearance of premixed turbulent flames, physical mechanisms that could affect flame behavior, and physical and numerical models aimed at predicting the key features of premixed turbulent combustion. The author aims to provide a simple introduction to the field for advanced graduate and postgraduate students. Topics covered include La

  19. Turbulent reconnection and its implications

    Science.gov (United States)

    Lazarian, A.; Eyink, G.; Vishniac, E.; Kowal, G.

    2015-01-01

    Magnetic reconnection is a process of magnetic field topology change, which is one of the most fundamental processes happening in magnetized plasmas. In most astrophysical environments, the Reynolds numbers corresponding to plasma flows are large and therefore the transition to turbulence is inevitable. This turbulence, which can be pre-existing or driven by magnetic reconnection itself, must be taken into account for any theory of magnetic reconnection that attempts to describe the process in the aforementioned environments. This necessity is obvious as three-dimensional high-resolution numerical simulations show the transition to the turbulence state of initially laminar reconnecting magnetic fields. We discuss ideas of how turbulence can modify reconnection with the focus on the Lazarian & Vishniac (Lazarian & Vishniac 1999 Astrophys. J. 517, 700–718 ()) reconnection model. We present numerical evidence supporting the model and demonstrate that it is closely connected to the experimentally proven concept of Richardson dispersion/diffusion as well as to more recent advances in understanding of the Lagrangian dynamics of magnetized fluids. We point out that the generalized Ohm's law that accounts for turbulent motion predicts the subdominance of the microphysical plasma effects for reconnection for realistically turbulent media. We show that one of the most dramatic consequences of turbulence is the violation of the generally accepted notion of magnetic flux freezing. This notion is a cornerstone of most theories dealing with magnetized plasmas, and therefore its change induces fundamental shifts in accepted paradigms, for instance, turbulent reconnection entails reconnection diffusion process that is essential for understanding star formation. We argue that at sufficiently high Reynolds numbers the process of tearing reconnection should transfer to turbulent reconnection. We discuss flares that are predicted by turbulent reconnection and relate this process to

  20. Turbulence evolution in MHD plasmas

    CERN Document Server

    Wisniewski, M; Spanier, F

    2013-01-01

    Turbulence in the interstellar medium has been an active field of research in the last decade. Numerical simulations are the tool of choice in most cases. But while there are a number of simulations on the market some questions have not been answered finally. In this paper we are going to examine the influence of compressible and incompressible driving on the evolution of turbulent spectra in a number of possible interstellar medium scenarios. We conclude that the driving not only has an influence on the ratio of compressible to incompressible component but also on the anisotropy of turbulence.

  1. Subcritical excitation of plasma turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Kimitaka [National Inst. for Fusion Science, Nagoya (Japan); Itoh, Sanae; Yagi, Masatoshi; Fukuyama, Atsushi

    1996-09-01

    Theory of current-diffusive interchange mode turbulence in plasmas in the presence of collisional transport is developed. Amplitude of stationary fluctuations is expressed in terms of the double-valued function of the pressure gradient. The backward bifurcation is shown to appear near the linear stability boundary. The subcritical nature of the turbulence is explicitly illustrated. The critical pressure gradient at which the transition from collisional transport to the turbulent one is to occur is predicted. This work provides a prototype of the transport theory for nonlinear-nonequilibrium systems. (author)

  2. Manufactured Turbulence with Langevin equations

    CERN Document Server

    Mishra, Aashwin

    2016-01-01

    By definition, Manufactured turbulence(MT) is purported to mimic physical turbulence rather than model it. The MT equations are constrained to be simple to solve and provide an inexpensive surrogate to Navier-Stokes based Direct Numerical Simulations (DNS) for use in engineering applications or theoretical analyses. In this article, we investigate one approach in which the linear inviscid aspects of MT are derived from a linear approximation of the Navier-Stokes equations while the non-linear and viscous physics are approximated via stochastic modeling. The ensuing Langevin MT equations are used to compute planar, quadratic turbulent flows. While much work needs to be done, the preliminary results appear promising.

  3. Quantum Turbulence ---Another da Vinci Code---

    Science.gov (United States)

    Tsubota, M.

    Quantum turbulence comprises a tangle of quantized vorticeswhich are stable topological defects created by Bose-Einstein condensation, being realized in superfluid helium and atomic Bose-Einstein condensates. In recent years there has been a growing interest in quantum turbulence. One of the important motivations is to understand the relation between quantum and classical turbulence. Quantum turbulence is expected to be much simpler than usual classical turbulence and give a prototype of turbulence. This article reviews shortly the recent research developments on quantum turbulence.

  4. Modelling the dynamics of turbulent floods

    CERN Document Server

    Mei, Z; Li, Z; Li, Zhenquan

    1999-01-01

    Consider the dynamics of turbulent flow in rivers, estuaries and floods. Based on the widely used k-epsilon model for turbulence, we use the techniques of centre manifold theory to derive dynamical models for the evolution of the water depth and of vertically averaged flow velocity and turbulent parameters. This new model for the shallow water dynamics of turbulent flow: resolves the vertical structure of the flow and the turbulence; includes interaction between turbulence and long waves; and gives a rational alternative to classical models for turbulent environmental flows.

  5. Diffusion in anisotropic fully developed turbulence: Turbulent Prandtl number

    Science.gov (United States)

    Jurčišinová, E.; Jurčišin, M.

    2016-10-01

    Using the field theoretic renormalization group technique in the leading order of approximation of a perturbation theory the influence of the uniaxial small-scale anisotropy on the turbulent Prandtl number in the framework of the model of a passively advected scalar field by the turbulent velocity field driven by the Navier-Stokes equation is investigated for spatial dimensions d >2 . The influence of the presence of the uniaxial small-scale anisotropy in the model on the stability of the Kolmogorov scaling regime is briefly discussed. It is shown that with increasing of the value of the spatial dimension the region of stability of the scaling regime also increases. The regions of stability of the scaling regime are studied as functions of the anisotropy parameters for spatial dimensions d =3 ,4 , and 5. The dependence of the turbulent Prandtl number on the anisotropy parameters is studied in detail for the most interesting three-dimensional case. It is shown that the anisotropy of turbulent systems can have a rather significant impact on the value of the turbulent Prandtl number, i.e., on the rate of the corresponding diffusion processes. In addition, the relevance of the so-called weak anisotropy limit results are briefly discussed, and it is shown that there exists a relatively large region of small absolute values of the anisotropy parameters where the results obtained in the framework of the weak anisotropy approximation are in very good agreement with results obtained in the framework of the model without any approximation. The dependence of the turbulent Prandtl number on the anisotropy parameters is also briefly investigated for spatial dimensions d =4 and 5. It is shown that the dependence of the turbulent Prandtl number on the anisotropy parameters is very similar for all studied cases (d =3 ,4 , and 5), although the numerical values of the corresponding turbulent Prandtl numbers are different.

  6. Turbulent mixing of a passive scalar in grid turbulence

    Science.gov (United States)

    Ito, Y.; Watanabe, T.; Nagata, K.; Sakai, Y.

    2016-07-01

    Fractal grids have attracted attention as a new-type of turbulence-generating grid due to their unique characteristics. Recent studies have revealed that such uniqueness appears in the near field of regular grid-generated turbulence. Scalar transport in those flows is also of great interest as it is not yet fully understood. In this study, we investigate the scalar mixing in the near field of regular grid-generated turbulence with various grid configurations. Experiments have been carried out in liquid mixing layers with a Reynolds number of 5000 based on the mesh size of the grid and uniform velocity. Simultaneous measurements of two-component velocities and concentration have been performed by particle image velocimetry and a planar laser-induced fluorescence technique, respectively. The results show that the scaling law using the wake-interaction length scale is applicable for the turbulence intensity in the grid turbulence with different mesh sizes and the same thickness of the grid bar. The turbulence intensity increases as the thickness of the grid bar increases; thus, consequently increasing the scalar diffusion. The streamwise development of the scalar mixing layer thickness collapses onto a single curve by normalization based on the thickness of the grid bar.

  7. Stochastic differential equations and turbulent dispersion

    Science.gov (United States)

    Durbin, P. A.

    1983-01-01

    Aspects of the theory of continuous stochastic processes that seem to contribute to an understanding of turbulent dispersion are introduced and the theory and philosophy of modelling turbulent transport is emphasized. Examples of eddy diffusion examined include shear dispersion, the surface layer, and channel flow. Modeling dispersion with finite-time scale is considered including the Langevin model for homogeneous turbulence, dispersion in nonhomogeneous turbulence, and the asymptotic behavior of the Langevin model for nonhomogeneous turbulence.

  8. Magnetic turbulence and particle dynamics in the Earth’s magnetotail

    Directory of Open Access Journals (Sweden)

    G. Zimbardo

    Full Text Available The influence of magnetic turbulence in the near-Earth magnetotail on ion motion is investigated by numerical simulation. The magnetotail current sheet is modelled as a magnetic field reversal with a normal magnetic field com-ponent Bn , plus a three-dimensional spectrum of magnetic fluctuations dB which represents the observed magnetic turbulence. The dawn-dusk electric field Ey is also considered. A test particle simulation is performed using different values of Bn and of the fluctuation level dB/B0. We show that when the magnetic fluctuations are taken into account, the particle dynamics is deeply affected, giving rise to an increase in the cross tail transport, ion heating, and current sheet thickness. For strong enough turbulence, the current splits in two layers, in agreement with recent Cluster observations.

    Key words. Magnetospheric physics (magnetospheric configuration and dynamics – Interplanetary physics (MHD waves and turbulence – Electromagnetics (numerical methods

  9. A Bio-Inspired Two-Layer Sensing Structure of Polypeptide and Multiple-Walled Carbon Nanotube to Sense Small Molecular Gases

    Directory of Open Access Journals (Sweden)

    Li-Chun Wang

    2015-03-01

    Full Text Available In this paper, we propose a bio-inspired, two-layer, multiple-walled carbon nanotube (MWCNT-polypeptide composite sensing device. The MWCNT serves as a responsive and conductive layer, and the nonselective polypeptide (40 mer coating the top of the MWCNT acts as a filter into which small molecular gases pass. Instead of using selective peptides to sense specific odorants, we propose using nonselective, peptide-based sensors to monitor various types of volatile organic compounds. In this study, depending on gas interaction and molecular sizes, the randomly selected polypeptide enabled the recognition of certain polar volatile chemical vapors, such as amines, and the improved discernment of low-concentration gases. The results of our investigation demonstrated that the polypeptide-coated sensors can detect ammonia at a level of several hundred ppm and barely responded to triethylamine.

  10. Convergence Improved Lax-Friedrichs Scheme Based Numerical Schemes and Their Applications in Solving the One-Layer and Two-Layer Shallow-Water Equations

    Directory of Open Access Journals (Sweden)

    Xinhua Lu

    2015-01-01

    Full Text Available The first-order Lax-Friedrichs (LF scheme is commonly used in conjunction with other schemes to achieve monotone and stable properties with lower numerical diffusion. Nevertheless, the LF scheme and the schemes devised based on it, for example, the first-order centered (FORCE and the slope-limited centered (SLIC schemes, cannot achieve a time-step-independence solution due to the excessive numerical diffusion at a small time step. In this work, two time-step-convergence improved schemes, the C-FORCE and C-SLIC schemes, are proposed to resolve this problem. The performance of the proposed schemes is validated in solving the one-layer and two-layer shallow-water equations, verifying their capabilities in attaining time-step-independence solutions and showing robustness of them in resolving discontinuities with high-resolution.

  11. Label-free logic modules and two-layer cascade based on stem-loop probes containing a G-quadruplex domain.

    Science.gov (United States)

    Guo, Yahui; Cheng, Junjie; Wang, Jine; Zhou, Xiaodong; Hu, Jiming; Pei, Renjun

    2014-09-01

    A simple, versatile, and label-free DNA computing strategy was designed by using toehold-mediated strand displacement and stem-loop probes. A full set of logic gates (YES, NOT, OR, NAND, AND, INHIBIT, NOR, XOR, XNOR) and a two-layer logic cascade were constructed. The probes contain a G-quadruplex domain, which was blocked or unfolded through inputs initiating strand displacement and the obviously distinguishable light-up fluorescent signal of G-quadruplex/NMM complex was used as the output readout. The inputs are the disease-specific nucleotide sequences with potential for clinic diagnosis. The developed versatile computing system based on our label-free and modular strategy might be adapted in multi-target diagnosis through DNA hybridization and aptamer-target interaction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Influence of a fat layer on the near infrared spectra of human muscle: quantitative analysis based on two-layered Monte Carlo simulations and phantom experiments

    Science.gov (United States)

    Yang, Ye; Soyemi, Olusola O.; Landry, Michelle R.; Soller, Babs R.

    2005-01-01

    The influence of fat thickness on the diffuse reflectance spectra of muscle in the near infrared (NIR) region is studied by Monte Carlo simulations of a two-layer structure and with phantom experiments. A polynomial relationship was established between the fat thickness and the detected diffuse reflectance. The influence of a range of optical coefficients (absorption and reduced scattering) for fat and muscle over the known range of human physiological values was also investigated. Subject-to-subject variation in the fat optical coefficients and thickness can be ignored if the fat thickness is less than 5 mm. A method was proposed to correct the fat thickness influence. c2005 Optical Society of America.

  13. Solitons, Bäcklund transformation and Lax pair for a generalized variable-coefficient Boussinesq system in the two-layered fluid flow

    Science.gov (United States)

    Zhao, Xue-Hui; Tian, Bo; Chai, Jun; Wu, Yu-Xiao; Guo, Yong-Jiang

    2016-11-01

    Under investigation in this paper is a generalized variable-coefficient Boussinesq system, which describes the propagation of the shallow water waves in the two-layered fluid flow. Bilinear forms, Bäcklund transformation and Lax pair are derived by virtue of the Bell polynomials. Hirota method is applied to construct the one- and two-soliton solutions. Propagation and interaction of the solitons are illustrated graphically: kink- and bell-shape solitons are obtained; shapes of the solitons are affected by the variable coefficients α1, α3 and α4 during the propagation, kink- and anti-bell-shape solitons are obtained when α3 > 0, anti-kink- and bell-shape solitons are obtained when α3 < 0; Head-on interaction between the two bidirectional solitons, overtaking interaction between the two unidirectional solitons are presented; interactions between the two solitons are elastic.

  14. Two-layer hierarchical control solutions for traffic signal%面向交通信号的两层递阶控制解决方案

    Institute of Scientific and Technical Information of China (English)

    戈军; 周莲英

    2015-01-01

    针对现有交通信号控制系统的诸多不足,提出了一种用于交通信号控制的两层递阶多Agent系统解决方案。通过将交通网络进行区域划分,利用底层Agent控制各交叉口,顶层Agent控制区域,从而实现两层递阶控制。底层Agent采用经典Q学习同步学习最优策略,顶层Agent利用Tile Coding非凡的连续空间处理能力,实现Q学习的动作值函数逼近方法。仿真实验结果表明,该分层递阶控制不但提高了交通信号控制系统效率,而且也为大规模应用提供了很好的可伸缩解决方案。%In view of the existing deficiencies of traffic signal control system, this paper proposes two-layer hierarchical multi-Agent system solution for traffic signal control. Through regional division of the traffic network, it uses the bottom level Agent to control the intersection, the top level Agent to control areas, so as to achieve the two-layer hierarchical con-trol. The bottom level Agent uses the classical Q-learning to synchronize the optimal strategy, the top level Agent utilizes the special continuous space processing ability of Tile Coding to achieve Q learning of action value function approxima-tion method. The simulation test results show that, the hierarchical control not only improves the efficiency of traffic signal control system, but also provides a good scalable solution for large-scale applications.

  15. Statistical description of turbulent dispersion

    Science.gov (United States)

    Brouwers, J. J. H.

    2012-12-01

    We derive a comprehensive statistical model for dispersion of passive or almost passive admixture particles such as fine particulate matter, aerosols, smoke, and fumes in turbulent flow. The model rests on the Markov limit for particle velocity. It is in accordance with the asymptotic structure of turbulence at large Reynolds number as described by Kolmogorov. The model consists of Langevin and diffusion equations in which the damping and diffusivity are expressed by expansions in powers of the reciprocal Kolmogorov constant C0. We derive solutions of O(C00) and O(C0-1). We truncate at O(C0-2) which is shown to result in an error of a few percentages in predicted dispersion statistics for representative cases of turbulent flow. We reveal analogies and remarkable differences between the solutions of classical statistical mechanics and those of statistical turbulence.

  16. Singularities in fully developed turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Shivamoggi, Bhimsen K., E-mail: bhimsen.shivamoggi@ucf.edu

    2015-09-18

    Phenomenological arguments are used to explore finite-time singularity (FTS) development in different physical fully-developed turbulence (FDT) situations. Effects of spatial intermittency and fluid compressibility in three-dimensional (3D) FDT and the role of the divorticity amplification mechanism in two-dimensional (2D) FDT and quasi-geostrophic FDT and the advection–diffusion mechanism in magnetohydrodynamic turbulence are considered to provide physical insights into the FTS development in variant cascade physics situations. The quasi-geostrophic FDT results connect with the 2D FDT results in the barotropic limit while they connect with 3D FDT results in the baroclinic limit and hence apparently provide a bridge between 2D and 3D. - Highlights: • Finite-time singularity development in turbulence situations is phenomenologically explored. • Spatial intermittency and compressibility effects are investigated. • Quasi-geostrophic turbulence is shown to provide a bridge between two-dimensional and three-dimensional cases.

  17. Generalized Heisenberg theory of turbulence

    Science.gov (United States)

    Uberoi, M. S.; Narain, J. P.

    1974-01-01

    Solutions of the generalized theory are obtained which are consistent with the previous work on energy transfer measurements. They also agree with the measurements of turbulent energy spectrum for wave numbers in the universal equilibrium range.

  18. Light Propagation in Turbulent Media

    CERN Document Server

    Pérez, D G

    2003-01-01

    First, we make a revision of the up-to-date Passive Scalar Fields properties: also, the refractive index is among them. Afterwards, we formulated the properties that make the family of `isotropic' fractional Brownian motion (with parameter H) a good candidate to simulate the turbulent refractive index. Moreover, we obtained its fractal dimension which matches the estimated by Constantin for passive scalar, and thus the parameter H determines the state of the turbulence. Next, using a path integral velocity representation, with the Markovian model, to calculate the effects of the turbulence over a system of grids. Finally, with the tools of Stochastic Calculus for fractional Brownian motions we studied the ray-equation coming from the Geometric Optics in the turbulent case. Our analysis covers those cases where average temperature gradients are relevant.

  19. Rotating Rayleigh-Taylor turbulence

    Science.gov (United States)

    Boffetta, G.; Mazzino, A.; Musacchio, S.

    2016-09-01

    The turbulent Rayleigh-Taylor system in a rotating reference frame is investigated by direct numerical simulations within the Oberbeck-Boussinesq approximation. On the basis of theoretical arguments, supported by our simulations, we show that the Rossby number decreases in time, and therefore the Coriolis force becomes more important as the system evolves and produces many effects on Rayleigh-Taylor turbulence. We find that rotation reduces the intensity of turbulent velocity fluctuations and therefore the growth rate of the temperature mixing layer. Moreover, in the presence of rotation the conversion of potential energy into turbulent kinetic energy is found to be less effective, and the efficiency of the heat transfer is reduced. Finally, during the evolution of the mixing layer we observe the development of a cyclone-anticyclone asymmetry.

  20. TEM turbulence optimisation in stellarators

    CERN Document Server

    Proll, J H E; Xanthopoulos, P; Lazerson, S A; Faber, B J

    2015-01-01

    With the advent of neoclassically optimised stellarators, optimising stellarators for turbulent transport is an important next step. The reduction of ion-temperature-gradient-driven turbulence has been achieved via shaping of the magnetic field, and the reduction of trapped-electron mode (TEM) turbulence is adressed in the present paper. Recent analytical and numerical findings suggest TEMs are stabilised when a large fraction of trapped particles experiences favourable bounce-averaged curvature. This is the case for example in Wendelstein 7-X [C.D. Beidler $\\textit{et al}$ Fusion Technology $\\bf{17}$, 148 (1990)] and other Helias-type stellarators. Using this knowledge, a proxy function was designed to estimate the TEM dynamics, allowing optimal configurations for TEM stability to be determined with the STELLOPT [D.A. Spong $\\textit{et al}$ Nucl. Fusion $\\bf{41}$, 711 (2001)] code without extensive turbulence simulations. A first proof-of-principle optimised equilibrium stemming from the TEM-dominated stella...

  1. Energy transfer in compressible turbulence

    Science.gov (United States)

    Bataille, Francoise; Zhou, YE; Bertoglio, Jean-Pierre

    1995-01-01

    This letter investigates the compressible energy transfer process. We extend a methodology developed originally for incompressible turbulence and use databases from numerical simulations of a weak compressible turbulence based on Eddy-Damped-Quasi-Normal-Markovian (EDQNM) closure. In order to analyze the compressible mode directly, the well known Helmholtz decomposition is used. While the compressible component has very little influence on the solenoidal part, we found that almost all of the compressible turbulence energy is received from its solenoidal counterpart. We focus on the most fundamental building block of the energy transfer process, the triadic interactions. This analysis leads us to conclude that, at low turbulent Mach number, the compressible energy transfer process is dominated by a local radiative transfer (absorption) in both inertial and energy containing ranges.

  2. Structure and modeling of turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, E.A. [Univ. of California, San Diego, La Jolla, CA (United States)

    1995-12-31

    The {open_quotes}vortex strings{close_quotes} scale l{sub s} {approximately} LRe{sup -3/10} (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scale motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES).

  3. Turbulence optimisation in stellarator experiments

    Energy Technology Data Exchange (ETDEWEB)

    Proll, Josefine H.E. [Max-Planck/Princeton Center for Plasma Physics (Germany); Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstr. 1, 17491 Greifswald (Germany); Faber, Benjamin J. [HSX Plasma Laboratory, University of Wisconsin-Madison, Madison, WI 53706 (United States); Helander, Per; Xanthopoulos, Pavlos [Max-Planck/Princeton Center for Plasma Physics (Germany); Lazerson, Samuel A.; Mynick, Harry E. [Plasma Physics Laboratory, Princeton University, P.O. Box 451 Princeton, New Jersey 08543-0451 (United States)

    2015-05-01

    Stellarators, the twisted siblings of the axisymmetric fusion experiments called tokamaks, have historically suffered from confining the heat of the plasma insufficiently compared with tokamaks and were therefore considered to be less promising candidates for a fusion reactor. This has changed, however, with the advent of stellarators in which the laminar transport is reduced to levels below that of tokamaks by shaping the magnetic field accordingly. As in tokamaks, the turbulent transport remains as the now dominant transport channel. Recent analytical theory suggests that the large configuration space of stellarators allows for an additional optimisation of the magnetic field to also reduce the turbulent transport. In this talk, the idea behind the turbulence optimisation is explained. We also present how an optimised equilibrium is obtained and how it might differ from the equilibrium field of an already existing device, and we compare experimental turbulence measurements in different configurations of the HSX stellarator in order to test the optimisation procedure.

  4. Scalar transport across the turbulent/non-turbulent interface in jets: Schmidt number effects

    Science.gov (United States)

    Silva, Tiago S.; B. da Silva, Carlos; Idmec Team

    2016-11-01

    The dynamics of a passive scalar field near a turbulent/non-turbulent interface (TNTI) is analysed through direct numerical simulations (DNS) of turbulent planar jets, with Reynolds numbers ranging from 142 URL http://www.lca.uc.pt.

  5. What is turbulence, what is fossil turbulence, and which ways do they cascade?

    CERN Document Server

    Gibson, Carl H

    2012-01-01

    Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any other forces that tend to damp the eddies out. By this definition, turbulence always cascades from small scales (where the vorticity is created) to larger scales (where other forces dominate and the turbulence fossilizes). Fossil turbulence is any perturbation in a hydrophysical field produced by turbulence that persists after the fluid is no longer turbulent at the scale of the perturbation. Fossil turbulence patterns and fossil turbulence waves preserve and propagate information about previous turbulence to larger and smaller length scales. Big bang fossil turbulence patterns are identified in anisotropies of temperature detected by space telescopes in the cosmic microwave background. Direct numerical simulations of stratified shear flows and wakes show that turbulence and fossil turbulence interactions are recognizable and persistent.

  6. Numerical simulation of turbulent flow between shrouded contra-rotating disks

    Directory of Open Access Journals (Sweden)

    Shu-Xian Chen

    2016-06-01

    Full Text Available The turbulent flow between shrouded contra-rotating disks was numerically studied with a two-layer turbulence model and a modified Launder–Sharma low-Reynolds number k-ε model. The dissipation rate decrease caused by solid body rotation was considered in the second model. The comparisons of the effectiveness between these two turbulence models for capturing the critical radius of flow structure transition and reproducing the flow velocity measurements data were presented. For the flow between shrouded disks rotating at the same speed but in opposite senses, that is, the angular velocity ratio of the two disks equals to −1, the Stewartson-type flow structure is found in the cavity. For the flow with one disk rotating more slowly than the other, Stewartson-type flow coexists with Batchelor-type flow, that is, Batchelor-type flow occurs radially outward of the stagnation point where two opposing boundary layer flows meet, and Stewartson-type flow occurs radially inward. The stagnation points near the slower disk move radially outward as the angular velocity ratio decreases toward −1. Theory of rotating fluids with the presence of centrifugal and Coriolis forces stemming from the disk rotation is employed to manifest the flow structure transition mechanisms as the rotation ratio of the disks is varied. The source of the earlier transition to turbulent flow in counter-rotating disk cavity compared with rotor-stator disk cavity is also explained through the research of instability of the flowing free shear layer formed by the counter secondary circulations. With the aid of the numerical results obtained from the two turbulence models, it is found that a more turbulent flow in the core can destroy the Batchelor-type flow and creates a larger Stewartson-type flow region.

  7. Turbulent transport in hydromagnetic flows

    CERN Document Server

    Brandenburg, A; Del Sordo, F; Hubbard, A; Käpylä, P J; Rheinhardt, M

    2010-01-01

    The predictive power of mean-field theory is emphasized by comparing theory with simulations under controlled conditions. The recently developed test-field method is used to extract turbulent transport coefficients both in kinematic as well as nonlinear and quasi-kinematic cases. A striking example of the quasi-kinematic method is provided by magnetic buoyancy-driven flows that produce an alpha effect and turbulent diffusion.

  8. Variable density turbulence tunnel facility

    Science.gov (United States)

    Bodenschatz, E.; Bewley, G. P.; Nobach, H.; Sinhuber, M.; Xu, H.

    2014-09-01

    The Variable Density Turbulence Tunnel at the Max Planck Institute for Dynamics and Self-Organization in Göttingen, Germany, produces very high turbulence levels at moderate flow velocities, low power consumption, and adjustable kinematic viscosity between 10-4 m2/s and 10-7 m2/s. The Reynolds number can be varied by changing the pressure or flow rate of the gas or by using different non-flammable gases including air. The highest kinematic viscosities, and hence lowest Reynolds numbers, are reached with air or nitrogen at 0.1 bar. To reach the highest Reynolds numbers the tunnel is pressurized to 15 bars with the dense gas sulfur hexafluoride (SF6). Turbulence is generated at the upstream ends of two measurement sections with grids, and the evolution of this turbulence is observed as it moves down the length of the sections. We describe the instrumentation presently in operation, which consists of the tunnel itself, classical grid turbulence generators, and state-of-the-art nano-fabricated hot-wire anemometers provided by Princeton University [M. Vallikivi, M. Hultmark, S. C. C. Bailey, and A. J. Smits, Exp. Fluids 51, 1521 (2011)]. We report measurements of the characteristic scales of the flow and of turbulent spectra up to Taylor Reynolds number Rλ ≈ 1600, higher than any other grid-turbulence experiment. We also describe instrumentation under development, which includes an active grid and a Lagrangian particle tracking system that moves down the length of the tunnel with the mean flow. In this configuration, the properties of the turbulence are adjustable and its structure is resolvable up to Rλ ≈ 8000.

  9. The broad H-alpha, [O III] line wings in stellar supercluster A of NGC2363 and the turbulent mixing layer hypothesis

    CERN Document Server

    Binette, Luc; Ubeda, Leonardo; Raga, Alejandro C; Robert, Carmelle; Krongold, Yair

    2009-01-01

    Context. SuperclusterA in the extragalactic HII region NGC2363 is remarkable for the hypersonic gas seen as faint extended broad emission lines with a full width zero intensity of 7000km/s. Aims. We explore the possibility that the observed broad profiles are the result of the interaction of a high velocity cluster wind with dense photoionized clumps. Methods. The geometry considered is that of near static photoionized condensations at the surface of which turbulent mixing layers arise as a result of the interaction with the hot wind. The approximative treatment of turbulence is carried out using the mixing length approach of Canto & Raga. The code mappings Ic is used to derive the mean quantities describing the flow and to compute the line emissivities within the turbulent layers. The velocity projection in three dimensions of the line sources is carried out analytically. Results. A fast entraining wind of up to ~4300km/s appears to be required to reproduce the faint wings of the broad H-alpha and [O III...

  10. A multiple-time-scale turbulence model based on variable partitioning of turbulent kinetic energy spectrum

    Science.gov (United States)

    Kim, S.-W.; Chen, C.-P.

    1988-01-01

    The paper presents a multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method. Consideration is given to a class of turbulent boundary layer flows and of separated and/or swirling elliptic turbulent flows. For the separated and/or swirling turbulent flows, the present turbulence model yielded significantly improved computational results over those obtained with the standard k-epsilon turbulence model.

  11. Recent developments in plasma turbulence and turbulent transport

    Energy Technology Data Exchange (ETDEWEB)

    Terry, P.W. [Univ. of Wisconsin, Madison, WI (United States)

    1997-09-22

    This report contains viewgraphs of recent developments in plasma turbulence and turbulent transport. Localized nonlinear structures occur under a variety of circumstances in turbulent, magnetically confined plasmas, arising in both kinetic and fluid descriptions, i.e., in either wave-particle or three-wave coupling interactions. These structures are non wavelike. They cannot be incorporated in the collective wave response, but interact with collective modes through their shielding by the plasma dielectric. These structures are predicted to modify turbulence-driven transport in a way that in consistent with, or in some cases are confirmed by recent experimental observations. In kinetic theory, non wavelike structures are localized perturbations of phase space density. There are two types of structures. Holes are self-trapped, while clumps have a self-potential that is too weak to resist deformation and mixing by ambient potential fluctuations. Clumps remain correlated in turbulence if their spatial extent is smaller than the correlation length of the scattering fields. In magnetic turbulence, clumps travel along stochastic magnetic fields, shielded by the plasma dielectric. A drag on the clump macro-particle is exerted by the shielding, inducing emission into the collective response. The emission in turn damps back on the particle distribution via Landau dampling. The exchange of energy between clumps and particles, as mediated by the collective mode, imposes constraints on transport. For a turbulent spectrum whose mean wavenumber along the equilibrium magnetic field is nonzero, the electron thermal flux is proportional to the ion thermal velocity. Conventional predictions (which account only for collective modes) are larger by the square root of the ion to electron mass ratio. Recent measurements are consistent with the small flux. In fluid plasma,s localized coherent structures can occur as intense vortices.

  12. Idealised hydrodynamic simulations of turbulent oxygen-burning shell convection in 4{\\pi} geometry

    CERN Document Server

    Jones, Samuel; Sandalski, Stou; Davis, Austin; Woodward, Paul; Herwig, Falk

    2016-01-01

    This work investigates the properties of convection in stars with particular emphasis on entrainment across the upper convective boundary (CB). Idealised simulations of turbulent convection in the O-burning shell of a massive star are performed in $4\\pi$ geometry on $768^3$ and $1536^3$ grids, driven by a representative heating rate. A heating series is also performed on the $768^3$ grid. The $1536^3$ simulation exhibits an entrainment rate at the upper CB of $1.33\\times10^{-6}~M_\\odot~\\mathrm{s}^{-1}$. The $768^3$ simulation with the same heating rate agrees within 17%. The entrainment rate at the upper convective boundary is found to scale linearly with the driving luminosity and with the cube of the shear velocity at the upper boundary, while the radial RMS fluid velocity scales with the cube root of the driving luminosity, as expected. The mixing is analysed in a 1D diffusion framework, resulting in a simple model for CB mixing. The analysis confirms previous findings that limiting the MLT mixing length t...

  13. Thermal turbulent convection: thermal plumes and fluctuations; Convection thermique turbulente: panaches et fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Gibert, M

    2007-10-15

    In this study we investigate the phenomenon of thermal turbulent convection in new and unprecedented ways. The first system we studied experimentally is an infinite vertical channel, where a constant vertical mean gradient of temperature exists. Inside this channel the average mass flux is null. The results obtained from our measurements reveal that the flow is mainly inertial; indeed the dissipative coefficients (here the viscosity) play a role only to define a coherence length L. This length is the distance over which the thermal plumes can be considered as 'free falling' objects. The horizontal transport, of heat and momentum, is entirely due to fluctuations. The associated 'mixing length' is small compared to the channel width. In the other hand, the vertical heat transport is due to coherent structures: the heat plumes. Those objects were also investigated in a Lagrangian study of the flow in the bulk of a Rayleigh-Benard cell. The probe, which has the same density as the fluid used in this experiment, is a sphere of 2 cm in diameter with embarked thermometers and radio-emitter. The heat plumes transport it, which allows a statistical study of such objects. (author)

  14. Interstellar Turbulence II: Implications and Effects

    CERN Document Server

    Scalo, J

    2004-01-01

    Interstellar turbulence has implications for the dispersal and mixing of the elements, cloud chemistry, cosmic ray scattering, and radio wave propagation through the ionized medium. This review discusses the observations and theory of these effects. Metallicity fluctuations are summarized, and the theory of turbulent transport of passive tracers is reviewed. Modeling methods, turbulent concentration of dust grains, and the turbulent washout of radial abundance gradients are discussed. Interstellar chemistry is affected by turbulent transport of various species between environments with different physical properties and by turbulent heating in shocks, vortical dissipation regions, and local regions of enhanced ambipolar diffusion. Cosmic rays are scattered and accelerated in turbulent magnetic waves and shocks, and they generate turbulence on the scale of their gyroradii. Radio wave scintillation is an important diagnostic for small scale turbulence in the ionized medium, giving information about the power spe...

  15. Multidimensional Potential Burgers Turbulence

    Science.gov (United States)

    Boritchev, Alexandre

    2016-03-01

    We consider the multidimensional generalised stochastic Burgers equation in the space-periodic setting: partial {u}/partial t+(nabla f({u}) \\cdot nabla) {u}-ν Δ {u}= nabla η, quad t ≥ 0, {x} in{T}^d=({R}/ {Z})^d, under the assumption that u is a gradient. Here f is strongly convex and satisfies a growth condition, ν is small and positive, while η is a random forcing term, smooth in space and white in time. For solutions u of this equation, we study Sobolev norms of u averaged in time and in ensemble: each of these norms behaves as a given negative power of ν. These results yield sharp upper and lower bounds for natural analogues of quantities characterising the hydrodynamical turbulence, namely the averages of the increments and of the energy spectrum. These quantities behave as a power of the norm of the relevant parameter, which is respectively the separation ℓ in the physical space and the wavenumber k in the Fourier space. Our bounds do not depend on the initial condition and hold uniformly in {ν}. We generalise the results obtained for the one-dimensional case in [10], confirming the physical predictions in [4, 30]. Note that the form of the estimates does not depend on the dimension: the powers of {ν, |{{k}}|, ℓ} are the same in the one- and the multi-dimensional setting.

  16. Desert shrub responses to experimental modification of precipitation seasonality and soil depth: relationship to the two-layer model and ecohydrological niche

    Science.gov (United States)

    Germino, Matthew J.; Reinhardt, Keith

    2013-01-01

    1. Ecohydrological niches are important for understanding plant community responses to climate shifts, particularly in dry lands. According to the two-layer hypothesis, selective use of deep-soil water increases growth or persistence of woody species during warm and dry summer periods and thereby contributes to their coexistence with shallow-rooted herbs in dry ecosystems. The resource-pool hypothesis further suggests that shallow-soil water benefits growth of all plants while deep-soil water primarily enhances physiological maintenance and survival of woody species. Few studies have directly tested these by manipulating deep-soil water availability and observing the long-term outcomes. 2. We predicted that factors promoting infiltration and storage of water in deep soils, specifically greater winter precipitation and soil depth, would enhance Artemisia tridentata (big sagebrush) in cold, winter-wet/summer-dry desert. Sagebrush responses to 20 years of winter irrigation were compared to summer- or no irrigation, on plots having relatively deep or shallow soils (2 m vs. 1 m depths). 3. Winter irrigation increased sagebrush cover, and crown and canopy volumes, but not density (individuals/plot) compared to summer or no irrigation, on deep-soil plots. On shallow-soil plots, winter irrigation surprisingly decreased shrub cover and size, and summer irrigation had no effect. Furthermore, multiple regression suggested that the variations in growth were related (i) firstly to water in shallow soils (0-0.2 m) and secondly to deeper soils (> 1 m deep) and (ii) more by springtime than by midsummer soil water. Water-use efficiency increased considerably on shallow soils without irrigation and was lowest with winter irrigation. 4. Synthesis. Sagebrush was more responsive to the seasonal timing of precipitation than to total annual precipitation. Factors that enhanced deep-water storage (deeper soils plus more winter precipitation) led to increases in Artemisia tridentata that

  17. Estimation of available water capacity components of two-layered soils using crop model inversion: Effect of crop type and water regime

    Science.gov (United States)

    Sreelash, K.; Buis, Samuel; Sekhar, M.; Ruiz, Laurent; Kumar Tomer, Sat; Guérif, Martine

    2017-03-01

    Characterization of the soil water reservoir is critical for understanding the interactions between crops and their environment and the impacts of land use and environmental changes on the hydrology of agricultural catchments especially in tropical context. Recent studies have shown that inversion of crop models is a powerful tool for retrieving information on root zone properties. Increasing availability of remotely sensed soil and vegetation observations makes it well suited for large scale applications. The potential of this methodology has however never been properly evaluated on extensive experimental datasets and previous studies suggested that the quality of estimation of soil hydraulic properties may vary depending on agro-environmental situations. The objective of this study was to evaluate this approach on an extensive field experiment. The dataset covered four crops (sunflower, sorghum, turmeric, maize) grown on different soils and several years in South India. The components of AWC (available water capacity) namely soil water content at field capacity and wilting point, and soil depth of two-layered soils were estimated by inversion of the crop model STICS with the GLUE (generalized likelihood uncertainty estimation) approach using observations of surface soil moisture (SSM; typically from 0 to 10 cm deep) and leaf area index (LAI), which are attainable from radar remote sensing in tropical regions with frequent cloudy conditions. The results showed that the quality of parameter estimation largely depends on the hydric regime and its interaction with crop type. A mean relative absolute error of 5% for field capacity of surface layer, 10% for field capacity of root zone, 15% for wilting point of surface layer and root zone, and 20% for soil depth can be obtained in favorable conditions. A few observations of SSM (during wet and dry soil moisture periods) and LAI (within water stress periods) were sufficient to significantly improve the estimation of AWC

  18. Depolarization canals and interstellar turbulence

    Science.gov (United States)

    Fletcher, A.; Shukurov, A.

    Recent radio polarization observations have revealed a plethora of unexpected features in the polarized Galactic radio background that arise from propagation effects in the random (turbulent) interstellar medium. The canals are especially striking among them, a random network of very dark, narrow regions clearly visible in many directions against a bright polarized Galactic synchrotron background. There are no obvious physical structures in the ISM that may have caused the canals, and so they have been called Faraday ghosts. They evidently carry information about interstellar turbulence but only now is it becoming clear how this information can be extracted. Two theories for the origin of the canals have been proposed; both attribute the canals to Faraday rotation, but one invokes strong gradients in Faraday rotation in the sky plane (specifically, in a foreground Faraday screen) and the other only relies on line-of-sight effects (differential Faraday rotation). In this review we discuss the physical nature of the canals and how they can be used to explore statistical properties of interstellar turbulence. This opens studies of magnetized interstellar turbulence to new methods of analysis, such as contour statistics and related techniques of computational geometry and topology. In particular, we can hope to measure such elusive quantities as the Taylor microscale and the effective magnetic Reynolds number of interstellar MHD turbulence.

  19. GEOMETRIC TURBULENCE IN GENERAL RELATIVITY

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2015-03-01

    Full Text Available The article presents the simulation results of the metric of elementary particles, atoms, stars and galaxies in the general theory of relativity and Yang-Mills theory. We have shown metrics and field equations describing the transition to turbulence. The problems of a unified field theory with the turbulent fluctuations of the metric are considered. A transition from the Einstein equations to the diffusion equation and the Schrödinger equation in quantum mechanics is shown. Ther are examples of metrics in which the field equations are reduced to a single equation, it changes type depending on the equation of state. These examples can be seen as a transition to the geometric turbulence. It is shown that the field equations in general relativity can be reduced to a hyperbolic, elliptic or parabolic type. The equation of parabolic type describing the perturbations of the gravitational field on the scale of stars, galaxies and clusters of galaxies, which is a generalization of the theory of gravitation Newton-Poisson in case of Riemannian geometry, taking into account the curvature of space-time has been derived. It was found that the geometric turbulence leads to an exchange between regions of different scale. Under turbulent exchange material formed of two types of clusters, having positive and negative energy density that corresponds to the classical and quantum particle motion respectively. These results allow us to answer the question about the origin of the quantum theory

  20. Line Transport in Turbulent Atmospheres

    Science.gov (United States)

    Nikoghossian, A. G.

    2017-07-01

    The spectral line transfer in turbulent atmospheres with a spatially correlated velocity field is examined. Both the finite and semi-infinite media are treated. In finding the observed intensities we first deal with the problem for determining the mean intensity of radiation emerging from the medium for a fixed value of turbulent velocity at its boundary. A new approach proposed for solving this problem is based on the invariant imbedding technique which yields the solution of the proper problems for a family of media of different optical thicknesses and allows tackling different kinds of inhomogeneous problems. The dependence of the line profile, integral intensity, and the line width on the mean correlation length and the average value of the hydrodynamic velocity is studied. It is shown that the transition from a micro-turbulent regime to a macro-turbulence occurs within a comparatively narrow range of variation in the correlation length . Ambartsumian's principle of invariance is used to solve the problem of diffuse reflection of the line radiation from a one-dimensional semi-infinite turbulent atmosphere. In addition to the observed spectral line profile, statistical averages describing the diffusion process in the atmosphere (mean number of scattering events, average time spent by a diffusing photon in the medium) are determined. The dependence of these quantities on the average hydrodynamic velocity and correlation coefficient is studied.

  1. Model for Simulation Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    1976-01-01

    A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance, a co....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence.......A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance......, a correct spectral shape, and non-Gaussian statistics, is selected in order to evaluate the model turbulence. An actual turbulence record is analyzed in detail providing both a standard for comparison and input statistics for the generalized spectral analysis, which in turn produces a set of orthonormal...

  2. Turbulent character of wind energy.

    Science.gov (United States)

    Milan, Patrick; Wächter, Matthias; Peinke, Joachim

    2013-03-29

    Wind turbines generate electricity from turbulent wind. Large fluctuations, and, more importantly, frequent wind gusts cause a highly fluctuating electrical power feed into the grid. Such effects are the hallmark of high-frequency turbulence. Here we show evidence that it is the complex structure of turbulence that dominates the power output for one single wind turbine as well as for an entire wind farm. We illustrate the highly intermittent, peaked nature of wind power fed into the grid. Multifractal scaling is observed, as described initially by Kolmogorov's 1962 theory of turbulence. In parallel, we propose a stochastic model that converts wind speed signals into power output signals with appropriate multifractal statistics. As more and more wind turbines become integrated into our electric grids, a proper understanding of this intermittent power source must be worked out to ensure grid stability in future networks. Thus, our results stress the need for a profound understanding of the physics of turbulence and its impact on wind energy.

  3. Light propagation through anisotropic turbulence.

    Science.gov (United States)

    Toselli, Italo; Agrawal, Brij; Restaino, Sergio

    2011-03-01

    A wealth of experimental data has shown that atmospheric turbulence can be anisotropic; in this case, a Kolmogorov spectrum does not describe well the atmospheric turbulence statistics. In this paper, we show a quantitative analysis of anisotropic turbulence by using a non-Kolmogorov power spectrum with an anisotropic coefficient. The spectrum we use does not include the inner and outer scales, it is valid only inside the inertial subrange, and it has a power-law slope that can be different from a Kolmogorov one. Using this power spectrum, in the weak turbulence condition, we analyze the impact of the power-law variations α on the long-term beam spread and scintillation index for several anisotropic coefficient values ς. We consider only horizontal propagation across the turbulence cells, assuming circular symmetry is maintained on the orthogonal plane to the propagation direction. We conclude that the anisotropic coefficient influences both the long-term beam spread and the scintillation index by the factor ς(2-α).

  4. PDF turbulence modeling and DNS

    Science.gov (United States)

    Hsu, A. T.

    1992-01-01

    The problem of time discontinuity (or jump condition) in the coalescence/dispersion (C/D) mixing model is addressed in probability density function (pdf). A C/D mixing model continuous in time is introduced. With the continuous mixing model, the process of chemical reaction can be fully coupled with mixing. In the case of homogeneous turbulence decay, the new model predicts a pdf very close to a Gaussian distribution, with finite higher moments also close to that of a Gaussian distribution. Results from the continuous mixing model are compared with both experimental data and numerical results from conventional C/D models. The effect of Coriolis forces on compressible homogeneous turbulence is studied using direct numerical simulation (DNS). The numerical method used in this study is an eight order compact difference scheme. Contrary to the conclusions reached by previous DNS studies on incompressible isotropic turbulence, the present results show that the Coriolis force increases the dissipation rate of turbulent kinetic energy, and that anisotropy develops as the Coriolis force increases. The Taylor-Proudman theory does apply since the derivatives in the direction of the rotation axis vanishes rapidly. A closer analysis reveals that the dissipation rate of the incompressible component of the turbulent kinetic energy indeed decreases with a higher rotation rate, consistent with incompressible flow simulations (Bardina), while the dissipation rate of the compressible part increases; the net gain is positive. Inertial waves are observed in the simulation results.

  5. Variable Density Turbulence Tunnel Facility

    CERN Document Server

    Bewley, Gregory P; Sinhuber, Michael; Xu, Haitao; Bodenschatz, Eberhard

    2014-01-01

    The Variable Density Turbulence Tunnel (VDTT) at the Max Planck Institute for Dynamics and Self-Organization in G\\"ottingen, Germany produces very high turbulence levels at moderate flow velocities, low power consumption and adjustable kinematic viscosity. To reach the highest Reynolds number, the tunnel can be filled and pressurized up to 15 bar with the dense gas sulfur hexafluoride (SF$_6$). The Reynolds number can be varied by changing the pressure or flow rate of the gas or by using different non-flammable gases including air. Turbulence is generated at the upstream ends of two measurement sections with grids, and the evolution of this turbulence is observed as it moves down the length of the sections. We describe the instrumentation presently in operation, which consists of the tunnel itself, classical grid turbulence generators, and state-of-the-art nano-fabricated hot-wire anemometers provided by Princeton University [Vallikivi et al. (2011) Exp. Fluids 51, 1521]. We report measurements of the charact...

  6. Large Eddy Simulation of SGS Turbulent Kinetic Energy and SGS Turbulent Dissipation in a Backward-Facing Step Turbulent Flow

    Institute of Scientific and Technical Information of China (English)

    王兵; 张会强; 王希麟

    2004-01-01

    The instantaneous and time-averaged statistic characteristics of the sub-grid scale (SGS) turbulent kinetic energy and SGS dissipation in a backward-facing step turbulent flow have been studied bylarge eddy simulation. The SGS turbulent kinetic energy and SGS turbulent dissipation vary in different flow regions and decrease with the flow developing spatially. The fluid molecular dissipation shares about 14% to 28% of the whole dissipation.

  7. Optimal estimation reconstruction of the optical properties of a two-layered tissue phantom from time-resolved single-distance measurements

    Science.gov (United States)

    Martelli, Fabrizio; Del Bianco, Samuele; Spinelli, Lorenzo; Cavalieri, Stefano; Di Ninni, Paola; Binzoni, Tiziano; Jelzow, Alexander; Macdonald, Rainer; Wabnitz, Heidrun

    2015-11-01

    In this work, we have tested the optimal estimation (OE) algorithm for the reconstruction of the optical properties of a two-layered liquid tissue phantom from time-resolved single-distance measurements. The OE allows a priori information, in particular on the range of variation of fit parameters, to be included. The purpose of the present investigations was to compare the performance of OE with the Levenberg-Marquardt method for a geometry and real experimental conditions typically used to reconstruct the optical properties of biological tissues such as muscle and brain. The absorption coefficient of the layers was varied in a range of values typical for biological tissues. The reconstructions performed demonstrate the substantial improvements achievable with the OE provided a priori information is available. We note the extreme reliability, robustness, and accuracy of the retrieved absorption coefficient of the second layer obtained with the OE that was found for up to six fit parameters, with an error in the retrieved values of less than 10%. A priori information on fit parameters and fixed forward model parameters clearly improves robustness and accuracy of the inversion procedure.

  8. Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network.

    Science.gov (United States)

    Faraggi, Eshel; Xue, Bin; Zhou, Yaoqi

    2009-03-01

    This article attempts to increase the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins through improved learning. Most methods developed for improving the backpropagation algorithm of artificial neural networks are limited to small neural networks. Here, we introduce a guided-learning method suitable for networks of any size. The method employs a part of the weights for guiding and the other part for training and optimization. We demonstrate this technique by predicting residue solvent accessibility and real-value backbone torsion angles of proteins. In this application, the guiding factor is designed to satisfy the intuitive condition that for most residues, the contribution of a residue to the structural properties of another residue is smaller for greater separation in the protein-sequence distance between the two residues. We show that the guided-learning method makes a 2-4% reduction in 10-fold cross-validated mean absolute errors (MAE) for predicting residue solvent accessibility and backbone torsion angles, regardless of the size of database, the number of hidden layers and the size of input windows. This together with introduction of two-layer neural network with a bipolar activation function leads to a new method that has a MAE of 0.11 for residue solvent accessibility, 36 degrees for psi, and 22 degrees for phi. The method is available as a Real-SPINE 3.0 server in http://sparks.informatics.iupui.edu.

  9. Integration of Ground and Multi-Resolution Satellite Data for Predicting the Water Balance of a Mediterranean Two-Layer Agro-Ecosystem

    Directory of Open Access Journals (Sweden)

    Piero Battista

    2016-09-01

    Full Text Available The estimation of site water budget is important in Mediterranean areas, where it represents a crucial factor affecting the quantity and quality of traditional crop production. This is particularly the case for spatially fragmented, multi-layer agricultural ecosystems such as olive groves, which are traditional cultivations of the Mediterranean basin. The current paper aims at demonstrating the effectiveness of spatialized meteorological data and remote sensing techniques to estimate the actual evapotranspiration (ETA and the soil water content (SWC of an olive orchard in Central Italy. The relatively small size of this orchard (about 0.1 ha and its two-layer structure (i.e., olive trees and grasses require the integration of remotely sensed data with different spatial and temporal resolutions (Terra-MODIS, Landsat 8-OLI and Ikonos. These data are used to drive a recently proposed water balance method (NDVI-Cws and predict ETA and then site SWC, which are assessed through comparison with sap flow and soil wetness measurements taken in 2013. The results obtained indicate the importance of integrating satellite imageries having different spatio-temporal properties in order to properly characterize the examined olive orchard. More generally, the experimental evidences support the possibility of using widely available remotely sensed and ancillary datasets for the operational estimation of ETA and SWC in olive tree cultivation systems.

  10. Production of Steel Casts in Two-Layer Moulds with Alkaline Binders Part 1. Backing sand with the alkaline inorganic binder RUDAL

    Directory of Open Access Journals (Sweden)

    M. Holtzer

    2011-04-01

    Full Text Available Steel casts in Z.N. POMET were produced in moulds made of the moulding sand Floster. This sand did not have good knocking outproperties, required a significant binder addition (4.5-5.0 parts by weight, and the casting surface quality gave rise to clients objections.Therefore a decision of implementing two-layer moulds, in which the facing sand would consist of the moulding sand with an alkalineorganic binder while the backing sand would be made of the moulding sand with an inorganic binder also of an alkaline character - wasundertaken. The fraction of this last binder in the moulding sand mass would be smaller than that of the binder used up to now (waterglass. The application of two moulding sands of the same chemical character (highly alkaline should facilitate the reclamation processand improve the obtained reclaimed material quality, due to which it would be possible to increase the reclaim fraction in the mouldingsand (up to now it was 50%. The results of the laboratory investigations of sands with the RUDAL binder are presented in the paper.

  11. MHD Heat Transfer in Two-Layered Flow of Conducting Fluids through a Channel Bounded by Two Parallel Porous Plates in a Rotating System

    Science.gov (United States)

    Linga Raju, T.; Neela Rao, B.

    2016-08-01

    The paper aims to analyze the heat transfer aspects of a two-layered fluid flow in a horizontal channel under the action of an applied magnetic and electric fields, when the whole system is rotated about an axis perpendicular to the flow. The flow is driven by a common constant pressure gradient in the channel bounded by two parallel porous insulating plates, one being stationary and the other one oscillatory. The fluids in the two regions are considered electrically conducting, and are assumed to be incompressible with variable properties, namely, different densities, viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperature. The governing partial differential equations are then reduced to the ordinary linear differential equations by using a two-term series. The temperature distributions in both fluid regions of the channel are derived analytically. The results are presented graphically to discuss the effect on the heat transfer characteristics and their dependence on the governing parameters, i.e., the Hartmann number, Taylor number, porous parameter, and ratios of the viscosities, heights, electrical and thermal conductivities. It is observed that, as the Coriolis forces become stronger, i.e., as the Taylor number increases, the temperature decreases in the two fluid regions. It is also seen that an increase in porous parameter diminishes the temperature distribution in both the regions.

  12. Physicochemical properties of hull-less barley fibre-rich fractions varying in particle size and their potential as functional ingredients in two-layer flat bread.

    Science.gov (United States)

    Izydorczyk, M S; Chornick, T L; Paulley, F G; Edwards, N M; Dexter, J E

    2008-05-15

    The performance of barley fibre-rich fractions (FRF), as high dietary fibre ingredients, in two-layer flat bread was investigated. In addition, the effects of particle size reduction by pin milling on functional properties of FRF were studied. FRF enriched in non-starch polysaccharides (β-glucans and arabinoxylans) were obtained by roller milling of hull-less barley. Pin milling (PM) of FRF significantly reduced their particle size, slightly increased the solubility of β-glucans and arabinoxylans, and increased the viscosity of water slurries containing FRF. The addition of 20% of barley FRF to wheat flour significantly increased dough water absorption and weakened the dough properties, as indicated by farinograph mixing curves, but the FRF-enriched doughs exhibited good handling characteristics at the dividing and sheeting stages. The appearance, diameter, layer separation, crumb, and aroma of the FRF-enriched flat breads were comparable to that of the control. The PM of FRF did not significantly affect the dough handling or the quality characteristics of flat breads. The addition of 20% of barley FRF to wheat flour flat bread provided substantial health benefits by significantly increasing the total and soluble dietary fibre contents and by decreasing starch digestibility.

  13. Magnetohydrodynamic turbulence: Observation and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M. R.; Schaffner, D. A.; Weck, P. J. [Department of Physics and Astronomy, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081 (United States)

    2015-05-15

    We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations E{sub B}(f). We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, the frequency power spectrum, the probability distribution function of temporal increments, the temporal structure function, and the permutation entropy. Each of these tools will be illustrated with an example taken from MHD fluctuations in the solar wind. A single dataset from the Wind satellite will be used to illustrate all five temporal statistical tools.

  14. Spectrum of weak magnetohydrodynamic turbulence.

    Science.gov (United States)

    Boldyrev, Stanislav; Perez, Jean Carlos

    2009-11-27

    Turbulence of magnetohydrodynamic waves in nature and in the laboratory is generally cross-helical or nonbalanced, in that the energies of Alfvén waves moving in opposite directions along the guide magnetic field are unequal. Based on high-resolution numerical simulations it is proposed that such turbulence spontaneously generates a condensate of the residual energy E(v) - E(b) at small field-parallel wave numbers. As a result, the energy spectra of Alfvén waves are generally not scale invariant in an inertial interval of limited extent. In the limit of an infinite Reynolds number, the universality is asymptotically restored at large wave numbers, and both spectra attain the scaling E(k) proportional to k(perpendicular)(-2). The generation of a condensate is apparently related to the breakdown of mirror symmetry in nonbalanced turbulence.

  15. Collisional Aggregation due to Turbulence

    CERN Document Server

    Pumir, Alain

    2015-01-01

    Collisions between particles suspended in a fluid play an important role in many physical processes. As an example, collisions of microscopic water droplets in clouds are a necessary step in the production of macroscopic raindrops. Collisions of dust grains are also conjectured to be important for planet formation in the gas surrounding young stars, and also to play a role in the dynamics of sand storms. In these processes, collisions are favoured by fast turbulent motions. Here we review recent advances in the understanding of collisional aggregation due to turbulence. We discuss the role of fractal clustering of particles, and caustic singularities of their velocities. We also discuss limitations of the Smoluchowski equation for modelling these processes. These advances lead to a semi-quantitative understanding on the influence of turbulence on collision rates, and point to deficiencies in the current understanding of rainfall and planet formation.

  16. Turbulent lock release gravity current

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The time evolution of a turbulent lock release gravity current, formed by a finite volume ofhomogeneous fluid released instantaneously into another fluid of slightly lower density, was studied byexperimental measurements of the density structure via elaborate digital image processing and by a nu-merical simulation of the flow and mixing using a two-equation turbulence model. The essential fact thatthe gravity current passes through an initial slumping phase in which the current head advances steadilyand a second self-similar phase in which the front velocity decreases like the negative third power of thetime after release is satisfactorily presented by the laboratory observation. An overall entrainment ratioproportional to the distance from the release point is found by the numerical simulation. The renormal-ization group (RNG) k- ε model for Reynolds-stress closure is validated to characterize the gravitycurrent with transitional and localized turbulence.

  17. Microbubble clustering in turbulent flow

    CERN Document Server

    Calzavarini, E; Luther, S; Toschi, F; Van den Berg, T H; Berg, Thomas H. van den; Calzavarini, Enrico; Lohse, Detlef; Luther, Stefan; Toschi, Federico

    2006-01-01

    Single-point hot-wire measurements in the bulk of a turbulent channel have been performed in order to detect and quantify the phenomenon of preferential bubble accumulation. We show that statistical analysis of the bubble-probe colliding-times series can give a robust method for investigation of clustering in the bulk regions of a turbulent flow where, due to the opacity of the flow, no imaging technique can be employed. We demonstrate that micro-bubbles (radius R_0 ~ 0.1 mm) in a developed turbulent flow, where the Kolmogorov length-scale is, eta ~ R_0, display preferential concentration in small scale structures with a typical statistical signature ranging from the dissipative range, O(eta), up to the lower end of inertial range, O(100 eta). A comparison with Eulerian-Lagrangian numerical simulations is also performed and arising similarities and differences are discussed.

  18. PDF methods for turbulent reactive flows

    Science.gov (United States)

    Hsu, Andrew T.

    1995-01-01

    Viewgraphs are presented on computation of turbulent combustion, governing equations, closure problem, PDF modeling of turbulent reactive flows, validation cases, current projects, and collaboration with industry and technology transfer.

  19. Bulk Comptonization by Turbulence in Accretion Disks

    CERN Document Server

    Kaufman, J

    2016-01-01

    Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent "wave" temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, ra...

  20. Noise-induced synchronization for phase turbulence

    OpenAIRE

    Sakaguchi, H.

    2003-01-01

    Phase turbulence is suppressed by applying common noise additively to the Kuramoto-Sivashinsky type equation, and the noise-induced phase synchronization is realized. The noise strength necessary for the suppression of phase turbulence is evaluated theoretically.