WorldWideScience

Sample records for two-layer channel flow

  1. MHD two-layered unsteady fluid flow and heat transfer through a horizontal channel between

    Directory of Open Access Journals (Sweden)

    Raju T. Linga

    2014-02-01

    Full Text Available An unsteady magnetohydrodynamic (MHD two-layered fluids flow and heat transfer in a horizontal channel between two parallel plates in the presence of an applied magnetic and electric field is investigated, when the whole system is rotated about an axis perpendicular to the flow. The flow is driven by a constant uniform pressure gradient in the channel bounded by two parallel insulating plates, when both fluids are considered as electrically conducting, incompressible with variable properties, viz. different viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperatures. The governing partial differential equations are then reduced to the ordinary linear differential equations using two-term series. Closed form solutions for primary and secondary velocity, also temperature distributions are obtained in both the fluid regions of the channel. Profiles of these solutions are plotted to discuss the effects of the flow and heat transfer characteristics, and their dependence on the governing parameters involved, such as the Hartmann number, rotation parameter, ratios of the viscosities, heights, electrical and thermal conductivities

  2. Dynamics of the outflow and its effect on the hydraulics of two-layer exchange flows in a channel

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    This paper reports that an experimental study is conducted to examine the dynamics of the outflow in two-layer exchange flows in a channel connecting between two water bodies with a small density difference. The experiments reveal the generation of Kelvin-Helmholtz (KH) instabilities within the hydraulically sub-critical flow region of the channel. During maximal exchange, those KH instabilities develops into large-amplitude KH waves as they escape the channel exit into the reservoir. The propagation speed ...

  3. Linear stability analysis and direct numerical simulation of two layer channel flow

    CERN Document Server

    Sahu, Kirti Chandra

    2016-01-01

    We study the stability of two-fluid flow through a plane channel at Reynolds numbers of a hundred to a thousand in the linear and nonlinear regimes. The two fluids have the same density but different viscosities. The fluids, when miscible, are separated from each other by a mixed layer of small but finite thickness, across which viscosity changes from that of one fluid to that of the other. When immiscible, the interface is sharp. Our study spans a range of Schmidt numbers, viscosity ratios and location and thickness of the mixed layer. A region of instability distinct from that of the Tollmien-Schlichting mode is obtained at moderate Reynolds numbers. We show that the overlap of the layer of viscosity-stratification with the critical layer of the dominant disturbance provides a mechanism for this instability. At very low values of diffusivity, the miscible flow behaves exactly like the immiscible in terms of stability characteristics. High levels of miscibility make the flow more stable. At intermediate leve...

  4. Oblique Water Wave Scattering by Bottom Undulation in a Two-layer Fluid Flowing Through a Channel

    Institute of Scientific and Technical Information of China (English)

    Smrutiranjan Mohapatra; Swaroop Nandan Bora

    2012-01-01

    The problem of oblique wave (internal wave) propagation over a small deformation in a channel flow consisting of two layers was considered.The upper fluid was assumed to be bounded above by a rigid lid,which is an approximation for the free surface,and the lower one was bounded below by an impermeable bottom surface having a small deformation; the channel was unbounded in the horizontal directions.Assuming irrotational motion,the perturbation technique was employed to calculate the first-order corrections of the velocity potential in the two fluids by using Green's integral theorem suitably with the introduction of appropriate Green's functions.Those functions help in calculating the reflection and transmission coefficients in terms of integrals involving the shape function c(x) representing the bottom deformation.Three-dimensional linear water wave theory was utilized for formulating the relevant boundary value problem.Two special examples of bottom deformation were considered to validate the results.Consideration of a patch of sinusoidal ripples (having the same wave number) shows that the reflection coefficient is an oscillatory function of the ratio of twice the x-component of the wave number to the ripple wave number.When this ratio approaches one,the theory predicts a resonant interaction between the bed and the interface,and the reflection coefficient becomes a multiple of the number of tipples.High reflection of incident wave energy occurs if this number is large.Similar results were observed for a patch of sinusoidal tipples having different wave numbers.It was also observed that for small angles of incidence,the reflected energy is greater compared to other angles of incidence up to π / 4.These theoretical observations are supported by graphical results.

  5. Three-dimensional linear instability in pressure-driven two-layer channel flow of a Newtonian and a Herschel-Bulkley fluid

    Science.gov (United States)

    Sahu, K. C.; Matar, O. K.

    2010-11-01

    The three-dimensional linear stability characteristics of pressure-driven two-layer channel flow are considered, wherein a Newtonian fluid layer overlies a layer of a Herschel-Bulkley fluid. We focus on the parameter ranges for which Squire's theorem for the two-layer Newtonian problem does not exist. The modified Orr-Sommerfeld and Squire equations in each layer are derived and solved using an efficient spectral collocation method. Our results demonstrate the presence of three-dimensional instabilities for situations where the square root of the viscosity ratio is larger than the thickness ratio of the two layers; these "interfacial" mode instabilities are also present when density stratification is destabilizing. These results may be of particular interest to researchers studying the transient growth and nonlinear stability of two-fluid non-Newtonian flows. We also show that the "shear" modes, which are present at sufficiently large Reynolds numbers, are most unstable to two-dimensional disturbances.

  6. MHD Heat Transfer in Two-Layered Flow of Conducting Fluids through a Channel Bounded by Two Parallel Porous Plates in a Rotating System

    Science.gov (United States)

    Linga Raju, T.; Neela Rao, B.

    2016-08-01

    The paper aims to analyze the heat transfer aspects of a two-layered fluid flow in a horizontal channel under the action of an applied magnetic and electric fields, when the whole system is rotated about an axis perpendicular to the flow. The flow is driven by a common constant pressure gradient in the channel bounded by two parallel porous insulating plates, one being stationary and the other one oscillatory. The fluids in the two regions are considered electrically conducting, and are assumed to be incompressible with variable properties, namely, different densities, viscosities, thermal and electrical conductivities. The transport properties of the two fluids are taken to be constant and the bounding plates are maintained at constant and equal temperature. The governing partial differential equations are then reduced to the ordinary linear differential equations by using a two-term series. The temperature distributions in both fluid regions of the channel are derived analytically. The results are presented graphically to discuss the effect on the heat transfer characteristics and their dependence on the governing parameters, i.e., the Hartmann number, Taylor number, porous parameter, and ratios of the viscosities, heights, electrical and thermal conductivities. It is observed that, as the Coriolis forces become stronger, i.e., as the Taylor number increases, the temperature decreases in the two fluid regions. It is also seen that an increase in porous parameter diminishes the temperature distribution in both the regions.

  7. Unsteady two-layered fluid flow of conducting fluids in a channel between parallel porous plates under transverse magnetic field in a rotating system

    Directory of Open Access Journals (Sweden)

    Linga Raju T.

    2016-05-01

    Full Text Available An unsteady MHD two-layered fluid flow of electrically conducting fluids in a horizontal channel bounded by two parallel porous plates under the influence of a transversely applied uniform strong magnetic field in a rotating system is analyzed. The flow is driven by a common constant pressure gradient in a channel bounded by two parallel porous plates, one being stationary and the other oscillatory. The two fluids are assumed to be incompressible, electrically conducting with different viscosities and electrical conductivities. The governing partial differential equations are reduced to the linear ordinary differential equations using two-term series. The resulting equations are solved analytically to obtain exact solutions for the velocity distributions (primary and secondary in the two regions respectively, by assuming their solutions as a combination of both the steady state and time dependent components of the solutions. Numerical values of the velocity distributions are computed for different sets of values of the governing parameters involved in the study and their corresponding profiles are also plotted. The details of the flow characteristics and their dependence on the governing parameters involved, such as the Hartmann number, Taylor number, porous parameter, ratio of the viscosities, electrical conductivities and heights are discussed. Also an observation is made how the velocity distributions vary with the rotating hydromagnetic interaction in the case of steady and unsteady flow motions. The primary velocity distributions in the two regions are seen to decrease with an increase in the Taylor number, but an increase in the Taylor number causes a rise in secondary velocity distributions. It is found that an increase in the porous parameter decreases both the primary and secondary velocity distributions in the two regions.

  8. Synchronization of Stochastic Two-Layer Geophysical Flows

    Institute of Scientific and Technical Information of China (English)

    HAN Yongqian

    2011-01-01

    In this paper, the two-layer quasigeostrophic flow model under stochastic wind forcing is considered. It is shown that when the layer depth or density difference across the layers tends to zero, the dynamics on both layers synchronizes to an averaged geophysical flow model.

  9. Nonlinear topographic effects in two-layer flows

    Directory of Open Access Journals (Sweden)

    Peter George Baines

    2016-02-01

    Full Text Available We consider the nature of non-linear flow of a two-layer fluid with a rigid lid over a long obstacle, such that the flow may be assumed to be hydrostatic. Such flows can generate hydraulic jumps upstream, and the model uses a new model of internal hydraulic jumps, which results in corrections to flows that have been computed using earlier models of jumps that are now known to be incorrect. The model covers the whole range of ratios of the densities of the two fluids, and is not restricted to the Boussinesq limit. The results are presented in terms of flow types in various regions of a Froude number-obstacle height (F0 – Hm diagram, in which the Froude number F0 is based on the initial flow conditions. When compared with single-layer flow, and some previous results with two layers, some surprising and novel patterns emerge on these diagrams. Specifically, in parts of the diagram where the flow may be supercritical (F0 > 1, there are regions where hysteresis may occur, implying that the flow may have two and sometimes three multiple flow states for the same conditions (i.e. values of F0 and Hm.

  10. Tidal modulation of two-layer hydraulic exchange flows

    Directory of Open Access Journals (Sweden)

    L. M. Frankcombe

    2006-11-01

    Full Text Available Time-dependent, two layer hydraulic exchange flow is studied using an idealised shallow water model. It is found that barotropic time-dependent perturbations, representing tidal forcing, increase the baroclinic exchange flux above the steady hydraulic limit, with flux increasing monotonically with tidal amplitude (measured either by height or flux amplitude over a tidal period. Exchange flux also depends on the non-dimensional tidal period, γ, which was introduced by Helfrich (1995. Resonance complicates the relationship between exchange flux and height amplitude, but, when tidal strength is characterised by flux amplitude, exchange flux is a monotonic function of γ.

  11. Ultraefficient reduced model for countercurrent two-layer flows

    Science.gov (United States)

    Lavalle, Gianluca; Vila, Jean-Paul; Lucquiaud, Mathieu; Valluri, Prashant

    2017-01-01

    We investigate the dynamics of two superposed layers with density contrast flowing countercurrent inside a channel, when the lower layer is much thinner than the wavelength of interfacial waves. We apply a low-dimensional film model to the bottom (heavier) layer and introduce a fast and efficient method to predict the onset of flow reversal in this phase. We study three vertical scenarios with different applied pressure gradients and compare the temporal growth rates of linear and weakly nonlinear waves to the Orr-Sommerfeld problem and to the weakly nonlinear theory, respectively. At the loading point, i.e., when a large wave hump stands at the interface, our spatiotemporal analysis shows that the system is absolutely unstable. We then present profiles of nonlinear saturated waves, pressure field, and streamline distribution in agreement with direct numerical simulation. The reduced model presented here allows us to explore the effect of the upper-layer speed on the wave pattern, showing that the wave profile is very sensitive when the mean film thickness, rather than the liquid flow rate, is maintained constant in the simulation. In addition, we show the strong effect of surface tension on both the maximum wave hump and the crest steepness before the loading point. Finally, we reveal how the nonlinear wave speed affects the vortex distribution within the lower layer by analyzing the stream function under different scenarios.

  12. Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach

    Science.gov (United States)

    Camassa, R.; Falqui, G.; Ortenzi, G.

    2017-02-01

    The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite two-dimensional channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids’ inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, albeit in a non-trivial way. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, a family of approximate constants of the motion are explicitly constructed and used to find local solutions of the evolution equations by means of hodograph-like formulae.

  13. Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach

    CERN Document Server

    Camassa, R; Ortenzi, G

    2015-01-01

    The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite 2D channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids' inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, and thence, in a non-trivial way, to the dispersionless non-linear Schr\\"odinger equation. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, it is shown that at first order the deformed system possesses an infinite sequence of constants of the motion, thus casting this system within the framework of comp...

  14. Nonlinear dynamics at the interface of two-layer stratified flows over pronounced obstacles

    CERN Document Server

    Cabeza, C; Bove, I; Freire, D; Marti, Arturo C; Sarasua, L G; Usera, G; Montagne, R; Araújo, M

    2008-01-01

    The flow of a two--layer stratified fluid over an abrupt topographic obstacle, simulating relevant situations in oceanographic problems, is investigated numerically and experimentally in a simplified two--dimensional situation. Experimental results and numerical simulations are presented at low Froude numbers in a two-layer stratified flow and for two abrupt obstacles, semi--cylindrical and prismatic. We find four different regimes of the flow immediately past the obstacles: sub-critical (I), internal hydraulic jump (II), Kelvin-Helmholtz at the interface (III) and shedding of billows (IV). The critical condition for delimiting the experiments is obtained using the hydraulic theory. Moreover, the dependence of the critical Froude number on the geometry of the obstacle are investigated. The transition from regime III to regime IV is explained with a theoretical stability analysis. The results from the stability analysis are confirmed with the DPIV measurements. In regime (IV), when the velocity upstream is lar...

  15. A two-layer flow model to represent ice-ocean interactions beneath Antarctic ice shelves

    Science.gov (United States)

    Lee, V.; Payne, A. J.; Gregory, J. M.

    2011-01-01

    We develop a two-dimensional two-layer flow model that can calculate melt rates beneath ice shelves from ocean temperature and salinity fields at the shelf front. The cavity motion is split into two layers where the upper plume layer represents buoyant meltwater-rich water rising along the underside of the ice to the shelf front, while the lower layer represents the ambient water connected to the open ocean circulating beneath the plume. Conservation of momentum has been reduced to a frictional geostrophic balance, which when linearized provides algebraic equations for the plume velocity. The turbulent exchange of heat and salt between the two layers is modelled through an entrainment rate which is directed into the faster flowing layer. The numerical model is tested using an idealized geometry based on the dimensions of Pine Island Ice Shelf. We find that the spatial distribution of melt rates is fairly robust. The rates are at least 2.5 times higher than the mean in fast flowing regions corresponding to the steepest section of the underside of the ice shelf close to the grounding line and to the converged geostrophic flow along the rigid lateral boundary. Precise values depend on a combination of entrainment and plume drag coefficients. The flow of the ambient is slow and the spread of ocean scalar properties is dominated by diffusion.

  16. A two-layer flow model to represent ice-ocean interactions beneath Antarctic ice shelves

    Directory of Open Access Journals (Sweden)

    V. Lee

    2011-01-01

    Full Text Available We develop a two-dimensional two-layer flow model that can calculate melt rates beneath ice shelves from ocean temperature and salinity fields at the shelf front. The cavity motion is split into two layers where the upper plume layer represents buoyant meltwater-rich water rising along the underside of the ice to the shelf front, while the lower layer represents the ambient water connected to the open ocean circulating beneath the plume. Conservation of momentum has been reduced to a frictional geostrophic balance, which when linearized provides algebraic equations for the plume velocity. The turbulent exchange of heat and salt between the two layers is modelled through an entrainment rate which is directed into the faster flowing layer.

    The numerical model is tested using an idealized geometry based on the dimensions of Pine Island Ice Shelf. We find that the spatial distribution of melt rates is fairly robust. The rates are at least 2.5 times higher than the mean in fast flowing regions corresponding to the steepest section of the underside of the ice shelf close to the grounding line and to the converged geostrophic flow along the rigid lateral boundary. Precise values depend on a combination of entrainment and plume drag coefficients. The flow of the ambient is slow and the spread of ocean scalar properties is dominated by diffusion.

  17. TAILING WAVETRAIN GENERATION IN PRECURSOR SOLITON GENERATION IN TWO-LAYER FLOW

    Institute of Scientific and Technical Information of China (English)

    Xu Zhaoting; Xu Hao; Samuel Shan-pu Shen

    2000-01-01

    A theory of tailing wavetrain generation for the precursor soliton generation in two-layer flow is presented by using averaged KdV equations(AKdV),which are derived by the authors in terms of Whitham's method of averaging[1,2].From the AKdV equations,group velocities of the tailing wavetrain generation are obtained by means of generating conditions of the tailing wavetrains,furthermore an analytical solution of the tailing wavetrain generation is found theoretically.A comparison between the theoretical and numerical results is carried out in the present paper,which shows that the theoretical results are in good agreement with the numerical ones,obtained from the fKdV equation in two-layer flow with the depth of unity in the rest.

  18. Development of an algebraic stress/two-layer model for calculating thrust chamber flow fields

    Science.gov (United States)

    Chen, C. P.; Shang, H. M.; Huang, J.

    1993-01-01

    Following the consensus of a workshop in Turbulence Modeling for Liquid Rocket Thrust Chambers, the current effort was undertaken to study the effects of second-order closure on the predictions of thermochemical flow fields. To reduce the instability and computational intensity of the full second-order Reynolds Stress Model, an Algebraic Stress Model (ASM) coupled with a two-layer near wall treatment was developed. Various test problems, including the compressible boundary layer with adiabatic and cooled walls, recirculating flows, swirling flows and the entire SSME nozzle flow were studied to assess the performance of the current model. Detailed calculations for the SSME exit wall flow around the nozzle manifold were executed. As to the overall flow predictions, the ASM removes another assumption for appropriate comparison with experimental data, to account for the non-isotropic turbulence effects.

  19. Flows induced by sorption on fibrous material in a two-layer oil-water system

    Science.gov (United States)

    Chaplina, T. O.; Chashechkin, Yu. D.; Stepanova, E. V.

    2016-09-01

    The processes of sorption on fibrous materials in the open elliptic cell filled with a two-layer oil-water liquid at rest are investigated experimentally. When the sorption efficiency dependent on the type of material proves to be reasonably high, large-scale flows are formed in the liquid. In this case, the uniformity of distribution of oil is violated and the free surface of the water is partially restored. The trajectories of motion of individual oil droplets on a released water surface are tracked, and the transfer rates are calculated in various phases of the process.

  20. Dynamics and flow-coupling in two-layer turbulent thermal convection

    CERN Document Server

    Xie, Yi-Chao

    2015-01-01

    We present an experimental investigation of the dynamics and flow-coupling of convective turbulent flows in a cylindrical Rayleigh-Benard convection cell with two immiscible fluids, water and fluorinert FC-77 electronic liquid (FC77). It is found that one large-scale circulation (LSC) roll exists in each of the fluid layers, and that their circulation planes have two preferred azimuthal orientations separated by $\\sim\\pi$. A surprising finding of the study is that cessations/reversals of the LSC in FC77 of the two-layer system occur much more frequently than they do in single-layer turbulent RBC, and that a cessation is most likely to result in a flow reversal of the LSC, which is in sharp contrast with the uniform distribution of the orientational angular change of the LSC before and after cessations in single-layer turbulent RBC. This implies that the dynamics governing cessations and reversals in the two systems are very different. Two coupling modes, thermal coupling (flow directions of the two LSCs are o...

  1. Stability of exact solutions describing two-layer flows with evaporation at the interface

    Science.gov (United States)

    Bekezhanova, V. B.; Goncharova, O. N.

    2016-12-01

    A new exact solution of the equations of free convection has been constructed in the framework of the Oberbeck-Boussinesq approximation of the Navier-Stokes equations. The solution describes the joint flow of an evaporating viscous heat-conducting liquid and gas-vapor mixture in a horizontal channel. In the gas phase the Dufour and Soret effects are taken into account. The consideration of the exact solution allows one to describe different classes of flows depending on the values of the problem parameters and boundary conditions for the vapor concentration. A classification of solutions and results of the solution analysis are presented. The effects of the external disturbing influences (of the liquid flow rates and longitudinal gradients of temperature on the channel walls) on the stability characteristics have been numerically studied for the system HFE7100-nitrogen in the common case, when the longitudinal temperature gradients on the boundaries of the channel are not equal. In the system both monotonic and oscillatory modes can be formed, which damp or grow depending on the values of the initial perturbations, flow rates and temperature gradients. Hydrodynamic perturbations are most dangerous under large gas flow rates. The increasing oscillatory perturbations are developed due to the thermocapillary effect under large longitudinal gradients of temperature. The typical forms of the disturbances are shown.

  2. Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhov, Evgeny A., E-mail: ryzhovea@poi.dvo.ru [Pacific Oceanological Institute of FEB RAS, 43, Baltiyskaya Street, Vladivostok 690041 (Russian Federation); Koshel, Konstantin V., E-mail: kvkoshel@poi.dvo.ru [Pacific Oceanological Institute of FEB RAS, 43, Baltiyskaya Street, Vladivostok 690041 (Russian Federation); Far Eastern Federal University, 8, Sukhanova Street, Vladivostok 690950 (Russian Federation)

    2015-10-15

    In a two-layer quasi-geostrophic approximation, we study the irregular dynamics of fluid particles arising due to two interacting point vortices embedded in a deformation flow consisting of shear and rotational components. The two vortices are arranged within the bottom layer, but an emphasis is on the upper-layer fluid particle motion. Vortices moving in one layer induce stirring of passive scalars in the other layer. This is of interest since point vortices induce singular velocity fields in the layer they belong to; however, in the other layer, they induce regular velocity fields that generally result in a change in passive particle stirring. If the vortices are located at stagnation points, there are three different types of the fluid flow. We examine how properties of each flow configuration are modified if the vortices are displaced from the stagnation points and thus circulate in the immediate vicinity of these points. To that end, an analysis of the steady-state configurations is presented with an emphasis on the frequencies of fluid particle oscillations about the elliptic stagnation points. Asymptotic relations for the vortex and fluid particle zero–oscillation frequencies are derived in the vicinity of the corresponding elliptic points. By comparing the frequencies of fluid particles with the ones of the vortices, relations between the parameters that lead to enhanced stirring of fluid particles are established. It is also demonstrated that, if the central critical point is elliptic, then the fluid particle trajectories in its immediate vicinity are mostly stable making it harder for the vortex perturbation to induce stirring. Change in the type of the central point to a hyperbolic one enhances drastically the size of the chaotic dynamics region. Conditions on the type of the central critical point also ensue from the derived asymptotic relations.

  3. Surfactant and gravity dependent instability of two-layer Couette flows and its nonlinear saturation

    CERN Document Server

    Frenkel, Alexander L

    2016-01-01

    A horizontal flow of two immiscible fluid layers with different densities, viscosities and thicknesses, subject to vertical gravitational forces and with an insoluble surfactant present at the interface, is investigated. The base Couette flow is driven by the horizontal motion of the channel walls. Linear and nonlinear stages of the (inertialess) surfactant and gravity dependent long-wave instability are studied using the lubrication approximation, which leads to a system of coupled nonlinear evolution equations for the interface and surfactant disturbances. The linear stability is determined by an eigenvalue problem for the normal modes. The growth rates and the amplitudes of disturbances of the interface, surfactant, velocities, and pressures are found analytically. For each wavenumber, there are two active normal modes. For each mode, the instability threshold conditions in terms of the system parameters are determined. In particular, it transpires that for certain parametric ranges, even arbitrarily stron...

  4. Diffraction of Oblique Water Waves by Small Uneven Channel-bed in a Two-layer Fluid

    Institute of Scientific and Technical Information of China (English)

    Smrutiranjan Mohapatra

    2014-01-01

    Obliquely incident water wave scattering by an uneven channel-bed in the form of a small bottom undulation in a two-layer fluid is investigated within the frame work of three-dimensional linear water wave theory. The upper fluid is assumed to be bounded above by a rigid lid, while the lower one is bounded below by a bottom surface having a small deformation and the channel is unbounded in the horizontal directions. Assuming irrotational motion, perturbation technique is employed to calculate the first-order corrections to the velocity potentials in the two fluids by using Fourier transform approximately, and also to calculate the reflection and transmission coefficients in terms of integrals involving the shape function representing the bottom deformation. Consideration of a patch of sinusoidal ripples shows that the reflection coefficient is an oscillatory function of the ratio of twice the component of the wave number along x-axis and the ripple wave number. When this ratio approaches one, the theory predicts a resonant interaction between the bed and interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this number is large.

  5. Diffraction of oblique water waves by small uneven channel-bed in a two-layer fluid

    Science.gov (United States)

    Mohapatra, Smrutiranjan

    2014-09-01

    Obliquely incident water wave scattering by an uneven channel-bed in the form of a small bottom undulation in a two-layer fluid is investigated within the frame work of three-dimensional linear water wave theory. The upper fluid is assumed to be bounded above by a rigid lid, while the lower one is bounded below by a bottom surface having a small deformation and the channel is unbounded in the horizontal directions. Assuming irrotational motion, perturbation technique is employed to calculate the first-order corrections to the velocity potentials in the two fluids by using Fourier transform approximately, and also to calculate the reflection and transmission coefficients in terms of integrals involving the shape function representing the bottom deformation. Consideration of a patch of sinusoidal ripples shows that the reflection coefficient is an oscillatory function of the ratio of twice the component of the wave number along x-axis and the ripple wave number. When this ratio approaches one, the theory predicts a resonant interaction between the bed and interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of incident wave energy occurs if this number is large.

  6. Convergent flow in a two-layer system and mountain building

    CERN Document Server

    Perazzo, Carlos Alberto

    2009-01-01

    With the purpose of modelling the process of mountain building, we investigate the evolution of the ridge produced by the convergent motion of a system consisting of two layers of liquids that differ in density and viscosity to simulate the crust and the upper mantle that form a lithospheric plate. We assume that the motion is driven by basal traction. Assuming isostasy, we derive a nonlinear differential equation for the evolution of the thickness of the crust. We solve this equation numerically to obtain the profile of the range. We find an approximate self-similar solution that describes reasonably well the process and predicts simple scaling laws for the height and width of the range as well as the shape of the transversal profile. We compare the theoretical results with the profiles of real mountain belts and find and excellent agreement.

  7. Quasi-two-layer finite-volume scheme for modeling shallow water flows with the presence of external forces

    CERN Document Server

    Karelsky, K V; Slavin, A G

    2011-01-01

    The numerical method for study of hydrodynamic flows over an arbitrary bed profile in the presence of external force is proposed in this paper. This method takes into account the external force effect, it uses the quasi-two-layer model of hydrodynamic flows over a stepwise boundary with consideration of features of the flow near the step. A distinctive feature of the proposed method is the consideration of the properties of the process of the waterfall, namely the fluid flow on the step in which the fluid does not wet part of the vertical wall of the step. The presence of dry zones in the vertical part of the step indicates violation of the conditions of hydrostatic flow. The quasi-two-layer approach allows to determine the size of the dry zone of the vertical component of the step. Consequently it gives an opportunity to figure out the amount of kinetic energy dissipation. There are performed the numerical simulations based on the proposed algorithm of various physical phenomena, such as a breakdown of the r...

  8. Stability of two-layer Couette flow with application to drag reduction

    Science.gov (United States)

    Mohammadi, Alireza; Smits, Alexander J.

    2016-11-01

    We consider the linear stability of flows composed of two superposed fluids in Couette flow in order to improve our understanding of the longevity and performance of superhydrophobic surfaces (SHS) or liquid-infused surfaces (LIS) which are important for drag reduction. Here, we assume that the fluids are immiscible, incompressible, and Newtonian with constant properties. Single-fluid Couette flow is known to be linearly stable for any Reynolds number. However, inclusion of the second layer of fluid enriches the problem and introduces five new parameters: viscosity ratio, density ratio, thickness ratio, Froude number and Weber number. Two kinds of instability can appear: an unstable interfacial mode, and a Tollmein-Schlichting mode. In this work we parametrically study the flow stability with specific emphasis on the effects of viscosity ratio, interfacial tension, and thickness ratio. Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Office of Naval Research (ONR) through MURI Grants N00014-12-1-0875 and N00014-12-1-0962 (Program Manager Dr. Ki-Han Kim).

  9. Velocity Profile in a Two-Layer Kolmogorov-Like Flow

    CERN Document Server

    Suri, Balachandra; Mitchell, Radford; Grigoriev, Roman O; Schatz, Michael F

    2013-01-01

    In this article we discuss flows in shallow, stratified horizontal layers of two immiscible fluids. The top layer is an electrolyte which is electromagnetically driven and the bottom layer is a dielectric fluid. Using a quasi-two-dimensional approximation, we derive the depth-averaged two-dimensional (2D) vorticity equation which includes a prefactor to the advection term, previously unaccounted for. In addition, we study how the horizontal components of velocity vary in the vertical direction. For a Kolmogorov-like flow, we evaluate analytical expressions for the coefficients in the generalized 2D vorticity equation, uncovering their dependence on experimental parameters. To test the accuracy of these estimates, we experimentally measure the horizontal velocity fields at the free-surface and at the electrolyte-dielectric interface using particle image velocimetry (PIV). We show that there is excellent agreement between the analytical predictions and the experimental measurements. Our analysis shows that by i...

  10. Two layer dielectric-electrolyte micro-flow with pressure gradient

    Directory of Open Access Journals (Sweden)

    Ganchenko Georgy

    2016-01-01

    Full Text Available The present work considers stability of two-phase dielectric/electrolyte system, consisting of two immiscible liquids in microchannel. The system is set in motion by the constant external electric field, which causes the electroosmotic flow in the electrolyte, and by the pressure driving force. The investigation of its linear stability has shown that there are two types of instability in the system: short-wave and long-wave instability. The short-wave instability occurs for a stronger external field than the long-wave instability but the growth rate of the short-wave instability is much higher than that of the long-wave instability.

  11. Steady thermocapillary flows in a two-layer liquid system with flat interfaces

    Science.gov (United States)

    del Arco, E. Crespo; Extremet, G. P.; Sani, R. L.

    1993-01-01

    Steady thermocapillary convection is studied in a system of two flat, superposed layers of immiscible liquids with two fluid-fluid interfaces in a configuration similar to that of an encapsulated crystal growth. The layers are bounded on the sides by isothermal vertical walls maintained at different constant temperatures. A simplified analytical solution is used initially to explore different potential flow regimes in a parameter space of large dimensionality. Then the coupled Navier-Stokes and heat transfer equations are solved numerically with a finite element method via FIDAP, in a rectangular cavity filled with two immiscible liquids in the absence of a gravitational field.

  12. Study of an unitised bidirectional vanadium/air redox flow battery comprising a two-layered cathode

    Science.gov (United States)

    grosse Austing, Jan; Nunes Kirchner, Carolina; Hammer, Eva-Maria; Komsiyska, Lidiya; Wittstock, Gunther

    2015-01-01

    The performance of a unitised bidirectional vanadium/air redox flow battery (VARFB) is described. It contains a two-layered cathode consisting of a gas diffusion electrode (GDE) with Pt/C catalyst for discharging and of an IrO2 modified graphite felt for charging. A simple routine is shown for the modification of a graphite felt with IrO2. A maximum energy efficiency of 41.7% at a current density of 20 mA cm-2 as well as an average discharge power density of 34.6 mW cm-2 at 40 mA cm-2 were obtained for VARFB operation at room temperature with the novel cathode setup. A dynamic hydrogen electrode was used to monitor half cell potentials during operation allowing to quantify the contribution of the cathode to the overall performance of the VARFB. Four consecutive cycles revealed that crossover of vanadium ions took place and irreversible degradation processes within the reaction unit lead to a performance decrease.

  13. The stability of two layer dielectric-electrolyte micro-flow subjected to an external electric field

    Science.gov (United States)

    Demekhin, E. A.; Ganchenko, G. S.; Navarkar, A.; Amiroudine, S.

    2016-09-01

    The two-phase microflow of conductive (electrolyte) and non-conductive (dielectric) viscous liquids bounded by two solid walls in an external electric field is scrutinized. The lower solid wall, which is adjoined to the electrolyte, is a charged dielectric surface; the upper wall which bounds the dielectric is insulated. The problem has a steady one-dimensional (1D) solution. The theoretical results for a plug-like velocity profile are successfully compared with available theoretical and experimental data from the literature. The linear stability of the steady-state flow is investigated numerically with spectral Galerkin's method for solving linearized eigenvalue problem. This method was successfully applied for related problem of electroosmosis of ultrathin film. The numerical analysis provides insights on the coexistence of long and short-wave instabilities. The influence of control parameters such as the ratio of the viscosities of both liquids and the ratio of the channel heights on the stability of one-dimensional flow was investigated for different values of external electric field. The influence of an external pressure gradient on the flow stability is also investigated. The experimental facts established by other authors, according to which the system destabilizes if the electroosmotic flow is oppositely directed to the external pressure gradient, is confirmed in this work. Otherwise stabilization takes place.

  14. A theoretical, two-layer, reduced-gravity model for descending dense water flow on continental shelves/slopes

    Science.gov (United States)

    Wang, Jia; Ikeda, Moto; Saucier, Francois J.

    2003-05-01

    A theoretical, two-layer, reduced-gravity model for descending dense water flow on continental shelves/slopes has been developed to investigate the dynamics of bottom dense water plumes. The model is nonsteady state and includes vertical viscosity, the Coriolis force, and bottom friction. An integral solution rather than a perfect analytical expression is derived and, thus, the Simpson's 1/3 rule to approximate the integral is applied. At the very bottom, the dense water plume moves about 45° to the right (left) in the Northern (Southern) Hemisphere, looking downslope. From the bottom, the velocity vector rotates anticyclonically upward, indicating a bottom Ekman spiral that mimics the atmospheric Ekman boundary layer. The dense water within the bottom Ekman layer obeys a three-force balance, while the dense water above the bottom Ekman layer is governed by a two-force balance, which is a geostrophic flow with superimposed cycloidal inertial oscillations oriented from about 25° to 140° to the right (left) of the downslope direction in the Northern (Southern) Hemisphere. The transport within the bottom Ekman layer is directed about 60-70° to the right (left) of the downslope direction in the Northern (Southern) Hemisphere, forming an offshore (cross-isobath) transport in the absence of eddy flux and wind-forcing. The ratio of offshore transport to alongshore transport within the bottom Ekman layer is about 0.19 (19%), while the ratio above the bottom Ekman layer (i.e., geostrophic layer of the dense water) is only 3% (negligible compared to its alongshore transport), which, however, is equivalent in magnitude to its counterpart in the bottom Ekman layer if O(DE/h) ˜ 0.1 (where DE is the bottom Ekman layer thickness and h is the dense water layer thickness). In other words, the bottom Ekman layer and the geostrophic (dense) layer contribute equivalent dense water offshore (each contributes 50%). The magnitude of the descending dense water velocity depends

  15. A two Layer Convecting Mantle With Exchange : A Unified Model Based on Geochemical, Seismic and Heat Flow Observations

    Science.gov (United States)

    Allègre, C. J.; Jaupart, C.; Nolet, G.

    2007-12-01

    -penetrating slabs as emphasized by Fukao and al.(2001) and the recent observation of the large energy spectrum differences at 670 km depth (Gu and al., 2006). We discuss the problem of return flow, which is crucial for both energy budget and convection regime. The recent work on plume by Montelli and al. (2004, 2006) shows the existence of broad plumes in the lower mantle and thin plumes in the upper mantle. d) The estimate of heat flow coming from the lower mantle of 35-32 TW. The work of Davies(1990) and Sleep(1992) shows clearly that this transfer is not the result of plumes reaching the surface, because they correspond at most to 3TW. At the reverse the estimated heat flow carried by the lower mantle plumes is much higher (Nolet and al., 2006). We also discuss the heat flow paradox to explain a Urey ratio of 0.4 with whole mantle convection. In conclusion, we propose mantle with two layers convecting separately but with some exchange of matter, this global exchange corresponding to 1.1024kg since 4.4 Gy. Plume genesis is a two-stage process. Lower mantle plumes heat the Mesosphere boundary layer generating second generation plumes which reach the surface (Allègre and Turcotte; 1983; Allègre, 1987). In the upper mantle itself, we have to distinguish between a vigorously convecting asthenosphere and a sluggish convecting transition zone, both convecting in same cells.

  16. Mirrored serpentine flow channels for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Rock, Jeffrey Allan (Rochester, NY)

    2000-08-08

    A PEM fuel cell having serpentine flow field channels wherein the input/inlet legs of each channel border the input/inlet legs of the next adjacent channels in the same flow field, and the output/exit legs of each channel border the output/exit legs of the next adjacent channels in the same flow field. The serpentine fuel flow channels may be longer, and may contain more medial legs, than the serpentine oxidant flow channels.

  17. Linear and nonlinear properties of reduced two-layer models for non-hydrostatic free-surface flow

    Science.gov (United States)

    Bai, Yefei; Cheung, Kwok Fai

    2016-11-01

    A two-layer model with uniform non-hydrostatic pressure in the bottom produces favorable dispersion properties for coastal wave transformation at the computational requirements of a one-layer model. We derive the nonlinear governing equations and the corresponding dispersion relation, shoaling gradient, and super- and sub-harmonics to understand the theoretical performance of this reduced model. With the layer interface near the bottom, the dispersion relation shows an extended applicable range into deeper water at the expense of a slight overestimation of the celerity in intermediate water depth. The shoaling gradient rapidly converges to the exact solution in the shallow and intermediate depth range. These complementary characteristics allow identification of an optimal interface position for both linear wave properties. The resulting model exhibits good nonlinear performance in shallow and intermediate water depth and produces super- and sub-harmonics comparable to a two-layer model. Numerical tests involving standing waves show the reduced model has smaller discretization errors in the dispersion relation comparing to a one-layer model. Case studies of regular wave transformation over a submerged bar and a uniform slope provide comparison with laboratory data and demonstrate the linear and nonlinear properties derived from the governing equations. The good shoaling and nonlinear properties give rise to accurate waveforms in both cases, while dispersion errors from the governing equations and numerical schemes accumulate over time leading to phase shifts of the modeled waves.

  18. Stable two-layer flows at all Re; visco-plastic lubrication of shear-thinning and viscoelastic fluids

    NARCIS (Netherlands)

    Moyers-Gonzalez, M.; Frigaard, I. A.; Nouar, Cherif

    2010-01-01

    Multi-fluid flows are frequently thought of as being less stable than single phase flows. Consideration of different non-Newtonian models can give rise to different types of hydrodynamic instability. Here we show that with careful choice of fluid rheologies and flow paradigm, one can achieve multi-l

  19. Stable two-layer flows at all Re; visco-plastic lubrication of shear-thinning and viscoelastic fluids

    NARCIS (Netherlands)

    Moyers-Gonzalez, M.; Frigaard, I. A.; Nouar, Cherif

    2010-01-01

    Multi-fluid flows are frequently thought of as being less stable than single phase flows. Consideration of different non-Newtonian models can give rise to different types of hydrodynamic instability. Here we show that with careful choice of fluid rheologies and flow paradigm, one can achieve multi-l

  20. The effect of temperature on the boundary of polymer melts in the modeling of two-layers flow

    Science.gov (United States)

    Bondarenko, A. V.; Kozitsyna, M. V.; Trufanova, N. M.

    2016-10-01

    The article is devoted to determine the velocity fields, temperatures and boundary flows of bi layers of polymer coating when both of them are applied simultaneously. The mathematical model of the flow was developed using finite - elements method with was the part of Ansys Cfx software packet.

  1. Precipitation patterns during channel flow

    Science.gov (United States)

    Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.

    2013-12-01

    Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001

  2. Instability of the interface in two-layer flows with large viscosity contrast at small Reynolds numbers

    Institute of Scientific and Technical Information of China (English)

    Jiebin Liu; Jifu Zhou

    2016-01-01

    The Kelvin–Helmholtz instability is believed to be the dominant instability mechanism for free shear flows at large Reynolds numbers. At small Reynolds numbers, a new instability mode is identified when the temporal instability of parallel viscous two fluid mixing layers is extended to current-fluid mud systems by considering a composite error function velocity profile. The new mode is caused by the large viscosity difference between the two fluids. This interfacial mode exists when the fluid mud boundary layer is sufficiently thin. Its performance is different from that of the Kelvin–Helmholtz mode. This mode has not yet been reported for interface instability problems with large viscosity contrasts. These results are essential for further stability analysis of flows relevant to the breaking up of this type of interface.

  3. On the Transformation Mechanism for Formulating a Multiproduct Two-Layer Supply Chain Network Design Problem as a Network Flow Model

    Directory of Open Access Journals (Sweden)

    Mi Gan

    2014-01-01

    Full Text Available The multiproduct two-layer supply chain is very common in various industries. In this paper, we introduce a possible modeling and algorithms to solve a multiproduct two-layer supply chain network design problem. The decisions involved are the DCs location and capacity design decision and the initial distribution planning decision. First we describe the problem and give a mixed integer programming (MIP model; such problem is NP-hard and it is not easy to reduce the complexity. Inspired by it, we develop a transformation mechanism of relaxing the fixed cost and adding some virtual nodes and arcs to the original network. Thus, a network flow problem (NFP corresponding to the original problem has been formulated. Given that we could solve the NFP as a minimal cost flow problem. The solution procedures and network simplex algorithm (INS are discussed. To verify the effectiveness and efficiency of the model and algorithms, the performance measure experimental has been conducted. The experiments and result showed that comparing with MIP model solved by genetic algorithm (GA and Benders, decomposition algorithm (BD the NFP model and INS are also effective and even more efficient for both small-scale and large-scale problems.

  4. Solitons, Bäcklund transformation and Lax pair for a generalized variable-coefficient Boussinesq system in the two-layered fluid flow

    Science.gov (United States)

    Zhao, Xue-Hui; Tian, Bo; Chai, Jun; Wu, Yu-Xiao; Guo, Yong-Jiang

    2016-11-01

    Under investigation in this paper is a generalized variable-coefficient Boussinesq system, which describes the propagation of the shallow water waves in the two-layered fluid flow. Bilinear forms, Bäcklund transformation and Lax pair are derived by virtue of the Bell polynomials. Hirota method is applied to construct the one- and two-soliton solutions. Propagation and interaction of the solitons are illustrated graphically: kink- and bell-shape solitons are obtained; shapes of the solitons are affected by the variable coefficients α1, α3 and α4 during the propagation, kink- and anti-bell-shape solitons are obtained when α3 > 0, anti-kink- and bell-shape solitons are obtained when α3 < 0; Head-on interaction between the two bidirectional solitons, overtaking interaction between the two unidirectional solitons are presented; interactions between the two solitons are elastic.

  5. Developing laminar flow in curved rectangular channels

    NARCIS (Netherlands)

    De Vriend, H.J.

    1978-01-01

    As an intermediate step between earlier investigations on fully developed laminar flow in curved channels of shallow rectancular wet cross-section and the mathematical modeling of turbulent flow in river bends, a mathematical model of developing laminar flow in such channels is investigated. The mos

  6. Surface oscillations in channeled snow flows

    CERN Document Server

    Rastello, Marie

    2007-01-01

    An experimental device has been built to measure velocity profiles and friction laws in channeled snow flows. The measurements show that the velocity depends linearly on the vertical position in the flow and that the friction coefficient is a first-order polynomial in velocity (u) and thickness (h) of the flow. In all flows, oscillations on the surface of the flow were observed throughout the channel and measured at the location of the probes. The experimental results are confronted with a shallow water approach. Using a Saint-Venant modeling, we show that the flow is effectively uniform in the streamwise direction at the measurement location. We show that the surface oscillations produced by the Archimedes's screw at the top of the channel persist throughout the whole length of the channel and are the source of the measured oscillations. This last result provides good validation of the description of such channeled snow flows by a Saint-Venant modeling.

  7. Investigation of the two-layer fluid flows with evaporation at interface on the basis of the exact solutions of the 3D problems of convection

    Science.gov (United States)

    Goncharova, O. N.; Kabov, O. A.

    2016-10-01

    New physical experiments in the Institute of Thermophysics SB RAS allow one to investigate structure of the flows of liquid layers being under action of the co-current gas flux. The flow topology is determined by four main mechanisms: natural and thermocapillary convection, tangential stresses induced by the flow of gas and mass transfer due to evaporation at the interface. Mathematical modeling of the fluid flows in an infinite channel of the rectangular cross section is carried out on the basis of a solution of special type of the convection equations. The effects of thermodiffusion and diffusive thermal conductivity in the gas phase and evaporation at the thermocapillary interface are taken into consideration. Numerical investigations are performed for the liquid-gas (ethanol-nitrogen) system under normal and low gravity.

  8. HANARO core channel flow-rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Il; Chae, Hee Tae; Im, Don Soon; Kim, Seon Duk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    HANARO core consists of 23 hexagonal flow tubes and 16 cylindrical flow tubes. To get the core flow distribution, we used 6 flow-rate measuring dummy fuel assemblies (instrumented dummy fuel assemblies). The differential pressures were measured and converted to flow-rates using the predetermined relationship between AP and flow-rate for each instrumented dummy fuel assemblies. The flow-rate for the cylindrical flow channels shows +-7% relative errors and that for the hexagonal flow channels shows +-3.5% relative errors. Generally the flow-rates of outer core channels show smaller values compared to those of inner core. The channels near to the core inlet pipe and outlet pipes also show somewhat lower flow-rates. For the lower flow channels, the thermal margin was checked by considering complete linear power histories. From the experimental results, the gap flow-rate was estimated to be 49.4 kg/s (cf. design flow of 50 kg/s). 15 tabs., 9 figs., 10 refs. (Author) .new.

  9. Anisotropic flow in striped superhydrophobic channels

    CERN Document Server

    Zhou, Jiajia; Schmid, Friederike; Vinogradova, Olga I

    2012-01-01

    We report results of dissipative particle dynamics simulations and develop a semi-analytical theory and of an anisotropic flow in a parallel-plate channel with two superhydrophobic striped walls. Our approach is valid for any local slip at the gas sectors and an arbitrary distance between the plates, ranging from a thick to a thin channel. It allows us to optimize area fractions, slip lengths, channel thickness and texture orientation to maximize a transverse flow. Our results may be useful for extracting effective slip tensors from global measurements, such as the permeability of a channel, in experiments or simulations, and may also find applications in passive microfluidic mixing.

  10. Stability of flowing open fluidic channels

    Directory of Open Access Journals (Sweden)

    Jue Nee Tan

    2013-02-01

    Full Text Available Open fluidic systems have a distinct advantage over enclosed channels in that the fluids exposed nature makes for easy external interaction, this finds uses in introduction of samples by adding liquid droplets or from the surrounding gaseous medium. This work investigates flowing open channels and films, which can potentially make use of the open section of the system as an external interface, before bringing the sample into an enclosed channel. Clearly, in this scenario a key factor is the stability of the flowing open fluid. The open channels investigated include a straight open channel defined by a narrow strip of solid surface, the edges of which allow large contact angle hysteresis, and a wider structure allowing for multiple inputs and outputs. A model is developed for fluid flow, and the findings used to describe the process of failure in both cases.

  11. Slow flow in channels with porous walls

    CERN Document Server

    Jensen, Kaare H

    2012-01-01

    We consider the slow flow of a viscous incompressible liquid in a channel of constant but arbitrary cross section shape, driven by non-uniform suction or injection through the porous channel walls. A similarity transformation reduces the Navier-Stokes equations to a set of coupled equations for the velocity potential in two dimensions. When the channel aspect ratio and Reynolds number are both small, the problem reduces to solving the biharmonic equation with constant forcing in two dimensions. With the relevant boundary conditions, determining the velocity field in a porous channels is thus equivalent to solving for the vertical displacement of a simply suspended thin plate under uniform load. This allows us to provide analytic solutions for flow in porous channels whose cross-section is e.g. a rectangle or an equilateral triangle, and provides a general framework for the extension of Berman flow (Journal of Applied Physics 24(9), p. 1232, 1953) to three dimensions.

  12. Parameter estimation in channel network flow simulation

    Institute of Scientific and Technical Information of China (English)

    Han Longxi

    2008-01-01

    Simulations of water flow in channel networks require estimated values of roughness for all the individual channel segments that make up a network. When the number of individual channel segments is large, the parameter calibration workload is substantial and a high level of uncertainty in estimated roughness cannot be avoided. In this study, all the individual channel segments are graded according to the factors determining the value of roughness. It is assumed that channel segments with the same grade have the same value of roughness. Based on observed hydrological data, an optimal model for roughness estimation is built. The procedure of solving the optimal problem using the optimal model is described. In a test of its efficacy, this estimation method was applied successfully in the simulation of tidal water flow in a large complicated channel network in the lower reach of the Yangtze River in China.

  13. Bulk flow scaling for turbulent channel and pipe flows

    CERN Document Server

    Chen, Xi; She, Zhen-Su

    2016-01-01

    We report a theory deriving bulk flow scaling for canonical wall-bounded flows. The theory accounts for the symmetries of boundary geometry (flat plate channel versus circular pipe) by a variational calculation for a large-scale energy length, which characterizes its bulk flow scaling by a simple exponent, i.e. $m=4$ for channel and 5 for pipe. The predicted mean velocity shows excellent agreement with several dozen sets of quality empirical data for a wide range of the Reynolds number (Re), with a universal bulk flow constant $\\kappa\\approx0.45$. Predictions for dissipation and turbulent transport in the bulk flow are also given, awaiting data verification.

  14. Interfacial wave behavior in oil-water channel flows: Prospects for a general understanding

    Energy Technology Data Exchange (ETDEWEB)

    McCready, M.J.; Uphold, D.D.; Gifford, K.A. [Univ. of Notre Dame, IN (United States)

    1997-12-31

    Oil-water pressure driven channel flow is examined as a model for general two-layer flows where interfacial disturbances are important. The goal is to develop sufficient understanding of this system so that the utility and limitations of linear and nonlinear theories can be known a priori. Experiments show that sometimes linear stability is useful at predicting the steady or dominant evolving waves. However in other situations there is no agreement between the linearly fastest growing wave and the spectral peak. An interesting preliminary result is that the bifurcation to interfacial waves is supercritical for all conditions that were studied for an oil-water channel flow, gas-liquid channel flow and two-liquid Couette flow. However, three different mechanisms are dominant for each of these three situations.

  15. Backstepping feedback control of open channel flow

    OpenAIRE

    Huo, Mandy; Malek, Sami

    2014-01-01

    We derive a feedback control law for the control of the downstream flow in a 1-D open channel by manipulating the water flow at an upstream location. We use backstepping for controller design and Lyapunov techniques for stability analysis. Finally, the controller is verified with simulations.

  16. Flow and sediment transport across oblique channels

    DEFF Research Database (Denmark)

    Hjelmager Jensen, Jacob; Madsen, Erik Østergaard; Fredsøe, Jørgen

    1998-01-01

    A 3D numerical investigation of flow across channels aligned obliquely to the main flow direction has been conducted. The applied numerical model solves the Reynolds-averaged Navier-Stokes equations using the k-ε model for turbulence closure on a curvilinear grid. Three momentum equations are sol...

  17. NUMERICAL MODELING OF COMPOUND CHANNEL FLOWS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A numerical model capable of predicting flow characteristics in a compound channel was established with the 3-D steady continuity and momentum equations along with the transport equations for turbulence kinetic energy and dissipation rate. Closure was achieved with the aid of algebraic relations for turbulent shear stresses. The above equations were discretized with implicit difference approach and solved with a step method along the flow direction. The computational results showing the lateral distribution of vertical average velocities and the latio of total flow in the compound channel agree well with the available experimental data.

  18. Secondary Flow Effects in Relatively Narrow Channels

    Institute of Scientific and Technical Information of China (English)

    Rudolf Dvo(r)ák

    2003-01-01

    Secondary flow effects were discussed in numerous papers at the past ISAIF Symposia, mainly in connection with turbine or compressor cascades[1]. This paper will complement these papers by looking at the problem from the channel (or blade passages) geometry point of view. If we describe as secondary flows any flows in planes perpendicular to the main flow direction, then there are at least three kinds of secondary flows in a typical turbine rotor cascade: - secondary flows of the 1st kind, generated by centrifugal forces in closed curved channels, - secondary flows of the 2nd kind, generated by interacting boundary layers, mainly in corners (this will include even the horseshoe vortices), - secondary flows due to mass inflow through the tip clearance. Quite often all the secondary flow vortices merge downstream into a passage vortex with a non-negligible contribution to the channel (cascade) losses, and it is worth investigating the individual contributions to these losses to take them into account in the design procedure.

  19. Poiseuille channel flow by adding and doubling

    Science.gov (United States)

    Ganapol, Barry D.

    2016-11-01

    The flow of a rarefied gas between two plates of a micro channel, commonly called Poiseuille flow, has been extensively studied in the BGK approximation. In particular, the Analytical Discrete Ordinates (ADO) method determines the velocity profile and flow rate efficiently and accurately. Here, an equally efficient and precise solution is presented using the method of doubling, which however is arguably a numerically simpler and a more natural approach avoiding eigenvalues and eigenvectors. Highly accurate benchmark results for Poiseuille flow are reported for use as a benchmark.

  20. Granular flow over inclined channels with constrictions

    Science.gov (United States)

    Tunuguntla, Deepak; Weinhart, Thomas; Thornton, Anthony; Bokhove, Onno

    2013-04-01

    Study of granular flows down inclined channels is essential in understanding the dynamics of natural grain flows like landslides and snow avalanches. As a stepping stone, dry granular flow over an inclined channel with a localised constriction is investigated using both continuum methods and particle simulations. Initially, depth-averaged equations of motion (Savage & Hutter 1989) containing an unknown friction law are considered. The shallow-layer model for granular flows is closed with a friction law obtained from particle simulations of steady flows (Weinhart et al. 2012) undertaken in the open source package Mercury DPM (Mercury 2010). The closed two-dimensional (2D) shallow-layer model is then width-averaged to obtain a novel one-dimensional (1D) model which is an extension of the one for water flows through contraction (Akers & Bokhove 2008). Different flow states are predicted by this novel one-dimensional theory. Flow regimes with distinct flow states are determined as a function of upstream channel Froude number, F, and channel width ratio, Bc. The latter being the ratio of the channel exit width and upstream channel width. Existence of multiple steady states is predicted in a certain regime of F - Bc parameter plane which is in agreement with experiments previously undertaken by (Akers & Bokhove 2008) and for granular flows (Vreman et al. 2007). Furthermore, the 1D model is verified by solving the 2D shallow granular equations using an open source discontinuous Galerkin finite element package hpGEM (Pesch et al. 2007). For supercritical flows i.e. F > 1 the 1D asymptotics holds although the two-dimensional oblique granular jumps largely vary across the converging channel. This computationally efficient closed 1D model is validated by comparing it to the computationally more expensiveaa three-dimensional particle simulations. Finally, we aim to present a quasi-steady particle simulation of inclined flow through two rectangular blocks separated by a gap

  1. Stability in channel flow with fiber suspensions

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The constitutive equation of fiber suspensions is established on the basis of fiber orientation tensors. The modified Orr-Sommerfeld stability equation is obtained further and numerically solved by aid of spectral method and finite difference method. The computational results of channel flow without fibers agree well with the experimental data with a higher degree of accuracy than previous numerical results. The results of the channel flow with fiber suspensions indicate that the presence of fibers attenuates the instability of flow, increases the critical Reynolds number, reduces the growth rate of perturbations and narrows the range of unstable waves. The extent of the effect of fibers on the flow stability is in direct proportion to the volume fraction and aspect-ratio of the fibers.

  2. Transverse flow in thin superhydrophobic channels

    CERN Document Server

    Feuillebois, Francois; Vinogradova, Olga I

    2010-01-01

    We provide some general theoretical results to guide the optimization of transverse hydrodynamic phenomena in superhydrophobic channels. Our focus is on the canonical micro- and nanofluidic geometry of a parallel-plate channel with an arbitrary two-component (low-slip and high-slip) coarse texture, varying on scales larger than the channel thickness. By analyzing rigorous bounds on the permeability, over all possible patterns, we optimize the area fractions, slip lengths, geometry and orientation of the surface texture to maximize transverse flow. In the case of two aligned striped surfaces, very strong transverse flows are possible. Optimized superhydrophobic surfaces may find applications in passive microfluidic mixing and amplification of transverse electrokinetic phenomena.

  3. Flag flutter in inviscid channel flow

    CERN Document Server

    Alben, Silas

    2014-01-01

    Using nonlinear vortex-sheet simulations, we determine the region in parameter space in which a straight flag in a channel-bounded inviscid flow is unstable to flapping motions. We find that for heavier flags, greater confinement increases the size of the region of instability. For lighter flags, confinement has little influence. We then compute the stability boundaries analytically for an infinite flag, and find similar results. For the finite flag we also consider the effect of channel walls on the large-amplitude periodic flapping dynamics. We find that multiple flapping states are possible but rare at a given set of parameters, when periodic flapping occurs. As the channel walls approach the flag, its flapping amplitude decreases roughly in proportion to the near-wall distance, for both symmetric and asymmetric channels. Meanwhile, its dominant flapping frequency and mean number of deflection extrema (or "wavenumber") increase in a nearly stepwise fashion. That is, they remain nearly unchanged over a wide...

  4. Liquid infused surfaces in turbulent channel flow

    Science.gov (United States)

    Fu, Matthew; Stone, Howard; Smits, Alexander; Jacobi, Ian; Samaha, Mohamed; Wexler, Jason; Shang, Jessica; Rosenberg, Brian; Hellström, Leo; Fan, Yuyang; Wang, Karen; Lee, Kevin; Hultmark, Marcus

    2014-11-01

    A turbulent channel flow facility is used to measure the drag reduction capabilities and dynamic behavior of liquid-infused micro-patterned surfaces. Liquid infused surfaces have been proposed as a robust alternative to traditional air-cushion-based superhydrophobic surfaces. The mobile liquid lubricant creates a surface slip with the outer turbulent shear flow as well as an energetic sink to dampen turbulent fluctuations. Micro-manufactured surfaces can be mounted flush in the channel and exposed to turbulent flows. Two configurations are possible, both capable of producing laminar and turbulent flows. The first configuration allows detailed investigation of the infused liquid layer and the other allows well resolved pressure gradient measurements. Both of the configurations have high aspect ratios 15-45:1. Drag reduction for a variety of liquid-infused surface architectures is quantified by measuring pressure drop in the channel. Flow in the oil film is simultaneously visualized using fluorescent dye. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).

  5. Blade manipulators in turbulent channel flow

    Science.gov (United States)

    Vasudevan, B.; Prabhu, A.; Narasimha, R.

    1992-01-01

    We report here the results of a series of careful experiments in turbulent channel flow, using various configurations of blade manipulators suggested as optimal in earlier boundary layer studies. The mass flow in the channel could be held constant to better than 0.1%, and the uncertainties in pressure loss measurements were less than 0.1 mm of water; it was therefore possible to make accurate estimates of the global effects of blade manipulation of a kind that are difficult in boundary layer flows. The flow was fully developed at the station where the blades were mounted, and always relaxed to the same state sufficiently far downstream. It is found that, for a given mass flow, the pressure drop to any station downstream is always higher in the manipulated than in the unmanipulated flow, demonstrating that none of the blade manipulators tried reduces net duct losses. However the net increase in duct losses is less than the drag of the blade even in laminar flow, showing that there is a net reduction in the total skin friction drag experienced by the duct, but this relief is only about 20% of the manipulator drag at most.

  6. Topology optimization of Channel flow problems

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Allan; Sigmund, Ole; Haber, R. B.

    2005-01-01

    ]. Further, the inclusion of inertia effects significantly alters the physics, enabling solutions of new classes of optimization problems, such as velocity--driven switches, that are not addressed by the earlier method. Specifically, we determine optimal layouts of channel flows that extremize a cost...... sensitivities. Our target application is optimal layout design of channels in fluid network systems. Using concepts borrowed from topology optimization of compliant mechanisms in solid mechanics, we introduce a method for the synthesis of fluidic components, such as switches, diodes, etc....

  7. Interannual variability in the Yucatan Channel flow

    Science.gov (United States)

    Athié, Gabriela; Sheinbaum, Julio; Leben, Robert; Ochoa, José; Shannon, Michael R.; Candela, Julio

    2015-03-01

    Mooring measurements in the Yucatan Channel, from May 2010 to May 2011 and from July 2012 to June 2013 yield a mean transport of 27 and 25 Sv, respectively, with a subinertial standard deviation of 3.5 Sv. These mean transport values are higher than the 23 Sv reported from 21 months of similar measurements (1999-2001). Analysis of low-frequency variations of a transport proxy based on 20 years of altimetry data indicates that during 1999-2001, the flow through Yucatan Channel was anomalously low. This suggests that a sizable compensation through other channels off the Gulf of Mexico is required to match the transport cable measurements of the Florida Current at 27°N.

  8. Slip Effects in Compressible Turbulent Channel Flow

    CERN Document Server

    Skovorodko, P A

    2012-01-01

    The direct numerical simulation of compressible fully developed turbulent Couette flow between two parallel plates with equal temperatures moving in opposite directions with some velocity was performed. The algorithm was tested on well known numerical solution for incompressible Poiseuille channel flow and found to provide its well description. The slip effects in studied flow are found to be negligibly small at the values of accommodation coefficients for velocity and temperature of the order of unity. The considerable increase of mean temperature with decreasing the accommodation coefficient for temperature was discovered. The effect may be important in the problems of heat exchange in compressible turbulent boundary layer for some combinations of flowing gas, surface and adsorbing gas.

  9. Slip effects in compressible turbulent channel flow

    Science.gov (United States)

    Skovorodko, P. A.

    2012-11-01

    The direct numerical simulation of compressible fully developed turbulent Couette flow between two parallel plates with temperature Tw moving with velocities ±Uw was performed. The algorithm was tested on well known numerical solution for incompressible Poiseuille channel flow and found to provide its well description. The slip effects in studied flow are found to be negligibly small at the values of accommodation coefficients αu and αT of the order of unity. The considerable increase of mean temperature with decreasing the accommodation coefficient αT for fixed value of αu = 1 was discovered. The effect may be important in the problems of heat exchange in compressible turbulent boundary layer for some combinations of flowing gas, surface and adsorbing gas.

  10. Flow in channels with superhydrophobic trapezoidal textures

    CERN Document Server

    Nizkaya, Tatiana V; Vinogradova, Olga I

    2013-01-01

    Superhydrophobic one-dimensional surfaces reduce drag and generate transverse hydrodynamic phenomena by combining hydrophobicity and roughness to trap gas bubbles in a microscopic textures. Recent work in this area has focused on specific cases of superhydrophobic stripes. Here we study theoretically and numerically the hydrodynamic flow in a channel with a superhydrophobic trapezoidal texture. These allow us to evaluate the drag reduction and anisotropy of the flow for various trapezoidal reliefs. Our results provide a framework for the rational design of superhydrophobic surfaces for microfluidic applications.

  11. Computational fluid dynamics analysis of core bypass flow and crossflow in a prismatic very high temperature gas-cooled nuclear reactor based on a two-layer block model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huhu, E-mail: huhuwang@tamu.edu [Department of Nuclear Engineering, Texas A and M University, 3133 TAMU, College Station, TX 77840 (United States); Dominguez-Ontiveros, Elvis, E-mail: elvisdom@tamu.edu [Department of Nuclear Engineering, Texas A and M University, 3133 TAMU, College Station, TX 77840 (United States); Hassan, Yassin A., E-mail: y-hassan@tamu.edu [Department of Nuclear Engineering, Texas A and M University, 3133 TAMU, College Station, TX 77840 (United States); Department of Mechanical Engineering, Texas A and M University, 3123 TAMU, College Station, TX 77840 (United States)

    2014-03-15

    Highlights: • A CFD model was built based on a two-layer block experimental facility at Texas A and M University. • The coolant characterizations within the uniform and wedge-shaped crossflow gap regions were investigated. • The influence on the coolant distribution from the bypass flow gap width was studied. • Discretization and iterative errors involved in the simulations were quantified. - Abstract: The very high temperature gas-cooled nuclear reactor (VHTR) has been designated as one of the promising reactors that will serve for the Next Generation (Generation IV) Nuclear Plant. For a prismatic VHTR core, the bypass flow and crossflow phenomena are important design considerations. To investigate the coolant distribution in the reactor core based on the two-layer block facility built at Texas A and M University, a three-dimensional steady-state CFD analysis was performed using the commercial code STAR-CCM+ v6.04. Results from this work serve as a guideline and validating source for the related experiments. A grid independence study was conducted to quantify related errors in the simulations. The simulation results show that the bypass flow fraction was not a strong function of the Reynolds number. The presence of the crossflow gap had a significant effect on the distribution of the coolant in the core. Uniform and wedge-shape crossflow gaps were studied. It was found that a significant secondary flow in the crossflow gap region moved from the bypass flow gap toward coolant holes, which resulted in up to a 28% reduction of the coolant mass flow rate in the bypass flow gap.

  12. Superhydrophobic surfaces in turbulent channel flow

    Science.gov (United States)

    Li, Yixuan; Alame, Karim; Mahesh, Krishnan

    2016-11-01

    The drag reduction effect of superhydrophobic surfaces in turbulent channel flow is studied using direct numerical simulation. The volume of fluid (VOF) methodology is used to resolve the dynamics of the interface. Laminar flow simulations show good agreement with experiment, and illustrate the relative importance of geometry and interface boundary condition. An analytical solution for the multi-phase problem is obtained that shows good agreement with simulation. Turbulent simulations over a longitudinally grooved surface show drag reduction even in the fully wetted regime. The statistics show that geometry alone can cause an apparent slip to the external flow. Instantaneous plots indicate that the grooves prevent the penetration of near wall vorticity, yielding overall drag reduction. Results for spectra, wall pressure fluctuations and correlations will be presented. Unsteady effects on the air-vapor interface will be discussed. Results for random roughness surfaces will be presented. Supported by Office of Naval Research.

  13. Covert Flow Graph Approach to Identifying Covert Channels

    OpenAIRE

    XiangMei Song; ShiGuang Ju

    2011-01-01

    In this paper, the approach for identifying covert channels using a graph structure called Covert Flow Graph is introduced. Firstly, the construction of Covert Flow Graph which can offer information flows of the system for covert channel detection is proposed, and the search and judge algorithm used to identify covert channels in Covert Flow Graph is given. Secondly, an example file system analysis using Covert Flow Graph approach is provided, and the analysis result is compared with that of ...

  14. Modelling debris flows down general channels

    Directory of Open Access Journals (Sweden)

    S. P. Pudasaini

    2005-01-01

    Full Text Available This paper is an extension of the single-phase cohesionless dry granular avalanche model over curved and twisted channels proposed by Pudasaini and Hutter (2003. It is a generalisation of the Savage and Hutter (1989, 1991 equations based on simple channel topography to a two-phase fluid-solid mixture of debris material. Important terms emerging from the correct treatment of the kinematic and dynamic boundary condition, and the variable basal topography are systematically taken into account. For vanishing fluid contribution and torsion-free channel topography our new model equations exactly degenerate to the previous Savage-Hutter model equations while such a degeneration was not possible by the Iverson and Denlinger (2001 model, which, in fact, also aimed to extend the Savage and Hutter model. The model equations of this paper have been rigorously derived; they include the effects of the curvature and torsion of the topography, generally for arbitrarily curved and twisted channels of variable channel width. The equations are put into a standard conservative form of partial differential equations. From these one can easily infer the importance and influence of the pore-fluid-pressure distribution in debris flow dynamics. The solid-phase is modelled by applying a Coulomb dry friction law whereas the fluid phase is assumed to be an incompressible Newtonian fluid. Input parameters of the equations are the internal and bed friction angles of the solid particles, the viscosity and volume fraction of the fluid, the total mixture density and the pore pressure distribution of the fluid at the bed. Given the bed topography and initial geometry and the initial velocity profile of the debris mixture, the model equations are able to describe the dynamics of the depth profile and bed parallel depth-averaged velocity distribution from the initial position to the final deposit. A shock capturing, total variation diminishing numerical scheme is implemented to

  15. Liquid Infused Surfaces in Turbulent Channel Flow

    Science.gov (United States)

    Fu, Matthew; Liu, Ying; Stone, Howard; Hultmark, Marcus

    2016-11-01

    Liquid infused surfaces have been proposed as a robust method for turbulent drag reduction. These surfaces consist of functionalized roughness elements wetted with a liquid lubricant that is immiscible with external fluids. The presence of the lubricant creates mobile, fluid-fluid interfaces, each of which can support a localized slip. Collectively, these interfaces yield a finite slip velocity at the effective surface, which has been demonstrated to reduce skin friction drag in turbulent flows. Retention of the lubricant layer is critical to maintaining the drag reduction effect. A turbulent channel-flow facility is used to characterize the drag reduction and robustness of various liquid infused surfaces. Micro-manufactured surfaces are mounted flush in the channel and exposed to turbulent flows. The retention of fluorescent lubricants and pressure drop are monitored to characterize the effects of surface geometry and lubricant properties. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim) and by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  16. NUMERICAL SIMULATION OF SKIMMING FLOW OVER MILD STEPPED CHANNEL

    Institute of Scientific and Technical Information of China (English)

    DONG Zhi-yong; LEE Joseph Hun-wei

    2006-01-01

    Numerical simulation of stepped channel flow was conducted using turbulence models based on the VOF technique. Stepped channel flow is a complicated air-water two-phase flow with free surface, which can be divided into three flow regimes: skimming flow, nappe flow and transition flow. The characteristics of skimming flow over mild stepped channel was investigated, including friction factors, air concentration profiles velocity field, clear-water and bulked depths, static pressure, etc. Smooth channel flow was also simulated to compare the hydraulic characteristics of the stepped channel flow with the smooth one. Comparisons between the computed and the measured were made. Furthermore, comparison of the computed air concentration with Straub and Anderson's data was also performed. The Fluent 6.1 software was employed to conduct this numerical simulation work.

  17. Static flow instability in subcooled flow boiling in parallel channels

    Energy Technology Data Exchange (ETDEWEB)

    Siman-Tov, M.; Felde, D.K.; McDuffee, J.L.; Yoder, G.L. Jr.

    1995-04-01

    A series of tests for static flow instability or flow excursion (FE) at conditions applicable to the proposed Advanced Neutron Source reactor was completed in parallel rectangular channels configuration with light water flowing vertically upward at very high velocities. True critical heat flux experiments under similar conditions were also conducted. The FE data reported in this study considerably extend the velocity range of data presently available worldwide. Out of the three correlations compared, the Saha and Zuber correlation had the best fit with the data. However, a modification was necessary to take into account the demonstrated dependence of the Stanton (St) and Nusselt (Nu) numbers on subcooling levels, especially in the low subcooling regime.

  18. Uncertainty analysis of quasi-two-dimensional flow simulation in compound channels with overbank flows

    OpenAIRE

    Riahi-Madvar, Hossien; Ayyoubzadeh, Seyed Ali; Namin, Masoud Montazeri; Seifi, Akram

    2011-01-01

    Flow in compound channels with overbank flows becomes more complex because of shear interactions between flows in main channel and flood plains, lateral momentum transfer and secondary flows. Compound channels have interesting applications in flood control, civil engineering and environmental management. Because it is difficult to obtain sufficiently accurate and comprehensive understandings of flow in natural compound rivers, the developed models of flow in overbank flows have many uncertain...

  19. Optimization of Meridional Flow Channel Design of Pump Impeller

    OpenAIRE

    Miyauchi Sunao; Horiguchi Hironori; Fukutomi Jun-ichirou; Takahashi Akihiro

    2004-01-01

    The meridional flow channel design of a pump impeller affects its performance. However, since so many design parameters exist, a new design method is proposed in which a meridional and blade-to-blade flow channel is designed by the parallel use of the circulation distribution provided by the designer. Thus, an optimization method was used to design an axis-symmetrical meridional flow channel from the circulation distribution. In addition, the inverse design method proposed by Zangeneh et al. ...

  20. Magnetohydrodynamic channel flows with weak transverse magnetic fields.

    Science.gov (United States)

    Rothmayer, A P

    2014-07-28

    Magnetohydrodynamic flow of an incompressible fluid through a plane channel with slowly varying walls and a magnetic field applied transverse to the channel is investigated in the high Reynolds number limit. It is found that the magnetic field can first influence the hydrodynamic flow when the Hartmann number reaches a sufficiently large value. The magnetic field is found to suppress the steady and unsteady viscous flow near the channel walls unless the wall shapes become large.

  1. VELOCITY PROFILES OF TURBULENT OPEN CHANNEL FLOWS

    Institute of Scientific and Technical Information of China (English)

    WANG Dianchang; WANG Xingkui; YU Mingzhong; LI Danxun

    2001-01-01

    The log-law and the wake law of velocity profile for open channel flows are discussed and compared in this paper. Experimental data from eight sources are used to verify the velocity distribution models.The effect of bed level on the velocity profile is analyzed. A formula to calculate the maximum velocity is proposed. In the region of y <δm , the velocity profile approximately follows the log-law. For the region of y >δm , the effect of the aspect ratio is considered. A new velocity profile model on the basis of log-law that can unify all of the hydraulic bed roughness is presented.

  2. Covert Flow Graph Approach to Identifying Covert Channels

    Directory of Open Access Journals (Sweden)

    XiangMei Song

    2011-12-01

    Full Text Available In this paper, the approach for identifying covert channels using a graph structure called Covert Flow Graph is introduced. Firstly, the construction of Covert Flow Graph which can offer information flows of the system for covert channel detection is proposed, and the search and judge algorithm used to identify covert channels in Covert Flow Graph is given. Secondly, an example file system analysis using Covert Flow Graph approach is provided, and the analysis result is compared with that of Shared Resource Matrix and Covert Flow Tree method. Finally, the comparison between Covert Flow Graph approach and other two methods is discussed. Different from previous methods, Covert Flow Graph approach provides a deep insight for system’s information flows, and gives an effective algorithm for covert channel identification.

  3. TWO PHASE FLOW SPLIT MODEL FOR PARALLEL CHANNELS

    African Journals Online (AJOL)

    Ifeanyichukwu Onwuka

    The equations are solved using the Broyden'smethod ... channel system subjected to a two-phase flow transient, and the results have been very .... system pressure, the heat addition rates inside ... three dimensional flows in the LP.

  4. Hydraulic flow through a channel contraction: multiple steady states

    NARCIS (Netherlands)

    Akers, B.; Bokhove, O.

    2008-01-01

    We have investigated shallow water flows through a channel with a contraction by experimental and theoretical means. The horizontal channel consists of a sluice gate and an upstream channel of constant width $b_0$ ending in a linear contraction of minimum width $b_c$. Experimentally, we observe upst

  5. Effects of spanwise rotation on turbulent channel flow

    CERN Document Server

    Brethouwer, Geert

    2016-01-01

    A study of fully developed plane turbulent channel flow subject to spanwise system rotation through direct numerical simulations is presented. In order to study both the influence of the Reynolds number and spanwise rotation on channel flow, the Reynolds number $Re = U_b h/\

  6. Capillary-Driven Flow in Liquid Filaments Connecting Orthogonal Channels

    Science.gov (United States)

    Allen, Jeffrey S.

    2005-01-01

    Capillary phenomena plays an important role in the management of product water in PEM fuel cells because of the length scales associated with the porous layers and the gas flow channels. The distribution of liquid water within the network of gas flow channels can be dramatically altered by capillary flow. We experimentally demonstrate the rapid movement of significant volumes of liquid via capillarity through thin liquid films which connect orthogonal channels. The microfluidic experiments discussed provide a good benchmark against which the proper modeling of capillarity by computational models may be tested. The effect of surface wettability, as expressed through the contact angle, on capillary flow will also be discussed.

  7. Effect of channel arrangement on fluid flow in PEMFC flow field using serpentine channel system with trapezoidal cross-section

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L.; Oosthuizen, P.H. [Queen' s Univ., Kingston, ON (Canada). Dept. of Mechanical and Materials Engineering; McAuley, K.B. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemical Engineering

    2005-07-01

    Developments in Computational Flow Dynamics (CFD) software have meant that Proton Exchange Membrane Fuel Cell (PEMFC) modelling is now able to include cell components such as gas channels and porous diffusion layers. This paper discussed a numerical model which was developed to study air flow in the flow plate and gas diffusion layer assembly on the cathode side of a PEMFC. The flow plate in this fuel cell often has serpentine channels, and the porous layer is adjacent to the flow plate in order to diffuse the air to the catalyst layer. Flow crossover of air through the porous diffusion layer from one part of the channel to another can occur as a result of pressure differences between different parts of the channel. The numerical study was undertaken to compare the cases of a single channel and 2 parallel channels, with the channels having a trapezoidal cross-sectional shape. The objective of the study was to examine the effect of the flow plate geometry on the basic fluid flow through the plate. Flow was assumed to be 3-dimensional, steady, incompressible, isothermal and single-phase. The flow through the porous diffusion layer was described using the Darcy model. Dimensionless governing equations were solved using FIDAP, a commercial CFD solver. The results indicate that single channel systems have a greater maximum flow rate difference than the parallel channel systems under the conditions considered in the experiment. In addition, the size ratio R of trapezoidal cross-sectional shape has a significant effect on the flow crossover and pressure variation in the flow field. 16 refs., 15 figs.

  8. Turbulent pipe flow: Statistics, Re-dependence, structures and similarities with channel and boundary layer flows

    National Research Council Canada - National Science Library

    El Khoury, George K; Schlatter, Philipp; Brethouwer, Geert; Johansson, Arne V

    2014-01-01

    Direct numerical simulation data of fully developed turbulent pipe flow are extensively compared with those of turbulent channel flow and zero-pressure-gradient boundary layer flow for Re-tau up to 1 000...

  9. Experimental study of natural circulation flow instability in rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tao; Qi, Shi; Song, Mingqiang [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Passive Nuclear Safety Technology, Beijing (China). Beijing Key Lab.; Xiao, Zejun [Nuclear, Reactor Thermal Hydraulics Technology, Chengdu (China). CNNC Key Lab.

    2017-05-15

    Experiments of natural circulation flow instability were conducted in rectangular channels with 5 mm and 10 mm wide gaps. Results for different heating powers were obtained. The results showed that the flow will tend to be instable with the growing of heating power. The oscillation period of pressure D-value and volume flow are the same, but their phase positions are opposite. They both can be described by trigonometric functions. The existence of edge position and secondary flow will strengthen the disturbance of fluid flow in rectangle channels, which contributes to heat transfer. The disturbance of bubble and fluid will be strengthened, especially in the saturated boiling section, which make it possible for the mixing flow. The results also showed that the resistance in 5 mm channel is bigger than that in 10 mm channel, it is less likely to form stable natural circulation in the subcooled region.

  10. 4. Large-Eddy Simulation of Turbulent Channel Flow

    OpenAIRE

    Yasuaki, DOI; Tsukasa, KIMURA; Hiroshima University; Mitsubishi Precision

    1989-01-01

    Turbulent channel flow is studied numerically by using Large-Eddy Simulation (LES). Finite difference method is employed in the LES. The simulation is stably executed by using the 3rd order upwind difference scheme which dissipate numerical errors. Several pilot tests are performed in order to investigate the effect of numerical dissipation and the wall damping function on the calculated results. Time dependent feature and turbulent flow structures in a turbulent channel flow are numerically ...

  11. Advanced porous electrodes with flow channels for vanadium redox flow battery

    Science.gov (United States)

    Bhattarai, Arjun; Wai, Nyunt; Schweiss, Ruediger; Whitehead, Adam; Lim, Tuti M.; Hng, Huey Hoon

    2017-02-01

    Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution.

  12. LONGITUDINAL DISPERSION IN SEDIMENT-LADEN OPEN CHANNEL FLOWS

    Institute of Scientific and Technical Information of China (English)

    Z.AHMAD; U.C.KOTHYARI; K.G.RANGA RAJU

    2004-01-01

    Laboratory experiments on longitudinal dispersion in clear-water and sediment-laden open channel flows are reported. Data from these experiments and those available from previous studies indicate that the suspended sediment present in the flow affects the longitudinal dispersion process. The observed velocity distributions over the depth of sediment-laden flows indicate that the velocity deviates from the mean velocity more in sediment-laden flows than in clear-water flows. The velocity distributions over the cross section and secondary flow in the channel are also expected to be altered due to the presence of suspended sediments in the flow. For these reasons, more dispersion is found in sediment-laden flows than in corresponding clear-water flows. A predictor for the dispersion coefficient in sediment-laden flows is proposed.

  13. Plural voltage minima in an arc-heated channel flow

    Science.gov (United States)

    Sasoh, A.

    2001-04-01

    In flows through a channel with varying cross-sectional area, the impulse and total enthalpy can be increased by superimposing an electrical discharge. The flow field is determined from the inlet flow condition, channel geometry, and discharge specifications. In this study, steady-state, quasi-one-dimensional flows interacting with an arc discharge are computed numerically. Once the arc column configuration is given, the discharge voltage is computed from the solution of flow field variables. For a constant discharge current, there exist plural column configurations which yield a minimum discharge voltage. This result explains the fluid-dynamic mechanisms of the existence of plural voltage modes in an arcjet operation.

  14. Flow characteristics and heat transfer in wavy walled channels

    Science.gov (United States)

    Mills, Zachary; Shah, Tapan; Monts, Vontravis; Warey, Alok; Balestrino, Sandro; Alexeev, Alexander

    2013-11-01

    Using lattice Boltzmann simulations, we investigated the effects of wavy channel geometry on the flow and heat transfer within a parallel plate heat exchanger. We observed three distinct flow regimes that include steady flow with and without recirculation and unsteady time-periodic flow. We determined the critical Reynolds numbers at which the flow transitions between different flow regimes. To validate our computational results, we compared the simulated flow structures with the structures observed in a flowing soap film. Furthermore, we examine the effects of the wavy channel geometry on the heat transfer. We find that the unsteady flow regime drastically enhances the rate of heat transfer and show that heat exchangers with wavy walls outperform currently used heat exchangers with similar volume and power characteristics. Results from our study point to a simple and efficient method for increasing performance in compact heat exchangers.

  15. Computation of gradually varied flow in compound open channel networks

    Indian Academy of Sciences (India)

    H Prashanth Reddy; M Hanif Chaudhry; Jasim Imran

    2014-12-01

    Although, natural channels are rarely rectangular or trapezoidal in cross section, these cross sections are assumed for the computation of steady, gradually varied flow in open channel networks. The accuracy of the computed results, therefore, becomes questionable due to differences in the hydraulic and geometric characteristics of the main channel and floodplains. To overcome these limitations, an algorithm is presented in this paper to compute steady, gradually varied flow in an open-channel network with compound cross sections. As compared to the presently available methods, the methodology is more general and suitable for application to compound and trapezoidal channel cross sections in series channels, tree-type or looped networks. In this method, the energy and continuity equations are solved for steady, gradually varied flow by the Newton–Raphson method and the proposed methodology is applied to tree-type and looped-channel networks. An algorithm is presented to determine multiple critical depths in a compound channel. Modifications in channel geometry are presented to avoid the occurrence of multiple critical depths. The occurrence of only one critical depth in a compound cross section with modified geometry is demonstrated for a tree-type channel network.

  16. Flow boiling in microgap channels experiment, visualization and analysis

    CERN Document Server

    Alam, Tamanna; Jin, Li-Wen

    2013-01-01

    Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis presents an up-to-date summary of the details of the confined to unconfined flow boiling transition criteria, flow boiling heat transfer and pressure drop characteristics, instability characteristics, two phase flow pattern and flow regime map and the parametric study of microgap dimension. Advantages of flow boiling in microgaps over microchannels are also highlighted. The objective of this Brief is to obtain a better fundamental understanding of the flow boiling processes, compare the performance between microgap and c

  17. Flow Routing for Delineating Supraglacial Meltwater Channel Networks

    Directory of Open Access Journals (Sweden)

    Leonora King

    2016-12-01

    Full Text Available Growing interest in supraglacial channels, coupled with the increasing availability of high-resolution remotely sensed imagery of glacier surfaces, motivates the development and testing of new approaches to delineating surface meltwater channels. We utilized a high-resolution (2 m digital elevation model of parts of the western margin of the Greenland Ice Sheet (GrIS and retention of visually identified sinks (i.e., moulins to investigate the ability of a standard D8 flow routing algorithm to delineate supraglacial channels. We compared these delineated channels to manually digitized channels and to channels extracted from multispectral imagery. We delineated GrIS supraglacial channel networks in six high-elevation (above 1000 m and one low-elevation (below 1000 m catchments during and shortly after peak melt (July and August 2012, and investigated the effect of contributing area threshold on flow routing performance. We found that, although flow routing is sensitive to data quality and moulin identification, it can identify 75% to 99% of channels observed with multispectral analysis, as well as low-order, high-density channels (up to 15.7 km/km2 with a 0.01 km2 contributing area threshold in greater detail than multispectral methods. Additionally, we found that flow routing can delineate supraglacial channel networks on rough ice surfaces with widespread crevassing. Our results suggest that supraglacial channel density is sufficiently high during peak melt that low contributing area thresholds can be employed with little risk of overestimating the channel network extent.

  18. Two-phase flow instabilities in a vertical annular channel

    Energy Technology Data Exchange (ETDEWEB)

    Babelli, I.; Nair, S.; Ishii, M. [Purdue Univ., West Lafayette, IN (United States)

    1995-09-01

    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  19. Erosional processes in channelized water flows on Mars

    Science.gov (United States)

    Baker, V. R.

    1979-01-01

    A hypothesis is investigated according to which the Martian outflow channels were formed by high-velocity flows of water or dynamically similar liquid. It is suggested that the outflow channels are largely the result of several interacting erosional mechanisms, including fluvial processes involving ice covers, macroturbulence, streamlining, and cavitation.

  20. Molecular dynamics simulations of oscillatory flows in microfluidic channels

    DEFF Research Database (Denmark)

    Hansen, J.S.; Ottesen, Johnny T.

    2006-01-01

    In this paper we apply the direct non-equilibrium molecular dynamics technique to oscillatory flows of fluids in microscopic channels. Initially, we show that the microscopic simulations resemble the macroscopic predictions based on the Navier–Stokes equation very well for large channel width, high...

  1. NONUNIFORM OPEN CHANNEL FLOW WITH UPWARD SEEPAGE THROUGH LOOSE BEDS

    Institute of Scientific and Technical Information of China (English)

    Subhasish DEY

    2003-01-01

    The Reynolds stress and bed shear stress are important parameters in fluvial hydraulics. Steadynonuniform flow in open channels with streamwise sloping beds having upward seepage through loose beds is theoretically analyzed to estimate the Reynolds stress and bed shear stress. Equations of the Reynolds stress and bed shear stress are developed, assuming a modified logarithmic velocity distribution law due to upward seepage, and using the Reynolds and continuity equations of twodimensional flow in open channels.

  2. Numerical Investigation of Developing Velocity Distributions in Open Channel Flows

    Directory of Open Access Journals (Sweden)

    Usman Ghani

    2014-04-01

    Full Text Available The velocity profiles in open channel flows start developing after entering into the channel for quite some length. All types of laboratory experiments for open channel flows are carried out in the fully developed flow regions which exist at some length downstream the inlet. In this research work an attempt has been made to investigate the impact of roughness and slope of the channel bed on the length required for establishment of fully developed flow in an open channel. A range of different roughness values along with various slopes were considered for this purpose. It was observed that an increase in roughness results in reduction of development length; and development length reduces drastically when roughness reaches to the range normally encountered in open channel flows with emergent vegetation or natural river flows. However, it was observed that the change of slope did not have any noticeable effect on development length. This work suggests that CFD (Computational Fluid Dynamics technique can be used for getting a reliable development length before performing an experimental work

  3. LARGE EDDY SIMULATION OF PULSATING TURBULENT OPEN CHANNEL FLOW

    Institute of Scientific and Technical Information of China (English)

    ZOU Li-yong; LIU Nan-sheng; LU Xi-yun

    2004-01-01

    Pulsating turbulent open channel flow has been investigated by the use of Large Eddy Simulation (LES) technique coupled with dynamic Sub-Grid-Scale (SGS) model for turbulent SGS stress to closure the governing equations. Three-dimensional filtered Navier-Stokes equations are numerically solved by a fractional-step method. The objective of this study is to deal with the behavior of the pulsating turbulent open channel flow and to examine the reliability of the LES approach for predicting the pulsating turbulent flow. In this study, the Reynolds number (Reτ ) is chosen as 180 based on the friction velocity and the channel depth. The frequency of the driving pressure gradient for the pulsating turbulent flow ranges low, medium and high value. Statistical turbulence quantities as well as the flow structures are analyzed.

  4. Stability of stratified two-phase flows in inclined channels

    CERN Document Server

    Barmak, Ilya; Ullmann, Amos; Brauner, Neima

    2016-01-01

    Linear stability of stratified gas-liquid and liquid-liquid plane-parallel flows in inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict parameter regions in which stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of steady state solutions are presented on the flow pattern map and are accompanied by critical wavenumbers and spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of ...

  5. Flow splitting modifies the helical motion in submarine channels

    Science.gov (United States)

    Islam, M. Ashraful; Imran, Jasim; Pirmez, Carlos; Cantelli, Alessandro

    2008-11-01

    Intricately meandering channels of various scales constitute a major morphological feature of the submarine slope and fan systems. These channels act as conduits of density-driven gravity underflows and in turn are shaped by these underflows. The relationship between channel curvature and the dynamics of sediment-laden underflows commonly known as turbidity current has been an enigma, and recently, a subject of controversy. This contribution unravels the flow field of turbidity current at submarine channel bends captured from large scale laboratory experiments. The experimental results show that a mildly sloping channel bank greatly enhances the tilt of the turbidity current-ambient water interface, so much so that the current completely separates from the convex or the inside bank. We also show that irrespective of the shape of the channel cross section, two cells of helical flow appear in confined submarine bend flow. The near-bed cell has a circulation pattern similar to that observed in fluvial channels; the other cell has an opposite sense of rotation. If, on the other hand, a portion of the flow detaches from the body of the current and spills to the concave or outside overbank area, the upper circulation cell becomes suppressed by the resulting lateral convection.

  6. FLOW FIELD IN SCOURED ZONE OF CHANNEL CONTRACTIONS

    Institute of Scientific and Technical Information of China (English)

    Rajkumar V. RAIKAR; Subhasish DEY

    2004-01-01

    Experiments were conducted in a laboratory flume to measure the two-dimensional turbulent flow field in the scoured zone of channel contractions under a clear-water scour condition. The Acoustic Doppler Velocimeter (ADV) was used to detect the flow field at different vertical lines along the centerline of uncontracted (main channel) and contracted zones of the channel. The distributions of time-averaged velocity components, turbulent intensity, turbulent kinetic energy, and Reynolds stresses are presented in nondimensional graphical form. The bed shear stresses are computed from the measured Reynolds stresses being in threshold condition within the zone of contraction where bed was scoured. The data presented in this paper would be useful to the investigators for the development of kinematic flow model and morphological model of scour at a channel or river contraction.

  7. DNS and scaling law analysis of compressible turbulent channel flow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fully developed compressible turbulent channel flow (Ma=0.8,Re=3300) is numerically simulated, and the data base of turbulence is established. The s tatistics such as density_weighted mean velocity and RMS velocity fluctuations i n semi_local coordinates agree well with those from other DNS data. High order s tatistics (skewness and flatness factors) of velocity fluctuations of compressib le turbulence are reported for the first time. Compressibility effects are also discussed. Pressure_dilatation absorbs part of the kinetic energy and makes the streaks of compressible channel flow more smooth. The scaling laws of compressible channel flow are also discussed. The conclusi ons are: (a) Scaling law is found in the center area of the channel. (b) In this area, ESS is also found. (c) When Mach number is not ve ry high, compressibility has little effect on scaling exponents.

  8. Unsteady hydromagnetic Couette flow within a porous channel with ...

    African Journals Online (AJOL)

    user

    It may be noted that the study of hydromagnetic flow within a porous channel may find application in designing of cooling systems with liquid metals, geothermal reservoirs, ... The paper is organized as follows: In Section 2, formulation of the problem and its ...... Combined effect of free and forced convection on MHD flow in a.

  9. Turbulent oscillating channel flow subjected to wind stress

    NARCIS (Netherlands)

    Kramer, W.; Clercx, H.J.H.; Armenio, V.; Armenio, Vincenzo; Geurts, Bernard; Fröhlich, Jochen

    2010-01-01

    The channel flow subjected to a wind stress at the free surface and an oscillating pressure gradient is investigated using large-eddy simulations (LES). a slowly pulsating mean flow occurs with the turbulent mechanics essentially being quasi steady. Logarithmic boundary layers are present at both th

  10. Propagation and deposition of stony debris flows at channel confluences

    Science.gov (United States)

    Stancanelli, L. M.; Lanzoni, S.; Foti, E.

    2015-07-01

    The fluid dynamics of stony debris flows generated in two small tributaries adjacent to each other and flowing into a main receiving channel was analyzed experimentally at a laboratory scale. The analysis on the propagation along the tributaries and deposition in the main channel provide information about sediment-water mobility, dangerous damming, and potential hazard. Debris flows were generated by releasing a preset water discharge over an erodible layer of saturated gravels material. As a consequence, the debris flow sediment concentration varied accordingly to the entrainment rate which, in turn, was strongly controlled by the tributary slope. The data collected by acoustic level sensors, pore fluid pressure transducers, and a load cell were used to characterize the evolution of bulk density and solid concentration of the sediment-water mixture. These two parameters were relevant to assess the stony debris flow mobility which contributes to determine the shape of sediment deposits in the main channel. The detailed bed topography surveys carried out in the main channel at the end of each experiment provided information on the morphology of these deposits and on the interplay of adjacent confluences. The influences of confluence angle, tributary slopes, and triggering conditions have been investigated, for a total of 18 different configurations. Within the investigated range of parameters, the slope angle was the parameter that mainly influences the stony debris flow mobility while, for adjacent confluences, the degree of obstruction within the receiving channel was strongly influenced by the triggering scenario.

  11. 2-D SIMULATION OF CHANNEL FLOWS WITH MOVEABLE BED

    Institute of Scientific and Technical Information of China (English)

    Wilhelm BECHTELER; Davood FARSHI

    2001-01-01

    This paper presents some preliminary results of 2-D numerical simulation of open channel flow with moveable bed. The unsteady two dimensional channel flow and sediment transport are simulated by solving shallow water equations and sediment continuity equation in conservation form based on unstructured finite volume method. Redefining longitudinal and transverse slopes of the bed is implemented in order to consider them in the bedload equation. A simple modeling treatment dealing with secondary flow effect on sediment movement is also discussed. Finally, two examples of numerical simulation are presented.

  12. Single phase channel flow forced convection heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Hartnett, J.P.

    1999-04-01

    A review of the current knowledge of single phase forced convection channel flow of liquids (Pr > 5) is presented. Two basic channel geometries are considered, the circular tube and the rectangular duct. Both laminar flow and turbulent flow are covered. The review begins with a brief overview of the heat transfer behavior of Newtonian fluids followed by a more detailed presentation of the behavior of purely viscous and viscoelastic Non-Newtonian fluids. Recent developments dealing with aqueous solutions of high molecular weight polymers and aqueous solutions of surfactants are discussed. The review concludes by citing a number of challenging research opportunities.

  13. NUMERICAL ANALYSIS OF GASEOUS FLOW IN MICRO-CHANNELS

    Institute of Scientific and Technical Information of China (English)

    Xu Jie; Gu Chuangang; Wang Tong

    2004-01-01

    The algorithm of gaseous flow in bi-dimensional micro-channels is set up and the corresponding program based on micro-flow theory is presented. Gaseous flow in micro-channels is numerically analyzed and the pressure drop along the duct as well as the velocity profile in the micro-channels is obtained. The numerical results agreed well with the experimental results in the references. Moreover, the effects of Kn, (σv and Re on the velocity profiles are analyzed. It is found that for Kn>0.001, with increasing Kn number, the slip velocity on the wall boundary increases; the tangential momentum coefficient (σv affects the slip velocity greatly. The slip velocity increases with decreasing (σv In the slip flow regime and for low Re numbers, the slip velocity is little influenced by the Re number.

  14. High Resolution Simulation of Turbulent Flow in a Channel.

    Science.gov (United States)

    1987-09-25

    chosen to maintain the original Poiseuille flow . The introduction of highly unstable disturbances causes transition to turbulence so that the wall...for Turbulent Channel Flow ," Phys. Rev. Lett, Vol. 47, 832-835 (1981). 2. S.A. Orszag and L.C. Kells, "Transition to turbulence in plane Poiseuille and...plane Couette Flow ," J. Fluid Mech., Vol. 96, pp. 159-205. 3. Kreplin, H.-P. and Eckelmann, H., "Behavior of the Three Fluctucting Velocity

  15. MHD-flow in slotted channels with conducting walls

    Energy Technology Data Exchange (ETDEWEB)

    Evtushenko, I.A.; Kirillov, I.R. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Reed, C.B. [Argonne National Lab., Chicago, IL (United States)

    1994-07-01

    A review of experimental results is presented for magnetohydrodynamic (MHD) flow in rectangular channels with conducting walls and high aspect ratios (longer side parallel to the applied magnetic field), which are called slotted channels. The slotted channel concept was conceived at Efremov Institute as a method for reducing MHD pressure drop in liquid metal cooled blanket design. The experiments conducted by the authors were aimed at studying both fully developed MHD-flow, and the effect of a magnetic field on the hydrodynamics of 3-D flows in slotted channels. Tests were carried out on five models of the slotted geometry. A good agreement between test and theoretical results for the pressure drop in slotted channels was demonstrated. Application of a {open_quotes}one-electrode movable probe{close_quotes} for velocity measurement permitted measurement of the M-shape velocity profiles in the slotted channels. Suppression of 3-D inertial effects in slotted channels of complex geometry was demonstrated based on potential distribution data.

  16. Thermal Drawdown-Induced Flow Channeling in Fractured Geothermal Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Pengcheng; Hao, Yue; Walsh, Stuart D. C.; Carrigan, Charles R.

    2015-06-30

    We investigate the flow-channeling phenomenon caused by thermal drawdown in fractured geothermal reservoirs. A discrete fracture network-based, fully coupled thermal–hydrological–mechanical simulator is used to study the interactions between fluid flow, temperature change, and the associated rock deformation. The responses of a number of randomly generated 2D fracture networks that represent a variety of reservoir characteristics are simulated with various injection-production well distances. We find that flow channeling, namely flow concentration in cooled zones, is the inevitable fate of all the scenarios evaluated. We also identify a secondary geomechanical mechanism caused by the anisotropy in thermal stress that counteracts the primary mechanism of flow channeling. This new mechanism tends, to some extent, to result in a more diffuse flow distribution, although it is generally not strong enough to completely reverse flow channeling. We find that fracture intensity substantially affects the overall hydraulic impedance of the reservoir but increasing fracture intensity generally does not improve heat production performance. Increasing the injection-production well separation appears to be an effective means to prolong the production life of a reservoir.

  17. Multiple flow profiles for two-phase flow in single microfluidic channels through site-selective channel coating

    NARCIS (Netherlands)

    Logtenberg, Hella; Lopez-Martinez, Maria J.; Feringa, Ben L.; Browne, Wesley R.; Verpoorte, Elisabeth

    2011-01-01

    An approach to control two-phase flow systems in a poly(dimethylsiloxane) (PDMS) microfluidic device using spatially selective surface modification is demonstrated. Side-by-side flows of ethanol : water solutions containing different polymers are used to selectively modify both sides of a channel by

  18. Effect Of Flow Resistance In Open Rectangular Channel

    Directory of Open Access Journals (Sweden)

    Ahmad Noor Aliza

    2017-01-01

    Full Text Available The determination of flow resistance for open channels remains a challenge in practices. In this research, an experimental study was carried out to investigate the hydraulic roughness characteristics in an open channel. The experimental flume (10 m length, 0.30 m width and 0.46 height was carried out with two conditions ; contain gravel bed and without gravel bed (as controller. Blocks of concrete foam were fabricated and laid on the bed surface for providing uniformly roughened along the open channel. A velocity flow meter was used to quantify the average velocity, and other parameters such as cross-section, hydraulic radius, wetted perimeter, and channel slopes were also calculated. Finally, the flow resistance, n obtained using the flume with gravel bed surface is higher than the flume without gravel bed surface. The flow conditions were declared as subcritical as the Froude number is less than 1 for both conditions in the flume. As a conclusion, it was identified that the hydraulic roughness n, was influenced by the type bed roughness, flow rate and channel slope.

  19. Statistics of polymer extensions in turbulent channel flow

    CERN Document Server

    Bagheri, Faranggis; Perlekar, Prasad; Brandt, Luca

    2012-01-01

    We present direct numerical simulations~(DNSs) of turbulent channel flow with passive Lagrangian polymers. To understand the polymer behavior we investigate the behavior of infinitesimal line elements and calculate, for the first time, the PDF of finite-time Lyapunov exponents and from them the corresponding Cramer's function for the channel flow. We study the statistics of polymer elongation for both the Oldroyd-B model (for Weissenberg number Wi 1 (FENE model) the polymer are significantly more stretched near the wall than at the centre of the flow. Furthermore near the wall the polymers show a strong tendency to orient along the stream-wise direction of the flow but near the centerline the statistics of orientation of the polymers is consistent with analogous results obtained recently in homogeneous and isotropic flows [2].

  20. Multiscale modeling of turbulent channel flow over porous walls

    Science.gov (United States)

    Yogaraj, Sudhakar; Lacis, Ugis; Bagheri, Shervin

    2016-11-01

    We perform direct numerical simulations of fully developed turbulent flow through a channel coated with a porous material. The Navier-stokes equations governing the fluid domain and the Darcy equations of the porous medium are coupled using an iterative partitioned scheme. At the interface between the two media, boundary conditions derived using a multiscale homogenization approach are enforced. The main feature of this approach is that the anisotropic micro-structural pore features are directly taken into consideration to derive the constitutive coefficients of the porous media as well as of the interface. The focus of the present work is to study the influence of micro-structure pore geometry on the dynamics of turbulent flows. Detailed turbulence statistics and instantaneous flow field are presented. For comparison, flow through impermeable channel flows are included. Supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant agreement No 708281.

  1. The mechanical energy equation for total flow in open channels

    Institute of Scientific and Technical Information of China (English)

    刘士和; 范敏; 薛娇

    2014-01-01

    The mechanical energy equation is a fundamental equation of a 1-D mathematical model in Hydraulics and Engineering Fluid Mechanics. This equation for the total flow used to be deduced by extending the Bernoulli’s equation for the ideal fluid in the streamline to a stream tube, and then revised by considering the viscous effect and integrated on the cross section. This derivation is not rigorous and the effect of turbulence is not considered. In this paper, the energy equation for the total flow is derived by using the Navier-Stokes equations in Fluid Mechanics, the results are as follows:(1) A new energy equation for steady channel flows of in-compressible homogeneous liquid is obtained, which includes the variation of the turbulent kinetic energy along the channel, the for-mula for the mechanical energy loss of the total flow can be determined directly in the deduction process. (2) The theoretical solution of the velocity field for laminar flows in a rectangular open channel is obtained and the mechanical energy loss in the energy equa-tion is calculated. The variations of the coefficient of the mechanical energy loss against the Reynolds number and the width-depth ratio are obtained. (3) The turbulent flow in a rectangular open channel is simulated using 3-D Reynolds averaged equations closed by the Reynolds stress model (RSM), and the variations of the coefficient of the mechanical energy loss against the Reynolds number and the width-depth ratio are discussed.

  2. Generation of Martian chaos and channels by debris flows

    Science.gov (United States)

    Nummedal, D.; Prior, D. B.

    1981-01-01

    A debris flow mechanism is proposed to account for the formation of chaos and the large channels debouching into Crysae Planitia from the adjacent southern uplands of Mars. Based on considerations of the juxtaposition of individual channel environments, the morphological assemblages within each environment and flow dynamics, it is suggested that the debris flows were triggered by the large-scale failure of subsurface sediments, possibly initiated by a seismic event. During the initial, slow-moving phase of the flow, the debris would have formed gently sinuous channels with multiple side-wall slumps, grooves and ridges, and elongate erosional remnants. The flow would have gained mobility as the debris moved downslope, producing travel distances greatly in excess of those characteristic of terrestrial examples, and eroded, streamlined remnants at the distal reaches of the channel. Finally, due to internal and boundary friction, the flow would have been slowed down once it entered the Chryse plains, resulting in a thin debris blanket with no depositional relief.

  3. Experimental observation of fluid flow channels in a single fracture

    Science.gov (United States)

    Brown, Stephen; Caprihan, Arvind; Hardy, Robert

    1998-03-01

    A method for obtaining precise replicas of real fracture surfaces using transparent epoxy resins was developed, allowing detailed study of fluid flow paths within a fracture plane. A natural rock fracture was collected from the field and prepared for study. Silicon rubber molds of the fracture surfaces were used to make a transparent epoxy replica of the original fracture. Clear and dyed water were injected into the fracture pore space allowing examination of the flow field. Digitized optical images were used to observe wetting, saturated flow, and drying of the specimen. Nuclear magnetic resonance imaging was used for quantitative measurements of flow velocity. Both video imaging and nuclear magnetic resonance imaging techniques show distinct and strong channeling of the flow at the submillimeter to several-centimeter scale. Each phenomenon, including wetting, drying, dye transport, and velocity channeling, has its own distinct geometric structure and scale. We find that fluid velocities measured simultaneously at various locations in the fracture plane during steady state flow range over several orders of magnitude, with the maximum velocity a factor of 5 higher than the mean velocity. This suggests that flow channeling in fractured rock can cause the breakthrough velocity of contaminants to far exceed the mean flow.

  4. Numerical study on flow rate limitation of open capillary channel flow through a wedge

    Directory of Open Access Journals (Sweden)

    Ting-Ting Zhang

    2016-04-01

    Full Text Available The flow characteristics of slender-column flow in wedge-shaped channel under microgravity condition are investigated in this work. The one-dimensional theoretical model is applied to predict the critical flow rate and surface contour of stable flow. However, the one-dimensional model overestimates the critical flow rate for not considering the extra pressure loss. Then, we develop a three-dimensional simulation method with OpenFOAM, a computational fluid dynamics tool, to simulate various phenomena in wedge channels with different lengths. The numerical results are verified with the capillary channel flow experimental data on the International Space Station. We find that the three-dimensional simulation perfectly predicts the critical flow rates and surface contours under various flow conditions. Meanwhile, the general behaviors in subcritical, critical, and supercritical flow are studied in three-dimensional simulation considering variations of flow rate and open channel length. The numerical techniques for three-dimensional simulation is validated for a wide range of configurations and is hopeful to provide valuable guidance for capillary channel flow experiment and efficient liquid management in space.

  5. Separation of Particles in Swirling Flow in Coaxial Channel

    Directory of Open Access Journals (Sweden)

    Vasilevsky Michail

    2016-01-01

    Full Text Available Cyclones are widely used devices to separate a dispersed phase (e.g. particles or droplets from a continuous phase. The separation of particles in coaxial channels with different length is considered in paper. In this study we show that as coaxial channels length grows, the efficiency increases. In addition we demonstrate that as a gap between cylinder components is reduced, the aerosol spray efficiency is reduced also in turbulent flow.

  6. COMPUTATIONAL ANALYSIS OF PARTICULATE FLOW IN EXPANSION CHANNEL

    Directory of Open Access Journals (Sweden)

    Nor Azwadi Che Sidik

    2013-01-01

    Full Text Available Computational prediction of fluid-solid particle interaction in an expansion horizontal channel with wide range of Reynolds numbers. Lagrangian-Lagrangian numerical technique to predict the movement of solid particle. The method is based on mesocale scheme of lattice Boltzmann method for prediction of fluid dynamics and second Newton’s law for the dynamics of solid particles. The flow behaviour at the downstream of the expansion channel is critically dependence on the Reynolds number of the flow. The removal percentage of the contaminant critically dependence on the flow structure donwstream of the expansion channel. The strength of recirculation region plays significant role due to the step in the cavity.

  7. Temporal and spatial intermittencies within channel flow turbulence near transition

    Science.gov (United States)

    Kushwaha, Anubhav; Park, Jae Sung; Graham, Michael D.

    2017-02-01

    Direct numerical simulations (DNS) of plane Poiseuille flow are performed in an extended domain at friction Reynolds numbers ranging from 70 to 100. In minimal domains, turbulence in this Reynolds number range displays substantial intermittency that is associated with chaotic movement of turbulent trajectories between lower and upper branch invariant solutions known as exact coherent states (ECS). The present work aims to address the relationship between temporal dynamics in minimal channels and spatiotemporal dynamics in extended domains. Both temporal and spatial analyses of the turbulent velocity fields are performed, the latter using image analysis methods. These analyses partition the flow characteristics into low-, intermediate- and high-drag classes; we present the differences between flows fields in these classes in terms of simple quantities like mean velocity, wall shear stress, and flow structures. The temporal and spatial analysis methods, although completely independent of one another, yield very similar results for both low- and high-drag regions. In particular, the conditional mean profiles in regions of low drag closely resemble those found in low-drag temporal intervals in the minimal channel. Finally, we address the possibility of similarities between turbulence and exact coherent states in two ways: (1) comparing wall shear stress in localized patches the size of minimal channels in large domains with those in actual minimal channel and (2) comparing conditional mean velocity profiles during low-drag events with mean profiles from lower branch ECS. These analyses show that both the local near-wall flow structure in the low-drag patches of the large domain and the conditional mean profiles in the region y+≲30 resemble those of a lower branch minimal domain ECS. In summary, the results presented here suggest that spatiotemporal intermittency in transitional channel flow turbulence is related to temporal intermittency, and by extension to the

  8. Stability of stratified two-phase flows in inclined channels

    Science.gov (United States)

    Barmak, I.; Gelfgat, A. Yu.; Ullmann, A.; Brauner, N.

    2016-08-01

    Linear stability of the stratified gas-liquid and liquid-liquid plane-parallel flows in the inclined channels is studied with respect to all wavenumber perturbations. The main objective is to predict the parameter regions in which the stable stratified configuration in inclined channels exists. Up to three distinct base states with different holdups exist in the inclined flows, so that the stability analysis has to be carried out for each branch separately. Special attention is paid to the multiple solution regions to reveal the feasibility of the non-unique stable stratified configurations in inclined channels. The stability boundaries of each branch of the steady state solutions are presented on the flow pattern map and are accompanied by the critical wavenumbers and the spatial profiles of the most unstable perturbations. Instabilities of different nature are visualized by the streamlines of the neutrally stable perturbed flows, consisting of the critical perturbation superimposed on the base flow. The present analysis confirms the existence of two stable stratified flow configurations in a region of low flow rates in the countercurrent liquid-liquid flows. These configurations become unstable with respect to the shear mode of instability. It was revealed that in slightly upward inclined flows the lower and middle solutions for the holdup are stable in the part of the triple solution region, while the upper solution is always unstable. In the case of downward flows, in the triple solution region, none of the solutions are stable with respect to the short-wave perturbations. These flows are stable only in the single solution region at low flow rates of the heavy phase, and the long-wave perturbations are the most unstable ones.

  9. Experimental Investigation of Flow Boiling in Parallel Mini-channels

    Science.gov (United States)

    Wu, Wan.; Zhang, M. T.; Zhang, X. B.; Xia, J. J.; Wen, S.-Z.; Wang, Z.-R.; He, Z.-H.; Huang, Z.-C.

    2015-07-01

    Flow boiling in micro-channels and mini-channels has received significant attention due to its capability for dissipating highflux heat, especially in the thermal management of high precision electronics. A heat sink with narrow rectangular mini-channels is designed to investigate flow boiling in the mini-channels, including the effect of gravity. It contains 14 parallel channels with a cross section, of 1×4mm 2, of which the hydraulic diameter is 1.6mm. The cooling capability, the temperature uniformity, and the temperature stability of the flow boiling in minichannels are investigated with R22, with total mass flow flux ranges from 35 to 70kg/m 2s. The results show that the cooling capability of the heat- sink is up to 340W(˜ 3.0W/cm 2), and the temperature difference is below 4 ∘C(even down to 2 ∘C) on the heat sink. The temperature uniformity isn't quite sensitive to heat flux. The instability has not been observed in the present researches.

  10. Behaviour of organised disturbances in fully developed turbulent channel flow

    Indian Academy of Sciences (India)

    P K Sen; Srinivas V Veeravali

    2000-10-01

    In our earlier work we have shown the relevance of stability theory in understanding the sustenance of turbulence in turbulent boundary layers. Here we adopt the same model to study the evolution of organised disturbances in turbulent channel flow. Since the dominant modes are wall modes we find that the stability characteristics in the two flows are nearly identical although the boundary conditions (at the edge of the boundary layer and at the centre of the channel) are different. Comparisons with the experiments of Hussain and Reynolds are also presented.

  11. Two-Phase Flow Hydrodynamics in Superhydrophobic Channels

    Science.gov (United States)

    Stevens, Kimberly; Crockett, Julie; Maynes, Daniel; Iverson, Brian

    2015-11-01

    Superhydrophobic surfaces promote drop-wise condensation and droplet removal leading to the potential for increased thermal transport. Accordingly, great interest exists in using superhydrophobic surfaces in flow condensing environments, such as power generation and desalination. Adiabatic air-water mixtures were used to gain insight into the effect of hydrophobicity on two-phase flows and the hydrodynamics present in flow condensation. Pressure drop and onset of various flow regimes in hydrophilic, hydrophobic, and superhydrophobic mini (0.5 x 10 mm) channels were explored. Data for air/water mixtures with superficial Reynolds numbers from 20-200 and 250-1800, respectively, were obtained. Agreement between experimentally obtained pressure drops and correlations in literature for the conventional smooth control surfaces was better than 20 percent. Transitions between flow regimes for the hydrophobic and hydrophilic channels were similar to commonly recognized flow types. However, the superhydrophobic channel demonstrated significantly different flow regime behavior from conventional surfaces including a different shape of the air slugs, as discussed in the presentation.

  12. Experimental study of two phase flow in inclined channel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Goon Cherl; Lee, Tae Ho; Lee, Sang Won [Seoul National University, Seoul (Korea, Republic of)

    1997-07-01

    Local two-phase flow parameters were measured to investigate the internal flow structures of steam-water boiling flow in an inclined channel. The vapor phase local flow parameters, such as void fraction, bubble frequency, vapor velocity, interfacial area concentration and chord length, were measured, using two conductivity probe method, and local liquid phase velocity was measured by pitot tube. In order to investigate the effects of channel inclination on two phase flow structure, the experiments were conducted for three angles of inclination; 0 degree(vertical), 30 degree and 60 degree. The experimental flow conditions were confined to the liquid superficial velocities less than 1.4 m/sec and nearly atmospheric pressure, and the flow regime was limited to the subcooled boiling. Using the measured distributions of the local phasic parameters, correlations for the drift-flux parameters such as distribution parameter and drift velocity were proposed. Those correlations were compared with the available correlation applicable to the inclined channel by the calculation of average void fraction using the present data. 44 refs., 4 tabs., 88 figs. (author)

  13. Yield Hardening of Electrorheological Fluids in Channel Flow

    Science.gov (United States)

    Helal, Ahmed; Qian, Bian; McKinley, Gareth H.; Hosoi, A. E.

    2016-06-01

    Electrorheological fluids offer potential for developing rapidly actuated hydraulic devices where shear forces or pressure-driven flow are present. In this study, the Bingham yield stress of electrorheological fluids with different particle volume fractions is investigated experimentally in wall-driven and pressure-driven flow modes using measurements in a parallel-plate rheometer and a microfluidic channel, respectively. A modified Krieger-Dougherty model can be used to describe the effects of the particle volume fraction on the yield stress and is in good agreement with the viscometric data. However, significant yield hardening in pressure-driven channel flow is observed and attributed to an increase and eventual saturation of the particle volume fraction in the channel. A phenomenological physical model linking the densification and consequent microstructure to the ratio of the particle aggregation time scale compared to the convective time scale is presented and used to predict the enhancement in yield stress in channel flow, enabling us to reconcile discrepancies in the literature between wall-driven and pressure-driven flows.

  14. Numerical simulations of heat transfer in plane channel flow

    CERN Document Server

    Gharbi, Najla El; Benzaoui, Ahmed

    2010-01-01

    Reynolds-averaged Navier-Stokes (RANS) turbulence models (such as k-{\\epsilon} models) are still widely used for engineering applications because of their relatively simplicity and robustness. In fully developed plane channel flow (i.e. the flow between two infinitely large plates), even if available models and near-wall treatments provide adequate mean flow velocities, they fail to predict suitable turbulent kinetic energy "TKE" profiles near walls. TKE is involved in determination of eddy viscosity/diffusivity and could therefore provide inaccurate concentrations and temperatures. In order to improve TKE a User Define Function "UDF" based on an analytical profile for TKE was developed and implemented in Fluent. Mean streamwise velocity and turbulent kinetic energy "TKE" profiles were compared to DNS data for friction Reynolds number $Re_{\\tau}$ = 150. Simulation results for TKE show accurate profiles. Simulation results for horizontal heated channel flows obtained with Fluent are presented. Numerical result...

  15. Elastic Turbulence in Channel Flows at Low Reynolds number

    CERN Document Server

    Qin, Boyang

    2016-01-01

    We experimentally demonstrate the existence of elastic turbulence in straight channel flow at low Reynolds numbers. Velocimetry measurements show non-periodic fluctuations in the wake of curved cylinders as well as in a parallel shear flow region. The flow in these two locations of the channel is excited over a broad range of frequencies and wavelengths, consistent with the main features of elastic turbulence. However, the decay of the initial elastic turbulence around the cylinders is followed by a growth downstream in the straight region. The emergence of distinct flow characteristics both in time and space suggests a new type of elastic turbulence, markedly different from that near the curved cylinders. We propose a self-sustaining mechanism to explain the sustained fluctuations in the parallel shear region.

  16. Basic hydraulic principles of open-channel flow

    Science.gov (United States)

    Jobson, Harvey E.; Froehlich, David C.

    1988-01-01

    The three basic principles of open-channel-flow analysis--the conservation of mass, energy, and momentum--are derived, explained, and applied to solve problems of open-channel flow. These principles are introduced at a level that can be comprehended by a person with an understanding of the principles of physics and mechanics equivalent to that presented in the first college level course of the subject. The reader is assumed to have a working knowledge of algebra and plane geometry as well as some knowledge of calculus. Once the principles have been derived, a number of example applications are presented that illustrate the computation of flow through culverts and bridges, and over structures, such as dams and weirs. Because resistance to flow is a major obstacle to the successful application of the energy principle to open-channel flow, procedures are outlined for the rational selection of flow resistance coefficients. The principle of specific energy is shown to be useful in the prediction of water-surface profiles both in the qualitative and quantitative sense. (USGS)

  17. Dry microfoams: Formation and flow in a confined channel

    CERN Document Server

    Raven, J P; Marmottant, Philippe; Raven, Jan-Paul

    2005-01-01

    We present an experimental investigation of the assembly of microbubbles into a 2D foam and its flow in a rectangular microchannel. Using a flow-focusing method, we produce a foam in situ on a microfluidic chip for a large range of liquid fractions, down to a few percent in liquid. The channel height is 250 μm, resulting in bubbles whose height to diameter aspect ratio ranges between 0.3 and 1. We can monitor the transition from separated bubbles to the desired microfoam, in which bubbles are closely packed and separated by thin films. We find that bubble formation frequency is limited by the liquid flow rate, and that it creates a modulation of the foam flow, rapidly damped along the channel. The average foam flow rate depends non-linearly on the applied pressure, displaying a threshold pressure due to capillarity. Strong discontinuities in the flow rate appear when the number of bubbles in the channel width changes, reflecting the discrete nature of the foam topology. For a given foam structure the...

  18. Morphology of Cryogenic Flows and Channels on Dwarf Planet Ceres

    Science.gov (United States)

    Krohn, Katrin; Jaumann, Ralf; Otto, Katharina A.; von der Gathen, Isabel; Matz, Klaus-Dieter; Buczkowski, Debra L.; Williams, David A.; Pieters, Carle M.; Preusker, Frank; Roatsch, Thomas; Stephan, Katrin; Wagner, Roland J.; Russell, Christopher T.; Raymond, Carol A.

    2016-04-01

    Cereś surface is affected by numerous impact craters and some of them show features such as channels or multiple flow events forming a smooth, less cratered surface, indicating possible post-impact resurfacing [1,2]. Flow features occur on several craters on Ceres such as Haulani, Ikapati, Occator, Jarimba and Kondos in combination with smooth crater floors [3,4], appearing as extended plains, ponded material, lobate flow fronts and in the case of Haulani lobate flows originating from the crest of the central ridge [3] partly overwhelming the mass wasting deposits from the rim. Haulanís crater flanks are also affected by multiple flow events radiating out from the crater and partly forming breakages. Flows occur as fine-grained lobes with well-defined margins and as smooth undifferentiated streaky flows covering the adjacent surface. Thus, adjacent craters are covered by flow material. Occator also exhibits multiple flows but in contrast to Haulani, the flows originating from the center overwhelm the mass wasting deposits from the rim [4]. The flows have a "bluish" signature in the FC color filters ratio. Channels occur at relatively fresh craters. They also show the "bluish" signature like the flows and plains. Only few channels occur at older "reddish" craters. They are relatively fresh incised into flow features or crater ejecta. Most are small, narrow and have lobated lobes with predominant distinctive flow margins. The widths vary between a few tens of meters to about 3 km. The channels are found on crater flanks as well as on the crater floors. The occurrence of flow features indicates viscous material on the surface. Those features could be formed by impact melt. However, impact melt is produced during the impact, assuming similar material properties as the ejecta it is expected to have nearly the same age as the impact itself, but the flows and plains are almost free of craters, thus, they seem to be much younger than the impact itself. In addition, the

  19. Development of Channeled Flow in Partially Molten Medium

    Science.gov (United States)

    Takashima, S.; Kumagai, I.; Kurita, K.

    2002-12-01

    There exist two contrasting models as to the style of melt migration in the partially molten medium; homogeneous permeable flow on grain scale and heterogeneous localized one (channeled flow on larger scale than the grain scale). It is considered that the style evolves from the homogeneous flow to the heterogeneous one as the degree of melting increases, but the physics responsible for this flow organization is not yet clarified. Several models as to this process and the melt segregation are proposed based on numerical simulation, though the experimental verification is not given yet. Here we present simple experimental results on the flow organization. We utilized highly deformable transparent gel as the solid phase. Due to this high deformability the matrix composed of the gel is easy to vary its internal structure. We have conducted the following experiments; the gel (about 5mm in diameter) is mingled with methyl-cellulose solution (MS) with almost same density as the gel, 1.01g/cm3, packed in a rectangular parallelepiped case (2.4cm*18cm*14.4cm), and a compaction state is realized by covering with wire netting at the upper boundary. Gel fraction of this mixture system is controlled by changing the ratio of the gel to MS (about 100% to 60%). Glycerol solution (GS) with density of 1.2g/cm3 is poured at the upper boundary. This is a kind of Rayleigh-Taylor Instability and the dense GS flows downward through the mixture. The flow pattern of the GS is analyzed. A series of these procedures is carried out at various gel fractions (from about 100% to 60%), and how the flow style varies with the gel fraction is investigated. At median fraction of the gel about 80% to 70% the evolution from homogeneous permeable flow to heterogeneous localized flow was observed. At higher gel fraction, liquid phase flows as homogeneous permeable flow. Fragility of the solid frame is a most important factor for flow organization. The structure of the partially molten medium can be easily

  20. Thermophoretic effects on nano-particle deposition in channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Chein, Reiyu; Liao, Wenyuan [National Chung Hsing University, Department of Mechanical Engineering, Taichung (Taiwan)

    2005-11-01

    In this study, deposition of particles with diameters of 3,5, and 10 nm in a finite-length heated channel flow is numerically studied under both molecular diffusion and thermophoretic effects. Two types of thermal conditions were examined. The first condition involved various inlet temperatures with a fixed wall temperature. The second condition involved various wall temperatures and a fixed inlet temperature. For a finite channel length, higher particle deposition can be obtained for the various inlet temperature and fixed wall temperature cases. However, for the same temperature ranges, complete particle collection on the wall can only be achieved under various wall temperatures and fixed inlet temperature cases when the channel length is long enough. This is because a temperature gradient appears in these cases. The temperature gradient in the various inlet wall temperatures and fixed wall temperature cases is zero when the flow is thermally fully developed. (orig.)

  1. DNS of turbulent channel flow subject to oscillatory heat flux

    Directory of Open Access Journals (Sweden)

    Bukhvostova Anastasia

    2014-01-01

    Full Text Available In this paper we study the heat transfer in a turbulent channel flow, which is periodically heated through its walls. We consider the flow of air and water vapor using direct numerical simulation. We consider the fluid as a compressible Newtonian gas. We focus on the heat transfer properties of the system, e.g., the temperature difference between the walls and the Nusselt number. We consider the dependence of these quantities on the frequency of the applied heat flux. We observe that the mean temperature difference is quite insensitive to the frequency and that the amplitude of its oscillations is such that its value multiplied by the square root of frequency is approximately constant. Next we add droplets to the channel, which can undergo phase transitions. The heat transfer properties of the channel in the case with droplets are found to increase by more than a factor of two, compared to the situation without droplets.

  2. Secondary flow in sharp open-channel bends

    NARCIS (Netherlands)

    Blanckaert, K.; De Vriend, H.J.

    2004-01-01

    Secondary currents are a characteristic feature of flow in open-channel bends. Besides the classical helical motion (centre-region cell), a weaker and smaller counter-rotating circulation cell (outer-bank cell) is often observed near the outer bank, which is believed to play an important role in ban

  3. Numerical simulation of particle-laden turbulent channel flow

    NARCIS (Netherlands)

    Li, Y.; McLaughlin, J.B.; Kontomaris, K.; Portela, L.

    2001-01-01

    This paper presents results for the behavior of particle-laden gases in a small Reynolds number vertical channel down flow. Results will be presented for the effects of particle feedback on the gas-phase turbulence and for the concentration profile of the particles. The effects of density ratio,

  4. Two-fluid oscillatory flow in a channel

    Institute of Scientific and Technical Information of China (English)

    C.Y.Wang

    2011-01-01

    The validity of Navier's partial slip condition is investigated by studying the oscillatory flow in a coated channel.The two-fluid model is used to solve the unsteady viscous equations exactly.Partial slip is experienced by the core fluid.It is found that Naviers condition does not hold for an unsteady core fluid.

  5. LES of droplet-laden non-isothermal channel flow

    NARCIS (Netherlands)

    Michalek, W.R.; Liew, R.; Kuerten, J.G.M.; Zeegers, J.C.H.

    2011-01-01

    In this paper subgrid models for LES of droplet-laden non-isothermal channel flow are tested and improved for three Reynolds numbers based on friction velocity, Reτ of 150, 395, and 950 with the aim to develop a simulation method for LES of a droplet-laden Ranque-Hilsch vortex tube. A new subgrid mo

  6. Prediction of concentrated flow width in ephemeral gully channels

    Science.gov (United States)

    Nachtergaele, J.; Poesen, J.; Sidorchuk, A.; Torri, D.

    2002-07-01

    Empirical prediction equations of the form W = aQb have been reported for rills and rivers, but not for ephemeral gullies. In this study six experimental data sets are used to establish a relationship between channel width (W, m) and flow discharge (Q, m3 s-1) for ephemeral gullies formed on cropland. The resulting regression equation (W = 2·51 Q0·412; R2 = 0·72; n = 67) predicts observed channel width reasonably well. Owing to logistic limitations related to the respective experimental set ups, only relatively small runoff discharges (i.e. Q flow channels revealed that the discharge exponent (flow shear stress distribution over the wetted perimeter between rills, gullies and rivers, (ii) a decrease in probability of a channel formed in soil material with uniform erosion resistance from rills over gullies to rivers and (iii) a decrease in average surface slope from rills over gullies to rivers.material. For both cases observed flow on cropland. For the frozen soils the equation

  7. A reciprocal theorem for boundary-driven channel flows

    CERN Document Server

    Michelin, Sebastien

    2015-01-01

    In a variety of physical situations, a bulk viscous flow is induced by a distribution of surface velocities, for example in diffusiophoresis (as a result of chemical gradients) and above carpets of cilia (as a result of biological activity). When such boundary-driven flows are used to pump fluids, the primary quantity of interest is the induced flow rate. In this letter we propose a method, based on the reciprocal theorem of Stokes flows, to compute the net flow rate for arbitrary flow distribution and periodic pump geometry using solely stress information from a dual Poiseuille-like problem. After deriving the general result we apply it to straight channels of triangular, elliptic and rectangular geometries and quantify the relationship between bulk motion and surface forcing.

  8. A reciprocal theorem for boundary-driven channel flows

    Science.gov (United States)

    Michelin, Sébastien; Lauga, Eric

    2015-11-01

    In a variety of physical situations, a bulk viscous flow is induced by a distribution of surface velocities, for example, in diffusiophoresis (as a result of chemical gradients) and above carpets of cilia (as a result of biological activity). When such boundary-driven flows are used to pump fluids, the primary quantity of interest is the induced flow rate. In this letter, we propose a method, based on the reciprocal theorem of Stokes flows, to compute the net flow rate for arbitrary flow distribution and periodic pump geometry using solely stress information from a dual Poiseuille-like problem. After deriving the general result, we apply it to straight channels of triangular, elliptic, and rectangular geometries and quantify the relationship between bulk motion and surface forcing.

  9. HYDROMAGNETIC DIVERGENT CHANNEL FLOW OF A VISCOELASTIC ELECTRICALLY CONDUCTING FLUID

    Directory of Open Access Journals (Sweden)

    RITA CHOUDHURY

    2011-10-01

    Full Text Available A theoretical study for the two-dimensional boundary layer flow through a divergent channel of a visco-elastic electrically conducting fluid in presence of transverse magnetic field has been considered. Similarity solutions are obtained by considering a special form of magnetic field. The analytical expressions for velocity and skin friction at the wall have been obtained and numerically worked out for different values of the flow parametersinvolved in the solution. The velocity and the skin friction coefficient have been presented graphically to observe the visco-elastic effects for various values of the flow parameters across the boundary layer.

  10. Granular flow over inclined channels with linear contraction

    CERN Document Server

    Tunuguntla, D R; Thornton, A R; Bokhove, O

    2015-01-01

    We consider dry granular flow down an inclined chute with a localised contraction theoretically and numerically. The flow regimes are predicted through a novel extended one-dimensional hydraulic theory. A discrete particle method validated empirical constitutive law is used to close this one-dimensional asymptotic model. The one-dimensional model is verified by solving the two-dimensional shallow granular equations through discontinuous Galerkin finite element method (DGFEM). For supercritical flows, the one-dimensional asymptotic theory surprisingly holds although the two-dimensional oblique granular jumps largely vary across the converging channel.

  11. Mathematical model of two-phase flow in accelerator channel

    Directory of Open Access Journals (Sweden)

    О.Ф. Нікулін

    2010-01-01

    Full Text Available  The problem of  two-phase flow composed of energy-carrier phase (Newtonian liquid and solid fine-dispersed phase (particles in counter jet mill accelerator channel is considered. The mathematical model bases goes on the supposition that the phases interact with each other like independent substances by means of aerodynamics’ forces in conditions of adiabatic flow. The mathematical model in the form of system of differential equations of order 11 is represented. Derivations of equations by base physical principles for cross-section-averaged quantity are produced. The mathematical model can be used for estimation of any kinematic and thermodynamic flow characteristics for purposely parameters optimization problem solving and transfer functions determination, that take place in  counter jet mill accelerator channel design.

  12. Structure parameters in rotating Couette-Poiseuille channel flow

    Science.gov (United States)

    Knightly, George H.; Sather, D.

    1986-01-01

    It is well-known that a number of steady state problems in fluid mechanics involving systems of nonlinear partial differential equations can be reduced to the problem of solving a single operator equation of the form: v + lambda Av + lambda B(v) = 0, v is the summation of H, lambda is the summation of one-dimensional Euclid space, where H is an appropriate (real or complex) Hilbert space. Here lambda is a typical load parameter, e.g., the Reynolds number, A is a linear operator, and B is a quadratic operator generated by a bilinear form. In this setting many bifurcation and stability results for problems were obtained. A rotating Couette-Poiseuille channel flow was studied, and it showed that, in general, the superposition of a Poiseuille flow on a rotating Couette channel flow is destabilizing.

  13. Capillary channel flow experiments aboard the International Space Station

    Science.gov (United States)

    Conrath, M.; Canfield, P. J.; Bronowicki, P. M.; Dreyer, M. E.; Weislogel, M. M.; Grah, A.

    2013-12-01

    In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.

  14. Capillary channel flow experiments aboard the International Space Station.

    Science.gov (United States)

    Conrath, M; Canfield, P J; Bronowicki, P M; Dreyer, M E; Weislogel, M M; Grah, A

    2013-12-01

    In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.

  15. Algebraic disturbances and their consequences in rotating channel flow transition

    CERN Document Server

    Jose, Sharath; Pier, Benoît; Govindarajan, Rama

    2016-01-01

    It is now established that subcritical mechanisms play a crucial role in the transition to turbulence of non-rotating plane shear flows. The role of these mechanisms in rotating channel flow is examined here in the linear and nonlinear stages. Distinct patterns of behaviour are found: the transient growth leading to nonlinearity at low rotation rates $Ro$, a highly chaotic intermediate $Ro$ regime, a localised weak chaos at higher $Ro$, and complete stabilization of transient disturbances at very high $Ro$. At very low $Ro$, the transient growth amplitudes are close to those for non-rotating flow, but Coriolis forces already assert themselves by producing distinct asymmetry about the channel centreline. Nonlinear processes are then triggered, in a streak-breakdown mode of transition. The high $Ro$ regimes do not show these signatures, here the leading eigenmode emerges as dominant in the early stages. Elongated structures plastered close to one wall are seen at higher rotation rates. Rotation is shown to redu...

  16. Coherent Structures near Narrow Gaps in Channel Flows

    Science.gov (United States)

    Guellouz, M. S.; Tavoularis, S.

    1996-11-01

    Flow visualization and hot-wire anemometry were used to investigate the velocity field in axial flow within a rectangular channel containing a single cylindrical rod, parallel to the channel's axis and positioned at different distances from the wall. The formation of a street of three-dimensional, quasi-periodic, counter-rotating vortices in the vicinity of the gap has been observed, even for relatively large gaps. The Strouhal number, convection speed and streamwise spacing of these vortices have been determined as functions of the gap size and the flow parameters. A useful feature of these vortices is the large-scale transport of fluid across the gap, which enhances momentum, heat and mass transfer.

  17. Two-Layer Quantum Key Distribution

    CERN Document Server

    Ramos, Rubens Viana

    2012-01-01

    Recently a new quantum key distribution protocol using coherent and thermal states was proposed. In this work this kind of two-layer QKD protocol is formalized and its security against the most common attacks, including external control and Trojan horse attacks, is discussed.

  18. Computation of Internal Fluid Flows in Channels Using the CFD Software Tool FlowVision

    CERN Document Server

    Kochevsky, A N

    2004-01-01

    The article describes the CFD software tool FlowVision (OOO "Tesis", Moscow). The model equations used for this research are the set of Reynolds and continuity equations and equations of the standard k - e turbulence model. The aim of the paper was testing of FlowVision by comparing the computational results for a number of simple internal channel fluid flows with known experimental data. The test cases are non-swirling and swirling flows in pipes and diffusers, flows in stationary and rotating bends. Satisfactory correspondence of results was obtained both for flow patterns and respective quantitative values.

  19. Evaporation of polydispersed droplets in a highly turbulent channel flow

    Science.gov (United States)

    Cochet, M.; Bazile, Rudy; Ferret, B.; Cazin, S.

    2009-09-01

    A model experiment for the study of evaporating turbulent two-phase flows is presented here. The study focuses on a situation where pre-atomized and dispersed droplets vaporize and mix in a heated turbulent flow. The test bench consists in a channel flow with characteristics of homogeneous and isotropic turbulence where fluctuations levels reach very high values (25% in the established zone). An ultrasonic atomizer allows the injection of a mist of small droplets of acetone in the carrier flow. The large range diameters ensure that every kind of droplet behavior with regards to turbulence is possible. Instantaneous concentration fields of the vaporized phase are extracted from fluorescent images (PLIF) of the two phase flow. The evolution of the mixing of the acetone vapor is analyzed for two different liquid mass loadings. Despite the high turbulence levels, concentration fluctuations remain significant, indicating that air and acetone vapor are not fully mixed far from the injector.

  20. Evaporation of polydispersed droplets in a highly turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Cochet, M.; Bazile, Rudy; Ferret, B.; Cazin, S. [INPT, UPS, IMFT (Institut de Mecanique des Fluides de Toulouse), Universite de Toulouse (France)

    2009-09-15

    A model experiment for the study of evaporating turbulent two-phase flows is presented here. The study focuses on a situation where pre-atomized and dispersed droplets vaporize and mix in a heated turbulent flow. The test bench consists in a channel flow with characteristics of homogeneous and isotropic turbulence where fluctuations levels reach very high values (25% in the established zone). An ultrasonic atomizer allows the injection of a mist of small droplets of acetone in the carrier flow. The large range diameters ensure that every kind of droplet behavior with regards to turbulence is possible. Instantaneous concentration fields of the vaporized phase are extracted from fluorescent images (PLIF) of the two phase flow. The evolution of the mixing of the acetone vapor is analyzed for two different liquid mass loadings. Despite the high turbulence levels, concentration fluctuations remain significant, indicating that air and acetone vapor are not fully mixed far from the injector. (orig.)

  1. Ferrofluid magnetoviscous control of wall flow channeling in porous media

    Institute of Scientific and Technical Information of China (English)

    Fa(ic)al Larachi; Damien Desvigne

    2007-01-01

    We analyzed the phenomenon of ferrofluid magnetoviscosity in high-permeability wall-region non-magnetic porous media of the Müller kind.After upscaling the pore-level ferrohydrodynamic model, we obtained a simplified volume-average zero-order axisymmetric model for non-Darcy non-turbulent flow of steady-state isothermal incompressible Newtonian ferrofluids through a porous medium experiencing external constant bulk-flow oriented gradient magnetic field, ferrofluid self-consistent demagnetizing field and induced magnetic field in the solid. The model was explored in contexts plagued by wall flow maldistribution due to low column-to-particle diameter ratios. It was shown that for proper magnetic field arrangement, wall channeling can be reduced by inflating wall flow resistance through magnetovisco-thickening and Kelvin body force density which reroute a fraction of wall flow towards bed core.

  2. Effect of flow field on open channel flow properties using numerical investigation and experimental comparison

    Energy Technology Data Exchange (ETDEWEB)

    Khazaee, I. [Department of Mechanical Engineering, Torbat-e-jam branch, Islamic Azad University, Torbat-e-jam (Iran, Islamic Republic of); Mohammadiun, M. [Department of Mechanical Engineering, Shahrood branch, Islamic Azad University, Shahrood (Iran, Islamic Republic of)

    2012-07-01

    In this paper a complete three-dimensional and two phase CFD model for flow distribution in an open channel investigated. The finite volume method (FVM) with a dynamic Sub grid-scale was carried out for seven cases of different aspect ratios, different inclination angles or slopes and convergence-divergence condition. The volume of fluid (VOF) method was used to allow the free-surface to deform freely with the underlying turbulence. The discharge through open channel flow is often evaluated by velocity-area integration method from the measurement of velocity at discrete locations in the measuring section. The variation of velocity along horizontal and vertical directions is thus very important to decide the location of the sensors. The aspect ratio of the channel, slope of the channel and divergence- convergence of the channel have investigated and the results show that the depth of water at the end of the channel is higher at AR=0.8 against the AR=0.4 and AR=1.2. Also it is clear that by increasing the inclination angle or slope of the channel in case1, case4 and case5 the depth of the water increases. Also it is clear that the outlet mass flow rate is at a minimum value at a range of inclination angle of the channel.

  3. Effect of Flow Channel Shape on Performance in Reverse Electrodialysis

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kilsung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Deok Han; Kim, Daejoong [Sogang Univ., Seoul (Korea, Republic of)

    2017-05-15

    Reverse electrodialysis (RED), which generates electrical energy from the difference in concentration of two solutions, has been actively studied owing to its high potential and the increased interest in renewable energy resulting from the Paris Agreement on climate change. For RED commercialization, its power density needs to be maximized, and therefore various methods have been discussed. In this paper, the power density was measured using various flow shapes based on the aspect ratio, opening ratio, and number of distribution channels. We found that the power density is enhanced with a decrease in the aspect ratio and an increase in the opening ratio and number of distribution channels.

  4. Rivulet Flow In Vertical Parallel-Wall Channel

    Energy Technology Data Exchange (ETDEWEB)

    D. M. McEligot; G. E. Mc Creery; P. Meakin

    2006-04-01

    In comparison with studies of rivulet flow over external surfaces, rivulet flow confined by two surfaces has received almost no attention. Fully-developed rivulet flow in vertical parallel-wall channels was characterized, both experimentally and analytically for flows intermediate between a lower flow limit of drop flow and an upper limit where the rivulets meander. Although this regime is the most simple rivulet flow regime, it does not appear to have been previously investigated in detail. Experiments were performed that measured rivulet widths for aperture spacing ranging from 0.152 mm to 0.914 mm. The results were compared with a simple steadystate analytical model for laminar flow. The model divides the rivulet cross-section into an inner region, which is dominated by viscous and gravitational forces and where essentially all flow is assumed to occur, and an outer region, dominated by capillary forces, where the geometry is determined by the contact angle between the fluid and the wall. Calculations using the model provided excellent agreement with data for inner rivulet widths and good agreement with measurements of outer rivulet widths.

  5. Air entrainment in open channel flows. Application to spillways

    Energy Technology Data Exchange (ETDEWEB)

    Chanson, H. (Queensland Univ., St. Lucia (Australia))

    1992-01-01

    In open channel flows an important design parameter is the amount of entrained air. The presence of air in high velocity flows or steep chutes increases the bulk of the flow and this is a design parameter that determines the height of chute sidewalls. Furthermore the presence of air within the boundary layer reduces the shear stress between flow layers and hence the shear forces. The resulting increase of fluid motion must be taken in account when designing ski jump and stilling basin downstream of a spillway. Besides the presence of air within high-velocity flows may prevent or reduce cavitation damage. Estimation of the quantity of air entrained along the spillway is required by the design engineer when sitting aerators to artificially introduce more air, or determining whether aerators are required. Recently air entrainment on chutes also been recognized for its contribution to air-water transfer of atmospheric gases such as oxygen and nitrogen. This article describes a general method to compute the flow characteristics of self-aerated flows. Firstly the uniform flow conditions are presented and comparisons will be made between model and prototype results. Then the basic equations for gradually varied aerated flows will be developed, and these results are discussed and compared with experimental data. 28 refs., 8 figs., 3 tabs.

  6. Thermal and Hydraulic Performances of Nanofluids Flow in Microchannel Heat Sink with Multiple Zigzag Flow Channels

    OpenAIRE

    Duangthongsuk Weerapun

    2017-01-01

    This article presents an experimental investigation on the heat transfer performance and pressure drop characteristic of two types of nanofluids flowing through microchannel heat sink with multiple zigzag flow channel structures (MZMCHS). SiO2 nanoparticles dispersed in DI water with concentrations of 0.3 and 0.6 vol.% were used as working fluid. MZMCHS made from copper material with dimension of 28 × 33 mm. Hydraulic diameter of MZMCHs is designed at 1 mm, 7 number of flow channels and heat ...

  7. A Simple Analytical Model of Coupled Single Flow Channel over Porous Electrode in Vanadium Redox Flow Battery with Serpentine Flow Channel

    CERN Document Server

    Ke, Xinyou; Prahl, Joseph M; Savinell, Robert F

    2016-01-01

    A simple analytical model of a layered system comprised of a single passage of a serpentine flow channel and a parallel underlying porous electrode (or porous layer) is proposed. This analytical model is derived from Navier-Stokes motion in the flow channel and Darcy-Brinkman model in the porous layer. The continuities of flow velocity and normal stress are applied at the interface between the flow channel and the porous layer. The effects of the inlet volumetric flow rate, thickness of the flow channel and thickness of a typical carbon fiber paper porous layer on the volumetric flow rate within this porous layer are studied. The maximum current density based on the electrolyte volumetric flow rate is predicted, and found to be consistent with reported numerical simulation. It is found that, for a mean inlet flow velocity of 33.3 cm s-1, the analytical maximum current density is estimated to be 377 mA cm-2, which compares favorably with experimental result reported by others of ~400 mA cm-2.

  8. A simple analytical model of coupled single flow channel over porous electrode in vanadium redox flow battery with serpentine flow channel

    Science.gov (United States)

    Ke, Xinyou; Alexander, J. Iwan D.; Prahl, Joseph M.; Savinell, Robert F.

    2015-08-01

    A simple analytical model of a layered system comprised of a single passage of a serpentine flow channel and a parallel underlying porous electrode (or porous layer) is proposed. This analytical model is derived from Navier-Stokes motion in the flow channel and Darcy-Brinkman model in the porous layer. The continuities of flow velocity and normal stress are applied at the interface between the flow channel and the porous layer. The effects of the inlet volumetric flow rate, thickness of the flow channel and thickness of a typical carbon fiber paper porous layer on the volumetric flow rate within this porous layer are studied. The maximum current density based on the electrolyte volumetric flow rate is predicted, and found to be consistent with reported numerical simulation. It is found that, for a mean inlet flow velocity of 33.3 cm s-1, the analytical maximum current density is estimated to be 377 mA cm-2, which compares favorably with experimental result reported by others of ∼400 mA cm-2.

  9. Flow resistance and its prediction methods in compound channels

    Institute of Scientific and Technical Information of China (English)

    Kejun Yang; Shuyou Cao; Xingnian Liu

    2007-01-01

    A series of experiments was carried out in a large symmetric compound channel composed of a rough main channel and rough floodplains to investigate the resistance characteristics of inbank and overbank flows.The effective Manning,Darcy-Weisbach,Chezy coefficients and the relative Nikuradse roughness height were analyzed.Many different representative methods for predicting the composite roughness were systemat-ically summarized.Besides the measured data,a vast number of laboratory data and field data for compoundchannels were collected and used to check the valid-ity of these methods for different subsection divisionsincluding the vertical,horizontal,diagonal and bisec-tional divisions.The computation showed that thesemethods resulted in big errors in assessing the compos-ite roughness in compound channels,and the reasonswere analyzed in detail.The error magnitude is relatedto the subsection divisions.

  10. The Effects of the PEM Fuel Cell Performance with the Waved Flow Channels

    OpenAIRE

    Yue-Tzu Yang; Kuo-Teng Tsai; Cha’o-Kuang Chen

    2013-01-01

    The objective of this study is to use a new style of waved flow channel instead of the plane surface channel in the proton exchange membrane fuel cell (PEMFC). The velocity, concentration, and electrical performance with the waved flow channel in PEMFC are investigated by numerical simulations. The results show that the waved channel arises when the transport benefits through the porous layer and improves the performance of the PEMFC. This is because the waved flow channel enhances the forced...

  11. Analysis of flow blockage of a single RBMK channel

    Energy Technology Data Exchange (ETDEWEB)

    Franco Pierro; Iljiana Ivekovic; Parisi Carlo; Francesco D' Auria [University of Pisa, Department of Mechanical, Nuclear and Production Engineering - DMNP, Via Diotisalvi 2, 56122 Pisa (Italy)

    2005-07-01

    Full text of publication follows: The main aim of the following study is to perform an evaluation of a single RBMK reactor core channel and of its surrounding graphite structures in case of flow blockage. The paper presents an evaluation of the event with RELAP5 and FRAP code. The RBMK channel, the graphite stack and the He-N gap is modelled with the RELAP code and the thermo-mechanical fuel rod behaviour is studied by FRAP code. Two cases are analysed in order to demonstrate if the propagation of the break occurs: in the first case a single break in the pressure tube is postulated, in the second, a modelling of the pressure tube break propagation is studied. A blockage of 100% of the total flow area is considered. The paper concludes that the Pressure tube is broken and the propagation occurs, the ballooning does not appear. (authors)

  12. LES of droplet-laden non-isothermal channel flow

    Science.gov (United States)

    Michałek, W. R.; Liew, R.; Kuerten, J. G. M.; Zeegers, J. C. H.

    2011-12-01

    In this paper subgrid models for LES of droplet-laden non-isothermal channel flow are tested and improved for three Reynolds numbers based on friction velocity, Reτ of 150, 395, and 950 with the aim to develop a simulation method for LES of a droplet-laden Ranque-Hilsch vortex tube. A new subgrid model combining the beneficial properties of the dynamic eddy-viscosity model and the approximate deconvolution model is proposed. Furthermore, the subgrid model in the droplet equations based on approximate deconvolution is found to perform well also in non-isothermal channel flow. At the highest Reynolds number in the test the dynamic model yields results with a similar accuracy as the approximate deconvolution model.

  13. LES of droplet-laden non-isothermal channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Michalek, W R; Kuerten, J G M [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Liew, R; Zeegers, J C H, E-mail: w.michalek@tue.nl [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2011-12-22

    In this paper subgrid models for LES of droplet-laden non-isothermal channel flow are tested and improved for three Reynolds numbers based on friction velocity, Re{sub {tau}} of 150, 395, and 950 with the aim to develop a simulation method for LES of a droplet-laden Ranque-Hilsch vortex tube. A new subgrid model combining the beneficial properties of the dynamic eddy-viscosity model and the approximate deconvolution model is proposed. Furthermore, the subgrid model in the droplet equations based on approximate deconvolution is found to perform well also in non-isothermal channel flow. At the highest Reynolds number in the test the dynamic model yields results with a similar accuracy as the approximate deconvolution model.

  14. ABRUPT DEFLECTED SUPERCRITICAL WATER FLOW IN SLOPED CHANNELS

    Institute of Scientific and Technical Information of China (English)

    LIU Ya-kun; NI Han-gen

    2008-01-01

    The effect of the bottom slope on abrupt deflected supercritical water flow was experimentally and theoretically studied. Model tests were conducted in a flume of 1.2 m wide and 2.6 m long with sloped bottom at an angle 35.54o, its length of deflector was 0.2 m and the deflection angles were 15o and 30o. An approximate method for calculatjng the shock wave angle and depth ratio of the abrupt deflected supercritical water flow was suggested, and a correction coefficient for the hydrodynamic pressure was introduced to generalize the momentum equation in the direction perpendicular to the shock front. It must be noticed that in the sloped channel the shock wave angle and the depth ratio are no longer constant as those in the horizontal channels, but slowly change along the shock front. The calculated results are in good agreement with measured data.

  15. Magnetohydrodynamic Vortex Behavior in Free-Surface Channel Flow

    Science.gov (United States)

    Kubricht, J.; Rhoads, J.; Spence, E.; Ji, H.

    2011-10-01

    Flowing liquid plasma-facing systems have been proposed for fusion devices due to their structural consistency and capability to withstand enormous heat fluxes. In support of these designs, the effects of magnetic field on the thermal mixing of conductive fluids need to be studied and understood. The Princeton Liquid Metal Experiment (LMX) consists of a free-surface, externally driven channel flow subjected to a strong vertical magnetic field. LMX uses an infrared camera and non-intrusive heat signatures to visually study the vortex street of a vertical cylinder while an array of potential probes has been installed to map the velocity profile for varying magnetic field strengths. Our studies show a decrease in surface activity with increasing field strength as well as distinct changes in vortex behavior. Velocity distributions across the channel are compared with infrared observations and the relationship between Strouhal number and magnetic field strength is examined.

  16. Doppler-Based Flow Rate Sensing in Microfluidic Channels

    Directory of Open Access Journals (Sweden)

    Liron Stern

    2014-09-01

    Full Text Available We design, fabricate and experimentally demonstrate a novel generic method to detect flow rates and precise changes of flow velocity in microfluidic devices. Using our method we can measure flow rates of ~2 mm/s with a resolution of 0.08 mm/s. The operation principle is based on the Doppler shifting of light diffracted from a self-generated periodic array of bubbles within the channel and using self-heterodyne detection to analyze the diffracted light. As such, the device is appealing for variety of “lab on chip” bio-applications where a simple and accurate speed measurement is needed, e.g., for flow-cytometry and cell sorting.

  17. Utilization of Different Variables for the Visualization of Fluid Flows:Application to Instantaneous Channel Flows

    Institute of Scientific and Technical Information of China (English)

    Gérard J. Poitras; L.-Emmanuel Brizzi; Yves Gagnon

    2001-01-01

    The results of different numerical algorithms for the computation of unsteady fluid flows are used to visualize different variables of the flow. In particular, the instantaneous vorticity, velocity and pressure fields, along with streamline plots, are presented as a function of time inside a visualization window of the computational domain.The different forms of visualization are used to analyze the flow inside a two-dimensional channel incorporating an obstacle, which can represent several interesting flows such as the flow over electronic components, heat transfer devices and buildings.

  18. NUMERICAL SIMULATIONS OF VISCOELASTIC FLOWS THROUGH ONE SLOT CHANNEL

    Institute of Scientific and Technical Information of China (English)

    YIN Hong-jun; ZHONG Hui-ying; FU Chun-quan; WANG Lei

    2007-01-01

    In this article, the Modified Upper-Convected Maxwell equation (MUCM) is proposed. The viscoelastic polymer solution flow characteristics are described by the numerical method. The stream function contour, velocity contour and stress modulus contour of fluid in slot channel are drawn. The non-Newtonian power law property and viscoelasticity of MUCM fluid influence on the stream function are analyzed. The velocity contour move towards dead oil area with the viscoelasticity increase, flow area increase and the sweep area enlarges, so the sweep efficiency is enhanced.

  19. Streamline segment scaling behavior in a turbulent wavy channel flow

    Science.gov (United States)

    Rubbert, A.; Hennig, F.; Klaas, M.; Pitsch, H.; Schröder, W.; Peters, N.

    2017-02-01

    A turbulent flow in a wavy channel was investigated by tomographic particle-image velocimetry measurements and direct numerical simulations. To analyze the turbulent structures and their scaling behavior in a flow undergoing favorable and adverse pressure gradients, the streamline segmentation method proposed by Wang (J Fluid Mech 648:183-203, 2010) was employed. This method yields joint statistical information about velocity fluctuations and length scale distributions of non-overlapping structures within the flow. In particular, the joint statistical properties are notably influenced by the pressure distribution. Previous findings from flat channel flows and synthetic turbulence simulations concerning the normalized segment length distribution could be reproduced and therefore appear to be largely universal. However, the mean streamline segment length of accelerating and decelerating segments varies within one wavelength typically elongating segments of the type which corresponds to the local mean flow. Furthermore, the local pressure gradient was found to significantly impact local joint streamline segmentation statistics as a main influence on their inherent asymmetry.

  20. Processes of Turbulent Liquid Flows in Pipelines and Channels

    Directory of Open Access Journals (Sweden)

    R. I. Yesman

    2011-01-01

    Full Text Available The paper proposes a methodology for an analysis and calculation of processes pertaining to turbulent liquid flows in pipes and channels. Various modes of liquid motion in pipelines of thermal power devices and equipment have been considered in the paper.The presented dependences can be used while making practical calculations of losses due to friction in case of transportation of various energy carriers.

  1. Laser Doppler velocimetry measurement of turbulent bubbly channel flow

    Energy Technology Data Exchange (ETDEWEB)

    So, S.; Takagi, S.; Matsumoto, Y. [Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 (Japan); Morikita, H. [Morikita Shuppan Co. Ltd, 1-4-11,Fujimi Chiyoda-ku, Tokyo 102-0071 (Japan)

    2002-07-01

    Measurements of the turbulence properties of gas-liquid bubbly flows with mono-dispersed 1-mm-diameter bubbles are reported for upward flow in a rectangular channel. Bubble size and liquid-phase velocity were measured using image-processing and laser Doppler velocimetry (LDV), respectively. A description is given of the special arrangements for two-dimensional LDV needed to obtain reliable bubbly flow data, in particular the configuration of the optical system, the distinction of signals from the bubbles and liquid phase. To create the mono-dispersed bubbles, a small amount of surfactant (3-pentanol of 20 ppm) was added to the flow. Whilst this caused a drastic change in bubble size distribution and flow field, it did not affect the turbulence properties of the single-phase flow. In this study, experiments with three different bulk Reynolds numbers (1,350, 4,100, 8,200) were conducted with void fractions less than 1.2%. In all three cases, there was a very high accumulation of bubbles near the wall with bubble slip at the wall. The mean velocity profile of the liquid phase was steeper near the wall owing to the driving force of buoyant bubbles, and the streamwise turbulent intensity in the vicinity of the wall was enhanced. Furthermore the mean velocity profiles of the liquid phase were flattened in the wide region around the channel center. This region was lifted up by the bubble sheet near the wall, giving it a plug-like flow structure. In addition, the turbulent fluctuation and Reynolds stress in the liquid phase are very much suppressed in this region. This strong preferential accumulation near the wall produces the dramatic change of the whole flow structure. (orig.)

  2. Laser Doppler velocimetry measurement of turbulent bubbly channel flow

    Science.gov (United States)

    So, S.; Morikita, H.; Takagi, S.; Matsumoto, Y.

    2002-05-01

    Measurements of the turbulence properties of gas-liquid bubbly flows with mono-dispersed 1-mm-diameter bubbles are reported for upward flow in a rectangular channel. Bubble size and liquid-phase velocity were measured using image-processing and laser Doppler velocimetry (LDV), respectively. A description is given of the special arrangements for two-dimensional LDV needed to obtain reliable bubbly flow data, in particular the configuration of the optical system, the distinction of signals from the bubbles and liquid phase. To create the mono-dispersed bubbles, a small amount of surfactant (3-pentanol of 20 ppm) was added to the flow. Whilst this caused a drastic change in bubble size distribution and flow field, it did not affect the turbulence properties of the single-phase flow. In this study, experiments with three different bulk Reynolds numbers (1,350, 4,100, 8,200) were conducted with void fractions less than 1.2%. In all three cases, there was a very high accumulation of bubbles near the wall with bubble slip at the wall. The mean velocity profile of the liquid phase was steeper near the wall owing to the driving force of buoyant bubbles, and the streamwise turbulent intensity in the vicinity of the wall was enhanced. Furthermore the mean velocity profiles of the liquid phase were flattened in the wide region around the channel center. This region was lifted up by the bubble sheet near the wall, giving it a plug-like flow structure. In addition, the turbulent fluctuation and Reynolds stress in the liquid phase are very much suppressed in this region. This strong preferential accumulation near the wall produces the dramatic change of the whole flow structure.

  3. Inception of supraglacial channelization under turbulent flow conditions

    Science.gov (United States)

    Mantelli, E.; Camporeale, C.; Ridolfi, L.

    2013-12-01

    Glacier surfaces exhibit an amazing variety of meltwater-induced morphologies, ranging from small scale ripples and dunes on the bed of supraglacial channels to meandering patterns, till to large scale drainage networks. Even though the structure and geometry of these morphologies play a key role in the glacier melting processes, the physical-based modeling of such spatial patterns have attracted less attention than englacial and subglacial channels. In order to partially fill this gap, our work concerns the large scale channelization occurring on the ice slopes and focuses on the role of turbulence on the wavelength selection processes during the channelization inception. In a recent study[1], two of us showed that the morphological instability induced by a laminar film flowing over an ice bed is characterized by transversal length scales of order of centimeters. Being these scales much smaller than the spacing observed in the channelization of supraglacial drainage networks (that are of order of meters) and considering that the water films flowing on glaciers can exhibit Reynolds numbers larger than 104, we investigated the role of turbulence in the inception of channelization. The flow-field is modeled by means of two-dimensional shallow water equations, where Reynolds stresses are also considered. In the depth-averaged heat balance equation an incoming heat flux from air is assumed and forced convection heat exchange with the wall is taken into account, in addition to convection and diffusion in the liquid. The temperature profile in the ice is finally coupled to the liquid through Stefan equation. We then perform a linear stability analysis and, under the assumption of small Stefan number, we solve the differential eigenvalue problem analytically. As main outcome of such an analysis, the morphological instability of the ice-water interface is detected and investigated in a wide range of the independent parameters: longitudinal and transversal wavenumbers

  4. CHARACTERISTICS OF FLOW RESISTANCE IN OPEN CHANNELS WITH NON-SUBMERGED RIGID VEGETATION

    Institute of Scientific and Technical Information of China (English)

    WU Fu-sheng

    2008-01-01

    The flow resistance factors of non-submerged rigid vegetation in open channels were analyzed. The formulas of drag coefficient CD and equivalent Manning's roughness coefficient nd were derived by analyzing the force of the flow of non-submerged rigid vegetation in open channel. The flow characteristics and mechanism of non-submerged rigid vegetation in open channel were studied through flume experiments.

  5. Direction of scalar transport in turbulent channel flow

    Science.gov (United States)

    Srinivasan, Chiranth; Papavassiliou, Dimitrios V.

    2011-11-01

    The concept of reverse diffusion, introduced by Corrsin to describe the motion of particles as they move towards a location in the flow field, is fundamental to the understanding of mixing. In this work, direct numerical simulations in conjunction with the tracking of scalar markers are utilized in infinitely long channels to study the principal direction of transport of heat (or mass) for both forwards and backwards single particle dispersion. The viscous sub-layer, the transition region (between the viscous sub-layer and the logarithmic region), and the logarithmic region of a Poiseuille flow and a plane Couette flow channel are studied. Fluctuating velocities of scalar markers captured in these regions are used to obtain the full autocorrelation coefficient tensor forwards and backwards with time. The highest eigenvalue of the velocity correlation coefficient tensor quantifies the highest amount of turbulent heat transport, while the corresponding eigenvector points to the main direction of transport. Different Prandtl number, Pr, fluids are simulated for the two types of flow. It is found that the highest eigenvalues are higher in the case of backwards dispersion compared to the case of forwards dispersion for any Pr, in both flow cases. The principal direction for backwards and forwards dispersion is different than for forwards dispersion, for all Pr, and in all flow regions for both flows. Fluids with lower Pr behave different than the higher Pr fluids because of increased molecular diffusion effects. The current study also establishes an interesting analogy of turbulent dispersion to optics defining the turbulent dispersive ratio, a parameter that can be used to identify the differences in the direction of turbulent heat transport between forwards and backwards dispersion. A spectral analysis of the auto-correlation coefficient for both forwards and backwards dispersion shows a universal behavior with slope of -1 at intermediate frequencies.

  6. New insight into flow development and two dimensionality of turbulent channel flows

    Science.gov (United States)

    Vinuesa, Ricardo; Bartrons, Eduard; Chiu, Daniel; Dressler, Kristofer M.; Rüedi, J.-D.; Suzuki, Yasumasa; Nagib, Hassan M.

    2014-06-01

    The experimental conditions required for a turbulent channel flow to be considered fully developed and nominally two dimensional remain a challenging objective. In this study, we show that the flow obtained in a high-aspect-ratio channel facility cannot be reproduced by direct numerical simulations (DNSs) of spanwise-periodic channel flows; therefore, we reserve the term "channel" for spanwise-periodic DNSs and denote the experimental flow by the term "duct." Oil film interferometry (OFI) and static pressure measurements were carried out over the range in an adjustable-geometry duct flow facility. Three-dimensional effects were studied by considering different aspect ratio (AR) configurations and also by fixing the AR and modifying the hydraulic diameter of the section. The conditions at the centerplane of the duct were characterized through the local skin friction from the OFI and the centerline velocity at four different streamwise locations and through the wall shear based on the streamwise global pressure gradient. The skin friction obtained from pressure gradient overestimated the local shear measurements obtained from the OFI and did not reproduce the same AR dependence observed with OFI. Differences between the local and global techniques were also reflected in the flow development. For the range of Reynolds numbers tested, the development length of high-aspect-ratio ducts scales with the duct full-height and is around , much larger than the values of around 100-150 H previously reported in the literature.

  7. Hydrodynamic instability of nanofluids in a channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jianzhong; Xia, Yi [Department of Mechanics, Zhejiang University, Hangzhou 310027, People’s Republic of China (China); Bao, Fubing, E-mail: mecjzlin@zju.edu.cn [Institution of Fluid Mechanics, China Jiliang University, Hangzhou 310018, People’s Republic of China (China)

    2014-10-01

    A linear hydrodynamic instability of nanofluids in a channel flow is investigated. The instability equations of nanofluids are derived and solved numerically. The validity of the numerical formulations and schemes is tested by comparing the present results with the available experimental data and theoretical results. The results show that the existence of particles suppresses the flow instability, but cannot completely eliminate it. As particle mass loading is increased, the region of unstable wavenumbers is reduced from that of the pure Newtonian flow and the largest growth rate that governs the flow instability is reduced. The Stokes number has an effect on the instability behavior of the nanofluids. As the Stokes number and Knudsen number decrease, the critical Reynolds numbers increase and the unstable regions of small perturbations decrease, along with a decrease in the largest growth rates that govern the flow instability, therefore reinforcing the flow stability. Larger particles reduce the peak value of the velocity disturbance and hence attenuate the flow instability. (paper)

  8. FLOW STRUCTURE OF PARTLY VEGETATED OPEN-CHANNEL FLOWS WITH EELGRASS

    Institute of Scientific and Technical Information of China (English)

    WANG Chao; YU Ji-yu; WANG Pei-fang; GUO Peng-cheng

    2009-01-01

    Aquatic vegetation can influence the transport of sediment and contaminants by changing the mean velocity and turbulent flow structure in channels. It is important to understand the hydraulics of the flows over vegetation in order to manage fluvial processes. Experiments in an open-channel flume with natural vegetation were carried out to study the influence of vegetation on the flows. In a half channel with two different densities of vegetation, the flow velocity, Reynolds stresses, and turbulence intensities were measured using an Acoustic Doppler Velocimeter (ADV). We obtained velocity profiles in the lateral direction, Reynolds stresses in the vertical direction, and the flow transition between the vegetated and non-vegetated zones in different flow regimes. The results show that the streamwise velocity in the vegetated zone with higher density is almost entirely blocked. Reynolds stress distribution distinguishes with two different regions: inside and above the vegetation canopies. The turbulence intensities increase with increasing Reynolds number. The coherent vortices dominate the vertical transport of momentum and are advected clockwise between the vegetated zone and non-vegetated zone by secondary currents (a relatively minor flow superimposed on the primary flow, with significantly different speed and direction), generated by the anisotropy of the turbulence.

  9. Rain and channel flow supplements to subsurface water beneath hyper-arid ephemeral stream channels

    Science.gov (United States)

    Kampf, Stephanie K.; Faulconer, Joshua; Shaw, Jeremy R.; Sutfin, Nicholas A.; Cooper, David J.

    2016-05-01

    In hyper-arid regions, ephemeral stream channels are important sources of subsurface recharge and water supply for riparian vegetation, but few studies have documented the subsurface water content dynamics of these systems. This study examines ephemeral channels in the hyper-arid western Sonoran Desert, USA to determine how frequently water recharges the alluvial fill and identify variables that affect the depth and persistence of recharge. Precipitation, stream stage, and subsurface water content measurements were collected over a three-year study at six channels with varying contributing areas and thicknesses of alluvial fill. All channels contain coarse alluvium composed primarily of sands and gravels, and some locations also have localized layers of fine sediment at 2-3 m depth. Rain alone contributed 300-400 mm of water input to these channels over three years, but water content responses were only detected for 36% of the rain events at 10 cm depth, indicating that much of the rain water was either quickly evaporated or taken up by plants. Pulses of water from rain events were detected only in the top meter of alluvium. The sites each experienced ⩽5 brief flow events, which caused transient saturation that usually lasted only a few hours longer than flow. These events were the only apparent source of water to depths >1 m, and water from flow events quickly percolated past the deepest measurement depths (0.5-3 m). Sustained saturation in the shallow subsurface only developed where there was a near-surface layer of finer consolidated sediments that impeded deep percolation.

  10. Linear Stability Analysis of Compressible Channel Flow with Porous Walls

    CERN Document Server

    Rahbari, Iman

    2015-01-01

    We have investigated the effects of permeable walls, modeled by linear acoustic impedance with zero reactance, on compressible channel flow via linear stability analysis (LSA). Base flow profiles are taken from impermeable isothermal-wall laminar and turbulent channel flow simulations at bulk Reynolds number, $Re_b$= 6900 and Mach numbers, $M_b$ = 0.2, 0.5, 0.85. For a sufficiently high value of permeability, two dominant modes are excited: a bulk pressure mode, causing symmetric expulsion and suction of mass from the porous walls (Mode 0); a standing-wave-like mode, with a pressure node at the centerline (Mode 1). In the case of turbulent mean flow profiles, both modes generate additional Reynolds shear stresses augmenting the (base) turbulent ones, but concentrated in the viscous sublayer region; the trajectories of the two modes in the complex phase velocity space follow each other very closely for values of wall permeability spanning two orders of magnitude, suggesting their coexistence. The transition fr...

  11. Computation of a turbulent channel flow using PDF method

    Energy Technology Data Exchange (ETDEWEB)

    Minier, J.P. [Electricite de France (EDF), 78 - Chatou (France). Lab. National d`Hydraulique; Pozorski, J. [Polish Academy of Sciences, Gdansk (Poland). Inst. of Fluid-Flow Machinery

    1997-05-01

    The purpose of the present paper is to present an analysis of a PDF model (Probability Density Function) and an illustration of the possibilities offered by such a method for a high-Reynolds turbulent channel flow. The first part presents the principles of the PDF approach and the introduction of stochastic processes along with a Lagrangian point of view. The model retained is the one put forward by Pope (1991) and includes evolution equations for location, velocity and dissipation of a large number of particles. Wall boundary conditions are then developed for particles. These conditions allow statistical results of the logarithmic region to be correctly reproduced. Simulation of non-homogeneous flows require a pressure-gradient algorithm which is briefly described. Developments are validated by analysing numerical predictions with respect to Comte Bellot experimental data (1965) on a channel flow. This example illustrates the ability of the approach to simulate wall-bounded flows and to provide detailed information such as skewness and flatness factors. (author) 9 refs.

  12. Polar cap flow channel events: spontaneous and driven responses

    Directory of Open Access Journals (Sweden)

    P. E. Sandholt

    2010-11-01

    Full Text Available We present two case studies of specific flow channel events appearing at the dusk and/or dawn polar cap boundary during passage at Earth of interplanetary (IP coronal mass ejections (ICMEs on 10 January and 25 July 2004. The channels of enhanced (>1 km/s antisunward convection are documented by SuperDARN radars and dawn-dusk crossings of the polar cap by the DMSP F13 satellite. The relationship with Birkeland currents (C1–C2 located poleward of the traditional R1–R2 currents is demonstrated. The convection events are manifest in ground magnetic deflections obtained from the IMAGE (International Monitor for Auroral Geomagnetic Effects Svalbard chain of ground magnetometer stations located within 71–76° MLAT. By combining the ionospheric convection data and the ground magnetograms we are able to study the temporal behaviour of the convection events. In the two ICME case studies the convection events belong to two different categories, i.e., directly driven and spontaneous events. In the 10 January case two sharp southward turnings of the ICME magnetic field excited corresponding convection events as detected by IMAGE and SuperDARN. We use this case to determine the ground magnetic signature of enhanced flow channel events (the NH-dusk/By<0 variant. In the 25 July case a several-hour-long interval of steady southwest ICME field (Bz<0; By<0 gave rise to a long series of spontaneous convection events as detected by IMAGE when the ground stations swept through the 12:00–18:00 MLT sector. From the ground-satellite conjunction on 25 July we infer the pulsed nature of the polar cap ionospheric flow channel events in this case. The typical duration of these convection enhancements in the polar cap is 10 min.

  13. Experimental studies on the flow through soft tubes and channels

    Indian Academy of Sciences (India)

    V Kumaran

    2015-05-01

    Experiments conducted in channels/tubes with height/diameter less than 1 mm with soft walls made of polymer gels show that the transition Reynolds number could be significantly lower than the corresponding value of 1200 for a rigid channel or 2100 for a rigid tube. Experiments conducted with very viscous fluids show that there could be an instability even at zero Reynolds number provided the surface is sufficiently soft. Linear stability studies show that the transition Reynolds number is linearly proportional to the wall shear modulus in the low Reynolds number limit, and it increases as the 1/2 and 3/4 power of the shear modulus for the ‘inviscid’ and ‘wall mode’ instabilities at high Reynolds number. While the inviscid instability is similar to that in the flow in a rigid channel, the mechanisms of the viscous and wall mode instabilities are qualitatively different. These involve the transfer of energy from the mean flow to the fluctuations due to the shear work done at the interface. The experimental results for the viscous instability mechanism are in quantitative agreement with theoretical predictions. At high Reynolds number, the instability mechanism has characteristics similar to the wall mode instability. The experimental transition Reynolds number is smaller, by a factor of about 10, than the theoretical prediction for the parabolic flow through rigid tubes and channels. However, if the modification in the tube shape due to the pressure gradient, and the consequent modification in the velocity profile and pressure gradient, are incorporated, there is quantitative agreement between theoretical predictions and experimental results. The transition has important practical consequences, since there is a significant enhancement of mixing after transition.

  14. Mathematical Modeling of Electrolyte Flow Dynamic Patterns and Volumetric Flow Penetrations in the Flow Channel over Porous Electrode Layered System in Vanadium Flow Battery with Serpentine Flow Field Design

    CERN Document Server

    Ke, Xinyou; Alexander, J Iwan D; Savinell, Robert F

    2016-01-01

    In this work, a two-dimensional mathematical model is developed to study the flow patterns and volumetric flow penetrations in the flow channel over the porous electrode layered system in vanadium flow battery with serpentine flow field design. The flow distributions at the interface between the flow channel and porous electrode are examined. It is found that the non-linear pressure distributions can distinguish the interface flow distributions under the ideal plug flow and ideal parabolic flow inlet boundary conditions. However, the volumetric flow penetration within the porous electrode beneath the flow channel through the integration of interface flow velocity reveals that this value is identical under both ideal plug flow and ideal parabolic flow inlet boundary conditions. The volumetric flow penetrations under the advection effects of flow channel and landing/rib are estimated. The maximum current density achieved in the flow battery can be predicted based on the 100% amount of electrolyte flow reactant ...

  15. Stability of stratified two-phase flows in horizontal channels

    CERN Document Server

    Barmak, Ilya; Ullmann, Amos; Brauner, Neima; Vitoshkin, Helen

    2016-01-01

    Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems the stratified flow with smooth interface is stable only in confined zone of relatively lo...

  16. A Mathematical Model of Membrane Gas Separation with Energy Transfer by Molecules of Gas Flowing in a Channel to Molecules Penetrating this Channel from the Adjacent Channel

    Directory of Open Access Journals (Sweden)

    Szwast Maciej

    2015-06-01

    Full Text Available The paper presents the mathematical modelling of selected isothermal separation processes of gaseous mixtures, taking place in plants using membranes, in particular nonporous polymer membranes. The modelling concerns membrane modules consisting of two channels - the feeding and the permeate channels. Different shapes of the channels cross-section were taken into account. Consideration was given to co-current and counter-current flows, for feeding and permeate streams, respectively, flowing together with the inert gas receiving permeate. In the proposed mathematical model it was considered that pressure of gas changes along the length of flow channels was the result of both - the drop of pressure connected with flow resistance, and energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel. The literature on membrane technology takes into account only the drop of pressure connected with flow resistance. Consideration given to energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel constitute the essential novelty in the current study. The paper also presents results of calculations obtained by means of a computer program which used equations of the derived model. Physicochemical data concerning separation of the CO2/CH4 mixture with He as the sweep gas and data concerning properties of the membrane made of PDMS were assumed for calculations.

  17. Stop flow lithography in perfluoropolyether (PFPE) microfluidic channels.

    Science.gov (United States)

    Bong, Ki Wan; Lee, Jiseok; Doyle, Patrick S

    2014-12-21

    Stop Flow Lithography (SFL) is a microfluidic-based particle synthesis method for creating anisotropic multifunctional particles with applications that range from MEMS to biomedical engineering. Polydimethylsiloxane (PDMS) has been typically used to construct SFL devices as the material enables rapid prototyping of channels with complex geometries, optical transparency, and oxygen permeability. However, PDMS is not compatible with most organic solvents which limit the current range of materials that can be synthesized with SFL. Here, we demonstrate that a fluorinated elastomer, called perfluoropolyether (PFPE), can be an alternative oxygen permeable elastomer for SFL microfluidic flow channels. We fabricate PFPE microfluidic devices with soft lithography and synthesize anisotropic multifunctional particles in the devices via the SFL process--this is the first demonstration of SFL with oxygen lubrication layers in a non-PDMS channel. We benchmark the SFL performance of the PFPE devices by comparing them to PDMS devices. We synthesized particles in both PFPE and PDMS devices under the same SFL conditions and found the difference of particle dimensions was less than a micron. PFPE devices can greatly expand the range of precursor materials that can be processed in SFL because the fluorinated devices are chemically resistant to most organic solvents, an inaccessible class of reagents in PDMS-based devices due to swelling.

  18. A Flow-Channel Analysis for the Mars Hopper

    Energy Technology Data Exchange (ETDEWEB)

    W. Spencer Cooley

    2013-02-01

    The Mars Hopper is an exploratory vehicle designed to fly on Mars using carbon dioxide from the Martian atmosphere as a rocket propellant. The propellent gasses are thermally heated while traversing a radioisotope ther- mal rocket (RTR) engine’s core. This core is comprised of a radioisotope surrounded by a heat capacitive material interspersed with tubes for the propellant to travel through. These tubes, or flow channels, can be manu- factured in various cross-sectional shapes such as a special four-point star or the traditional circle. Analytical heat transfer and computational fluid dynamics (CFD) anal- yses were performed using flow channels with either a circle or a star cross- sectional shape. The nominal total inlet pressure was specified at 2,805,000 Pa; and the outlet pressure was set to 2,785,000 Pa. The CO2 inlet tem- perature was 300 K; and the channel wall was 1200 K. The steady-state CFD simulations computed the smooth-walled star shape’s outlet temper- ature to be 959 K on the finest mesh. The smooth-walled circle’s outlet temperature was 902 K. A circle with a surface roughness specification at 0.01 mm gave 946 K and at 0.1 mm yielded 989 K. The The effects of a slightly varied inlet pressure were also examined. The analytical calculations were based on the mass flow rates computed in the CFD simulations and provided significantly higher outlet temperature results while displaying the same comparison trends. Research relating to the flow channel heat transfer studies was also done. Mathematical methods to geometrically match the cross-sectional areas of the circle and star, along with a square and equilateral triangle, were derived. A Wolfram Mathematica 8 module was programmed to analyze CFD results using Richardson Extrapolation and calculate the grid convergence index (GCI). A Mathematica notebook, also composed, computes and graphs the bulk mean temperature along a flow channel’s length while the user dynam- ically provides the input

  19. Experimental study of two-phase water flow in vertical thin rectangular channels

    Science.gov (United States)

    Wright, Christopher T.; O'Brien, James E.; Anderson, Elgin A.

    2001-11-01

    An experimental heat transfer study of two-phase water flow in vertical thin rectangular channels with side vents is conducted. A multiple, heated channel configuration with up- and down-flow conditions is investigated. Parallel heated and unheated flow channels test the effects of cross flow on the onset of nucleate boiling (ONB) and critical heat flux (CHF). The test apparatus provides pressure and substrate temperature data and visual data of the boiling regimes and side-vent flow patterns. The objectives are to determine the two-phase, heat and mass transfer characteristics between adjacent channels as permitted by side-vent cross flow. These data will help develop ONB and CHF correlations for flow geometries typical of plate-type nuclear reactors and heat exchangers. Fundamentally, the data shows how the geometry, flow conditions, and channel configurations affect the heat transfer characteristics of interior channel flows, essential in understanding the ONB and CHF phenomena.

  20. Mathematical Modeling of Electrolyte Flow Dynamic Patterns and Volumetric Flow Penetrations in the Flow Channel over Porous Electrode Layered System in Vanadium Flow Battery with Serpentine Flow Field Design

    OpenAIRE

    Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.

    2016-01-01

    In this work, a two-dimensional mathematical model is developed to study the flow patterns and volumetric flow penetrations in the flow channel over the porous electrode layered system in vanadium flow battery with serpentine flow field design. The flow distributions at the interface between the flow channel and porous electrode are examined. It is found that the non-linear pressure distributions can distinguish the interface flow distributions under the ideal plug flow and ideal parabolic fl...

  1. Limiting photocurrent analysis of a wide channel photoelectrochemical flow reactor

    Science.gov (United States)

    Davis, Jonathan T.; Esposito, Daniel V.

    2017-03-01

    The development of efficient and scalable photoelectrochemical (PEC) reactors is of great importance for the eventual commercialization of solar fuels technology. In this study, we systematically explore the influence of convective mass transport and light intensity on the performance of a 3D-printed PEC flow cell reactor based on a wide channel, parallel plate geometry. Using this design, the limiting current density generated from the hydrogen evolution reaction at a p-Si metal–insulator–semiconductor (MIS) photocathode was investigated under varied reactant concentration, fluid velocity, and light intensity. Additionally, a simple model is introduced to predict the range of operating conditions (reactant concentration, light intensity, fluid velocity) for which the photocurrent generated in a parallel plate PEC flow cell is limited by light absorption or mass transport. This model can serve as a useful guide for the design and operation of wide-channel PEC flow reactors. The results of this study have important implications for PEC reactors operating in electrolytes with dilute reactant concentrations and/or under high light intensities where high fluid velocities are required in order to avoid operation in the mass transport-limited regime.

  2. The Effect of Confluence Angle on the Flow Pattern at a Rectangular Open-Channel

    Directory of Open Access Journals (Sweden)

    F. Rooniyan

    2014-02-01

    Full Text Available Flow connection in channels is a phenomenon which frequently happens in rivers, water and drainage channels and urban sewage systems. The phenomenon appears to be more complex in rivers than in channels, especially at the y-junction bed joint that causes erosion and sedimentation at some areas resulting to morphological changes. Flow behavior at the channel junction area depends on variables such as channel geometry, discharge ratio, tributary width and y-junction connection angle of the channel, bed level changes at the bed joint, flow characteristic at the bed joint upstream and flow Froude number in different sections. In this research, fluent numerical model and junction angles of 30o, 45o & 60o are used to analyze and evaluate the effect of channel junction geometry on the flow pattern and the flow separation zone dimensions in different ratios of flow discharge (upstream channel discharge to total discharge of the flow. Results for two ratios of flow discharge are represented. Results are in agreement with earlier studies and it is shown that the change of the channel crossing angle affects the flow pattern in the main channel and also that the dimensions of the created separation zone in the main channel become larger when the crossing angle increases. This phenomenon can also be observed when the flow discharge ratio is lower. Analysis showed that the least dimension of the separation zone will be at the crossing angle of 45o .

  3. CURVED OPEN CHANNEL FLOW ON VEGETATION ROUGHENED INNER BANK

    Institute of Scientific and Technical Information of China (English)

    HUAI Wen-xin; LI Cheng-guang; ZENG Yu-hong; QIAN Zhong-dong; YANG Zhong-hua

    2012-01-01

    A RNG k-ε numerical model together with a laboratory measurement with Micro ADV are adopted to investigate the flow through a 180° curved open channel (a 4 m straight inflow section,a 180° curved section,and a 4m straight outflow section)partially covered with rigid vegetations on its inner bank.Under the combined action of the vegetation and the bend flow,the flow structure is complex.The stream-wise velocities in the vegetation region are much smaller than those in the non-vegetation region due to the retardation caused by the vegetation.For the same reason,no clear circulation is found in the vegetated region,while in the non-vegetation region,a slight counter-rotating circulation is found near the outer bank at both 90° and downstream curved cross-sections.A comparison between the numerical prediction and the laboratory measurement shows that the RNG k- model can well predict the flow structure of the bend flow with vegetation.Furthermore,the shear stress is analyzed based on the numerical prediction.The much smaller value in the inner vegetated region indicates that the vegetation can effectively protect the fiver bank from scouting and erosion,in other words,the sediment is more likely to be deposited in the vegetation region.

  4. Stability of stratified two-phase flows in horizontal channels

    Science.gov (United States)

    Barmak, I.; Gelfgat, A.; Vitoshkin, H.; Ullmann, A.; Brauner, N.

    2016-04-01

    Linear stability of stratified two-phase flows in horizontal channels to arbitrary wavenumber disturbances is studied. The problem is reduced to Orr-Sommerfeld equations for the stream function disturbances, defined in each sublayer and coupled via boundary conditions that account also for possible interface deformation and capillary forces. Applying the Chebyshev collocation method, the equations and interface boundary conditions are reduced to the generalized eigenvalue problems solved by standard means of numerical linear algebra for the entire spectrum of eigenvalues and the associated eigenvectors. Some additional conclusions concerning the instability nature are derived from the most unstable perturbation patterns. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. It is found that for gas-liquid and liquid-liquid systems, the stratified flow with a smooth interface is stable only in confined zone of relatively low flow rates, which is in agreement with experiments, but is not predicted by long-wave analysis. Depending on the flow conditions, the critical perturbations can originate mainly at the interface (so-called "interfacial modes of instability") or in the bulk of one of the phases (i.e., "shear modes"). The present analysis revealed that there is no definite correlation between the type of instability and the perturbation wavelength.

  5. Energy dissipation rate limits for flow through rough channels and tidal flow across topography

    CERN Document Server

    Kerswell, R R

    2016-01-01

    An upper bound on the energy dissipation rate per unit mass, $\\epsilon$, for pressure-driven flow through a channel with rough walls is derived for the first time. For large Reynolds numbers, $Re$, the bound - $\\epsilon \\,\\leq \\, c\\, U^3/h$ where $U$ is the mean flow through the channel, $h$ the channel height and $c$ a numerical prefactor - is independent of $Re$ (i.e. the viscosity) as in the smooth channel case but the numerical prefactor $c$, which is only a function of the surface heights and surface gradients (i.e. not higher derivatives), is increased. Crucially, this new bound captures the correct scaling law of what is observed in rough pipes and demonstrates that while a smooth pipe is a singular limit of the Navier-Stokes equations (data suggests $\\epsilon \\, \\sim \\, 1/(\\log Re)^2\\, U^3/h$ as $Re \\rightarrow \\infty$), it is a regular limit for current bounding techniques. As an application, the bound is extended to oscillatory flow to estimate the energy dissipation rate for tidal flow across botto...

  6. Laminar Flow and Heat Transfer Characteristics in Jackets of Triangular Flow Channels

    Institute of Scientific and Technical Information of China (English)

    王翠华; 刘胜举; 吴剑华; 李雅侠

    2013-01-01

    Laminar flow and heat transfer characteristics of jacketed vessel with triangular flow channels were numerically studied under hydrodynamically and thermally fully developed conditions. Constant heat flux at the heated wall was assumed. The numerical program code in terms of vorticity, stream function, axial velocity com-ponent and energy equations was written based on a finite volume method. Based on the numerical results, the flow and temperature field were given, and the effects of Dean and Prandtl numbers on flow and heat transfer were ex-amined, and the correlations of flow resistance and mean Nusselt number were developed for the jacket. The results show that the structure of secondary flow is steady two vortices in the investigated range of dimensionless curvature ratio and Reynolds number. Two peaks of local Nusselt number increase significantly with Prandtl and Dean num-ber increasing, but the local Nusselt numbers near two ends and at the center of the heated wall increase only slightly. The center and two ends of heated wall are the poor positions for heat transfer in the jacket. Compared with the outer half coil jacket at the same area of heated wall, curvature radius, Reynolds number and Prandtl number, the jacket of triangular flow channel has lower flow resistance and less mean Nusselt number.

  7. Large-eddy simulation of transitional channel flow

    Science.gov (United States)

    Piomelli, Ugo; Zang, Thomas A.

    1990-01-01

    A large-eddy simulation (LES) of transition in plane channel flow was carried out. The LES results were compared with those of a fine direct numerical simulation (DNS), and with those of a coarse DNS that uses the same mesh as the LES, but does not use a residual stress model. While at the early stages of transition, LES and coarse DNS give the same results: the presence of the residual stress model was found to be necessary to predict accurately mean velocity and Reynolds stress profiles during the late stages of transition (after the second spike stage). The evolution of single Fourier modes is also predicted more accurately by the LES than by the DNS. As small scales are generated, the dissipative character of the residual stress starts to reproduce correctly the energy cascade. As transition progresses, the flow approaches its fully developed turbulent state, the subgrid scales tend towards equilibrium, and the model becomes more accurate.

  8. Hall Effects on MHD Flow Through a Porous Straight Channel

    Directory of Open Access Journals (Sweden)

    N. Bhaskara Reddy

    1982-10-01

    Full Text Available The effect of Hall currents on the flow of a viscous incompressible slightly conducting fluid through a porous straight channel under a uniform transverse magnetic field is considered. The pressure gradient is taken as constant quantity and the case of steady flow is obtained by taking the time since the start of the motion to be infinite. Skin friction, temperature distribution and coefficients of heat transfer at both the plates have been evaluated. The effects of Hall parameter, magnetic parameter and Reynolds number on the above physical quantities have been investigated. Velocity distribution when the pressure gradient (i varies linearly with time, and (ii decreases exponentially with time has also been evaluated.

  9. Sediment–flow interactions at channel confluences: A flume study

    Directory of Open Access Journals (Sweden)

    Tonghuan Liu

    2015-06-01

    Full Text Available Sediment transport and bed morphology at channel confluences with different confluence angles and discharge ratios are analyzed through a series of flume experiments. Bed topography and sediment transport rate are measured and results are compared among different conditions. Sediment transport is intermittent and pulsating as the tributary flow mixes with the mainstream, and the sediment transport rate goes up with the increase in discharge ratio and confluence angle. With no sediment supplied from upstream of the flume, a central scour hole will form along the shear plane and develop toward the right bank, and the depth of the central scour hole increases as the confluence angle and discharge ratio increase. With heavy upstream sediment supplement, deposition will happen in the separation zone and upstream of the confluence area because of the tributary. And the deposition height is related to the discharge ratio and confluence angle. Results indicate the significant impact of confluence geometry, sediment, and flow factors on fluvial processes.

  10. Streamwise decay of localized states in channel flow

    CERN Document Server

    Zammert, Stefan

    2016-01-01

    Channel flow, the pressure driven flow between parallel plates, has exact coherent structures that show various degrees of localization. For states which are localized in streamwise direction but extended in spanwise direction, we show that they are exponentially localized, with decay constants that are different on the upstream and downstream side. We extend the analysis of Brand and Gibson, J. Fluid Mech. 750, R1 (2014), for stationary states to the case of advected structures that is needed here, and derive expressions for the decay in terms of eigenvalues and eigenfunctions of certain second order differential equations. The results are in very good agreement with observations on exact coherent structures of different transversal wave length.

  11. On the similarity in shape between debris-flow channels and high-gradient flood channels: Initial insight from continuum models for granular and water flow

    Science.gov (United States)

    Kean, J. W.; McCoy, S. W.; Tucker, G. E.

    2011-12-01

    The cross-sectional shape of high-gradient bedrock channels carved by debris flows is often very similar to that of channels formed by fluvial erosion. Both tend to have narrow U-shapes with width-to-depth ratios much less than 10. Gullies and channels cut into colluvium by both water erosion and debris-flow erosion have similarly narrow geometries. Given that the physics governing debris flow and turbulent water flow are very different, why are channels eroded by these two processes so similar in shape? To begin to investigate this question, we conducted a series of numerical simulations using continuum models for the end-member cases of granular flow and water flow. Each model is used to evolve the steady-state channel shape formed by uniform flow of the respective material. The granular model is based on the constitutive equation for dense granular flow proposed by Jop et al. (Nature, 2006). They demonstrated that without any fitting parameters, a numerical model using this constitutive equation could reproduce the velocity and depth profiles observed in granular-flow laboratory experiments. The model for water flow uses a ray-isovel turbulence closure to calculate the boundary shear stress across the wetted perimeter of the channel. This fully predictive model has also been shown to be in good agreement with laboratory data. We start the calculations for the granular and water-flow cases by determining the velocity and boundary shear-stress fields in an initial V-shape cross section. We then erode both channels using a simple wear law scaled linearly by the bed-normal boundary shear stress. The calculation is repeated until the channel reaches an equilibrium shape. Initial comparisons of the granular and water-flow channels show that they have very similar width-to-depth ratios of about four, and only moderate differences in bottom geometries and boundary shear-stress distributions. The structure of the velocity field differs more substantially between the two

  12. INVITED PAPER: Control of sudden releases in channel flow

    Science.gov (United States)

    Katopodes, Nikolaos D.

    2009-12-01

    We present a method for the detection and real-time control of chemical releases in channel flow. Sensor arrays capable of detecting a broad menu of chemical agents are required at strategic locations of the channel. The sensors detect the instantaneous, spatially distributed concentration of the chemical agent and transmit the associated information to a predictive control model. The model provides optimal operation scenarios for computer controlled bleed valves mounted on the channel walls and connected to a common manifold. Control and elimination of the chemical cloud are achieved by optimal blowing and suction of ambient fluid. Gradient information is obtained by use of adjoint equations, so optimization of the control actions is achieved with the highest possible efficiency. The control is optimized over a finite prediction horizon and instructions are sent to the valve manifold. Next, the sensor arrays detect all changes effected by the control and report them to the control model, which advances the process over the next control horizon. Non-reflective boundary conditions for the adjoint equations are derived by a characteristic analysis, which minimizes spurious information in the computation of sensitivities.

  13. Turbulent pipe flow: Statistics, Re-dependence, structures and similarities with channel and boundary layer flows

    Science.gov (United States)

    El Khoury, George K.; Schlatter, Philipp; Brethouwer, Geert; Johansson, Arne V.

    2014-04-01

    Direct numerical simulation data of fully developed turbulent pipe flow are extensively compared with those of turbulent channel flow and zero-pressure-gradient boundary layer flow for Reτ up to 1000. In the near-wall region, a high degree of similarity is observed in the three flow cases in terms of one-point statistics, probability density functions of the wall-shear stress and pressure, spectra, Reynolds stress budgets and advection velocity of the turbulent structures. This supports the notion that the near-wall region is universal for pipe and channel flow. Probability density functions of the wall shear stress, streamwise turbulence intensities, one-dimensional spanwise/azimuthal spectra of the streamwise velocity and Reynolds-stress budgets are very similar near the wall in the three flow cases, suggesting that the three canonical wall-bounded flows share many features. In the wake region, the mean streamwise velocity and Reynolds stress budgets show some expected differences.

  14. Measurement of turbulent flow in a narrow open channel

    Directory of Open Access Journals (Sweden)

    Sarkar Sankar

    2016-09-01

    Full Text Available The paper presents the experimental results of turbulent flow over hydraulically smooth and rough beds. Experiments were conducted in a rectangular flume under the aspect ratio b/h = 2 (b = width of the channel 0.5 m, and h = flow depth 0.25 m for both the bed conditions. For the hydraulically rough bed, the roughness was created by using 3/8″ commercially available angular crushed stone chips; whereas sand of a median diameter d50 = 1.9 mm was used as the bed material for hydraulically smooth bed. The three-dimensional velocity components were captured by using a Vectrino (an acoustic Doppler velocimeter. The study focuses mainly on the turbulent characteristics within the dip that were observed towards the sidewall (corner of the channel where the maximum velocity occurs below the free-surface. It was also observed that the nondimensional Reynolds shear stress changes its sign from positive to negative within the dip. The quadrant plots for the turbulent bursting shows that the signs of all the bursting events change within the dip. Below the dip, the probability of the occurrence of sweeps and ejections are more than that of inward and outward interactions. On the other hand, within the dip, the probability of the occurrence of the outward and inward interactions is more than that of sweeps and ejections.

  15. Two-dimensional nonlinear travelling waves in magnetohydrodynamic channel flow

    CERN Document Server

    Hagan, Jonathan

    2013-01-01

    The present study is concerned with the stability of a flow of viscous conducting liquid driven by pressure gradient in the channel between two parallel walls subject to a transverse magnetic field. Although the magnetic field has a strong stabilizing effect, this flow, similarly to its hydrodynamic counterpart -- plane Poiseuille flow, is known to become turbulent significantly below the threshold predicted by linear stability theory. We investigate the effect of the magnetic field on 2D nonlinear travelling-wave states which are found at substantially subcritical Reynolds numbers starting from $Re_n=2939$ without the magnetic field and from $Re_n\\sim6.50\\times10^3Ha$ in a sufficiently strong magnetic field defined by the Hartmann number $Ha.$ Although the latter value is by a factor of seven lower than the linear stability threshold $Re_l\\sim4.83\\times10^4Ha$,it is still more by an order of magnitude higher than the experimentally observed value for the onset of turbulence in this flow.

  16. Energy amplification in channel flows of viscoelastic fluids

    Science.gov (United States)

    Hoda, Nazish; Jovanovi?, Mihailo R.; Kumar, Satish

    Energy amplification in channel flows of Oldroyd-B fluids is studied from an input-output point of view by analysing the ensemble-average energy density associated with the velocity field of the linearized governing equations. The inputs consist of spatially distributed and temporally varying body forces that are harmonic in the streamwise and spanwise directions and stochastic in the wall-normal direction and in time. Such inputs enable the use of powerful tools from linear systems theory that have recently been applied to analyse Newtonian fluid flows. It is found that the energy density increases with a decrease in viscosity ratio (ratio of solvent viscosity to total viscosity) and an increase in Reynolds number and elasticity number. In most of the cases, streamwise-constant perturbations are most amplified and the location of maximum energy density shifts to higher spanwise wavenumbers with an increase in Reynolds number and elasticity number and a decrease in viscosity ratio. For similar parameter values, the maximum in the energy density occurs at a higher spanwise wavenumber for Poiseuille flow, whereas the maximum energy density achieves larger maxima for Couette flow. At low Reynolds numbers, the energy density decreases monotonically when the elasticity number is sufficiently small, but shows a maximum when the elasticity number becomes sufficiently large, suggesting that elasticity can amplify disturbances even when inertial effects are weak.

  17. Compressible Turbulent Channel Flows: DNS Results and Modeling

    Science.gov (United States)

    Huang, P. G.; Coleman, G. N.; Bradshaw, P.; Rai, Man Mohan (Technical Monitor)

    1994-01-01

    The present paper addresses some topical issues in modeling compressible turbulent shear flows. The work is based on direct numerical simulation of two supersonic fully developed channel flows between very cold isothermal walls. Detailed decomposition and analysis of terms appearing in the momentum and energy equations are presented. The simulation results are used to provide insights into differences between conventional time-and Favre-averaging of the mean-flow and turbulent quantities. Study of the turbulence energy budget for the two cases shows that the compressibility effects due to turbulent density and pressure fluctuations are insignificant. In particular, the dilatational dissipation and the mean product of the pressure and dilatation fluctuations are very small, contrary to the results of simulations for sheared homogeneous compressible turbulence and to recent proposals for models for general compressible turbulent flows. This provides a possible explanation of why the Van Driest density-weighted transformation is so successful in correlating compressible boundary layer data. Finally, it is found that the DNS data do not support the strong Reynolds analogy. A more general representation of the analogy is analysed and shown to match the DNS data very well.

  18. Does the choice of the forcing term affect flow statistics in DNS of turbulent channel flow?

    CERN Document Server

    Quadrio, Maurizio; Hasegawa, Yosuke

    2015-01-01

    We seek possible statistical consequences of the way a forcing term is added to the Navier--Stokes equations in the Direct Numerical Simulation (DNS) of incompressible channel flow. Simulations driven by constant flow rate, constant pressure gradient and constant power input are used to build large databases, and in particular to store the complete temporal trace of the wall-shear stress for later analysis. As these approaches correspond to different dynamical systems, it can in principle be envisaged that these differences are reflect by certain statistics of the turbulent flow field. The instantaneous realizations of the flow in the various simulations are obviously different, but, as expected, the usual one-point, one-time statistics do not show any appreciable difference. However, the PDF for the fluctuations of the streamwise component of wall friction reveals that the simulation with constant flow rate presents lower probabilities for extreme events of large positive friction. The low probability value ...

  19. Flow distribution and maximum current density studies in redox flow batteries with a single passage of the serpentine flow channel

    Science.gov (United States)

    Ke, Xinyou; Alexander, J. Iwan D.; Prahl, Joseph M.; Savinell, Robert F.

    2014-12-01

    Flow batteries show promise for very large-scale stationary energy storage such as needed for the grid and renewable energy implementation. In recent years, researchers and developers of redox flow batteries (RFBs) have found that electrode and flow field designs of PEM fuel cell (PEMFC) technology can increase the power density and consequently push down the cost of flow battery stacks. In this paper we present a macroscopic model of a typical PEMFC-like RFB electrode-flow field design. The model is a layered system comprised of a single passage of a serpentine flow channel and a parallel underlying porous electrode (or porous layer). The effects of the inlet volumetric flow rate, permeability of the porous layer, thickness of the porous layer and thickness of the flow channel on the flow penetration into the porous layer are investigated. The maximum current density corresponding to stoichiometry is estimated to be 377 mA cm-2 and 724 mA cm-2, which compares favorably with experiments of ∼400 mA cm-2 and ∼750 mA cm-2, for a single layer and three layers of the carbon fiber paper, respectively.

  20. Hydraulics of combining flow in a right-angled compound open channel junction

    Indian Academy of Sciences (India)

    Sushant K Biswal; Pranab Mohapatra; K Muralidhar

    2016-01-01

    Although combining flows are common in natural streams, no comprehensive experimental data has been compiled to characterize the three-dimensional flow field within the compound channel confluence. The present study examines the time-averaged flow structure at confluence over a rigid bed. Current knowledge of channel confluence, based on laboratory observation indicates that cross flow interactions exert a significant influence on confluence events. Secondary current and turbulent stresses are reproduced well by the hydraulic model and found greater in the interface region as relative flow ratio decreases. Velocity fields in combining flow region arising from varying discharge ratios are presented. A zone of depression in surface elevation in compound channel junction is observed as well. The flow field in compound channel is seen to be moderately different from that of simple channel junction. This study contributes to a better knowledge of hydraulic key processes into fundamental aspect of combining flow dynamics.

  1. Three dimensional computation of turbulent flow in meandering channels

    Energy Technology Data Exchange (ETDEWEB)

    Van Thinh Nguyen

    2000-07-01

    In this study a finite element calculation procedure together with two-equation turbulent model k-{epsilon} and mixing length are applied to the problem of simulating 3D turbulent flow in closed and open meandering channels. Near the wall a special approach is applied in order to overcome the weakness of the standard k-{epsilon} in the viscous sub-layer. A specialized shape function is used in the special near wall elements to capture accurately the strong variations of the mean flow variables in the viscosity-affected near wall region. Based on the analogy of water and air flows, a few characteristics of hydraulic problems can be examined in aerodynamic models, respectively. To study the relationships between an aerodynamic and a hydraulic model many experiments have been carried out by Federal Waterway Engineering and Research Institute of Karlsruhe, Germany. In order to test and examine the results of these physical models, an appropriated numerical model is necessary. The numerical mean will capture the limitations of the experimental setup. The similarity and the difference between an aerodynamic and a hydraulic model will be found out by the results of numerical computations and will be depicted in this study. Despite the presence of similarities between the flow in closed channels and the flow in open channels, it should be stated that the presence of a free surface in the open channel introduces serious complications to three dimensional computation. A new unknown, which represents the position of nodes on this free surface, is introduced. A special approach is required for solving this unknown. A procedure surface tracking is applied to the free surface boundary like a moving boundary. Grid nodes on the free surface are free to move in such a way that they belong to the spines, which are the generator lines to define the allowed motion of the nodes on the free surface. (orig.) [German] Die numerische Simulation ist heute ein wichtiges Hilfsmittel fuer die

  2. Controlling a Linear Process in Turbulent Channel Flow

    Science.gov (United States)

    Lim, Junwoo; Kim, John

    1999-11-01

    Recent studies have shown that controllers developed based on a linear system theory work surprisingly well in reducing the viscous drag in turbulent boundary layers, suggesting that the essential dynamics of near-wall turbulence may well be approximated by the linearized model. Of particular interest is the linear process due to the coupling term between the wall-normal velocity and wall-normal vorticity terms in the linearized Navier-Stokes (N-S) equations, which enhances non-normality of the linearized system. This linear process is investigated through numerical simulations of a turbulent channel flow. It is shown that the linear coupling term plays an important role in fully turbulent -- and hence, nonlinear -- flows. Near-wall turbulence is shown to decay in the absence of the linear coupling term. The fact that the coupling term plays an essential role in maintaining near-wall turbulence suggests that an effective control algorithm for the drag reduction in turbulent flows should be aimed at reducing the effect of the coupling term in the wall region. Designing a control algorithm that directly accounts for the coupling term in a cost to be minimized will be discussed.

  3. Turbulence Modulation and Particle Segregation in a Turbulent Channel Flow

    Science.gov (United States)

    Fong, Kee Onn; Toloui, Mostafa; Amili, Omid; Hong, Jiarong; Coletti, Filippo

    2016-11-01

    Particle-laden flows are ubiquitous in biological, environmental, and engineering flows, but our understanding of the mechanism by which particles modulate turbulence is incomplete. Simulations involve a wide range of scales, and shall be corroborated by measurements that reconstruct the motion of both the continuous and dispersed phases. We present experimental observations on the interaction between inertial particles and turbulent flow through a vertical channel in two-way coupled regime. The working fluid is air laden with size-selected glass particles, which we investigate by planar particle image velocimetry and digital inline holography. Unlike most previous experiments, we focus on a regime in which particle segregation and turbulence modulation are both strong. PIV shows that turbulence modulation is especially pronounced near the wall, where particles accumulate by turbophoresis. The segregation, however, is much weaker than what suggested by one-way coupled simulations. Results from digital holography confirm the trends in particle concentration and velocities, and additionally provide information on the three-dimensional clustering. The findings are compared to previous investigations and discussed in the context of modeling strategies.

  4. Direct numerical simulation of turbulent channel flow over porous walls

    CERN Document Server

    Rosti, Marco E; Cortelezzi, Luca

    2014-01-01

    We perform direct numerical simulations (DNS) of a turbulent channel flow over porous walls. In the fluid region the flow is governed by the incompressible Navier-Stokes equations, while in the porous layers the Volume-Averaged Navier-Stokes (VANS) equations are used, which are obtained by volume-averaging the microscopic flow field over a small volume that is larger than the typical dimensions of the pores. In this way the porous medium has a continuum description, and can be specified via global properties like permeability and porosity, without the need of a detailed knowledge of the pore microstructure. At the interface between the porous material and the fluid region, following literature momentum-transfer conditions are applied, in which an available coefficient related to the unknown structure of the interface can be used as an error estimate. To formulate the numerical problem, the velocity-vorticity formulation of the coupled Navier--Stokes and VANS equations is derived and implement into a pseudo-sp...

  5. More Than Flow: Revisiting the Theory of Four Channels of Flow

    Directory of Open Access Journals (Sweden)

    Ching-I Teng

    2012-01-01

    Full Text Available Flow (FCF theory has received considerable attention in recent decades. In addition to flow, FCF theory proposed three influential factors, that is, boredom, frustration, and apathy. While these factors have received relatively less attention than flow, Internet applications have grown exponentially, warranting a closer reexamination of the applicability of the FCF theory. Thus, this study tested the theory that high/low levels of skill and challenge lead to four channels of flow. The study sample included 253 online gamers who provided valid responses to an online survey. Analytical results support the FCF theory, although a few exceptions were noted. First, skill was insignificantly related to apathy, possibly because low-skill users can realize significant achievements to compensate for their apathy. Moreover, in contrast with the FCF theory, challenge was positively related to boredom, revealing that gamers become bored with difficult yet repetitive challenges. Two important findings suggest new directions for FCF theory.

  6. Scale analysis of turbulent channel flow with varying pressure gradient

    Institute of Scientific and Technical Information of China (English)

    邱翔; 罗剑平; 黄永祥; 卢志明; 刘宇陆

    2014-01-01

    In this paper orthogonal wavelet transformations are applied to decompose experimental velocity signals in fully develo-ped channel flows with varying pressure gradient into scales. We analyze the time series from turbulent data, to obtain the statistical characteristics, correlations between the adjacent scales and the principal scale of coherent structures in different scales by wavelet transformations. The results show that, in the counter gradient transport (CGT) region, skewness factors and flatness factors deviate strongly from the corresponding values of Gaussian distribution on certain scales. PDFs on each scale confirm this observation. Scale-scale correlations show further that the fluctuations on some certain special scales are more intermittent than nearby. Principal scale of coherent structure is coincident with the scales on which the statistical properties depart from Gaussian distribution. These features are the same for different families of wavelets, and it also shows some different features in the region between favorable pressure gradient and adverse pressure gradient.

  7. Solute dispersion in open channel flow with bed absorption

    Science.gov (United States)

    Wang, Ping; Chen, G. Q.

    2016-12-01

    Reactive solute dispersion is of essential significance in various ecological and environmental applications. It is only qualitatively known that boundary absorption depletes pollutant around the boundary and reduces the concentration nearby. All the existing studies on this topic have been focused on the longitudinally distributed mean concentration, far from enough to fully characterize the transport process with tremendous cross-sectional concentration nonuniformity. This work presents an analytical study of the evolution of two-dimensional concentration distribution for solute dispersion in a laminar open channel flow with bed absorption. The fourth order Aris-Gill expansion proposed in our previous study (Wang and Chen, 2016b) is further extended for the case with bed absorption to cover the transitional effects of skewness and kurtosis. Results reveal the extremely nonuniform cross-sectional concentration distribution, and demonstrate that concentration at the bed instead of the mean should be used for reliable quantification of the absorption flux. The accurate two-dimensional concentration distribution presented in this study brings important environmental implications such as risk assessment associated with peak concentration position and duration of toxic pollutant cloud in open channel waters.

  8. Numerical investigation of transition critical Reynolds number of channel flow.

    Science.gov (United States)

    Zhang, Yongming

    2015-11-01

    Two critical Reynolds numbers are mentioned in investigation of laminar-turbulent transition. One is instability critical Reynolds number from linear stability theory (LST). The other is transition critical Reynolds number at which transition occurs in reality, which is significantly lower than the former in general. The determination of transition critical Reynolds number is of important practical significance in some engineering problems. Theoretical method has not been proposed for its determination, so it has to depend on experiments. However, for some flows with important practical significance, such as hypersonic boundary layer, transition critical Reynolds number cannot be determined by experiments in current situation. In this paper, transition critical Reynolds number of incompressible channel flow is determined by direct numerical simulations (DNS). It is found as Re =1114, which agrees with experimental data. In subsequent paper, transition critical Reynolds number of boundary layer will be investigation by the similar method. Project supported by the National Natural Science Foundation of China (Nos. 11202147, 11332007, 11172203, and 91216111) and the Specialized Research Fund (New Teacher Class) for the Doctoral Program of Higher Education (No. 20120032120007).

  9. Dynamic evolution process of turbulent channel flow after opposition control

    Science.gov (United States)

    Ge, Mingwei; Tian, De; Yongqian, Liu

    2017-02-01

    Dynamic evolution of turbulent channel flow after application of opposition control (OC), together with the mechanism of drag reduction, is studied through direct numerical simulation (DNS). In the simulation, the pressure gradient is kept constant, and the flow rate increases due to drag reduction. In the transport of mean kinetic energy (MKE), one part of the energy from the external pressure is dissipated by the mean shear, and the other part is transported to the turbulent kinetic energy (TKE) through a TKE production term (TKP). It is found that the increase of MKE is mainly induced by the reduction of TKP that is directly affected by OC. Further analysis shows that the suppression of the redistribution term of TKE in the wall normal direction plays a key role in drag reduction, which represses the wall normal velocity fluctuation and then reduces TKP through the attenuation of its main production term. When OC is suddenly applied, an acute imbalance of energy in space is induced by the wall blowing and suction. Both the skin-friction and TKP terms exhibit a transient growth in the initial phase of OC, which can be attributed to the local effect of and in the viscous sublayer. Project supported by the National Natural Science Foundation of China (Grant No. 11402088 and Grant No. 51376062) , State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (Grant No. LAPS15005), and ‘the Fundamental Research Funds for the Central Universities’ (Grant No.2014MS33).

  10. Thermal and Hydraulic Performances of Nanofluids Flow in Microchannel Heat Sink with Multiple Zigzag Flow Channels

    Directory of Open Access Journals (Sweden)

    Duangthongsuk Weerapun

    2017-01-01

    Full Text Available This article presents an experimental investigation on the heat transfer performance and pressure drop characteristic of two types of nanofluids flowing through microchannel heat sink with multiple zigzag flow channel structures (MZMCHS. SiO2 nanoparticles dispersed in DI water with concentrations of 0.3 and 0.6 vol.% were used as working fluid. MZMCHS made from copper material with dimension of 28 × 33 mm. Hydraulic diameter of MZMCHs is designed at 1 mm, 7 number of flow channels and heat transfer area is about 1,238 mm2. Effects of particle concentration and flow rate on the thermal and hydraulic performances are determined and then compare with the common base fluid. The results indicated that the heat transfer coefficient of nanofluids was higher than that of the water and increased with increasing particle concentration as well as Reynolds number. For pressure drop, the particle concentrations have no significant effect on the pressure drop across the test section.

  11. The phase-locked mean impulse response of a turbulent channel flow

    CERN Document Server

    Luchini, P; Zuccher, S; Luchini, Paolo; Quadrio, Maurizio; Zuccher, Simone

    2006-01-01

    We describe the first DNS-based measurement of the complete mean response of a turbulent channel flow to small external disturbances. Space-time impulsive perturbations are applied at one channel wall, and the linear response describes their mean effect on the flow field as a function of spatial and temporal separations. The turbulent response is shown to differ from the response a laminar flow with the turbulent mean velocity profile as base flow.

  12. Investigation of low flow trip alarm of FARE channel at Wolsong NPP

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. K.; Lee, S. G.; Son, S. M.; Lee, W. R.; Kim, T. R. [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Lee, K. Y.; Hong, S. S. [Korea Hydro and Nuclear Power Co., Ltd., Gyeongju (Korea, Republic of); Namgung, I. [KOPEC, Taejon (Korea, Republic of)

    2003-10-01

    At Wolsong site in Korea, four CANDU6 type reactors are operating now. The CANDU type reactors require on power refuelling by the two remotely controlled F/Ms (Fuelling Machines). The refuelling operation is carried out along the coolant direction by the drag force of fuel bundles for most channels; however, for about 30% of channels the coolant flow is not sufficiently high enough to carry fuel bundles to the downstream. Therefore, a device, FARE(Flow Assist Ram Extension) device, is used to create an additional drag force to push the fuel bundles along the coolant flow. The FARE device has been causing the channel flow low phenomena of SDS1 (shut down system 1) channels due to more than excessive blockage of coolant flow. The flow rate change for the SDS1 channels is monitored on line for the coolant flow blockage of the channels. This has initiated the investigation of the FARE device behavior and the cause and remedy for the problem. The analysis revealed that the channel flow low occurs as the insertion of the FARE device into the active core flow and disappears as the removal of the FARE device from it. In order to eliminate the channel flow low phenomena, flow resistance by the FARE device should be reduced. The analysis has revealed that a too much relaxation of flow resistance would make the FARE device unable to push the fuel bundle string, and a too little relaxation would make the FARE device unable to eliminate the channel flow low phenomena. Suggested design changes include more flow holes in the tube.

  13. Morphology of the 1984 open-channel lava flow at Krafla volcano, northern Iceland

    Science.gov (United States)

    Rossi, Matti J.

    1997-09-01

    An open-channel lava flow of olivine tholeiite basalt, 9 km long and 1-2 km wide, formed in a volcanic eruption that took place in the Krafla volcano, Iceland, on the 4-18 September 1984. The eruption started with emplacement of a pahoehoe sheet which was fed by a 8.5-km-long fissure. After two days of eruption, lava effusion from the fissure ceased but one crater at the northern end of the fissure continued to release lava for another twelve days. That crater supplied an open-channel flow that moved toward the north along the rift valley. The lava was emplaced on a slope of 1°. The final lava flow is composed of five flow facies: (1) the initial pahoehoe sheet; (2) proximal slab pahoehoe and aa; (3) shelly-type overflows from the channel; (4) distal rubbly aa lava; and (5) secondary outbreaks of toothpaste lava and cauliflower aa. The main lava channel within the flow is 6.4 km long. The mean width of this channel is 189 m (103 m S.D.). An initial lava channel that forms in a Bingham plastic substance is fairly constant in width. This channel, however, varies in width especially in the proximal part indicating channel erosion. Large drifted blocks of channel walls are found throughout the flow front area and on the top of overflow levees. This suggests that the channel erosion was mainly mechanical. The lava flow has a mean height of 6 m above its surroundings, measured at the flow margins. However, a study of the pre-flow topography indicates that the lava filled a considerable topographic depression. Combined surface and pre-flow profiles give an average lava-flow thickness of 11 m; the thickness of the initial sheet-flow is estimated as 2 m. The volume of the lava flow calculated from these figures is 0.11 km 3. The mean effusion rate was 91 m 3/s. When lava flow models are used to deduce the rheological properties of this type of lava flow, the following points must be considered: (1) when a lava flow is emplaced along tectonic lineaments, its depth and

  14. Effect of the Flow Channel Structure on the Nanofiltration Separation Performance

    Directory of Open Access Journals (Sweden)

    Zhi Chen

    2013-01-01

    Full Text Available Two kinds of newly designed feed channels, for example, a spiral and a serpentine feed channels, for a bench-scale nanofiltration module were developed to improve the filtration performance. The experiments were carried out with the modules using a commercial flat NF membrane to investigate the effects of Reynolds number (Re and flow channel structures on the flux of permeate and Mg2+ rejection. It was shown from the experimental results that although the effects of Reynolds number on fluxes were not obvious for the two new feed channels compared with a normal flow channel structure, the Mg2+ rejections varied apparently with Re. The Mg2+ rejections were almost the same for the modules with two new feed channels and larger than that for the module with normal feed channel. The numerical simulations of fluid flow in the three kinds of feed channels were completed at Re of 4800 to explain the phenomena. The results demonstrated that there was a secondary flow in both new feed channels, which strongly influences the Mg2+ rejection. The rejection increased with increasing average shear stress at the membrane wall. The spiral feed channel was the best one among the flow channel structures investigated.

  15. Radionuclide Release after Channel Flow Blockage Accident in CANDU-6 Plant

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hoon; Jun, Hwang Yong [Korea Electric Power Corporation Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    The channel flow blockage accident is one of the in core loss of coolant accidents, the release path of radionuclide is very different from conventional loss of coolant accidents. The large amount of radionuclide released from broken channel is being washed during it passes through the moderator in Calandria. The objective of containment behavior analysis for channel flow blockage event is to assess the amount of radionuclide release to the ambient atmosphere. Radionuclide release rates in case of channel flow blockage with all safety system available, that is containment building is intact, as well as with containment system impairment are analyzed with GOTHIC and SMART code

  16. Enhancement of channel wall vibration due to acoustic excitation of an internal bubbly flow

    NARCIS (Netherlands)

    Zhang, M.M.; Katz, J.; Prosperetti, A.

    2010-01-01

    The effect of an internal turbulent bubbly flow on vibrations of a channel wall is investigated experimentally and theoretically. Our objective is to determine the spectrum and attenuation rate of sound propagating through a bubbly liquid flow in a channel, and connect these features with the vibrat

  17. Water behavior in a u-shaped flow channel of PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Quan, P.; Zhou, B.; Sobiesiak, A. [Windsor Univ., ON (Canada). Dept. of Mechanical, Automotive and Materials Engineering; Liu, Z.S. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2005-07-01

    A study was conducted to find a practical approach for predicting liquid water distribution in the U-shaped flow channels of a proton exchange membrane (PEM) fuel cell. Computational fluid dynamics modeling with the FLUENT software package was used to demonstrate the two-phase flow of the air-water transport process inside the channel. It was noted that no chemical reaction occurs inside the flow channels and the liquid water is formed either on the surfaces of the flow channels or inside the flow channels. The problem can therefore be simplified as a fluid mechanics problem with water sources inside its physical domain or on its boundaries. The volume-of-fluid (VOF) model was used to track dynamic air-water interactions. Three cases with a range of initial water phase distributions corresponding to different fuel cell operating conditions were simulated numerically to gain a better understanding of water behaviour inside the serpentine channel. It was concluded that the bend area in the serpentine flow field affects the fuel cell performance. This is because it influences the flow field which in turn influences the air-water flow and water liquid distribution inside the channel or along the inside channel surfaces. 15 refs., 1 tab., 11 figs.

  18. Flow Patterns and Thermal Drag in a One-Dimensional Inviscid Channel with Heating or Cooling

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    In this paper investigations on the flow patterns and the thermal drag phenomenon in one -dimensional inviscid channel flow with heating or cooling are described and discussed:expressions of flow rate ratio and thermal drag coefficient for different flow patterns and its physical mechanism are presented.

  19. Improvement of performance of gas flow channel in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Jenn-Kun [Graduate Institute of Greenergy Technology, National University of Tainan, 700 Taiwan (China); Yen, Tzu-Shuang; Chen, Cha' o-Kuang [Department of Mechanical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan (China)

    2008-10-15

    This study performs numerical simulations to evaluate the convective heat transfer performance and velocity flow characteristics of the gas flow channel design to enhance the performance of proton exchange membrane fuel cells (PEMFCs). To restrict the current simulations to two-dimensional incompressible flows, the flow regime is assumed to be laminar with a low Reynolds number of approximately 200. In addition, the field synergy principle is applied to demonstrate that an increased interruption within the fluid flow reduces the intersection angle between the velocity vector and the temperature gradient. The interruption within the fluid flow is induced by different type of obstacles: wave like, trapezoid like and ladder like forms and the straight form of the gas flow channel. The numerical results show that, compared to a conventional straight gas flow channel, the wave like, trapezoid like and ladder like geometry of the proposed gas flow channel increases the mean Nusselt number by a factor of approximately two. Furthermore, the periodic three patterns (wave like, trapezoid like and ladder like) structure increases the gas flow velocity in the channel and, hence, improves the catalysis reaction performance in the catalyst layer. Finally, the results show that the three patterns geometry of the gas flow channel reduces the included angle between the velocity vector and the temperature gradient. Hence, the present numerical results are consistent with the field synergy principle, which states that the convective heat transfer is enhanced when the velocity vector and temperature gradient are closely aligned with one another. (author)

  20. GATE REGULATION SPEED AND TRANSITION PROCESS OF UNSTEADY FLOW IN CHANNEL

    Institute of Scientific and Technical Information of China (English)

    TAN Guang-ming; DING Zhi-liang; WANG Chang-de; YAO Xiong

    2008-01-01

    The operation methods of channel and the speed of gate regulation have great influence on the transformation of flow in water conveyance channels. Based on characteristics method, a 1-D unsteady flow numerical model for gate regulation was established in this study. The process of water flow was simulated under different boundary conditions. The influence of gate regulation speed and channel operation methods on flow transition process was analyzed. The numerical results show that under the same conditions, with increasing regulation speed of the gate, the change rates of discharge and water level increase, while the response time of channel becomes shorter, and ultimately the discharge and water level will transit to the same equilibrium states. Moreover, the flow is easier to reach stable state, if the water level in front of the sluice is kept constant, instead of behind the sluice. This study will be important to the scheme design of automatic operation control in water conveyance channels.

  1. Analytical study of parameters affecting entropy generation of nanofluid turbulent flow in channel and micro-channel

    Directory of Open Access Journals (Sweden)

    Sheikhzadeh Ghanbarali

    2016-01-01

    Full Text Available In this study, thermo-physical and geometrical parameters affecting entropy generation of nanofluid turbulent flow such as the volume fraction, Reynolds number and diameter of the channel and micro-channel with circular cross section under constant flux are examined analytically. Water is used as a base fluid of nanofluid with nanoparticles of Ag, Cu, CuO and TiO2. The study is conducted for Reynolds numbers of 20000, 40000 and 100000, volume fractions of 0, 0.01, 0.02, 0.03 and 0.04, channel diameters of 2, 4, 6 and 8 cm and micro-channel diameters of 20, 40, 60 and 80 micrometers. Based on the results, the most of the generated entropy in channel is due to heat transfer, and also, with increasing the diameter of the channel, Bejan number increases. The contribution of entropy generation due to heat transfer in the micro-channel is very poor and the major contribution of entropy generation is due to friction. The maximum amount of entropy generation in channel belongs to nanofluids with Ag, Cu, CuO and TiO2 nanoparticles, respectively, while in the micro-channel this behavior is reversed; and the minimum entropy generation happens in nanofluids with Ag, Cu, CuO and TiO2 nanoparticles, respectively. In channel and micro-channel, for all nanofluids except for the water-TiO2, with increasing volume fraction of nanoparticles, the entropy generation decreases. In channel and micro-channel, the total entropy generation increases as Reynolds number augments.

  2. Behavior of Heavy Particles in Turbulent Channel Flow

    Science.gov (United States)

    Lee, Junghoon; Lee, Changhoon

    2010-11-01

    The motion of heavy particles in turbulent channel flow was investigated by using direct numerical simulation. We assumed that Stokes drag, Saffman lift and Magnus lift act on the motion of heavy spherical particles in turbulence. In this study, Stokes number is defined as the particle response time normalized by the wall units. The range of the Stokes number is 0.1˜50 and the diameter of a particle is 0.06˜0.3 in wall unit. Collision of particles with the wall is modelled by an elastic collision. Relevant velocity and acceleration statistics of heavy particles for the given range of Stokes number were investigated to interpret the particle accumulation near the wall. Particle accumulation at the wall is maximized when the Stokes number is around 15. And we found that Saffman lift force has a great effect on particle acceleration in the wall-normal direction near the wall. Detailed statistics including probability density function and autocorrelation of particle velocity and acceleration will be presented in the meeting.

  3. Analysis Of The Effect Of Flow Channel Width On The Performance Of PEMFC

    OpenAIRE

    Elif Eker; İmdat Taymaz

    2013-01-01

    In this work, it was analysed the effect of different channel width on performance of PEM fuel cell. Current density were measured on the single cells of parallel flow fields that has 25 cm² active layer, using three different kinds of channel width. The cell width and the channel height remain constant.The results show that increasing the channel width while the cell width remains constant decreases the current density.

  4. Analysis Of The Effect Of Flow Channel Width On The Performance Of PEMFC

    OpenAIRE

    Eker, Elif; Taymaz, İmdat

    2013-01-01

    In this work, it was analysed the effect of different channel width on performance of PEM fuel cell. Current density were measured on the single cells of parallel flow fields that has 25 cm² active layer, using three different kinds of channel width. The cell width and the channel height remain constant. The results show that increasing the channel width while the cell width remains constant decreases the current density.

  5. An experimental investigation of heat-transfer and flow in channels with streamwise-periodic flow

    Energy Technology Data Exchange (ETDEWEB)

    Habib, M.A. (King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia)); Mobarak, A.M.; Attya, A.M.; Aly, A.Z. (Cairo Univ. (Egypt). Faculty of Engineering)

    1992-11-01

    We investigate the enhancement of heat transfer and the consequent conservation of energy in channels with segmented baffles. The influence of Reynolds number, baffle spacing, baffle material, and heat flux on local and average heat-transfer coefficients have been studied. Our results show that the flow must pass over three to six baffles before it becomes periodic and fully-developed. Augmentation of heat transfer was obtained with increases in Reynolds number, thermal conductivity of the baffles and decreases in baffle spacing and wall heat flux. (Author).

  6. Numerical investigation on the flow structures in a narrow confined channel with staggered jet array arrangement

    Directory of Open Access Journals (Sweden)

    Liu Haiyong

    2015-12-01

    Full Text Available A series of numerical analyses have been performed to investigate the flow structures in a narrow confined channel with 12 staggered circular impingement holes and one bigger exit hole. The flow enters the channel through the impingement holes and exits through the far end outlet. The flow fields corresponding to two jet Reynolds numbers (25000 and 65000 and three channel configurations with different ratios of the channel height to the impingement hole diameter (Zr = 1, 3, 5 are analyzed by solving the Reynolds averaged Navier–Stokes equations with the realizable k–ε turbulence model. Detailed flow field information including the secondary flow, the interaction between the jets and the cross flow, and flow distribution along the channel has been obtained. Comparisons between the numerical and experimental results of the flow fields at the four planes along the channel are performed to validate the numerical method. The calculated impingement pattern, high velocity flow distribution, low velocity separation region and vortices are in good agreement with the experimental data, implying the validity and effectiveness of the employed numerical approach for analyzing relevant flow field.

  7. Turbulent flow in a ribbed channel: Flow structures in the vicinity of a rib

    DEFF Research Database (Denmark)

    Wang, Lei; Salewski, Mirko; Sundén, Bengt

    2010-01-01

    PIV measurements are performed in a channel with periodic ribs on one wall. The emphasis of this study is to investigate the flow structures in the vicinity of a rib in terms of mean velocities, Reynolds stresses, probability density functions (PDF), and two-point correlations. The PDF distribution...... of u′ is bimodal in the separated shear layer downstream of the rib. The maximum Reynolds shear stresses occur at the leading edge of the rib. Based on quadrant analysis, it is found that ejection motions make a dominant contribution to the Reynolds shear stress in this region. Moreover, topology......-based visualization is applied to the separation bubble upstream of the rib. Salient critical points and limit cycles are extracted, which gives clues to the physical processes occurring in the flow....

  8. Factors affecting measurement of channel thickness in asymmetrical flow field-flow fractionation.

    Science.gov (United States)

    Dou, Haiyang; Jung, Euo Chang; Lee, Seungho

    2015-05-01

    Asymmetrical flow field-flow fractionation (AF4) has been considered to be a useful tool for simultaneous separation and characterization of polydisperse macromolecules or colloidal nanoparticles. AF4 analysis requires the knowledge of the channel thickness (w), which is usually measured by injecting a standard with known diffusion coefficient (D) or hydrodynamic diameter (dh). An accurate w determination is a challenge due to its uncertainties arising from the membrane's compressibility, which may vary with experimental condition. In the present study, influence of factors including the size and type of the standard on the measurement of w was systematically investigated. The results revealed that steric effect and the particles-membrane interaction by van der Waals or electrostatic force may result in an error in w measurement.

  9. Thin-film flow in helically wound shallow channels of arbitrary cross-sectional shape

    Science.gov (United States)

    Arnold, D. J.; Stokes, Y. M.; Green, J. E. F.

    2017-01-01

    We consider the steady, gravity-driven flow of a thin film of viscous fluid down a helically wound shallow channel of arbitrary cross-sectional shape with arbitrary torsion and curvature. This extends our previous work [D. J. Arnold et al., "Thin-film flow in helically-wound rectangular channels of arbitrary torsion and curvature," J. Fluid Mech. 764, 76-94 (2015)] on channels of rectangular cross section. The Navier-Stokes equations are expressed in a novel, non-orthogonal coordinate system fitted to the channel bottom. By assuming that the channel depth is small compared to its width and that the fluid depth in the vertical direction is also small compared to its typical horizontal extent, we are able to solve for the velocity components and pressure analytically. Using these results, a differential equation for the free surface shape is obtained, which must in general be solved numerically. Motivated by the aim of understanding flows in static spiral particle separators used in mineral processing, we investigate the effect of cross-sectional shape on the secondary flow in the channel cross section. We show that the competition between gravity and inertia in non-rectangular channels is qualitatively similar to that in rectangular channels, but that the cross-sectional shape has a strong influence on the breakup of the secondary flow into multiple clockwise-rotating cells. This may be triggered by small changes to the channel geometry, such as one or more bumps in the channel bottom that are small relative to the fluid depth. In contrast to the secondary flow which is quite sensitive to small bumps in the channel bottom, the free-surface profile is relatively insensitive to these. The sensitivity of the flow to the channel geometry may have important implications for the design of efficient spiral particle separators.

  10. Flow reversal of laminar mixed convection in the entry region of symmetrically heated, vertical plate channels

    Energy Technology Data Exchange (ETDEWEB)

    Desrayaud, G. [Universite de Picardie Jules Verne, INSSET, Lab. Modelisation et Simulation Multi Echelle, MSME FRE 3160 CNRS, 02 - Saint-Quentin (France); Lauriat, G. [Universite Paris-Est, Lab. Modelisation et Simulation Multi Echelle, MSME FRE 3160 CNRS, 77 - Marne-la-Vallee (France)

    2009-11-15

    The present numerical investigation is concerned with flow reversal phenomena for laminar, mixed convection of air in a vertical parallel-plate channel of finite length. Results are obtained for buoyancy-assisted flow in a symmetrically heated channel with uniform wall temperatures for various Grashof numbers and Reynolds numbers in the range 300 {<=} Re {<=} 1300. The effects of buoyancy forces on the flow pattern are investigated and the shapes of velocity and temperature profiles are discussed in detail. Flow reversals centred in the entrance of the channel are predicted. The strength of the cells decreases as the Reynolds number is increased, until they disappear. The regime of reversed flow is identified for high values of the Peclet number in a Pe-Gr/Re map. It is also shown that the channel length has no influence on the occurrence of the reversal flow provided that H/D {>=} 10. (authors)

  11. Flow-induced channel formation in the cytoplasm of motile cells

    Science.gov (United States)

    Guy, Robert D.; Nakagaki, Toshiyuki; Wright, Grady B.

    2011-07-01

    A model is presented to explain the development of flow channels within the cytoplasm of the plasmodium of the giant amoeba Physarum polycephalum. The formation of channels is related to the development of a self-organizing tubular network in large cells. Experiments indicate that the flow of cytoplasm is involved in the development and organization of these networks, and the mathematical model proposed here is motivated by recent experiments involving the observation of development of flow channel in small cells. A model of pressure-driven flow through a polymer network is presented in which the rate of flow increases the rate of depolymerization. Numerical solutions and asymptotic analysis of the model in one spatial dimension show that under very general assumptions this model predicts the formation of channels in response to flow.

  12. Development of bipolar plates with different flow channel configurations for fuel cells

    Science.gov (United States)

    Boddu, Rajesh; Marupakula, Uday Kumar; Summers, Benjamin; Majumdar, Pradip

    Bipolar plates include separate gas flow channels for anode and cathode electrodes of a fuel cell. These gases flow channels supply reactant gasses as well as remove products from the cathode side of the fuel cell. Fluid flow, heat and mass transport processes in these channels have significant effect on fuel cell performance, particularly to the mass transport losses. The design of the bipolar plates should minimize plate thickness for low volume and mass. Additionally, contact faces should provide a high degree of surface uniformity for low thermal and electrical contact resistances. Finally, the flow fields should provide for efficient heat and mass transport processes with reduced pressure drops. In this study, bipolar plates with different serpentine flow channel configurations are analyzed using computational fluid dynamics modeling. Flow characteristics including variation of pressure in the flow channel across the bipolar plate are presented. Pressure drop characteristics for different flow channel designs are compared. Results show that with increased number of parallel channels and smaller sizes, a more effective contact surface area along with decreased pressured drop can be achieved. Correlations of such entrance region coefficients will be useful for the PEM fuel cell simulation model to evaluate the affects of the bipolar plate design on mass transfer loss and hence on the total current and power density of the fuel cell.

  13. Numerical Analysis of Turbulent Flows in Channels of Complex Geometry

    Science.gov (United States)

    Farbos De Luzan, Charles

    The current study proposes to follow a systematic validated approach to applied fluid mechanics problems in order to evaluate the ability of different computational fluid dynamics (CFD) to be a relevant design tool. This systematic approach involves different operations such as grid sensitivity analyses, turbulence models comparison and appropriate wall treatments, in order to define case-specific optimal parameters for industrial applications. A validation effort is performed on each study, with particle image velocimetry (PIV) experimental results as the validating metric. The first part of the dissertation lays down the principles of validation, and presents the details of a grid sensitivity analysis, as well as a turbulence models benchmark. The models are available in commercial solvers, and in most cases the default values of the equations constants are retained. The validation experimental data is taken with a hot wire, and has served as a reference to validate multiple turbulence models for turbulent flows in channels. In a second part, the study of a coaxial piping system will compare a set of different steady Reynolds-Averaged Navier Stokes (RANS) turbulence models, namely the one equation model Spalart-Almaras, and two-equation-models standard k-epsilon, k-epsilon realizable, k-epsilon RNG, standard k-omega, k-omega SST, and transition SST. The geometry of interest involves a transition from an annulus into a larger one, where highly turbulent phenomena occur, such as recirculation and jet impingement. Based on a set of constraints that are defined in the analysis, a chosen model will be tested on new designs in order to evaluate their performance. The third part of this dissertation will address the steady-state flow patterns in a Viscosity-Sensitive Fluidic Diode (VSFD). This device is used in a fluidics application, and its originality lies in the fact that it does not require a control fluid in order to operate. This section will discuss the

  14. The effect of floodplain grass on the flow characteristics of meandering compound channels

    Science.gov (United States)

    Liu, Chao; Shan, Yuqi; Liu, Xingnian; Yang, Kejun; Liao, Huasheng

    2016-11-01

    Laboratory experiments were conducted in a large-scale meandering compound channel to investigate the effect of floodplain grass on the main flow field in the channel. Three-dimensional velocity fields, turbulences, and Reynolds shear stresses were measured along half a meander. The experiments revealed that flexible artificial grass planted on a floodplain can significantly reduce the conveyance capability of the entire channel. Two parallel stage-discharge curves increased with increasing flow depth. The additional resistance of the floodplain grass increased the streamwise velocity and conveyance in the main channel along a meander. An analysis of the generation mechanism of secondary flows in the main channel indicated that the secondary current consisted of an enhanced original secondary cell that was strengthened by the centrifugal force and a component of the upstream floodplain flow. The relative dominance of these two components in the secondary flows was primarily determined by the angle between the floodplain flow and the main channel ridge, and also the floodplain roughness. At the same flow depth, the secondary flow in cases with grass on the floodplain was generally stronger than that in the case of a smooth meander bend, although it was weaker near the middle cross-over section. Floodplain grass enhanced the intensity of the lateral turbulence above the bankfull level and significantly modified the turbulence structure, although it had a negligible effect on the vertical turbulence except at the bend entrance. Floodplain grass also affected the Reynolds shear stresses in the main channel, generating stronger lateral shear stresses at a low flow depth. In contrast, at a high flow depth, the distribution of the interface shear stresses changed entirely while its magnitude remained the same. When the floodplains were grassed, the vertical shear stress that was induced by secondary flows was greater at the apexes but reduced at the cross-over sections

  15. STUDY AND APPLICATION OF STEADY FLOW AND UNSTEADY FLOW MATHEMATICAL MODEL FOR CHANNEL NETWORKS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the Preissmann implicit scheme for the one-dimensional Saint-Venant equation, the mathematical model for one-dimensional river networks and canal networks was developed and the key issues on the model were expatiated particularly in this article. This model applies the method of three-steps solution for channel-junction-channel to simulate the river networks, and the Gauss elimination method was used to calculate the sparse matrix. This model was applied to simulate the tree-type irrigation canal networks, complex looped channel networks and the Lower Columbia Slough networks. The results of water level and discharge agree with the data from the Adlul and field data. The model is proved to be robust for simulating unsteady flows in river networks with various degrees of complex structure. The calculated results show that this model is useful for engineering applications in complicated river networks. Future research was recommended to focus on setting up ecological numerical model of water quality in river networks and canal networks.

  16. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.

    Science.gov (United States)

    Lin, Shiang-Chi; Yen, Pei-Wen; Peng, Chien-Chung; Tung, Yi-Chung

    2012-09-07

    Flow cytometry is a technique capable of optically characterizing biological particles in a high-throughput manner. In flow cytometry, three dimensional (3D) hydrodynamic focusing is critical for accurate and consistent measurements. Due to the advantages of microfluidic techniques, a number of microfluidic flow cytometers with 3D hydrodynamic focusing have been developed in recent decades. However, the existing devices consist of multiple layers of microfluidic channels and tedious fluidic interconnections. As a result, these devices often require complicated fabrication and professional operation. Consequently, the development of a robust and reliable microfluidic flow cytometer for practical biological applications is desired. This paper develops a microfluidic device with a single channel layer and single sheath-flow inlet capable of achieving 3D hydrodynamic focusing for flow cytometry. The sheath-flow stream is introduced perpendicular to the microfluidic channel to encircle the sample flow. In this paper, the flow fields are simulated using a computational fluidic dynamic (CFD) software, and the results show that the 3D hydrodynamic focusing can be successfully formed in the designed microfluidic device under proper flow conditions. The developed device is further characterized experimentally. First, confocal microscopy is exploited to investigate the flow fields. The resultant Z-stack confocal images show the cross-sectional view of 3D hydrodynamic with flow conditions that agree with the simulated ones. Furthermore, the flow cytometric detections of fluorescence beads are performed using the developed device with various flow rate combinations. The measurement results demonstrate that the device can achieve great detection performances, which are comparable to the conventional flow cytometer. In addition, the enumeration of fluorescence-labelled cells is also performed to show its practicality for biological applications. Consequently, the microfluidic

  17. Interfacial Stability in a Two-Layer Benard Problem.

    Science.gov (United States)

    1985-04-01

    STABILITY IN A TWO-LAYER BENARD PROBLEM Yuriko Renardy Technical Summary Report #2814 April 1985 I cti- Work Unit Number 2 - Physical Mathematics...34•"• -••’-’• ^ ••’••• VI , •• W -•- • •- ’•"• INTERFACIAL STABILITY IN A TWO-LAYER BENARD PROBLEM Yuriko Renardy I. INTRODUCTION Two layers of fluids are...Subtltl») INTERFACIAL STABILITY IN A TWO-LAYER BENARD PROBLEM 7. AUTMORf.; Yuriko Renardy »• PERFORMING ORGANIZATION NAME AND ADDRESS

  18. Low-dispersion electrokinetic flows for expanded separation channels in microfluidic systems: multiple faceted interfaces.

    Science.gov (United States)

    Fiechtner, Gregory J; Cummings, Eric B

    2004-02-20

    A novel methodology to design on-chip conduction channels is presented for expansion of low-dispersion separation channels. Designs are examined using two-dimensional numerical solutions of the Laplace equation with a Monte Carlo technique to model diffusion. The design technique relies on trigonometric relations that apply for ideal electrokinetic flows. Flows are rotated and stretched along the abrupt interface between adjacent regions having differing specific permeability. Multiple interfaces can be placed in series along a channel. The resulting channels can be expanded to extreme widths while minimizing dispersion of injected analyte bands. These channels can provide a long path length for line-of-sight optical absorption measurements. Expanded sections can be reduced to enable point detection at the exit section of the channel. Designed to be shallow, these channels have extreme aspect ratios in the wide section, greatly increasing the surface-to-volume ratio to increase heat removal and decrease unwanted pressure-driven flow. The use of multiple interfaces is demonstrated by considering several three-interface designs. Faceted flow splitters can be constructed to divide channels into any number of exit channels while minimizing dispersion. The resulting manifolds can be used to construct medians for structural support in wide, shallow channels.

  19. A Two-layer Model for the Simulation of the VARTM Process with Resin Distribution Layer

    Science.gov (United States)

    Young, Wen-Bin

    2013-12-01

    Vacuum assisted resin transfer molding (VARTM) is one of the important processes to fabricate high performance composites. In this process, resin is drawn into the mold to impregnate the fiber reinforcement to a form composite. A resin distribution layer with high permeability was often introduced on top of the fiber reinforcement to accelerate the filling speed. Due to the difference of the flow resistance in the resin distribution layer and the reinforcement as well as the resulting through thickness transverse flow, the filling flow field is intrinsically three-dimensional. This study developed a two-layer model with two-dimensional formulation to simulate the filling flow of the VARTM process with a resin distribution layer. Two-dimensional flow was considered in each layer and a transverse flow in the thickness direction was estimated between the two layers. Thermal analysis including the transverse convection was also performed to better simulate the temperature distribution.

  20. Using a terrestrial laser scanner to characterize vegetation-induced flow resistance in a controlled channel

    CERN Document Server

    Vinatier, Fabrice; Belaud, Gilles; Combemale, David

    2016-01-01

    Vegetation characteristics providing spatial heterogeneity at the channel reach scale can produce complex flow patterns and the relationship between plant patterns morphology and flow resistance is still an open question (Nepf 2012). Unlike experiments in laboratory, measuring the vegetation characteristics related to flow resistance on open channel in situ is difficult. Thanks to its high resolution and light weight, scanner lasers allow now to collect in situ 3D vegetation characteristics. In this study we used a 1064 nm usual Terrestrial Laser Scanner (TLS) located 5 meters at nadir above a 8 meters long equipped channel in order to both i) characterize the vegetation structure heterogeneity within the channel form a single scan (blockage factor, canopy height) and ii) to measure the 2D water level all over the channel during steady flow within a few seconds scan. This latter measuring system was possible thanks to an additive dispersive product sprinkled at the water surface. Vegetation characteristics an...

  1. 液层厚度比对环形腔内双层液体的热毛细对流稳定性的影响%Influence of liquid layer depth ratio on stability of thermocapillary flow in annular two-layer system with upper rigid wall

    Institute of Scientific and Technical Information of China (English)

    莫东鸣

    2015-01-01

    In order to understand the liquid layer depth ratio on the stability of two-layer system with upper rigid walls at the microgravity condition,a linear stability analysis of thermocapillary flow in the annular immiscible two-layer system of 5cSt silicone oil and HT-70 was carried out using Implicity Restarted Arnoldi Method (IRAM).Critical values of Marangoni number,wave number and phase velocity were obtained at different liquid layer depth ratios,different aspect ratios of the cavity and different radius rations.The thermofluid wave pattern at the liquid-liquid interface near the critical Marangoni number was also exhibited.%为了了解微重力条件下、水平温度梯度作用时,上部为固壁的环形腔内双层流体系统中液层厚度比对流动稳定性的影响,采用隐式重启 Arnoldi方法(IRAM)对环形池内5cSt 硅油/HT-70双层流体的热对流过程进行了线性稳定性分析,获得了不同液层厚度比下系统流动的临界 Marangoni 数、临界波数、临界相速度,并通过计算特征向量,得到了临界 Marangoni数附近液-液界面的热流体波形态。

  2. Surface treatment of flow channels in microfluidic devices fabricated by stereolithography.

    Science.gov (United States)

    Ohtani, Kanako; Tsuchiya, Masaki; Sugiyama, Hitomi; Katakura, Toru; Hayakawa, Masatoshi; Kanai, Toshimitsu

    2014-01-01

    A microfluidic device with three-dimensional flow channels was fabricated by stereolithography, and hydrophilic surface treatment of the flow channel was performed by coating the wall of the channel with a silica layer. After the treatment, the device produced monodisperse oil-in-water (O/W) emulsions. The silica layer on the channel surface was then coated with a fluorinated silane coupling agent to make it hydrophobic, thus enabling the treated device to produce monodisperse inverted water-in-oil (W/O) emulsions.

  3. Pressure losses during steam flow and condensation in tubes and channels

    Science.gov (United States)

    Leontiev, A. I.; Milman, O. O.

    2014-12-01

    Theoretical and experimental investigations have revealed the dependence of parameters of the process of steam condensation in tubes and channels on the scheme of heat-exchange fluid flow, including counter, forward, and cross flow systems. The total pressure losses in the case of counter flow are greater than those in the case of forward and cross flow. This dependence is valid for the flow of gases and plasma in channels with significant density variation (e.g., due to heating and cooling). Pressure losses have been evaluated using various computational models, and the results are compared to experimental data.

  4. Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.

    Science.gov (United States)

    Zhou, Zhanru; Fang, Xiande; Li, Dingkun

    2013-01-01

    The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.

  5. Water circulation in non-isothermal droplet-laden turbulent channel flow

    NARCIS (Netherlands)

    Russo, E.; Kuerten, J.G.M.; Geld, van der C.W.M.; Geurts, B.J.; Simos, T.; Psihoyios, G.; Tsitouras, Ch.

    2013-01-01

    We propose a point-particle model for two-way coupling of water droplets dispersed in turbulent flow of a carrier gas consisting of air and water vapor. An incompressible flow formulation is applied for direct numerical simulation (DNS) of turbulent channel flow with a warm and a cold wall. Compared

  6. Water circulation in non-isothermal droplet-laden turbulent channel flow

    NARCIS (Netherlands)

    Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.; Simos, T.; Psihoyios, G.; Tsitouras, Ch.

    2013-01-01

    We propose a point-particle model for two-way coupling of water droplets dispersed in turbulent flow of a carrier gas consisting of air and water vapor. An incompressible flow formulation is applied for direct numerical simulation (DNS) of turbulent channel flow with a warm and a cold wall. Compared

  7. Extended Lubrication Theory: Estimation of Fluid Flow in Channels with Variable Geometry

    CERN Document Server

    Tavakol, Behrouz; Froehlicher, Guillaume; Stone, Howard A

    2014-01-01

    Lubrication theory is broadly applicable to the flow characterization of thin fluid films and the motion of particles near surfaces. We offer an extension to lubrication theory by considering higher-order terms of the analytical approximation to describe the fluid flow in a channel with features of a modest aspect ratio. We find good agreement between our analytical results and numerical simulations. We show that the extended lubrication theory is a robust tool for an accurate estimate of laminar fluid flow in channels with features on the order of the channel height, accounting for both smooth and sharp changes in geometry.

  8. Numerical study of water management in the air flow channel of a PEM fuel cell cathode

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Peng; Lai, Ming-Chia [Department of Mechanical Engineering, Wayne State University, Detroit, MI 48202 (United States)

    2007-01-10

    The water management in the air flow channel of a proton exchange membrane (PEM) fuel cell cathode is numerically investigated using the FLUENT software package. By enabling the volume of fraction (VOF) model, the air-water two-phase flow can be simulated under different operating conditions. The effects of channel surface hydrophilicity, channel geometry, and air inlet velocity on water behavior, water content inside the channel, and two-phase pressure drop are discussed in detail. The results of the quasi-steady-state simulations show that: (1) the hydrophilicity of reactant flow channel surface is critical for water management in order to facilitate water transport along channel surfaces or edges; (2) hydrophilic surfaces also increase pressure drop due to liquid water spreading; (3) a sharp corner channel design could benefit water management because it facilitates water accumulation and provides paths for water transport along channel surface opposite to gas diffusion layer; (4) the two-phase pressure drop inside the air flow channel increases almost linearly with increasing air inlet velocity. (author)

  9. Comparison of Miniaturized and Conventional Asymmetrical Flow Field-Flow Fractionation (AF4 Channels for Nanoparticle Separations

    Directory of Open Access Journals (Sweden)

    Zengchao You

    2017-03-01

    Full Text Available The performance of a miniaturized channel for the separation of polymer and metal nanoparticles (NP using Asymmetrical Flow Field-Flow Fractionation (AF4 was investigated and compared with a conventional AF4 system. To develop standard separation methods, experimental parameters like cross flow, gradient profile and injection time were varied and optimized. Corresponding chromatographic parameters were calculated and compared. Our results indicate that the chromatographic resolution in the miniaturized channel is lower, whereas significantly shorter analyses time and less solvent consumption were obtained. Moreover, the limit of detection (LOD and limit of quantification (LOQ obtained from hyphenation with a UV-detector are obviously lower than in a conventional channel, which makes the miniaturized channel interesting for trace analysis.

  10. LiDAR-based predictions of flow channels through riparian buffer zones

    Directory of Open Access Journals (Sweden)

    A.G. Solomons

    2015-10-01

    Full Text Available Riparian buffer zones (RBZs are critical for protecting stream water quality. High Resolution Light Detection and Ranging (LiDAR data provides a way to locate channels where water can flow through a RBZ and into a stream. The objectives of this study were to characterize flow channels through riparian buffer zones around Lake Issaqueena, SC, USA, using LiDAR topography models and to validate these predictions using field observations of channel presence, soil moisture content and soil temperature. A LiDAR derived digital elevation model (DEM was utilized to define flow channels and determine forty sample locations. Analysis indicated channel locations and the presence of large forested buffers generally 10 m or greater in the study area. High flow accumulation channels can be accurately predicted by LiDAR data, but lower flow channels were less accurately estimated. Surface soil temperature measurements were relatively uniform showing no difference between predicted channel and control locations. Presented methodologies can serve as a template for future efforts to quantify riparian buffers and their effects on protecting water quality.

  11. Tutorial on Feedback Control of Flows, Part I: Stabilization of Fluid Flows in Channels and Pipes

    Directory of Open Access Journals (Sweden)

    Ole M. Aamo

    2002-07-01

    Full Text Available The field of flow control has picked up pace over the past decade or so, on the promise of real-time distributed control on turbulent scales being realizable in the near future. This promise is due to the micromachining technology that emerged in the 1980s and developed at an amazing speed through the 1990s. In lab experiments, so called micro-electro-mechanical systems (MEMS that incorporate the entire detection-decision-actuation process on a single chip, have been batch processed in large numbers and assembled into flexible skins for gluing onto body-fluid interfaces for drag reduction purposes. Control of fluid flows span a wide variety of specialities. In Part I of this tutorial, we focus on the problem of reducing drag in channel and pipe flows by stabilizing the parabolic equilibrium profile using boundary feedback control. The control strategics used for this problem include classical control, based on the Nyquist criteria, and various optimal control techniques (H2, H-Infinity, as well as applications of Lyapunov stability theory.

  12. Flow of a two-dimensional aqueous foam in two parallel channels

    Science.gov (United States)

    Jones, S.; Cantat, I.; Dollet, B.; Meheust, Y.

    2012-04-01

    Flowing foams are used in many engineering and technical applications. A well-known application is oil recovery. Another one is the remediation of polluted soil: the foam is injected into the ground in order to mobilize chemical species that are initially present in the medium. Apart from potential interesting physico-chemical and biochemical properties, foams have pecular flow properties that might be used in order to reach regions of the medium that are normally the least permeable. We study here this physical aspect of the topic. As a precursor to the study of foam flow through a complex porous material, we study the behaviour of an aqueous two-dimensional foam flowing through a medium consisting of two parallel channels with different widths, at fixed medium porosity, that is, at fixed total combined width of the two channels. The flow velocity, and hence flux, in each channel is measured by analyzing images of the flowing foam. The corresponding pressure drop along each channel is calculated based on theoretical arguments involving both (i) a dynamic pressure drop, which is controlled by bubble-wall friction, and (ii) possibly a capillary pressure drop over the bubble films that emerge at the channel outlet, the latter pressure drop being controlled by the radius of curvature of the bubble film. The flow behaviour of the foam happens to not uniquely be determined by the channel width, as would be the case for a Newtonian fluid, but also to be highly dependent on the foam structure within the narrowest of the two channel, especially when a "bamboo" structure is obtained. Consequently, the flux in a channel is found to have a more complicated relation to the channel width than expected. We try to define a corresponding medium permeability and compare it to the permeability expected for the flow of a standard newtonian fluid in the same geometry.

  13. Interaction of two-dimensional turbulence with a sheared channel flow: a numerical study

    Science.gov (United States)

    Kamp, Leon; Marques Rosas Fernandes, Vitor; van Heijst, Gertjan; Clercx, Herman

    2015-11-01

    Interaction of large-scale flows with turbulence is of fundamental and widespread importance in geophysical fluid dynamics and also, more recently for the dynamics of fusion plasma. More specifically the interplay between two-dimensional turbulence and so-called zonal flows has gained considerable interest because of its relevance for transport and associated barriers. We present numerical results on the interaction of driven two-dimensional turbulence with typical sheared channel flows (Couette and Poiseuille). It turns out that a linear shear rate that is being sustained by moving channel walls (Couette flow) is far more effective in suppressing turbulence and associated transport than a Poiseuille flow. We explore the mechanisms behind this in relation to the width of the channel and the strength of the shear of the background flow. Also the prominent role played by the no-slip boundaries and the Reynolds stress is discussed.

  14. Dispersion of swimming algae in laminar and turbulent channel flows: theory and simulations

    CERN Document Server

    Croze, O A; Ahmed, M; Bees, M A; Brandt, L

    2012-01-01

    Algal swimming is often biased by environmental cues, e.g. gravitational and viscous torques drive cells towards downwelling fluid (gyrotaxis). In view of biotechnological applications, it is important to understand how such biased swimming affects cell dispersion in a flow. Here, we study the dispersion of gyrotactic swimming algae in laminar and turbulent channel flows. By direct numerical simulation (DNS) of cell motion within upwelling and downwelling channel flows, we evaluate time-dependent measures of dispersion for increasing values of the flow Peclet (Reynolds) numbers, Pe (Re). Furthermore, we derive an analytical `swimming Taylor-Aris dispersion' theory, using flow-dependent transport parameters given by existing microscopic models. In the laminar regime, DNS results and analytical predictions compare very well, providing the first confirmation that cells' response to flow is best described by the generalized-Taylor-dispersion microscopic model. We predict that cells drift along a channel faster th...

  15. Rip currents and alongshore flows in single channels dredged in the surf zone

    Science.gov (United States)

    Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh

    2017-05-01

    To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.

  16. Rip currents and alongshore flows in single channels dredged in the surf zone

    Science.gov (United States)

    Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh

    2017-01-01

    To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.

  17. Effects of Alluvial and Debris Flow Fans on Channel Morphology in Idaho, Washington, and Oregon

    Science.gov (United States)

    Bigelow, P. E.; Benda, L.; Miller, D.; Andras, K.

    2003-12-01

    Formation of debris flow and alluvial fans at tributary confluences from episodic erosion associated with large storms and fires ("extreme events") are often viewed negatively over short time spans (years). However, when viewed over long periods of time (decades to centuries), fans that form at tributary junctions are often sources of morphological diversity in streams and rivers. To evaluate effects of tributary fans on the morphology of mainstem channels, we surveyed a total of 44 km of streams in the Sawtooth Mountains of Idaho (27 km), Olympic Mountains of Washington (10 km), and Central Coast Range of Oregon (7 km). Rejuvenated alluvial fans resulting from post-fire gully erosion in the Sawtooth Mountains created gradient nick points in 4th to 6th order mainstem channels (30 to 350 km2 drainage area) that increased sediment storage upstream resulting in decreased channel gradients, widened flood plains, side channel construction, and the beginning of terrace formation. Downstream effects included increased channel gradients, often creating rapids. In 3rd and 4th order mainstem channels (< 10 km2 drainage area) in the Olympic Mountains, there was statistically significant association between low-order confluences containing debris flow deposits and gravel abundance, wide channels, and numbers of logs and large pools. Moreover, heterogeneity of mainstem channel morphology increased in proximity to low-order confluences prone to debris flows in the Olympic study sites. In 3rd and 4th order channels in the Oregon Coast Range, density of large wood and boulders in mainstem channels (< 30 km2 drainage area) increased with proximity to all debris flow fans at low-order confluences regardless of fan age, while channel gradients and sediment depth in mainstem channels increased with proximity to recent (< 60 yrs old) debris fans. Consequently, alluvial and debris flow fans can be significant agents of heterogeneity in riverine habitats, similar to other sources of

  18. Numerical investigation into the performance PEMFC with a wave-like gas flow channel design

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.M. [Kao Yuan Univ., Kaohsiung, Taiwan (China). Dept. of Mechanical and Automation Engineering; Kuo, J.K. [National Univ. of Tainan, Taiwan (China). Inst. of Greenergy

    2007-07-01

    Proton exchange membrane fuel cells (PEMFCs) are a viable power source for many applications. This inexpensive and compact power source has high power density, high performance and good electrical stability. A study was conducted to gain a better understanding of the transport mechanism in a fuel cell, which involves coupled fluid flow, heat and mass transfer and electrochemical reactions. In particular, a two-dimensional computational model was developed to study the transport phenomena in PEMFCs with wave-like gas flow channels and conventional straight gas flow channels, respectively. The velocity, temperature and gas concentration distributions within the novel wave-like gas flow channel were investigated numerically. The electrical performance of a PEMFC with wave-like gas flow channels was then compared with that of a PEMFC with conventional straight gas flow. Simulations were based on a steady state, single-phase, multi-species, two-dimensional mass transfer model of a PEMFC. The effect of the wave-like channel profile on the gas flow characteristics was determined along with temperature distribution, electrochemical reaction efficiency, and electrical performance. In comparison to a conventional straight gas flow channel, the wave-like channel increased the fuel flow velocity, enhanced the transport through the porous layer, and improved the temperature distribution. It was concluded that the PEMFC with wave-like gas flow has better fuel utilization efficiency and superior heat transfer characteristics. It also has a higher PEMFC output voltage and better current density and polarization characteristics. 12 refs., 1 tab., 8 figs.

  19. Onsager's Cross Coupling Effects in Gas Flows Confined to Micro-channels

    OpenAIRE

    Wang, Ruijie; Xu, Xinpeng; Xu, Kun; Qian, Tiezheng

    2016-01-01

    In rarefied gases, mass and heat transport processes interfere with each other, leading to the mechano-caloric effect and thermo-osmotic effect, which are of interest to both theoretical study and practical applications. We employ the unified gas-kinetic scheme to investigate these cross coupling effects in gas flows in micro-channels. Our numerical simulations cover channels of planar surfaces and also channels of ratchet surfaces, with Onsager's reciprocal relation verified for both cases. ...

  20. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels (Poster)

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    to hot spots. Management of heat and fluid flow through the micro-channels play a great role in the capability of PEM water electrolysis when working at high current densities. Despite, many studies have been done on gas-liquid flows; still there is a lack of research on gas-liquid flows in micro......One means of increasing the hydrogen yield to cost ratio of a PEM water electrolyser, is to increase the operating current density. However, at high current densities (higher than 1 A/cm2), management of heat and mass transfer in the anode current collector and channel becomes crucial and can lead......-sized channels (hydraulic diameter of 1 mm) of PEM water electrolysis. Precisely controlling all the parameters that affect the gas-liquid flow in a PEM water electrolysis cell is quite challenging, hence a simplified setup is constructed consisting of only a transparent channel with a sheet of titanium felt...

  1. EXPERIMENTAL STUDY ON THE RELATION OF BED MORPHOLOGY WITH SURFACE FLOW IN MEANDER CHANNELS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Alternate bars have the property that they migrate downstream whenever floods occur. However,in meander channels whose bend angles are larger than a critical value, the migration of bars can be suppressed, and the positions of bank erosion and flood attack also will be steady. In this study, the bed morphology in flume channels with bends of various lengths and angles is investigated at various flow discharges, and the relation of bed morphology to surface flow is investigated in detail using fluid measuring software. An effort is made to obtain guidelines for the plane shape design of meander channels. Based on the experimental results of bed topography and measurement of surface flow direction and velocity distribution, from the viewpoint of bank erosion and the concentration and dispersion of flood flow the most suitable plane shape for meandering channels is suggested through which the migration of alternate bars is suppressed.

  2. Mixed convection flow and heat transfer in a vertical wavy channel ...

    African Journals Online (AJOL)

    user

    Keywords: convective flow; wavy channel; porous medium; traveling thermal waves. ... the problems of forced convection in composite fluids and porous layers. ... Processes involving heat and mass transfer are often encountered in the ...

  3. Dynamic self-organization in particle-laden channel flow

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Vreman, A.W.

    2006-01-01

    We study dynamic flow-structuring and mean-flow properties of turbulent particle-laden riser-flow at significant particle volume fractions of about 1.5%. We include particle–particle as well as particle–fluid interactions through inelastic collisions and drag forces, in a so-called four-way coupled

  4. Understanding heat transfer in 2D channel flows including recirculation

    NARCIS (Netherlands)

    Dirkse, M.H.; Loon, van W.K.P.; Stigter, J.D.; Bot, G.P.A.

    2007-01-01

    Inviscid, irrotational two-dimensional flows can be modelled using the Schwarz¿Christoffel integral. Although bounded flows including boundary layer separation and recirculation are not irrotational, a model is presented that uses the Schwarz¿Christoffel integral to model these flows. The model sepa

  5. INTERACTION OF LIQUID FLAT SCREENS WITH GAS FLOW RESTRICTED BY CHANNEL WALLS

    Directory of Open Access Journals (Sweden)

    S. T. Aksentiev

    2005-01-01

    Full Text Available The paper gives description of physical pattern of liquid screen interaction that are injected from the internal walls of a rectangular channel with gas flow. Criterion dependences for determination of intersection coordinates of external boundaries with longitudinal channel axis and factor of liquid screen head resistance.

  6. Burnout and distribution of liquid between the flow core and wall films in narrow slot channels

    Science.gov (United States)

    Boltenko, E. A.; Shpakovskii, A. A.

    2010-03-01

    Previous works on studying distribution of liquid between the flow core and wall films in narrow slot channels are briefly reviewed. Interrelation between mass transfer processes and burnout is shown. A procedure for calculating burnout on convex and concave heat-transfer surfaces in narrow slot channels is presented.

  7. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels (Abstract)

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    2016-01-01

    and are fairly expensive. One means of increasing the hydrogen yield to cost ratio of such systems, is to increase the operating current density. However, at high current densities, management of heat transfer and fluid flow in the anode GDL and channel becomes crucial. This entails that further understanding...... of the gas-liquid flow in both the porous media and the channel is necessary for insuring proper oxygen, water and heat management of the electrolysis cell. In this work, the vertical upward gas-liquid flow pattern in a 0.5×1×94 mm micro-channel is both numerically and experimentally analysed. A sheet...... the transparent cell is made which consists of a channel for the inlet air and a channel for the water-bubble flow. The transparent material is Plexiglas that is sealed with a sheet of silicon. The conventional co-current gas-liquid two-phase flow patterns, such as bubbly flow, slug flow and annular flow...

  8. A MODIFIED SIMPLE ALGORITHM FOR 2-D FLOW IN OPEN CHANNEL

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    For two-dimensional water flow in open channel, by discritizing hydrodynamic differential equation of conservative form, the corresponding algebraic equations were derived which involve the relationship between velocity and depth. Based on the relationship, this paper deduced a modified formula of velocity correction for SIMPLE algorithm. As a test case, the flow in a prismatic channel with two different slopes was computed and a good result was obtained.

  9. Effects of Rotation at Different Channel Orientations on the Flow Field inside a Trailing Edge Internal Cooling Channel

    Directory of Open Access Journals (Sweden)

    Matteo Pascotto

    2013-01-01

    Full Text Available The flow field inside a cooling channel for the trailing edge of gas turbine blades has been numerically investigated with the aim to highlight the effects of channel rotation and orientation. A commercial 3D RANS solver including a SST turbulence model has been used to compute the isothermal steady air flow inside both static and rotating passages. Simulations were performed at a Reynolds number equal to 20000, a rotation number (Ro of 0, 0.23, and 0.46, and channel orientations of γ=0∘, 22.5°, and 45°, extending previous results towards new engine-like working conditions. The numerical results have been carefully validated against experimental data obtained by the same authors for conditions γ=0∘ and Ro = 0, 0.23. Rotation effects are shown to alter significantly the flow field inside both inlet and trailing edge regions. These effects are attenuated by an increase of the channel orientation from γ=0∘ to 45°.

  10. The Generalized Energy Equation and Instability in the Two-layer Barotropic Vortex

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The linear two-layer barotropic primitive equations in cylindrical coordinates are used to derive a generalized energy equation, which is subsequently applied to explain the instability of the spiral wave in the model. In the two-layer model, there are not only the generalized barotropic instability and the super highspeed instability, but also some other new instabilities, which fall into the range of the Kelvin-Helmholtz instability and the generalized baroclinic instability, when the upper and lower basic flows are different.They are perhaps the mechanisms of the generation of spiral cloud bands in tropical cyclones as well.

  11. Numerical study of cell performance and local transport phenomena in PEM fuel cells with various flow channel area ratios

    Science.gov (United States)

    Wang, Xiao-Dong; Duan, Yuan-Yuan; Yan, Wei-Mon

    Three-dimensional models of proton exchange membrane fuel cells (PEMFCs) with parallel and interdigitated flow channel designs were developed including the effects of liquid water formation on the reactant gas transport. The models were used to investigate the effects of the flow channel area ratio and the cathode flow rate on the cell performance and local transport characteristics. The results reveal that at high operating voltages, the cell performance is independent of the flow channel designs and operating parameters, while at low operating voltages, both significantly affect cell performance. For the parallel flow channel design, as the flow channel area ratio increases the cell performance improves because fuel is transported into the diffusion layer and the catalyst layer mainly by diffusion. A larger flow channel area ratio increases the contact area between the fuel and the diffusion layer, which allows more fuel to directly diffuse into the porous layers to participate in the electrochemical reaction which enhances the reaction rates. For the interdigitated flow channel design, the baffle forces more fuel to enter the cell and participate in the electrochemical reaction, so the flow channel area ratio has less effect. Forced convection not only increases the fuel transport rates but also enhances the liquid water removal, thus interdigitated flow channel design has higher performance than the parallel flow channel design. The optimal performance for the interdigitated flow channel design occurs for a flow channel area ratio of 0.4. The cell performance also improves as the cathode flow rate increases. The effects of the flow channel area ratio and the cathode flow rate on cell performance are analyzed based on the local current densities, oxygen flow rates and liquid water concentrations inside the cell.

  12. Numerical study of cell performance and local transport phenomena in PEM fuel cells with various flow channel area ratios

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao-Dong [Department of Thermal Engineering, School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Duan, Yuan-Yuan [Key Laboratory of Thermal Science and Power Engineering of MOE, Tsinghua University, Beijing 100084 (China); Yan, Wei-Mon [Department of Mechatronic Engineering, Huafan University, Shih-Ting 22305 (China)

    2007-10-11

    Three-dimensional models of proton exchange membrane fuel cells (PEMFCs) with parallel and interdigitated flow channel designs were developed including the effects of liquid water formation on the reactant gas transport. The models were used to investigate the effects of the flow channel area ratio and the cathode flow rate on the cell performance and local transport characteristics. The results reveal that at high operating voltages, the cell performance is independent of the flow channel designs and operating parameters, while at low operating voltages, both significantly affect cell performance. For the parallel flow channel design, as the flow channel area ratio increases the cell performance improves because fuel is transported into the diffusion layer and the catalyst layer mainly by diffusion. A larger flow channel area ratio increases the contact area between the fuel and the diffusion layer, which allows more fuel to directly diffuse into the porous layers to participate in the electrochemical reaction which enhances the reaction rates. For the interdigitated flow channel design, the baffle forces more fuel to enter the cell and participate in the electrochemical reaction, so the flow channel area ratio has less effect. Forced convection not only increases the fuel transport rates but also enhances the liquid water removal, thus interdigitated flow channel design has higher performance than the parallel flow channel design. The optimal performance for the interdigitated flow channel design occurs for a flow channel area ratio of 0.4. The cell performance also improves as the cathode flow rate increases. The effects of the flow channel area ratio and the cathode flow rate on cell performance are analyzed based on the local current densities, oxygen flow rates and liquid water concentrations inside the cell. (author)

  13. Flow Oriented Channel Assignment for Multi-radio Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Niu Zhisheng

    2010-01-01

    Full Text Available We investigate channel assignment for a multichannel wireless mesh network backbone, where each router is equipped with multiple interfaces. Of particular interest is the development of channel assignment heuristics for multiple flows. We present an optimization formulation and then propose two iterative flow oriented heuristics for the conflict-free and interference-aware cases, respectively. To maximize the aggregate useful end-to-end flow rates, both algorithms identify and resolve congestion at instantaneous bottleneck link in each iteration. Then the link rate is optimally allocated among contending flows that share this link by solving a linear programming (LP problem. A thorough performance evaluation is undertaken as a function of the number of channels and interfaces/node and the number of contending flows. The performance of our algorithm is shown to be significantly superior to best known algorithm in its class in multichannel limited radio scenarios.

  14. Flow Oriented Channel Assignment for Multi-Radio Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Fei Ye

    2010-01-01

    Full Text Available We investigate channel assignment for a multichannel wireless mesh network backbone, where each router is equipped with multiple interfaces. Of particular interest is the development of channel assignment heuristics for multiple flows. We present an optimization formulation and then propose two iterative flow oriented heuristics for the conflict-free and interference-aware cases, respectively. To maximize the aggregate useful end-to-end flow rates, both algorithms identify and resolve congestion at instantaneous bottleneck link in each iteration. Then the link rate is optimally allocated among contending flows that share this link by solving a linear programming (LP problem. A thorough performance evaluation is undertaken as a function of the number of channels and interfaces/node and the number of contending flows. The performance of our algorithm is shown to be significantly superior to best known algorithm in its class in multichannel limited radio scenarios.

  15. On two-layer models and the similarity functions for the PBL

    Science.gov (United States)

    Brown, R. A.

    1982-01-01

    An operational Planetary Boundary Layer model which employs similarity principles and two-layer patching to provide state-of-the-art parameterization for the PBL flow is used to study the popularly used similarity functions, A and B. The expected trends with stratification are shown. The effects of baroclinicity, secondary flow, humidity, latitude, surface roughness variation and choice of characteristic height scale are discussed.

  16. Random Boundary Simulation of Pumping Groundwater on Two-layer Soft Soil Structure with Porous Media

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on random theory,fluid dynamics,porous media and soil mechanics,the porosity and random characteristic of the two-layer soft soil in Wuhan region were studied in this paper.The random seepage coefficient on the two-layer soft soil was analyzed,and the seepage model and its random distribution function were given.The groundwater flow differential equations related to the two layer soft soil structure were also established.The evaluation procedure of effect boundary on the pumping water in deep foundation pit was put forward.Moreover,with an engineering example,the probability distribution on random boundary prediction for pumping water of foundation pit was computed.

  17. A numerical study of pressure distribution and flow cross-over through gas diffusion layer in PEMFC flow plate using serpentine channel with trapezoidal cross-section

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L.; Oosthuizen, P.H. [Queen' s Univ., Dept. of Mechanical and Materials Engineering, Kingston, Ontario (Canada)]. E-mail: oosthuiz@me.queensu.ca; McAuley, K.B. [Queen' s Univ., Dept. of Chemical Engineering, Kingston, Ontario (Canada)

    2005-07-01

    It is common in a PEM fuel cell for the air to flow through serpentine channels with a square cross-section in the cathode side flow plate. There is a porous diffusion layer adjacent to the flow plate. Flow cross-over of air through the porous diffusion layer from one part of the channel to another can occur as a result of the pressure differences between different parts of the channel causing the flow rate through the channel to vary with the distance along the channel. The channel cross-sectional shape can influence both the pressure drop and the flow crossover. A numerical study of the pressure distribution and flow cross-over through the gas diffusion layer in PEM fuel cell flow plates using a serpentine channel system has therefore been undertaken for the case where the channel has a trapezoidal cross-sectional shape, the trapezoidal channel cross-sectional shape having the potential to reduce the pressure drop and to augment the flow cross-over. The flow has been assumed to be three-dimensional, steady, incompressible, isothermal and single-phase. The flow through the porous diffusion layer has been described using the Darcy model. The governing equations have been written in dimensionless form and solved using the commercial CFD solver, FIDAP. The solution depends on the following parameters: (i) the Reynolds number, Re, based on the mean channel width and the mean velocity; (ii) the dimensionless permeability of the gas diffusion layer (iii) the geometry of the channel cross-section; (iv) the flow channel configuration; (v) the dimensionless thickness of the gas diffusion layer. Results have been obtained for a range of Reynolds numbers and channel geometries for two dimensionless permeabilities and two flow channel configurations for a single value of the dimensionless diffusion layer thickness. (author)

  18. Vertical flow of a multiphase mixture in a channel

    Directory of Open Access Journals (Sweden)

    Mehrdad Massoudi

    2001-01-01

    Full Text Available The flow of a multiphase mixture consisting of a viscous fluid and solid particles between two vertical plates is studied. The theory of interacting continua or mixture theory is used. Constitutive relations for the stress tensor of the granular materials and the interaction force are presented and discussed. The flow of interest is an ideal one where we assume the flow to be steady and fully developed; the mixture is flowing between two long vertical plates. The non-linear boundary value problem is solved numerically, and the results are presented for the dimensionless velocity profiles and the volume fraction as functions of various dimensionless numbers.

  19. Channeling at the base of the lithosphere during the lateral flow of plume material beneath flow line hot spots

    Science.gov (United States)

    Sleep, Norman H.

    2008-08-01

    Chains of volcanic edifices lie along flow lines between plume-fed hot spots and the thin lithosphere at ridge axes. Discovery and Euterpe/Musicians Seamounts are two examples. An attractive hypothesis is that buoyant plume material flows along the base of the lithosphere perpendicular to isochrons. The plume material may conceivably flow in a broad front or flow within channels convectively eroded into the base to the lithosphere. A necessary but not sufficient condition for convective channeling is that the expected stagnant-lid heat flow for the maximum temperature of the plume material is comparable to the half-space surface heat flow of the oceanic lithosphere. Two-dimensional and three-dimensional numerical calculations confirm this inference. A second criterion for significant convective erosion is that it needs to occur before the plume material thins by lateral spreading. Scaling relationships indicate spreading and convection are closely related. Mathematically, the Nusselt number (ratio of convective to conductive heat flow in the plume material) scales with the flux (volume per time per length of flow front) of the plume material. A blob of unconfined plume material thus spreads before the lithosphere thins much and evolves to a slowly spreading and slowly convecting warm region in equilibrium with conduction into the base of the overlying lithosphere. Three-dimensional calculations illustrate this long-lasting (and hence observable) state of plume material away from its plume source. A different flow domain occurs around a stationary hot plume that continuously supplies hot material. The plume convectively erodes the overlying lithosphere, trapping the plume material near its orifice. The region of lithosphere underlain by plume material grows toward the ridge axis and laterally by convective thinning of the lithosphere at its edges. The hottest plume material channels along flow lines. Geologically, the regions of lithosphere underlain by either warm

  20. A numerical study of channel-to-channel flow cross-over through the gas diffusion layer in a PEM-fuel-cell flow system using a serpentine channel with a trapezoidal cross-sectional shape

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lan; Oosthuizen, Patrick H. [Department of Mechanical and Materials Engineering, McLaughlin Hall, Queen' s University, Kingston, ON, K7L 3N6 (Canada); McAuley, Kim B. [Department of Chemical Engineering, Dupuis Hall, Queen' s University, Kingston, ON, K7L 3N6 (Canada)

    2006-10-15

    A numerical study of pressure distribution and flow cross-over through the gas diffusion layer (GDL) in a PEMFC flow plate using a serpentine channel system has been undertaken for the case where the channel has a trapezoidal cross-sectional shape. The flow has been assumed to be 3-D, steady, incompressible and single-phase. The flow through the porous diffusion layer has been described using the Darcy model. The governing equations have been written in dimensionless form and solved by using the commercial CFD solver, FIDAP. The results obtained indicate that: (1) the size ratio, R, of trapezoidal cross-sectional shape has a significant effect on the flow cross-over. As R increases, the flow cross-over through GDL increases; (2) the ratio R also has a significant effect on the pressure variation in the flow field for both cross-over and no cross-over cases; (3) flow cross-over has a significant influence on the pressure variation through the channel, tending to decrease the pressure drop across the channel; (4) an increase in Re number can lead to a slight increase in the flow cross-over. (author)

  1. Effective slip for flow in a rotating channel bounded by stick-slip walls

    Science.gov (United States)

    Ng, Chiu-On

    2016-12-01

    This paper aims to look into how system rotation may modify the role played by boundary slip in controlling flow through a rotating channel bounded by stick-slip walls. A semianalytical model is developed for pressure-driven flow in a slit channel that rotates about an axis perpendicular to its walls, which are superhydrophobic surfaces patterned with periodic alternating no-shear and no-slip stripes. The cases where the flow is driven by a pressure gradient parallel or normal to the stripes are considered. The effects of the no-shear area fraction on the velocities and effective slip lengths for the primary and secondary flows are investigated as functions of the rotation rate and the channel height. It is mathematically proved that the secondary flow rate is exactly the same in the two cases, irrespective of whether the primary flow is parallel or normal to the wall stripes. For any rotation speed, there is an optimal value of the no-shear area fraction at which the primary flow rate is maximum. This is a consequence of two competing effects: the no-shear part of the wall may serve to reduce the wall resistance, thereby enhancing the flow especially at low rotation, but it also weakens the formation of the near-wall Ekman layer, which is responsible for pumping the flow especially at high rotation. Wall slip in a rotating environment is to affect flow in the Ekman layer, but not flow in the geostrophic core.

  2. Theoretical Permeability of Two-layered Nonwoven Geotextiles

    Institute of Scientific and Technical Information of China (English)

    LIU Li-fang; CHU Cai-yuan

    2006-01-01

    The two-layered nonwoven geotextile, which consists of a layer constructed with fine fibers for providing optimal filtration characteristics and another layer constructed with coarse fibers for providing the required mechanical properties, is desirable for drainage and filtration system.Based on Darcy's law and drag force theory, a mathematical model on vertical permeability coefficient of two-layered nonwoven geotextile is estabilished. Comparison with experimental results shows that the present model possesses 83.6% accuracy for needle-punched two-layered nonwoven geotextiles. And experimental results also show that with the increasing of needle density the vertical permeability coefficient of two-layered nonwoven geotextiless firstly decreases and then increases, reaching the smallest value at 470 p/cm2.

  3. Groundwater flow into underground openings in fractured crystalline rocks: an interpretation based on long channels

    Science.gov (United States)

    Black, John H.; Woodman, Nicholas D.; Barker, John A.

    2016-12-01

    Rethinking an old tracer experiment in fractured crystalline rock suggests a concept of groundwater flow in sparse networks of long channels that is supported by results from an innovative lattice network model. The model, HyperConv, can vary the mean length of `strings' of connected bonds, and the gaps between them, using two independent probability functions. It is found that networks of long channels are able to percolate at lower values of (bond) density than networks of short channels. A general relationship between mean channel length, mean gap length and probability of percolation has been developed which incorporates the well-established result for `classical' lattice network models as a special case. Using parameters appropriate to a 4-m diameter drift located 360 m below surface at Stripa Mine Underground Research Laboratory in Sweden, HyperConv is able to reproduce values of apparent positive skin, as observed in the so-called Macropermeability Experiment, but only when mean channel length exceeds 10 m. This implies that such channel systems must cross many fracture intersections without bifurcating. A general relationship in terms of flow dimension is suggested. Some initial investigations using HyperConv show that the commonly observed feature, `compartmentalization', only occurs when channel density is just above the percolation threshold. Such compartments have been observed at Kamaishi Experimental Mine (Japan) implying a sparse flow network. It is suggested that compartments and skin are observable in the field, indicate sparse channel systems, and could form part of site characterization for deep nuclear waste repositories.

  4. On unsteady reacting flow in a channel with a cavity

    Directory of Open Access Journals (Sweden)

    Ivar Ø. Sand

    1991-10-01

    Full Text Available The problem investigated is the stability of a flame anchored by recirculation within a channel with a cavity, acting as a two-dimensional approximation to a gas turbine combustion chamber. This is related to experiments of Vaneveld, Hom and Oppenheim (1982. The hypothesis studied is that hydrodynamic oscillations within the cavity can lead to flashback.

  5. Flow dynamics and concentration polarisation in spacer-filled channels

    DEFF Research Database (Denmark)

    Lipnizki, Jens; Jonsson, Gunnar Eigil

    2002-01-01

    The key to developing highly efficient spiral-wound modules is the improvement of the mass transfer mechanisms. In this study a study of the mass transfer has been carried out using a flat test cell with six permeate outlets and a rectangular feed channel. Using this experimental set-up, it has b...

  6. Mechanics of dense suspensions in turbulent channel flows

    NARCIS (Netherlands)

    Picano, F.; Costa, P.; Breugem, W.P.; Brandt, L.

    2015-01-01

    Dense suspensions are usually investigated in the laminar limit where inertial effects are insignificant. When the flow rate is high enough, i.e. at high Reynolds number, the flow may become turbulent and the interaction between solid and liquid phases modifies the turbulence we know in single-phase

  7. Stone stability under decelerating open-channel flow

    NARCIS (Netherlands)

    Hoan, N.T.; Booij, R.; Hofland, B.; Stive, M.J.F.; Verhagen, H.J.

    2007-01-01

    The current research is aimed at finding a proper relation between flow forces acting on the bed and the bed response. To this end, experiments were carried out in which both the bed response (quantified by a dimensionless entrainment rate) and the flow field (velocity and turbulence intensity

  8. Turbulent oscillating channel flow subjected to a wind stress

    NARCIS (Netherlands)

    Kramer, W.; Clercx, H.J.H.; Armenio, V.

    2008-01-01

    The Westerschelde estuary in the Netherlands is characterized by a strong tidal driven flow with typical velocities in the range of 0.2 to 1 m/s. In addition to the tides the wind (5 m/s) exerts a stress at the free surface driving the upper fluid layers. To investigate this flow we performed resolv

  9. Chemical reaction and heat source effects on MHD oscillatory flow in an irregular channel

    Directory of Open Access Journals (Sweden)

    P.V. Satya Narayana

    2016-12-01

    Full Text Available This paper investigates the effect of heat and mass transfer on MHD oscillatory flow in an asymmetric wavy channel with chemical reaction and heat source. The unsteadiness in the flow is due to an oscillatory pressure gradient across the ends of the channel. A magnetic field of uniform strength is applied in the direction perpendicular to the channel. However, the induced magnetic field is neglected due to the assumption of small magnetic Reynolds number. The temperature difference of the channel is also assumed high enough to induce heat transfer due to radiation. The governing equations are solved analytically by regular perturbation method. The analytical results are evaluated numerically and then are presented graphically to discuss the effects of different parameters entering into the problem. It is observed that the heat transport of a system is more increased in oscillatory flow than in ordinary conduction.

  10. Numerical simulation of turbulent flow in helically coiled open-channels with compound cross-sections

    Institute of Scientific and Technical Information of China (English)

    SHAO; Xuejun; WANG; Hong; CHEN; Zhi

    2004-01-01

    Turbulence structure in a helically coiled open channel flow is numerically simulated using three different turbulence models--the Launder and Ying model, the Naot and Rodi model, and the nonlinear k-ε Model (SY model). Simulation results were compared with observation of (i) turbulent flows in alternating point-bar type channel bends with rectangular sections, and (ii) straight open channel flows with compound cross-sections. Based on calculations of the impact of various channel curvatures on turbulence characteristics, accuracy of the three turbulence models was analyzed with observed data as a qualitative reference. It has been found out that the Launder and Ying model and the nonlinear k-ε Model are able to predict the same general trend as measured data, and the simulation of the effect of the centrifugal force on the formation of secondary currents produces a correct pattern.

  11. Poiseuille flow past a nanoscale cylinder in a slit channel: Lubrication theory versus molecular dynamics analysis

    CERN Document Server

    Rahmani, Amir M; Jupiterwala, Mehlam; Colosqui, Carlos E

    2015-01-01

    Plane Poiseuille flow past a nanoscale cylinder that is arbitrarily confined (i.e., symmetrically or asymmetrically confined) in a slit channel is studied via hydrodynamic lubrication theory and molecular dynamics simulations, considering cases where the cylinder remains static or undergoes thermal motion. Lubrication theory predictions for the drag force and volumetric flow rate are in close agreement with molecular dynamics simulations of flows having molecularly thin lubrication gaps, despite the presence of significant structural forces induced by the crystalline structure of the modeled solid. While the maximum drag force is observed in symmetric confinement, i.e., when the cylinder is equidistant from both channel walls, the drag decays significantly as the cylinder moves away from the channel centerline and approaches a wall. Hence, significant reductions in the mean drag force on the cylinder and hydraulic resistance of the channel can be observed when thermal motion induces random off-center displace...

  12. Darcy Flow in a Wavy Channel Filled with a Porous Medium

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Donald D; Ogretim, Egemen; Bromhal, Grant S

    2013-05-17

    Flow in channels bounded by wavy or corrugated walls is of interest in both technological and geological contexts. This paper presents an analytical solution for the steady Darcy flow of an incompressible fluid through a homogeneous, isotropic porous medium filling a channel bounded by symmetric wavy walls. This packed channel may represent an idealized packed fracture, a situation which is of interest as a potential pathway for the leakage of carbon dioxide from a geological sequestration site. The channel walls change from parallel planes, to small amplitude sine waves, to large amplitude nonsinusoidal waves as certain parameters are increased. The direction of gravity is arbitrary. A plot of piezometric head against distance in the direction of mean flow changes from a straight line for parallel planes to a series of steeply sloping sections in the reaches of small aperture alternating with nearly constant sections in the large aperture bulges. Expressions are given for the stream function, specific discharge, piezometric head, and pressure.

  13. FIBER ORIENTATION DISTRIBUTIONS IN SLIT CHANNEL FLOWS WITH ABRUPT EXPANSION FOR FIBER SUSPENSIONS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The lattice Boltzmann method was used to investigate numerically the fiber orientation distributions in slit channel flows with abrupt expansion for fiber suspensions even in the concentrated regime. The channels have a thin slit geometry with 1:4 and 1:3 expansions. Both the interactions between fibers and that between fibers and channel walls were taken into consideration. Some of numerical results are qualitatively in agreement with the experiment data. It is found that most of fibers are aligned in the flow direction in all the suspensions in the entrance region of the expansion. Fiber orientation distributions, having different patterns in different regions of the flow, depend on the expansion ratio of the channel. The mechanical fiber-fiber interaction largely affects the fiber orientation in the downstream of the expansion and in the salient corner for the cases of concentrated suspensions. The hydrodynamic interaction plays an important role on the fiber orientation in the dilute suspension.

  14. Investigation on the liquid water droplet instability in a simulated flow channel of PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Tae Hun; Kim, Bok Yung; Kim, Han Sang; Min, Kyoung Doug [Seoul National University, Seoul (Korea, Republic of)

    2008-05-15

    To investigate the characteristics of water droplets on the gas diffusion layer from both top-view and side-view of the flow channel, a rig test apparatus was designed and fabricated with prism attached plate. This experimental device was used to simulate the growth of a single liquid water droplet and its transport process with various air flow velocity and channel height. Not only dry condition but also fully humidified condition was also simulated by using a water absorbing sponge. The detachment height of the water droplet with dry and wet conditions was measured and analyzed. It was found that the droplet tends towards becoming unstable by decreased channel height, increased flow velocity or making a gas diffusion layer (GDL) dryer. Also, peculiar behavior of the water droplet in the channel was presented like attachment to hydrophilic wall or sudden breaking of droplet in case of fully hydrated condition. The simplified force balance model matches with experimental data as well

  15. Mixed convective magnetohydrodynamic flow in a vertical channel filled with nanofluids

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-06-01

    Full Text Available The fully developed mixed convection flow in a vertical channel filled with nanofluids in the presence of a uniform transverse magnetic field has been studied. Closed form solutions for the fluid temperature, velocity and induced magnetic field are obtained for both the buoyancy-aided and -opposed flows. Three different water-based nanofluids containing copper, aluminium oxide and titanium dioxide are taken into consideration. Effects of the pertinent parameters on the nanofluid temperature, velocity, and induced magnetic field as well as the shear stress and the rate of heat transfer at the channel wall are shown in figures and tables followed by a quantitative discussion. It is found that the magnetic field tends to enhance the nanofluid velocity in the channel. The induced magnetic field vanishes in the cental region of the channel. The critical Rayleigh number at onset of instability of flow is strongly dependent on the volume fraction of nanoparticles and the magnetic field.

  16. A phenomenological continuum model for force-driven nano-channel liquid flows

    Science.gov (United States)

    Ghorbanian, Jafar; Celebi, Alper T.; Beskok, Ali

    2016-11-01

    A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.

  17. Subcritical transition to turbulence in plane channel flows

    Science.gov (United States)

    Orszag, S. A.; Patera, A. T.

    1980-01-01

    A linear three dimensional mechanism for the transition of plane Poiseuille flows to turbulence is presented which provides good agreement with experimental observations. The mechanism is based on the evolution of states within a band of quasi-equilibria which slowly approach the stable upper branch solutions for the evolution of flow energy but which are strongly unstable to infinitesimal three-dimensional disturbances. Numerical simulation has shown that if two-dimensional flow persists long enough for the three-dimensional perturbations to attain finite amplitude, the resulting three dimensional flow quickly develops a turbulent character with nonperiodic behavior, and thus transition can be predicted from knowledge of the initial two- and three-dimensional energies and time scales. The mechanism predicts transition to turbulence at Reynolds numbers greater than 1000, as observed in experiments, and implies higher threshold three-dimensional energies in plane Couette flow.

  18. Turbulent combustion flow through variable cross section channel

    Energy Technology Data Exchange (ETDEWEB)

    Rogov, B.V.; Sokolova, I.A.

    1999-07-01

    The object of this study is to develop a new evolutionary numerical method for solving direct task of Laval nozzle, which provides non-iterative calculations of chemical reacting turbulent flows with detailed kinetic chemistry. The numerical scheme of fourth order along the normal coordinate and second order along the streamwise one is derived for calculation of difference-differential equations of the second order and the first order. Marching method provides the possibility of computing field flow in subsonic section of nozzle and near an expansion. Critical mass consumption is calculated with controlled accuracy. After critical cross section of nozzle a combined marching method with global iterations over axial pressure (only) makes it possible to overcome ill posedness of mixed supersonic flow and calculate the whole flow field near and after critical cross section. Numerical results are demonstrated on turbulent burning hydrogen-oxygen flow through Laval nozzle with curvature of wall K{sub w} = 0.5.

  19. Turbulent spots in channel flow: an experimental study Large-scale flow, inner structure and low order model

    CERN Document Server

    Lemoult, Grégoire; Aider, Jean-Luc; Wesfreid, José Eduardo

    2013-01-01

    We present new experimental results on the development of turbulent spots in channel flow. The internal structure of a turbulent spot is measured, with Time Resolved Stereoscopic Particle Image Velocimetry. We report the observation of travelling-wave-like structures at the trailing edge of the turbulent spot. Special attention is paid to the large-scale flow surrounding the spot. We show that this large-scale flow is an asymmetric quadrupole centred on the spot. We measure the time evolution of the turbulent fluctuations and the mean flow distortions and compare these with the predictions of a nonlinear reduced order model predicting the main features of subcritical transition to turbulence.

  20. Flow rate-pressure drop relation for deformable shallow microfluidic channels

    Science.gov (United States)

    Christov, Ivan C.; Cognet, Vincent; Stone, Howard A.

    2013-11-01

    Laminar flow in devices fabricated from PDMS causes deformation of the passage geometry, which affects the flow rate-pressure drop relation. Having an accurate flow rate-pressure drop relation for deformable microchannels is of importance given that the flow rate for a given pressure drop can be as much as 500% of the flow rate predicted by Poiseuille's law for a rigid channel. proposed a successful model of the latter phenomenon by heuristically coupling linear elasticity with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbative derivation of the flow rate-pressure drop relation in a shallow deformable microchannel using Kirchoff-Love theory of isotropic quasi-static plate bending and Stokes' equations under a ``double lubrication'' approximation (i.e., the ratio of the channel's height to its width and of the channel's width to its length are both assumed small). Our result contains no free parameters and confirms Gervais et al.'s observation that the flow rate is a quartic polynomial of the pressure drop. ICC was supported by NSF Grant DMS-1104047 and the U.S. DOE through the LANL/LDRD Program; HAS was supported by NSF Grant CBET-1132835.

  1. Flow and bathymetry in sharp open-channel bends: Experiments and predictions

    NARCIS (Netherlands)

    Zeng, J.; Constantinescu, G.; Blanckaert, K.; Weber, L.

    2008-01-01

    This paper focuses on experiments and simulations conducted in very sharp open-channel bends with flat and equilibrium bathymetry, corresponding to the initial and final phases of the erosion and deposition processes, respectively. The study of flow in curved open bends is relevant for flow in natur

  2. Numerical Simulations of Competitive-Consecutive Reactions in Turbulent Channel Flow

    NARCIS (Netherlands)

    Vrieling, A.J.

    2003-01-01

    This thesis deals with mixing of passive scalars in a turbulent flow. The passive scalars are released in a turbulent plane channel flow and interpreted as either non-reactive components or reactive components that are involved in a competitive-consecutive reaction system. The evolution of these pas

  3. Large-eddy simulation of a curved open-channel flow over topography

    NARCIS (Netherlands)

    Van Balen, W.; Uijttewaal, W.S.J.; Blanckaert, K.

    2010-01-01

    Large-eddy simulation (LES) is performed of a curved open-channel flow over topography based on the laboratory experiment by Blanckaert [“Topographic steering, flow circulation, velocity redistribution and bed topography in sharp meander bends,” Water Resour. Res., doi:10.1029/2009WR008303 (in press

  4. Large-eddy simulation of a mildly curved open-channel flow

    NARCIS (Netherlands)

    Van Balen, W.; Uijttewaal, W.S.J.; Blanckaert, K.

    2009-01-01

    After validation with experimental data, large-eddy simulation (LES) is used to study in detail the open-channel flow through a curved flume. Based on the LES results, the present paper addresses four issues. Firstly, features of the complex bicellular pattern of the secondary flow, occurring in cur

  5. Large-eddy simulation of a curved open-channel flow over topography

    NARCIS (Netherlands)

    Van Balen, W.; Uijttewaal, W.S.J.; Blanckaert, K.

    2010-01-01

    Large-eddy simulation (LES) is performed of a curved open-channel flow over topography based on the laboratory experiment by Blanckaert [“Topographic steering, flow circulation, velocity redistribution and bed topography in sharp meander bends,” Water Resour. Res., doi:10.1029/2009WR008303 (in press

  6. Two-phase flow boiling in small channels: A brief review

    Indian Academy of Sciences (India)

    Madhavi V Sardeshpande; Vivek V Ranade

    2013-12-01

    Boiling flows are encountered in a wide range of industrial applications such as boilers, core and steam generators in nuclear reactors, petroleum transportation, electronic cooling and various types of chemical reactors. Many of these applications involve boiling flows in conventional channels (channel size ≥ 3 mm). The key design issues in two phase flow boiling are variation in flow regimes, occurrence of dry out condition, flow instabilities, and understanding of heat transfer coefficient and vapor quality. This paper briefly reviews published experimental and modeling work in these areas. An attempt is made to provide a perspective and to present available information on boiling in small channels in terms of channel size, flow regimes, heat transfer correlations, pressure drop, critical heat flux and film thickness. An attempt is also made to identify strengths and weaknesses of published approaches and computational models of boiling in small channels. The presented discussion and results will provide an update on the state-of-the-art and will be useful to identify and plan further research in this important area.

  7. Gradually-varied flow profiles in open channels analytical solutions by using Gaussian hypergeometric function

    CERN Document Server

    Jan, Chyan-Deng

    2014-01-01

    Gradually-varied flow (GVF) is a steady non-uniform flow in an open channel with gradual changes in its water surface elevation. The evaluation of GVF profiles under a specific flow discharge is very important in hydraulic engineering. This book proposes a novel approach to analytically solve the GVF profiles by using the direct integration and Gaussian hypergeometric function. Both normal-depth- and critical-depth-based dimensionless GVF profiles are presented. The novel approach has laid the foundation to compute at one sweep the GVF profiles in a series of sustaining and adverse channels, w

  8. Monte Carlo simulations of dense gas flow and heat transfer in micro- and nano-channels

    Institute of Scientific and Technical Information of China (English)

    WANG Moran; LI Zhixin

    2005-01-01

    The dense gas flow and heat transfer in micro- and nano-channels was simulated using the Enskog simulation Monte Carlo (ESMC) method. The results were compared with those from the direct simulation Monte Carlo (DSMC) method and from the consistent Boltzmann algorithm (CBA). The dense gas flow and heat transfer characteristics were thus analyzed. The results showed that when the gas density was large enough, the finite gas density effect on the flow and heat transfer cannot be ignored, which decreased the skin friction coefficient and changed the heat transfer characteristics on the channel wall surfaces.

  9. Integrated Channel Selector for Directing Fluid Flow Using Thermoreversible Gelation Controlled by a Digital Mirror Device

    Directory of Open Access Journals (Sweden)

    Yoshitaka Shirasaki

    2013-01-01

    Full Text Available An integrated channel selector system employing thermoreversible gelation of a polymer was developed. Here, we show a system with 3×3 arrayed microchannels having nine crossing points. Infrared laser irradiation was used to form gel areas at several crossing points in arranging a flow path from the inlet to one of the nine outlets passing through certain junctions and channels. The multipoint irradiation by the infrared laser was realized using a personal-computer-controlled digital mirror device. The system was demonstrated to be able to direct flow to all nine outlets. Finally, we achieved to produce flexible paths for flowing particles including side trips.

  10. Heat transfer of bubbly flow on inner wall of annular channel

    Directory of Open Access Journals (Sweden)

    Lobanov Pavel

    2017-01-01

    Full Text Available Experimental investigations of heat transfer from the heated wall to the two-phase bubbly flow were performed in vertical annular channel using air-water system. The IR-thermography and miniature temperature sensors were used to measure heat transfer coefficients. The influence of bubbles on heat transfer is shown in comparison with the case of single phase flow. The presence of bubbles in the flow leads to heat transfer intensification in the annular channel even for low void fractions.

  11. Gelled propellant flow: Boundary layer theory for power-law fluids in a converging planar channel

    Science.gov (United States)

    Kraynik, Andrew M.; Geller, A. S.; Glick, J. H.

    1989-10-01

    A boundary layer theory for the flow of power-law fluids in a converging planar channel has been developed. This theory suggests a Reynolds number for such flows, and following numerical integration, a boundary layer thickness. This boundary layer thickness has been used in the generation of a finite element mesh for the finite element code FIDAP. FIDAP was then used to simulate the flow of power-law fluids through a converging channel. Comparison of the analytic and finite element results shows the two to be in very good agreement in regions where entrance and exit effects (not considered in the boundary layer theory) can be neglected.

  12. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    2016-01-01

    understanding of the gas-liquid flow in both the porous media and the channel is necessary for insuring proper oxygen, water and heat management of the electrolysis cell. In this work, the patterns of vertical upward gas-liquid flow in a 5×1×94 mm micro-channel are experimentally analysed. A sheet of titanium...... felt is used as a permeable wall for permeation of air through a column of water similar to the phenomenon encountered at the anode. The transparent setup is operated ex-situ and the gas-liquid flow regimes are identified using a camera....

  13. Effects of an emergent vegetation patch on channel reach bathymetry and stability during repeated unsteady flows

    Science.gov (United States)

    Waters, Kevin A.; Crowe Curran, Joanna

    2016-11-01

    While research into the interaction between in-channel vegetation, flow, and bed sediment has increased in recent years, there is still a need to understand how unsteady flows affect these processes, particularly in terms of channel bed adjustments. In this study, flume experiments tested two flood hydrograph sizes run over sand/gravel and sand/silt beds to evaluate reach scale impacts of a midchannel vegetation patch of variable stem density on channel bathymetry and stability. Alternating flood hydrographs with periods of low, steady flow created flow sequences reflective of an extended unsteady flow regime, thereby simulating time scales consisting of multiple flood events. Digital elevation models provided detailed measurements of channel change following each flood event to enable analysis over each unsteady flow sequence. The vegetation patch created characteristic channel bathymetries dependent on sediment mixture and patch density that in all cases resulted in a more variable bed structure than channels without a patch. Reach scale stability, quantified based on net volumetric bed change, only occurred with a sparse patch in the low flood sequence, corresponding with little variation in surface composition and structure. In most other cases, scour measured at the patch prevented stability at the reach scale, especially in the finer substrate. Overall, findings show that a channel may only adjust to a stable bathymetry upon addition of a midchannel vegetation patch within a limited range of flow regimes and patch stem densities, and that for the experimental conditions tested here, in-stream patches generally did not enhance reach scale bed stability.

  14. A flow channel design procedure for PEM fuel cells with effective water removal

    Science.gov (United States)

    Li, Xianguo; Sabir, Imran; Park, Jaewan

    Proper water management in polymer electrolyte membrane (PEM) fuel cells is critical to achieve the potential of PEM fuel cells. Membrane electrolyte requires full hydration in order to function as proton conductor, often achieved by fully humidifying the anode and cathode reactant gas streams. On the other hand, water is also produced in the cell due to electrochemical reaction. The combined effect is that liquid water forms in the cell structure and water flooding deteriorates the cell performance significantly. In the present study, a design procedure has been developed for flow channels on bipolar plates that can effectively remove water from the PEM fuel cells. The main design philosophy is based on the determination of an appropriate pressure drop along the flow channel so that all the liquid water in the cell is evaporated and removed from, or carried out of, the cell by the gas stream in the flow channel. At the same time, the gas stream in the flow channel is maintained fully saturated in order to prevent membrane electrolyte dehydration. Sample flow channels have been designed, manufactured and tested for five different cell sizes of 50, 100, 200, 300 and 441 cm 2. Similar cell performance has been measured for these five significantly different cell sizes, indicating that scaling of the PEM fuel cells is possible if liquid water flooding or membrane dehydration can be avoided during the cell operation. It is observed that no liquid water flows out of the cell at the anode and cathode channel exits for the present designed cells during the performance tests, and virtually no liquid water content in the cell structure has been measured by the neutron imaging technique. These measurements indicate that the present design procedure can provide flow channels that can effectively remove water in the PEM fuel cell structure.

  15. A flow channel design procedure for PEM fuel cells with effective water removal

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xianguo; Sabir, Imran; Park, Jaewan [Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2007-01-01

    Proper water management in polymer electrolyte membrane (PEM) fuel cells is critical to achieve the potential of PEM fuel cells. Membrane electrolyte requires full hydration in order to function as proton conductor, often achieved by fully humidifying the anode and cathode reactant gas streams. On the other hand, water is also produced in the cell due to electrochemical reaction. The combined effect is that liquid water forms in the cell structure and water flooding deteriorates the cell performance significantly. In the present study, a design procedure has been developed for flow channels on bipolar plates that can effectively remove water from the PEM fuel cells. The main design philosophy is based on the determination of an appropriate pressure drop along the flow channel so that all the liquid water in the cell is evaporated and removed from, or carried out of, the cell by the gas stream in the flow channel. At the same time, the gas stream in the flow channel is maintained fully saturated in order to prevent membrane electrolyte dehydration. Sample flow channels have been designed, manufactured and tested for five different cell sizes of 50, 100, 200, 300 and 441cm{sup 2}. Similar cell performance has been measured for these five significantly different cell sizes, indicating that scaling of the PEM fuel cells is possible if liquid water flooding or membrane dehydration can be avoided during the cell operation. It is observed that no liquid water flows out of the cell at the anode and cathode channel exits for the present designed cells during the performance tests, and virtually no liquid water content in the cell structure has been measured by the neutron imaging technique. These measurements indicate that the present design procedure can provide flow channels that can effectively remove water in the PEM fuel cell structure. (author)

  16. Flow characteristics on the blade channel vortex in the Francis turbine

    Science.gov (United States)

    Guo, P. C.; Wang, Z. N.; Luo, X. Q.; Wang, Y. L.; Zuo, J. L.

    2016-05-01

    Depending on the long-term hydraulic development of Francis turbine, the blade channel vortex phenomenon was investigated systematically from hydraulic design, experimental and numerical computation in this paper. The blade channel vortex difference between the high water head and low water head turbine was also analyzed. Meanwhile, the relationship between the blade channel vortex and the operating stability of hydraulic turbine was also investigated. The results show that the phenomenon of blade channel vortex is an intrinsic property for Francis turbine under small flow rate condition, the turning-point of the blade channel vortex inception curve appears at low unit speed region, and the variation trend of the blade channel vortex inception curve is closely related to the blade inlet edge profile. In addition to, the vortex of the high water head turbine can generally be excluded from the stable operation region, while which is more different for the one of the low water head turbine.

  17. Quantifying flow retention due to vegetation in an earthen experimental channel using the Aggregated Dead Zone (ADZ) dilution approach

    NARCIS (Netherlands)

    Carling, Paul; Kleinhans, Maarten; Leyland, Julian; Besozzi, Louison; Duranton, Pierre; Trieu, Hai; Teske, Roy

    2014-01-01

    Understanding of flow resistance of forested floodplains is essential for floodplain flow routing and floodplain reforestation projects. Although the flow resistance of grass-lined channels is well-known, flow retention due to flow-blocking by trees is poorly understood. Flow behaviour through tree-

  18. Fast Vortex Method for the Simulation of Flows Inside Channels With and Without Injection

    Institute of Scientific and Technical Information of China (English)

    YvesGAGNON; HUANGWeiguang

    1993-01-01

    A fast vortex method is presented for the simulation of fluid flows inside two-dimensional channels,The first channel studied is formed by two parallel walls simulating the entrance length of a developing flow.The second channel is similar to the first one but with an injection of a secondary fluid through a slot on one of its walls,In both cases,results are presented for flows at low Reynolds numbers and for flows at a high Reynolds number The numerical method used is based on the Random Vortex Method and on the Vortex-In-Cell Algorithm.Physical analyses of the numerical results are also presented.mostly in application to film cooling.

  19. Simulation of the solidification in a channel of a water-cooled glass flow

    Directory of Open Access Journals (Sweden)

    G. E. Ovando Chacon

    2014-12-01

    Full Text Available A computer simulation study of a laminar steady-state glass flow that exits from a channel cooled with water is reported. The simulations are carried out in a two-dimensional, Cartesian channel with a backward-facing step for three different angles of the step and different glass outflow velocities. We studied the interaction of the fluid dynamics, phase change and thermal behavior of the glass flow due to the heat that transfers to the cooling water through the wall of the channel. The temperature, streamline, phase change and pressure fields are obtained and analyzed for the glass flow. Moreover, the temperature increments of the cooling water are characterized. It is shown that, by reducing the glass outflow velocity, the solidification is enhanced; meanwhile, an increase of the step angle also improves the solidification of the glass flow.

  20. Statistical Characterization of River and Channel Network Formation in Intermittently Flowing Vortex Systems.

    Science.gov (United States)

    Olson, C. J.; Reichhardt, C.; Nori, F.

    1997-03-01

    Vortices moving in dirty superconductors can form intricate flow patterns, resembling fluid rivers, as they interact with the pinning landscape (F. Nori, Science 271), 1373 (1996).. Weaker pinning produces relatively straight nori>vortex channels, while stronger pinning results in the formation of one or more winding channels that carry all flow. This corresponds to a crossover from elastic flow to plastic flow as the pinning strength is increased. For several pinning parameters, we find the fractal dimension of the channels that form, the vortex trail density, the distance travelled by vortices as they pass through the sample, the branching ratio, the sinuosity, and the size distribution of the rivers, and we compare our rivers with physical rivers that follow Horton's laws.

  1. LARGE EDDY SIMULATION OF FREE SURFACE TURBULENT CHANNEL FLOW WITH HEAT TRANSFER

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper, the Large Eddy Simulation (LES) was used to study the free-surface turbulent channel flow with passive heat transfer. The three-dimensional filtered incompressible Navier-Stokes equations and energy equation were numerically solved with dynamic Subgrid Scale (SGS) models for modeling turbulent stresses and heat flux. To compare the turbulent behavior of the free-surface and two-walled channel flows, the LES of two-walled turbulent channel flow was performed. The statistical quantities and flow structures of the free-surface turbulence with heat transfer in the vicinity of the free-surface were investigated. The results are also in good agreement with theoretical analysis and available results by Direct Numerical Simulation (DNS).

  2. Comparing two methods of simulating mirco-scale viscous flows in a porous channel

    Science.gov (United States)

    Gao, Hui; Han, Jie; Jin, Yan; Wang, Lian-Ping

    2007-11-01

    Water flows in natural soil porous media are important to colloid-facilitated transport of contaminants and other phenomena with groundwater as the carrier. The 3D micro-scale flow is complicated due to the complex geometry. The transport and deposition of colloids in such flows are affected by several physical and chemical forces involved. In this talk, we first compare two methods of simulating viscous flows in both 2D and 3D channels filled with glass-bead particles. The first method is Physalis developed by Prosperetti's group, at Johns Hopkins, based on solving the Navier-Stokes equation using a combination of numerical solution and local analytical Stokes flow representation. The second method is a meso-scale approach by solving a lattice Boltzmann equation. Specific implementation issues will be discussed. The two methods yield almost identical flows. Preliminary simulation results as well as parallel experimental results on colloid deposition in the porous channel will also be presented.

  3. Flow instability and critical heat flux for downward flow in a vertical narrow rectangular channel heated from both-sides

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juhyung; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jo, Daeseong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Subcooled flow boiling in a vertical rectangular channel was experimentally investigated to enhance the understanding of the CHF and the effect of the two-phase flow instability on it under low pressure conditions, especially for downward flow which was adopted for Jordan Research and Training Reactor (JRTR) and Kijang research reactor (KJRR) to achieve easier fuel and irradiation rig loading. In addition, visual observations of subcoold flow boiling was conducted by using high-speed video (HSV) for a clear understanding of both phenomena. We concluded that flow excursion (which is static instability) could be induced due to the OPDF (which is dynamic instability) when a system has no resistibility to the pressure drop perturbation, which is caused by the coalescence of facing bubbles on opposing heated surfaces. In more stable system with throttling applied, flow rate could be maintained and stable CHF could be reached. The static flow instability (FI) and critical heat flux (CHF) for subcooled flow boiling in a vertical narrow channels under low pressure condition are fairly crucial phenomena relative to thermal-hydraulic design and safety analysis for pool-type research reactors. It has been recommended that RRs and MTRs be designed to have sufficient margins for CHF and the onset of FI as well, since unstable flow could leads to premature CHF under very low wall heat flux in comparison to stable CHF. Even the fact and previous studies, however, the understanding of relationship among FI, premature CHF and stable CHF is not sufficient to date.

  4. Patterning electrohydrodynamic flows with conductive obstacles in microfluidic channels.

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Tyrone F.; Simmons, Blake Alexander; Barrett, Louis C.; Cummings, Eric B.; Fiechtner, Gregory J.; Harnett, Cindy K.; Skulan, Andrew J.

    2005-03-01

    Flow patterns with both recirculating and unidirectional characteristics are useful for controlled mixing and pumping within microfluidic devices. We have developed a fabrication process that converts injection-molded polymer chips into devices that demonstrate induced-charge electroosmosis (ICEO) effects (1,2) in AC fields. Polymeric insulating posts are coated with metal to produce a nonuniform zeta potential under an applied electric field. Induced flows are analyzed by particle image velocimetry. Stable, recirculating flow patterns are discussed, along with their potential to produce well-characterized and reversible streamlines for on-chip mixing in chemical separation and synthesis devices. Asymmetric conductive features can bias the flow direction, generating unidirectional pumping in an AC field. This pumping approach will be discussed in comparison with DC electrokinetic pumps we have studied.

  5. Numerical investigation of the mechanism of two-phase flow instability in parallel narrow channels

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lian [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China); Chen, Deqi, E-mail: chendeqi@cqu.edu.cn [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China); CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Huang, Yanping, E-mail: hyanping007@163.com [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Yuan, Dewen; Wang, Yanling [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Pan, Liangming [Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University (China)

    2015-06-15

    Highlights: • A mathematical model is proposed to predict the two-phase flow instability. • The mathematical model predicted result agrees well with the experimental result. • Oscillation characteristics of the two-phase flow instability is discussed in detail. - Abstract: In this paper, the mechanism of two-phase flow instability in parallel narrow channels is studied theoretically, and the characteristic of the flow instability is discussed in detail. Due to the significant confining effect of the narrow channel on the vapor–liquid interface, the two-phase flow resistance in the narrow channel is probably different from that in conventional channel. Therefore, the vapor confined number (N{sub conf}), defined by the size of narrow channel and bubble detachment diameter, is considered in the “Chisholm B model” to investigate the two-phase flow pressure drop. The flow instability boundaries are plotted in parameter plane with phase-change-number (N{sub pch}) and subcooling-number (N{sub sub}) under different working conditions. It is found that the predicted result agrees well with the experimental result. According to the predicted result, the oscillation behaviors near the flow instability boundary indicate that the Supercritical Hopf bifurcation appears in high sub-cooled region and the Subcritical Hopf bifurcation appears in low sub-cooled region. Also, a detailed analysis about the effects of key parameters on the characteristic of two-phase flow instability and the flow instability boundary is proposed, including the effects of inlet subcooling, heating power, void distribution parameter and drift velocity.

  6. Flow visualization study in high aspect ratio cooling channels for rocket engines

    Science.gov (United States)

    Meyer, Michael L.; Giuliani, James E.

    1993-11-01

    The structural integrity of high pressure liquid propellant rocket engine thrust chambers is typically maintained through regenerative cooling. The coolant flows through passages formed either by constructing the chamber liner from tubes or by milling channels in a solid liner. Recently, Carlile and Quentmeyer showed life extending advantages (by lowering hot gas wall temperatures) of milling channels with larger height to width aspect ratios (AR is greater than 4) than the traditional, approximately square cross section, passages. Further, the total coolant pressure drop in the thrust chamber could also be reduced, resulting in lower turbomachinery power requirements. High aspect ratio cooling channels could offer many benefits to designers developing new high performance engines, such as the European Vulcain engine (which uses an aspect ratio up to 9). With platelet manufacturing technology, channel aspect ratios up to 15 could be formed offering potentially greater benefits. Some issues still exist with the high aspect ratio coolant channels. In a coolant passage of circular or square cross section, strong secondary vortices develop as the fluid passes through the curved throat region. These vortices mix the fluid and bring lower temperature coolant to the hot wall. Typically, the circulation enhances the heat transfer at the hot gas wall by about 40 percent over a straight channel. The effect that increasing channel aspect ratio has on the curvature heat transfer enhancement has not been sufficiently studied. If the increase in aspect ratio degrades the secondary flow, the fluid mixing will be reduced. Analysis has shown that reduced coolant mixing will result in significantly higher wall temperatures, due to thermal stratification in the coolant, thus decreasing the benefits of the high aspect ratio geometry. A better understanding of the fundamental flow phenomena in high aspect ratio channels with curvature is needed to fully evaluate the benefits of this

  7. Dynamics of flow behind backward-facing step in a narrow channel

    Directory of Open Access Journals (Sweden)

    Uruba V.

    2013-04-01

    Full Text Available The results and their analysis from experiments obtained by TR-PIV are presented on the model of backward-facing step in a narrow channel. The recirculation zone is studied in details. Mean structures are evaluated from fluctuating velocity fields. Then dynamics of the flow is characterized with help of POD (BOD technique. Substantial differences in high energy dynamical structures behaviour within the back-flow region and further downstream behind the flow reattachment have been found.

  8. A Self-Replication Model for Long Channelized Lava Flows on the Mars Plains

    Science.gov (United States)

    Baloga, S. M.; Glaze, L. S.

    2008-01-01

    A model is presented for channelized lava flows emplaced by a self-replicating, levee-building process over long distances on the plains of Mars. Such flows may exhibit morphologic evidence of stagnation, overspills, and upstream breakouts. However, these processes do not inhibit the formation and persistence of a prominent central channel that can often be traced for more than 100 km. The two central assumptions of the self-replication model are (1) the flow advances at the average upstream velocity of the molten core and (2) the fraction of the lava that travels faster than the average upstream velocity forms stationary margins in the advancing distal zone to preserve the self-replication process. For an exemplary 300 km long flow north of Pavonis Mons, the model indicates that 8 m of crust must have formed during emplacement, as determined from the channel and levee dimensions. When combined with independent thermal dynamic estimates for the crustal growth rate, relatively narrow constraints are obtained for the flow rate (2250 m3 s 1), emplacement duration (600 d), and the lava viscosity of the molten interior (106 Pa s). Minor, transient overspills and breakouts increase the emplacement time by only a factor of 2. The primary difference between the prodigious channelized Martian flows and their smaller terrestrial counterparts is that high volumetric flow rates must have persisted for many hundreds of days on Mars, in contrast to a few hours or days on Earth.

  9. Effects of roughness on density-weighted particle statistics in turbulent channel flows

    Energy Technology Data Exchange (ETDEWEB)

    Milici, Barbara [Faculty of Engineering and Architecture, Cittadella Universitaria - 94100 - Enna (Italy)

    2015-12-31

    The distribution of inertial particles in turbulent flows is strongly influenced by the characteristics of the coherent turbulent structures which develop in the carrier flow field. In wall-bounded flows, these turbulent structures, which control the turbulent regeneration cycles, are strongly affected by the roughness of the wall, nevertheless its effects on the particle transport in two-phase turbulent flows has been still poorly investigated. The issue is discussed here by addressing DNS combined with LPT to obtain statistics of velocity and preferential accumulation of a dilute dispersion of heavy particles in a turbulent channel flow, bounded by irregular two-dimensional rough surfaces, in the one-way coupling regime.

  10. Effect of wall thickness and helium cooling channels on duct magnetohydrodynamic flows

    Energy Technology Data Exchange (ETDEWEB)

    He, Qingyun; Feng, Jingchao; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn

    2016-02-15

    Highlights: • MHD flows in ducts of different wall thickness compared with wall uniform. • Study of velocity, pressure distribution in ducts MHD flows with single pass of helium cooling channels. • Comparison of three types of dual helium cooling channels and acquisition of an option for minimum pressure drop. • A single short duct MHD flow in blanket without FCI has been simulated for pressure gradient analysis. - Abstract: The concept of dual coolant liquid metal (LM) blanket has been proposed in different countries to demonstrate the technical feasibility of DEMO reactor. In the system, helium gas and PbLi eutectic, separated by structure grid, are used to cool main structure materials and to be self-cooled, respectively. The non-uniform wall thickness of structure materials gives rise to wall non-homogeneous conductance ratio. It will lead to electric current distribution changes, resulting in significant changes in the velocity distribution and pressure drop of magnetohydrodynamic (MHD) flows. In order to investigate the effect of helium channels on MHD flows, different methods of numerical simulations cases are carried out including the cases of different wall thicknesses, single pass of helium cooling channels, and three types of dual helium cooling channels. The results showed that helium tubes are able to affect the velocity distribution in the boundary layer by forming wave sharp which transfers from Hartmann boundary layer to the core area. In addition, the potential profile and pressure drop in the cases have been compared to these in the case of walls without cooling channel, and the pressure gradient of a simplified single short duct MHD flow in blanket shows small waver along the central axis in the helium channel position.

  11. Stability characteristics of hyper-concentration flow in open channel

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The flow instability is related to many engineering problems and belongs to a wide-ranging research field. When the problem on the transition from the laminar to the turbulence caused by the instability of the laminar is studied,the "neutral line" and the critical Reynolds number are always taken as the criterion to judge whether a certain kind of flow is stable,whose corresponding flow medium is the clear water,that is,the single-phase Newtonian fluid. And it is not studied in the traditional in-stability theory that the hyper-concentration flow widely exists in rivers. This shortage can be covered by this research. Study shows that the instability of non-Newtonian fluid such as hyper-concentration fluid,compared with Newtonian fluid such as clear water,is influenced by not only Reynolds number,the ratio of the inertia force and the viscous force,but also many other factors such as the sediment concentration,the concentration distribution,the grain size,the volu-metric weight of the sediment and so on,which make the mechanical principle even more complex. So the results of the research can supply the scientific basis for the explanations of "slurrying river",the turbulence intensity of the flow carrying sediment and the variance of the turbulence structure.

  12. Stability characteristics of hyper-concentration flow in open channel

    Institute of Scientific and Technical Information of China (English)

    XU HaiJue; BAI YuChuan

    2008-01-01

    The flow instability is related to many engineering problems and belongs to a wide-rankling research field. When the problem on the transition from the laminar to the turbulence caused by the instability of the laminar is studied, the "neutral line" and the critical Reynolds number are always taken as the criterion to judge whether a certain kind of flow is stable, whose corresponding flow medium is the clear water, that is, the single-phase Newtonian fluid. And it is not studied in the traditional in-stability theory that the hyper-concentration flow widely exists in rivers. This shortage can be covered by this research. Study shows that the instability of non-Newtonian fluid such as hyper-concentration fluid, compared with Newtonian fluid such as clear water, is influenced by not only Reynolds number, the ratio of the inertia force and the viscous force, but also many other factors such as the sediment concentration, the concentration distribution, the grain size, the volu-metric weight of the sediment and so on, which make the mechanical principle even more complex. So the results of the research can supply the scientific basis for the explanations of "slurrying river", the turbulence intensity of the flow carrying sediment and the variance of the turbulence structure.

  13. Experimental investigation on the CHF in the narrow rectangular channel under the downward flow condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Huiyung; Yun, Byongjo; Bak, Jinyeong [Pusan national university, Pusan (Korea, Republic of); Park, Jonghark; Chae, Heetaek; Park, Cheol [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    The new research reactor under constructing in Kijang adopts a plate-type-fuel with downward flow cooling to prevent release of radioactive substance at pool surface. The thermal hydraulic design for the narrow rectangular channel differs from that for rod bundle channel. The licensing for construction of research reactor requires thermal hydraulic safety analysis of narrow rectangular channel. In the thermal hydraulic safety analysis, critical heat flux (CHF) on the fuel surface is considerably important to determine power and safety margin. The objectives of present study are, therefore, to carry out the experiment of CHF for downward flow in narrow rectangular channel, to obtain the correlation of CHF prediction applicable to a subchannel of plate-type-fuel. CHF experiments were carried out in the narrow rectangular channel simulating plate-type-fuel for research reactors under the downward flow condition. With the investigation of CHF data of the present experiment and previous studies, a new CHF correlation was proposed for the downward flow in the subchannel of plate-type-fuel. The predicted CHF by the new CHF correlation shows good agreement with experimental data in the present study. However, the correlation was based on the limited number of experimental data under low-flow conditions. Therefore, further studies for more data are needed to generalize the CHF correlation.

  14. Formation and evolution of gas flow channels in the abutment pressure area

    Institute of Scientific and Technical Information of China (English)

    Zhang Yong; Zhang Xibin; Xu Lifeng; Zhang Jiangli; Zhou Genli

    2012-01-01

    The permeability of coal ahead of the working face obviously changes dues to changes in abutment pressure.The formation and evolution of gas flow channels within the abutment pressure area was studied by analyzing the fracture extension mechanism and fracture development in different zones of the abutment pressure area.Fracture and damage mechanics theory is used to understand the observations.The following two techniques were used to understand the evolution of gas flow channels:field observation of the characteristic fractures at different positions relative to the working face and fluorescence micrographs of prepared coal samples.Bending tensile fractures develop along an approximately vertical direction that forms a microscopic network of channels in areas of stress concentration.The abutment pressure affects the local stress and,hence,the local gas conduction.The fractures induced by large deformation and plastic flow form macroscopically networked channels in the reduced stress area.Closer to the working face the gas flow channels evolve from microscopic to macroscopic and from isolated to network.Gas permeability continuously increases during this time.This is corroborated by field observations of the displacement of top coal and the gas flow from gas extraction drillings.

  15. Plastic flow of foams and emulsions in a channel

    CERN Document Server

    Dollet, B; Sbragaglia, M

    2014-01-01

    In order to understand the flow profiles of complex fluids, a crucial issue concerns the emergence of spatial correlations among plastic rearrangements exhibiting cooperativity flow behaviour at the macroscopic level. In this paper, the rate of plastic events in a Poiseuille flow is experimentally measured on a confined foam in a Hele-Shaw geometry. The correlation with independently measured velocity profiles is quantified. To go beyond a limitation of the experiments, namely the presence of wall friction which complicates the relation between shear stress and shear rate, we compare the experiments with simulations of emulsion droplets based on the lattice-Boltzmann method, which are performed both with, and without, wall friction. Our results indicate a correlation between the localisation length of the velocity profiles and the localisation length of the number of plastic events. Finally, unprecedented results on the distribution of the orientation of plastic events show that there is a non-trivial correla...

  16. Experimental study on the performance of PEM fuel cells with interdigitated flow channels

    Science.gov (United States)

    Yan, Wei-Mon; Mei, Sheng-Chin; Soong, Chyi-Yeou; Liu, Zhong-Sheng; Song, Datong

    In this work, the effects of interdigitated flow channel design on the cell performance of proton exchange membrane fuel cells (PEMFCs) are investigated experimentally. To compare the effectiveness of the interdigitated flow field, the performance of the PEM fuel cells with traditional flow channel design is also tested. Besides, the effects of the flow area ratio and the baffle-blocked position of the interdigitated flow field are examined in details. The experimental results indicate that the cell performance can be enhanced with an increase in the inlet flow rate and cathode humidification temperature. Either with oxygen or air as the cathode fuel, the cells with interdigitated flow fields have better performance than conventional ones. With air as the cathode fuel, the measurements show that the interdigitated flow field results in a larger limiting current density, and the power output is about 1.4 times that with the conventional flow field. The results also show that the cell performance of the interdigitated flow field with flow area ratio of 40.23% or 50.75% is better than that with 66.75%.

  17. Experimental study on the performance of PEM fuel cells with interdigitated flow channels

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei-Mon; Mei, Sheng-Chin [Department of Mechatronic Engineering, Huafan University, Shih-Ting, Taipei 223, Taiwan (ROC); Soong, Chyi-Yeou [Department of Aerospace and System Engineering, Feng Chia University, Seatwen, Taichung 40724, Taiwan (ROC); Liu, Zhong-Sheng; Song, Datong [Institute for Fuel Cell Innovation, National Research Council, 3250 East Mall, Vancouver, BC (Canada V6T 1W5)

    2006-09-29

    In this work, the effects of interdigitated flow channel design on the cell performance of proton exchange membrane fuel cells (PEMFCs) are investigated experimentally. To compare the effectiveness of the interdigitated flow field, the performance of the PEM fuel cells with traditional flow channel design is also tested. Besides, the effects of the flow area ratio and the baffle-blocked position of the interdigitated flow field are examined in details. The experimental results indicate that the cell performance can be enhanced with an increase in the inlet flow rate and cathode humidification temperature. Either with oxygen or air as the cathode fuel, the cells with interdigitated flow fields have better performance than conventional ones. With air as the cathode fuel, the measurements show that the interdigitated flow field results in a larger limiting current density, and the power output is about 1.4 times that with the conventional flow field. The results also show that the cell performance of the interdigitated flow field with flow area ratio of 40.23% or 50.75% is better than that with 66.75%. (author)

  18. The effects of channel diameter on flow pattern, void fraction and pressure drop of two-phase air-water flow in circular micro-channels

    Energy Technology Data Exchange (ETDEWEB)

    Saisorn, Sira [Energy Division, The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut' s University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand); Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab. (FUTURE), Department of Mechanical Engineering, King Mongkut' s University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

    2010-05-15

    Two-phase air-water flow characteristics are experimentally investigated in horizontal circular micro-channels. Test sections are made of fused silica. The experiments are conducted based on three different inner diameters of 0.53, 0.22 and 0.15 mm with the corresponding lengths of 320, 120 and 104 mm, respectively. The test runs are done at superficial velocities of gas and liquid ranging between 0.37-42.36 and 0.005-3.04 m/s, respectively. The flow visualisation is facilitated by systems mainly including stereozoom microscope and high-speed camera. The flow regime maps developed from the observed flow patterns are presented. The void fractions are determined based on image analysis. New correlation for two-phase frictional multiplier is also proposed for practical applications. (author)

  19. Nature and characteristics of the flows that carved the Simud and Tiu outflow channels, Mars

    Science.gov (United States)

    Rodriguez, J.A.P.; Tanaka, K.L.; Miyamoto, H.; Sasaki, S.

    2006-01-01

    Geomorphic and topographic relations of higher and lower levels of dissection within the Simud and Tiu Valles outflow channels on Mars reveal new insights into their formational histories. We find that the water floods that carved the higher channel floors were primarily sourced from Hydaspis Chaos. The floods apparently branched into distributaries downstream that promoted rapid freezing and sublimation of water and limited discharge into the lowlands. In contrast, we suggest that the lower outflow channels were carved by debris flows from Hydraotes Chaos. Surges within individual debris flows possessed variable volatile contents and led to the deposition of smooth deposits marked by low relief longitudinal ridges. Lower outflow channel discharges resulted in widespread deposition within the Simud/Tiu Valles as well as within the northern plains of Mars. Copyright 2006 by the American Geophysical Union.

  20. Deformation of an Elastic Beam due to Viscous Flow in an Embedded Parallel Channel Network

    CERN Document Server

    Matia, Yoav

    2015-01-01

    Elastic deformation due to embedded fluidic networks is currently studied in the context of soft-actuators and soft-robotic applications. In this work, we analyze interaction between the elastic deflection of a slender beam and viscous flow within a long serpentine channel, embedded in the elastic beam. The channel is positioned asymmetrically with regard to the midplane of the beam, and thus pressure within the channel creates a local moment deforming the beam. We focus on creeping flows and small deflections of the elastic beam and obtain, in leading order, a fourth-order partial integro-differential equation governing the time-dependent deflection field. This relation enables the design of complex time-dependent deformation patterns of beams with embedded channel networks, including inertia-like standing and moving wave solutions in configurations with negligible inertia.

  1. MHD mixed convection flow through a diverging channel with heated circular obstacle

    Science.gov (United States)

    Alam, Md. S.; Shaha, J.; Khan, M. A. H.; Nasrin, R.

    2016-07-01

    A numerical study of steady MHD mixed convection heat transfer and fluid flow through a diverging channel with heated circular obstacle is carried out in this paper. The circular obstacle placed at the centre of the channel is hot with temperature Th. The top and bottom walls are non-adiabatic. The basic nonlinear governing partial differential equations are transformed into dimensionless ordinary differential equations using similarity transformations. These equations have been solved numerically for different values of the governing parameters, namely Reynolds number (Re), Hartmann number (Ha), Richardson number (Ri) and Prandtl number (Pr) using finite element method. The streamlines, isotherms, average Nusselt number and average temperature of the fluid for various relevant dimensionless parameters are displayed graphically. The study revealed that the flow and thermal fields in the diverging channel depend significantly on the heated body. In addition, it is observed that the magnetic field acts to increase the rate of heat transfer within the channel.

  2. DEPTH-AVERAGED 2-D CALCULATION OF FLOW AND SEDIMENT TRANSPORT IN CURVED CHANNELS

    Institute of Scientific and Technical Information of China (English)

    Weiming WU; Sam S. Y. WANG

    2004-01-01

    The helical flow significantly affects the flow, sediment transport and morphological evolution in curved channels. A semi-empirical formula is proposed to determine the cross-stream distribution of the helical flow intensity in the developed regions of a channel bend. It is then used to evaluate the dispersion terms in the depth-averaged 2-D momentum equations and suspended-load transport equation as well as the bed-load transport angle, thus enhancing the depth-averaged 2-D model to account for the effect of helical flow. The tests in several experimental and field cases show that the enhanced depth-averaged 2-D model can much more reasonably predict the shifting of main flow from inner bank to outer bank, the erosion along outer bank and deposition along inner bank than the depth-averaged 2-D model without considering this effect.

  3. Combined effect of free and forced convection on MHD flow in a rotating porous channel

    Directory of Open Access Journals (Sweden)

    D. R. V. Prasada Rao

    1982-01-01

    Full Text Available This paper gives a steady linear theory of the combined effect of the free and forced convection in rotating hydromagnetic viscous fluid flows in a porous channel under the action of a uniform magnetic field. The flow is governed by the Grashof number G, the Hartmann number H, the Ekman number E, and the suction Reynolds number S. The solutions for the velocity field, temperature distribution, magnetic field, mass rate of flow and the shear stresses on the channel boundaries are obtained using a perturbation method with the small parameter S. The nature of the associated boundary layers is investigated for various values of the governing flow parameters. The velocity, the temperature, and the shear stresses are discussed numerically by drawing profiles with reference to the variations in the flow parameters.

  4. Electron inertia effect on incompressible plasma flow in a planar channel

    Science.gov (United States)

    Gavrikov, M. B.; Taiurskii, A. A.

    2015-10-01

    > In this paper, we consider a one-fluid model of electromagnetic hydrodynamics (EMHD) of quasi-neutral plasma, with ion and electron inertia fully taken into account. The EMHD and the MHD models are compared with regard to solving the classical problem of steady flow of incompressible plasma in a planar channel. In the MHD theory, the solution is given by the Hartmann flow, whereas in the EMHD model, the diagram of the longitudinal velocity is shown to be significantly different from the Hartmann profile: in particular, near-wall flows and a counterflow appear, while the flow velocity may significantly deviate from the direction of the antigradient pressure causing plasma to flow (the so-called hydrodynamic `Hall effect'). This study shows that the EMHD and the MHD planar channel theories are practically the same for liquid metal plasma and are very different for gas plasma.

  5. Entrainment at a sediment concentration interface in turbulent channel flow

    Science.gov (United States)

    Salinas, Jorge; Shringarpure, Mrugesh; Cantero, Mariano; Balachandar, S.

    2016-11-01

    In this work we address the role of turbulence on entrainment at a sediment concentration interface. This process can be conceived as the entrainment of sediment-free fluid into the bottom sediment-laden flow, or alternatively, as the entrainment of sediment into the top sediment-free flow. We have performed direct numerical simulations for fixed Reynolds and Schmidt numbers while varying the values of Richardson number and particle settling velocity. The analysis performed shows that the ability of the flow to pick up a given sediment size decreases with the distance from the bottom, and thus only fine enough sediment particles are entrained across the sediment concentration interface. For these cases, the concentration profiles evolve to a final steady state in good agreement with the well-known Rouse profile. The approach towards the Rouse profile happens through a transient self-similar state. Detailed analysis of the three dimensional structure of the sediment concentration interface shows the mechanisms by which sediment particles are lifted up by tongues of sediment-laden fluid with positive correlation between vertical velocity and sediment concentration. Finally, the mixing ability of the flow is addressed by monitoring the center of mass of the sediment-laden layer. With the support of ExxonMobil, NSF, ANPCyT, CONICET.

  6. Quantifying downstream impacts of impoundment on flow regime and channel planform, lower Trinity River, Texas

    Science.gov (United States)

    Wellmeyer, Jessica L.; Slattery, Michael C.; Phillips, Jonathan D.

    2005-07-01

    As human population worldwide has grown, so has interest in harnessing and manipulating the flow of water for the benefit of humans. The Trinity River of eastern Texas is one such watershed greatly impacted by engineering and urbanization. Draining the Dallas-Fort Worth metroplex, just under 30 reservoirs are in operation in the basin, regulating flow while containing public supplies, supporting recreation, and providing flood control. Lake Livingston is the lowest, as well as largest, reservoir in the basin, a mere 95 km above the Trinity's outlet near Galveston Bay. This study seeks to describe and quantify channel activity and flow regime, identifying effects of the 1968 closure of Livingston dam. Using historic daily and peak discharge data from USGS gauging stations, flow duration curves are constructed, identifying pre- and post-dam flow conditions. A digital historic photo archive was also constructed using six sets of aerial photographs spanning from 1938 to 1995, and three measures of channel activity applied using a GIS. Results show no changes in high flow conditions following impoundment, while low flows are elevated. However, the entire post-dam period is characterized by significantly higher rainfall, which may be obscuring the full impact of flow regulation. Channel activity rates do not indicate a more stabilized planform following dam closure; rather they suggest that the Trinity River is adjusting itself to the stress of Livingston dam in a slow, gradual process that may not be apparent in a modern time scale.

  7. Improved efficient routing strategy on two-layer complex networks

    Science.gov (United States)

    Ma, Jinlong; Han, Weizhan; Guo, Qing; Zhang, Shuai; Wang, Junfang; Wang, Zhihao

    2016-10-01

    The traffic dynamics of multi-layer networks has become a hot research topic since many networks are comprised of two or more layers of subnetworks. Due to its low traffic capacity, the traditional shortest path routing (SPR) protocol is susceptible to congestion on two-layer complex networks. In this paper, we propose an efficient routing strategy named improved global awareness routing (IGAR) strategy which is based on the betweenness centrality of nodes in the two layers. With the proposed strategy, the routing paths can bypass hub nodes of both layers to enhance the transport efficiency. Simulation results show that the IGAR strategy can bring much better traffic capacity than the SPR and the global awareness routing (GAR) strategies. Because of the significantly improved traffic performance, this study is helpful to alleviate congestion of the two-layer complex networks.

  8. Cooling of a channeled lava flow with non-Newtonian rheology: crust formation and surface radiance

    Directory of Open Access Journals (Sweden)

    Stefano Santini

    2011-12-01

    Full Text Available We present here the results from dynamical and thermal models that describe a channeled lava flow as it cools by radiation. In particular, the effects of power-law rheology and of the presence of bends in the flow are considered, as well as the formation of surface crust and lava tubes. On the basis of the thermal models, we analyze the assumptions implicit in the currently used formulae for evaluation of lava flow rates from satellite thermal imagery. Assuming a steady flow down an inclined rectangular channel, we solve numerically the equation of motion by the finite-volume method and a classical iterative solution. Our results show that the use of power-law rheology results in relevant differences in the average velocity and volume flow rate with respect to Newtonian rheology. Crust formation is strongly influenced by power-law rheology; in particular, the growth rate and the velocity profile inside the channel are strongly modified. In addition, channel curvature affects the flow dynamics and surface morphology. The size and shape of surface solid plates are controlled by competition between the shear stress and the crust yield strength: the degree of crust cover of the channel is studied as a function of the curvature. Simple formulae are currently used to relate the lava flow rate to the energy radiated by the lava flow as inferred from satellite thermal imagery. Such formulae are based on a specific model, and consequently, their validity is subject to the model assumptions. An analysis of these assumptions reveals that the current use of such formulae is not consistent with the model.

  9. A Computer Method of Steady Non-Uniform Gradually Varied Flow in Open Channel & in River

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Most of water flow in open channel or in river belongs to steady non-uniform flow. The surface profiles are caused by changes of channel section. It is very important to analyze its computation. According to the regularity of its surface change, the suitable sectional dimensions of open channel or flood control work can be designed. Commonly, computation of non-uniform flow adopts the traditional methods by hand or by graphic method. The speed and precision of computation are restricted. In this paper, a software to calculate water surface profile is introduced. The software is put forward by using C++ .By means of interpolate method and dialogue between user and computer, we can calculate the water surface profile much more quickly and exactly.

  10. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    2016-01-01

    understanding of the gas-liquid flow in both the porous media and the channel is necessary for insuring proper oxygen, water and heat management of the electrolysis cell. In this work, the patterns of vertical upward gas-liquid flow in a 5×1×94 mm micro-channel are experimentally analysed. A sheet of titanium...... and are fairly expensive. One means of increasing the hydrogen yield to cost ratio of such systems, is to increase the operating current density. However, at high current densities, management of heat and mass transfer in the anode current collector and channel becomes crucial. This entails that further...... felt is used as a permeable wall for permeation of air through a column of water similar to the phenomenon encountered at the anode. The transparent setup is operated ex-situ and the gas-liquid flow regimes are identified using a camera....

  11. Convective Heat Transfer Augmentation by Flexible fins in Laminar Channel Pulsating flow

    CERN Document Server

    Joshi, Rakshitha U; Bhardwaj, Rajneesh

    2015-01-01

    Fluid-structure interaction (FSI) of thin flexible fins coupled with convective heat transfer has applications in energy harvesting and in understanding functioning of several biological systems. We numerically investigate FSI of the thin flexible fins involving large-scale flow-induced deformation as a potential heat transfer enhancement technique. An in-house, strongly-coupled fluid-structure interaction (FSI) solver is employed in which flow and structure solvers are based on sharp-interface immersed boundary and finite element method, respectively. We consider twin flexible fins in a heated channel with laminar pulsating cross flow. The vortex ring past the fin sweep higher sources of vorticity generated on the channel walls out into the downstream - promoting the mixing of the fluid. The moving fin assists in convective mixing, augmenting convection in bulk and at the walls; and thereby reducing thermal boundary layer thickness and improving heat transfer at the channel walls. The thermal augmentation is...

  12. Experimental Study of Flow Field at the Outlet of Dual-Channel Burner

    Institute of Scientific and Technical Information of China (English)

    Yao Bin; Wang Hanfeng; Zeng Hancai; Jiao Qingfeng

    2005-01-01

    This paper presents an experimental study result of flow field of a dual-channel burner. In order to solve the ubiquitous problem of bad rigidity of jets in dual-channel burners, wedges with different arrangements and structural parameters were added to different positions at the outlet of the burners. Laser Particle Image Velocimetry (PIV) was used in this study to measure the flow field to investigate influence of the wedges on flow field of the dual-channel burner. Experimental study shows that fixing wedges at both right and left sides of the burner's outlet can increase the intensity of recirculation without changing the size of the recirculation zone and enhance the rigidity of jets via increasing speed of the two primary air jets at the outlet.

  13. Numerical prediction of fiber motion in a branching channel flow of fiber suspensions

    Institute of Scientific and Technical Information of China (English)

    Jianzhong Lin; Shanliang Zhang; James A. Olson; Ron Marshall

    2005-01-01

    Fiber orientation and dispersion in the dilute fibersuspension that flows through a T-shaped branching channel are simulated numerically based on the slender-body theory. The simulated results are consistent qualitatively with the experimental data available in the literature. The results show that the spatial distribution of fibers is dependent on the fiber aspect ratio, but has no relation with the volume fraction of fiber. The content ratio of fibers near the upper wall increases monotonically with an increasing Re number, and the situation is reverse for the region near the bottom wall.The orientation of fibers depends on Re number, however, the function of fiber volume fraction and aspect ratio is negligible. The fibers near the wall and in the central region of the channel align along the flow direction at all times, but the fibers in the other parts of the channel tend to align along the flow direction only in the downstream region.

  14. Two dimensional analytical solution for a partially vegetated compound channel flow

    Institute of Scientific and Technical Information of China (English)

    HUAI Wen-xin; XU Zhi-gang; YANG Zhong-hua; ZENG Yu-hong

    2008-01-01

    The theory of an eddy viscosity model is applied to the study of the flow in a compound channel which is partially vegetated. The governing equation is constituted by analyzing the longitudinal forces acting on the unit volume where the effect of the vegetation on the flow is considered as a drag force item. The compound channel is di- vided into 3 sub-regions in the transverse direction, and the coefficients in every region's differential equations were solved simultaneously. Thus, the analytical solution of the transverse distribution of the depth-averaged velocity for uniform flow in a partially vege- tated compound channel was obtained. The results can be used to predict the transverse distribution of bed shear stress, which has an important effect on the transportation of sediment. By comparing the analytical results with the measured data, the analytical so- lution in this paper is shown to be sufficiently accurate to predict most hydraulic features for engineering design purposes.

  15. Onsager's Cross Coupling Effects in Gas Flows Confined to Micro-channels

    CERN Document Server

    Wang, Ruijie; Xu, Kun; Qian, Tiezheng

    2016-01-01

    In rarefied gases, mass and heat transport processes interfere with each other, leading to the mechano-caloric effect and thermo-osmotic effect, which are of interest to both theoretical study and practical applications. We employ the unified gas-kinetic scheme to investigate these cross coupling effects in gas flows in micro-channels. Our numerical simulations cover channels of planar surfaces and also channels of ratchet surfaces, with Onsager's reciprocal relation verified for both cases. For channels of planar surfaces, simulations are performed in a wide range of Knudsen number and our numerical results show good agreement with the literature results. For channels of ratchet surfaces, simulations are performed for both the slip and transition regimes and our numerical results not only confirm the theoretical prediction [Phys. Rev. Lett. 107, 164502 (2011)] for Knudsen number in the slip regime but also show that the off-diagonal kinetic coefficients for cross coupling effects are maximized at a Knudsen n...

  16. Suppression of nano-channel ion conductance by electro-osmotic flow

    CERN Document Server

    Liu, Yang; Zhu, Xin; Ran, Qiushi; Dutton, Robert

    2016-01-01

    This theoretical study concerns a basic understanding of ion transport in nano-channels that have weakly overlapping electric double layers. Numerical simulations reveal that the electro-osmotic flow (EOF) interplays with the concentration-polarization process and drives the ion depletion zone into the channels, thus significantly suppressing the channel conductance. The conductance may be restored at high electrical biases in the presence of recirculating vortices within the channels. Further analysis are conducted based on a 1-D, long channel model, and analytic expressions derived to quantitatively account for the EOF-driven ion depletion process. A limiting-conductance behavior is revealed as intrinsically different from the classical limiting-current behavior.

  17. Computational modeling of flow and combustion in a couette channel simulating microgravity

    Science.gov (United States)

    Hamdan, Ghaleb

    Theoretically a Couette flow in a narrow channel can be utilized to simulate microgravity conditions experienced by a surface flame due to the linear velocity profile. Hence, the Couette channel is a potential apparatus for the study of flame spread in an environment that recreated microgravity flow conditions. Simulated microgravity conditions were achieved by limiting the vertical extent over and under the flame to suppress buoyancy. This numerical study was done for a 2-D channel using Fire Dynamics Simulator (FDS). This thesis is divided into two sections; the first is the study of Couette flow with a non-reacting cold flow in a finite length channel, a subject with surprisingly little past research, despite the ubiquity of "infinite" Couette channels in text books. The channel was placed in a room to allow for a better representation of a realistic channel and allow the flow and pressure field to develop without forcing them at the inlet and outlet. The plate's velocities, channel's gap and the channel's length were varied and the results of the u-velocity profile, w-velocity profile and pressure were investigated. The entrance length relationship with Reynolds number for a finite Couette Channel was determined for the first time - as far as the author knows - in order to ensure the flame occurs in a fully developed flow. In contrast to an infinite channel, the u-velocity was found to be nonlinear due to an adverse pressure differential created along the channel attributed to the pull force along the entrance of the channel created by the top plate a well as the pressure differential created by the flow exiting the channel. The linearity constant was derived for the one moving plate case. The domain consisted of a rectangular region with the top plate moving and the bottom plate fixed except for a few cases in which the bottom plate also moved and were compared with only one moving plate. The second section describes the combustion of a thin cellulose sample

  18. Tree-ring records of variation in flow and channel geometry

    Science.gov (United States)

    Merigliano, M.F.; Friedman, J. M.; Scott, M. L.

    2013-01-01

    We review the use of tree rings to date flood disturbance, channel change, and sediment deposition, with an emphasis on rivers in semi-arid landscapes in the western United States. As watershed area decreases and aridity increases, large floods have a more pronounced and sustained effect on channel width and location, resulting in forest area-age distributions that are farther from a steady-state exponential relation. Furthermore, forests along three major snowmelt rivers in the northern Rocky Mountains, USA, have smaller than expected areas of young trees, suggesting that high flows and channel migration have decreased since the late 1800s.

  19. Elasto-inertial particle focusing under the viscoelastic flow of DNA solution in a square channel.

    Science.gov (United States)

    Kim, Bookun; Kim, Ju Min

    2016-03-01

    Particle focusing is an essential step in a wide range of applications such as cell counting and sorting. Recently, viscoelastic particle focusing, which exploits the spatially non-uniform viscoelastic properties of a polymer solution under Poiseuille flow, has attracted much attention because the particles are focused along the channel centerline without any external force. Lateral particle migration in polymer solutions in square channels has been studied due to its practical importance in lab-on-a-chip applications. However, there are still many questions about how the rheological properties of the medium alter the equilibrium particle positions and about the flow rate ranges for particle focusing. In this study, we investigated lateral particle migration in a viscoelastic flow of DNA solution in a square microchannel. The elastic property is relevant due to the long relaxation time of a DNA molecule, even when the DNA concentration is extremely low. Further, the shear viscosity of the solution is essentially constant irrespective of shear rate. Our current results demonstrate that the particles migrate toward the channel centerline and the four corners of a square channel in the dilute DNA solution when the inertia is negligible (elasticity-dominant flow). As the flow rate increases, the multiple equilibrium particle positions are reduced to a single file along the channel centerline, due to the elasto-inertial particle focusing mechanism. The current results support that elasto-inertial particle focusing mechanism is a universal phenomenon in a viscoelastic fluid with constant shear viscosity (Boger fluid). Also, the effective flow rate ranges for three-dimensional particle focusing in the DNA solution were significantly higher and wider than those for the previous synthetic polymer solution case, which facilitates high throughput analysis of particulate systems. In addition, we demonstrated that the DNA solution can be applied to focus a wide range of

  20. LARGE EDDY SIMULATION OF THERMALLY-STRATIFIED TURBULENT CHANNEL FLOW WITH TEMPERATURE OSCILLATION ON THE BOTTOM WALL

    Institute of Scientific and Technical Information of China (English)

    DONG Yu-hong; LU Xi-yun; ZHUANG Li-xian

    2004-01-01

    Thermally-stratified shear turbulent channel flow with temperature oscillation on the bottom wall of the channel was investigated with the Large Eddy Simulation (LES) approach coupled with dynamic Sub-Grid-Scale (SGS) models. The effect of temperature oscillation on the turbulent channel flow behavior was examined. The phase-averaged velocities and temperature, and flow structures at different Richardson numbers and periods of the oscillation was analyzed.

  1. Ferrofluid magnetoviscous control of wall flow channeling in porous media

    Institute of Scientific and Technical Information of China (English)

    Faal; Larachi

    2007-01-01

    [1]Bacri,J.C.,Perzynski,R.,Shliomis,M.I.,& Burde,G.I.(1995).Negative viscosity effect in a magnetic fluid.Physical Review Letters,75(11),2128-2131.[2]Felderhof,B.U.(2001).Flow of a ferrofluid down a tube in an oscillating magnetic field.Physical Review E,64(021508),1-7.[3]Khuzir,P.,Bossis,G.,Bashtovoi,V.,& Volkova,O.(2003).Flow of magnetorheological fluid through porous media.European Journal of Mechanics B/Fluids,22,331-343.[4]McTague,J.P.(1969).Magnetoviscosity of magnetic colloids.Journal of Chemical Physics,51,133-136.[5]Odenbach,S.(2003).Magnetic fluids-Suspensions of magnetic dipoles and their magnetic control.Journal of Physics:Condensed Matter,15,S 1497-S1508.[6]Rinaldi,C.,& Zahn,M.(2002).Effects of spin viscosity on ferrofluid flow profiles in alternating and rotating magnetic fields.Physics of Fluids,14,2847-2870.[7]Rosensweig,R.E.(1997).Ferrohydrodynamics.New York:Dover Publications.[8]Schumacher,K.R.,Sellien,I.,Knoke,G.S.,Cadet,T.,& Finlayson,B.A.(2003).Experiment and simulation of laminar and turbulent ferrofluid pipe flow in an oscillating magnetic field.Physical Review E,67(026308),1-11.[9]Shliomis,M.I.(1972).Effective viscosity of magnetic suspensions.Soviet Physics JETP,34,1291-1294.[10]Whitaker,S.(1999).Theory and applications of transport in porous media.Dordrecht:Kluwer Academic Press.[11]Zeuner,A.,Richter,R.,& Rehberg,I.(1998).Experiments on negative and positive magnetoviscosity in an alternating magnetic field.Physical Review E,58,62876293.

  2. Build up An Operational Flood Simulation from Existing 1D Channel Flow Works

    Science.gov (United States)

    Chang, Che-Hao; Hsu, Chih-Tsung; Wu, Shiang-Jen; Lien, Ho-Cheng; Shen, Jhih-Cyuan; Chung, Ming-Ko

    2016-04-01

    Several 2D flood simulations will be developed for urban area in recent years in Taiwan. Original ideas focus on the static flood maps produced by the 2D flood simulation with respect to design events, which could be useful no matter for planning or disaster awareness. However, an extra bonus is expected to see if we can reuse the 2D flood simulation framework for operational use or not. Such a project goal inspire us to setup a standard operation procedure before any progress from existing 1D channel flow works. 3 key issues are taken into account in the SOP: 1. High Resolution Terrain: A 1m resolution digital terrain model (DTM) is considered as a reference. The Channels and structures should be setup in 1D channel flow works if we can identify under such high resolution. One should examine the existing 1D channel flow works consistent with the DTM or not. 2. Meteo Stations Referenced: Real time precipitation would be send to referenced location in RR models during an operational forecast. Existing 1D channels flow works are usually specifically for design events which are not necessarily equipped with such references. 3. Time Consuming: A full scale 2D flood simulation needs a lot of computation resources. A solution should be derived within practical time limits. Under the above consideration, some impacts and procedures will be analyzed and developed to setup the SOP for further model modification.

  3. Numerical Investigation of the Water Droplet Transport in a PEM Fuel Cell with Serpentine Flow Channel

    Directory of Open Access Journals (Sweden)

    Bittagopal Mondal

    2016-01-01

    Full Text Available The serpentine flow channel can be considered as one of the most common and practical channel layouts for a polymer electrolyte membrane fuel cell (PEMFC since it ensures an effective and efficient removal of water produced in a cell with acceptable parasitic load. Water management is one of the key issues to improve the cell performance since at low operating temperatures in PEMFC, water vapor condensation starts easily and accumulates the liquid water droplet within the flow channels, thus affecting the chemical reactions and reducing the fuel cell performance. In this article, a comprehensive three dimensional numerical simulation is carried out to understand the water droplet mobility in a serpentine gas flow channel for a wide range of surface properties, inlet air velocities, droplet positions (center or off-center, bottom or top and droplet sizes by deploying a finite volume based methodology. The liquid-gas interface is tracked following the volume-of-fluid (VOF method. The droplet transport is found to be greatly influenced by the surface wettability properties, inlet velocities, number of droplets emerged and initial droplet positions. Super hydrophobic surface property is not always preferable for designing the gas flow channels. It depends upon the inlet velocity conditions, droplet positions, number of droplets and surface properties.

  4. Analysis and modelling of non-steady flow in pipe and channel networks

    CERN Document Server

    Jovic, Vinko

    2013-01-01

    Analysis and Modelling of Non-Steady Flow in Pipe and Channel Networks deals with flows in pipes and channel networks from the standpoints of hydraulics and modelling techniques and methods. These engineering problems occur in the course of the design and construction of hydroenergy plants, water-supply and other systems. In this book, the author presents his experience in solving these problems from the early 1970s to the present day. During this period new methods of solving hydraulic problems have evolved, due to the development of computers and numerical methods. This book

  5. Open channel flows of magnetic fluid induced by traveling magnetic field

    Science.gov (United States)

    Kuwahara, Takuya; Okubo, Masaaki; Yamane, Ryuichiro

    A theoretical analysis is made on laminar open channel flows of magnetic fluid induced by a non uniform traveling magnetic field which is applied with a stator of a single-sided linear induction motor. The induced flows are mainly in the direction opposite to the traveling direction of the magnetic field and in proportion to the phase velocity of the magnetic field. The velocity profiles are greatly affected by dimensionless wave number of the magnetic field. Near the bottom of the channel, the theoretical velocity distributions agree well with experimental ones which are measured with a laser optical fiber velocity sensor. However, the experimental velocity distributions become larger near the free surface.

  6. Heat transfer enhancement in oscillatory flow in channel with periodically upper and lower walls mounted obstacles

    Energy Technology Data Exchange (ETDEWEB)

    Korichi, Abdelkader [Centre Universitaire de Medea, Quartier Ain D' heb, Medea 26000 (Algeria)], E-mail: a_korichi@hotmail.com; Oufer, Lounes [Universite des Sciences et de la Technologie Houari Boumediene, Faculte de Genie Mecanique et de Genie des Procedes, Departement de Genie Chimique et de Cryogenie, Laboratoire des Phenomenes de Transfert, BP 32, El-Alia, Bab-Ezzouar, Alger (Algeria)], E-mail: lounesoufer@yahoo.com

    2007-10-15

    A numerical investigation is conducted in a rectangular channel with heated obstacles mounted alternatively on the upper and lower walls. Time-dependent two dimensional laminar flow with constant thermophysical properties is assumed for air at three values of the Reynolds number (50, 500 and 1000). A detailed analysis is carried out to investigate flow pattern and Nusselt number. Streamwise periodic contraction-expansion of the cross-section induces bifurcation from steady to unsteady flow. In the unsteady state, a self-sustained periodic oscillatory flow occurs. It is also found that a travelling wave generated by the vortex shedding contributes mainly to heat transfer enhancement.

  7. Experimental and numerical investigation of the flow in rotating diverging channels

    Science.gov (United States)

    van den Braembussche, R. A.; Prinsier, J.; di Sante, A.

    2010-04-01

    This paper reports on an experimental and numerical study at low Reynolds number in order to evaluate the influence of the Coriolis forces on the flow in radial rotating channels. Operating conditions correspond to the flow in radial impellers for micro gasturbine applications. A comparison of detailed flow measurements with CFD results indicates that Navier Stokes solvers with standard k-ω and SST turbulence models predict the flow surprisingly well and that no extra corrections for Coriolis forces are required at these operating conditions

  8. The Influence of Electrode and Channel Configurations on Flow Battery Performance

    Energy Technology Data Exchange (ETDEWEB)

    Darling, RM; Perry, ML

    2014-05-21

    Flow batteries with flow-through porous electrodes are compared to cells with porous electrodes adjacent to either parallel or interdigitated channels. Resistances and pressure drops are measured for different configurations to augment the electrochemical data. Cell tests are done with an electrolyte containing VO2+ and VO2+ in sulfuric acid that is circulated through both anode and cathode from a single reservoir. Performance is found to depend sensitively on the combination of electrode and flow field. Theoretical explanations for this dependence are provided. Scale-up of flow through and interdigitated designs to large active areas is also discussed. (C) 2014 The Electrochemical Society. All rights reserved.

  9. Two-layer sheet of gelatin: A new topical hemostatic agent.

    Science.gov (United States)

    Takagi, Toshitaka; Tsujimoto, Hiroyuki; Torii, Hiroko; Ozamoto, Yuki; Hagiwara, Akeo

    2016-11-02

    Uncontrolled surgical bleeding is associated with increased morbidity, mortality, and hospital cost. Topical hemostatic agents available today have problems controlling hemostatic effects; furthermore, their handling is difficult and they are unsafe. We devised a new hemostatic agent comprising gelatin sponge and film designed to be applied to the bleeding site, thereby creating a topical hemostatic agent made of gelatin alone. The gelatin was prepared by alkali treatment to eliminate viral activity. Hemostatic effects, surgical handling, and tissue reactions of the materials, namely a two-layer sheet of gelatin, TachoSil, and gelatin sponge, were evaluated using 21 dogs' spleens. The two-layer gelatin sheet and gelatin sponge exhibited superior hemostatic effects (100% hemostasis completed) compared with TachoSil (0-17% hemostasis). The gelatin matrix immediately absorbed blood flowing from wounds and activated the autologous components in the absorbed blood that promoted coagulation at the bleeding site. The two-layer gelatin sheet had the best surgical handling among the evaluated materials. Materials made of gelatin were associated with fewer inflammatory reactions compared with materials of TachoSil. The two-layer sheet of gelatin is a useful topical agent because of its superior hemostatic effects and usability, and is associated with a lower risk of transmitting diseases and inflammatory reactions. Copyright © 2016. Published by Elsevier Taiwan.

  10. The physics of stripe patterns in turbulent channel flow determined by DNS results

    CERN Document Server

    Kiš, P; Herwig, H

    2015-01-01

    The turbulent flow in an infinitely extended plane channel is analysed by solving the Navier-Stokes equations with a DNS approach. Solutions are obtained in a numerical solution domain of finite size in the streamwise as well as in the lateral direction setting periodic boundary conditions in both directions. Their impact on large scale structures in the turbulent flow field is analysed carefully in order to avoid their suppression. When this is done appropriately well known stripe patterns in these flows can be observed and analysed especially with respect to their relative motion compared to the mean flow velocity. Various details of this stripe pattern dominated velocity field are shown. Also global parameters like the friction factor in the flow field and the Nusselt number in the temperature field are determined based on the statistics of the flow and temperature data in a very large time period that guarantees fully developed turbulent flow and heat transfer.

  11. Channeling of Branched Flow in Weakly Scattering Anisotropic Media

    Science.gov (United States)

    Degueldre, Henri; Metzger, Jakob J.; Schultheis, Erik; Fleischmann, Ragnar

    2017-01-01

    When waves propagate through weakly scattering but correlated, disordered environments they are randomly focused into pronounced branchlike structures, a phenomenon referred to as branched flow, which has been studied in a wide range of isotropic random media. In many natural environments, however, the fluctuations of the random medium typically show pronounced anisotropies. A prominent example is the focusing of tsunami waves by the anisotropic structure of the ocean floor topography. We study the influence of anisotropy on such natural focusing events and find a strong and nonintuitive dependence on the propagation angle which we explain by semiclassical theory.

  12. Stability of non-parallel flow in a channel

    Directory of Open Access Journals (Sweden)

    Philip G. Drazin

    1991-05-01

    Full Text Available This is a review of several generalizations of Hiemenz's classic solution for steady two-dimensional flow of a uniform incompressible viscous fluid near a stagnation point on a bluff body. These generalizations are diverse exact solutions, steady and unsteady, two- and three-dimensional, of the Navier-Stokes equations. The solutions exhibit many types of instability and bifurcation. There are turning points, trans critical bifurcations, pitchfork bifurcations, Hopf bifurcations and Takens-Bogdanov bifurcations. The solutions also take the period-doubling and Ruelle-Takens routes to chaos.

  13. Linear waves in two-layer fluids over periodic bottoms

    NARCIS (Netherlands)

    Yu, J.; Maas, L.R.M.

    2016-01-01

    A new, exact Floquet theory is presented for linear waves in two-layer fluidsover a periodic bottom of arbitrary shape and amplitude. A method of conformaltransformation is adapted. The solutions are given, in essentially analytical form, forthe dispersion relation between wave frequency and general

  14. Linear waves in two-layer fluids over periodic bottoms

    NARCIS (Netherlands)

    Yu, Jie; Maas, L.R.M.

    2016-01-01

    A new, exact Floquet theory is presented for linear waves in two-layer fluids over a periodic bottom of arbitrary shape and amplitude. A method of conformal transformation is adapted. The solutions are given, in essentially analytical form, for the dispersion relation between wave frequency and gene

  15. Water droplet evaporation and dynamics in a mini-channel under action of the gas flow

    Science.gov (United States)

    Isachenko, E. A.; Orlik, E. V.; Bykovskaya, E. F.

    2016-10-01

    An experimental setup was developed to study the vaporization and dynamics of liquid droplets, blown by the gas flow in a mini-channel. The shadow method was the main method of measurement; a drop was also observed from the top. A series of experiments was carried out with single water drops with volumes varying from 60 to 150 gl in the channel of 6 mm height on the polished stainless steel substrate. The experiments have resulted in the dependences of evaporation rate in the temperature range of the substrate surface from 25 to 70°C and Reynolds numbers of the gas flow from 0 to 2500. The advancing and receding contact angles were measured depending on the Re number of the gas flow. The gas flow rate at which the droplet motion over the substrate starts was determined depending on the surface temperature at different drop volumes.

  16. Oscillations in a flexible channel flow of a generalized Newtonian fluid

    CERN Document Server

    Goswami, Prakash; Chakraborty, Suman

    2016-01-01

    We study the flow of a generalized Newtonian fluid, characterized by a power-law model, through a channel consisting of a wall with a flexible membrane under longitudinal tension. It is assumed that at steady state the flow through the channel admits a constant flux unidirectional flow profile, while for the unsteady case, we employ the long wave approximation and use a set of reduced equations to describe the variation of the shape of the membrane (assumed to be massless and elastic) and the variation of the fluid-flux. By means of asymptotic expansion, multiscale analysis and full numerical solutions of the pertinent governing equations, we show that depending upon the Reynolds number and the membrane stress, the flow behaviour for a shear-thinning, shear-thickening and Newtonian fluid may be markedly different, being oscillatory for one while chaotic for the other. The results presented herein hold practical relevance for several biologically relevant processes involving transport of rheologically complex ...

  17. Direct numerical simulation of interfacial wave generation in turbulent gas-liquid flows in horizontal channels

    Science.gov (United States)

    Campbell, Bryce; Hendrickson, Kelli; Liu, Yuming; Subramani, Hariprasad

    2014-11-01

    For gas-liquid flows through pipes and channels, a flow regime (referred to as slug flow) may occur when waves form at the interface of a stratified flow and grow until they bridge the pipe diameter trapping large elongated gas bubbles within the liquid. Slug formation is often accompanied by strong nonlinear wave-wave interactions, wave breaking, and gas entrainment. This work numerically investigates the fully nonlinear interfacial evolution of a two-phase density/viscosity stratified flow through a horizontal channel. A Navier-Stokes flow solver coupled with a conservative volume-of-fluid algorithm is use to carry out high resolution three-dimensional simulations of a turbulent gas flowing over laminar (or turbulent) liquid layers. The analysis of such flows over a range of gas and liquid Reynolds numbers permits the characterization of the interfacial stresses and turbulent flow statistics allowing for the development of physics-based models that approximate the coupled interfacial-turbulent interactions and supplement the heuristic models built into existing industrial slug simulators.

  18. Flow study in channel with the use computational fluid dynamics (CFD)

    Science.gov (United States)

    Oliveira, W. D.; Pires, M. S. G.; Canno, L. M.; Ribeiro, L. C. L. J.

    2016-08-01

    The Computational Fluid Dynamics (CFD) is a tool used to numerically simulate fluid flow behavior, and all the laws that govern the study of fluids is the mass transfer and energy, chemical reactions, hydraulic behaviors, among others applications. This tool mathematical equation solves the problem in a specific manner over a region of interest, with predetermined boundary conditions on this region. This work is to study the flow channel through the CFD technique.

  19. A VLSI Design Flow for Secure Side-Channel Attack Resistant ICs

    OpenAIRE

    Tiri, Kris; Verbauwhede, Ingrid

    2007-01-01

    Submitted on behalf of EDAA (http://www.edaa.com/); International audience; This paper presents a digital VLSI design flow to create secure, side-channel attack (SCA) resistant integrated circuits. The design flow starts from a normal design in a hardware description language such as VHDL or Verilog and provides a direct path to a SCA resistant layout. Instead of a full custom layout or an iterative design process with extensive simulations, a few key modifications are incorporated in a regul...

  20. On the Flow of a Paramagnetic Fluid in a Differentially Heated Channel

    Directory of Open Access Journals (Sweden)

    H. Sadat

    2011-01-01

    Full Text Available In the present study, we investigate the flow of a paramagnetic fluid in a two dimensional heated channel when an external magnetic gradient is imposed. In the fully developed regime, an analytical solution shows that a flow reversal may occur; the condition of this is given n terms of the Reynolds number. Numerical simulations are then carried out for more general situations. It is shown that the analytical model gives good qualitative predictions.

  1. Effects of T-type Channel on Natural Convection Flows in Airflow-Path of Concrete Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Gyeong Uk; Kim, Hyoung Jin; Cho, Chun Hyung [KORAD, Daejeon (Korea, Republic of)

    2016-05-15

    The natural convection flows occurring in airflow-path are not simple due to complex flow-path configurations such as horizontal ducts, bent tube and annular flow-path. In addition, 16 T type channels acting as the shroud are attached vertically and 16 channel supporting the canister are attached horizontally on the inner surface of over-pack. The existence and nonexistence of T type channels have influences on the flow fields in airflow- path. The concrete storage cask has to satisfy the requirements to secure the thermal integrity under the normal, off-normal, and accident conditions. The present work is aiming at investigating the effects of T type channels on the flows in airflow-path under the normal conditions using the FLUENT 16.1 code. In order to focus on the flows in airflow-path, fuel regions in the canister are regarded as a single cylinder with heat sources and other components are fully modeled. This study investigated the flow fields in airflow-path of concrete storage cask, numerically. It was found that excepting for the fuel regions, maximum temperatures on other components were evaluated below allowable values. The location of maximum velocities depended on support channels, T type channels and flow area. The flows through air inlets developed along annular flow- path with forming the hot plumes. According to the existence and nonexistence of T type channel, the plume behavior showed the different flow patterns.

  2. Debris-flow runout predictions based on the average channel slope (ACS)

    Science.gov (United States)

    Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.

    2008-01-01

    Prediction of the runout distance of a debris flow is an important element in the delineation of potentially hazardous areas on alluvial fans and for the siting of mitigation structures. Existing runout estimation methods rely on input parameters that are often difficult to estimate, including volume, velocity, and frictional factors. In order to provide a simple method for preliminary estimates of debris-flow runout distances, we developed a model that provides runout predictions based on the average channel slope (ACS model) for non-volcanic debris flows that emanate from confined channels and deposit on well-defined alluvial fans. This model was developed from 20 debris-flow events in the western United States and British Columbia. Based on a runout estimation method developed for snow avalanches, this model predicts debris-flow runout as an angle of reach from a fixed point in the drainage channel to the end of the runout zone. The best fixed point was found to be the mid-point elevation of the drainage channel, measured from the apex of the alluvial fan to the top of the drainage basin. Predicted runout lengths were more consistent than those obtained from existing angle-of-reach estimation methods. Results of the model compared well with those of laboratory flume tests performed using the same range of channel slopes. The robustness of this model was tested by applying it to three debris-flow events not used in its development: predicted runout ranged from 82 to 131% of the actual runout for these three events. Prediction interval multipliers were also developed so that the user may calculate predicted runout within specified confidence limits. ?? 2008 Elsevier B.V. All rights reserved.

  3. Growth of Bubble layer and Onset of Flow Instability in a vertical Narrow rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juhyung; Chang, Soon Heung; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-05-15

    Even numerous studies have been constantly conducted to date, however the prediction of OFI is still questionable for wide range of conditions especially for low mass flux condition in narrow rectangular channel as reported in the previous works. In addition, the understanding of subcooled flow boiling structures at OFI is not sufficient due to lack of studies with visualization. In this regards, OFI experiment for downward and upward flow boiling in a narrow rectangular channel are newly conducted while visualizing boiling structure. Image processing method is adopted to quantify bubble layer thickness, which is turned out to be important factor to understand the OFI. Experimental studies on OFI in a narrow rectangular channel having gap size of 2.35 mm was conducted not only for downward flow but also upward flow condition. Flow boiling structures are visualized using HSV method and also quantized bubble boundary layers are obtained by using image processing method. Based on observation and analysis, the merging of facing vapor layers on opposite boiling surfaces is the key phenomena triggering OFI for both upward and downward flow.

  4. Method for Flow Measurement in Microfluidic Channels Based on Electrical Impedance Spectroscopy

    CERN Document Server

    Arjmandi, Nima; Van Roy, Willem; Lagae, Liesbet; Borghs, Gustaaf; 10.1007/s10404-011-0843-0

    2012-01-01

    We have developed and characterized two novel micro flow sensors based on measuring the electrical impedance of the interface between the flowing liquid and metallic electrodes embedded on the channel walls. These flow sensors are very simple to fabricate and use, are extremely compact and can easily be integrated into most microfluidic systems. One of these devices is a micropore with two tantalum/platinum electrodes on its edges; the other is a micro channel with two tantalum /platinum electrodes placed perpendicular to the channel on its walls. In both sensors the flow rate is measured via the electrical impedance between the two metallic electrodes, which is the impedance of two metal-liquid junctions in series. The dependency of the metal-liquid junction impedance on the flow rate of the liquid has been studied. The effects of different parameters on the sensor's outputs and its noise behavior are investigated. Design guidelines are extracted and applied to achieve highly sensitive micro flow sensors wit...

  5. Onset of Stationary Flows of a Cohesive Granular Material in a Channel

    Science.gov (United States)

    de Ryck, A.; Louisnard, O.

    The handling of bulk materials and powders in process engineering remains an important issue. To obtain reliable gravitational flows, starting and remaining stationary, the hoppers and transport channels must be designed at a scale appropriate for the friction and cohesive properties of the granular material. To describe such dense flows (the interaction with the surrounding ambient fluid is negligible compared to the weight of the particles and interparticles forces), they can be modelled by continuum mechanics, associated with a constitutive equation taking into account the friction behaviour (Mohr-Coulomb or Druger-Prager plasticity criterion). We use here the rheology proposed by Jop et al. (Nature 441: 727-730, 2006) which combines this with an associated flow rule (co-linearity of the stress and strain tensors) (Jenike, Powder Technol. 50: 229-236, 1987) and a viscous dependency of the coefficient of friction on the strain (Da Cruz et al., Phys. Rev. E 72: 021309, 2005).Using the method of characteristics to describe the flow structure (de Ryck, Granular Matter 10: 361-367, 2008), we deduce the minimal slope to obtain a stationary flow of cohesive granular materials on a finite width channel, whose lateral walls are rough or smooth. We also obtain the depth of the flow (maximal at the centre of the channel). In the case of weak cohesive materials, these results are formulated with simple analytical expressions.

  6. Structure-dependent mobility of a dry aqueous foam flowing along two parallel channels

    CERN Document Server

    Jones, Sian A; Méheust, Yves; Cox, Simon J; Cantat, Isabelle

    2013-01-01

    The velocity of a two-dimensional aqueous foam has been measured as it flows through two parallel channels, at a constant overall volumetric flow rate. The flux distribution between the two channels is studied as a function of the ratio of their widths. A peculiar dependence of the velocity ratio on the width ratio is observed when the foam structure in the narrower channel is either single staircase or bamboo. In particular, discontinuities in the velocity ratios are observed at the transitions between double and single staircase and between single staircase and bamboo. A theoretical model accounting for the viscous dissipation at the solid wall and the capillary pressure across a film pinned at the channel outlet predicts the observed non-monotonic evolution of the velocity ratio as a function of the width ratio. It also predicts quantitatively the intermittent temporal evolution of the velocity in the narrower channel when it is so narrow that film pinning at its outlet repeatedly brings the flow to a near...

  7. Optimization of polymer electrolyte membrane fuel cell flow channels using a genetic algorithm

    Science.gov (United States)

    Catlin, Glenn; Advani, Suresh G.; Prasad, Ajay K.

    The design of the flow channels in PEM fuel cells directly impacts the transport of reactant gases to the electrodes and affects cell performance. This paper presents results from a study to optimize the geometry of the flow channels in a PEM fuel cell. The optimization process implements a genetic algorithm to rapidly converge on the channel geometry that provides the highest net power output from the cell. In addition, this work implements a method for the automatic generation of parameterized channel domains that are evaluated for performance using a commercial computational fluid dynamics package from ANSYS. The software package includes GAMBIT as the solid modeling and meshing software, the solver FLUENT, and a PEMFC Add-on Module capable of modeling the relevant physical and electrochemical mechanisms that describe PEM fuel cell operation. The result of the optimization process is a set of optimal channel geometry values for the single-serpentine channel configuration. The performance of the optimal geometry is contrasted with a sub-optimal one by comparing contour plots of current density, oxygen and hydrogen concentration. In addition, the role of convective bypass in bringing fresh reactant to the catalyst layer is examined in detail. The convergence to the optimal geometry is confirmed by a bracketing study which compares the performance of the best individual to those of its neighbors with adjacent parameter values.

  8. The feasible study of the water flow in the micro channel with the Y-junction and narrow structure for various flow rates

    Directory of Open Access Journals (Sweden)

    Jasikova D.

    2015-01-01

    Full Text Available Here we present the results of measurement in micro-channel with the Y-junction and narrow structure for various flow rates. There was used BSG micro-channel with trapezoidal cross-section. The parameters of the channel are described in the paper. The flow in the micro-channel was invested with micro-PIV technique and various flow rates were set on each inlet. The resulting flow rate in the steady area follows the laminar flow with very low Re 30. Here we are focused on the flow characteristic in the Y-junction and in selected narrow structure. The fluid flow is evaluated with vector and scalar maps and the profile plots that were taken in the point of interest.

  9. Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes

    KAUST Repository

    Bucs, Szilard S.

    2015-09-25

    Micro-scale flow distribution in spacer-filled flow channels of spiral-wound membrane modules was determined with a particle image velocimetry system (PIV), aiming to elucidate the flow behaviour in spacer-filled flow channels. Two-dimensional water velocity fields were measured in a flow cell (representing the feed spacer-filled flow channel of a spiral wound reverse osmosis membrane module without permeate production) at several planes throughout the channel height. At linear flow velocities (volumetric flow rate per cross-section of the flow channel considering the channel porosity, also described as crossflow velocities) used in practice (0.074 and 0.163 m∙s-1) the recorded flow was laminar with only slight unsteadiness in the upper velocity limit. At higher linear flow velocity (0.3 m∙s-1) the flow was observed to be unsteady and with recirculation zones. Measurements made at different locations in the flow cell exhibited very similar flow patterns within all feed spacer mesh elements, thus revealing the same hydrodynamic conditions along the length of the flow channel. Three-dimensional (3-D) computational fluid dynamics simulations were performed using the same geometries and flow parameters as the experiments, based on steady laminar flow assumption. The numerical results were in good agreement (0.85-0.95 Bray-Curtis similarity) with the measured flow fields at linear velocities of 0.074 and 0.163 m∙s-1, thus supporting the use of model-based studies in the optimization of feed spacer geometries and operational conditions of spiral wound membrane systems.

  10. Wave-induced flow and its influence on ridge erosion and channel deposition in Lanshayang channel of radial sand ridges

    Institute of Scientific and Technical Information of China (English)

    陈可峰; 安翔; 陆培东; 张玮; 徐卓

    2014-01-01

    Very limited modeling studies were available of the wave-induced current under the complex hydrodynamic conditions in the South Yellow Sea Radial Sand Ridge area (SYSRSR). Partly it is due to the difficulties in estimating the influence of the wave-induced current in this area. In this study, a coupled 3-D storm-surge-wave model is built. In this model, the time-dependent varying Collins coefficient with the water level method (TCL) are used. The wave-flow environment in the Lanshayang Channel (LSYC) during the “Winnie” typhoon is successfully represented by this model. According to the modelling results, at a high water level (HWL), the wave-induced current similar to the long-shore current will emerge in the shallow area of the ridges, and has two different motion trends correlated with the morphological characteristics of the ridges. The wave-induced current velocity could be as strong as 1 m/s, which is at the same magnitude as the tidal current. This result is verified by the bathymetric changes in the LSYC during the “Matsa” typhoon. Thus, the wave-induced current may be one of the driven force of the ridge erosion and channel deposition in the SYSRSR. These conclusions will help to further study the mechanism of the ridge erosion and channel deposition in the SYSRSR.

  11. ANALYSIS AND MEASUREMENT OF STOKES LAYER FLOWS IN AN OSCILLATING NARROW CHANNEL

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The velocities of boundary layer flows between two parallel oscillating plates separated by small distance, i.e., in so called narrow channel, were theoretically and experimentally studied. The focus was on the laminar case where the Reynolds number is much smaller than the transition value. The theoretical analysis of the Stokes layer in oscillating flow over a narrow channel was made first. Then Laser Doppler Velocimeter (LDV) was employed to measure the Stokes boundary layer above an oscillating flat plate and inside the oscillating narrow channel at various numbers. At the same time, the phase angle difference along the vertical direction in both analysis and experiment were provided. The good agreements are shown between the measured results and the theoretical solution.

  12. The Discuss of the Formula of Flow Loss and Water Using Coefficient on Seepage Proofed Channel

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    On the basis of the analysis about present water resource situation in China ,the disadvantage of the for mula of flow loss and water using coefficient on anti-seep channel which have been applying in channel de sign and water saving irrigation administration will be indicated in the paper. The characteristics of that the loss of conveying water is changeable with the flow changing have been take into account in the new formula. The formula is validated by the example of middle permeable channel (A = 1.90,m = 0.40). The calculate re sult is more precision. Also some formula has been given,they can be referred to the worker of the irrigation administration.

  13. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes.

    Science.gov (United States)

    Huang, Hubiao; Song, Zhigong; Wei, Ning; Shi, Li; Mao, Yiyin; Ying, Yulong; Sun, Luwei; Xu, Zhiping; Peng, Xinsheng

    2013-01-01

    Pressure-driven ultrafiltration membranes are important in separation applications. Advanced filtration membranes with high permeance and enhanced rejection must be developed to meet rising worldwide demand. Here we report nanostrand-channelled graphene oxide ultrafiltration membranes with a network of nanochannels with a narrow size distribution (3-5 nm) and superior separation performance. This permeance offers a 10-fold enhancement without sacrificing the rejection rate compared with that of graphene oxide membranes, and is more than 100 times higher than that of commercial ultrafiltration membranes with similar rejection. The flow enhancement is attributed to the porous structure and significantly reduced channel length. An abnormal pressure-dependent separation behaviour is also reported, where the elastic deformation of nanochannels offers tunable permeation and rejection. The water flow through these hydrophilic graphene oxide nanochannels is identified as viscous. This nanostrand-channelling approach is also extendable to other laminate membranes, providing potential for accelerating separation and water-purification processes.

  14. Peristaltic flow of a reactive viscous fluid through a porous saturated channel and convective cooling conditions

    Science.gov (United States)

    Asghar, S.; Hussain, Q.; Hayat, T.; Alsaedi, A.

    2015-07-01

    This article addresses the heat transfer in a peristaltic flow of a reactive combustible viscous fluid through a porous saturated medium. The flow here is induced because of travelling waves along the channel walls. It is assumed that exothermic chemical reactions take place within the channel under the Arrhenius kinetics and the convective heat exchange with the ambient medium at the surfaces of the channel walls follows Newton's law of cooling. The analysis is carried out in the presence of viscous dissipation and without consumption of the material. The governing equations are formulated by employing the long-wavelength approximation. Closed-form solutions for the stream function, axial velocity, and axial pressure gradient are obtained. It is found that the temperature decreases at high Biot numbers, and the Nusselt number increases with increasing reaction parameter. The Biot number and reaction parameter produce the opposite effects on the Nusselt number.

  15. Numerical investigation of flow through vegetated multi-stage compound cha-nnel

    Institute of Scientific and Technical Information of China (English)

    王雯; 槐文信; 高猛

    2014-01-01

    This paper addresses the problem of the renormalization group k-e turbulence modeling of a vegetated multi-stage compound channel. Results from Micro acoustic Doppler velocimeter (ADV) tests are used with time and spatial averaging (double-averaging method) in the analysis of the flow field and the characterization. Comparisons of the mean velocity, the Reynolds stress, and the turbulent energy distribution show the validity of the computational method. The mean velocity profile sees an obvious de-celeration in the terraces because of vegetation. Secondary flow exists mainly at the junction of the main channel and the vegetation region on the first terrace. The bed shear stress in the main channel is much greater than that in the terraces. The difference of the bed shear stress between two terraces is insignificant, and the presence of vegetation can effectively reduce the bed shear stress.

  16. A stable and convergent scheme for viscoelastic flow in contraction channels

    Energy Technology Data Exchange (ETDEWEB)

    Trebotich, David; Colella, Phillip; Miller, Gregory

    2004-02-15

    We present a new algorithm to simulate unsteady viscoelastic flows in abrupt contraction channels. In our approach we split the viscoelastic terms of the Oldroyd-B constitutive equation using Duhamel's formula and discretize the resulting PDEs using a semi-implicit finite difference method based on a Lax-Wendroff method for hyperbolic terms. In particular, we leave a small residual elastic term in the viscous limit by design to make the hyperbolic piece well-posed. A projection method is used to impose the incompressibility constraint. We are able to compute the full range of elastic flows in an abrupt contraction channel--from the viscous limit to the elastic limit--in a stable and convergent manner for elastic Mach numbers less than one. We demonstrate the method for unsteady Oldroyd-B and Maxwell fluids in planar contraction channels.

  17. Stationary bottom generated velocity fluctuations in one-dimensional open channel flow

    NARCIS (Netherlands)

    Jong, de Bartele

    1993-01-01

    Statistical characteristics are calculated for stationary velocity fluctuations in a one-dimensional open channel flow with a given vertical velocity profile and with one-dimensional irregular bottom waves, characterized by a spectral density function. The calculations are based on an approximate ca

  18. Asymptotic solutions for laminar flow in a channel with uniformly accelerating rigid porous walls

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A theoretical investigation was done for the generalized Berman problem, which arises in steady laminar flow of an incompressible viscous fluid along a channel with accelerating rigid porous walls. The existence of multiple solutions and its conditions were established by taking into account exponentially small terms in matched asymptotic expansion. The correctness of the analytical predictions was verified by numerical results.

  19. Numerical Simulation of Flow and Suspended Sediment Transport in the Distributary Channel Networks

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available Flow and suspended sediment transport in distributary channel networks play an important role in the evolution of deltas and estuaries, as well as the coastal environment. In this study, a 1D flow and suspended sediment transport model is presented to simulate the hydrodynamics and suspended sediment transport in the distributary channel networks. The governing equations for river flow are the Saint-Venant equations and for suspended sediment transport are the nonequilibrium transport equations. The procedure of solving the governing equations is firstly to get the matrix form of the water level and suspended sediment concentration at all connected junctions by utilizing the transformation of the governing equations of the single channel. Secondly, the water level and suspended sediment concentration at all junctions can be obtained by solving these irregular spare matrix equations. Finally, the water level, discharge, and suspended sediment concentration at each river section can be calculated. The presented 1D flow and suspended sediment transport model has been applied to the Pearl River networks and can reproduce water levels, discharges, and suspended sediment concentration with good accuracy, indicating this that model can be used to simulate the hydrodynamics and suspended sediment concentration in the distributary channel networks.

  20. DISCONTINUOUS FLOW OF TURBID DENSITY CURRENTS I. CHANNEL EXPANSION AND CONTRACTION

    Institute of Scientific and Technical Information of China (English)

    Jiahua FAN

    2005-01-01

    Laboratory experiments on turbid density currents were conducted to observe the flow features of these currents with abrupt contracted and expanded reaches. Experimental data were used to determine water entrainment coefficients for both channel expansion and contraction. Expressions for turbid density currents with water entrainment coefficients in abrupt contracted and expanded reaches were derived,and compared with experimental data.

  1. NUMERICAL SIMULATION OF TWO-DIMENSIONAL DAM-BREAK FLOWS IN CURVED CHANNELS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Two-dimensional transient dam-break flows in a river with bends were theoretically studied. The river was modeled as a curved channel with a constant width and a flat bottom. The water was assumed to be an incompressible and homogeneous fluid. A channel-fitted orthogonal curvilinear coordinate system was established and the corresponding two-dimensional shallow-water equations were derived for this system. The governing equations with well-posed initial and boundary conditions were numerically solved in a rectangular domain by use of the Godunov-type finite-difference scheme, which can capture the hydraulic jump of dam-break flows. The comparison between the obtained numerical results and the experimental data of Miller and Chaudry in a semicircle channel shows the validity of the present numerical scheme. The mathematical model and the numerical method were applied to the dam-break flows in channels with various curvatures. Based on the numerical results, the influence of river curvatures on the dam-break flows was analyzed in details.

  2. A study on the stability of laminar open-channel flow over a sandy rippled bed

    Institute of Scientific and Technical Information of China (English)

    BAI; Yuchuan; XU; Haijue

    2005-01-01

    The bed of a river often features some kinds of bedform, such as sand ripples, dunes, and so on. Even if the bed is smooth initially, disturbances arising from the bed or other external sources will cause the laminar flow in an open channel to become unstable as soon as the flow develops, thereby leading to the formation of sand ripples on the bed. In return, the formation of the sand ripples will modify the instability path of the laminar flow passing over them. The wavy character of the bed will induce further instability of the flow, which is essentially different from that on a smooth bed: the neutral curve will move forward and the critical Reynolds number will decrease. The flow is unstable in response to a wider range of the disturbance wave number, or the laminar flow instability can happen more easily. The propagation speed of the sand ripples also affects the flow instability, since the stability of open channel flow over a movable bed is fundamentally different from that on a rigid bed. These instability effects are discussed in detail in this paper.

  3. Thermal and hydrodynamic characteristics of forced and mixed convection flow through vertical rectangular channels

    Directory of Open Access Journals (Sweden)

    Hanafi Abdalla S.

    2008-01-01

    Full Text Available This paper presents experimental and numerical studies for the case of turbulent forced and mixed convection flow of water through narrow vertical rectangular channel. The channel is composed of two parallel plates which are heated at a uniform heat flux, whereas, the other two sides of the channel are thermally insulated. The plates are of 64 mm in width, 800 mm in height, and separated from each other at a narrow gap of 2.7 mm. The Nusselt number distribution along the flow direction normalized by the Nusselt number for the case of turbulent forced convection flow is obtained experimentally with a comparison with the numerical results obtained from a commercial computer code. The quantitative determination of the nor- malized Nusselt number with respect to the dimension-less number Z = (Gr/Re21/8Pr0.5 is presented with a comparison with previous experimental results. Qualitative results are presented for the normalized temperature and velocity profiles in the transverse direction with a comparison between the forced and mixed convection flow for both the cases of upward and downward flow directions. The effect of the axial locations and the parameter Gr/Re on the variation of the normalized temperature profiles in the transverse direction for both the regions of forced and mixed convection and for both of the upward and downward flow directions are obtained. The normalized velocity profiles in the transverse directions are also determined at different inlet velocity and heat fluxes for the previous cases. It is found that the normalized Nusselt number is greater than one in the mixed convection region for both the cases of upward and downward flow and correlated well with the dimension-less parameter Z for both of the forced and mixed convection regions. The temperature profiles increase with increasing the axial location along the flow direction or the parameter Gr/Re for both of the forced and mixed convection regions, but this increase is

  4. Flow Enhancement due to Elastic Turbulence in Channel Flows of Shear Thinning Fluids

    Science.gov (United States)

    Bodiguel, Hugues; Beaumont, Julien; Machado, Anaïs; Martinie, Laetitia; Kellay, Hamid; Colin, Annie

    2015-01-01

    We explore the flow of highly shear thinning polymer solutions in straight geometry. The strong variations of the normal forces close to the wall give rise to an elastic instability. We evidence a periodic motion close the onset of the instability, which then evolves towards a turbulentlike flow at higher flow rates. Strikingly, we point out that this instability induces genuine drag reduction due to the homogenization of the viscosity profile by the turbulent flow.

  5. Unsteady Simulations of the Flow in a Channel Flow and a Ventilated Room Using the SST-SAS Model

    DEFF Research Database (Denmark)

    Davidson, Lars; Nielsen, Peter V.

    -SAS model is evaluated for two flows: developing channel flow and the flow in a three-dimensional ventilated room. Unsteady inlet boundary conditions are prescribed in both cases by superimposing isotropic synthetic fluctuations on a steady inlet boundary velocity profile.......The SAS model (Scale Adapted Simulation) was invented by Menter and his co-workers. The idea behind the SST-SAS model is to add an additional production term - the SAS term - in the w equation which is sensitive to resolved (i.e. unsteady) fluctuations. In regions where the flow is on the limit...... of going unsteady, the object of the SAS term is to increase w. The result is that k and vt are reduced so that the dissipating (damping) effect of the turbulent viscosity on the resolved fluctuations is reduced, thereby promoting the momentum equations to switch from steady to unsteady mode. The SST...

  6. Hydrodynamic chromatography and field flow fractionation in finite aspect ratio channels.

    Science.gov (United States)

    Shendruk, T N; Slater, G W

    2014-04-25

    Hydrodynamic chromatography (HC) and field-flow fractionation (FFF) separation methods are often performed in 3D rectangular channels, though ideal retention theory assumes 2D systems. Devices are commonly designed with large aspect ratios; however, it can be unavoidable or desirable to design rectangular channels with small or even near-unity aspect ratios. To assess the significance of finite-aspect ratio effects and interpret experimental retention results, an ideal, analytical retention theory is needed. We derive a series solution for the ideal retention ratio of HC and FFF rectangular channels. Rather than limiting devices' ability to resolve samples, our theory predicts that retention curves for normal-mode FFF are well approximated by the infinite plate solution and that the performance of HC is actually improved. These findings suggest that FFF devices need not be designed with large aspect ratios and that rectangular HC channels are optimal when the aspect ratio is unity.

  7. Paper capillary force driven hollow channel as a platform for multiphase flows bioassays

    Directory of Open Access Journals (Sweden)

    Zheng Tengfei

    2016-05-01

    Full Text Available This paper develops a simple, inexpensive, and portable diagnostic assays that may be useful in remote settings, and in particular, in less industrialized countries where simple assays are becoming increasingly important for detecting disease and monitoring health. In this assays, the paper capillary force is first used to transport complex fluids such as whole blood or colloidal suspensions that contain particulates in a new type channel - paper capillary driven hollow channel, which offset the disadvantages of current paper microfluidic technologies. To demonstrate the various applications of the paper capillary force driven hollow channel, several devices are design and made to complete the purpose of exhibiting laminar flow in a T-junction microchannel, sheath a core stream in a three-inlet channel and transportation whole blood.

  8. Numerical Simulation of Rheology Character of Polymer Extrusion Flow in the Micro Channel

    Science.gov (United States)

    Ren, Zhong; Huang, Xing-Yuan; Liu, He-Sheng

    2016-05-01

    In this study, to study the rheology characteristic of polymer melt in the micro-channel, the apparent viscosity, entrance pressure and shear stress under the same shear rate were analyzed by mean of CFD numerical simulation method. The Phan-Thien and Tanner (PTT) viscoelastic model was used as the constructive equation of polymer melt. To verify the change situation of apparent viscosity and entrance pressure in the flow of channel, two sets of channels with different diameters and ratios of length-to-diameter were compared with each other. The research results verified that the entrance pressure increase and apparent viscosity decrease with decreasing of diameter of channel, which is in good agreement with the results of past reported.

  9. Gradually varied flow in compound open channels; Flujo gradualmente variado en canales de seccion compuesta

    Energy Technology Data Exchange (ETDEWEB)

    Sotela Avila, Gilberto [Universidad Nacional Autonoma de Mexico (Mexico)

    2001-03-01

    The author shows that the computation of gradually-varied-flow profiles in prismatic compound channels involves the solution of the dynamic equation, but using the compound channel Froude number defined by Blalock and Sturm. The same equation is used for non-prismatic channels by dividing the channel into short reaches and carrying the computation step by step through an iterative process. [Spanish] El autor demuestra que los perfiles del flujo gradualmente variado en canales prismaticos de seccion compuesta se pueden determinar mediante la integracion de la llamada ecuacion dinamica, pero usando el numero de Froude definido por Blalock y Sturm para este tipo de canales. Cuando no son prismaticos, tambien se aplica la ecuacion de la energia por tramos y el calculo sigue un proceso iterativo una vez definidos los tirantes criticos multiples y la zona en que se desarrolla el perfil.

  10. ADCP measured flow current of the middle-lower Changjiang River channel

    Institute of Scientific and Technical Information of China (English)

    Qiang ZHANG; Yafeng SHI; Zhongyuan CHEN; Tong JIANG

    2008-01-01

    The water column flow velocity of 36 river sections in the river reach between Hankou (Wuhan) and Wuxue of the middle-lower Changjiang River.Their cross sectional distribution patterns in relation to the river channel morphologies were examined by using shipmounted ADCP (Acoustic Doppler Current Profiler) instrument.The results indicate four (Ⅰ-Ⅳ) types of river channel morphology associated flow patterns:Ⅰ-laterally deepening riverbed topographic pattern; Ⅱ-symmetrical to asymmetrical riverbed topographic pattern; Ⅲ-relative fiat riverbed topographic pattern,and Ⅳ-sandbar supported riverbed topographic pattern.All these correspond to the different patterns of flow velocity distribution.The maximum flow velocity is usually related to the deeper water depth,but irregular water column distribution of flow current velocity results often from the vortices' current associated with river knots.Deeper river water depth is usually identified in the river reach located slightly downstream to the river knot,where faster flow velocity occurs.Downward change in flow velocity fits semi-log law,showing an exponential decreasing flow current with the maximum flow velocity near the water surface.However,in the river reach near the river knots,the water column distribution of flow current velocity does not fit the semi-log law,showing the irregular flow current pattern.This study,in context of river catchment management,highlights the controls of riverbed morphology to the flow current structure,which will shed light on the post study of Three Gorges damming in 2009.

  11. Axial dispersion in segmented gas-liquid flow: Effects of alternating channel curvature

    Science.gov (United States)

    Muradoglu, Metin

    2010-12-01

    The effects of channel curvature on the axial dispersion in segmented gas-liquid flows are studied computationally in a two-dimensional setting using a finite-volume/front-tracking method. Passive tracer particles are used to visualize and quantify the axial dispersion. The molecular diffusion is modeled by random walk of tracer particles. It is found that there is significant axial dispersion in serpentine channels even in the absence of molecular diffusion. The lubricating thin liquid layer that persists on the wall of a straight channel is periodically broken in the serpentine channel leading to enhanced axial dispersion. It is also found that the axial dispersion is always larger in the serpentine channel than that in the straight channel but the effects of channel curvature are more pronounced at high Peclet numbers, i.e., Pe>104. A model is proposed based on the difference between the liquid film thicknesses on the inner and outer side of the bend in the limit as Pe→∞. Good agreement is found between the computational results and the model when the liquid slug is well mixed by the chaotic advection.

  12. Axial Dispersion in Segmented Gas-Liquid Flow: Effects of the Channel Curvature

    Science.gov (United States)

    Muradoglu, Metin

    2009-11-01

    The effects of channel curvature on the axial dispersion in segmented gas-liquid flows have been studied computationally in a two-dimensional setting using a front-tracking/finite-volume method. Passive tracer particles are used to visualize and quantify the axial dispersion. The molecular diffusion is modeled by random walk of tracer particles. It is found that there is significant axial dispersion in serpentine channels even in the absence of molecular diffusion and dispersion increases with channel curvature. It is known that there is no dispersion in straight channels since a lubricating thin liquid layer persists on the wall. However this lubricating liquid layer is periodically broken in the curved channel case leading to enhanced axial dispersion. It is found that the dispersion increases as the Peclet number (Pe) decreases both in straight and curved channels. Difference between the straight and curved channel decreases continuously as the Peclet number decreases and virtually disappears at low Peclet numbers, i.e., Pestudy. A model is proposed based on the difference between the liquid film thicknesses on the inner and outer side of the bend in the limit as Pe->∞. Good agreement is found between the computational results and the model when the liquid slug is well mixed by the chaotic advection.

  13. Application guide for AFINCH (Analysis of Flows in Networks of Channels) described by NHDPlus

    Science.gov (United States)

    Holtschlag, David J.

    2009-01-01

    AFINCH (Analysis of Flows in Networks of CHannels) is a computer application that can be used to generate a time series of monthly flows at stream segments (flowlines) and water yields for catchments defined in the National Hydrography Dataset Plus (NHDPlus) value-added attribute system. AFINCH provides a basis for integrating monthly flow data from streamgages, water-use data, monthly climatic data, and land-cover characteristics to estimate natural monthly water yields from catchments by user-defined regression equations. Images of monthly water yields for active streamgages are generated in AFINCH and provide a basis for detecting anomalies in water yields, which may be associated with undocumented flow diversions or augmentations. Water yields are multiplied by the drainage areas of the corresponding catchments to estimate monthly flows. Flows from catchments are accumulated downstream through the streamflow network described by the stream segments. For stream segments where streamgages are active, ratios of measured to accumulated flows are computed. These ratios are applied to upstream water yields to proportionally adjust estimated flows to match measured flows. Flow is conserved through the NHDPlus network. A time series of monthly flows can be generated for stream segments that average about 1-mile long, or monthly water yields from catchments that average about 1 square mile. Estimated monthly flows can be displayed within AFINCH, examined for nonstationarity, and tested for monotonic trends. Monthly flows also can be used to estimate flow-duration characteristics at stream segments. AFINCH generates output files of monthly flows and water yields that are compatible with ArcMap, a geographical information system analysis and display environment. Chloropleth maps of monthly water yield and flow can be generated and analyzed within ArcMap by joining NHDPlus data structures with AFINCH output. Matlab code for the AFINCH application is presented.

  14. Shadowgraph, Schlieren and interferometry in a 2D cavitating channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Mauger, Cyril; Mees, Loic; Michard, Marc; Azouzi, Alexandre [Universite Claude Bernard Lyon 1, Laboratoire de Mecanique des Fluides et d' Acoustique (LMFA), CNRS UMR5509, Ecole Centrale de Lyon, INSA de Lyon, Ecully (France); Valette, Stephane [Ecole Nationale d' Ingenieurs de Saint Etienne, Laboratoire de Tribologie et Dynamique des Systemes (LTDS), CNRS UMR5513, Ecole Centrale de Lyon, Saint-Etienne (France)

    2012-12-15

    Cavitation plays an important role in fuel atomization mechanisms, but the physics of cavitation and its impact on spray formation and injector efficiency are not well documented yet. Experimental investigations are required to support the development and the validation of numerical models and the design of tomorrow's injectors, in the context of pollutant and fuel consumption reduction. The complexity of modern injectors and the extreme conditions of injection do not facilitate experimental investigations. In this paper, experiments are conducted in a simplified geometry. The model nozzle consists of a transparent 2D micro-channel supplied with a test oil (ISO 4113). Three different optical techniques are proposed to investigate the channel flow, with the pressure drop between upstream and downstream chambers as a parameter. A shadowgraph-like imaging technique allows the observation of cavitation inception and vapor cavities development throughout the channel. The technique also reveals the presence of density gradients (pressure or temperature) in the channel flow. However, this additional information is balanced by difficulties in image interpretation, which are discussed in the paper. In addition, a combination of Schlieren technique and interferometric imaging is used to measure the density fields inside the channel. The three techniques results are carefully analyzed and confronted. These results reveal a wealth of information on the flow, with pressure waves generated by bubble collapses, turbulence in the wake of vapor cavities and bubble survival in flow regions of high pressure. Our results also show that cavitation inception is located in the shear layers between the recirculation zones and the main flow, relatively far from the inlet corner, where the pressure is minimum in average. To explain this behavior, we propose a scenario of cavitation inception based on the occurrence and the growing of instabilities in the shear layers. (orig.)

  15. Effects of the shape of the hydrograph and unsteadiness on flow properties and hysteresis in open channel flow

    Science.gov (United States)

    Bagherimiyab, F.; Roy, A.; Lemmin, U.

    2013-12-01

    Flows in rivers and open channels become unsteady during flood events. This study examines experimentally the relationships between the shape of the hydrographs and the characteristics of the accelerating, stabilizing and decelerating phases and the hysteretic trajectories. Seven symmetrical hydrographs with different unsteadiness (20 s, 30 s, 45 s, 60 s, 90 s, 150 s and 210 s accelerating and decelerating phases) and 90 s peak steady range were investigated in open-channel flow over a loose gravel bed. Detailed, quasi-instantaneous velocity profiles were measured using a 3D Acoustic Doppler Velocity Profiler (ADVP). Even though discharge was varied linearly at a constant rate over the rising and falling limb of each hydrograph, the change in relative submergence was not linear during parts of these periods. Important variations were observed between the two limbs of the hydrographs, but also among the different unsteadiness conditions, resulting in considerable differences in the flow dynamics. The discrepancy between the variation of the discharge and the observed water level over time indicates that flow adjustment over the rough bed takes place along the channel. This adjustment differs for the accelerating and the decelerating phases. Different hysteretic loops are formed for each hydrograph. In each loop, water depth for the accelerating range is different from that of the decelerating range for the same discharge. The transition from the accelerating range to the peak flow range is gradual. It is particularly marked for the 20 s hydrograph, where steady state peak flow is only attained at the very end of the peak flow range. The hydrograph with the lowest unsteadiness (210 s) remains in steady state during the whole peak steady flow range. Compared to the other hydrographs, it is characterized by a higher water depth for the same discharge and at the end it reaches a lower water depth for the same discharge. During the accelerating range, both mean velocity

  16. MHD non-Newtonian micropolar fluid flow and heat transfer in channel with stretching walls

    Institute of Scientific and Technical Information of China (English)

    M. ASHRAF; N. JAMEEL; K. ALI

    2013-01-01

    A study is presented for magnetohydrodynamics (MHD) flow and heat trans-fer characteristics of a viscous incompressible electrically conducting micropolar fluid in a channel with stretching walls. The micropolar model introduced by Eringen is used to describe the working fluid. The transformed self similar ordinary differential equations together with the associated boundary conditions are solved numerically by an algorithm based on quasi-linearization and multilevel discretization. The effects of some physical parameters on the flow and heat transfer are discussed and presented through tables and graphs. The present investigations may be beneficial in the flow and thermal control of polymeric processing.

  17. Transient Taylor-Aris dispersion for time-dependent flows in straight channels

    DEFF Research Database (Denmark)

    Vedel, Søren; Bruus, Henrik

    2012-01-01

    –ket formalism, we derive an expression for the effective solute diffusivity valid for transient Taylor–Aris dispersion in any given time-dependent, multi-frequency solvent flow through straight channels. Our theory shows that the solute dispersion may be greatly enhanced by the time-dependent parts of the flow...... recover the known results for steady and single-frequency pulsating flows, and find new, richer structure of the dispersion as function of system parameters in multi-frequency systems. We show that the effective diffusivity is enhanced significantly by those parts of the time-dependent velocity field...

  18. Experimental study on the two phase flow behavior in PEM fuel cell parallel channels with porous media inserts

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jixin [Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, CA 92697-3975 (United States)

    2010-02-15

    In this study, the air-water two phase flow behavior in PEM fuel cell parallel channels with porous media inserts was experimentally investigated using a self-designed and manufactured transparent assembly. The visualization images of the two phase flow in channels with porous media inserts were presented and three patterns were summarized. Compared with the traditional hollow channel design, the novel configuration featured less severe two phase flow mal-distribution and self-adjustment to water amount in channels, although a higher pressure drop was introduced due to the porous media inserts. The dominant frequency of pressure drop signal was found to be a diagnostic tool for water behavior in channels. The novel flow channel design with porous media inserts may become a solution to the water management problem in PEM fuel cells. (author)

  19. Experimental study on the two phase flow behavior in PEM fuel cell parallel channels with porous media inserts

    Science.gov (United States)

    Chen, Jixin

    In this study, the air-water two phase flow behavior in PEM fuel cell parallel channels with porous media inserts was experimentally investigated using a self-designed and manufactured transparent assembly. The visualization images of the two phase flow in channels with porous media inserts were presented and three patterns were summarized. Compared with the traditional hollow channel design, the novel configuration featured less severe two phase flow mal-distribution and self-adjustment to water amount in channels, although a higher pressure drop was introduced due to the porous media inserts. The dominant frequency of pressure drop signal was found to be a diagnostic tool for water behavior in channels. The novel flow channel design with porous media inserts may become a solution to the water management problem in PEM fuel cells.

  20. Direct Numerical Simulation of Insoluble Surfactant Effect on Turbulent Channel Bubbly Flows

    Science.gov (United States)

    Lu, Jiacai; Tryggvason, Gretar

    2016-11-01

    Direct Numerical Simulations (DNS) have been successfully used to obtain detailed data for turbulent channel bubbly flows. However, most of DNS that have been done so far remain problematic in comparing to most experiments. One of the major reasons is that real bubbly flows contain surfactants. The surfactants adhere to the interface, and produce an uneven distribution of the surfactant concentration due to the moving of bubbles and result in uneven surface tension over bubble surfaces. In this project, the effect of surfactants on the flow of many bubbles in an upward turbulent channel flow is studied by using of Direct Numerical Simulation with 3D Front-tracking method. The surfactant mass and the interfacial area are directly tracked in the method, and the surfactant mass remains conserved during the evolution. By using of different elasticity numbers in the non-linear equation of state which relates the surface tension to the surfactant concentration, the simulations show that the evolution of the turbulent channel bubbly flow are much different among the cases with contaminated bubbles and clean bubbles. Profiles of many parameters, such as streamwise velocity, shear stress and etc., are also compared at the statistically steady state for these cases. Research supported by DOE (CASL).

  1. Modernized scheme of thermal ignition and flame stabilization at flow supersonic speeds in channel

    Science.gov (United States)

    Goldfeld, M. A.; Nalivaychenko, D. G.; Starov, A. V.; Timofeev, K. Yu.

    2016-10-01

    For providing fuel ignition at the high supersonic flow velocity original device was developed. Main element of this device in the form of wall slotted channel has to provide the high flow temperature in the area of mixture. Numerical simulation has been performed based on solving the full averaged Navier-Stokes equations, supplemented k-ɛ turbulence model. The experiments were carried out in the hotshot wind tunnel IT-302M at the mode of the attached pipe. The flow parameters at the model entrance were following: M = 2 - 5.8, p0 = 12 - 390bar, T0 = 1170 - 2930K at equivalence ratio of hydrogen from 0.6 to 1.1. Self-ignition of the hydrogen in the slotted channel has occurred at total flow temperature of 2250K at the combustor entrance. The combustion process is extended to the entire channel of the combustor. When the facility worked with decreasing parameters of the flow, combustion continued until drop of the static temperature of about 230K at the entrance of the combustor.

  2. Effect of Levee and Channel Structures on Long Lava Flow Emplacement: Martian Examples from THEMIS and MOLA Data

    Science.gov (United States)

    Peitersen, M. N.; Zimbelman, J. R.; Christensen, P. R.; Bare, C.

    2003-01-01

    Long lava flows (discrete flow units with lengths exceeding 50 km) are easily identified features found on many planetary surfaces. An ongoing investigation is being conducted into the origin of these flows. Here, we limit our attention to long lava flows which show evidence of channel-like structures.

  3. Pattern Synchronization in a Two-Layer Neuronal Network

    Institute of Scientific and Technical Information of China (English)

    SUN Xiao-Juan; LU Qi-Shao

    2009-01-01

    Pattern synchronization in a two-layer neuronal network is studied.For a single-layer network of Rulkov map neurons,there are three kinds of patterns induced by noise.Additive noise can induce ordered patterns at some intermediate noise intensities in a resonant way;however,for small and large noise intensities there exist excitable patterns and disordered patterns,respectively.For a neuronal network coupled by two single-layer networks with noise intensity differences between layers,we find that the two-layer network can achieve synchrony as the interlayer coupling strength increases.The synchronous states strongly depend on the interlayer coupling strength and the noise intensity difference between layers.

  4. TWO-LAYER MODEL DESCRIPTION OF POLYMER THIN FILM DYNAMICS

    Institute of Scientific and Technical Information of China (English)

    Dong-dong Peng; Ran-xing Nancy Li; Chi-hang Lam; Ophelia K.C.Tsui

    2013-01-01

    Experiments in the past two decades have shown that the glass transition temperature of polymer films can become noticeably different from that of the bulk when the film thickness is decreased below ca.100 nm.It is broadly believed that these observations are caused by a nanometer interfacial layer with dynamics faster or slower than that of the bulk.In this paper,we examine how this idea may be realized by using a two-layer model assuming a hydrodynamic coupling between the interfacial layer and the remaining,bulk-like layer in the film.Illustrative examples will be given showing how the two-layer model is applied to the viscosity measurements of polystyrene and polymethylmethacrylate films supported by silicon oxide,where divergent thickness dependences are observed.

  5. An experimental study on turbulent-stripe structure in transitional channel flow

    CERN Document Server

    Tsukahara, Takahiro

    2014-01-01

    Turbulent stripe, which would occur in turbulent channel flows at transitional Reynolds numbers, was studied experimentally by flow visualization using reflective flake particles. In a range of bulk mean Reynolds number Re = 1700-2000, the turbulent stripe was observed to be inclined at angles of 20-30 degree against the streamwise direction, and its streamwise wave length was about 60 times of the channel half width (delta). The longitudinal streaks with the spanwise spacing of 1.6delta were found in the quasi-laminar regions. The critical Reynolds number was Re = 1300. Time traces of the streamwise velocity were measured by laser Doppler velocimetry, revealing similarity to the equilibrium turbulent puff in the transitional pipe flow.

  6. Large-eddy simulation of suspended sediment transport in turbulent channel flow

    Institute of Scientific and Technical Information of China (English)

    ZHU Hai; WANG Ling-ling; TANG Hong-wu

    2013-01-01

    The numerical simulation of the non-cohesive sediment transport in a turbulent channel flow with a high concentration is a challenging but practical task.A modified coherent dynamic eddy model of the Large Eddy Simulation (LES) with a pick-up function is used in the present study to simulate the sediment erosion and the deposition in a turbulent channel flow.The rough wall model is used instead of the LES with the near-wall resolution to obtain the reasonable turbulent flow characteristics while avoiding the high costs in the computation.Good results are obtained,and are used to analyze the sediment transport properties.The results show that the streamwise vortices play an important role in the riverbed erosion and the sediment pick-up,which may serve as guidelines for the sediment management and the water environment protection engineering.

  7. Finite analytic numerical solution of heat transfer and flow past a square channel cavity

    Science.gov (United States)

    Chen, C.-J.; Obasih, K.

    1982-01-01

    A numerical solution of flow and heat transfer characteristics is obtained by the finite analytic method for a two dimensional laminar channel flow over a two-dimensional square cavity. The finite analytic method utilizes the local analytic solution in a small element of the problem region to form the algebraic equation relating an interior nodal value with its surrounding nodal values. Stable and rapidly converged solutions were obtained for Reynolds numbers ranging to 1000 and Prandtl number to 10. Streamfunction, vorticity and temperature profiles are solved. Local and mean Nusselt number are given. It is found that the separation streamlines between the cavity and channel flow are concave into the cavity at low Reynolds number and convex at high Reynolds number (Re greater than 100) and for square cavity the mean Nusselt number may be approximately correlated with Peclet number as Nu(m) = 0.365 Pe exp 0.2.

  8. Large eddy simulation of compressible turbulent channel flow with spanwise wall oscillation

    Institute of Scientific and Technical Information of China (English)

    FANG Jian; LU LiPeng; SHAO Liang

    2009-01-01

    The influences of the modification of turbulent coherent structures on temperature field and heat transfer in turbulent channel flow are studied using large eddy simulation (LES) of compressible tur-bulent channel flows with spanwise wall oscillation (SWO). The reliability of the LES on such problems is proved by the comparisons of the drag reduction data with those of other researches. The high con-sistency of coherent velocity structures and temperature structures is found based on the analyses of the turbulent flow field. When the coherent velocity structures are suppressed, the transportations of momentum and heat are reduced simultaneously, demonstrating the same trend. This shows that the turbulent coherent structures have the same effects on the transportations of momentum and heat. The averaged wall heat flux can be reduced with appropriate oscillating parameters.

  9. Prediction of Critical Heat Flux for Saturated Flow Boiling Water in Vertical Narrow Rectangular Channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gil Sik; Jeong, Yong Hun [KAIST, Daejeon (Korea, Republic of); Chang, Soon Heung [Handong Univ., Pohang (Korea, Republic of)

    2015-12-15

    There is an increasing need to understand the thermal-hydraulic phenomena, including the critical heat flux (CHF), in narrow rectangular channels and consider these in system design. The CHF mechanism under a saturated flow boiling condition involves the depletion of the liquid film of an annular flow. To predict this type of CHF, the previous representative liquid film dryout models (LFD models) were studied, and their shortcomings were reviewed, including the assumption that void fraction or quality is constant at the boundary condition for the onset of annular flow (OAF). A new LFD model was proposed based on the recent constitutive correlations for the droplet deposition rate and entrainment rate. In addition, this LFD model was applied to predict the CHF in vertical narrow rectangular channels that were uniformly heated. The predicted CHF showed good agreement with 284 pieces of experimental data, with a mean absolute error of 18. 1 % and root mean square error of 22.9 %.

  10. On the structural features of fiber suspensions in converging channel flow

    Institute of Scientific and Technical Information of China (English)

    林建忠; 张凌新

    2003-01-01

    The structural features of fiber suspensions are dependent on the fiber alignment in the flows. In this work the orientation distribution function and orientation tensors for semi-concentrated fiber suspensions in converging channel flow were calculated, and the evolutions of the fiber alignment and the bulk effective viscosity were analyzed. The results showed that the bulk stress and the effective viscosity were functions of the rate-of-strain tensor and the fiber orientation state; and that the fiber suspensions evolved to steady alignment and tended to concentrate to some preferred directions close to but not same as the directions of local streamlines. The bulk effective viscosity depended on the product of Reynolds number and time. The decrease of effective viscosity near the boundary benefited the increase of the rate of flow. Finally when the fiber alignment went into steady state, the structural features of fiber suspensions were not dependent on the Reynolds number but on the converging channel angle.

  11. Measurement of velocity profiles of nanofluids in laminar channel flow using Particle Image Velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Arun K.; Kulkarni, Parimal P.; Singh, R.K.; Verma, Pumendra [Bhabha Atomic Research Centre (BARC), Mumbai (India). Reactor Engineering Div.; Gandhi, Mayur [University Institute of Chemical Technology, Mumbai (India). Dept. of Chemical Engineering

    2014-06-15

    The objective of the paper is to measure the velocity profiles of water based nanofluids for flow through channels in order to understand whether the nanofluids behave Newtonian. For this purpose, experiments were carried for flow through a rectangular channel in laminar regime. Four different nanofluids were used, i.e. Al{sub 2}O{sub 3}, CuO, TiO{sub 2} and SiO{sub 2} with base fluid as water. Experiments were conducted at low concentration of these particles. The velocity profiles were measured using Particle Image Velocimetry. The results indicate that the velocity profiles are similar for all the fluids indicating the flows to be Newtonian. (orig.)

  12. Large eddy simulation of compressible turbulent channel flow with spanwise wall oscillation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The influences of the modification of turbulent coherent structures on temperature field and heat transfer in turbulent channel flow are studied using large eddy simulation(LES) of compressible turbulent channel flows with spanwise wall oscillation(SWO).The reliability of the LES on such problems is proved by the comparisons of the drag reduction data with those of other researches.The high consistency of coherent velocity structures and temperature structures is found based on the analyses of the turbulent flow field.When the coherent velocity structures are suppressed,the transportations of momentum and heat are reduced simultaneously,demonstrating the same trend.This shows that the turbulent coherent structures have the same effects on the transportations of momentum and heat.The averaged wall heat flux can be reduced with appropriate oscillating parameters.

  13. Magnetic field and thermal radiation effects on steady hydromagnetic Couette flow through a porous channel

    Directory of Open Access Journals (Sweden)

    Chigozie Israel-Cookey

    2010-09-01

    Full Text Available This paper investigates effects of thermal radiation and magnetic field on hydromagnetic Couette flow of a highly viscous fluid with temperature-dependent viscosity and thermal conductivity at constant pressure through a porous channel. The influence of the channel permeability is also assessed. The relevant governing partial differential equations have been transformed to non-linear coupled ordinary differential equations by virtue of the steady nature of the flow and are solved numerically using a marching finite difference scheme to give approximate solutions for the velocity and temperature profiles. We highlight the effects of Nahme numbers, magnetic field, radiation and permeability parameters on both profiles. The results obtained are used to give graphical illustrations of the distribution of the flow variables and are discussed.

  14. A VLSI Design Flow for Secure Side-Channel Attack Resistant ICs

    CERN Document Server

    Tiri, Kris

    2011-01-01

    This paper presents a digital VLSI design flow to create secure, side-channel attack (SCA) resistant integrated circuits. The design flow starts from a normal design in a hardware description language such as VHDL or Verilog and provides a direct path to a SCA resistant layout. Instead of a full custom layout or an iterative design process with extensive simulations, a few key modifications are incorporated in a regular synchronous CMOS standard cell design flow. We discuss the basis for side-channel attack resistance and adjust the library databases and constraints files of the synthesis and place & route procedures accordingly. Experimental results show that a DPA attack on a regular single ended CMOS standard cell implementation of a module of the DES algorithm discloses the secret key after 200 measurements. The same attack on a secure version still does not disclose the secret key after more than 2000 measurements.

  15. Training two-layered feedforward networks with variable projection method.

    Science.gov (United States)

    Kim, C T; Lee, J J

    2008-02-01

    The variable projection (VP) method for separable nonlinear least squares (SNLLS) is presented and incorporated into the Levenberg-Marquardt optimization algorithm for training two-layered feedforward neural networks. It is shown that the Jacobian of variable projected networks can be computed by simple modification of the backpropagation algorithm. The suggested algorithm is efficient compared to conventional techniques such as conventional Levenberg-Marquardt algorithm (LMA), hybrid gradient algorithm (HGA), and extreme learning machine (ELM).

  16. Electromagnetic Scattering in a Two-layered Medium

    Institute of Scientific and Technical Information of China (English)

    FENG LI-XIN; LI YUAN; Ma Fu-ming

    2011-01-01

    The object of this paper is to investigate the three-dimensional electro-magnetic scattering problems in a two-layered background medium.These problems have an important application in today's technology,such as to detect objects that are buried in soil.Here,we model both the exterior impedance problem and the inhomogeneous medium problem in R3.We establish uniqueness and existence for the solution of the two scattering problems,respectively.

  17. Velocity profile of turbulent sediment-laden flows in open-channels

    Institute of Scientific and Technical Information of China (English)

    Deyu Zhong n; Lei Zhang; Baosheng Wu; Yongqiang Wang

    2015-01-01

    In this paper, a study was carried out on the velocity profile of sediment-laden flows in open channels using a two-phase mixture model for two-phase flows. The governing equations for water-sediment mixtures were derived based on the two-fluid equations for solid–liquid two-phase flows. The drift velocity, a key variable involved in the two-phase mixture equations, was derived from the equation of momentum conservation for the solid phase. The drift velocity shows that the inertia of flow, particle turbulence, and collisions effect contribute to the dispersion of the sediment particles in turbulent flows. Using the two-phase mixture equation, the vertical velocity profile of open channel flows was obtained. Further analysis indicated that the distribution of the velocity over depth of water-sediment mixtures, composed of two different phases, is significantly affected by the turbulence of water-sediment mixtures and the density stratification. However, the velocity distribution is also affected by other factors including collisions between particles and particle turbulence as a basic feature of two-phase flows where interphase interactions inevitably mark their influence on the velocity distribution. Comparisons of this approach with observations for a wide range of experimental conditions are presented in this paper, which show that this approach agrees well with the experiments.

  18. The effect of channel shape, bed morphology, and shipwrecks on flow velocities in the Upper St. Clair River

    Science.gov (United States)

    Czuba, Jonathan A.; Oberg, Kevin; Best, Jim; Parsons, Daniel R.

    2009-01-01

    In the Great Lakes of North America, the St. Clair River is the major outlet of Lake Huron and conveys water to Lake St. Clair which then flows to Lake Erie. One major topic of interest is morphological change in the St. Clair River and its impact on water levels in the Upper Great Lakes and connecting channel flows. A combined multibeam echosounder (MBES) bathymetric survey and acoustic Doppler current profiler (ADCP) flow survey of the outlet of Lake Huron and the Upper St. Clair River was conducted July 21 – 25, 2008. This paper presents how channel morphology and shipwrecks affect the flow in the Upper St. Clair River. The river is most constricted at the Blue Water Bridge near Port Huron, Michigan, with water velocities over 2 ms-1 for a flow of 5,200 m3s-1. Downstream of this constriction, the river flows around a bend and expands creating a large recirculation zone along the left bank due to flow separation. This recirculation zone reduces the effective channel width, and thus increases flow velocities to over 2 ms-1 in this region. The surveys reveal several shipwrecks on the bed of the St. Clair River, which possess distinct wakes in their flow velocity downstream of the wrecks. The constriction and expansion of the channel, combined with forcing of the flow by bed topography, initiates channel-scale secondary flow, creating streamwise vortices that maintain coherence downstream over a distance of several channel widths.

  19. Two phase flow simulation in a channel of a polymer electrolyte membrane fuel cell using the lattice Boltzmann method

    OpenAIRE

    Ben Salah, Yasser; Tabe, Yutaka; Chikahisa, Takemi

    2012-01-01

    Water management in polymer electrolyte (PEM) fuel cells is important for fuel cell performance and durability. Numerical simulations using the lattice Boltzmann method (LBM) are developed to elucidate the dynamic behavior of condensed water and gas flows in a polymer electrolyte membrane (PEM) fuel cell gas channel. A scheme for two-phase flow with large density differences was applied to establish the optimum gas channel design for different gas channel heights, droplet positions, and gas c...

  20. Comparison of turbulent channel and pipe flows with varying Reynolds number

    Energy Technology Data Exchange (ETDEWEB)

    Ng, H.C.H.; Monty, J.P.; Hutchins, N.; Chong, M.S.; Marusic, I. [University of Melbourne, Department Mechanical Engineering, Melbourne, VIC (Australia)

    2011-11-15

    Single normal hot-wire measurements of the streamwise component of velocity were taken in fully developed turbulent channel and pipe flows for matched friction Reynolds numbers ranging from 1,000 {<=} Re{sub {tau}}{<=} 3,000. A total of 27 velocity profile measurements were taken with a systematic variation in the inner-scaled hot-wire sensor length l {sup +} and the hot-wire length-to-diameter ratio (l/d). It was observed that for constant l {sup +} = 22 and l/d >or similar 200, the near-wall peak in turbulence intensity rises with Reynolds number in both channels and pipes. This is in contrast to Hultmark et al. in J Fluid Mech 649:103-113, (2010), who report no growth in the near-wall peak turbulence intensity for pipe flow with l {sup +} = 20. Further, it was found that channel and pipe flows have very similar streamwise velocity statistics and energy spectra over this range of Reynolds numbers, with the only difference observed in the outer region of the mean velocity profile. Measurements where l {sup +} and l/d were systematically varied reveal that l {sup +} effects are akin to spatial filtering and that increasing sensor size will lead to attenuation of an increasingly large range of small scales. In contrast, when l/d was insufficient, the measured energy is attenuated over a very broad range of scales. These findings are in agreement with similar studies in boundary layer flows and highlight the need to carefully consider sensor and anemometry parameters when comparing flows across different geometries and when drawing conclusions regarding the Reynolds number dependency of measured turbulence statistics. With an emphasis on accuracy, measurement resolution and wall proximity, these measurements are taken at comparable Reynolds numbers to currently available DNS data sets of turbulent channel/pipe flows and are intended to serve as a database for comparison between physical and numerical experiments. (orig.)

  1. Fabrication of versatile channel flow cells for quantitative electroanalysis using prototyping.

    Science.gov (United States)

    Snowden, Michael E; King, Philip H; Covington, James A; Macpherson, Julie V; Unwin, Patrick R

    2010-04-15

    Here we demonstrate the use of microstereolithography (MSL), a 3D direct manufacturing technique, as a viable method to produce small-scale microfluidic components for electrochemical flow detection. The flow cell is assembled simply by resting the microfabricated component on the electrode of interest and securing with thread! This configuration allows the use of a wide range of electrode materials. Furthermore, our approach eliminates the need for additional sealing methods, such as adhesives, waxes, and screws, which have previously been deployed. In addition, it removes any issues associated with compression of the cell chamber. MSL allows a reduction of the dimensions of the channel geometry (and the resultant component) and, compared to most previously produced devices, it offers a high degree of flexibility in the design, reduced manufacture time, and high reliability. Importantly, the polymer utilized does not distort so that the cell maintains well-defined geometrical dimensions after assembly. For the studies herein the channel dimensions were 3 mm wide, 3.5 mm long, and 192 or 250 mum high. The channel flow cell dimensions were chosen to ensure that the substrate electrodes experienced laminar flow conditions, even with volume flow rates of up to 64 mL min(-1) (the limit of our pumping system). The steady-state transport-limited current response, for the oxidation of ferrocenylmethyl trimethylammonium hexaflorophosphate (FcTMA(+)), at gold and polycrystalline boron doped diamond (pBDD) band electrodes was in agreement with the Levich equation and/or finite element simulations of mass transport. We believe that this method of creating and using channel flow electrodes offers a wide range of new applications from electroanalysis to electrocatalysis.

  2. Turbulence of non-uniform open channel flows and mean velocity scaling

    Science.gov (United States)

    Stewart, R.; Fox, J.

    2014-12-01

    Turbulence and mean velocity distributions are well studied for uniform flows, however fully turbulent non-uniform open channel flows over rough gravel beds are an understudied class of realistic flows with significant geomorphologic importance. The two-fold objectives of this study are to investigate the effects of flow deceleration on multi-layer turbulence and determine velocity scales that produce self-similar profiles using turbulent boundary layer theory. Turbulence statistics were calculated from data collected using a three-dimensional acoustic Doppler velocimeter in backwater region produced by placing cylindrical obstruction downstream of measuring location. Results indicate inner turbulent processes are set according to shear velocity while outer layer of turbulence is not. Mean streamwise velocity profiles of 101 published datasets including 2211 data points from non-uniform decelerating rivers and laboratory flumes are scaled using inner, outer and 2 mixed methods. Theoretical arguments indicate the outer velocity scale determined from the AIP definition of equilibrium provides a more appropriate scaling for the velocity deficit of non-uniform open channel flows than inner scaling determined from Clauser equilibrium. Scaling results of mean profiles show outer scaling collapses data better than inner scaling. Mixed scaling approaches, which account for upstream conditions and the effect of bed roughness felt throughout the flow, provide a better scaling choice for this class of flows than either inner or outer scales alone. Results of this analysis provide insight on the behavior of turbulence in decelerating fully turbulent open channel flow over a rough gravel bed and provides a scaling useful for predicting velocity distributions.

  3. Lattice Boltzmanr dmulation of fluid flows in two-dimenslonal channel with complex geometries

    Institute of Scientific and Technical Information of China (English)

    Wen Bing-Hai; Liu Hai-Yan; Zhang Chao-Ying; Wang Qiang

    2009-01-01

    Boundary conditions(BCs)play an essential role in lattice Boltzmann(LB)simulations. This paper investigates several most commonly applied BCs by evaluating the relative L_2-norm errors of the LB simulations for two-dimensional(2-D)Poiseuille flow. It is found that the relative L_2-norm error resulting from FHML's BC is smaller than that from other BCs as a whole. Then. based on the FHML's BC, it formulates an LB model for simulating fluid flows in 2-D channel with complex geometries. Afterwards, the flows between two inclined plates, in a pulmonary blood vessel and in a blood Vessel with local expansion region, are simulated. The numerical results are in good agreement with the analytical predictions and clearly show that the model is effective. It is expected that the model can be extended to simulate some real biologic flows, such as blood flows in arteries, vessels with stenosises, aneurysms and bifurcations, etc.

  4. Stability characteristics of the open channel flow above the asymmetrical irregular sand ripples

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Sandy bed cannot keep its original smoothness as the flows pass. With the increase of the flow intensity, the bed forms will appear as sand ripples and dune in turn. Among these morphologies, the sand ripple scale is the smallest, which is generally symmetrical when it just appears, but as time goes on, the asymmetrical form gradually develops. Just because of this sand ripples asymmetry, it manifests the influence of the flow on the bed morphology and also the impact on the laminar flow dynamical process, especially the stability characteristics. The stability features of laminar flow on open channels with the asymmetrical sand ripples are discussed, and also the results on the symmetrical sand ripples are compared in detail.

  5. EXPERIMENTS ON FLOW AROUND A CYLINDER IN A SCOURED CHANNEL BED

    Institute of Scientific and Technical Information of China (English)

    I.ISTIARTO; W.H. GRAF

    2001-01-01

    The flow pattern around a cylinder, installed in a scoured channel bed, was experimentally investigated. Detailed measurements of the instantaneous 3D velocities were performed by using an Acoustic Doppler Velocity Profiler (ADVP), from which the profiles of the time-averaged velocities and turbulence stresses were obtained. It is shown that the influence of the cylinder and of the scour hole alters the approach flow; this is essentially confined to the vicinity of the cylinder and to the inside of the scour hole. The horseshoe vortex is measured as a flow reversal inside the scour hole, formed by the downward flow along the cylinder face and the reversed flow at the scour bed.

  6. MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing

    Institute of Scientific and Technical Information of China (English)

    Krishnendu Bhattacharyya; G.C.Layek

    2011-01-01

    @@ An analysis is carried out to study a steady magnetohydrodynamic(MHD) boundary layer How of an electrically conducting incompressible power-law non-Newtonian fluid through a divergent channel.The channel walls are porous and subjected to either suction or blowing of equal magnitude of the same kind of fluid on both walls.The fluid is permeated by a magnetic field produced by electric current along the line of intersection of the channel walls.The governing partial differential equation is transformed into a self-similar nonlinear ordinary differential equation using similarity transformations.The possibility of boundary layer flow in a divergent channel is analyzed with the power-law fluid model.The analysis reveals that the boundary layer flow (without separation) is possible for the case of the dilatant fluid model subjected to suitable suction velocity applied through its porous walls,even in the absence of a magnetic field.Further, it is found that the boundary layer flow is possible even in the presence of blowing for a suitable value of the magnetic parameter.It is found that the velocity increases with increasing values of the power-law index for the case of dilatant fluid.The effects of suction/blowing and magnetic field on the velocity are shown graphically and discussed physical尔

  7. Modeling of drag reduction in turbulent channel flow with hydrophobic walls by FVM method and weakly-compressible flow equations

    Institute of Scientific and Technical Information of China (English)

    Ling Li; Ming-Shun Yuan

    2011-01-01

    In this paper the effects of hydrophobic wall on skin-friction drag in the channel flow are investigated through large eddy simulation on the basis of weaklycompressible flow equations with the MacCormack's scheme on collocated mesh in the FVM framework. The slip length model is adopted to describe the behavior of the slip velocities in the streamwise and spanwise directions at the interface between the hydrophobic wall and turbulent channel flow. Simulation results are presented by analyzing flow behaviors over hydrophobic wall with the Smagorinky subgrid-scale model and a dynamic model on computational meshes of different resolutions. Comparison and analysis are made on the distributions of timeaveraged velocity, velocity fluctuations, Reynolds stress as well as the skin-friction drag. Excellent agreement between the present study and previous results demonstrates the accuracy of the simple classical second-order scheme in representing turbulent vertox near hydrophobic wall. In addition, the relation of drag reduction efficiency versus time-averaged slip velocity is established. It is also found that the decrease of velocity gradient in the close wall region is responsible for the drag reduction. Considering its advantages of high calculation precision and efficiency, the present method has good prospect in its application to practical projects.

  8. Experimental analysis of turbulence characteristics and flow conveyance effects in a vegetated channel

    Science.gov (United States)

    Termini, D.

    2009-04-01

    Natural rivers are characterized by a strong hydraulic and geomorphic complexity. Many studies conducted in this field (Malthus and Mumby, 2003; Muhar, 1996) show that the accurate estimation both of the river morphological changes and of local hydraulic characteristics of flow (i.e. the local flow velocities and water depths) is necessary for the restoration and protection of biodiversity. Vegetation is a key factor to analyze the interrelated system of flow, sediment transport, and morphodynamic in rivers (Tsujimoto, 1999; Maione et al., 2000). On one hand, some kind of species of vegetation affect the habitat conditions, being crucial to the maintenance of biodiversity (Larkum et al, 2004); on the other hand, effects of vegetation on flow velocity are significant and are of crucial importance for stabilizing sediments and reducing erosion along the channel. In particular, it has been generally agreed that vegetation increases flow resistance and modifies sediment transport and deposition (Tsujimoto et al., 1996; Yen 2002). The analysis of the hydrodynamic conditions in vegetated channels is complex because vegetation is flexible in varying degrees and it oscillates in the flow changing position. Furthermore, because of temporal changing of roughness due to natural vegetative growth, the response of vegetation to the flow can change in time. In this paper the flow over real flexible vegetation is experimentally studied. A 2D-ADV (Acoustic Doppler Velocimeter) is used to measure the local flow velocities, for different vegetation concentrations and varying the discharge and the flume slope. The influence of both vegetation concentration and depth/vegetation height ratio on the measured velocity profiles is analyzed. The comparison between the velocity distribution and the turbulence intensity distribution is also presented. The spectral analysis is operated in order to verify the formation of turbulence structures inside the vegetated layer and the flow conveyance

  9. Outer region scaling using the freestream velocity for nonuniform open channel flow over gravel

    Science.gov (United States)

    Stewart, Robert L.; Fox, James F.

    2017-06-01

    The theoretical basis for outer region scaling using the freestream velocity for nonuniform open channel flows over gravel is derived and tested for the first time. Owing to the gradual expansion of the flow within the nonuniform case presented, it is hypothesized that the flow can be defined as an equilibrium turbulent boundary layer using the asymptotic invariance principle. The hypothesis is supported using similarity analysis to derive a solution, followed by further testing with experimental datasets. For the latter, 38 newly collected experimental velocity profiles across three nonuniform flows over gravel in a hydraulic flume are tested as are 43 velocity profiles previously published in seven peer-reviewed journal papers that focused on fluid mechanics of nonuniform open channel over gravel. The findings support the nonuniform flows as equilibrium defined by the asymptotic invariance principle, which is reflective of the consistency of the turbulent structure's form and function within the expanding flow. However, roughness impacts the flow structure when comparing across the published experimental datasets. As a secondary objective, we show how previously published mixed scales can be used to assist with freestream velocity scaling of the velocity deficit and thus empirically account for the roughness effects that extend into the outer region of the flow. One broader finding of this study is providing the theoretical context to relax the use of the elusive friction velocity when scaling nonuniform flows in gravel bed rivers; and instead to apply the freestream velocity. A second broader finding highlighted by our results is that scaling of nonuniform flow in gravel bed rivers is still not fully resolved theoretically since mixed scaling relies to some degree on empiricism. As researchers resolve the form and function of macroturbulence in the outer region, we hope to see the closing of this research gap.

  10. Camassa-Holm Equations as a Closure Model for Turbulent Channel and Pipe Flow

    CERN Document Server

    Chen, S; Holm, D D; Olson, E; Titi, E S; Wynne, S N; Chen, Shiyi; Foias, Ciprian; Holm, Darryl D.; Olson, Eric; Titi, Edriss S.; Wynne, Shannon

    1998-01-01

    We propose the viscous Camassa-Holm equations as a closure approximation for the Reynolds-averaged equations of the incompressible Navier-Stokes fluid. This approximation is tested on turbulent channel flows with steady mean. Analytical solutions for the mean velocity and the Reynolds shear stress across the entire channel are obtained, showing good agreement with experimental measurements and direct numerical simulations. As Reynolds number varies, these analytical mean velocity profiles form a family of curves whose envelopes are shown to have either power law, or logarithmic behavior, depending on the choice of drag law.

  11. The Mathematical Analysis for Peristaltic Flow of Hyperbolic Tangent Fluid in a Curved Channel

    Institute of Scientific and Technical Information of China (English)

    S.Nadeem; E.N.Maraj

    2013-01-01

    In the present paper,we have investigated the peristaltic flow of hyperbolic tangent fluid in a curved channel.The governing equations of hyperbolic tangent fluid model for curved channel are derived including the effects of curvature.The highly nonlinear partial differential equations are simplified by using the wave frame transformation,long wave length and low Reynolds number assumptions.The reduced nonlinear partial differential equation is solved analytically with the help of homotopy perturbation method (HPM).The physical features of pertinent parameters have been discussed by plotting the graphs of pressure rise and stream functions.

  12. Peristaltic flow in an asymmetric channel with convective boundary conditions and Joule heating

    Institute of Scientific and Technical Information of China (English)

    Abbasi Fahad Munir; Hayat Tasawar; Ahmad Bashir

    2014-01-01

    The peristaltic transport of viscous fluid in an asymmetric channel is concentrated. The channel walls exhibit convective boundary conditions. Both cases of hydrodynamic and magnetohydrodynamic (MHD) fluids are considered. Mathematical analysis has been presented in a wave frame of reference. The resulting problems are non-dimensionalized. Long wavelength and low Reynolds number approximations are employed. Joule heating effect on the thermal equation is retained. Analytic solutions for stream function and temperature are constructed. Numerical integration is carried out for pressure rise per wavelength. Effects of influential flow parameters have been pointed out through graphs.

  13. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels (Poster)

    OpenAIRE

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    2016-01-01

    One means of increasing the hydrogen yield to cost ratio of a PEM water electrolyser, is to increase the operating current density. However, at high current densities (higher than 1 A/cm2), management of heat and mass transfer in the anode current collector and channel becomes crucial and can lead to hot spots. Management of heat and fluid flow through the micro-channels play a great role in the capability of PEM water electrolysis when working at high current densities. Despite, many studies...

  14. SOME NEW DATA AND FORMULAS FOR RESISTANCE FLOW IN FLUVIAL OPEN CHANNELS

    Institute of Scientific and Technical Information of China (English)

    YANG Sheng-fa; HU Jiang; LI Dan-xun; WANG Xing-kui; GUO Yakun

    2011-01-01

    Flow resistance in fluvial open channels,especially in steep gravel-bed channels,still presents challenges to researchers and engineers.This article presents some new data from both the flume experiments and field measurements.Data analysis using the divided hydraulic radius approach shows that the relative roughness plays a significant role in the bed form resistance.A new set of formulas that incorporate the relative roughness are proposed.As compared with several existing formulas,the proposed formulas can be used to better estimate the bed form resistance.

  15. NUMERICAL STUDY ON TURBULENT COUNTER-GRADIENT-TRANSPORT PHENOMENA IN ASYMMETRIC TURBULENT CHANNEL FLOW

    Institute of Scientific and Technical Information of China (English)

    Wang Li-bing; Liu Yu-lu; Qiu Xiang

    2003-01-01

    In this paper, the turbulence characteristics were numerically investigated in an asymmetric turbulent channel flow and the computational results were compared with the relevant experimental data. It shows that the results are consistent with the experiments and there exist Counter-Gradient Momentum Transport(CGMT) phenomena in the central region near the smooth wall, and this region is as large as 6 percent of the channel width. In addition, a region, in which Counter-Gradient-Transport (CGT) phenomena occur more evidently, is found close to the rough wall. These results can help to gain a deeper insight into the mechanism of CGT phenomena.

  16. Triple-deck analysis of transonic high Reynolds number flow through slender channels.

    Science.gov (United States)

    Kluwick, A; Kornfeld, M

    2014-07-28

    In this work, laminar transonic weakly three-dimensional flows at high Reynolds numbers in slender channels, as found in microsupersonic nozzles and turbomachines of micro-electro-mechanical systems, are considered. The channel height is taken so small that the viscous wall layers forming at the channel walls start to interact strongly rather than weakly with the inviscid core flow and, therefore, the classical boundary layer approach fails. The resulting viscous-inviscid interaction problem is formulated using matched asymptotic expansions and found to be governed by a triple-deck structure. As a consequence, the properties of the predominantly inviscid core region and the viscous wall layers have to be calculated simultaneously in the interaction region. Weakly three-dimensional effects caused by surface roughness, upstream propagating flow perturbations, boundary layer separation as well as bifurcating solutions are discussed. Representative results for subsonic as well as supersonic conditions are presented, and the importance of these flow phenomena in technical applications as, for example, a means to reduce shock losses through the use of deformed geometry is addressed.

  17. Wavenumber selection for small-wavelength Goertler vortices in curved channel flows

    Science.gov (United States)

    Dando, Andrew; Hall, Philip

    1995-04-01

    The problem of wavenumber selection for fully nonlinear, small-wavelength Goertler vortices in a curved channel flow is considered. These types of Goertler vortices were first considered by Hall & Lakin (1988) for an external boundary layer flow. They proved particularly amenable to asymptotic description, it was possible to consider vortices large enough so that the mean flow correction driven by them is as large as the basic state, and this prompted the authors to consider them in a curved channel flow as an initial application of the phase-equation approach to Goertler vortices. This involves the assumption that the phase variable of these Goertler vortices varies on slow spanwise and time scales, then an analysis of both inside and outside the core region, to which vortex activity is restricted, leads to a system of partial differential equations which can be solved numerically for the wavenumber. The authors consider in particular the effect on the wavenumber of the outer channel wall varying on the same slow spanwise scale as the phase variable.

  18. A Modified Time Advancement Algorithm for Optimizing Channel Flow Analysis in Direct Numerical Simulation Method

    Directory of Open Access Journals (Sweden)

    E. Rajabi

    2014-01-01

    Full Text Available In this research a direct numerical simulation (DNS of turbulent flow is performed in a geometrically standard case like plane channel flow. Pseudo spectral (PS method is used due to geometry specifications and very high accuracy achieved despite relatively few grid points. A variable time-stepping algorithm is proposed which may reduce requirement of computational cost in simulation of such wall-bounded flow. Channel flow analysis is performed with both constant and varied time-step for 128 × 65×128 grid points. The time advancement is carried out by implicit third-order backward differentiation scheme for linear terms and explicit forward Euler for nonlinear convection term. PS method is used in Cartesian coordinates with Chebychev polynomial expansion in normal direction for one non-periodic boundary condition. Also Fourier series is employed in stream-wise and span-wise directions for two periodic boundary conditions. The friction Reynolds number is about Reτ=175 based on a friction velocity and channel half width. Standard common rotational form was chosen for discritization of nonlinear convective term of Navier-Stocks equation. The comparison is made between turbulent quantities such as the turbulent statistics, Reynolds stress, wall shear velocity, standard deviation of (u and total normalized energy of instantaneous velocities in both time-discretization methods. The results show that if final decision rests on economics, the proposed variable time-stepping algorithm will be proper choice which satisfies the accuracy and reduces the computational cost.

  19. NUMERICAL SIMULATION OF DROP MIGRATION IN CHANNEL FLOW UNDER ZERO-GRAVITY

    Institute of Scientific and Technical Information of China (English)

    LIU Tao; LU Xiyun

    2004-01-01

    The migration of deformable drops in the channel flow neglecting the gravity influence is investigated numerically by solving the incompressible Navier-Stokes equations using the finitedifference method coupled with the front-tracking technique. The objectives of this study are to examine the effectiveness of the present approach for predicting the migration of drops in a shear flow and to investigate the behavior of the drop migration in the channel flow under zero-gravity. To validate the present calculation, some typical results are compared with available computational and theoretical data, which confirms that the present approach is reliable in predicting the drop migration.With respect to the drop migration in the channel flow at finite Reynolds numbers, the drops either move to an equilibrium lateral position or undergo an oscillatory motion under different conditions.The effects of some typical parameters, e.g., the Reynolds number, the Weber number, the viscosity ratio and the density ratio of the drop fluid to the suspending medium, and the drop size, on the migration of drops are discussed and analyzed.

  20. On the turbulent flow around water turbines placed in an open channel: an experimental study

    Science.gov (United States)

    Sotiropoulos, F.; Chamorro, L. P.; Arndt, R.

    2010-12-01

    A growing interest in water turbines (using tidal, river, marine currents) has been observed during the last few years. Fundamental understanding of the turbulent flow around the water turbines is crucial to predict the potential effects of these structures on the local morphology, water flow and power available in the current, among others. In this study, a series of model water turbines (single and an aligned array) of 50 cm rotor diameter were placed in the main channel of the Saint Anthony Falls Laboratory at the University of Minnesota. The main channel is approx 2.5 m wide, 1.8 m height and 85 m long. Flow around the water turbines were analyzed under subcritical conditions. Turbine hub heights coincided with the channel mid height. A series of acoustic Doppler anemometers (ADV) were used to obtain 3 velocity components of the flow at a rate of 200 Hz. Selected streamwise and spanwise vertical planes were measured to describe the kinematics around the water turbines. Potential interactions with the lateral walls were also addressed. High order statistics (mean velocity, turbulence intensities and Reynolds stresses) as well as two point correlations and spectra were computed to infer fundamental differences and similitude with their counterparts, the wind turbines.

  1. Investigation of a corrugated channel flow with an open source PIV software

    Directory of Open Access Journals (Sweden)

    Sivas Deniz

    2016-01-01

    Full Text Available In this study, the corrugated channel flow was investigated by using an open-source particle image velocimetry (PIV software. The open-source software called OpenPIV was first verified by using images of an earlier experimental work of a vortex ring formation. The corrugated channel flow images were taken with 200 W power LED light source and a high speed camera and those images were analysed with these spatial and temporal tools of OpenPIV. Laminar, transient and turbulent flow regimes were identified when Reynolds number was below 1100, in between 1100 and 2000 and higher than 2000, respectively. The velocity vectors were found to be about 20% lower than the previous study results. The flow inside the grooves was also investigated with OpenPIV and flow characteristics at the grooves were captured when interrogation window size was lowered. The visualization of the flow was presented for different Reynolds numbers with the relative scale values. As a result of this study, OpenPIV software was determined as promising open source PIV analysis software.

  2. Investigation of bio-inspired flow channel designs for bipolar plates in proton exchange membrane fuel cells

    Science.gov (United States)

    Kloess, Jason P.; Wang, Xia; Liu, Joan; Shi, Zhongying; Guessous, Laila

    Proton exchange membrane (PEM) fuel cell performance is directly related to the flow channel design on bipolar plates. Power gains can be found by varying the type, size, or arrangement of channels. The objective of this paper is to present two new flow channel patterns: a leaf design and a lung design. These bio-inspired designs combine the advantages of the existing serpentine and interdigitated patterns with inspiration from patterns found in nature. Both numerical simulation and experimental testing have been conducted to investigate the effects of two new flow channel patterns on fuel cell performance. From the numerical simulation, it was found that there is a lower pressure drop from the inlet to outlet in the leaf or lung design than the existing serpentine or interdigitated flow patterns. The flow diffusion to the gas diffusion layer was found be to more uniform for the new flow channel patterns. A 25 cm 2 fuel cell was assembled and tested for four different flow channels: leaf, lung, serpentine and interdigitated. The polarization curve has been obtained under different operating conditions. It was found that the fuel cell with either leaf or lung design performs better than the convectional flow channel design under the same operating conditions. Both the leaf and lung design show improvements over previous designs by up to 30% in peak power density.

  3. Investigation of bio-inspired flow channel designs for bipolar plates in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kloess, Jason P. [Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI (United States); Wang, Xia; Shi, Zhongying; Guessous, Laila [Department of Mechanical Engineering, Oakland University, Rochester, MI 48309 (United States); Liu, Joan [Department of Mechanical Engineering, Olin College of Engineering, MA (United States)

    2009-03-01

    Proton exchange membrane (PEM) fuel cell performance is directly related to the flow channel design on bipolar plates. Power gains can be found by varying the type, size, or arrangement of channels. The objective of this paper is to present two new flow channel patterns: a leaf design and a lung design. These bio-inspired designs combine the advantages of the existing serpentine and interdigitated patterns with inspiration from patterns found in nature. Both numerical simulation and experimental testing have been conducted to investigate the effects of two new flow channel patterns on fuel cell performance. From the numerical simulation, it was found that there is a lower pressure drop from the inlet to outlet in the leaf or lung design than the existing serpentine or interdigitated flow patterns. The flow diffusion to the gas diffusion layer was found be to more uniform for the new flow channel patterns. A 25 cm{sup 2} fuel cell was assembled and tested for four different flow channels: leaf, lung, serpentine and interdigitated. The polarization curve has been obtained under different operating conditions. It was found that the fuel cell with either leaf or lung design performs better than the convectional flow channel design under the same operating conditions. Both the leaf and lung design show improvements over previous designs by up to 30% in peak power density. (author)

  4. Two-phase flow characteristics across sudden expansion in small rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ing Youn [Mechanical Engineering Department, National Yunlin University of Science and Technology, Yunlin 640 (China); Liu, Chung-Che; Chien, Kuo-Hsiang; Wang, Chi-Chuan [D100, Energy and Environment Research Laboratories, Industrial Technology Research Institute, Bldg. 64, 195-6 Section 4, Chung Hsing Road, Chutung, Hsinchu 310 (China)

    2007-11-15

    This study examines the two-phase flow pattern change and frictional pressure loss pertaining to the sudden flow area expansion from a small diameter tube into small rectangular channels. It is found that a unique flow pattern ''liquid jet-like flow pattern'' occurs at a very low quality region of G=100kg/ m{sup 2} s in a test section of 3mm x 9mm. This flow pattern is almost inconceivable for the 3mm x 6mm test section. The pressure difference usually increases with vapor quality but a setback is encountered provided that the liquid jet flow pattern prevails. A phenomenal observation suggests that a conceivable reduction of the pressure difference is related to the liquid jet-like flow pattern, yet a flat or level-off of the pressure difference is seen when the liquid jet-like flow is less pronounced. By contrast, an appreciable increase of pressure difference is seen when the liquid jet-like flow pattern is completely gone. The measured pressure differences are compared with existing correlations/models, whereas none of them gives satisfactory predictions against the present data. It is found that a slight modification to the empirical constant K of Wadle's correlation may give rise to a fair improvement of the predictive ability. (author)

  5. Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors.

    Science.gov (United States)

    Croze, Ottavio A; Sardina, Gaetano; Ahmed, Mansoor; Bees, Martin A; Brandt, Luca

    2013-04-06

    Shear flow significantly affects the transport of swimming algae in suspension. For example, viscous and gravitational torques bias bottom-heavy cells to swim towards regions of downwelling fluid (gyrotaxis). It is necessary to understand how such biases affect algal dispersion in natural and industrial flows, especially in view of growing interest in algal photobioreactors. Motivated by this, we here study the dispersion of gyrotactic algae in laminar and turbulent channel flows using direct numerical simulation (DNS) and a previously published analytical swimming dispersion theory. Time-resolved dispersion measures are evaluated as functions of the Péclet and Reynolds numbers in upwelling and downwelling flows. For laminar flows, DNS results are compared with theory using competing descriptions of biased swimming cells in shear flow. Excellent agreement is found for predictions that employ generalized Taylor dispersion. The results highlight peculiarities of gyrotactic swimmer dispersion relative to passive tracers. In laminar downwelling flow the cell distribution drifts in excess of the mean flow, increasing in magnitude with Péclet number. The cell effective axial diffusivity increases and decreases with Péclet number (for tracers it merely increases). In turbulent flows, gyrotactic effects are weaker, but discernable and manifested as non-zero drift. These results should have a significant impact on photobioreactor design.

  6. Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors

    Science.gov (United States)

    Croze, Ottavio A.; Sardina, Gaetano; Ahmed, Mansoor; Bees, Martin A.; Brandt, Luca

    2013-01-01

    Shear flow significantly affects the transport of swimming algae in suspension. For example, viscous and gravitational torques bias bottom-heavy cells to swim towards regions of downwelling fluid (gyrotaxis). It is necessary to understand how such biases affect algal dispersion in natural and industrial flows, especially in view of growing interest in algal photobioreactors. Motivated by this, we here study the dispersion of gyrotactic algae in laminar and turbulent channel flows using direct numerical simulation (DNS) and a previously published analytical swimming dispersion theory. Time-resolved dispersion measures are evaluated as functions of the Péclet and Reynolds numbers in upwelling and downwelling flows. For laminar flows, DNS results are compared with theory using competing descriptions of biased swimming cells in shear flow. Excellent agreement is found for predictions that employ generalized Taylor dispersion. The results highlight peculiarities of gyrotactic swimmer dispersion relative to passive tracers. In laminar downwelling flow the cell distribution drifts in excess of the mean flow, increasing in magnitude with Péclet number. The cell effective axial diffusivity increases and decreases with Péclet number (for tracers it merely increases). In turbulent flows, gyrotactic effects are weaker, but discernable and manifested as non-zero drift. These results should have a significant impact on photobioreactor design. PMID:23407572

  7. Effective slip for flow through a channel bounded by lubricant-impregnated grooved surfaces

    Science.gov (United States)

    Sun, Rui; Ng, Chiu-On

    2017-04-01

    This study aims to investigate effective slip arising from pressure-driven flow through a slit channel bounded by lubricant-impregnated grooved surfaces. The problem for flow over longitudinal grooves is solved analytically using the methods of domain decomposition and eigenfunction expansion, while that for flow over transverse grooves is solved numerically using the front tracking method. It is found that the effective slip length and the lubricant flow rate can depend strongly on the geometry of the microstructure, the direction of flow, and the lubricant viscosity. In particular, the effective slip can be effectively enhanced by increasing the thickness of a lubricating film atop the ribs. Under the same conditions, a flow that is parallel to the lubricant-impregnated grooves will have a larger effective slip, but also a larger lubricant flow rate, when compared with the case of flow normal to the grooves. It is also shown that, in the case of transverse grooves, because of the downward displacement of the interface between the working/lubricating fluids, the effective slip length and lubricant flow rate may vary non-monotonically with the groove depth.

  8. Two-Layer Coding Rate Optimization in Relay-Aided Systems

    DEFF Research Database (Denmark)

    Sun, Fan

    2011-01-01

    We consider a three-node transmission system, where a source node conveys a data block to a destination node with the help of a half-duplex decode and-forward (DF) relay node. The whole data block is transmitted as a sequence of packets. For reliable transmission in the three-node system, a two......-layer coding scheme is proposed, where physical layer channel coding is utilized within each packet for error-correction and random network coding is applied on top of channel coding for network error-control. There is a natural tradeoff between the physical layer coding rate and the network coding rate given...... requirement. Numerical results are also provided to show the optimized physical layer coding and network coding rate pairs in different system scenarios....

  9. Theories of multiple equilibria and weather regimes : A critical reexamination. II - Baroclinic two-layer models

    Science.gov (United States)

    Cehelsky, Priscilla; Tung, Ka Kit

    1987-01-01

    Previous results based on low- and intermediate-order truncations of the two-layer model suggest the existence of multiple equilibria and/or multiple weather regimes for the extratropical large-scale flow. The importance of the transient waves in the synoptic scales in organizing the large-scale flow and in the maintenance of weather regimes was emphasized. The result shows that multiple equilibria/weather regimes that are present in lower-order models examined disappear when a sufficient number of modes are kept in the spectral expansion of the solution to the governing partial differential equations. Much of the chaotic behavior of the large-scale flow that is present in intermediate-order models is now found to be spurious. Physical reasons for the drastic modification are offered. A peculiarity in the formulation of most existing two-layer models is noted that also tends to exaggerate the importance of baroclinic processes and increase the degree of unpredictability of the large-scale flow.

  10. NUMERICAL SIMULATION OF HEAD-CUT WITH A TWO-LAYERED BED

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Gully erosion is one of the main causes of top soil loss, land deterioration and sources of sediment deposition in streams. Headcut often occurs in the gully erosion process when erodability of the soil layers varies, and the gully cuts through a hard layer at a point. A scouring hole appears downstream of the head cut which migrates upstream due to strong erosion in the scour hole. This paper presents numerical analyses of turbulent flow and sediment transport processes of a head-cut associated with a two-layer soil stratigraphic formation. The flow in the scour hole is three-dimensional induced by the water jet from the brink of the top layer; the sediment transport model considers sediment entrainment by the impinging jet, erosion underneath the hard layer and the retreat of the brink of the hard layer. The 3D flow simulation in the scour hole and the scouring process was verified with physical model data. The two-layer head cut migration is simulated with different flow and soil parameters, the trends of the simulated results reasonably revealed contributions of these parameters to the scouring and migration process.

  11. Channel geometry change of a first-order stream after a small debris flow in Ashio Mountains of central Japan

    Science.gov (United States)

    Hattanji, T.; Wasklewicz, T.

    2006-12-01

    We examined geometry change of a steep first-order channel with a laserscanner before and after a small debris flow. The study site is located in chert area, Ashio Mountains, Japan. On August 12, 2005, a 20-year storm event with maximum 1-hour rainfall of 75.4 mm/h triggered a small landslide at a steep channel head. The sliding material moved as a debris flow along the first-order channel (C3) to the mouth. We successfully measured high-resolution channel topography with the Leica Geosystems High-Definition Surveying Laser Scanner before (April 30) and after the debris-flow event (October 9-11). Width, depth and other related parameters were measured for 30 selected cross sections. Bankfull stage of this first-order channel after the debris-flow event is much higher than two-year flood stage. The magnitude of channel geometry change varies non-linearly in downstream direction. The non-linear variability is attributed to differences in stream bed and bank characteristics. Bedrock-channel reach is less impacted by the debris flow. The largest magnitude changes in the channel geometry parameters occur along colluvially confined channel reaches.

  12. The coefficientof hydraulic friction of laminar open flows in smooth channels

    Directory of Open Access Journals (Sweden)

    Borovkov Valeriy Stepanovich

    2015-05-01

    Full Text Available The article examines the dependence of the hydraulic friction coefficient of open laminar uniform streams on the relative width of channels with smooth bottom. The article presents the functional dependence that describes the hydraulic resistance in open channels with smooth bottoms.The experiments were carried out in a rectangular tray (6000×100×200. Aqueous solutions of glycerol were used as working fluids. The superficial tension and liquid density for the used liquids changed a little. The article declares that the coefficient of hydraulic friction λ in the zone of the laminar flow depends on the relative width of the channels with smooth bottom. In the article it is also shown that the Charny formula satisfactorily agrees with the theoretical formula and with the experimental data.

  13. An exact solution for Stokes flow in a channel with arbitrarily large wall permeability

    CERN Document Server

    Herschlag, Gregory J; Layton, Anita T

    2014-01-01

    We derive an exact solution for Stokes flow in an in a channel with permeable walls. We assume that at the channel walls, the normal component of the fluid velocity is described by Darcy's law and the tangential component of the fluid velocity is described by the no slip condition. The pressure exterior to the channel is assumed to be constant. Although this problem has been well studied, typical studies assume that the permeability of the wall is small relative to other non-dimensional parameters; this work relaxes this assumption and explores a regime in parameter space that has not yet been well studied. A consequence of this relaxation is that transverse velocity is no longer necessarily small when compared with the axial velocity. We use our result to explore how existing asymptotic theories break down in the limit of large permeability.

  14. AN INVESTIGATION OF TURBULENT HEAT TRANSFER IN CHANNEL FLOWS BY LARGE EDDY SIMULATION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Large Eddy Simulation (LES) of fully developed turbulent channel flow with heat transfer was performed to investigate the effects of the Reynolds number on the turbulence behavior. In the present study, the bottom wall of the channel was cooled and the top wall was heated. The Reynolds numbers, based on the central mean-velocity and the half-width of the channel, were chosen as 4000, 6000, 104 and 2×104, and the Prandtl number as 1.0. To validate our calculations, the present results were compared with available data obtained by Direct Numerical Simulation (DNS), which proves to be in good agreement with each other. To reveal the effects of the Reynolds number, some typical quantities, including the velocity fluctuations, temperature fluctuation, heat fluxes and turbulent Prandtl number, were studied.

  15. Effect of gas channel height on gas flow and gas diffusion in a molten carbonate fuel cell stack

    Science.gov (United States)

    Hirata, Haruhiko; Nakagaki, Takao; Hori, Michio

    An investigation is made of the relationships between the gas channel height, the gas-flow characteristics, and the gas-diffusion characteristics in a plate heat-exchanger type molten carbonate fuel cell stack. Effects of the gas channel height on the uniformity and pressure loss of the gas flow are evaluated by numerical analysis using a computational fluid dynamics code. The effects of the gas channel height on the distribution of the reactive gas concentration in the direction perpendicular to the channel flow are evaluated by an analytical solution of the two-dimensional concentration transport equation. Considering the results for uniformity and pressure loss of the gas flow, and for distribution of the reactive gas concentration, the appropriate gas channel height in the molten carbonate fuel cell stack is investigated.

  16. A two-layer optimization model for high-speed railway line planning

    Institute of Scientific and Technical Information of China (English)

    Li WANG; Li-min JIA; Yong QIN; Jie XU; Wen-ring MO

    2011-01-01

    Line planning is the first important strategic element in the railway operation planning process,which will directly affect the successive planning to determine the efficiency of the whole railway system.A two-layer optimization model is proposed within a simulation framework to deal with the high-speed railway (HSR) line planning problem.In the model,the top layer aims at achieving an optimal stop-schedule set with the service frequencies,and is formulated as a nonlinear program,solved by genetic algorithm.The objective of top layer is to minimize the total operation cost and unserved passenger volume.Given a specific stop-schedule,the bottom layer focuses on weighted passenger flow assignment,formulated as a mixed integer program with the objective of maximizing the served passenger volume and minimizing the total travel time for all passengers.The case study on Taiwan HSR shows that the proposed two-layer model is better than the existing techniques.In addition,this model is also illustrated with the Beijing-Shanghai HSR in China.The result shows that the two-layer optimization model can reduce computation complexity and that an optimal set of stop-schedules can always be generated with less calculation time.

  17. Two-Layer Feedback Neural Networks with Associative Memories

    Institute of Scientific and Technical Information of China (English)

    WU Gui-Kun; ZHAO Hong

    2008-01-01

    We construct a two-layer feedback neural network by a Monte Carlo based algorithm to store memories as fixed-point attractors or as limit-cycle attractors. Special attention is focused on comparing the dynamics of the network with limit-cycle attractors and with fixed-point attractors. It is found that the former has better retrieval property than the latter. Particularly, spurious memories may be suppressed completely when the memories are stored as a long-limit cycle. Potential application of limit-cycle-attractor networks is discussed briefly.

  18. Baroclinic instability in the two-layer model. Interpretations

    Energy Technology Data Exchange (ETDEWEB)

    Egger, Joseph [Meteorological Inst., Univ. of Munich (Germany)

    2009-10-15

    Two new interpretations of the wellknown instability criterion of the two-layer model of baroclinic instability are given whereby also a slight generalization of this model is introduced by admitting an interface on top with a reduced gravity g. It is found that instability sets in when the horizontal potential temperature advection by the barotropic mode becomes more important than the vertical temperature advection due to this mode. The second interpretation is based on potential vorticity (PV) thinking. Instability implies a dominance of the vertical PV coupling coefficient compared to horizontal mean state PV advection generated at the same level. The interface damps with decreasing g. (orig.)

  19. Interference testing of a two-layer commingled reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Onur, M.; Reynolds, A.C. (Tulsa Univ., OK (USA))

    1989-12-01

    A two-well system in an infinite-acting, commingled, two-layer reservoir is considered. One well, the active well, is produced at a constant total rate, and the second well, the observation well, is shut in at all times. An analytical solution in Laplace space is presented, and the parametric groups that uniquely determine the pressure and rate solutions are identified. Results regarding crossflow through the observation well are presented. Conditions under which the line-source solution can be used to analyze observations-well pressure data are delineated.

  20. Stability of fluid flow through deformable tubes and channels: An overview

    Indian Academy of Sciences (India)

    V Shankar

    2015-05-01

    The aim of this paper is to provide a systematic overview of the study of instabilities in flow past deformable solid surfaces, with particular emphasis on internal flows through tubes and channels. The subject is certainly more than five decades old, and arguably began with Kramer’s pioneering experiments on drag reduction by compliant surfaces. This was immediately followed by the theoretical studies of Benjamin and Landhal in the early 1960s. Most earlier theoretical studies were focused on stability of external flows such as boundary layers, and used relatively simple wall models composed of spring-backed plates. There has been a resurgence in the field since the mid-1980s, and more attention was focused on internal flows through deformable tubes and channels. The wall deformation was described by both phenomenological spring-backed plate models and continuum linear viscoelastic solid models. All these studies predict several types of instabilities in flow past deformable surfaces. This paper will attempt to place the various theoretical results in perspective, and to classify the instabilities predicted by various studies. Recent studies have also emphasized the importance of using a frame-invariant constitutive model, such as the neo-Hookean model, for the solid deformation. Until recently, however, the field has been dominated by theoretical and numerical studies, with very little experimental observations to corroborate the theoretical predictions. Recent experiments in flow through deformable tubes and channels indeed show instability at Reynolds number much lower than their rigid counterparts, and the experimental observations are in qualitative agreement with some of the theoretical predictions. There have also been a few studies on the non-linear aspects of the instability using the weakly non-linear formulation to determine the nature of the bifurcation at the linear instability. A brief discussion on weakly nonlinear analyses is also provided in