Quantum Entanglement in the Two Impurity Kondo Model
Cho, S Y; Cho, Sam Young; Kenzie, Ross H. Mc
2005-01-01
In order to quantify quantum entanglement in two impurity Kondo systems, we calculate the concurrence, negativity, and von Neumann entropy. The entanglement of the two Kondo impurities is shown to be determined by two competing many-body effects, the Kondo effect and the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, $I$. Due to the spin-rotational invariance of the ground state, the concurrence and negativity are uniquely determined by the spin-spin correlation between the impurities. It is found that there exists a critical minimum value of the antiferromagnetic correlation between the impurity spins which is necessary for entanglement of the two impurity spins. The critical value is discussed in relation with the unstable fixed point in the two impurity Kondo problem. Specifically, at the fixed point there is no entanglement between the impurity spins. Entanglement will only be created (and quantum information processing (QIP) be possible) if the RKKY interaction exchange energy, $I$, is at least severa...
Lateral manipulation and interplay of local Kondo resonances in a two-impurity Kondo system
Energy Technology Data Exchange (ETDEWEB)
Ren, Jindong; Wu, Xu; Guo, Haiming, E-mail: hmguo@iphy.ac.cn; Pan, Jinbo; Du, Shixuan; Gao, Hong-Jun [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Luo, Hong-Gang [Center for Interdisciplinary Studies and Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou University, Lanzhou 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China)
2015-08-17
The atomic-scale spatial relationship of a two-impurity Kondo system has been determined at varying lateral distance by scanning tunneling microscopy (STM) and spectroscopy. The localized spins of two cobalt magnetic adatoms that are placed on different electrodes of an STM form two individual Kondo singlet states, each showing quite different Kondo coupling, i.e., the tip-Kondo with low Kondo temperature and the sample-Kondo with high Kondo temperature. The differential conductance dI/dV spectra show the continuous changes of the resonance peak feature when approaching the Kondo tip laterally to the local sample-Kondo impurity on the surface. The result indicates a notable interplay between these two Kondo systems. We propose a convolution model based on the q factor of the sample-Kondo (q{sub s}) and tip-Kondo (q{sub t}) to interpret the change of various tunneling channels and the evolution of the experimental spectra.
Schwinger boson approach to the fully screened Kondo model.
Rech, J; Coleman, P; Zarand, G; Parcollet, O
2006-01-13
We apply the Schwinger boson scheme to the fully screened Kondo model and generalize the method to include antiferromagnetic interactions between ions. Our approach captures the Kondo crossover from local moment behavior to a Fermi liquid with a nontrivial Wilson ratio. When applied to the two-impurity model, the mean-field theory describes the "Varma-Jones" quantum phase transition between a valence bond state and a heavy Fermi liquid.
A Maximally Supersymmetric Kondo Model
Energy Technology Data Exchange (ETDEWEB)
Harrison, Sarah; Kachru, Shamit; Torroba, Gonzalo; /Stanford U., Phys. Dept. /SLAC
2012-02-17
We study the maximally supersymmetric Kondo model obtained by adding a fermionic impurity to N = 4 supersymmetric Yang-Mills theory. While the original Kondo problem describes a defect interacting with a free Fermi liquid of itinerant electrons, here the ambient theory is an interacting CFT, and this introduces qualitatively new features into the system. The model arises in string theory by considering the intersection of a stack of M D5-branes with a stack of N D3-branes, at a point in the D3 worldvolume. We analyze the theory holographically, and propose a dictionary between the Kondo problem and antisymmetric Wilson loops in N = 4 SYM. We perform an explicit calculation of the D5 fluctuations in the D3 geometry and determine the spectrum of defect operators. This establishes the stability of the Kondo fixed point together with its basic thermodynamic properties. Known supergravity solutions for Wilson loops allow us to go beyond the probe approximation: the D5s disappear and are replaced by three-form flux piercing a new topologically non-trivial S3 in the corrected geometry. This describes the Kondo model in terms of a geometric transition. A dual matrix model reflects the basic properties of the corrected gravity solution in its eigenvalue distribution.
Superconductivity in the Kondo lattice model
Energy Technology Data Exchange (ETDEWEB)
Bodensiek, Oliver; Pruschke, Thomas [Institute for Theoretical Physics, University of Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Zitko, Rok [Institute for Theoretical Physics, University of Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)
2011-07-01
We study the Kondo lattice model with an additional attractive interaction among the conduction-band electrons by means of dynamical mean-field theory in combination with the numerical renormalization group method. In the normal phase we observe a strong dependency of the low-energy scale on the attractive interaction. Thus, there exists a delicate interplay between the attractive interaction and the antiferromagnetic Kondo exchange, which results in a critical interaction, above of which the Fermi surface collapses because the spins become effectively decoupled from the conduction electrons. Additionally, we allow for a s-wave superconducting phase, which appears to be split at the point of the underlying Fermi surface collapse. We discuss the interplay between attractive interaction an Kondo exchange and its pertinence to phonons in heavy fermion physics.
Transport properties of fully screened Kondo models
Hörig, Christoph B M; Mora, Christophe; Schuricht, Dirk
2014-01-01
We study the nonequilibrium transport properties of fully (exactly) screened Kondo quantum dots subject to a finite bias voltage or a finite temperature. First, we calculate the Fermi-liquid coefficients of the conductance for models with arbitrary spin, i.e., its leading behavior for small bias vol
The Correlated Kondo-lattice Model
Kienert, J.; Santos, C.; Nolting, W.
2003-01-01
We investigate the ferromagnetic Kondo-lattice model (FKLM) with a correlated conduction band. A moment conserving approach is proposed to determine the electronic self-energy. Mapping the interaction onto an effective Heisenberg model we calculate the ordering of the localized spin system self-consistently. Quasiparticle densities of states (QDOS) and the Curie temperature are calculated. The band interaction leads to an upper Hubbard peak and modifies the magnetic stability of the FKLM.
Entanglement Entropy in a Holographic Kondo Model
Erdmenger, Johanna; Hoyos, Carlos; Newrzella, Max-Niklas; Wu, Jackson M S
2015-01-01
We calculate entanglement and impurity entropies in a recent holographic model of a magnetic impurity interacting with a strongly coupled system. There is an RG flow to an IR fixed point where the impurity is screened, leading to a decrease in impurity degrees of freedom. This information loss corresponds to a volume decrease in our dual gravity model, which consists of a codimension one hypersurface embedded in a BTZ black hole background in three dimensions. There are matter fields defined on this hypersurface which are dual to Kondo field theory operators. In the large N limit, the formation of the Kondo cloud corresponds to the condensation of a scalar field. The entropy is calculated according to the Ryu-Takayanagi prescription. This requires to determine the backreaction of the hypersurface on the BTZ geometry, which is achieved by solving the Israel junction conditions. We find that the larger the scalar condensate gets, the more the volume of constant time slices in the bulk is reduced, shortening the...
Universal low-temperature crossover in two-channel Kondo models
Mitchell, Andrew K.; Sela, Eran
2012-06-01
An exact expression is derived for the electron Green function in two-channel Kondo models with one and two impurities, describing the crossover from non-Fermi liquid (NFL) behavior at intermediate temperatures to standard Fermi liquid (FL) physics at low temperatures. Symmetry-breaking perturbations generically present in experiment ensure the standard low-energy FL description, but the full crossover is wholly characteristic of the unstable NFL state. Distinctive conductance lineshapes in quantum dot devices should result. We exploit a connection between this crossover and one occurring in a classical boundary Ising model to calculate real-space electron densities at finite temperature. The single universal finite-temperature Green function is then extracted by inverting the integral transformation relating these Friedel oscillations to the t matrix. Excellent agreement is demonstrated between exact results and full numerical renormalization group calculations.
Kiss, Annamaria; Kuramoto, Yoshio; Hoshino, Shintaro
2011-01-01
Accurate numerical results are derived for transport properties of Kondo impurity systems with potential scattering and orbital degeneracy. Using the continuous-time quantum Monte Carlo (CT-QMC) method, static and dynamic physical quantities are derived in a wide temperature range across the Kondo temperature T_K. With strong potential scattering, the resistivity tends to decrease with decreasing temperature, in contrast to the ordinary Kondo effect. Correspondingly, the quasi-particle densit...
The strong coupling Kondo lattice model as a Fermi gas
Östlund, S
2007-01-01
The strong coupling half-filled Kondo lattice model is an important example of a strongly interacting dense Fermi system for which conventional Fermi gas analysis has thus far failed. We remedy this by deriving an exact transformation that maps the model to a dilute gas of weakly interacting electron and hole quasiparticles that can then be analyzed by conventional dilute Fermi gas methods. The quasiparticle vacuum is a singlet Mott insulator for which the quasiparticle dynamics are simple. Since the transformation is exact, the electron spectral weight sum rules are obeyed exactly. Subtleties in understanding the behavior of electrons in the singlet Mott insulator can be reduced to a fairly complicated but precise relation between quasiparticles and bare electrons. The theory of free quasiparticles can be interpreted as an exactly solvable model for a singlet Mott insulator, providing an exact model in which to explore the strong coupling regime of a singlet Kondo insulator.
Critical quasiparticles in single-impurity and lattice Kondo models
Vojta, M.; Bulla, R.; Wölfle, P.
2015-07-01
Quantum criticality in systems of local moments interacting with itinerant electrons has become an important and diverse field of research. Here we review recent results which concern (a) quantum phase transitions in single-impurity Kondo and Anderson models and (b) quantum phase transitions in heavy-fermion lattice models which involve critical quasiparticles. For (a) the focus will be on impurity models with a pseudogapped host density of states and their applications, e.g., in graphene and other Dirac materials, while (b) is devoted to strong-coupling behavior near antiferromagnetic quantum phase transitions, with potential applications in a variety of heavy-fermion metals.
Kondo route to spin inhomogeneities in the honeycomb Kitaev model
Energy Technology Data Exchange (ETDEWEB)
Das, S. D.; Dhochak, K.; Tripathi, V.
2016-07-01
Paramagnetic impurities in a quantum spin liquid give rise to Kondo effects with highly unusual properties. We have studied the effect of locally coupling a paramagnetic impurity with the spin-1/2 honeycomb Kitaev model in its gapless spin-liquid phase. The ( impurity) scaling equations are found to be insensitive to the sign of the coupling. The weak and strong coupling fixed points are stable, with the latter corresponding to a noninteracting vacancy and an interacting, spin-1 defect for the antiferromagnetic and ferromagnetic cases, respectively. The ground state in the strong coupling limit in both cases has a nontrivial topology associated with a finite Z(2) flux at the impurity site. For the antiferromagnetic case, this result has been obtained straightforwardly owing to the integrability of the Kitaev model with a vacancy. The strong-coupling limit of the ferromagnetic case is, however, nonintegrable, and we address this problem through exact-diagonalization calculations with finite Kitaev fragments. Our exact diagonalization calculations indicate that the weak-to-strong coupling transition and the topological phase transition occur rather close to each other and are possibly coincident. We also find an intriguing similarity between the magnetic response of the defect and the impurity susceptibility in the two-channel Kondo problem.
Phase diagram of the bosonic Kondo-Hubbard model
Energy Technology Data Exchange (ETDEWEB)
Foss-Feig, Michael; Rey, Ana Maria [JILA, National Institute of Standards and Technology, and University of Colorado, Boulder, Colorado 80309 (United States)
2011-11-15
We study a bosonic version of the Kondo lattice model with an onsite repulsion in the conduction band, implemented with alkali-metal atoms in two bands of an optical lattice. Using both weak- and strong-coupling perturbation theory, we find that at unit filling of the conduction bosons the superfluid-to-Mott-insulator transition should be accompanied by a magnetic transition from a ferromagnet (in the superfluid) to a paramagnet (in the Mott insulator). Furthermore, an analytic treatment of Gutzwiller mean-field theory reveals that quantum spin fluctuations induced by the Kondo exchange cause the otherwise continuous superfluid-to-Mott-insulator phase transition to be first order. We show that lattice separability imposes a serious constraint on proposals to exploit excited bands for quantum simulations, and discuss a way to overcome this constraint in the context of our model by using an experimentally realized nonseparable lattice. A method to probe the first-order nature of the transition based on collapses and revivals of the matter-wave field is also discussed.
Superconductivity of heavy fermions in the Kondo lattice model
Energy Technology Data Exchange (ETDEWEB)
Sykora, Steffen [IFW Dresden (Germany); Becker, Klaus W. [Institut fuer Theoretische Physik, Technische Universitaet Dresden (Germany)
2015-07-01
Understanding of the origin of superconductivity in strongly correlated electron systems is one of the basic unresolved problems in physics. Examples for such systems are the cuprates and also the heavy-fermion metals, which are compounds with 4f and 5f electrons. In all these materials the superconducting pairing interaction is often believed to be predominantly mediated by spin fluctuations and not by phonons as in normal metals. For the Kondo-lattice model we present results, which are derived within the Projective Renormalization Method (PRM). Based on a recent study of the one-particle spectral function for the normal state we first derive an effective Hamiltonian which describes heavy fermion quasiparticle bands close to the Fermi surface. An extension to the superconducting phase leads to d-wave solutions for the superconducting order parameter in agreement with recent STM measurements.
Fractionalized Fermi liquid in a Kondo-Heisenberg model
Tsvelik, A. M.
2016-10-01
The Kondo-Heisenberg model is used as a controllable tool to demonstrate the existence of a peculiar metallic state with unbroken translational symmetry where the Fermi surface volume is not controlled by the total electron density. I use a nonperturbative approach where the strongest interactions are taken into account by means of exact solution, and corrections are controllable. In agreement with the general requirements formulated by T. Senthil et al. [Phys. Rev. Lett. 90, 216403 (2003), 10.1103/PhysRevLett.90.216403], the resulting metallic state represents a fractionalized Fermi liquid where well defined quasiparticles coexist with gapped fractionalized collective excitations. The system undergoes a phase transition to an ordered phase (charge density wave or superconducting), at the transition temperature which is parametrically small in comparison to the quasiparticle Fermi energy.
Phase diagram of the Kondo-Heisenberg model on honeycomb lattice with geometrical frustration
Li, Huan; Song, Hai-Feng; Liu, Yu
2016-11-01
We calculated the phase diagram of the Kondo-Heisenberg model on a two-dimensional honeycomb lattice with both nearest-neighbor and next-nearest-neighbor antiferromagnetic spin exchanges, to investigate the interplay between RKKY and Kondo interactions in the presence of magnetic frustration. Within a mean-field decoupling technology in slave-fermion representation, we derived the zero-temperature phase diagram as a function of Kondo coupling J k and frustration strength Q. The geometrical frustration can destroy the magnetic order, driving the original antiferromagnetic (AF) phase to non-magnetic valence bond solids (VBS). In addition, we found two distinct VBS. As J k is increased, a phase transition from AF to Kondo paramagnetic (KP) phase occurs, without the intermediate phase coexisting AF order with Kondo screening found in square lattice systems. In the KP phase, the enhancement of frustration weakens the Kondo screening effect, resulting in a phase transition from KP to VBS. We also found a process to recover the AF order from VBS by increasing J k in a wide range of frustration strength. Our work may provide predictions for future experimental observation of new processes of quantum phase transitions in frustrated heavy-fermion compounds.
Instability of Non-Fermi Liquid Behavior in the Two-Channel Kondo Model
Institute of Scientific and Technical Information of China (English)
YUAN Qing-Shan; CHEN Hong; ZHANG Yu-Mei
2001-01-01
The effects of interchannel scattering of conduction electrons by the impu rity and repulsion of conduction electrons at the impurity site on the two-channel Kondo model are simultaneously considered in this paper.It is shown that these two perturbations will substantially modify the usual local non-Fermi liquid behavior of the two-channel Kondo model.With bosonization and unitary transformations we find that the system can be transformed into a single channel Kondo model with anisotropy between longitudinal and transverse exchange couplings.Whatever for originally antiferromagnetic or ferromagnetic isotropic coupling,the system always flows to strong-coupling limit,which exhibits local Fermi liquid behavior at low temperatures.
Kondo decoherence : finding the right spin model for iron impurities in gold and silver.
Energy Technology Data Exchange (ETDEWEB)
Costi, T. A.; Bergqvist, L.; Weichselbaum, A.; von Delft, J.; Micklitz, T.; Rosch, A.; Mavropoulos, P.; Dederichs, P. H.; Mallet, F.; Saminadayar, L.; Bauerle, C. (Materials Science Division); (Forschungszentrum Julich); (Ludwig-Maximilians-Univ. Munchen); (Univ. of Cologne); (CNRS); (Univ. Joseph Fourier); (Inst. Univ. de France)
2009-02-01
We exploit the decoherence of electrons due to magnetic impurities, studied via weak localization, to resolve a long-standing question concerning the classic Kondo systems of Fe impurities in the noble metals gold and silver: which Kondo-type model yields a realistic description of the relevant multiple bands, spin, and orbital degrees of freedom? Previous studies suggest a fully screened spin S Kondo model, but the value of S remained ambiguous. We perform density functional theory calculations that suggest S=3/2. We also compare previous and new measurements of both the resistivity and decoherence rate in quasi-one-dimensional wires to numerical renormalization group predictions for S=1/2, 1, and 3/2, finding excellent agreement for S=3/2.
Quantum phase transitions and thermodynamics of the power-law Kondo model
Mitchell, Andrew K.; Vojta, Matthias; Bulla, Ralf; Fritz, Lars
2013-11-01
We revisit the physics of a Kondo impurity coupled to a fermionic host with a diverging power-law density of states near the Fermi level, ρ(ω)˜|ω|r, with exponent -1
Zero-temperature magnetic transition in an easy-axis Kondo lattice model.
Zhu, Jian-Xin; Kirchner, Stefan; Bulla, Ralf; Si, Qimiao
2007-11-30
We address the quantum transition of a spin-1/2 antiferromagnetic Kondo lattice model with an easy-axis anisotropy using the extended dynamical mean field theory. We derive results in real frequency by using the bosonic numerical renormalization group (BNRG) method and compare them with quantum Monte Carlo results in Matsubara frequency. The BNRG results show a logarithmic divergence in the critical local spin susceptibility, signaling a destruction of Kondo screening. The T=0 transition is consistent with being second order. The BNRG results also display some subtle features; we identify their origin and suggest means for further microscopic studies.
Zero-Temperature Magnetic Transition in an Easy-Axis Kondo Lattice Model
Zhu, Jian-Xin; Kirchner, Stefan; Bulla, Ralf; Si, Qimiao
2007-11-01
We address the quantum transition of a spin-1/2 antiferromagnetic Kondo lattice model with an easy-axis anisotropy using the extended dynamical mean field theory. We derive results in real frequency by using the bosonic numerical renormalization group (BNRG) method and compare them with quantum Monte Carlo results in Matsubara frequency. The BNRG results show a logarithmic divergence in the critical local spin susceptibility, signaling a destruction of Kondo screening. The T=0 transition is consistent with being second order. The BNRG results also display some subtle features; we identify their origin and suggest means for further microscopic studies.
Energy Technology Data Exchange (ETDEWEB)
Joyce, J.J.; Arko, A.J.; Lawrence, J.; Canfield, P.C.; Fisk, Z.; Bartlett, R.J.; Thompson, J.D. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))
1992-01-13
4{ital f} levels in Ce heavy-fermion compounds are examined using resonant photoemission. We find the following inconsistencies with the predictions of the Kondo model: (a) All temperature dependence can be accounted for simply by phonon broadening and the Fermi function; (b) the spectral weights of the features near {ital E}{sub {ital F}} do not scale with {ital T}{sub {ital K}}; and (c) the line shape of the feature previously identified as the Kondo resonance is Lorentzian and about an order of magnitude broader than predictions. Instrument resolution is not a limiting factor.
Spin-flux phase in the Kondo lattice model with classical localized spins
Agterberg, DF; Yunoki, S
2000-01-01
We provide numerical evidence that a spin-flux phase exists as a ground state of the Kondo lattice model with classical local spins on a square lattice. This state manifests itself as a double-e magnetic order in the classical spins with spin density at both (0, pi) and (pi ,0) and further exhibits
Numerical renormalization group studies of the partially brogen SU(3) Kondo model
Energy Technology Data Exchange (ETDEWEB)
Fuh Chuo, Evaristus
2013-04-15
The two-channel Kondo (2CK) effect with its exotic ground state properties has remained difficult to realize in physical systems. At low energies, a quantum impurity with orbital degree of freedom, like a proton bound in an interstitial lattice space, comprises a 3-level system with a unique ground state and (at least) doubly degenerate rotational excitations with excitation energy {Delta}{sub 0}. When immersed in a metal, electronic angular momentum scattering induces transitions between any two of these levels (couplings J), while the electron spin is conserved. We show by extensive numerical renormalization group (NRG) calculations that without fi ne-tuning of parameters this system exhibits a 2CK fixed point, due to Kondo correlations in the excited-state doublet whose degeneracy is stabilized by the host lattice parity, while the channel symmetry (electron spin) is guaranteed by time reversal symmetry. We find a pronounced plateau in the entropy at S(T{sub K}
Cai, Ang; Pixley, Jedediah; Si, Qimiao
Heavy fermion metals represent a canonical system to study superconductivity driven by quantum criticality. We are particularly motivated by the properties of CeRhIn5, which shows the characteristic features of a Kondo destruction quantum critical point (QCP) in its normal state, and has one of the highest Tc's among the heavy fermion superconductors. As a first step to study this problem within a cluster-EDMFT approach, we analyze a four-site Anderson impurity model with the antiferromagnetic spin component of the cluster coupled to a sub-Ohmic bosonic bath. We find a QCP that belongs to the same universality class as the single-site Bose-Fermi Anderson model. Together with previous work on a two-site model, our result suggests that the Kondo destruction QCP is robust as cluster size increases. More importantly, we are able to calculate the d-wave pairing susceptibility, which we find to be enhanced near the QCP. Using this model as the effective cluster model of the periodic Anderson model, we are also able to study the superconducting pairing near the Kondo-destruction QCP of the lattice model; preliminary results will be presented.
Kondo Destruction in RKKY-Coupled Kondo Lattice and Multi-Impurity Systems
Nejati, Ammar; Ballmann, Katinka; Kroha, Johann
2017-03-01
In a Kondo lattice, the spin exchange coupling between a local spin and the conduction electrons acquires nonlocal contributions due to conduction electron scattering from surrounding local spins and the subsequent RKKY interaction. It leads to a hitherto unrecognized interference of Kondo screening and the RKKY interaction beyond the Doniach scenario. We develop a renormalization group theory for the RKKY-modified Kondo vertex. The Kondo temperature TK(y ) is suppressed in a universal way, controlled by the dimensionless RKKY coupling parameter y . Complete spin screening ceases to exist beyond a critical RKKY strength yc even in the absence of magnetic ordering. At this breakdown point, TK(y ) remains nonzero and is not defined for larger RKKY couplings y >yc. The results are in quantitative agreement with STM spectroscopy experiments on tunable two-impurity Kondo systems. The possible implications for quantum critical scenarios in heavy-fermion systems are discussed.
Magnetic ordering and non-Fermi-liquid behavior in the multichannel Kondo-lattice model
Irkhin, Valentin Yu.
2016-05-01
Scaling equations for the Kondo lattice in the paramagnetic and magnetically ordered phases are derived to next-leading order with account of spin dynamics. The results are applied to describe various mechanisms of the non-Fermi-liquid (NFL) behavior in the multichannel Kondo-lattice model where a fixed point occurs in the weak-coupling region. The corresponding temperature dependences of electronic and magnetic properties are discussed. The model describes naturally formation of a magnetic state with soft boson mode and small moment value. An important role of Van Hove singularities in the magnon spectral function is demonstrated. The results are rather sensitive to the type of magnetic ordering and space dimensionality, the conditions for NFL behavior being more favorable in the antiferromagnetic and 2D cases.
Spiral magnetic phases on the Kondo Lattice Model: A Hartree-Fock approach
Costa, N. C.; Lima, J. P.; dos Santos, Raimundo R.
2017-02-01
We study the Kondo Lattice Model (KLM) on a square lattice through a Hartree-Fock approximation in which the local spins are treated semi-classically, in the sense that their average values are modulated by a magnetic wavevector Q while they couple with the conduction electrons through fermion operators. In this way, we obtain a ground state phase diagram in which spiral magnetic phases (in which the wavevector depends on the coupling constants and on the density) interpolate between the low-density ferromagnetic phase and the antiferromagnetic phase at half filling; within small regions of the phase diagram commensurate magnetic phases can coexist with Kondo screening. We have also obtained 'Doniach-like' diagrams, showing the effect of temperature on the ground state phases, and established that for some ranges of the model parameters (the exchange coupling and conduction electron density) the magnetic wavevector changes with temperature, either continuously or abruptly (e.g., from spiral to ferromagnetic).
Ground-state phase diagram of the Kondo lattice model on triangular-to-kagome lattices
Akagi, Yutaka; Motome, Yukitoshi
2012-01-01
We investigate the ground-state phase diagram of the Kondo lattice model with classical localized spins on triangular-to-kagome lattices by using a variational calculation. We identify the parameter regions where a four-sublattice noncoplanar order is stable with a finite spin scalar chirality while changing the lattice structure from triangular to kagome continuously. Although the noncoplanar spin states appear in a wide range of parameters, the spin configurations on the kagome network beco...
Kondo physics of the Anderson impurity model by distributional exact diagonalization
Motahari, S.; Requist, R.; Jacob, D.
2016-12-01
The distributional exact diagonalization (DED) scheme is applied to the description of Kondo physics in the Anderson impurity model. DED maps Anderson's problem of an interacting impurity level coupled to an infinite bath onto an ensemble of finite Anderson models, each of which can be solved by exact diagonalization. An approximation to the self-energy of the original infinite model is then obtained from the ensemble-averaged self-energy. Using Friedel's sum rule, we show that the particle number constraint, a central ingredient of the DED scheme, ultimately imposes Fermi liquid behavior on the ensemble-averaged self-energy, and thus is essential for the description of Kondo physics within DED. Using the numerical renormalization group (NRG) method as a benchmark, we show that DED yields excellent spectra, both inside and outside the Kondo regime for a moderate number of bath sites. Only for very strong correlations (U /Γ ≫10 ) does the number of bath sites needed to achieve good quantitative agreement become too large to be computationally feasible.
Photoemission and the electronic properties of heavy fermions -- limitations of the Kondo model
Energy Technology Data Exchange (ETDEWEB)
Joyce, J.J.; Arko, A.J.; Andrews, A.B. [and others
1993-09-01
The electronic properties of Yb-based heavy fermions have been investigated by means of high resolution synchrotron radiation photoemission and compared with predictions of the Kondo model. The Yb heavy fermion photoemission spectra show massive disagreement with the Kondo model predictions (as calculated within the Gunnarsson-Schonhammer computational method). Moreover, the Yb heavy fermion photoemission spectra give very strong indications of core-like characteristics and compare favorable to purely divalent Yb metal and core-like Lu 4f levels. The heavy fermions YbCu{sub 2}Si{sub 2}, YbAgCu{sub 4} and YbAl{sub 3} were measured and shown to have lineshapes much broader and deeper in binding energy than predicted by the Kondo model. The lineshape of the bulk component of the 4f emission for these three heavy fermion materials was compared with that from Yb metal and the Lu 4f levels in LuAl{sub 3}, the heavy fermion materials show no substantive spectroscopic differences from simple 4f levels observed in Yb metal and LuAl{sub 3}. Also, the variation with temperature of the 4f fineshape was measured for Yb metal and clearly demonstrates that phonon broadening plays a major role in 4f level lineshape analysis and must be accounted for before considerations of correlated electron resonance effects are presumed to be at work.
Photoemission and the electronic properties of heavy fermions - limitations of the Kondo model
Energy Technology Data Exchange (ETDEWEB)
Joyce, J.J. [Los Alamos Nat. Lab., NM (United States); Arko, A.J. [Los Alamos Nat. Lab., NM (United States); Andrews, A.B. [Los Alamos Nat. Lab., NM (United States); Blyth, R.I.R. [Los Alamos Nat. Lab., NM (United States); Bartlett, R.J. [Los Alamos Nat. Lab., NM (United States); Thompson, J.D. [Los Alamos Nat. Lab., NM (United States); Fisk, Z. [Los Alamos Nat. Lab., NM (United States); Riseborough, P.S. [Polytechnic Institute of New York, Department of Physics, Brooklyn, NY 11201 (United States); Canfield, P.C. [Ames Laboratory USDOE, Ames, IA 50011 (United States); Olson, C.G. [Ames Laboratory USDOE, Ames, IA 50011 (United States); Benning, P.J. [Ames Laboratory USDOE, Ames, IA 50011 (United States)
1995-03-01
The electronic properties of Yb-based heavy fermions have been investigated by means of high resolution synchrotron radiation photoemission and compared with predictions of the Kondo model. The Yb heavy fermion photoemission spectra show significant disagreement with the Kondo model predictions (as calculated within the Gunnarsson-Schonhammer computational method). Moreover, the Yb heavy fermion photoemission spectra give strong indications of core-like characteristics and compare favorably to purely divalent Yb metal and core-like Lu 4f levels. The heavy fermions YbCu{sub 2}Si{sub 2}, YbAgCu{sub 4} and YbAl{sub 3} were measured and shown to have lineshapes much broader and deeper in binding energy than predicted by the Kondo model. The lineshape of the bulk component of the 4f emission for these three heavy fermion materials was compared with that from Yb metal and the Lu 4f levels in LuAl{sub 3}. The heavy fermion materials show no substantive spectroscopic differences from 4f levels observed in Yb metal and LuAl{sub 3}. Also, the variation with temperature of the 4f lineshape was measured for Yb metal and clearly demonstrates that phonon broadening plays a major role in 4f level lineshape analysis and must be accounted for before considerations of correlated electron resonance effects are presumed to be at work. ((orig.)).
Magnetic Quantum Phase Transitions of a Kondo Lattice Model with Ising Anisotropy
Zhu, Jian-Xin; Kirchner, Stefan; Si, Qimiao; Grempel, Daniel R.; Bulla, Ralf
2006-03-01
We study the Kondo Lattice model with Ising anisotropy, within an extended dynamical mean field theory (EDMFT) in the presence or absence of antiferromagnetic ordering. The EDMFT equations are studied using both the Quantum Monte Carlo (QMC) and Numerical Renormalization Group (NRG) methods. We discuss the overall magnetic phase diagram by studying the evolution, as a function of the ratio of the RKKY interaction and bare Kondo scale, of the local spin susceptibility, magnetic order parameter, and the effective Curie constant of a nominally paramagnetic solution with a finite moment. We show that, within the numerical accuracy, the quantum magnetic transition is second order. The local quantum critical aspect of the transition is also discussed.
Correlations between Kondo clouds in nearly antiferromagnetic Kondo lattices
Energy Technology Data Exchange (ETDEWEB)
Kiselev, M.N. E-mail: kiselev@physik.uni-wuerzburg.de; Kikoin, K.A
2004-05-01
We discuss a novel fluctuational mechanism explaining the physics of nearly antiferromagnetic Kondo lattices (KL). The effective action for KL model is expressed in terms of Bose operators responsible for paramagnetic excitations and semi-bosonic fields describing the dynamic Kondo clouds created by conduction electrons around local spin. The gauge invariant resonance valence bond theory of interacting Kondo clouds describes the spin liquid with strong critical fluctuations imitating itinerant fluctuation magnetism of Moriya type.
Spontaneous Polarization of Kondo problem associated with Higher-spin analog of the 6-vertex model
Fukushima, N
1999-01-01
We study Kondo-type model associated with an integrable Higher-spin analog of the 6-vertex mode, which is constructed by inserting a spin 1/2 to spin 1 lines: $... C^3 \\otimes C^3 \\otimes C^2 \\otimes C^3 \\otimes C^3 ... .$ We formulate the problem in terms of representation theory of quantum affine algebra $U_q(\\hat{sl_2})$. We derive an exact formula of the spontaneous staggered polarization for our model, which corresponds to Baxter's formula for the 6-vertex model.
The Kondo tip decorated by the Co atom
Feng, Wei; Liu, Qin; Lai, Xinchun; Zhao, Aidi
2016-11-01
The Kondo effect of single Co adatoms on Ru(0001) is detected with two different kinds of co-decorated tip (Kondo tip) by using low temperature scanning tunneling microscopy and scanning tunneling spectroscopy. We call the relatively separated two magnetic impurities in the tunneling region ‘two Kondo system’ to distinguish it from the ‘two-impurity Kondo system’. We find that the artificially constructed Kondo tips can be generally categorized into two types of Kondo resonances, which have distinct Fano line shapes with quantum interference factor |q| ≫ 1 and |q| ∼ 1, respectively. The tunneling spectra of six constructed two Kondo systems can be well fitted by summing the two Fano resonances of the two subsystems and a linear background. More interestingly, by extracting the amplitudes of the two Fano resonances in the spectra, we find that the electron transmission of such a two Kondo system in the tunneling region is dominated by the quantum interference of the Kondo tip, which is directly related to the geometric configuration of the adsorbed Kondo atom on the tip.
A low-temperature derivation of spin-spin exchange in Kondo lattice model
Energy Technology Data Exchange (ETDEWEB)
Feng Szeshiang [Physics Department, Florida A and M University, Tallahassee, FL 32307 (United States)]. E-mail: shixiang.feng@famu.edu; Mochena, Mogus [Physics Department, Florida A and M University, Tallahassee, FL 32307 (United States)
2005-11-01
Using Hubbard-Stratonovich transformation and drone-fermion representations for spin-12 and for spin-32, which is presented for the first time, we make a path-integral formulation of the Kondo lattice model. In the case of weak coupling and low temperature, the functional integral over conduction fermions can be approximated to the quadratic order and this gives the well-known RKKY interaction. In the case of strong coupling, the same quadratic approximation leads to an effective local spin-spin interaction linear in hopping energy t.
Modulated Spin Liquid and Magnetic Order from a Kondo-Heisenberg model applied to $URu_{2}Si_{2}$
Montiel, Xavier; Burdin, Sébastien; Pépin, Catherine; Ferraz, Alvaro
2013-01-01
International audience; Using the Kondo-Heisenberg model framework, we analyze the effect of charge fluctuations in the modulated spin liquid (MSL) and in the antiferromagnetic (AF) ordering which were introduced by Pépin et al. [Phys. Rev. Lett. 106, 106601 (2011)] and Thomas et al. [Phys. Rev. B 87, 014422 (2013)]. Coupling the spin liquid to the charge sector enables us to discuss the formation of the Kondo effect in this system. As a result, we are able to observe the emergence of two pha...
Phase diagram of the one-dimensional anisotropic Kondo-necklace model
Mahmoudian, S.; Langari, A.
2008-01-01
The one-dimensional anisotropic Kondo-necklace model has been studied by several methods. It is shown that a mean field approach fails to gain the correct phase diagram for the Ising-type anisotropy. We then applied the spin wave theory which is justified for the anisotropic case. We have derived the phase diagram between the antiferromagnetic long range order and the Kondo singlet phases. We have found that the exchange interaction (J) between the itinerant spins and local ones enhances the quantum fluctuations around the classical long range antiferromagnetic order and finally destroy the ordered phase at the critical value Jc . Moreover, our results show that the onset of anisotropy in the XY term of the itinerant interactions develops the antiferromagnetic order for J
Zero-Temperature Magnetic Transition in an Easy-Axis Kondo Lattice Model --- An NRG Study
Zhu, Jian-Xin; Kirchner, Stefan; Bulla, Ralf; Si, Qimiao
2007-03-01
Antiferromagnetic heavy fermion metals close to their quantum critical points display a richness in their physical properties unanticipated by the traditional approach to quantum criticality. Here we address the quantum transition of a spin-12 antiferromagnetic Kondo lattice model with an easy-axis anisotropy within the extended dynamical mean field theory. We derive results [1] in real frequency using the bosonic numerical renormalization group (bNRG) method and compare them with Quantum Monte Carlo results in Matsubara frequency. The bNRG results show a logarithmic divergence in the critical local spin susceptibility, signaling a destruction of Kondo screening. The T=0 transition is nearly second order, with any jump in the magnetic order parameter not exceeding a few percents of the full moment. The bNRG results also display some subtle features; we discuss their possible origins and suggest means for further microscopic studies. [1] J.-X. Zhu, S. Kirchner, R. Bulla, and Q. Si, cond-mat/0607567.
Fermionology in the Kondo-Heisenberg model: the case of CeCoIn5
Zhong, Yin; Zhang, Lan; Lu, Han-Tao; Luo, Hong-Gang
2015-09-01
The Fermi surface of heavy electron systems plays a fundamental role in understanding their variety of puzzling phenomena, for example, quantum criticality, strange metal behavior, unconventional superconductivity and even enigmatic phases with yet unknown order parameters. The spectroscopy measurement of the typical heavy fermion superconductor CeCoIn5 has demonstrated multi-Fermi surface structure, which has not been studied in detail theoretically in a model system like the Kondo-Heisenberg model. In this work, we take a step toward such a theoretical model by revisiting the Kondo-Heisenberg model. It is found that the usual self-consistent calculation cannot reproduce the fermionology of the experimental observation of the system due to the sign binding between the hopping of the conduction electrons and the mean-field valence-bond order. To overcome such inconsistency, the mean-field valence-bond order is considered as a free/fitting parameter to correlate them with real-life experiments as performed in recent experiments [M.P. Allan, F. Massee, D.K. Morr, J. Van Dyke, A.W. Rost, A.P. Mackenzie, C. Petrovic, J.C. Davis, Nat. Phys. 9, 468 (2013); J. Van Dyke, F. Massee, M.P. Allan, J.C. Davis, C. Petrovic, D.K. Morr, Proc. Natl. Acad. Sci. 111, 11663 (2014)], which also explicitly reflects the intrinsic dispersion of local electrons observed in experimental measurements. Given the fermionology, the calculated effective mass enhancement, entropy, superfluid density and Knight shift are all in qualitative agreement with the experimental results of CeCoIn5, which confirms our assumption. Our result supports a d_{x^2 - y^2 }-wave pairing structure in the heavy fermion material CeCoIn5.
Photoemission in YbCu sub 2 Si sub 2 : Problems with the Kondo impurity model
Energy Technology Data Exchange (ETDEWEB)
Lawrence, J.M. (California Univ., Irvine (United States)); Arko, A.J.; Joyce, J.J.; Canfield, P.C.; Fisk, Z.; Thompson, J.D. (Los Alamos National Lab., NM (United States))
1991-01-01
We report valence band photoemission results for YbCu{sub 2}Si{sub 2}. The 4f{sup 13}(J=7/2) final state peak, centered 60meV below the Fermi level {epsilon}{sub F}, lacks the temperature dependence and is broader than predicted for a Kondo resonance. Together with the recent photoemission results for cerium compounds, these results raise serious doubts about the Kondo impurity explanation of heavy fermion photoemission. 7 refs., 3 figs.
Photoemission in YbCu sub 2 Si sub 2 : problem with the Kondo impurity model
Energy Technology Data Exchange (ETDEWEB)
Lawrence, J.M.; Arko, A.J.; Joyce, J.J.; Canfield, P.C.; Fisk, Z.; Thompson, J.D.; Bartlett, R.J. (Los Alamos National Lab., NM (United States))
1992-02-01
We report valence band photoemission results for YbCu{sub 2}Si{sub 2}. The 4f{sup 13}(J = 7/2) final state peak, centered 60 meV below the Fermi level element of{sub F}, lacks the temperature dependence and is broader than predicted for a Kondo resonance. Together with recent photoemission results for cerium compounds, these results raise serious doubts about the Kondo impurity explanation of heavy fermion photoemission. (orig.).
Aksu, H.; Goker, A.
2017-03-01
We invoke the nonequilibrium self-consistent GW method within the Anderson impurity model to investigate the dynamical effects occurring in a nanojunction comprised of two coupled molecules. Contrary to the previous single impurity model calculations based on the GW approximation, we observe that the density of states manages to capture both the Kondo resonance and the Breit-Wigner resonances associated with the HOMO and LUMO levels of the molecule. Moreover, the prominence of the Kondo resonance grows dramatically upon switching from the intermediate to the weak coupling regime involving large U / Γ values. The conductance is calculated as a function of the HOMO level and the applied bias across the molecular nanojunction. Calculated conductance curves deviate from the monotonic decay behaviour as a function of the bias when the half-filling condition is not met. The importance of the effect of the molecule-molecule coupling for the electron transport phenomena is also investigated.
Phase boundaries of power-law Anderson and Kondo models: A poor man's scaling study
Cheng, Mengxing; Chowdhury, Tathagata; Mohammed, Aaron; Ingersent, Kevin
2017-07-01
We use the poor man's scaling approach to study the phase boundaries of a pair of quantum impurity models featuring a power-law density of states ρ (ɛ ) ∝|ɛ| r , either vanishing (for r >0 ) or diverging (for r 0 ), we find the phase boundary for (a) 0 1 , where the phases are separated by first-order quantum phase transitions that are accessible only for broken p-h symmetry. For the p-h-symmetric Kondo model with easy-axis or easy-plane anisotropy of the impurity-band spin exchange, the phase boundary and scaling trajectories are obtained for both r >0 and r <0 . Throughout the regime of weak-to-moderate impurity-band coupling in which poor man's scaling is expected to be valid, the approach predicts phase boundaries in excellent qualitative and good quantitative agreement with the nonperturbative numerical renormalization group, while also establishing the functional relations between model parameters along these boundaries.
Thermoelectric power of Kondo insulators
佐宗, 哲郎
2002-01-01
Thermoelectric power (TEP) of the Kondo insulators is investigated theoretically within the framework of the dynamical mean field theory. It is found that the temperature dependence of the Seebeck coefficient changes from the ordinary behavior S(T) ∝ T−1 in semiconductors to S ∝ T at low temperatures due to the finite imaginary part of the electron self-energy in the Kondo insulators with strong correlation. Realistic models for YbB12 and FeSi based on the band calculations are also studied....
Anisotropic Kondo lattice without Nozieres exhaustion effect
Energy Technology Data Exchange (ETDEWEB)
Kiselev, M.N. [Physics Department, Arnold Sommerfeld Center for Theoretical Physics and Center for Nano-Science, Ludwig-Maximilians Universitaet Muenchen, 80333 Munich (Germany)]. E-mail: kiselev@physik.uni-wuerzburg.de; Kikoin, K. [Ben-Gurion University of the Negev, Beer-Sheva, 84105 (Israel)]. E-mail: kikoin@bgumail.bgu.ac.il
2006-05-01
The properties of layered Anderson/Kondo lattices with metallic electrons confined in 2D xy planes and local spins in insulating layers forming chains in z direction are studied. Each spin possesses its own 2D Kondo cloud, so that the Nozieres' exhaustion problem does not arise. The excitation spectrum is gapless both in charge and spin sectors. Possible experimental realizations of the model are briefly discussed.
Shahzad, Munir; Sengupta, Pinaki
2017-08-01
We study the Shastry-Sutherland Kondo lattice model with additional Dzyaloshinskii-Moriya (DM) interactions, exploring the possible magnetic phases in its multi-dimensional parameter space. Treating the local moments as classical spins and using a variational ansatz, we identify the parameter ranges over which various common magnetic orderings are potentially stabilized. Our results reveal that the competing interactions result in a heightened susceptibility towards a wide range of spin configurations including longitudinal ferromagnetic and antiferromagnetic order, coplanar flux configurations and most interestingly, multiple non-coplanar configurations including a novel canted-flux state as the different Hamiltonian parameters like electron density, interaction strengths and degree of frustration are varied. The non-coplanar and non-collinear magnetic ordering of localized spins behave like emergent electromagnetic fields and drive unusual transport and electronic phenomena.
Energy Technology Data Exchange (ETDEWEB)
Bouis, F
1999-10-14
Two strongly correlated electron systems are considered in this work, Kondo insulators and high Tc cuprates. Experiments and theory suggest on one hand that the Kondo screening occurs on a rather short length scale and on the other hand that the Kondo coupling is renormalized to infinity in the low energy limit. The strong coupling limit is then the logical approach although the real coupling is moderate. A systematic development is performed around this limit in the first part. The band structure of these materials is reproduced within this scheme. Magnetic fluctuations are also studied. The antiferromagnetic transition is examined in the case where fermionic excitations are shifted to high energy. In the second part, the Popov and Fedotov representation of spins is used to formulate the Kondo and the antiferromagnetic Heisenberg model in terms of a non-polynomial action of boson fields. In the third part the properties of high Tc cuprates are explained by a change of topology of the Fermi surface. This phenomenon would happen near the point of optimal doping and zero temperature. It results in the appearance of a density wave phase in the under-doped regime. The possibility that this phase has a non-conventional symmetry is considered. The phase diagram that described the interaction and coexistence of density wave and superconductivity is established in the mean-field approximation. The similarities with the experimental observations are numerous in particular those concerning the pseudo-gap and the behavior of the resistivity near optimal doping. (author)
Kondo lattice without Nozieres exhaustion effect.
Energy Technology Data Exchange (ETDEWEB)
Kikoin, K.; Kiselev, M. N.; Materials Science Division; Ben-Gurion Univ. of the Negev; Ludwig-Maximilians Univ.
2006-01-01
We discuss the properties of layered Anderson/Kondo lattices with metallic electrons confined in 2D xy planes and local spins in insulating layers forming chains in the z direction. Each spin in this model possesses its own 2D Kondo cloud, so that the Nozieres exhaustion problem does not occur. The high-temperature perturbational description is matched to exact low-T Bethe-ansatz solution. The excitation spectrum of the model is gapless both in charge and spin sectors. The disordered phases and possible experimental realizations of the model are briefly discussed.
Kondo effect in low-carrier systems
Energy Technology Data Exchange (ETDEWEB)
Hager, R.; Bulla, R. [Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Univ. Augsburg (Germany)
2007-07-01
Recent experiments on dilute U impurities in semiconducting CaB{sub 6} show typical Kondo phenomena with a Kondo temperature T{sub K}{approx}2 K (G.A. Wigger e.t al., Europhys. Lett. 68, 685 (2004)). This observation is rather unusual for magnetic moments due to 5f electrons because of the large hybridization between impurities and the conduction electrons. We perform numerical renormalization group calculations for an Anderson impurity model with a, low concentration of conduction electrons, believed to be the relevant model for (U,Ca)B{sub 6}. We present results for thermodynamic and dynamic quantities for various carrier concentrations and investigate the crossover from mixed-valent to Kondo behaviour upon decreasing the filling of the conduction band. (orig.)
Spin Relaxation in Kondo Lattice Systems with Anisotropic Kondo Interaction
Belov, S. I.; Kutuzov, A. S.
2016-12-01
We study the influence of the Kondo effect on the spin relaxation in systems with anisotropic Kondo interaction at temperatures both high and low as compared with the static magnetic field. In the absence of the Kondo effect, the electron spin resonance linewidth is not narrowed in the whole temperature range due to the high anisotropy of the Kondo interaction. The Kondo effect leads to the universal energy scale, which regulates the temperature and magnetic field dependence of different kinetic coefficients and results in a mutual cancelation of their singular parts in a collective spin mode.
Corrected Kondo temperature beyond the conventional Kondo scaling limit
Li, ZhenHua; Wei, JianHua; Zheng, Xiao; Yan, YiJing; Luo, Hong-Gang
2017-05-01
In the Kondo systems such as the magnetic impurity screened by the conduction electrons in a metal host, as well as the quantum dots connected by the leads, the low energy behaviors have universal dependence on the T/T\\text{K}0 or eV/{{k}\\text{B}}T\\text{K}0 , where T\\text{K}0 is the conventional Kondo temperature. However, it was shown that this scaling behavior is only valid at low-energy; this is called the Kondo scaling limit. Here we explore the extention of the scaling parameter range by introducing the corrected Kondo temperature T K, which may depend on the temperature and bias, as well as the other external parameters. We define the corrected Kondo temperature by scaling the local density of states near the Fermi level, obtained by accurate hierarchy of equations of motion approach at finite temperature and finite bias, and thus obtain a phenomenological expression of the corrected Kondo temperature. By using the corrected Kondo temperature as a characteristic energy scale, the conductance of the quantum dot can be well scaled in a wide parameter range, even two orders beyond the conventional scaling parameter range. Our work indicates that the Kondo scaling, although dominated by the conventional Kondo temperature in the low-energy of the Kondo system, could be extended to a higher energy regime, which is useful for analyzing the physics of the Kondo transport in non-equilibrium or high temperature cases.
Corrected Kondo temperature beyond the conventional Kondo scaling limit.
Li, ZhenHua; Wei, JianHua; Zheng, Xiao; Yan, YiJing; Luo, Hong-Gang
2017-02-20
In the Kondo systems such as the magnetic impurity screened by the conduction electrons in a metal host, as well as the quantum dots connected by the leads, the low energy behaviors have universal dependence on the [Formula: see text] or [Formula: see text], where [Formula: see text] is the conventional Kondo temperature. However, it was shown that this scaling behavior is only valid at low-energy; this is called the Kondo scaling limit. Here we explore the extention of the scaling parameter range by introducing the corrected Kondo temperature T K, which may depend on the temperature and bias, as well as the other external parameters. We define the corrected Kondo temperature by scaling the local density of states near the Fermi level, obtained by accurate hierarchy of equations of motion approach at finite temperature and finite bias, and thus obtain a phenomenological expression of the corrected Kondo temperature. By using the corrected Kondo temperature as a characteristic energy scale, the conductance of the quantum dot can be well scaled in a wide parameter range, even two orders beyond the conventional scaling parameter range. Our work indicates that the Kondo scaling, although dominated by the conventional Kondo temperature in the low-energy of the Kondo system, could be extended to a higher energy regime, which is useful for analyzing the physics of the Kondo transport in non-equilibrium or high temperature cases.
Competing Kondo Effects in Non-Kramers Doublet Systems
Kusunose, Hiroaki
2016-06-01
In non-Kramers Kondo systems with quadrupolar degrees of freedom, an ordinary magnetic Kondo effect can compete with the quadrupolar Kondo effect. We discuss such competition keeping PrT2Zn20 (T = Ir, Rh) and PrT2Al20 (T = V, Ti) in mind, where the Γ3 non-Kramers crystalline-electric-field (CEF) doublet ground state is realized in a Pr3+ ion with a (4f)2 configuration under cubic symmetry. The quadrupolar Kondo effect can be described by the two-channel Kondo model, which leads to the local non-Fermi-liquid (NFL) ground state, while the magnetic Kondo effect favors the ordinary local Fermi-liquid (FL) ground state. On the basis of the minimal extended two-channel Kondo model including the magnetic Kondo coupling as well, we investigate the competition and resulting thermodynamics, and orbital/magnetic and single-particle excitation spectra by Wilson's numerical renormalization group (NRG) method. There is a first-order transition between the NFL and FL ground states. In addition to these two states, the alternative FL state accompanied by a free magnetic spin appears in the intermediate temperature range, which eventually reaches the true NFL ground state, as a consequence of the stronger competition between the magnetic and quadrupolar Kondo effects. In this peculiar state, the magnetic susceptibility shows a Curie-like behavior, while the orbital fluctuation exhibits the FL behavior. Moreover, the single-particle spectra yield a more singular behavior. Implications to the Pr 1-2-20 systems are briefly discussed.
Chang, Po-Yao; Erten, Onur; Coleman, Piers
2017-08-01
Heavy fermion materials have recently attracted attention for their potential to combine topological protection with strongly correlated electron physics. To date, the ideas of topological protection have been restricted to the heavy fermion or `Kondo' insulators with the simplest point-group symmetries. Here we argue that the presence of nonsymmorphic crystal symmetries in many heavy fermion materials opens up a new family of topologically protected heavy electron systems. Re-examination of archival resistivity measurements in the nonsymmorphic heavy fermion insulators Ce3Bi4Pt3 and CeNiSn reveals the presence of a low-temperature conductivity plateau, making them candidate members of the new class of material. We illustrate our ideas with a specific model for CeNiSn, showing how glide symmetries generate surface states with a novel Möbius braiding that can be detected by ARPES or non-local conductivity measurements. One of the interesting effects of strong correlation is the development of partially localization or `Kondo breakdown' on the surfaces, which transforms Möbius surface states into quasi-one-dimensional conductors, with the potential for novel electronic phase transitions.
Kondo Screening and Fermi Surface in the Antiferromagnetic Metal Phase
Yamamoto, Seiji; Si, Qimiao
2006-03-01
We address the Kondo effect deep inside the antiferromagnetic metal phase of a Kondo lattice Hamiltonian with SU(2) invariance. The local- moment component is described in terms of a non-linear sigma model. The Fermi surface of the conduction electron component is taken to be sufficiently small, so that it is not spanned by the antiferromagnetic wavevector. The effective low energy form of the Kondo coupling simplifies drastically, corresponding to the uniform component of the magnetization that forward-scatters the conduction electrons on their own Fermi surface. We use a combined bosonic and fermionic (Shankar) renormalization group procedure to analyze this effective theory and study the Kondo screening and Fermi surface in the antiferromagnetic phase. The implications for the global magnetic phase diagram, as well as quantum critical points, of heavy fermion metals are discussed.
Evidence of Kondo effect in organic radical nanoassemblies
Rashidi, Mohammad; Mullegger, Stefan; Fattinger, Michael; Koch, Reinhold
2012-02-01
The outstanding spatial resolution of low temperature (LT) scanning tunneling microscopy (STM) and spectroscopy (STS) enables to probe the frontier orbital electronic structure of single magnetic molecules and clusters adsorbed on substrates. Here, we study self-aligned nanostructures of (spin-1/2) hydrocarbon radicals on a metal surface by means of LT-STM and STS. Pronounced involvement of surface state electrons is observed in the frontier molecular orbital (MO) resonances. An empty hybrid state closely above the substrate Fermi level exhibits the characteristic properties of surface Kondo effect reported for similar systems in the literature. By identifying three electronic states as hybrids of molecular orbitals and surface state electrons (two of them directly related to the Kondo effect), we are able to present a modified picture of the surface Kondo effect. It is based on a valence-bond model, where the bonding state represents Kondo's virtual bound state and the antibonding state is the so called 'Kondo resonance' reported in STM studies of the surface Kondo effect. Furthermore, double occupation of the originally singly unoccupied MO by tunneling electrons leads to the third state well above the Fermi level due to Coulomb repulsion as described by the Anderson model.
Spin-spin correlations between two Kondo impurities coupled to an open Hubbard chain
Tiegel, A. C.; Dargel, P. E.; Hallberg, K. A.; Frahm, H.; Pruschke, T.
2013-02-01
In order to study the interplay between Kondo and Ruderman-Kittel-Kasuya-Yosida interaction, we calculate the spin-spin correlation functions between two Kondo impurities coupled to different sites of a half-filled open Hubbard chain. Using the density-matrix renormalization group (DMRG), we reexamine the exponents for the power-law decay of the correlation function between the two impurity spins as a function of the antiferromagnetic coupling J, the Hubbard interaction U, and the distance R between the impurities. The exponents for finite systems obtained in this work deviate from previously published DMRG calculations. We furthermore show that the long-distance behavior of the exponents is the same for impurities coupled to the bulk or to both ends of the chain. We note that a universal exponent for the asymptotic behavior can not be extracted from these finite-size systems with open boundary conditions.
Consequences of Kondo exchange on quantum spins
Delgado Acosta, Fernando; Hirjibehedin, Cyrus F.; Fernández Rossier, Joaquín
2014-01-01
When individual quantum spins are placed in close proximity to conducting substrates, the localized spin is coupled to the nearby itinerant conduction electrons via Kondo exchange. In the strong coupling limit this can result in the Kondo effect — the formation of a correlated, many body singlet state — and a resulting renormalization of the density of states near the Fermi energy. However, even when Kondo screening does not occur, Kondo exchange can give rise to a wide variety of other pheno...
Magnetically induced QCD Kondo effect
Ozaki, Sho; Itakura, Kazunori; Kuramoto, Yoshio
2016-10-01
The "QCD Kondo effect" stems from the color exchange interaction in QCD with non-Abelian property, and can be realized in a high-density quark matter containing heavy-quark impurities. We propose a novel type of the QCD Kondo effect induced by a strong magnetic field. In addition to the fact that the magnetic field does not affect the color degrees of freedom, two properties caused by the Landau quantization in a strong magnetic field are essential for the "magnetically induced QCD Kondo effect"; (1) dimensional reduction to 1 +1 -dimensions, and (2) finiteness of the density of states for lowest energy quarks. We demonstrate that, in a strong magnetic field B , the scattering amplitude of a massless quark off a heavy quark impurity indeed shows a characteristic behavior of the Kondo effect. The resulting Kondo scale is estimated as ΛK≃√{eqB }αs1 /3exp {-4 π /Ncαslog (4 π /αs)} where αs and Nc are the fine structure constant of strong interaction and the number of colors in QCD, and eq is the electric charge of light quarks.
Holographic Kondo and Fano Resonances
Erdmenger, Johanna; O'Bannon, Andy; Papadimitriou, Ioannis; Probst, Jonas; Wu, Jackson M S
2016-01-01
We use holography to study a $(1+1)$-dimensional Conformal Field Theory (CFT) coupled to an impurity. The CFT is an $SU(N)$ gauge theory at large $N$, with strong gauge interactions. The impurity is an $SU(N)$ spin. We trigger an impurity Renormalization Group (RG) flow via a Kondo coupling. The Kondo effect occurs only below the critical temperature of a large-$N$ mean-field transition. We show that at all temperatures $T$, spectral functions of certain bosonic operators exhibit a Fano resonance, which in the low-$T$ phase is a large-$N$ manifestation of the Kondo resonance. Such Fano resonances are characteristic features of RG flows between $(0+1)$-dimensional fixed points, and are thus distinct from those observed for example in quantum dots.
Spatially dependent Kondo effect in Quantum Corrals
Rossi, Enrico; Morr, Dirk K.
2007-03-01
We study the Kondo screening of a single magnetic impurity placed inside a quantum corral consisting of non-magnetic impurities on the surface of a metallic host system. We show that the spatial structure of the corral's eigenmodes leads to a spatially dependent Kondo effect whose signatures are experimentally measurable spatial variations of the Kondo temperature, TK, and of the critical Kondo coupling, Jcr. Moreover we find that the screening of the magnetic impurity is accompanied by the formation of multiple Kondo resonances with characteristic spatial patterns that provide further experimental signatures of the spatially dependent Kondo effect. Our results demonstrate that quantum corrals provide new possibilities to manipulate and explore the Kondo effect.
Quadrupolar Kondo effect in uranium heavy-electron materials?
Cox, D. L.
1987-01-01
The possibility of an electric quadrupole Kondo effect for a non-Kramers doublet on a uranium (U) ion is a cubic metallic host is demonstrated by model calculations showing a Kondo upturn in the resistivity, universal quenching of the quadrupolar moment, and a heavy-electron anomaly in the electronic specific heat. With inclusion of excited crystal-field levels, some of the unusual magnetic-response data in the heavy-electron superconductor UBe13 may be understood. Structural phase transitions at unprecedented low temperatures may occur in U-based heavy-electron materials.
From four- to two-channel Kondo effect in junctions of XY spin chains
Directory of Open Access Journals (Sweden)
Domenico Giuliano
2016-08-01
Full Text Available We consider the Kondo effect in Y-junctions of anisotropic XY models in an applied magnetic field along the critical lines characterized by a gapless excitation spectrum. We find that, while the boundary interaction Hamiltonian describing the junction can be recasted in the form of a four-channel, spin-1/2 antiferromagnetic Kondo Hamiltonian, the number of channels effectively participating in the Kondo effect depends on the chain parameters, as well as on the boundary couplings at the junction. The system evolves from an effective four-channel topological Kondo effect for a junction of XX-chains with symmetric boundary couplings into a two-channel one at a junction of three quantum critical Ising chains. The effective number of Kondo channels depends on the properties of the boundary and of the bulk. The XX-line is a “critical” line, where a four-channel topological Kondo effect can be recovered by fine-tuning the boundary parameter, while along the line in parameter space connecting the XX-line and the critical Ising point the junction is effectively equivalent to a two-channel topological Kondo Hamiltonian. Using a renormalization group approach, we determine the flow of the boundary couplings, which allows us to define and estimate the critical couplings and Kondo temperatures of the different Kondo (pair channels. Finally, we study the local transverse magnetization in the center of the Y-junction, eventually arguing that it provides an effective tool to monitor the onset of the two-channel Kondo effect.
From four- to two-channel Kondo effect in junctions of XY spin chains
Energy Technology Data Exchange (ETDEWEB)
Giuliano, Domenico, E-mail: domenico.giuliano@fis.unical.it [Dipartimento di Fisica, Università della Calabria, Arcavacata di Rende I-87036, Cosenza (Italy); INFN, Gruppo collegato di Cosenza, Arcavacata di Rende I-87036, Cosenza (Italy); Sodano, Pasquale, E-mail: pasquale.sodano02@gmail.com [International Institute of Physics, Universidade Federal do Rio Grande do Norte, 59078-400 Natal, RN (Brazil); Departemento de Física Teorica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Tagliacozzo, Arturo, E-mail: arturo.tagliacozzo@na.infn.it [INFN, Gruppo collegato di Cosenza, Arcavacata di Rende I-87036, Cosenza (Italy); Dipartimento di Fisica, Università di Napoli “Federico II”, Monte S. Angelo-Via Cintia, I-80126 Napoli (Italy); CNR-SPIN, Monte S. Angelo-Via Cintia, I-80126 Napoli (Italy); Trombettoni, Andrea, E-mail: andreatr@sissa.it [CNR-IOM DEMOCRITOS Simulation Center, Via Bonomea 265, I-34136 Trieste (Italy); SISSA and INFN, Sezione di Trieste, Via Bonomea 265, I-34136 Trieste (Italy)
2016-08-15
We consider the Kondo effect in Y-junctions of anisotropic XY models in an applied magnetic field along the critical lines characterized by a gapless excitation spectrum. We find that, while the boundary interaction Hamiltonian describing the junction can be recasted in the form of a four-channel, spin-1/2 antiferromagnetic Kondo Hamiltonian, the number of channels effectively participating in the Kondo effect depends on the chain parameters, as well as on the boundary couplings at the junction. The system evolves from an effective four-channel topological Kondo effect for a junction of XX-chains with symmetric boundary couplings into a two-channel one at a junction of three quantum critical Ising chains. The effective number of Kondo channels depends on the properties of the boundary and of the bulk. The XX-line is a “critical” line, where a four-channel topological Kondo effect can be recovered by fine-tuning the boundary parameter, while along the line in parameter space connecting the XX-line and the critical Ising point the junction is effectively equivalent to a two-channel topological Kondo Hamiltonian. Using a renormalization group approach, we determine the flow of the boundary couplings, which allows us to define and estimate the critical couplings and Kondo temperatures of the different Kondo (pair) channels. Finally, we study the local transverse magnetization in the center of the Y-junction, eventually arguing that it provides an effective tool to monitor the onset of the two-channel Kondo effect.
The role of short-range magnetic correlations in the gap opening of topological Kondo insulators
Ramos, E.; Franco, R.; Silva-Valencia, J.; Foglio, M. E.; Figueira, M. S.
2017-08-01
In this article we investigate the effects of short-range anti-ferromagnetic correlations on the gap opening of topological Kondo insulators. We add a Heisenberg term to the periodic Anderson model at the limit of strong correlations in order to allow a small degree of hopping of the localized electrons between neighboring sites of the lattice. This new model is adequate for studying topological Kondo insulators, whose paradigmatic material is the compound SmB6 . The main finding of the article is that the short-range antiferromagnetic correlations, present in some Kondo insulators, contribute decisively to the opening of the Kondo gap in their density of states. These correlations are produced by the interaction between moments on the neighboring sites of the lattice. For simplicity, we solve the problem on a two dimensional square lattice. The starting point of the model is the 4f-Ce ions orbitals, with J=5/2 multiplet in the presence of spin-orbit coupling. We present results for the Kondo and for the antiferromagnetic correlation functions. We calculate the phase diagram of the model, and as we vary the Ef level position from the empty regime to the Kondo regime, the system develops metallic and topological Kondo insulator phases. The band structure calculated shows that the model describes a strong topological insulator.
Multiterminal Conductance and Decoherence Effect of a Three-Terminal Kondo Dot
Institute of Scientific and Technical Information of China (English)
FANG Tie-Feng; WANG Shun-Jin
2006-01-01
@@ A three-terminal Kondo dot modelled by the Anderson Hamiltonian is investigated. In the strong correlation limit, we calculate the multiterminal conductance and the voltage-induced characteristic splitting of the nonequilibrium Kondo resonance by using the equation of motion approach from viewpoint of the correlation dynamics.A qualitative and reasonable agreement with a recently reported experiment is obtained. We also simulate phenomenologically the decoherence of the Kondo-coherent state formed in the two-terminal setup in the framework of our three-terminal model.
Giant Kondo Resonance of Parallel-Coupled Double Quantum Dots Embedded in an A-B Ring
Institute of Scientific and Technical Information of China (English)
CHEN Xiong-Wen; HE Da-Jiang; SONG Ke-Hui; WU Shao-Quan
2006-01-01
We theoretically study the properties of the ground state of the parallel-coupled double quantum dots embedded in a mesoscopic ring in the Kondo regime by means of the two-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. We find that in this system, the persistent current depends sensitively on both the parity of this system and the size of the ring. In the strong coupling regime, the giant sharp current peak appears, at the same time, the parity dependence of the persistent current disappears. These imply that in the strong coupling regime, there exists giant Kondo resonance and the two dots can be coupled coherently. Thus this system might be a candidate for future device applications.
Theory of Fano-Kondo effect in quantum dot systems: Temperature dependence of the Fano line shapes
Energy Technology Data Exchange (ETDEWEB)
Maruyama, I. [Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany)]. E-mail: maru@th.physik.uni-bonn.de; Shibata, N. [Department of Basic Science, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan); Ueda, K. [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8581 (Japan)
2006-05-01
The Fano-Kondo effect in zero-bias conductance is studied based on a theoretical model for the T-shaped quantum dot by the finite temperature density matrix renormalization group method. The modification of the two Fano line shapes at much higher temperatures than the Kondo temperature is also investigated by the effective Fano parameter estimated as a fitting parameter.
Gate-controlled Kondo screening in graphene: Quantum criticality and electron-hole asymmetry
Vojta, M.; Fritz, L.; Bulla, R.
2010-04-01
Magnetic impurities in neutral graphene provide a realization of the pseudogap Kondo model, which displays a quantum phase transition between phases with screened and unscreened impurity moment. Here, we present a detailed study of the pseudogap Kondo model with finite chemical potential μ. While carrier doping restores conventional Kondo screening at lowest energies, properties of the quantum critical fixed point turn out to influence the behavior over a large parameter range. Most importantly, the Kondo temperature TK shows an extreme asymmetry between electron and hole doping. At criticality, depending on the sign of μ, TK follows either the scaling prediction TK~|μ| with a universal prefactor, or TK~|μ|x with x≈2.6. This asymmetry between electron and hole doping extends well outside the quantum critical regime and also implies a qualitative difference in the shape of the tunneling spectra for both signs of μ.
Validity of equation-of-motion approach to kondo problem in the large N limit
Energy Technology Data Exchange (ETDEWEB)
Zhu, Jian-xin [Los Alamos National Laboratory; Ting, C S [UNIV OF HOUSTON; Qi, Yunong [UNIV OF HOUSTON
2008-01-01
The Anderson impurity model for Kondo problem is investigated for arbitrary orbit-spin degeneracy N of the magnetic impurity by the equation of motion method (EOM). By employing a new decoupling scheme, a self-consistent equation for the one-particle Green function is derived and numerically solved in the large-N approximation. For the particle-hole symmetric Anderson model with finite Coulomb interaction U, we show that the Kondo resonance at the impurity site exists for all N {>=} 2. The approach removes the pathology in the standard EOM for N = 2, and has the same level of applicability as non-crossing approximation. For N = 2, an exchange field splits the Kondo resonance into only two peaks, consist with the result from more rigorous numerical renormalization group (NRG) method. The temperature dependence of the Kondo resonance peak is also discussed.
Enhanced Kondo Effect in an Electron System Dynamically Coupled with Local Optical Phonon
Hotta, Takashi
2007-08-01
We discuss Kondo behavior of a conduction electron system coupled with local optical phonon by analyzing the Anderson-Holstein model with the use of a numerical renormalization group (NRG) method. There appear three typical regions due to the balance between Coulomb interaction Uee and phonon-mediated attraction Uph. For Uee>Uph, we observe the standard Kondo effect concerning spin degree of freedom. Since the Coulomb interaction is effectively reduced as Uee-Uph, the Kondo temperature TK is increased when Uph is increased. On the other hand, for UeeUph, there occurs the Kondo effect concerning charge degree of freedom, since vacant and double occupied states play roles of pseudo-spins. Note that in this case, TK is decreased with the increase of Uph. Namely, TK should be maximized for Uee≈ Uph. Then, we analyze in detail the Kondo behavior at Uee=Uph, which is found to be explained by the polaron Anderson model with reduced hybridization of polaron and residual repulsive interaction among polarons. By comparing the NRG results of the polaron Anderson model with those of the original Anderson-Holstein model, we clarify the Kondo behavior in the competing region of Uee≈ Uph.
The Spin Glass-Kondo Competition in Disordered Cerium Systems
Magalhaes, S. G.; Zimmer, F.; Coqblin, B.
2013-10-01
We discuss the competition between the Kondo effect, the spin glass state and a magnetic order observed in disordered Cerium systems. We present firstly the experimental situation of disordered alloys such as CeNi1 - xCux and then the different theoretical approaches based on the Kondo lattice model, with different descriptions of the intersite exchange interaction for the spin glass. After the gaussian approach of the Sherrington-Kirkpatrick model, we discuss the Mattis and the van Hemmen models. Then, we present simple cluster calculations in order to describe the percolative evolution of the clusters from the cluster spin glass to the inhomogeneous ferromagnetic order recently observed in CeNi1 - xCux disordered alloys and finally we discuss the effect of random and transverse magnetic field.
Magalhaes, S. G.; Zimmer, F. M.; Coqblin, B.
2012-12-01
We study here the influence of a random applied magnetic field on the competition between the Kondo effect, the spin glass phase and a ferromagnetic order in disordered cerium systems such as CeNi1-xCux. The model used here takes an intrasite Kondo coupling and an intersite random coupling; both the intersite random coupling and the random magnetic field are described within the Sherrington-Kirkpatrick model and the one-step replica symmetry breaking procedure is also used here. We present phase diagrams giving Temperature versus the Kondo exchange parameter and the random magnetic field makes decrease particularly the importance of the spin glass and ferromagnetic phases.
Characterization of a correlated topological Kondo insulator in one dimension
Hagymási, I.; Legeza, Ö.
2016-04-01
We investigate the ground state of a p -wave Kondo-Heisenberg model introduced by Alexandrov and Coleman with an Ising-type anisotropy in the Kondo interaction and correlated conduction electrons. Our aim is to understand how they affect the stability of the Haldane state obtained in the SU(2)-symmetric case without the Hubbard interaction. By applying the density-matrix renormalization group algorithm and calculating the entanglement entropy we show that in the anisotropic case a phase transition occurs and a Néel state emerges above a critical value of the Coulomb interaction. These findings are also corroborated by the examination of the entanglement spectrum and the spin profile of the system which clarify the structure of each phase.
Conductance fingerprint of Majorana fermions in the topological Kondo effect
Galpin, Martin R.; Mitchell, Andrew K.; Temaismithi, Jesada; Logan, David E.; Béri, Benjamin; Cooper, Nigel R.
2014-01-01
We consider an interacting nanowire/superconductor heterostructure attached to metallic leads. The device is described by an unusual low-energy model involving spin-1 conduction electrons coupled to a nonlocal spin-1/2 Kondo impurity built from Majorana fermions. The topological origin of the resulting Kondo effect is manifest in distinctive non-Fermi-liquid (NFL) behavior, and the existence of Majorana fermions in the device is demonstrated unambiguously by distinctive conductance line shapes. We study the physics of the model in detail, using the numerical renormalization group, perturbative scaling, and Abelian bosonization. In particular, we calculate the full scaling curves for the differential conductance in ac and dc fields, onto which experimental data should collapse. Scattering t matrices and thermodynamic quantities are also calculated, recovering asymptotes from conformal field theory. We show that the NFL physics is robust to asymmetric Majorana-lead couplings, and here we uncover a duality between strong and weak coupling. The NFL behavior is understood physically in terms of competing Kondo effects. The resulting frustration is relieved by inter-Majorana coupling which generates a second crossover to a regular Fermi liquid.
Observation of the frozen charge of a Kondo resonance
Desjardins, M. M.; Viennot, J. J.; Dartiailh, M. C.; Bruhat, L. E.; Delbecq, M. R.; Lee, M.; Choi, M.-S.; Cottet, A.; Kontos, T.
2017-04-01
The ability to control electronic states at the nanoscale has contributed to our modern understanding of condensed matter. In particular, quantum dot circuits represent model systems for the study of strong electronic correlations, epitomized by the Kondo effect. We use circuit quantum electrodynamics architectures to study the internal degrees of freedom of this many-body phenomenon. Specifically, we couple a quantum dot to a high-quality-factor microwave cavity to measure with exceptional sensitivity the dot’s electronic compressibility, that is, its ability to accommodate charges. Because electronic compressibility corresponds solely to the charge response of the electronic system, it is not equivalent to the conductance, which generally involves other degrees of freedom such as spin. Here, by performing dual conductance and compressibility measurements in the Kondo regime, we uncover directly the charge dynamics of this peculiar mechanism of electron transfer. The Kondo resonance, visible in transport measurements, is found to be ‘transparent’ to microwave photons trapped in the high-quality cavity, thereby revealing that (in such a many-body resonance) finite conduction is achieved from a charge frozen by Coulomb interaction. This freezing of charge dynamics is in contrast to the physics of a free electron gas. We anticipate that the tools of cavity quantum electrodynamics could be used in other types of mesoscopic circuits with many-body correlations, providing a model system in which to perform quantum simulation of fermion-boson problems.
Kondo peak splitting and Kondo dip in single molecular magnet junctions
Energy Technology Data Exchange (ETDEWEB)
Niu, Pengbin, E-mail: 120233951@qq.com [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Shi, Yunlong; Sun, Zhu [Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China); Nie, Yi-Hang [Institute of Theoretical Physics, Shanxi University, Taiyuan 030006 (China); Luo, Hong-Gang [Center for Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials of the MoE, Lanzhou University, Lanzhou 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China)
2016-01-15
Many factors containing bias, spin–orbit coupling, magnetic fields applied, and so on can strongly influence the Kondo effect, and one of the consequences is Kondo peak splitting (KPS). It is natural that KPS should also appear when another spin degree of freedom is involved. In this work we study the KPS effects of single molecular magnets (SMM) coupled with two metallic leads in low-temperature regime. It is found that the Kondo transport properties are strongly influenced by the exchange coupling and anisotropy of the magnetic core. By employing Green's function method in Hubbard operator representation, we give an analytical expression for local retarded Green's function of SMM and discussed its low-temperature transport properties. We find that the anisotropy term behaves as a magnetic field and the splitting behavior of exchange coupling is quite similar to the spin–orbit coupling. These splitting behaviors are explained by introducing inter-level or intra-level transitions, which account for the seven-peak splitting structure. Moreover, we find a Kondo dip at Fermi level under proper parameters. These Kondo peak splitting behaviors in SMM deepen our understanding to Kondo physics and should be observed in the future experiments. - Highlights: • We study Kondo peak splitting in single molecular magnets. • We study Kondo effect by Hubbard operator Green's function method. • We find Kondo peak splitting structures and a Kondo dip at Fermi level. • The exchange coupling and magnetic anisotropy induce fine splitting structure. • The splitting structures are explained by inter-level or intra-level transitions.
Effect of Spin-Orbit Coupling on Kondo Phenomena in f7-Electron Systems
Hotta, Takashi
2015-11-01
In order to promote our basic understanding of the Kondo behavior recently observed in europium compounds, we analyze an impurity Anderson model with seven f electrons at an impurity site by employing a numerical renormalization group method. The local part of the model consists of Coulomb interactions among f electrons, spin-orbit coupling λ, and crystalline electric field (CEF) potentials, while we consider the hybridization V between local f electrons and single-band conduction electrons with au symmetry. For λ = 0, we observe underscreening Kondo behavior for appropriate values of V, characterized by an entropy change from ln 8 to ln 7, in which one of the seven f electrons is screened by conduction electrons. When λ is increased, we obtain two types of behavior depending on the value of V. For large V, we find an entropy release of ln 7 at low temperatures, determined by the level splitting energy due to the hybridization. For small V, we also observe an entropy change from ln 8 to ln 2 by the level splitting due to the hybridization, but at low temperatures, ln 2 entropy is found to be released, leading to the Kondo effect. We emphasize that the Kondo behavior for small V is observed for realistic values of λ on the order of 0.1 eV. We also discuss the effect of CEF potentials and the multipole properties in the Kondo behavior reported in this paper.
Conductance of closed and open long Aharonov-Bohm-Kondo rings
Shi, Zheng; Komijani, Yashar
2017-02-01
We calculate the finite temperature linear dc conductance of a generic single-impurity Anderson model containing an arbitrary number of Fermi liquid leads, and apply the formalism to closed and open long Aharonov-Bohm-Kondo (ABK) rings. We show that, as with the short ABK ring, there is a contribution to the conductance from the connected four-point Green's function of the conduction electrons. At sufficiently low temperatures this contribution can be eliminated, and the conductance can be expressed as a linear function of the T matrix of the screening channel. For closed rings we show that at temperatures high compared to the Kondo temperature, the conductance behaves differently for temperatures above and below vF/L , where vF is the Fermi velocity and L is the circumference of the ring. For open rings, when the ring arms have both a small transmission and a small reflection, we show from the microscopic model that the ring behaves like a two-path interferometer, and that the Kondo temperature is unaffected by details of the ring. Our findings confirm that ABK rings are potentially useful in the detection of the size of the Kondo screening cloud, the π /2 scattering phase shift from the Kondo singlet, and the suppression of Aharonov-Bohm oscillations due to inelastic scattering.
Continuous Time Quantum Monte Carlo simulation of Kondo shuttling
Zhang, Peng; Assaad, Fakher; Jarrell, Mark
2010-03-01
The Kondo shuttling problem is investigated by using the Continuous Time Quantum Monte Carlo method in both the anti-adiabatic limit φTK and the intermediate regime φ˜TK, where φ is the phonon modulation frequency and TK is the Kondo temperature. We investigate the potential emergence of Kondo effect or Kondo breakdown as a function of the phonon modulation frequency and electron-phonon coupling. This research is supported by grant OISE-0952300.
Ferromagnetism in the Kondo-lattice compound CePd2P2.
Tran, Vinh Hung; Bukowski, Zbigniew
2014-06-25
We report physical properties of CePd2P2 crystallizing in the tetragonal ThCr2Si2-type structure (space group I4/mmm). Dc-magnetic susceptibility, magnetization, specific heat, electrical resistivity and magnetoresistance measurements establish a ferromagnetic ordering below the Curie temperature TC = 28.4 ± 0.2 K. Critical analysis of isothermal and isofield magnetization yields critical exponents of β = 0.405 ± 0.005, γ = 1.11 ± 0.05 and δ = 3.74 ± 0.04. The ordered state is characterized by saturation moment Ms ∼ 0.98μB and magnon energy gap Δ/kB ∼25–35 K. The studied properties reflect a competing influence of the Kondo and crystalline electric field (CEF) interactions. The strength of the Kondo effect is assigned by a low-temperature Kondo scale TK ∼19 ± 10 K and a high-temperature Kondo scale TK ~ H 117 } 10 K. A model of the inelastic scattering of the conduction electrons with an exchanged CEF energy ΔCEF was applied to the magnetic resistivity. An average value ΔCEF = 260 ± 30 K is consistent in the relationships with TK and TK H. We argue that the CePd2P2 compound appears to be a new ferromagnetic Kondo-lattice among the Ce-based intermetallics.
Influence of local spin polarization to the Kondo effect
Institute of Scientific and Technical Information of China (English)
LI Huan; GUO Wei
2007-01-01
We use the spin non-degenerate single impurity Anderson model to investigate the influence of the local spin polarization to the Kondo effect. By using the Schrieffer-Wolff transformation, we obtain a generalized s-d exchange Hamiltonian, which describes the interaction between a polarized local spin and conduction electrons. In this case, the singlet is no longer an eigenstate as shown by variational calculations where the splitting of the local energy △= εd↑ - εd↓ can be arbitrarily small. The local spin polarization generates the instability of the singlet ground state of the S = 1/2 s-d exchange model.
Photoexcited electron dynamics in Kondo insulators and heavy fermions
Demsar, Jure; Thorsmolle, Verner K.; Sarrao, John L.; Taylor, Antoinette J.
2005-01-01
We have studied the photoexcited carrier relaxation dynamics in the Kondo insulator SmB6 and the heavy fermion metal YbAgCu4 as a function of temperature and excitation level. The dynamic response is found to be both strongly temperature dependent and nonlinear. The data are analyzed with a Rothwarf-Taylor bottleneck model, where the dynamics are governed by the presence of a narrow gap in the density of states near the Fermi level. The remarkable agreement with the model suggests that carrie...
Kondo effect in quantum dots and molecular devices
Institute of Scientific and Technical Information of China (English)
JIANG Lang; LI Hongxiang; HU Wenping; ZHU Daoben
2005-01-01
Kondo effect is a very important many-body phenomenon in condensed matter physics,which explains why the resistance increases as the temperature is lowered (usually <10 K) in dilute magnetic alloy, and why the conductance increases as temperature is decreased in quantum dots. This paper simply introduces equilibrium and non- equilibrium Kondo effects in quantum dots together with the Kondo effect in quantum dots with even number of electrons (when the singlet and triplet states are degenerate). Furthermore, Kondo effect in single atom/molecular transistors is introduced, which indicates a new way to study Kondo effect.
Prediction of femtosecond oscillations in the transient current of a quantum dot in the Kondo regime
Goker, A.
2010-10-11
We invoke the time-dependent noncrossing approximation in order to study the effects of the density of states of gold contacts on the instantaneous conductance of a single electron transistor which is abruptly moved into the Kondo regime by means of a gate voltage. For an asymmetrically coupled system, we observe that the instantaneous conductance in the Kondo time scale exhibits beating with distinct frequencies, which are proportional to the separation between the Fermi level and the sharp features in the density of states of gold. Increasing the ambient temperature or bias quenches the amplitude of the oscillations. We attribute the oscillations to interference between the emerging Kondo resonance and van-Hove singularities in the density of state. In addition, we propose an experimental realization of this model.
Kondo effect in molecules with strong correlations
Energy Technology Data Exchange (ETDEWEB)
Kuzmenko, Tetyana [Department of Physics, Ben-Gurion University, P.O. Box 653, Beer-Sheva 84105 (Israel)]. E-mail: tetyana@bgumail.bgu.ac.il; Kikoin, Konstantin [Department of Physics, Ben-Gurion University, P.O. Box 653, Beer-Sheva 84105 (Israel); Avishai, Yshai [Department of Physics, Ben-Gurion University, P.O. Box 653, Beer-Sheva 84105 (Israel)
2005-04-30
A theory of Kondo tunneling through molecules adsorbed on metallic substrate is constructed and the underlying physics is exposed. It is shown that in the case of weak chemisorption the sandwich-type molecules manifest a novel type of Kondo effect that has not been observed in magnetically doped bulk metals. The exchange Hamiltonian of these molecules unveils unusual dynamical SO(n) symmetries instead of conventional SU(2) symmetry. These symmetries can be experimentally realized and the specific value of n can be controlled by gate voltage.
Kondo tunneling through real and artificial molecules.
Kikoin, K; Avishai, Y
2001-03-05
When an asymmetric double dot is hybridized with itinerant electrons, its singlet ground state and lowly excited triplet state cross, leading to a competition between the Zhang-Rice mechanism of singlet-triplet splitting in a confined cluster and the Kondo effect (which accompanies the tunneling through quantum dot under a Coulomb blockade restriction). The rich physics of an underscreened S = 1 Kondo impurity in the presence of low-lying triplet-singlet excitations is exposed and estimates of the magnetic susceptibility and the electric conductance are presented, together with applications for molecule chemisorption on metallic substrates.
Nonequilibrium Transport through a Kondo-dot in a Magnetic Field
DEFF Research Database (Denmark)
Wölfle, Peter; Rosch, Achim; Paaske, Jens
2002-01-01
Electron transport through a quantum-dot in the Coulomb blockade regime is modeled by a Kondo-type hamiltonian describing spin-dependent tunneling and exchange interaction with the local spin. We consider the regime of large transport voltage V and magnetic field B with max(V, B) » Tk, the Kondo ...... to be generalized to allow for frequency dependent coupling functions. We simplify the full RG equations in the spirit of poor man’s scaling and calculate M and G in leading order of 1/ln[(V, B)/T k]....
Nonequilibrium Transport through a Kondo-dot in a Magnetic Field
DEFF Research Database (Denmark)
Wölfle, Peter; Rosch, Achim; Paaske, Jens;
2002-01-01
Electron transport through a quantum-dot in the Coulomb blockade regime is modeled by a Kondo-type hamiltonian describing spin-dependent tunneling and exchange interaction with the local spin. We consider the regime of large transport voltage V and magnetic field B with max(V, B) » Tk, the Kondo...... temperature, and show that a renormalized perturbation theory can be formulated describing the local magnetization M and the differential conductance G quantitatively. Based on the structure of leading logarithmic corrections in bare perturbation theory we argue that the perturbative renormalization group has...
Kondo effect in transport through Aharonov-Bohm and Aharonov-Casher interferometers
Lobos, A. M.; Aligia, A. A.
2009-10-01
We derive the extension of the Hubbard model to include Rashba spin-orbit coupling that correctly describes Aharonov-Bohm and Aharonov-Casher phases in a ring under applied magnetic and electric fields. When the ring is connected to conducting leads, we develop a formalism that is able to describe both, Kondo and interference effects. We find that in the Kondo regime, the spin-orbit coupling reduces strongly the conductance from the unitary limit. This effect in combination with the magnetic flux, can be used to produce spin polarized carriers.
Kondo effect in transport through Aharonov-Bohm and Aharonov-Casher interferometers
Energy Technology Data Exchange (ETDEWEB)
Lobos, A.M. [DPMC-MaNEP, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva 4 (Switzerland); Aligia, A.A., E-mail: aligia@cab.cnea.gov.a [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica, 8400 Bariloche (Argentina)
2009-10-15
We derive the extension of the Hubbard model to include Rashba spin-orbit coupling that correctly describes Aharonov-Bohm and Aharonov-Casher phases in a ring under applied magnetic and electric fields. When the ring is connected to conducting leads, we develop a formalism that is able to describe both, Kondo and interference effects. We find that in the Kondo regime, the spin-orbit coupling reduces strongly the conductance from the unitary limit. This effect in combination with the magnetic flux, can be used to produce spin polarized carriers.
Exact results for the Kondo screening cloud of two helical liquids.
Posske, Thore; Liu, Chao-Xing; Budich, Jan Carl; Trauzettel, Björn
2013-01-04
We analyze the screening of a magnetic quantum dot with spin 1/2 coupled to two helical liquids. Interestingly, we find two qualitatively different sets of Toulouse points, i.e., nontrivial parameters for which we can solve the two channel Kondo model exactly. This enables us to calculate the temperature and voltage dependent Kondo screening cloud, which develops oscillations for an applied spin voltage μ(s). Such a spin voltage can be conveniently applied by a charge bias in a four-terminal helical liquid setup.
Pressure-tuned quantum criticality in the antiferromagnetic Kondo semimetal CeNi2-δAs2.
Luo, Yongkang; Ronning, F; Wakeham, N; Lu, Xin; Park, Tuson; Xu, Z-A; Thompson, J D
2015-11-03
The easily tuned balance among competing interactions in Kondo-lattice metals allows access to a zero-temperature, continuous transition between magnetically ordered and disordered phases, a quantum-critical point (QCP). Indeed, these highly correlated electron materials are prototypes for discovering and exploring quantum-critical states. Theoretical models proposed to account for the strange thermodynamic and electrical transport properties that emerge around the QCP of a Kondo lattice assume the presence of an indefinitely large number of itinerant charge carriers. Here, we report a systematic transport and thermodynamic investigation of the Kondo-lattice system CeNi2-δAs2 (δ ≈ 0.28) as its antiferromagnetic order is tuned by pressure and magnetic field to zero-temperature boundaries. These experiments show that the very small but finite carrier density of ~0.032 E-/formular unit in CeNi2-δAs2 leads to unexpected transport signatures of quantum criticality and the delayed development of a fully coherent Kondo-lattice state with decreasing temperature. The small carrier density and associated semimetallicity of this Kondo-lattice material favor an unconventional, local-moment type of quantum criticality and raises the specter of the Nozières exhaustion idea that an insufficient number of conduction-electron spins to separately screen local moments requires collective Kondo screening.
Pressure-tuned quantum criticality in the antiferromagnetic Kondo semimetal CeNi2−δAs2
Luo, Yongkang; Ronning, F.; Wakeham, N.; Lu, Xin; Park, Tuson; Xu, Z.-A.; Thompson, J. D.
2015-01-01
The easily tuned balance among competing interactions in Kondo-lattice metals allows access to a zero-temperature, continuous transition between magnetically ordered and disordered phases, a quantum-critical point (QCP). Indeed, these highly correlated electron materials are prototypes for discovering and exploring quantum-critical states. Theoretical models proposed to account for the strange thermodynamic and electrical transport properties that emerge around the QCP of a Kondo lattice assume the presence of an indefinitely large number of itinerant charge carriers. Here, we report a systematic transport and thermodynamic investigation of the Kondo-lattice system CeNi2−δAs2 (δ ≈ 0.28) as its antiferromagnetic order is tuned by pressure and magnetic field to zero-temperature boundaries. These experiments show that the very small but finite carrier density of ∼0.032 e−/formular unit in CeNi2−δAs2 leads to unexpected transport signatures of quantum criticality and the delayed development of a fully coherent Kondo-lattice state with decreasing temperature. The small carrier density and associated semimetallicity of this Kondo-lattice material favor an unconventional, local-moment type of quantum criticality and raises the specter of the Nozières exhaustion idea that an insufficient number of conduction-electron spins to separately screen local moments requires collective Kondo screening. PMID:26483465
Local Moment Formation and Kondo Effect in Defective Graphene
Cazalilla, M. A.; Iucci, A.; Guinea, F.; Neto, A. H. Castro
2012-01-01
We study the local moment formation and the Kondo effect at single-atom vacancies in Graphene. We develop a model accounting for the vacancy reconstruction as well as non-planarity effects induced by strain and/or temperature. Thus, we find that the dangling $\\sigma$ orbital localized at the vacancy is allowed to strongly hybridize with the $\\pi$-band since the scattering with the vacancy turns the hybridization into singular function of the energy ($\\sim [|\\epsilon| \\ln^2 \\epsilon/D]^{-1}$, ...
Transport across two interacting quantum dots: bulk Kondo, Kondo box and molecular regimes
Costa Ribeiro, Laercio; Hamad, Ignacio; Chiappe, Guillermo; Victoriano Anda, Enrique
2014-03-01
We analyze the transport properties of a double quantum dot device with both dots coupled to perfect conducting leads and to a finite chain of N non-interacting sites connecting both of them. The inter-dot chain strongly influences the transport across the system and the local density of states of the dots. We study the case of small number of sites, so that Kondo box effects are present. For odd N and small coupling between the inter-dot chain and the dots, a state with two coexisting Kondo regimes develops: the bulk Kondo due to the quantum dots connected to leads and the one produced by the screening of the quantum dots spins by the spin in the finite chain. As the coupling to the inter-dot chain increases, there is a crossover to a molecular Kondo effect, due to the screening of the molecule spin by the leads. For even N the two-Kondo temperatures regime does not develop and the physics is dominated by the usual competition between Kondo and antiferromagnetism. We finally study how the transport properties are affected as N is increased. We used exact multi-configurational Lanczos calculations and finite U slave-boson mean-field theory. The results obtained with both methods describe qualitatively and also quantitatively the same physics.
Universality and scaling in a charge two-channel Kondo device
Mitchell, Andrew K.; Landau, L. A.; Fritz, L.; Sela, E.
2016-01-01
We study a charge two-channel Kondo model, demonstrating that recent experiments [Iftikhar et al, Nature 526, 233 (2015)] realize an essentially perfect quantum simulation -- not just of its universal physics, but also nonuniversal effects away from the scaling limit. Numerical renormalization group
Holographic optical traps for atom-based topological Kondo devices
Buccheri, F.; Bruce, G. D.; Trombettoni, A.; Cassettari, D.; Babujian, H.; Korepin, V. E.; Sodano, P.
2016-07-01
The topological Kondo (TK) model has been proposed in solid-state quantum devices as a way to realize non-Fermi liquid behaviors in a controllable setting. Another motivation behind the TK model proposal is the demand to demonstrate the quantum dynamical properties of Majorana fermions, which are at the heart of their potential use in topological quantum computation. Here we consider a junction of crossed Tonks-Girardeau gases arranged in a star-geometry (forming a Y-junction), and we perform a theoretical analysis of this system showing that it provides a physical realization of the TK model in the realm of cold atom systems. Using computer-generated holography, we experimentally implement a Y-junction suitable for atom trapping, with controllable and independent parameters. The junction and the transverse size of the atom waveguides are of the order of 5 μm, leading to favorable estimates for the Kondo temperature and for the coupling across the junction. Since our results show that all the required theoretical and experimental ingredients are available, this provides the demonstration of an ultracold atom device that may in principle exhibit the TK effect.
Competition between Quadrupole and Magnetic Kondo Effects in Non-Kramers Doublet Systems
Kusunose, Hiroaki; Onimaru, Takahiro
2015-03-01
We discuss possible competition between magnetic and quadrupole Kondo effects in non-Kramers doublet systems in cubic symmetry. The quadrupole Kondo effect leads to non-Fermi-liquid (NFL) ground state, while the magnetic one favors ordinary Fermi-liquid (FL) ground state. In terms of the j-j coupling scheme, we argue that the orbital fluctuation must develop in the vicinity of the NFL-FL boundary. A change of temperature dependence of the f-electron entropy in both the FL and NFL regimes is demonstrated by the Wilson's numerical renormalization-group (NRG) method on the basis of the extended two-channel Kondo exchange model. We present implications to PrT2X20 (T=Ti, V, Ir; X=Al, Zn) systems which exhibit both quadrupole ordering and peculiar superconductivity. We discuss how the magnetic field lifts the non-Kramers degeneracy. Our model also represents the alternative FL state accompanied by a free magnetic spin, as a consequence of stronger competition between the magnetic and the quadrupole Kondo effects.
Dynamical symmetries in Kondo tunneling through complex quantum dots.
Kuzmenko, T; Kikoin, K; Avishai, Y
2002-10-07
Kondo tunneling reveals hidden SO(n) dynamical symmetries of evenly occupied quantum dots. As is exemplified for an experimentally realizable triple quantum dot in parallel geometry, the possible values n=3,4,5,7 can be easily tuned by gate voltages. Following construction of the corresponding o(n) algebras, scaling equations are derived and Kondo temperatures are calculated. The symmetry group for a magnetic field induced anisotropic Kondo tunneling is SU(2) or SO(4).
Competing Kondo Effects in Non-Kramers Doublet Systems
Kusunose, Hiroaki
2016-01-01
In non-Kramers Kondo systems with a quadrupolar degrees of freedom, an ordinary magnetic Kondo effect can compete with the quadrupolar Kondo effect. We discuss such competition keeping Pr$T_{2}$Zn$_{20}$ ($T$=Ir, Rh) and Pr$T_{2}$Al$_{20}$ ($T$=V, Ti) in mind, where the $\\Gamma_{3}$ non-Kramers crystalline-electric-field (CEF) doublet ground state is realized in Pr$^{3+}$ ion with $(4f)^{2}$ configuration under cubic symmetry. The quadrupolar Kondo effect can be described by the two-channel K...
Kondo force in shuttling devices: dynamical probe for a Kondo cloud.
Kiselev, M N; Kikoin, K A; Gorelik, L Y; Shekhter, R I
2013-02-08
We consider the electromechanical properties of a single-electronic device consisting of a movable quantum dot attached to a vibrating cantilever, forming a tunnel contact with a nonmovable source electrode. We show that the resonance Kondo tunneling of electrons amplifies exponentially the strength of nanoelectromechanical (NEM) coupling in such a device and make the latter insensitive to mesoscopic fluctuations of electronic levels in a nanodot. It is also shown that the study of a Kondo-NEM phenomenon provides additional (as compared with standard conductance measurements in a nonmechanical device) information on retardation effects in the formation of a many-particle cloud accompanying the Kondo tunneling. A possibility for superhigh tunability of mechanical dissipation as well as supersensitive detection of mechanical displacement is demonstrated.
Kondo Effect at a Quantum Critical Point
Ramazashvili, Revaz; Coleman, Piers
1998-03-01
The Kondo effect in a metal on the verge of a zero-temperature magnetic instability provides a fascinating example of interference between local and long-range correlations. (A. I. Larkin and V. I. Mel'nikov, Sov. Phys. JETP 34, 656 (1972)) (P. Coleman and A. M. Tsvelik, cond-mat/9707003) (A. Sengupta, cond-mat/9707316) We discuss possible consequences of this interference, including the breakdown of the Fermi liquid state.
Kondo effects in triangular triple quantum dots
Oguri, Akira; Numata, Takahide; Nisikawa, Yunori; Hewson, A. C.
2009-03-01
We study the conductance through a triangular triple quantum dot, which is connected to two noninteracting leads, using the numerical renormalization group (NRG). It is found that the system shows a variety of Kondo effects depending on the filling of the triangle. The SU(4) Kondo effect occurs at half-filling, and a sharp conductance dip due to a phase lapse appears in the gate-voltage dependence. Furthermore, when four electrons occupy the three sites on average, a local S=1 moment, which is caused by the Nagaoka mechanism, is induced along the triangle. The temperature dependence of the entropy and spin susceptibility of the triangle shows that this moment is screened by the conduction electrons via two separate stages at different temperatures. The two-terminal and four-terminal conductances show a clear difference at the gate voltages, where the SU(4) or the S=1 Kondo effects occur[1]. We will also discuss effects of deformations of the triangular configuration, caused by the inhomogeneity in the inter-dot couplings and in the gate voltages. [4pt] [1] T.Numata, Y.Nisikawa, A.Oguri, and A.C.Hewson: arXiv:0808.3496.
Mitchell, Andrew K.; Becker, Michael; Bulla, Ralf
2011-09-01
The existence of a length scale ξK˜1/TK (with TK the Kondo temperature) has long been predicted in quantum impurity systems. At low temperatures T≪TK, the standard interpretation is that a spin-(1)/(2) impurity is screened by a surrounding “Kondo cloud” of spatial extent ξK. We argue that renormalization group (RG) flow between any two fixed points (FPs) results in a characteristic length scale, observed in real space as a crossover between physical behavior typical of each FP. In the simplest example of the Anderson impurity model, three FPs arise, and we show that “free orbital,” “local moment,” and “strong coupling” regions of space can be identified at zero temperature. These regions are separated by two crossover length scales ξLM and ξK, with the latter diverging as the Kondo effect is destroyed on increasing temperature through TK. One implication is that moment formation occurs inside the “Kondo cloud”, while the screening process itself occurs on flowing to the strong coupling FP at distances ˜ξK. Generic aspects of the real-space physics are exemplified by the two-channel Kondo model, where ξK now separates local moment and overscreening clouds.
SU(4) Kondo entanglement in double quantum dot devices
Bonazzola, Rodrigo; Andrade, J. A.; Facio, Jorge I.; García, D. J.; Cornaglia, Pablo S.
2017-08-01
We analyze, from a quantum information theory perspective, the possibility of realizing an SU(4) entangled Kondo regime in semiconductor double quantum dot devices. We focus our analysis on the ground-state properties and consider the general experimental situation where the coupling parameters of the two quantum dots differ. We model each quantum dot with an Anderson-type Hamiltonian including an interdot Coulomb repulsion and tunnel couplings for each quantum dot to independent fermionic baths. We find that the spin and pseudospin entanglements can be made equal, and the SU(4) symmetry recovered, if the gate voltages are chosen in such a way that the average charge occupancies of the two quantum dots are equal, and the double occupancy on the double quantum dot is suppressed. We present density matrix renormalization group numerical results for the spin and pseudospin entanglement entropies, and analytical results for a simplified model that captures the main physics of the problem.
Exact Nonequilibrium Transport in the Topological Kondo Effect
Béri, B.
2017-07-01
A leading candidate for the experimental confirmation of the nonlocal quantum dynamics of Majorana fermions is the topological Kondo effect, predicted for mesoscopic superconducting islands connected to metallic leads. We identify an anisotropic, Toulouse-like, limit of the topological Kondo problem where the full nonequilibrium conductance and shot noise can be calculated exactly. Near the Kondo fixed point, we find novel asymptotic features including a universal conductance scaling function and fractional charge quantization observable via the Fano factor. In the universal regime, our results apply for generic anisotropy and even away from the Kondo limit as long as the system supports an emergent topological Kondo fixed point. Our approach thus provides key new qualitative insights and exact expressions for quantitative comparisons to future experimental data.
Vojta, Matthias; Mitchell, Andrew K; Zschocke, Fabian
2016-07-15
Kitaev's honeycomb-lattice compass model describes a spin liquid with emergent fractionalized excitations. Here, we study the physics of isolated magnetic impurities coupled to the Kitaev spin-liquid host. We reformulate this Kondo-type problem in terms of a many-state quantum impurity coupled to a multichannel bath of Majorana fermions and present the numerically exact solution using Wilson's numerical renormalization group technique. Quantum phase transitions occur as a function of Kondo coupling and locally applied field. At zero field, the impurity moment is partially screened only when it binds an emergent gauge flux, while otherwise it becomes free at low temperatures. We show how Majorana degrees of freedom determine the fixed-point properties, make contact with Kondo screening in pseudogap Fermi systems, and discuss effects away from the dilute limit.
Kondo Effect in a Single Electron Transistor
Goldhaber-Gordon, David
1998-03-01
When a field-effect transistor is made very small, and electrons in the channel are separated from those in the leads by tunnel junctions, the transistor turns on and off every time an extra electron is added to the channel. The droplet of electrons confined in the channel of such a single-electron transistor (SET) interacts with electrons in the leads. This is in close analogy to an impurity atom interacting with the delocalized electrons in a metal, the traditional system for studying the Kondo effect.(Y. Meir, N.S. Wingreen, and P.A. Lee. PRL) 70, 2601 (1993) I will discuss measurements on a new generation of SETs that display all the aspects of the Kondo effect:(D. Goldhaber-Gordon, Hadas Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, and M.A. Kastner. To be published in Nature). a spin singlet forms between a localized electron in the channel and delocalized electrons in the leads, causing an enhancement of the zero-bias conductance, when the number of electrons on the artificial atom is odd but not when it is even. The system can be studied out of equilibrium by applying a voltage between the two leads, an impossible procedure in bulk Kondo systems. The spin singlet is altered by applying such a voltage or a magnetic field or by increasing the temperature, all in ways that agree with predictions. In addition, the tunability of an SET allows study of the system over a range of parameters not easily accessible to previous calculations or experiments.
Eckle, H. -P.; Johannesson, H.; Stafford, C. A.
2000-01-01
We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a side-branch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo re...
Theoretical study of Kondo effect and related transport properties in topological insulator systems
Xin, Xianhao
This thesis presents theoretical studies of the Kondo effect and related transport properties in topological insulator systems. The thesis mainly covers two topics: the Kondo effect on the surface of a bulk topological insulator material and the Kondo effect in a topological insulator quantum dot. Other relevant background knowledge and theoretical techniques for the transport calculations are also discussed in the thesis. For the first topic, we investigate the role of magnetic impurities in the transport properties of a three-dimensional topological insulator's surface states. First, we combine the second-order perturbation theory and the Boltzmann transport equation to calculate the magnetically induced resistivity in a topological insulator. Our result shows a non-perturbative behavior when conduction electrons and magnetic impurities' spins are antiferromagnetically coupled. The surface resistivity is found to display an oscillatory rather than isotropic behavior compared to the conventional Kondo effect. Both the variational method and renormalization group (RG) analysis are employed to compute the Kondo temperature, through which the non-perturbative behavior is confirmed. We further study the RG flows and demonstrate that the RG trajectories eventually flow into a strong coupling regime if the coupling is antiferromagnetic. This work is motivated by the recent transport experiments, in which surface currents were detected in topological insulators. The calculation is shown to be qualitatively consistent with the low temperature dip observed in the experimental R - T curve, and it might be one of the possible origins of the dip. For the second main topic, we investigate theoretically the nonequilibrium transport properties of a topological insulator quantum dot (TIQD) in the Coulomb blockade and Kondo regime. An Anderson impurity model is applied to a TIQD system coupled to two external leads, and we show that the model realizes the spin-orbital Kondo effect
Kondo effect and mesoscopic ﬂuctuations
Indian Academy of Sciences (India)
Denis Ullmo; Sébastien Burdin; Dong E Liu; Harold U Baranger
2011-11-01
Two important themes in nanoscale physics in the last two decades are correlations between electrons and mesoscopic ﬂuctuations. Here we review our recent work on the intersection of these two themes. The setting is the Kondo effect, a paradigmatic example of correlated electron physics, in a nanoscale system with mesoscopic ﬂuctuations; in particular, we consider a small quantum dot coupled to a ﬁnite reservoir (which itself may be a large quantum dot). We discuss three aspects of this problem. First, in the high-temperature regime, we argue that a Kondo temperature K which takes into account the mesoscopic ﬂuctuations is a relevant concept: for instance, physical properties are universal functions of /K. Secondly, when the temperature is much less than the mean level spacing due to conﬁnement, we characterize a natural cross-over from weak to strong coupling. This strong coupling regime is itself characterized by well-deﬁned single-particle levels, as one can see from a Nozières Fermi-liquid theory argument. Finally, using a mean-ﬁeld technique, we connect the mesoscopic ﬂuctuations of the quasiparticles in the weak coupling regime to those at strong coupling.
Kondo effect in organometallic complexes with vibrating ligand shells
Energy Technology Data Exchange (ETDEWEB)
Kiselev, M.N. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg, 97074 (Germany)]. E-mail: kiselev@physik.uni-wuerzburg.de; Kikoin, K. [Physics Department, Ben-Gurion University, Beer-Sheva 84105 (Israel); Wegewijs, M.R. [Institut fuer Theoretische Physik-Lehrstuhl A, RWTH Aachen, 52056 Aachen (Germany)
2007-03-15
We investigate transport through a mononuclear rare-earth metal-organic shell complex with strong tunnel coupling between the shell and two electrodes. The ground state of this molecule is a singlet while the first excited state is a triplet. We show that modulation of the tunnel barrier due to a molecular distortion which couples to the tunneling induces the Kondo effect, provided the discrete vibrational energy compensates the singlet/triplet gap. We discuss also the possibility of tuning the phonon-induced Kondo tunneling by external magnetic field and the finite bias Kondo anomaly.
Temperature dependence of the Kondo resonance and its satellites in CeCu2Si2.
Reinert, F; Ehm, D; Schmidt, S; Nicolay, G; Hüfner, S; Kroha, J; Trovarelli, O; Geibel, C
2001-09-03
We present high-resolution photoemission spectroscopy studies on the Kondo resonance of the strongly correlated Ce system CeCu2Si2. By exploiting the thermal broadening of the Fermi edge we analyze position, spectral weight, and temperature dependence of the low-energy 4f spectral features, whose major weight lies above the Fermi level E(F). We also present theoretical predictions based on the single-impurity Anderson model using an extended noncrossing approximation, including all spin-orbit and crystal field splittings of the 4f states. The excellent agreement between theory and experiment provides strong evidence that the spectral properties of CeCu2Si2 can be described by single-impurity Kondo physics down to T approximately 5 K.
4f heavy femion photoelectron spectra do not exhibit the Kondo scale
Energy Technology Data Exchange (ETDEWEB)
Arko, A.J.; Joyce, J.J.; Andrews, A.B.; Blyth, I.R.; Barlett, R.J.; Fisk, Z. [Los Alamos National Laboratory, NM (United States); Canfield, P.C.; Olson, C.G.; Benning, P.J. [Iowa Sate Univ., Ames, IA (United States); Poirier, D.M.; Weaver, J.H. [Univ. of Minnesota, Minneapolis, MN (United States); Riseborough, P.S. [Polytechnic Univ., Brookyln, NY (United States)
1994-12-31
It has been the authors contention for some time that the Single Impurity Anderson Model (SIAM), as extended by Gunnarsson and Schonhammer (GS), or the non-crossing approximation (NCA), does not correctly describe the 4f photoelectron spectra of heavy fermions. Recently they have concentrated on Yb heavy fermions since in these materials the Kondo resonance (KR) is fully occupied and thus accessible via photoemission. In particular, they have repeatedly pointed out that the width, position, spectral weight, lineshape, and temperature dependence of the features assumed to be the KR and its sidebands, are nearly independent of the Kondo temperature, T{sub K}, while at the same time bearing a striking resemblance to the simple 4f core level spectra of pure Yb metal, or of Lu isostructural Lu compounds. It is important to resolve these issues in view of the fundamental nature of the problem.
Superconductivity of composite particles in a two-channel Kondo lattice.
Hoshino, Shintaro; Kuramoto, Yoshio
2014-04-25
Emergence of odd-frequency s-wave superconductivity is demonstrated in the two-channel Kondo lattice by means of the dynamical mean-field theory combined with the continuous-time quantum Monte Carlo method. Around half filling of the conduction bands, divergence of an odd-frequency pairing susceptibility is found, which signals instability toward the superconductivity. The corresponding order parameter is equivalent to a staggered composite-pair amplitude with even frequencies, which involves both localized spins and conduction electrons. A model wave function is constructed for the composite order with the use of symmetry operations such as charge conjugation and channel rotations. Given a certain asymmetry of the conduction bands, another s-wave superconductivity is found that has a uniform order parameter. The Kondo effect in the presence of two channels is essential for both types of unconventional superconductivity.
Spin fluctuations in the anisotropic Kondo insulator CeRu4 Sn6
Fuhrman, Wesley T.; Haenel, J.; Rodriguez, J.; Paschen, S.; Broholm, C. L.
We report and model anisotropic quasi-elastic magnetic neutron scattering from single crystalline CeRu4Sn6. For T ~ 2 K the magnetic neutron scattering is broad in momentum (Q) with a persistent 1 / ℏω spectrum throughout the Brillouin zone. This indicates a lack of spatial coherence and no characteristic energy scale beyond the 0.2 meV resolution of the measurement. We find the Q-dependence of the scattering can be modeled by a Kondo-Heisenberg Hamiltonian that describes residual carriers and incompletely compensated localized electrons. These findings support the interpretation of tetragonal CeRu4Sn6 as an anisotropic or nodal Kondo insulator, markedly different from typical cubic Kondo insulators. We further discuss potential topological implications. Work at IQM was supported by the U.S. Department of Energy, office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-08ER4654. W.T.F. thanks the ARCS foundation and Lockheed Martin for additional support.
Nonequilibrium electron transport through quantum dots in the Kondo regime
DEFF Research Database (Denmark)
Wölfle, Peter; Paaske, Jens; Rosch, Achim
2005-01-01
Electron transport at large bias voltage through quantum dots in the Kondo regime is described within the perturbative renormalization group extended to nonequilibrium. The conductance, local magnetization, dynamical spin susceptibility and local spectral function are calculated. We show how the ...
Energy Technology Data Exchange (ETDEWEB)
Wang, Xiaoli; Hou, Dong, E-mail: houdong@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, Xiao, E-mail: xz58@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Normal College, Guiyang, Guizhou 550018 (China); Yan, YiJing [Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong (China)
2016-01-21
The magnetic anisotropy and Kondo phenomena in a mechanically stretched magnetic molecular junction are investigated by combining the density functional theory (DFT) and hierarchical equations of motion (HEOM) approach. The system is comprised of a magnetic complex Co(tpy–SH){sub 2} sandwiched between adjacent gold electrodes, which is mechanically stretched in experiments done by Parks et al. [Science 328, 1370 (2010)]. The electronic structure and mechanical property of the stretched system are investigated via the DFT calculations. The HEOM approach is then employed to characterize the Kondo resonance features, based on the Anderson impurity model parameterized from the DFT results. It is confirmed that the ground state prefers the S = 1 local spin state. The structural properties, the magnetic anisotropy, and corresponding Kondo peak splitting in the axial stretching process are systematically evaluated. The results reveal that the strong electron correlations and the local magnetic properties of the molecule magnet are very sensitive to structural distortion. This work demonstrates that the combined DFT+HEOM approach could be useful in understanding and designing mechanically controlled molecular junctions.
Kanazawa, Takuya
2016-01-01
We study the interplay between the Kondo effect and (color) superconductivity in doped Dirac metals with magnetic impurities and in quark matter with colorful impurities. We first point out that the overscreened Kondo effect arises in the normal state of these systems. Next the (color) superconducting gap is incorporated as a mean field and the phase diagram for a varying gap and temperature is constructed nonperturbatively. A rich phase structure emerges from a competition of effects unique to a multichannel system. The Kondo-screened phase is shown to disappear for a sufficiently large gap. Peculiarity of quark matter due to the confining property of non-Abelian gauge fields is noted. We also investigate the spectrum of sub-gap excited states, called Shiba states. Based on a model calculation and physical reasoning we predict that, as the coupling of the impurity to the bulk is increased, there will be more than one quantum phase transition due to level crossing among overscreened states.
Holographic Kondo model in various dimensions
Benincasa, Paolo; Ramallo, Alfonso V.
2012-06-01
We study the addition of localised impurities to U( N) Supersymmetric Yang-Mills theories in ( p + 1)-dimensions by using the gauge/gravity correspondence. From the gravity side, the impurities are introduced by considering probe D(8 - p)-branes extending along the time and radial directions and wrapping an (7 - p)-dimensional submanifold of the internal (8 - p)-sphere, so that the degrees of freedom are point-like from the gauge theory perspective. We analyse both the configuration in which the branes generate straight flux tubes — corresponding to actual single impurities — and the one in which connected flux tubes are created — corresponding to dimers. We discuss the thermodynamics of both the configurations and the related phase transition. In particular, the specific heat of the straight flux-tube configuration is negative for p < 3, while it is never the case for the connected one. We study the stability of the system by looking at the impurity fluctuations. Finally, we characterise the theory by computing one- and two-point correlators of the gauge theory operators dual to the impurity fluctuations. Because of the underlying generalised conformal structure, such correlators can be expressed in terms of an effective coupling constant (which runs because of its dimensionality) and a generalised conformal dimension.
Holographic Kondo Model in Various Dimensions
Benincasa, Paolo
2012-01-01
We study the addition of localised impurities to U(N) Supersymmetric Yang-Mills theories in (p+1)-dimensions by using the gauge/gravity correspondence. From the gravity side, the impurities are introduced by considering probe D(8-p)-branes extendingalong the time and radial directions and wrapping an (7-p)-dimensional submanifold of the internal (8-p)-sphere, so that the degrees of freedom are point-like from the gauge theory perspective. We analyse both the configuration in which the branes generate straight flux tubes -corresponding to actual single impurities - and the one in which connected flux tubes are created- corresponding to dimers. We discuss the thermodynamics of both the configurations and the related phase transition. In particular, the specific heat of the straight flux-tube configuration is negative for p<3, while it is never the case for the connected one. We study the stability of the system by looking at the impurity fluctuations. Finally, we characterise the theory by computing one- and...
Xiong, Yong-Chen; Wang, Wei-Zhong; Luo, Shi-Jun; Yang, Jun-Tao; Huang, Hai-Ming
2017-03-01
By means of the numerical renormalization group (NRG) technique, we study the low temperature transport property and the phase transition for a triangular triple quantum dot system, including two centered dots (dot 1 and 2) and one side dot (dot 3). We focus on the effect of interdot repulsion V between two centered dots in a wide range of the interdot hopping tij (i,j = 1,2,3). When the hoppings between the centered dot and the side dot are symmetric, i.e., t13 = t23, and that between two centered dots t12 is small, two centered dots form a spin triplet when V is absent, and a totally screened spin-1 Kondo effect is observed. In this case, one has a spin 1 that is partially screened by the leads as in the usual spin-1 Kondo model, and the remaining spin 1/2 degree of freedom forms a singlet with the side dot. As V is large enough, one of the centered dots is singly occupied, while the other one is empty. The spin-1/2 Kondo effect is found when t13 is small. For large t12, two centered dots form a spin singlet when V = 0, leading to zero conductance. As V is large enough, the spin-1/2 Kondo effect is recovered in the case of small t13. For asymmetric t13≠t23 and small t12, a crossover is found as V increases in comparison with a first order quantum phase transition for the symmetric case. In the regime of large V, the spin-1/2 Kondo effect could also be found when both t13 and t23 are small. We demonstrate the present model is similar to the side-coupled double dot system in some appropriate regimes, and it appears as a possible realization of side-controllable molecular electronics and spintronics devices.
How does a Kondo impurity respond to its local environment?
Heinrich, Andreas
2008-03-01
The interplay between localized electrons on a magnetic atom and the conducting electrons in a metal can lead to intriguing many-body ground states such as the Kondo effect. When a spin is Kondo screened by conduction electrons the entire spin system performs a complicated dance that results in the formation of a spin singlet at sufficiently low temperature. For simplicity, most theoretical considerations of Kondo screening focus on magnetic impurities with the lowest possible spin S = 1/2. Such systems can be studied experimentally in exquisite detail and with great control using quantum dots in semiconductor heterostructures or carbon nanotubes. However, in Kondo systems consisting of localized magnetic atoms, the spin is often larger, making the Kondo effect richer and more complex. Here we use the imaging and spectroscopy capabilities of a scanning tunnelling microscope to study how the Kondo screening of a known high-spin atom is determined by its local environment. Co and Ti atoms were deposited on a thin insulating layer (Cu2N) on a copper substrate. We study the influence of external magnetic fields, crystalline magnetic anisotropy, as well as spin-coupling to surrounding atomic spins on the Kondo effect that forms on the Co or Ti atoms. We find that the anisotropy of the crystalline field quenches the high-spin system of Co (S = 3/2) into an effective S = 1/2 Kramers doublet. Surprisingly, much of the impact of these environmental factors on the complex many-body ground state can be understood simply through their effects on the energy levels of the unscreened spin.
Two stages of Kondo effect and competition between RKKY and Kondo in Gd-based intermetallic compound
Energy Technology Data Exchange (ETDEWEB)
Vaezzadeh, Mehdi [Department of Physics, K.N.Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of)]. E-mail: mehdi@kntu.ac.ir; Yazdani, Ahmad [Tarbiat Modares University, P.O. Box 14155-4838, Tehran (Iran, Islamic Republic of); Vaezzadeh, Majid [Department of Physics, K.N.Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Daneshmand, Gissoo [Department of Physics, K.N.Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of); Kanzeghi, Ali [Department of Physics, K.N.Toosi University of Technology, P.O. Box 15875-4416, Tehran (Iran, Islamic Republic of)
2006-05-01
The magnetic behavior of Gd-based intermetallic compound (Gd{sub 2}Al{sub (1-x)}Au{sub x}) in the form of the powder and needle, is investigated. All the samples are an orthorhombic crystal structure. Only the compound with x=0.4 shows the Kondo effect (other compounds have a normal behavior). Although, for the compound in the form of powder, with x=0.4, the susceptibility measurement {chi}(T) shows two different stages. Moreover for (T>T{sub K2}) a fall of the value of {chi}(T) is observable, which indicates a weak presence of ferromagnetic phase. About the two stages of Kondo effect, we observe at the first (T{sub K1}) an increase of {chi}(T) and in the second stage (T{sub K2}) a new remarkable decrease of {chi}(T) (T{sub K1}>T{sub K2}). For the sample in the form of needles, the first stage is observable only under high magnetic field. This first stage could be corresponds to a narrow resonance between Kondo cloud and itinerant electron. The second stage, which is remarkably visible for the sample in the form of the powder, can be attribute to a complete polarization of Kondo cloud. Observation of these two Kondo stages could be due to the weak presence of RKKY contribution.
AC Conductance Through a Vibrating Molecular Dot in Kondo Regime
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In the present paper, by applying the Lang-Firsov canonical transformation and the so-called non-crossing approximation technique, we investigate the joint effects of the electron-phonon interaction and an external alternating gate voltage on the transport of a quantum dot system in the Kondo regime. We find that, while the satellite Kondo resonant peaks appear in both the averaged local density of states and the differential conductance, the main Kondo peak at the Fermi energy is greatly suppressed. These results confirm the previous ones derived by other methods, such as the equation of motion solution. Furthermore, based on the picture of virtual transition between quasi-eigenstates in the system, we also give a slightly different explanation on these phenomena.
Surface Kondo Impurities in the Slave-Boson Approach
Anda, Enrique; Vernek, Edson
2005-03-01
Transport properties of magnetic impurities on surfaces have captured a great deal of attention lately. Atom manipulation and topographic imaging techniques using scanning tunneling microscope have confirmed some theoretical predictions on Kondo physics and at the same time revealed other interesting behavior in these systems. For example, experiments have reported unexpectedly high Kondo temperatures for multi-impurity and molecular structures on metallic surfaces. Motivated by these experimental results we apply slave boson techniques for finite Coulomb interaction (finite U) to study the transport properties of magnetic impurities on a metallic surface in the Kondo regime. We report here on our studies of the role of fluctuations on the slave boson number for the case of one impurity on metallic surfaces. We compare our results to other theoretical approaches and to experimental results. Supported by CAPES-Brazil and NSF-IMC and NSF-NIRT.
Hydrogen-induced Kondo effect for Co/Pt(111)
Energy Technology Data Exchange (ETDEWEB)
Dubout, Quentin; Calleja Mitja, Fabian; Etzkorn, Markus; Lehnert, Anne; Claude, Laurent; Gambardella, Pietro; Brune, Harald [Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland)
2011-07-01
We present 0.4 K Scanning Tunneling Spectroscopy (STS) results on hydrogenated Co adatoms on Pt(111). Molecular H dosage creates two Co-H adsorption complexes with comparable abundance. Type I displays very large (40 %) inelastic conductance steps that originate from vibrations, as evidenced by their shift when substituting H by D. Type II displays smaller (5 %) conductance steps at higher energies, again due to H vibrations, together with a large conductance peak at the Fermi level. This feature is attributed to the Kondo effect. Its splitting in magnetic fields up to 8 Tesla identifies the Co-H complex as a S = 1/2 system, whereas clean Co/Pt(111) has a spin of 1 and shows no Kondo effect. H-adsorption has been reported to quench the Kondo effect, here we show that it can produce it.
Spiral Magnetic Order in the One-Dimensional Kondo Lattice
Institute of Scientific and Technical Information of China (English)
LIU Zhen-Rong; LI Zheng-Zhong; SHEN Rui
2001-01-01
The effects of c-f (conduction-f electrons) hybridization on the spiral spin magnetism in the one dimensional Kondo lattice are studied. By using the mean-field approximation, a close set of equations of the Green's functions with arbitrary wave vector Q for the spiral ordering of spins is deduced. The magnetic phase boundary between the spiral magnetism and ferromagnetism has been calculated approximately. From our qualitative results, one can find that the ferromagnetic region is enlarged due to the c f hybridization. Moreover, some new results reflecting the Kondo effect, such as the modified dispersion relation and the weakening of the localized magnetic moments are also obtained.
Two-channel Kondo effect and the low-temperature crossover
Keller, Andrew; Peeters, Lucas; Weymann, Ireneusz; Moca, Cătălin Paşcu; Mahalu, Diana; Umansky, Vladimir; Zaránd, Gergely; Goldhaber-Gordon, David
2015-03-01
The two-channel Kondo (2CK) state, where a spin-1/2 impurity is equally exchange-coupled to two independent reservoirs, is a canonical non-Fermi liquid state. Experimental observations are rare because of its sensitivity to common and hard-to-control perturbations. We implement experimentally a 2CK state in a coupled dot-grain system (Potok, et al., doi:10.1038/nature05556), and explore the physics of the low-temperature crossover: how magnetic field and gate voltage drive the system towards a Fermi liquid ground state. Our experimental findings are corroborated by detailed numerical renormalization group modeling of our device.
Temperature dependence of the Kondo resonance and its satellites in CeCu_2Si_2
Reinert, F.; Ehm, D.; Schmidt, S; Nicolay, G.; H"ufner, S.; Kroha, J.; Trovarelli, O.; Geibel, C.
2001-01-01
We present high-resolution photoemission spectroscopy studies on the Kondo resonance of the strongly-correlated Ce system CeCu$_2$Si$_2$. Exploiting the thermal broadening of the Fermi edge we analyze position, spectral weight, and temperature dependence of the low-energy 4f spectral features, whose major weight lies above the Fermi level $E_F$. We also present theoretical predictions based on the single-impurity Anderson model using an extended non-crossing approximation (NCA), including all...
Kondo behavior and conductance through 3d impurities in gold chains doped with oxygen
Barral, M. A.; Di Napoli, S.; Blesio, G.; Roura-Bas, P.; Camjayi, A.; Manuel, L. O.; Aligia, A. A.
2017-03-01
Combining ab initio calculations and effective models derived from them, we discuss the electronic structure of oxygen doped gold chains when one Au atom is replaced by any transition-metal atom of the 3d series. The effect of O doping is to bring extended Au 5dxz and 5dyz states to the Fermi level, which together with the Au states of zero angular momentum projection leads to three possible channels for the screening of the magnetism of the impurity. For most 3d impurities the expected physics is similar to that of the underscreened Kondo model, with singular Fermi liquid behavior. For Fe and Co under a tetragonal crystal field introduced by leads, the system might display a non-Fermi liquid behavior. Ni and Cu impurities are described by a S = 1 two channel Kondo model and an SU(4) impurity Anderson model in the intermediate valence regime, respectively. In both cases, the system is a Fermi liquid, but the conductance shows some observable differences with the ordinary SU(2) Anderson model.
Temperature Dependence of the Kondo Resonance and Its Satellites in CeCu{sub 2}Si{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Reinert, F.; Ehm, D.; Schmidt, S.; Nicolay, G.; Huefner, S.; Kroha, J.; Trovarelli, O.; Geibel, C.
2001-09-03
We present high-resolution photoemission spectroscopy studies on the Kondo resonance of the strongly correlated Ce system CeCu{sub 2}Si {sub 2} . By exploiting the thermal broadening of the Fermi edge we analyze position, spectral weight, and temperature dependence of the low-energy 4f spectral features, whose major weight lies above the Fermi level E{sub F} . We also present theoretical predictions based on the single-impurity Anderson model using an extended noncrossing approximation, including all spin-orbit and crystal field splittings of the 4f states. The excellent agreement between theory and experiment provides strong evidence that the spectral properties of CeCu{sub 2}Si {sub 2} can be described by single-impurity Kondo physics down to T{approx}5 K .
Energy Technology Data Exchange (ETDEWEB)
Eckle, H.-P.; Johannesson, H.; Stafford, C. A.
2001-07-02
We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a sidebranch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo resonance interferes with the spin-dependent Aharonov-Casher effect to induce a current which, in the strong-coupling limit, is independent of the number of electrons in the ring.
Eckle, H P; Johannesson, H; Stafford, C A
2001-07-02
We study the persistent currents induced by both the Aharonov-Bohm and Aharonov-Casher effects in a one-dimensional mesoscopic ring coupled to a sidebranch quantum dot at Kondo resonance. For privileged values of the Aharonov-Bohm-Casher fluxes, the problem can be mapped onto an integrable model, exactly solvable by a Bethe ansatz. In the case of a pure magnetic Aharonov-Bohm flux, we find that the presence of the quantum dot has no effect on the persistent current. In contrast, the Kondo resonance interferes with the spin-dependent Aharonov-Casher effect to induce a current which, in the strong-coupling limit, is independent of the number of electrons in the ring.
Keldysh effective action theory for universal physics in spin-(1)/(2) Kondo dots
Smirnov, Sergey; Grifoni, Milena
2013-03-01
We present a theory for the Kondo spin-(1)/(2) effect in strongly correlated quantum dots. The theory is applicable at any temperature and voltage. It is based on a quadratic Keldysh effective action parametrized by a universal function. We provide a general analytical form for the tunneling density of states through this universal function for which we propose a simple microscopic model. We apply our theory to the highly asymmetric Anderson model with U=∞ and describe its strong-coupling limit, weak-coupling limit, and crossover region within a single analytical expression. We compare our results with a numerical renormalization group in equilibrium and with a real-time renormalization group out of equilibrium and show that the universal shapes of the linear and differential conductance obtained in our theory and in these theories are very close to each other in a wide range of temperatures and voltages. In particular, as in the real-time renormalization group, we predict that at the Kondo voltage the differential conductance is equal to 2/3 of its maximum.
Kondo cloud of single heavy quark in cold and dense matter
Yasui, Shigehiro
2016-01-01
The Kondo effect is a universal phenomena observed in a variety of fermion systems containing a heavy impurity particle whose interaction is governed by the non-Abelian interaction. At extremely high density, I study the Kondo effect by color exchange in quark matter containing a single heavy (charm or bottom) quark as an impurity particle. To obtain the ground state with the Kondo effect, I introduce the condensate mixing the light quark and the heavy quark (Kondo cloud) in the mean-field approximation. I estimate the energy gain by formation of the Kondo cloud, and present that the Kondo cloud exhibits the resonant structure. I also evaluate the scattering cross section for the light quark and the heavy quark, and discuss its effect to the finite size quark matter.
Kondo cloud of single heavy quark in cold and dense matter
Yasui, Shigehiro
2017-10-01
The Kondo effect is a universal phenomena observed in a variety of fermion systems containing a heavy impurity particle whose interaction is governed by the non-Abelian interaction. At extremely high density, I study the Kondo effect by color exchange in quark matter containing a single heavy (charm or bottom) quark as an impurity particle. To obtain the ground state with the Kondo effect, I introduce the condensate mixing the light quark and the heavy quark (Kondo cloud) in the mean-field approximation. I estimate the energy gain by formation of the Kondo cloud, and present that the Kondo cloud exhibits the resonant structure. I also evaluate the scattering cross section for the light quark and the heavy quark, and discuss its effect to the finite size quark matter.
Kondo effect of D\\xAFs and D\\xAFs* mesons in nuclear matter
Yasui, Shigehiro; Sudoh, Kazutaka
2017-03-01
We study the Kondo effect for D¯s and D¯s* mesons as impurity particles in nuclear matter. The spin-exchange interaction between the D¯s or D¯s* meson and the nucleon induces the enhancement of the effective coupling in the low-energy scattering in the infrared region, whose energy scale of singularity is given by the Kondo scale. We investigate the Kondo scale in the renormalization group equation at nucleon one-loop level. We furthermore study the ground state with the Kondo effect in the mean-field approach, and present that the Kondo scale is related to the mixing strength between the D¯s or D¯s* meson and the nucleon in nuclear matter. We show the spectral function of the impurity when the Kondo effect occurs.
Institute of Scientific and Technical Information of China (English)
CHEN Xiong-Wen; SHI Zhen-Gang; CHEN Bao-Ju; SONG Ke-Hui
2007-01-01
We analyse the transport properties of a coupled double quantum dot (DQD) device with one of the dots (QD1) coupled to metallic leads and the other (QD2) embedded in an Aharonov-Bhom (A-B) ring by means of the slave-boson mean-Geld theory. It is found that in this system, the Kondo resonance and the Fano interference exist simultaneously, the enhancing Kondo effect and the increasing hopping of the QD2-Ring destroy the localized electron state in the QD2 for the QD1-leads, and accordingly, the Fano interference between the DQD-leads and the QD1-leads are suppressed. Under some conditions, the Fano interference can be quenched fully and the single Kondo resonance of the QD1-leads comes into being. Moreover, when the magnetic flux of the A-B ring is zero, the influence of the parity of the A-B ring on the transport properties is very weak, but this inSuence becomes more obvious with non-zero magnetic flux. Thus this model may be a candidate for future device applications.
Institute of Scientific and Technical Information of China (English)
Niu Peng-Bin; Wang Qiang; Nie Yi-Hang
2013-01-01
The transport properties of an artificial single-molecule magnet based on a CdTe quantum dot doped with a single Mn+2 ion (S =5/2) are investigated by the non-equilibrium Green function method.We consider a minimal model where the Mn-hole exchange coupling is strongly anisotropic so that spin-flip is suppressed and the impurity spin S and a hole spin s entering the quantum dot are coupled into spin pair states with (2S+ 1) sublevels.In the sequential tunneling regime,the differential conductance exhibits (2S + 1) possible peaks,corresponding to resonance tunneling via (2S + 1) sublevels.At low temperature,Kondo physics dominates transport and (2S + 1) Kondo peaks occur in the local density of states and conductance.These peaks originate from the spin-singlet state formed by the holes in the leads and on the dot via higher-order processes and are related to the parallel and antiparallel spin pair states.
Kondo screening of the spin and orbital magnetic moments of Fe impurities in Cu
Joly, L.; Kappler, J.-P.; Ohresser, P.; Sainctavit, Ph.; Henry, Y.; Gautier, F.; Schmerber, G.; Kim, D. J.; Goyhenex, C.; Bulou, H.; Bengone, O.; Kavich, J.; Gambardella, P.; Scheurer, F.
2017-01-01
We use x-ray magnetic circular dichroism to evidence the effect of correlations on the local impurity magnetic moment in an archetypal Kondo system, namely, a dilute Cu:Fe alloy. Applying the sum rules on the Fe L2 ,3 absorption edges, the evolution of the spin and orbital moments across the Kondo temperature are determined separately. The spin moment presents a crossover from a nearly temperature-independent regime below the Kondo temperature to a paramagneticlike regime above. Conversely, the weak orbital moment shows a temperature-independent behavior in the whole temperature range, suggesting different Kondo screening temperature scales for the spin and orbital moments.
Kondo effect for electron transport through an artificial quantum dot
Institute of Scientific and Technical Information of China (English)
Sun Ke-Wei; Xiong Shi-Jie
2006-01-01
We have calculated the transport properties of electron through an artificial quantum dot by using the numerical renormalization group technique in this paper.We obtain the conductance for the system of a quantum dot which is embedded in a one-dimensional chain in zero and finite temperature cases.The external magnetic field gives rise to a negative magnetoconductance in the zero temperature case.It increases as the external magnetic field increases.We obtain the relation between the coupling coefficient and conductance.If the interaction is big enough to prevent conduction electrons from tunnelling through the dot,the dispersion effect is dominant in this case.In the Kondo temperature regime,we obtain the conductivity of a quantum dot system with Kondo correlation.
Kondo-effect of substitutional cobalt impurities at copper surfaces
Energy Technology Data Exchange (ETDEWEB)
Wahl, P; Diekhoener, L; Schneider, M A; Kern, K [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstr. 1, D-70569 Stuttgart (Germany); Seitsonen, A P [IMPMC, CNRS and Universite Pierre et Marie Curie, 4 Place Jussieu, Case 115, F-75252 Paris (France)], E-mail: wahl@fkf.mpg.de
2009-11-15
The influence of the coordination on the Kondo temperature of a magnetic impurity at a noble metal surface and the line shape observed in low temperature scanning tunneling spectroscopy (STS) is investigated for single cobalt atoms adsorbed on and embedded in copper surfaces. Surprisingly, the Kondo temperature for substitutional cobalt atoms is almost the same as that of adatoms on the Cu(100) surface. This is in stark contrast to the behaviour observed at the Cu(111) surface. DFT calculations reveal that in the case of Cu(100) the coupling of the spin of the cobalt atom to the conduction band is not substantially increased by the incorporation of the cobalt atom. At the same time the observed line shape differs strongly from what is observed on adatom systems.
Toward a new microscopic framework for Kondo lattice materials
Lonzarich, Gilbert; Pines, David; Yang, Yi-feng
2017-02-01
Understanding the emergence and subsequent behavior of heavy electrons in Kondo lattice materials is one of the grand challenges in condensed matter physics. From this perspective we review the progress that has been made during the past decade and suggest some directions for future research. Our focus will be on developing a new microscopic framework that incorporates the basic concepts that emerge from a phenomenological description of the key experimental findings.
Tunable Kondo Effect of a Three-Terminal Transport Quantum Dot Embedded in an Aharonov-Bohm Ring
Institute of Scientific and Technical Information of China (English)
CHEN Xiong-Wen; SHI Zhen-Gang; WU Shao-Quan; SONG Ke-Hui
2006-01-01
@@ We theoretically investigate the Kondo effect of a three-terminal transport quantum dot (QD) embedded in an Aharonov-Bohm ring in the Kondo regime by means of the one-impurity Anderson Hamiltonian.
Thermopower of few-electron quantum dots with Kondo correlations
Ye, Lvzhou
2015-03-01
The thermopower of few-electron quantum dots is crucially influenced by on-dot electron-electron interactions, particularly in the presence of Kondo correlations. We present a comprehensive picture which elucidates the underlying relations between the thermopower and the spectral density function of two-level quantum dots. The effects of various electronic states, including the Kondo states originating from both spin and orbital degrees of freedom, are clearly unraveled. With these insights, we have exemplified an effective and viable way to control the sign of thermopower of Kondo-correlated quantum dots. This is realized by tuning the temperature and by selecting the appropriate level spacing and Coulomb repulsion strength. Such a physical picture is affirmed by accurate numerical data obtained with a hierarchical equations of motion approach. Our understandings and findings provide useful insights into controlling the direction of electric (heat) current through a quantum dot by applying a temperature (voltage) gradient across the two coupling leads. This may have important implications for novel thermoelectric applications of quantum dots. The support from the Natural Science Foundation of China (Grants No. 21033008, No. 21233007, No. 21303175, and No. 21322305) and the Strategic Priority Research Program (B) of the CAS (XDB01020000) is gratefully appreciated.
Kondo hybridisation and the origin of metallic states at the (001) surface of SmB6
E. Frantzeskakis; N. de Jong; B. Zwartsenberg; Y.K. Huang; Y. Pan; X. Zhang; F.X. Zhang; L.H. Bao; O. Tegus; A. Varykhalov; A. de Visser; M. Golden
2013-01-01
SmB6, a well-known Kondo insulator, has been proposed to be an ideal topological insulator with states of topological character located in a clean, bulk electronic gap, namely, the Kondo-hybridization gap. Since the Kondo gap arises from many-body electronic correlations, SmB6 would be placed at the
Kondo hybridisation and the origin of metallic states at the (001) surface of SmB6
Frantzeskakis, E.; de Jong, N.; Zwartsenberg, B.; Huang, Y.K.; Pan, Y.; Zhang, X.; Zhang, F.X.; Bao, L.H.; Tegus, O.; Varykhalov, A.; de Visser, A.; Golden, M.
2013-01-01
SmB6, a well-known Kondo insulator, has been proposed to be an ideal topological insulator with states of topological character located in a clean, bulk electronic gap, namely, the Kondo-hybridization gap. Since the Kondo gap arises from many-body electronic correlations, SmB6 would be placed at the
Phonon-assisted and magnetic field induced Kondo tunneling in single molecular devices
Energy Technology Data Exchange (ETDEWEB)
Kikoin, K [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Kiselev, M N [The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)
2007-12-15
We consider the Kondo tunneling induced by multiphonon emission/absorption processes in magnetic molecular complexes with low-energy singlet-triplet spin gap and show that the number of assisting phonons may be changed by varying the Zeeman splitting of excited triplet state. As a result, the structure of multiphonon Kondo resonances may be scanned by means of magnetic field tuning.
Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states.
Iftikhar, Z; Jezouin, S; Anthore, A; Gennser, U; Parmentier, F D; Cavanna, A; Pierre, F
2015-10-08
Many-body correlations and macroscopic quantum behaviours are fascinating condensed matter problems. A powerful test-bed for the many-body concepts and methods is the Kondo effect, which entails the coupling of a quantum impurity to a continuum of states. It is central in highly correlated systems and can be explored with tunable nanostructures. Although Kondo physics is usually associated with the hybridization of itinerant electrons with microscopic magnetic moments, theory predicts that it can arise whenever degenerate quantum states are coupled to a continuum. Here we demonstrate the previously elusive 'charge' Kondo effect in a hybrid metal-semiconductor implementation of a single-electron transistor, with a quantum pseudospin of 1/2 constituted by two degenerate macroscopic charge states of a metallic island. In contrast to other Kondo nanostructures, each conduction channel connecting the island to an electrode constitutes a distinct and fully tunable Kondo channel, thereby providing unprecedented access to the two-channel Kondo effect and a clear path to multi-channel Kondo physics. Using a weakly coupled probe, we find the renormalization flow, as temperature is reduced, of two Kondo channels competing to screen the charge pseudospin. This provides a direct view of how the predicted quantum phase transition develops across the symmetric quantum critical point. Detuning the pseudospin away from degeneracy, we demonstrate, on a fully characterized device, quantitative agreement with the predictions for the finite-temperature crossover from quantum criticality.
Switchable Multiple Spin States in the Kondo description of Doped Molecular Magnets
Ray, Rajyavardhan; Kumar, Sanjeev
2017-01-01
We show that introducing electrons in magnetic clusters and molecular magnets lead to rich phase diagrams with a variety of low-spin and high-spin states allowing for multiple switchability. The analysis is carried out for a quantum spin-fermion model using the exact diagonalization, and the cluster mean-field approach. The model is relevant for a number of molecular magnets with triangular motifs consisting of transition metal ions such as Cr, Cu and V. Re-entrant spin-state behavior and chirality on-off transitions exist over a wide parameter regime. A subtle competition among geometrical frustration effects, electron itinerancy, and Kondo coupling at the molecular level is highlighted. Our results demonstrate that electron doping provides a viable mean to tame the magnetic properties of molecular magnets towards potential technological applications. PMID:28176869
Switchable Multiple Spin States in the Kondo description of Doped Molecular Magnets
Ray, Rajyavardhan; Kumar, Sanjeev
2017-02-01
We show that introducing electrons in magnetic clusters and molecular magnets lead to rich phase diagrams with a variety of low-spin and high-spin states allowing for multiple switchability. The analysis is carried out for a quantum spin-fermion model using the exact diagonalization, and the cluster mean-field approach. The model is relevant for a number of molecular magnets with triangular motifs consisting of transition metal ions such as Cr, Cu and V. Re-entrant spin-state behavior and chirality on-off transitions exist over a wide parameter regime. A subtle competition among geometrical frustration effects, electron itinerancy, and Kondo coupling at the molecular level is highlighted. Our results demonstrate that electron doping provides a viable mean to tame the magnetic properties of molecular magnets towards potential technological applications.
Interfacial phase competition induced Kondo-like effect in manganite-insulator composites
Lin, Ling-Fang; Wu, Ling-Zhi; Dong, Shuai
2016-12-01
A Kondo-like effect, namely, the upturn of resistivity at low temperatures, is observed in perovskite manganite when nonmagnetic insulators are doped as secondary phase. In this paper, the low-temperature resistivity upturn effect has been argued to originate from interfacial magnetic phase reconstruction. Heisenberg spin lattices have been simulated using the Monte Carlo method to reveal phase competition around secondary phase boundary, namely, manganite-insulator boundary that behaves with a weak antiferromagnetic tendency. Moreover, the resistor network model based on double-exchange conductive mechanism reproduces the low-temperature resistivity upturn effect. Our work provides a reasonable physical mechanism to understand the novel transport behaviors in microstructures of correlated electron systems.
Kondo effect from a Lorentz-violating domain wall description of superconductivity
Bazeia, D; Mota-Silva, J C
2016-01-01
We extend recent results on domain wall description of superconductivity in an Abelian Higgs model by introducing a particular Lorentz-violating term. The temperature of the system is interpreted through the fact that the soliton following accelerating orbits is a Rindler observer experiencing a thermal bath. We show that this term can be associated with the {\\sl Kondo effect}, that is, the Lorentz-violating parameter is closely related to the concentration of magnetic impurities living on a superconducting domain wall. We also found that the critical temperature decreasing with the impurity concentration as a non-single valued function, for the case $T_K
Low-temperature transport in ac-driven quantum dots in the Kondo regime
Energy Technology Data Exchange (ETDEWEB)
Lopez, Rosa; Aguado, Ramon; Platero, Gloria; Tejedor, Carlos
2001-08-15
We present a fully nonequilibrium calculation of the low-temperature transport properties of a quantum dot in the Kondo regime when an ac potential is applied to the gate. We solve a time-dependent Anderson model with finite on-site Coulomb interaction. The interaction self-energy is calculated up to second order in perturbation theory in the on-site interaction, in the context of the Keldysh nonequilibrium technique, and the effect of the ac voltage is taken into account exactly for all ranges of ac frequencies and ac intensities. The obtained linear conductance and time-averaged density of states of the quantum dot evolve in a nontrivial way as a function of the ac frequency and ac intensity of the harmonic modulation.
Low energy properties of the Kondo chain in the RKKY regime
Schimmel, D. H.; Tsvelik, A. M.; Yevtushenko, O. M.
2016-05-01
We study the Kondo chain in the regime of high spin concentration where the low energy physics is dominated by the Ruderman-Kittel-Kasuya-Yosida interaction. As has been recently shown (Tsvelik and Yevtushenko 2015 Phys. Rev. Lett. 115 216402), this model has two phases with drastically different transport properties depending on the anisotropy of the exchange interaction. In particular, the helical symmetry of the fermions is spontaneously broken when the anisotropy is of the easy plane type. This leads to a parametrical suppression of the localization effects. In the present paper we substantially extend the previous theory, in particular, by analyzing a competition of forward- and backward- scattering, including into the theory short range electron interactions and calculating spin correlation functions. We discuss applicability of our theory and possible experiments which could support the theoretical findings.
Non-equilibrium Kondo effect in double quantum dot
Energy Technology Data Exchange (ETDEWEB)
Kiselev, M.N. E-mail: kiselev@physik.uni-wuerzburg.de; Kikoin, K.A.; Molenkamp, L.W
2004-05-01
We investigate theoretically a non-equilibrium transport through a double quantum dot (DQD) in a parallel geometry. It is shown that the resonance Kondo tunneling through a parallel DQD with even occupation and singlet ground state may arise at a strong bias, which compensates the energy of singlet/triplet excitation. Using the renormalization group technique we derive scaling equations and calculate the differential conductance as a function of an auxiliary DC-bias for parallel DQD being in a regime described by SO(4) symmetry.
Muñoz, Enrique; Bolech, C J; Kirchner, Stefan
2013-01-04
The nonlinear conductance of semiconductor heterostructures and single molecule devices exhibiting Kondo physics has recently attracted attention. We address the observed sample dependence of the measured steady state transport coefficients by considering additional electronic contributions in the effective low-energy model underlying these experiments that are absent in particle-hole symmetric setups. A novel version of the superperturbation theory of Hafermann et al. in terms of dual fermions is developed, which correctly captures the low-temperature behavior. We compare our results with the measured transport coefficients.
Energy Technology Data Exchange (ETDEWEB)
Schmidt, R.
2007-03-15
The present work is addressed to defects and boundaries in quantum field theory considering the application to AdS/CFT correspondence. We examine interactions of fermions with spins localised on these boundaries. Therefore, an algebra method is emphasised adding reflection and transmission terms to the canonical quantisation prescription. This method has already been applied to bosons in two space-time dimensions before. We show the possibilities of such reflection-transmission algebras in two, three, and four dimensions. We compare with models of solid state physics as well as with the conformal field theory approach to the Kondo effect. Furthermore, we discuss ansatzes of extensions to lattice structures. (orig.)
The Kondo lattice state in the presence of Van Hove singularities: Next-to-leading order scaling
Irkhin, V. Yu.
2017-07-01
Renormalization group analysis of the Kondo model with a logarithmic Van Hove singularity in the electron density of states has been carried out in the next-to-leading scaling approximation in different magnetic phases. The effective coupling constant remains small, while the renormalized magnetic moment and the frequency of spin fluctuations decrease by several orders of magnitude. In this way, broad regions of non-Fermi-liquid behavior are found from scaling trajectories in a large interval of the bare coupling constant. Applications to the physics of itinerant magnetism are considered.
4f heavy fermion photoelectron spectra do not exhibit the Kondo scale
Energy Technology Data Exchange (ETDEWEB)
Arko, A.J.; Joyce, J.J.; Andrews, A.B.; Blyth, R.I.R.; Bartlett, R.J.; Fisk, Z. [Los Alamos National Lab., NM (United States); Canfield, P.C.; Olson, C.G.; Benning, P.J. [Iowa State Univ., Ames, IA (United States); Poirier, D.M.; Weaver, J.H. [Univ. of Minnesota, Minneapolis, MN (United States); Riseborough, P.S. [Polytechnic Univ., Brooklyn, NY (United States)
1994-02-01
It has been the authors contention for some time that the Single Impurity Anderson Model (SIAM), as extended by Gunnarsson and Schonhammer (GS), or the non-crossing approximation (NCA), does not correctly describe the 4f photoelectron spectra of heavy fermions. Recently, they have concentrated on Yb heavy fermions since in these materials the Kondo resonance (KR) is fully occupied and thus accessible via photoemission. In particular, they have repeatedly pointed out that the width, position, spectral weight, lineshape, and temperature dependence of the features assumed to be the KR and its sidebands, are nearly independent of the Kondo temperature, T{sub K}, while at the same time bearing a striking resemblance to the simple 4f core level spectra of pure Yb metal, or of Lu in isostructural Lu compounds. It is important to resolve these issues in view of the fundamental nature of the problem. Here, the authors chose to test the bulk vs. surface hypothesis by performing measurements on YbCu{sub 2}Si{sub 2} and YbAl{sub 3} single crystals at hv {approx} 120 eV (UPS) and hv {approx} 1,500 eV(XPS) to see if the n{sub f}, hole occupancy, values increase markedly at XPS energies as the electron escape depth increases by about a factor of 3--5. Measurements were performed at both 300K and 20K using single crystals cleaved in-situ, with photoelectrons collected in normal emission for maximum bulk sensitivity. UPS measurements were performed at NSLS and the University of Wisconsin SRC, while XPS measurements were done at the University of Minnesota. The UPS, ultraviolet photoelectron spectra, and the L{sub III} edge x-ray absorption and photoemission measurements are in fundamental disagreement.
Competition between Kondo effect and RKKY physics in graphene magnetism
Allerdt, A.; Feiguin, A. E.; Das Sarma, S.
2017-03-01
The cooperative behavior of quantum impurities on two-dimensional (2D) materials, such as graphene and bilayer graphene, is characterized by a nontrivial competition between screening (Kondo effect) and Ruderman-Kittel-Kasuya-Yosida (RKKY) magnetism. In addition, due to the small density of states at the Fermi level, impurities may not couple to the conduction electrons at all, behaving as free moments. Employing a recently developed exact numerical method to study multi-impurity lattice systems, we obtain nonperturbative results that dramatically depart from expectations based on the conventional RKKY theory. At half filling and for weak coupling, impurities remain in the local moment regime when they are on opposite sublattices, up to a critical value of the interactions when they start coupling antiferromagnetically with correlations that decay very slowly with interimpurity distance. At finite doping, away from half filling, ferromagnetism is completely absent and the physics is dominated by a competition between antiferromagnetism and Kondo effect. In bilayer graphene, impurities on opposite layers behave as free moments, unless the interaction is of the order of the hopping or larger.
Energy Technology Data Exchange (ETDEWEB)
Maiti, Kalobaran; Patil, Swapnil; Adhikary, Ganesh [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Balakrishnan, Geetha, E-mail: kbmaiti@tifr.res.in [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom)
2011-01-01
We studied the electronic structure of rare earth hexaborides, CeB{sub 6}, PrB{sub 6} and NdB{sub 6} using state-of-the-art high resolution photoemission spectroscopy. CeB{sub 6} is a dense Kondo system. PrB{sub 6} and NdB{sub 6} are antiferromagnetic (Neel temperature {approx}7 K), known to be stable moment systems and do not exhibit Kondo effect. Photoemission spectra exhibit distinct signature of surface and bulk electronic structures of these compounds. The energy position of the surface feature is not influenced by the 4f density of states. High resolution spectra of CeB{sub 6} reveal multiple Kondo resonance features in the bulk spectra due to various photoemission final states. Interestingly, high resolution photoemission spectra of antiferromagnetic PrB{sub 6} also exhibit a sharp feature at the Fermi level that shows temperature dependence similar to the Kondo resonance features.
Emergence of a Fermionic Finite-Temperature Critical Point in a Kondo Lattice.
Chou, Po-Hao; Zhai, Liang-Jun; Chung, Chung-Hou; Mou, Chung-Yu; Lee, Ting-Kuo
2016-04-29
The underlying Dirac point is central to the profound physics manifested in a wide class of materials. However, it is often difficult to drive a system with Dirac points across the massless fermionic critical point. Here by exploiting screening of local moments under spin-orbit interactions in a Kondo lattice, we show that below the Kondo temperature, the Kondo lattice undergoes a topological transition from a strong topological insulator to a weak topological insulator at a finite temperature T_{D}. At T_{D}, massless Dirac points emerge and the Kondo lattice becomes a Dirac semimetal. Our analysis indicates that the emergent relativistic symmetry dictates nontrivial thermal responses over large parameter and temperature regimes. In particular, it yields critical scaling behaviors both in magnetic and transport responses near T_{D}.
Self-sustained oscillations in nanoelectromechanical systems induced by Kondo resonance
Song, Taegeun; Kiselev, Mikhail N.; Kikoin, Konstantin; Shekhter, Robert I.; Gorelik, Leonid Y.
2014-03-01
We investigate the instability and dynamical properties of nanoelectromechanical systems represented by a single-electron device containing movable quantum dots attached to a vibrating cantilever via asymmetric tunnel contacts. The Kondo resonance in electron tunneling between the source and shuttle facilitates self-sustained oscillations originating from the strong coupling of mechanical and electronic/spin degrees of freedom. We analyze a stability diagram for the two-channel Kondo shuttling regime due to limitations given by the electromotive force acting on a moving shuttle, and find that the saturation oscillation amplitude is associated with the retardation effect of the Kondo cloud. The results shed light on possible ways to experimentally realize the Kondo-cloud dynamical probe by using high mechanical dissipation tunability as well as supersensitive detection of mechanical displacement.
Electrostatic tuning of Kondo effect in a rare-earth-doped wide-band-gap oxide
Li, Yongfeng
2013-04-29
As a long-lived theme in solid-state physics, the Kondo effect reflects the many-body physics involving the short-range Coulomb interactions between itinerant electrons and localized spins in metallic materials. Here we show that the Kondo effect is present in ZnO, a prototypical wide-band-gap oxide, doped with a rare-earth element (Gd). The localized 4f electrons of Gd ions do not produce remanent magnetism, but interact strongly with the host electrons, giving rise to a saturating resistance upturn and negative magnetoresistance at low temperatures. Furthermore, the Kondo temperature and resistance can be electrostatically modulated using electric-double-layer gating with liquid ionic electrolyte. Our experiments provide the experimental evidence of tunable Kondo effect in ZnO, underscoring the magnetic interactions between localized and itinerant electrons and the emergent transport behaviors in such doped wide-band-gap oxides.
Blocking transport resonances via Kondo many-body entanglement in quantum dots
Niklas, Michael; Smirnov, Sergey; Mantelli, Davide; Margańska, Magdalena; Nguyen, Ngoc-Viet; Wernsdorfer, Wolfgang; Cleuziou, Jean-Pierre; Grifoni, Milena
2016-08-01
Many-body entanglement is at the heart of the Kondo effect, which has its hallmark in quantum dots as a zero-bias conductance peak at low temperatures. It signals the emergence of a conducting singlet state formed by a localized dot degree of freedom and conduction electrons. Carbon nanotubes offer the possibility to study the emergence of the Kondo entanglement by tuning many-body correlations with a gate voltage. Here we show another side of Kondo correlations, which counterintuitively tend to block conduction channels: inelastic co-tunnelling lines in the magnetospectrum of a carbon nanotube strikingly disappear when tuning the gate voltage. Considering the global SU(2) \\xotime SU(2) symmetry of a nanotube coupled to leads, we find that only resonances involving flips of the Kramers pseudospins, associated to this symmetry, are observed at temperatures and voltages below the corresponding Kondo scale. Our results demonstrate the robust formation of entangled many-body states with no net pseudospin.
Kondo effect in triple quantum dots: interplay between continuous and discrete symmetries
Energy Technology Data Exchange (ETDEWEB)
Kikoin, K. [Department of Physics, Ben-Gurion University, Beer-Sheva, 84105 (Israel)]. E-mail: kikoin@bgumail.bgu.ac.il; Kuzmenko, T. [Department of Physics, Ben-Gurion University, Beer-Sheva, 84105 (Israel); Avishai, Y. [Department of Physics, Ben-Gurion University, Beer-Sheva, 84105 (Israel); Ilse Kats Center for Nano-Technology, Ben-Gurion University, Beer-Sheva, 84105 (Israel)
2006-05-01
The physics of Kondo effect and related phenomena in a triangular triple quantum dot (TTQD) is studied. A fascinating property of TTQD is the interplay between continuous SU(2) symmetry in spin space and discrete C{sub 3v} symmetry in real space. We show that this interplay is manifested in strong oscillations of conductance as a function of magnetic flux through TTQD due to interplay between Kondo and Aharonov-Bohm effect.
Controlling orbital-selective Kondo effects in a single molecule through coordination chemistry
Energy Technology Data Exchange (ETDEWEB)
Tsukahara, Noriyuki; Kawai, Maki; Takagi, Noriaki, E-mail: n-takagi@k.u-tokyo.ac.jp [Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Minamitani, Emi; Kim, Yousoo [RIKEN, 2-1 Hirosawa, Saitama 351-0198 (Japan)
2014-08-07
Iron(II) phthalocyanine (FePc) molecule causes novel Kondo effects derived from the unique electronic structure of multi-spins and multi-orbitals when attached to Au(111). Two unpaired electrons in the d{sub z}{sup 2} and the degenerate dπ orbitals are screened stepwise, resulting in spin and spin+orbital Kondo effects, respectively. We investigated the impact on the Kondo effects of the coordination of CO and NO molecules to the Fe{sup 2+} ion as chemical stimuli by using scanning tunneling microscopy (STM) and density functional theory calculations. The impacts of the two diatomic molecules are different from each other as a result of the different electronic configurations. The coordination of CO converts the spin state from triplet to singlet, and then the Kondo effects completely disappear. In contrast, an unpaired electron survives in the molecular orbital composed of Fe d{sub z}{sup 2} and NO 5σ and 2π* orbitals for the coordination of NO, causing a sharp Kondo resonance. The isotropic magnetic response of the peak indicates the origin is the spin Kondo effect. The diatomic molecules attached to the Fe{sup 2+} ion were easily detached by applying a pulsed voltage at the STM junction. These results demonstrate that the single molecule chemistry enables us to switch and control the spin and the many-body quantum states reversibly.
Kondo effect and spin quenching in high-spin molecules on metal substrates
Jacob, D.; Soriano, M.; Palacios, J. J.
2013-10-01
Using a state-of-the art combination of density functional theory and impurity solver techniques, we present a complete and parameter-free picture of the Kondo effect in the high-spin (S=3/2) coordination complex known as manganese phthalocyanine adsorbed on the Pb(111) surface. We calculate the correlated electronic structure and corresponding tunnel spectrum and find an asymmetric Kondo resonance, as recently observed in experiments. Contrary to previous claims, the Kondo resonance stems from only one of three possible Kondo channels with origin in the Mn 3d orbitals, its peculiar asymmetric shape arising from the modulation of the hybridization due to a strong coupling to the organic ligand. The spectral signature of the second Kondo channel is strongly suppressed as the screening occurs via the formation of a many-body singlet with the organic part of the molecule. Finally, a spin-1/2 in the 3d shell remains completely unscreened due to the lack of hybridization of the corresponding orbital with the substrate, hence leading to a spin-3/2 underscreened Kondo effect.
Kondo Breakdown and Quantum Oscillations in SmB_{6}.
Erten, Onur; Ghaemi, Pouyan; Coleman, Piers
2016-01-29
Recent quantum oscillation experiments on SmB_{6} pose a paradox, for while the angular dependence of the oscillation frequencies suggest a 3D bulk Fermi surface, SmB_{6} remains robustly insulating to very high magnetic fields. Moreover, a sudden low temperature upturn in the amplitude of the oscillations raises the possibility of quantum criticality. Here we discuss recently proposed mechanisms for this effect, contrasting bulk and surface scenarios. We argue that topological surface states permit us to reconcile the various data with bulk transport and spectroscopy measurements, interpreting the low temperature upturn in the quantum oscillation amplitudes as a result of surface Kondo breakdown and the high frequency oscillations as large topologically protected orbits around the X point. We discuss various predictions that can be used to test this theory.
Mott-Kondo insulator behavior in the iron oxychalcogenides
Freelon, B.; Liu, Yu Hao; Chen, Jeng-Lung; Craco, L.; Laad, M. S.; Leoni, S.; Chen, Jiaqi; Tao, Li; Wang, Hangdong; Flauca, R.; Yamani, Z.; Fang, Minghu; Chang, Chinglin; Guo, J.-H.; Hussain, Z.
2015-10-01
We perform a combined experimental-theoretical study of the Fe-oxychalcogenides (FeO C h ) series La2O2Fe2O M2 (M =S , Se), which are among the latest Fe-based materials with the potential to show unconventional high-Tc superconductivity (HTSC). A combination of incoherent Hubbard features in x-ray absorption and resonant inelastic x-ray scattering spectra, as well as resistivity data, reveal that the parent FeO C h are correlation-driven insulators. To uncover microscopics underlying these findings, we perform local density approximation-plus-dynamical mean field theory (LDA+DMFT) calculations that reveal a novel Mott-Kondo insulating state. Based upon good agreement between theory and a range of data, we propose that FeO C h may constitute an ideal testing ground to explore HTSC arising from a strange metal proximate to a novel selective-Mott quantum criticality.
Indications of a Quantum Critical Point in Bi2Sr2CaCu2O8+δ Using a Local Kondo Effect
Calleja, Eduardo; Dai, Jixia; Arnold, Gerald; Gu, Genda; McElroy, Kyle
2014-03-01
A complete understanding of the complex phase diagrams that are present in high temperature superconductors remains elusive. While there is an overwhelming amount of experimental data on the existence and interplay of the phases present in high Tc superconductors from local probes, much of the existing data only looks at the charge degree of freedom of the material. By substituting Fe atoms for Cu atoms in the CuO plane of Bi2Sr2CaCu2O8+δ (Bi2212), we gain the ability to access the spin degree of freedom since the Fe atoms retain their magnetization below the superconducting transition temperature. This leads to a local Kondo effect which can be observed using Spectroscopic-Imaging Scanning Tunneling Microscopy (SI-STM) and the local Kondo temperature can be extracted from spectra via a theoretical model. We show that the examination of this local Kondo temperature across local and sample average doping leads to the observation of a change in the quasiparticle spin degree of freedom at a quantum critical point (QCP) with a nominal hole doping of roughly 0.22, in agreement with other probes. The observation of the QCP in Bi2212 with this new method to access the spin degree of freedom helps to unravel some of the mystery behind the complex phase diagram of Bi2212.
Zhang, Jingdi; Yong, Jie; Takeuchi, Ichiro; Greene, Richard; Averitt, Richard
We utilize terahertz time domain spectroscopy to investigate thin films of the heavy fermion compound SmB6, a prototype Kondo insulator. Temperature dependent terahertz (THz) conductivity measurements reveal a rapid decrease in the Drude weight and carrier scattering rate at ~T* =20 K, well below the hybridization gap onset temperature (100 K). Moreover, a low-temperature conductivity plateau (below 20K) indicates the emergence of a surface state with an effective electron mass of 0.1me. Conductivity dynamics following optical excitation are also measured and interpreted using Rothwarf-Taylor (R-T) phenomenology, yielding a hybridization gap energy of 17 meV. However, R-T modeling of the conductivity dynamics reveals a deviation from the expected thermally excited quasiparticle density at temperatures below 20K, indicative of another channel opening up in the low energy electrodynamics. Taken together, these results suggest the onset of a surface state well below the crossover temperature (100K) after long-range coherence of the f-electron Kondo lattice is established. JZ and RDA acknowledge support from DOE - Basic Energy Sciences under Grant No. DE-FG02-09ER46643, under which the THz measurements and data analysis were performed. JY, IT and RLG acknowledge support from ONR N00014-13-1-0635 and NSF DMR 1410665.
Sinnecker, E. H. C. P.; Sant'Anna, M. M.; ElMassalami, M.
2017-02-01
We followed the evolution of the normal and superconducting properties of Al thin films after each session of various successive oxygen irradiations at ambient temperature. Such irradiated films, similar to the granular ones, exhibit enhanced superconductivity, Kondo behavior, and negative-curvature resistivity. Two distinct roles of oxygen are identified: as a damage-causing projectile and as an implanted oxidizing agent. The former gives rise to the processes involved in the conventional recovery stages. The latter, considered within the context of the Cabrera-Mott model, gives rise to a multistep process which involves charges transfer and creation of stabilized vacancies and charged defects. Based on the outcome of this multistep process, we consider (i) the negative-curvature resistivity as a manifestation of a thermally assisted liberation of trapped electric charges, (ii) the Kondo contribution as a spin-flip scattering from paramagnetic, color-center-type defects, and (iii) the enhancement of Tc as being due to a lattice softening facilitated by the stabilized defects and vacancies. The similarity in the phase diagrams of granular and irradiated films as well as the aging effects are discussed along the same line of reasoning.
Charge Kondo effect in negative-U quantum dots with superconducting electrodes
Fang, Tie-Feng; Guo, Ai-Min; Lu, Han-Tao; Luo, Hong-Gang; Sun, Qing-Feng
2017-08-01
Recent experimental realization of superconducting quantum dot devices with intradot attraction U [Nature (London) 521, 196 (2015), 10.1038/nature14398; Phys. Rev. X 6, 041042 (2016), 10.1103/PhysRevX.6.041042] offers unique opportunities to study the charge Kondo effect in a superconducting environment. In such devices pseudospin flips are caused by two tunneling processes. One is the cotunneling of normal electrons which generates near-gap Kondo resonances in the single-electron spectral density. This negative-U charge Kondo effect is more robust than the conventional spin Kondo effect against the suppression by the superconductivity. The other tunneling is the mean-field Cooper-pair tunneling which produces a zero-energy bound state in the pair spectral density. Interesting crossover physics from the strongly-correlated Kondo screening to the mean-field polarization of local pseudospin is demonstrated. Due to the interplay of these two tunnelings, the supercurrent is suppressed for intermediate couplings, but it can increase to the unitary limits both in the strong and weak coupling regimes. We obtain the magnetic field-dependent supercurrent which is consistent with the key experimental findings.
Transport signatures of Kondo physics and quantum criticality in graphene with magnetic impurities
Ruiz-Tijerina, David A.; Dias da Silva, Luis G. G. V.
2017-03-01
Localized magnetic moments have been predicted to develop in graphene samples with vacancies or adsorbates. The interplay between such magnetic impurities and graphene's Dirac quasiparticles leads to remarkable many-body phenomena, which have, so far, proved elusive to experimental efforts. In this article we study the thermodynamic, spectral, and transport signatures of quantum criticality and Kondo physics of a dilute ensemble of atomic impurities in graphene. We consider vacancies and adatoms that either break or preserve graphene's C3 v and inversion symmetries. In a neutral graphene sample, all cases display symmetry-dependent quantum criticality, leading to enhanced impurity scattering for asymmetric impurities, in a manner analogous to bound-state formation by nonmagnetic resonant scatterers. Kondo correlations emerge only in the presence of a back gate, with estimated Kondo temperatures well within the experimentally accessible domain for all impurity types. For symmetry-breaking impurities at charge neutrality, quantum criticality is signaled by T-2 resistivity scaling, leading to full insulating behavior at low temperatures, while low-temperature resistivity plateaus appear both in the noncritical and Kondo regimes. By contrast, the resistivity contribution from symmetric vacancies and hollow-site adsorbates vanishes at charge neutrality and for arbitrary back-gate voltages, respectively. This implies that local probing methods are required for the detection of both Kondo and quantum critical signatures in these symmetry-preserving cases.
Kubo, T.; Tokura, Y.; Tarucha, S.
2010-01-01
We theoretically investigate spin-dependent electron transport through an Aharonov-Bohm-Casher interferometer containing a laterally coupled double quantum dot. In particular, we numerically calculate the Aharonov-Bohm and Aharonov-Casher oscillations of the linear conductance in the Kondo regime. We show that the AC oscillation in the Kondo regime deviates from the sinusoidal form.
Finite-size effect and Kondo screening effect in an A-B ring with a quantum dot
Institute of Scientific and Technical Information of China (English)
Wu Shao-Quan; Wang Shun-Jin; Sun Wei-Li; Yu Wan-Lun
2004-01-01
The properties of the ground state of a closed dot-ring system with a magnetic flux in the Kondo regime are studied theoretically by means of a one-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. It is shown that at T=0, a suppressed Kondo effect exists in this system even when the mean level spacing of electrons in the ring is larger than the bulk Kondo temperature. The physical quantities depend sensitively on both the parity of the system and the size of the ring; the rich physical behaviour can be attributed to the coexistence of both the finite-size effect and the Kondo screening effect. It is also possible to detect the Kondo screening cloud by measuring the persistent current or the zero field impurity susceptibility Ximp directly in future experiments.
The possibility of nanostructure character in approaching Kondo effect
Energy Technology Data Exchange (ETDEWEB)
Kamali, N; Yazdani, A; Shahsavari, L [Tarbiat Modares University, Jalal al Ahmad, P. O. Box 14115-175, Tehran (Iran, Islamic Republic of)
2007-12-15
Based on instability of magnetic structure, a new class of heavy fermions is constructed with a stable local magnetic ion 'Gd'. The lattice constants, D.C magnetic susceptibility and the electrical resistivity measurements in the magnetic unstable intermetallic compounds show; (1) the Instability of crystal structure, as well as high transition temperature 'T{sub c}', strongly depends on the conduction electrons concentration. The reduced size effect and the reduction in correlation length, is expected to be the cause of this behaviour as it could be due to the nanostructure character as well as the competition of inter and intra-cluster also (2) the coexistence of Kondo lattice behaviour and magnetic ordering 'reentrant antiferromagnet' for the temperature range of 30 < T{sub k} < 90K with T{sub N} = T{sub max} = 30K and finally (3) the metal-insulator-like behaviour with complete quench of magnetic ordering occur antiferromagnetically named 'super paramagnet' at a certain conduction electron concentration.
Tuning bulk and surface conduction in the proposed topological Kondo insulator SmB(6).
Syers, Paul; Kim, Dohun; Fuhrer, Michael S; Paglione, Johnpierre
2015-03-06
Bulk and surface state contributions to the electrical resistance of single-crystal samples of the topological Kondo-insulator compound SmB_{6} are investigated as a function of crystal thickness and surface charge density, the latter tuned by ionic liquid gating with electrodes patterned in a Corbino disk geometry on a single (100) surface. By separately tuning bulk and surface conduction channels, we show conclusive evidence for a model with an insulating bulk and metallic surface states, with a crossover temperature that depends solely on the relative contributions of each conduction channel. The surface conductance, on the order of 100 e^{2}/h, exhibits a field-effect mobility of 133 cm^{2}/Vs and a large carrier density of ∼2×10^{14} cm^{-2}, in good agreement with recent photoemission results. With the ability to gate modulate surface conduction by more than 25%, this approach provides promise for both fundamental and applied studies of gate-tuned devices structured on bulk crystal samples.
Energy Technology Data Exchange (ETDEWEB)
Zvyagin, A.A. [B. I. Verkin Institute for Low Temperature Physics and Engineering of the National Ukrainian Academy of Sciences, 47, Lenin Avenue, 310164, Kharkov (Ukraine); Schlottmann, P. [Department of Physics, Florida State University, Tallahassee, Florida 32306 (United States)
1996-12-01
We consider a spin-1/2 impurity interacting with conduction electrons in two different orbital channels via an isotropic spin exchange. The exchange is the same for both channels, but a crystalline field breaks the symmetry between the orbital channels. This corresponds to a splitting of the conduction electron {Gamma}{sub 8} into two doublets in the quadrupolar Kondo effect, or to the electron-assisted tunneling of an atom in a double-well potential in an external magnetic field. Another possible realization could be a quantum dot coupled to two equal rings of the same length subject to an electrostatic potential difference. We consider the Bethe ansatz equations for this model and derive the tower structure of the finite-size corrections to the ground-state energy. These results are used to discuss the Aharonov-Bohm-Casher interference pattern in the persistent charge and spin currents, and the magnetoresistivity due to the scattering of electrons off the impurity. {copyright} {ital 1996 The American Physical Society.}
Nonequilibrium spatiotemporal formation of the Kondo screening cloud on a lattice
Nuss, Martin; Ganahl, Martin; Arrigoni, Enrico; von der Linden, Wolfgang; Evertz, Hans Gerd
2015-02-01
We study the nonequilibrium formation of a spin screening cloud that accompanies the quenching of a local magnetic moment immersed in a Fermi sea at zero temperature. Based on high-precision density matrix renormalization-group results for the interacting single-impurity Anderson model, we discuss the real-time evolution after a quantum quench in the impurity-reservoir hybridization using time-evolving block decimation. We report emergent length and time scales in the spatiotemporal structure of nonlocal correlation functions in the spin and the charge density channel. At equilibrium, our data for the correlation functions and the extracted length scales show good agreement with existing results, as do local time-dependent observables at the impurity. In the time-dependent data, we identify a major signal which defines a "light cone" moving at the Fermi velocity and a ferromagnetic component in its wake. Inside the light cone we find that the structure of the nonequilibrium correlation functions emerges on two time scales. Initially, the qualitative structure of the correlation functions develops rapidly at the lattice Fermi velocity. Subsequently the spin correlations converge to the equilibrium results on a much larger time scale. This process sets a dynamic energy scale, which we identify to be proportional to the Kondo temperature. Outside the light cone we observe two different power-law decays of the correlation functions in space, with time- and interaction-strength-independent exponents.
Spin dynamics of the Kondo insulator CeNiSn approaching the metallic phase
DEFF Research Database (Denmark)
Schröder, A.; Aeppli, G.; Mason, T.E.
1997-01-01
The spin dynamics of Kondo insulators has been studied by high-resolution magnetic neutron spectroscopy at a triple-axes spectrometer on CeNi1-xCuxSn single crystals using a vertical 9 T magnet. While upon doping (x = 0.13) the spin gap of the Kondo insulator CeNiSn collapses at the transition...... to an antiferromagnetic ordered metallic Kondo compound, no such instability is observed in CeNiSn in magnetic fields up to 9 T. Both the sharp magnetic excitations (at 2 and 4 meV) appear significantly broader for energy and momentum transfer at high fields, while the ground-state correlations (probed by chi'(0)) remain...
Spin relaxation and the Kondo effect in transition metal dichalcogenide monolayers
Rostami, Habib; Moghaddam, Ali G.; Asgari, Reza
2016-12-01
We investigate the spin relaxation and Kondo resistivity caused by magnetic impurities in doped transition metal dichalcogenide monolayers. We show that momentum and spin relaxation times, due to the exchange interaction by magnetic impurities, are much longer when the Fermi level is inside the spin-split region of the valence band. In contrast to the spin relaxation, we find that the dependence of Kondo temperature T K on the doping is not strongly affected by the spin-orbit induced splitting, although only one of the spin species are present at each valley. This result, which is obtained using both perturbation theory and the poor man’s scaling methods, originates from the intervalley spin-flip scattering in the spin-split region. We further demonstrate the decline in the conductivity with temperatures close to T K, which can vary with the doping. Our findings reveal the qualitative difference with the Kondo physics in conventional metallic systems and other Dirac materials.
Quantum dots with even number of electrons: kondo effect in a finite magnetic field
Pustilnik; Avishai; Kikoin
2000-02-21
We show that the Kondo effect can be induced by an external magnetic field in quantum dots with an even number of electrons. If the Zeeman energy B is close to the single-particle level spacing Delta in the dot, the scattering of the conduction electrons from the dot is dominated by an anisotropic exchange interaction. A Kondo resonance then occurs despite the fact that B exceeds by far the Kondo temperature T(K). As a result, at low temperatures T
Oguri, Akira; Amaha, Shinichi; Nisikawa, Yunori; Hewson, A. C.; Tarucha, Seigo; Numata, Takahide
2010-03-01
We study transport through a triangular triple quantum dot (TTQD) connected to two noninteracting leads, using the numerical renormalization group. The system has been theoretically revealed to show a variety of Kondo effects depending on the electron filling of the triangle [1]. For instance, the SU(4) Kondo effect takes place at three-electron filling, and a two-stage Kondo screening of a high-spin S=1 Nagaoka state takes place at four-electron filling. Because of the enhanced freedom in the configurations, however, the large parameter space of the TTQD still has not been fully explored, especially for large deformations. We report the effects of the inhomogeneity in the inter-dot couplings and the level positions in a wide region of the filling. [1] T. Numata, Y. Nisikawa, A. Oguri, and A. C. Hewson: PRB 80, 155330 (2009).
Photoelectron spectroscopy in heavy fermions: Inconsistencies with the Kondo model
Energy Technology Data Exchange (ETDEWEB)
Arko, A.J.; Joyce, J.J.; Blyth, R.R.; Canfield, P.C.; Thompson, J.D.; Bartlett, R.J.; Fisk, Z. [Los Alamos National Lab., NM (United States); Lawrence, J.; Tang, J. [California Univ., Irvine, CA (United States); Riseborough, P. [Polytechnic Univ., Brooklyn, NY (United States)
1992-09-01
We have investigated a number of Ce and Yb heavy fermion compounds via photoelectron spectroscopy and compared the results to the predictions of the Imurity Anderson Hamiltonian within the Gunnarson-Schonhammer approach. For the low T{sub K} materials investigated we find little or no correlation with T{sub K}, the only parameter that can be determined independent of photoemission.
A Theoretic Approach to SU(4) Kondo Effect in Carbon Nanotube Quantum Dots
Institute of Scientific and Technical Information of China (English)
ZHU Rui
2006-01-01
We propose a mean Geld approach to the transport properties of carbon nanotube quantum dots. Quantum interaction between spin and orbital pseudo-spin degrees of freedom results in an SU(4) Kondo effect at low temperatures. By calculating the chemical potentials and the tunnelling strengths, and hence the spectral functions for different coupling constants and applied magnetic fields, we find that this exotic Kondo effect manifests as a four-peak splitting in the non-linear conductance when an axial magnetic field is applied.
Garnica, Manuela; Calleja, Fabián; Vázquez de Parga, Amadeo L.; Miranda, Rodolfo
2014-12-01
Electron acceptor molecules adsorbed on nanostructured graphene grown on Ru(0001) were investigated by low temperature scanning tunneling microscopy and spectroscopy (LT-STM/STS). Our experiments reveal a considerable charge transfer from the substrate to the single molecules leading to the partial occupation of the LUMO of the neutral molecules. The nanostructured graphene modulates the hybridization between the transferred unpaired electron and the ruthenium conduction electrons leading to the appearance of a Kondo effect. Spatially resolved LT-STS allows the high resolution mapping of the spin distribution of the charge transferred and a characteristic inelastic Kondo features associated to specific vibrational modes.
Numerical simulations of heavy fermion systems. From He-3 bilayers to topological Kondo insulators
Energy Technology Data Exchange (ETDEWEB)
Werner, Jan
2015-03-27
In this thesis the results of model calculations based on an extended Periodic Anderson Model are presented. The three particle ring exchange, which is the dominant magnetic exchange process in layered He-3, is included in the model. In addition, the model incorporates the constraint of no double occupancy by taking the limit of large local Coulomb repulsion. By means of Cellular DMFT, the model is investigated for a range of values of the chemical potential μ and inverse temperature β=1/T. The method is a cluster extension to the Dynamical Mean-Field Theory (DMFT), and allows to systematically include non-local correlations beyond the DMFT. The auxiliary cluster model is solved by a hybridization expansion CTQMC cluster solver, which provides unbiased, numerically exact results for the Green's function and other observables of interest. As a first step, the onset of Fermi liquid coherence is studied. At low enough temperature, the self-energy is found to exhibit a linear dependence on Matsubara frequency. Meanwhile, the spin susceptibility crossed over from a Curie-Weiss law to a Pauli law. The heavy fermion state appears at a characteristic coherence scale T{sub coh}. While the density is rather high for small filling, for larger filling T{sub coh} is increasingly suppressed. This involves a decreasing quasiparticle residue Z∝T{sub coh} and an enhanced mass renormalization m{sup *}/m∝T{sub coh}{sup -1}. Extrapolation leads to a critical filling, where the coherence scale is expected to vanish at a quantum critical point. At the same time, the effective mass diverges. This corresponds to a breakdown of the Kondo effect, which is responsible for the formation of quasiparticles, due to a vanishing of the effective hybridization between the layers. Cellular DMFT simulations are conducted for small clusters of size N{sub c}=2 and 3. Furthermore a simple two-band model for two-dimensional topological Kondo insulators is devised, which is based on a single
Spin-orbit interaction and asymmetry effects on Kondo ridges at finite magnetic field
DEFF Research Database (Denmark)
Grap, Stephan; Andergassen, Sabine; Paaske, Jens
2011-01-01
ridges, which are robust against SOI as time-reversal symmetry is preserved. As a result of the crossing of a spin-up and a spin-down level at vanishing SOI, two additional Kondo plateaus appear at finite B. They are not protected by symmetry and rapidly vanish if the SOI is turned on. Left...
Environment-modulated Kondo phenomena in FePc/Au(111) adsorption systems
Wang, Yu; Zheng, Xiao; Yang, Jinlong
2016-03-01
Recent scanning tunneling microscopy experiments on electron transport through iron(II) phthalocyanine (FePc) molecules adsorbed on the Au(111) surface have revealed that the measured Kondo conductance signature depends strongly on the specific adsorption site. To understand the physical origin of experimental observations, particularly the variation of Kondo features with the molecular adsorption site, we employ a combined density functional theory (DFT) and hierarchical equations of motion (HEOM) approach to investigate the electronic structure and Kondo correlation in FePc/Au(111) composite systems. The calculation results indicate that, for the on-top adsorption configuration, the two degenerate spin-unpaired dπ orbitals on the Fe center are coupled indirectly through substrate band states, leading to the Fano-like antiresonance line shape in the d I /d V spectra, while for the bridge adsorption configuration, the environment-induced couplings are largely suppressed because of the two different spin-unpaired d orbitals. Therefore, our work suggests that the environment-induced coupling as an essential physical factor could greatly influence the Fano-Kondo features in magnetic molecule/metal composites, and the crucial role of local orbital degeneracy and symmetry is discovered. These findings provide important insights into the electron correlation effects in complex solid-state systems. The usefulness and practicality of the combined DFT+HEOM method is also highlighted.
Spin relaxation through Kondo scattering in Cu/Py lateral spin valves
Batley, J. T.; Rosaond, M. C.; Ali, M.; Linfield, E. H.; Burnell, G.; Hickey, B. J.
Within non-magnetic metals it is reasonable to expect the Elliot-Yafet mechanism to govern spin-relaxation and thus the temperature dependence of the spin diffusion length might be inversely proportional to resistivity. However, in lateral spin valves, measurements have found that at low temperatures the spin diffusion length unexpectedly decreases. We have fabricated lateral spin valves from Cu with different concentrations of magnetic impurities. Through temperature dependent charge and spin transport measurements we present clear evidence linking the presence of the Kondo effect within Cu to the suppression of the spin diffusion length below 30 K. We have calculated the spin-relaxation rate and isolated the contribution from magnetic impurities. At very low temperatures electron-electron interactions play a more prominent role in the Kondo effect. Well below the Kondo temperature a strong-coupling regime exists, where the moments become screened and the magnetic dephasing rate is reduced. We also investigate the effect of this low temperature regime (>1 K) on a pure spin current. This work shows the dominant role of Kondo scattering, even in low concentrations of order 1 ppm, within pure spin transport.
Strong spin Seebeck effect in Kondo T-shaped double quantum dots
Wójcik, K. P.; Weymann, I.
2017-02-01
We investigate, taking a theoretical approach, the thermoelectric and spin thermoelectric properties of a T-shaped double quantum dot strongly coupled to two ferromagnetic leads, focusing on the transport regime in which the system exhibits the two-stage Kondo effect. We study the dependence of the (spin) Seebeck coefficient, the corresponding power factor and the figure of merit on temperature, leads’ spin polarization and dot level position. We show that the thermal conductance fulfills a modified Wiedemann-Franz law, also in the regime of suppression of subsequent stages of the Kondo effect by the exchange field resulting from the presence of ferromagnets. Moreover, we demonstrate that the spin thermopower is enhanced at temperatures corresponding to the second stage of Kondo screening. Very interestingly, the spin-thermoelectric response of the system is found to be highly sensitive to the spin polarization of the leads. In some cases spin polarization of the order of 1% is sufficient for a strong spin Seebeck effect to occur. This is explained as a consequence of the interplay between the two-stage Kondo effect and the exchange field induced in the double quantum dot. Due to the possibility of tuning the exchange field by the choice of gate voltage, the spin thermopower may also be tuned to be maximal for desired spin polarization of the leads. All calculations are performed with the aid of the numerical renormalization group technique.
Kondo quantum dot coupled to ferromagnetic leads: Numerical renormalization group study
Sindel, M.; Borda, L.; Martinek, J.; Bulla, R.; König, J.; Schön, G.; Maekawa, S.; von Delft, J.
2007-07-01
We systematically study the influence of ferromagnetic leads on the Kondo resonance in a quantum dot tuned to the local moment regime. We employ Wilson’s numerical renormalization group method, extended to handle leads with a spin asymmetric density of states, to identify the effects of (i) a finite spin polarization in the leads (at the Fermi surface), (ii) a Stoner splitting in the bands (governed by the band edges), and (iii) an arbitrary shape of the lead density of states. For a generic lead density of states, the quantum dot favors being occupied by a particular spin species due to exchange interaction with ferromagnetic leads, leading to suppression and splitting of the Kondo resonance. The application of a magnetic field can compensate this asymmetry, restoring the Kondo effect. We study both the gate voltage dependence (for a fixed band structure in the leads) and the spin polarization dependence (for fixed gate voltage) of this compensation field for various types of bands. Interestingly, we find that the full recovery of the Kondo resonance of a quantum dot in the presence of leads with an energy-dependent density of states is possible not only by an appropriately tuned external magnetic field but also via an appropriately tuned gate voltage. For flat bands, simple formulas for the splitting of the local level as a function of the spin polarization and gate voltage are given.
Kondo effect and impurity band conduction in Co:TiO2 magnetic semiconductor
Ramaneti, R.; Lodder, J.C.; Jansen, R.
2007-01-01
The nature of charge carriers and their interaction with local magnetic moments in an oxide magnetic semiconductor is established. For cobalt-doped anatase TiO2 films, we demonstrate conduction in a metallic donor-impurity band. Moreover, we observe a clear signature of the Kondo effect in electrica
Florens, Serge; Freyn, Axel; Roch, Nicolas; Wernsdorfer, Wolfgang; Balestro, Franck; Roura-Bas, Pablo; Aligia, A A
2011-06-22
We review here some universal aspects of the physics of two-electron molecular transistors in the absence of strong spin-orbit effects. Several recent quantum dot experiments have shown that an electrostatic backgate could be used to control the energy dispersion of magnetic levels. We discuss how the generally asymmetric coupling of the metallic contacts to two different molecular orbitals can indeed lead to a gate-tunable Hund's rule in the presence of singlet and triplet states in the quantum dot. For gate voltages such that the singlet constitutes the (non-magnetic) ground state, one generally observes a suppression of low voltage transport, which can yet be restored in the form of enhanced cotunneling features at finite bias. More interestingly, when the gate voltage is controlled to obtain the triplet configuration, spin S = 1 Kondo anomalies appear at zero bias, with non-Fermi liquid features related to the underscreening of a spin larger than 1/2. Finally, the small bare singlet-triplet splitting in our device allows fine-tuning with the gate between these two magnetic configurations, leading to an unscreening quantum phase transition. This transition occurs between the non-magnetic singlet phase, where a two-stage Kondo effect occurs, and the triplet phase, where the partially compensated (underscreened) moment is akin to a magnetically 'ordered' state. These observations are put theoretically into a consistent global picture by using new numerical renormalization group simulations, tailored to capture sharp finite-voltage cotunneling features within the Coulomb diamonds, together with complementary out-of-equilibrium diagrammatic calculations on the two-orbital Anderson model. This work should shed further light on the complicated puzzle still raised by multi-orbital extensions of the classic Kondo problem.
Energy Technology Data Exchange (ETDEWEB)
Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Teshima, Hazuki [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Lang, Elke [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
2013-01-01
rateuria aurantia (ex Kondo and Ameyama 1958) Swings et al. 1980 is a member of the bispecific genus Frateuria in the family Xanthomonadaceae, which is already heavily targeted for non-type strain genome sequencing. Strain Kondo 67(T) was initially (1958) identified as a member of 'Acetobacter aurantius', a name that was not considered for the approved list. Kondo 67(T) was therefore later designated as the type strain of the newly proposed acetogenic species Frateuria aurantia. The strain is of interest because of its triterpenoids (hopane family). F. aurantia Kondo 67(T) is the first member of the genus Frateura whose genome sequence has been deciphered, and here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,603,458-bp long chromosome with its 3,200 protein-coding and 88 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Energy Technology Data Exchange (ETDEWEB)
Strigari, Fabio
2015-04-13
and even for symmetries lower than tetragonal. In addition to that, HAXPES measurements on the CeM{sub 2}Al{sub 10} series are presented. A common technique for studying hybridization effects in rare earths, and their electronic structure in general, is photoelectron spectroscopy in the soft X-ray range (hv ≤ 1.5 keV). However, in this energy region surface effects are known to matter so that the picture about the hybridization interaction might be distorted with respect to the bulk. The use of hard X-rays (hν=5-10 keV) guarantees a sufficiently large probing depth for obtaining information about the actual bulk electronic structure. In a detailed quantitative analysis of HAXPES 3d core level spectra - using a combination of full multiplet calculations and a configuration interaction model (fm-CI model) - the hybridization strength can be quantified. The XAS results show that the CEF ground states of CeRu{sub 2}Al{sub 10} and CeOs{sub 2}Al are very similar, while it is clearly different for the non-ordering system CeFe{sub 2}Al{sub 10}. The CEF description nicely explains the magnetic anisotropy observed in susceptibility data and to a large extent the small ordered moments along the c axis. We provide a reliable quantitative description of the CEF ground state of the CeM{sub 2}Al{sub 10} compounds. Furthermore, the analysis of the HAXPES data in the fm-CI model allows to quantify the intermediate 4f valence and establishes that the exchange interaction increases within the series from Ru to Os to Fe. A substantial amount of Kondo screening is shown to be present even in the magnetically ordered Ru and Os compounds. The polarized XAS study on CeNiSn demonstrates that the monoclinic CEF is well described in a trigonal approximation, and the determined 4f ground-state wave function is consistent with results from inelastic neutron scattering for Cu-doped CeNiSn. Moreover, the systematic investigation of the CeRh{sub 1-x}Ir{sub x}In{sub 5} substitution series by means
Knolle, Johannes; Cooper, Nigel R
2017-03-03
Kondo insulating materials lie outside the usual dichotomy of weakly versus correlated-band versus Mott-insulators. They are metallic at high temperatures but resemble band insulators at low temperatures because of the opening of an interaction-induced band gap. The first discovered Kondo insulator (KI) SmB_{6} has been predicted to form a topological KI (TKI). However, since its discovery thermodynamic and transport anomalies have been observed that have defied a theoretical explanation. Enigmatic signatures of collective modes inside the charge gap are seen in specific heat, thermal transport, and quantum oscillation experiments in strong magnetic fields. Here, we show that TKIs are susceptible to the formation of excitons and magnetoexcitons. These charge neutral composite particles can account for long-standing anomalies in SmB_{6}.
Magnetic field effects on the DOS of a Kondo quantum dot coupled to LL leads
Yang, Kai-Hua; Qin, Chang-Dong; Wang, Huai-Yu; Wang, Xu
2017-01-01
We investigate the joint effects of a magnetic field and electron-electron interaction on the tunneling density of states (DOS) of a quantum dot coupled to the Luttinger liquid leads in the Kondo regime. We find that for intralead electron interaction, the DOS develops two peaks deviated from the origin by the Zeeman energy. With the increase of the intralead interaction, a phase transition occurs. For moderately strong interaction, the Zeeman splitting peaks develop into two dips. The splitting of the Kondo peak and dip is not symmetric with respect to up and down spins. In the limit of strong interaction the Zeeman splitting behavior disappears and there appears a power-law scaling behavior.
Jahn-Teller / Kondo Interplay in a Three-Terminal Quantum Dot
Toonen, R. C.; Qin, H.; Huettel, A. K.; Goswami, S.; van der Weide, D. W.; Eberl, K.; Blick, R. H.
2006-03-01
The Jahn-Teller effect is the spontaneous geometric distortion of a nonlinear molecular entity. The Kondo effect, an expression of asymptotic freedom, arises from the hybridization between localized states of a magnetic impurity and the itinerant states of its environment. The interplay of these two phenomena has attracted the attention of theorists studying the growth and interactions of heavy-fermion systems. Because of the technical difficulties associated with probing isolated impurities in bulk materials, this composite effect has remained experimentally unexplored. We have investigated co-tunneling transport phenomena in a three-terminal quantum dot with triangular symmetry. Our measurements of anomalous spectral signatures reveal interplay between the Jahn-Teller and Kondo effects. This discovery suggests a means of controlling the correlation of spatially separated pairs of entangled electrons (EPR pairs)---a necessary condition for the physical realization of a quantum computer (DiVincenzo's 7th requirement).
Interplay between the Kondo effect and the Ruderman-Kittel-Kasuya-Yosida interaction.
Prüser, Henning; Dargel, Piet E; Bouhassoune, Mohammed; Ulbrich, Rainer G; Pruschke, Thomas; Lounis, Samir; Wenderoth, Martin
2014-11-11
The interplay between the Ruderman-Kittel-Kasuya-Yosida interaction and the Kondo effect is expected to provide the driving force for the emergence of many phenomena in strongly correlated electron materials. Two magnetic impurities in a metal are the smallest possible system containing all these ingredients and define a bottom-up approach towards a long-term understanding of concentrated/dense systems. Here we report on the experimental and theoretical investigation of iron dimers buried below a Cu(100) surface by means of low-temperature scanning tunnelling spectroscopy combined with density functional theory and numerical renormalization group calculations. The Kondo effect, in particular the width of the Abrikosov-Suhl resonance, is strongly altered or even suppressed due to magnetic coupling between the impurities. It oscillates as a function of dimer separation revealing that it is related to indirect exchange interactions mediated by the conduction electrons.
Zhang, Yun; Lu, Haiyan; Zhu, Xiegang; Tan, Shiyong; Chen, Qiuyun; Feng, Wei; Xie, Donghua; Luo, Lizhu; Zhang, Wen; Lai, Xinchun; Donglai Feng Team; Huiqiu Yuan Team
One basic concept in heavy fermions systems is the entanglement of localized spin state and itinerant electron state. It can be tuned by two competitive intrinsic mechanisms, Kondo effect and Ruderman-Kittel-Kasuya-Yosida interaction, with external disturbances. The key issue regarding heavy fermions properties is how the two mechanisms work in the same phase region. To investigate the relation of the two mechanisms, the cubic antiferromagnetic heavy fermions compound CeIn3 was investigated by soft x-ray angle resolved photoemission spectroscopy. The hybridization between f electrons and conduction bands in the paramagnetic state was observed directly, providing compelling evidence for Kondo screening scenario and coexistence of two mechanisms. The hybridization strength shows slight and regular anisotropy in K space, implying that the two mechanisms are competitive and anisotropic. This work illuminates the concomitant and competitive relation between the two mechanisms and supplies some evidences for the anisotropic superconductivity of CeIn3
Kondo-like zero-bias conductance anomaly in a three-dimensional topological insulator nanowire
Cho, Sungjae; Zhong, Ruidan; Schneeloch, John A.; Gu, Genda; Mason, Nadya
2016-02-01
Zero-bias anomalies in topological nanowires have recently captured significant attention, as they are possible signatures of Majorana modes. Yet there are many other possible origins of zero-bias peaks in nanowires—for example, weak localization, Andreev bound states, or the Kondo effect. Here, we discuss observations of differential-conductance peaks at zero-bias voltage in non-superconducting electronic transport through a 3D topological insulator (Bi1.33Sb0.67)Se3 nanowire. The zero-bias conductance peaks show logarithmic temperature dependence and often linear splitting with magnetic fields, both of which are signatures of the Kondo effect in quantum dots. We characterize the zero-bias peaks and discuss their origin.
Unusual phonon softening in the Kondo lattice CeCu 2
Loewenhaupt, Michael; Witte, Ulrike; Kramp, Sirko; Braden, Markus; Svoboda, Pavel
2002-03-01
CeCu2 is a Kondo lattice with antiferromagnetic order below 3.5 K and a Kondo temperature of about 6 K. Earlier neutron scattering experiments lead to the assumption of a coupling between a crystal field transition and some phonons with energies around 14 meV. With the results from our newly performed inelastic neutron measurements on a single crystal we found these assumptions confirmed. We observed an unusual softening of certain phonons with increasing temperature. This softening of up to 15% is much stronger than the normal thermal behavior of phonons. Additionally, the line width of these phonons is increasing. At the same time the magnetic response is strongly broadened by the coupling to the phonons. The findings for CeCu2 are discussed in relation with similar observation of a coupling between electronic and lattice degrees of freedom in CeAl2 and YbPO4.
Ionic Hamiltonians for transition metal atoms: effective exchange coupling and Kondo temperature
Flores, F.; Goldberg, E. C.
2017-02-01
An ionic Hamiltonian for describing the interaction between a metal and a d-shell transition metal atom having an orbital singlet state is introduced and its properties analyzed using the Schrieffer-Wolf transformation (exchange coupling) and the poor man’s scaling method (Kondo temperature). We find that the effective exchange coupling between the metal and the atom has an antiferromagnetic or a ferromagnetic interaction depending on the kind of atomic fluctuations, either S\\to S-1/2 or S\\to S+1/2 , associated with the metal-atom coupling. We present a general scheme for all those processes and calculate, for the antiferromagnetic interaction, the corresponding Kondo-temperature.
Two Types of Pressure Dependence of Residual Resistivity in Doped Kondo Insulators
Institute of Scientific and Technical Information of China (English)
YUAN Yi-Zhe; LI Zheng-Zhong; XIAO Ming-Wen; XU Wang; XU Xiao-Hua
2004-01-01
The pressure dependence of the residual resistivity of the doped electron-type and hole-type Kondo insulators (KIs) are calculated within the framework of the slave-boson mean-field theory and the coherent potential approximation. It is shown that as the pressure increases, the resistivity increases and decreases for the dilute doping electron-type and hole-type KIs, respectively. These results are qualitatively in agreement with the experiments.
Theory of scanning tunneling spectroscopy: from Kondo impurities to heavy fermion materials
Morr, Dirk K.
2017-01-01
Kondo systems ranging from the single Kondo impurity to heavy fermion materials present us with a plethora of unconventional properties whose theoretical understanding is still one of the major open problems in condensed matter physics. Over the last few years, groundbreaking scanning tunneling spectroscopy (STS) experiments have provided unprecedented new insight into the electronic structure of Kondo systems. Interpreting the results of these experiments—the differential conductance and the quasi-particle interference spectrum—however, has been complicated by the fact that electrons tunneling from the STS tip into the system can tunnel either into the heavy magnetic moment or the light conduction band states. In this article, we briefly review the theoretical progress made in understanding how quantum interference between these two tunneling paths affects the experimental STS results. We show how this theoretical insight has allowed us to interpret the results of STS experiments on a series of heavy fermion materials providing detailed knowledge of their complex electronic structure. It is this knowledge that is a conditio sine qua non for developing a deeper understanding of the fascinating properties exhibited by heavy fermion materials, ranging from unconventional superconductivity to non-Fermi-liquid behavior in the vicinity of quantum critical points.
Energy Technology Data Exchange (ETDEWEB)
Posske, Thore Hagen
2016-02-26
Topological insulators are electronic phases that insulate in the bulk and accommodate a peculiar, metallic edge liquid with a spin-dependent dispersion. They are regarded to be of considerable future use in spintronics and for quantum computation. Besides determining the intrinsic properties of this rather novel electronic phase, considering its combination with well-known physical systems can generate genuinely new physics. In this thesis, we report on such combinations including topological insulators. Specifically, we analyze an attached Rashba impurity, a Kondo dot in the two channel setup, magnetic impurities on the surface of a strong three-dimensional topological insulator, the proximity coupling of the latter system to a superconductor, and hybrid systems consisting of a topological insulator and a semimetal. Let us summarize our primary results. Firstly, we determine an analytical formula for the Kondo cloud and describe its possible detection in current correlations far away from the Kondo region. We thereby rely on and extend the method of refermionizable points. Furthermore, we find a class of gapless topological superconductors and semimetals, which accommodate edge states that behave similarly to the ones of globally gapped topological phases. Unexpectedly, we also find edge states that change their chirality when affected by sufficiently strong disorder. We regard the presented research helpful in future classifications and applications of systems containing topological insulators, of which we propose some examples.
Magnetic-field-induced mixed-level Kondo effect in two-level systems
Energy Technology Data Exchange (ETDEWEB)
Wong, Arturo; Ngo, Anh T.; Ulloa, Sergio E.
2016-10-17
We consider a two-orbital impurity system with intra-and interlevel Coulomb repulsion that is coupled to a single conduction channel. This situation can generically occur in multilevel quantum dots or in systems of coupled quantum dots. For finite energy spacing between spin-degenerate orbitals, an in-plane magnetic field drives the system from a local-singlet ground state to a "mixed-level" Kondo regime, where the Zeeman-split levels are degenerate for opposite-spin states. We use the numerical renormalization group approach to fully characterize this mixed-level Kondo state and discuss its properties in terms of the applied Zeeman field, temperature, and system parameters. Under suitable conditions, the total spectral function is shown to develop a Fermi-level resonance, so that the linear conductance of the system peaks at a finite Zeeman field while it decreases as a function of temperature. These features, as well as the local moment and entropy contribution of the impurity system, are commensurate with Kondo physics, which can be studied in suitably tuned quantum dot systems.
Kondo screening in two-dimensional p -type transition-metal dichalcogenides
Phillips, Michael; Aji, Vivek
2017-02-01
Systems with strong spin-orbit coupling support a number of new phases of matter and novel phenomena. This work focuses on the interplay of spin-orbit coupling and interactions in yielding correlated phenomena in two-dimensional transition-metal dichalcogenides. In particular we explore the physics of Kondo screening resulting from the lack of centrosymmetry, large spin splitting, and spin valley locking in hole-doped systems. The key ingredients are (i) valley-dependent spin-momentum locking perpendicular to the two-dimensional crystal, (ii) a single nondegenerate Fermi surface per valley, and (iii) nontrivial Berry curvature associated with the low-energy bands. The resulting Kondo resonance has a finite-triplet component and nontrivial momentum space structure which facilitates new approaches to both probing and manipulating the correlated state. Using a variational wave function and the numerical renormalization group approaches we study the nature of the Kondo resonance both in the absence and presence of circularly polarized light. The latter induces an imbalance in the population of the two valleys leading to novel magnetic phenomena in the correlated state.
Site dependence of the Kondo scale in CePd{sub 1-x}Rh{sub x} evidenced by thermopower
Energy Technology Data Exchange (ETDEWEB)
Stockert, Ulrike; Hartmann, Stefanie; Deppe, Micha; Caroca-Canales, Nubia; Geibel, Christoph; Steglich, Frank [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Sereni, Julian [Division Bajas Temperaturas, Centro Atomico Bariloche (Argentina)
2015-07-01
CePd{sub 1-x}Rh{sub x} undergoes a continuous evolution from ferromagnetic order in CePd to an intermediate-valence (IV) ground state for CeRh. Close to the disappearance of magnetic order at x{sub cr} ∼ 0.87 unusual behavior of the ac susceptibility and the specific heat was observed. It was explained with a broad distribution of local Kondo temperatures T{sub K} from below 2 K to above 50 K due to the disorder introduced by Pd-Rh exchange. The thermopower S is very sensitive to Kondo scattering even for diluted 4f systems. In Ce compounds a large positive maximum in S(T) is usually observed around T{sub K}. We studied S(T) in CePd{sub 1-x}Rh{sub x} in order to evaluate the presence of Kondo scattering and the involved energy scales. Pure CeRh shows typical IV behavior with a large maximum at 220 K and small values at low T. Already 5 % Pd substitution leads to a strong enhancement of the low-T thermopower. Even larger values are found around x{sub cr}, while the high-T maximum shifts only moderately. Our results are in line with the existence of low (local) Kondo scales in the presence of IV behavior at high Rh content x > x{sub cr}. For lower Rh content a decreasing (average) Kondo scale is found.
On the zero-bias anomaly and Kondo physics in quantum point contacts near pinch-off.
Xiang, S; Xiao, S; Fuji, K; Shibuya, K; Endo, T; Yumoto, N; Morimoto, T; Aoki, N; Bird, J P; Ochiai, Y
2014-03-26
We investigate the linear and non-linear conductance of quantum point contacts (QPCs), in the region near pinch-off where Kondo physics has previously been connected to the appearance of the 0.7 feature. In studies of seven different QPCs, fabricated in the same high-mobility GaAs/AlGaAs heterojunction, the linear conductance is widely found to show the presence of the 0.7 feature. The differential conductance, on the other hand, does not generally exhibit the zero-bias anomaly (ZBA) that has been proposed to indicate the Kondo effect. Indeed, even in the small subset of QPCs found to exhibit such an anomaly, the linear conductance does not always follow the universal temperature-dependent scaling behavior expected for the Kondo effect. Taken collectively, our observations demonstrate that, unlike the 0.7 feature, the ZBA is not a generic feature of low-temperature QPC conduction. We furthermore conclude that the mere observation of the ZBA alone is insufficient evidence for concluding that Kondo physics is active. While we do not rule out the possibility that the Kondo effect may occur in QPCs, our results appear to indicate that its observation requires a very strict set of conditions to be satisfied. This should be contrasted with the case of the 0.7 feature, which has been apparent since the earliest experimental investigations of QPC transport.
Developing Kondo lattice coherence and quantum criticality in YbRh{sub 2}Si{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Wirth, Steffen; Seiro, Silvia; Geibel, Christoph; Steglich, Frank [MPI for Chemical Physics of Solids, Dresden (Germany); Kirchner, Stefan [MPI for Physics of Complex Systems, Dresden (Germany); Krellner, Cornelius [Goethe University Frankfurt (Germany); Si, Qimiao [Rice University, Houston, Texas (United States)
2015-07-01
Hybridization is a fundamental concept in strongly correlated electron physics. In heavy fermion metals, it may result in the generation of low-energy scales that can give rise to quantum criticality and unconventional superconductivity. An important techniques that helped shaping our understanding of nonlocal correlations - magnetic and superconducting - has been tunneling spectroscopy (STS) with its unique ability to give local, microscopic information that directly relates to the one-particle Green's function. We investigated YbRh{sub 2}Si{sub 2}, an archetypal heavy fermion metal. Quantum criticality is discussed in terms of an antiferromagnetic instability and a Kondo break-down of the heavy quasiparticles. STS studies identified a hybridization-induced gap-like feature of the tunneling conductance. Here we focus on the evolution of the Kondo lattice. While the Kondo lattice starts forming already at the single-ion Kondo temperature, lattice Kondo effects dominate only at much lower temperatures. This establishes a hierarchy of energy scales. Finite-temperature signatures of the QCP are observed in field-dependent STS. Our findings are augmented by band structure calculations and transport measurements.
Sarkar, T P; Gopinadhan, K; Motapothula, M; Saha, S; Huang, Z; Dhar, S; Patra, A; Lu, W M; Telesio, F; Pallecchi, I; Ariando; Marré, D; Venkatesan, T
2015-08-12
We report the observation of spatially separated Kondo scattering and ferromagnetism in anatase Ta0.06Ti0.94O2 thin films as a function of thickness (10-200 nm). The Kondo behavior observed in thicker films is suppressed on decreasing thickness and vanishes below ~25 nm. In 200 nm film, transport data could be fitted to a renormalization group theory for Kondo scattering though the carrier density in this system is lower by two orders of magnitude, the magnetic entity concentration is larger by a similar magnitude and there is strong electronic correlation compared to a conventional system such as Cu with magnetic impurities. However, ferromagnetism is observed at all thicknesses with magnetic moment per unit thickness decreasing beyond 10 nm film thickness. The simultaneous presence of Kondo and ferromagnetism is explained by the spatial variation of defects from the interface to surface which results in a dominantly ferromagnetic region closer to substrate-film interface while the Kondo scattering is dominant near the surface and decreasing towards the interface. This material system enables us to study the effect of neighboring presence of two competing magnetic phenomena and the possibility for tuning them.
Kondo Hybridization and the Origin of Metallic States at the (001 Surface of SmB_{6}
Directory of Open Access Journals (Sweden)
E. Frantzeskakis
2013-12-01
Full Text Available SmB_{6}, a well-known Kondo insulator, has been proposed to be an ideal topological insulator with states of topological character located in a clean, bulk electronic gap, namely, the Kondo-hybridization gap. Since the Kondo gap arises from many-body electronic correlations, SmB_{6} would be placed at the head of a new material class: topological Kondo insulators. Here, for the first time, we show that the k-space characteristics of the Kondo-hybridization process is the key to unraveling the origin of the two types of metallic states experimentally observed by angle-resolved photoelectron spectroscopy (ARPES in the electronic band structure of SmB_{6}(001. One group of these states is essentially of bulk origin and cuts the Fermi level due to the position of the chemical potential 20 meV above the lowest-lying 5d-4f hybridization zone. The other metallic state is more enigmatic, being weak in intensity, but represents a good candidate for a topological surface state. However, before this claim can be substantiated by an unequivocal measurement of its massless dispersion relation, our data raise the bar in terms of the ARPES resolution required, as we show there to be a strong renormalization of the hybridization gaps by a factor 2–3 compared to theory, following from the knowledge of the true position of the chemical potential and a careful comparison with the predictions from recent local-density-approximation (LDA+Gutzwiller calculations. All in all, these key pieces of evidence act as triangulation markers, providing a detailed description of the electronic landscape in SmB_{6} and pointing the way for future, ultrahigh-resolution ARPES experiments to achieve a direct measurement of the Dirac cones in the first topological Kondo insulator.
Single crystal study on a novel Kondo compound Ce{sub 6}Pt{sub 11}In{sub 14}
Energy Technology Data Exchange (ETDEWEB)
Pikul, A.P. E-mail: a.pikul@int.pan.wroc.pl; Bukowski, Z.; Stepien-Damm, J.; Kaczorowski, D
2004-05-01
Ce{sub 6}Pt{sub 11}In{sub 14} crystallizes with a monoclinic unit cell (space group C2/m; lattice parameters: a=22.729(5) A, b=4.3960(10) A, c=14.780(3) A, {beta}=118.35(3) deg.; Z=2). It is paramagnetic down to 1.9 K, and strongly anisotropic in the entire temperature range studied. The electrical resistivity along the b-axis shows Kondo features with a maximum located at 7 K. The transverse magnetoresistivity isotherms, measured in the incoherent region, follow a single-ion Kondo scaling with the characteristic temperature T*=4 K.
Sasabe, Norimasa; Tonai, Hironori; Uozumi, Takayuki
2017-09-01
The spectral change in the 3d resonant X-ray inelastic scattering (RIXS) induced by the spin-state transition between Kondo singlet (KS) and localized spin (LS) state is theoretically investigated for γ-like Ce intermetallics by means of a single impurity Anderson model. The basis configurations with an electron-hole pair are included in the calculation within the configuration interaction scheme, in addition to the intra-atomic full multiplet coupling of the Ce impurity. A distinct spectral change is found across the KS-LS transition in the RIXS excited at the charge-transfer satellite of the 3d X-ray absorption spectrum (XAS) under a polarized geometry. In contrast, the 3d XAS and RIXS spectra under a depolarized geometry are rather insensitive to the spin-state transition.
Cheng, J-G; Zhou, J-S; Yang, Y-F; Zhou, H D; Matsubayashi, K; Uwatoko, Y; MacDonald, A; Goodenough, J B
2013-10-25
The A-site ordered perovskite (AA(3)')B(4)O(12) can accommodate transition metals on both A' and B sites in the crystal structure. Because of this structural feature, it is possible to have narrow-band electrons interacting with broadband electrons from different sublattices. Here we report a new A-site ordered perovskite (CaCu(3))Ir(4)O(12) synthesized under high pressure. The coupling between localized spins on Cu(2+) and itinerant electrons from the Ir-O sublattice makes Kondo-like physics take place at a temperature as high as 80 K. Results from the local density approximation calculation have confirmed the relevant band structure. The magnetization anomaly found at 80 K can be well rationalized by the two-fluid model.
Institute of Scientific and Technical Information of China (English)
WU Shao-Quan; SUN Wei-Li
2007-01-01
Using the Keldysh Nonequilibrium Green function and equation-of-motion technique,we investigate Fano versus Kondo resonances in closed Aharonov-Bohm interferometer coupled to ferromagnetic leads and study their effects on the conductance of this system.The conductance with both parallel and antiparallel lead-polarization alignments is analysed for various values of the magnetic flux.Our results show that this system can provide an excellent spin filtering property,and a large tunnelling magnetoresistance can arise by adjusting the system parameters,which indicates that this system is a possible candidate for spin valve transistors and has important applications in spintronics.
Pressure-Resistant Intermediate Valence in the Kondo Insulator SmB_{6}.
Butch, Nicholas P; Paglione, Johnpierre; Chow, Paul; Xiao, Yuming; Marianetti, Chris A; Booth, Corwin H; Jeffries, Jason R
2016-04-15
Resonant x-ray emission spectroscopy was used to determine the pressure dependence of the f-electron occupancy in the Kondo insulator SmB_{6}. Applied pressure reduces the f occupancy, but surprisingly, the material maintains a significant divalent character up to a pressure of at least 35 GPa. Thus, the closure of the resistive activation energy gap and onset of magnetic order are not driven by stabilization of an integer valent state. Over the entire pressure range, the material maintains a remarkably stable intermediate valence that can in principle support a nontrivial band structure.
Scanning Gate Microscopy of Kondo Dots: Fabry-P\\'erot Interferences and Thermally Induced Rings
Kleshchonok, Andrii; Fleury, Geneviève; Pichard, Jean-Louis
2013-01-01
We study the conductance of an electron interferometer formed in a two dimensional electron gas between a nanostructured quantum contact and the charged tip of a scanning gate microscope. Measuring the conductance as a function of the tip position, thermally induced rings may be observed in addition to Fabry-P\\'erot interference fringes spaced by half the Fermi wavelength. If the contact is made of a quantum dot opened in the middle of a Kondo valley, we show how the location of the rings all...
Scanning Gate Microscopy of Kondo Dots: Fabry-Pérot Interferences and Thermally Induced Rings
Kleshchonok, Andrii; Fleury, Geneviève; Pichard, Jean-Louis
2013-01-01
5 pages, 4 figures; We study the conductance of an electron interferometer formed in a two dimensional electron gas between a nanostructured quantum contact and the charged tip of a scanning gate microscope. Measuring the conductance as a function of the tip position, thermally induced rings may be observed in addition to Fabry-Pérot interference fringes spaced by half the Fermi wavelength. If the contact is made of a quantum dot opened in the middle of a Kondo valley, we show how the locatio...
Fermi/non-Fermi mixing in SU($N$) Kondo effect
Kimura, Taro
2016-01-01
We apply conformal field theory analysis to the $k$-channel SU($N$) Kondo system, and find a peculiar behavior in the cases $N > k > 1$, which we call Fermi/non-Fermi mixing: The low temperature scaling is described as the Fermi liquid, while the zero temperature IR fixed point exhibits the non-Fermi liquid signature. We also show that the Wilson ratio is no longer universal for the cases $N > k > 1$. The deviation from the universal value of the Wilson ratio could be used as an experimental signal of the Fermi/non-Fermi mixing.
Magnetically tunable Kondo-Aharonov-Bohm effect in a triangular quantum dot.
Kuzmenko, T; Kikoin, K; Avishai, Y
2006-02-03
The role of discrete orbital symmetry in mesoscopic physics is manifested in a system consisting of three identical quantum dots forming an equilateral triangle. Under a perpendicular magnetic field, this system demonstrates a unique combination of Kondo and Aharonov-Bohm features due to an interplay between continuous [spin-rotation SU(2)] and discrete (permutation C3v) symmetries, as well as U(1) gauge invariance. The conductance as a function of magnetic flux displays sharp enhancement or complete suppression depending on contact setups.
Kikoin, K; Kiselev, M N; Wegewijs, M R
2006-05-05
We investigate transport through a mononuclear transition-metal complex with strong tunnel coupling to two electrodes. The ground state of this molecule is a singlet, while the first excited state is a triplet. We show that a modulation of the tunnel-barrier due to a molecular distortion which couples to the tunneling induces a Kondo-effect, provided the discrete vibrational energy compensates the singlet-triplet gap. We discuss the single-phonon and two-phonon-assisted cotunneling and possible experimental realization of the theory.
Schwingenschlögl, Udo
2009-07-01
We consider the magnetic interaction of manganese phtalocyanine (MnPc) absorbed on Pb layers that were grown on a Si substrate. We perform an ab initio calculation of the density of states and Kondo temperature as a function of the number of Pb monolayers. Comparison to experimental data [Y.-S. Fu et al., Phys. Rev. Lett. 99, 256601 (2007)] then allows us to determine the exchange coupling constant J between the spins of the adsorbed molecules and those of the Pb host. This approach gives rise to a general and reliable method for obtaining J by combining experimental and numerical results.
Energy Technology Data Exchange (ETDEWEB)
Gnida, D., E-mail: d.gnida@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wrocław (Poland); Dominyuk, N.; Zaremba, V. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mephodiya Str. 6, 79005 Lviv (Ukraine); Kaczorowski, D. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wrocław (Poland)
2015-02-15
Highlights: • Interplay of Kondo and RKKY interactions in the presence of nonmagnetic disorder. • Suppression of the coherent Kondo state by nonmagnetic impurities. • Observation of quantum interference phenomena in Ce-based Kondo system. • Coexistence of incoherent Kondo effect and Altshuler-Aronov quantum correction. - Abstract: The alloy system CePd{sub 1−x}Ge{sub x}In with 0.1⩽x⩽0.4 was investigated by means of heat capacity and electrical resistivity measurements. Its low-temperature behavior has been found to be governed by the interplay of Kondo effect and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions in the presence of atomic disorder in nonmagnetic atoms sublattice. The coherent Kondo state, observed for CePdIn, gradually vanishes with increasing the Ge-content. The incoherent Kondo state, which characterizes Ge-rich alloys, appears very sensitive to applied magnetic field. The observed systematic changes in the temperature- and field-dependent electrical transport in CePd{sub 1−x}Ge{sub x}In manifest the important role of quantum correction due to electron-electron interactions in weakly localized regime.
The exhaustion problem in the periodic Anderson model: An X-boson approach
Energy Technology Data Exchange (ETDEWEB)
Franco, R. [Departamento de Fisica, Universidad Nacional de Colombia, Ciudadela Universidad Nacional, Bogota (Colombia)]. E-mail: rfrancop@unal.edu.co; Silva-Valencia, J. [Departamento de Fisica, Universidad Nacional de Colombia, Ciudadela Universidad Nacional, Bogota (Colombia); Figueira, M.S. [Instituto de Fisica da Universidade Federal Fluminense, Av. Litoranea s/n, 24210-340 Niteroi, Rio de Janeiro C.P.100.093 (Brazil)
2006-10-01
We study the thermodynamical properties of the periodic Anderson model (PAM), within the X-boson approach. The exhaustion problem is studied and we calculate the entropy and the specific heat for the heavy fermion Kondo regime (HF-K) of the PAM. We compute numerically the evolution of the Kondo lattice T{sub KL} and the Fermi liquid T{sup *} temperatures as function of the conduction electron occupation number n{sub c}. The results obtained are consistent with others reported in the literature for the Kondo lattice.
Thermoelectric response of a correlated impurity in the nonequilibrium Kondo regime
Dorda, Antonius; Ganahl, Martin; Andergassen, Sabine; von der Linden, Wolfgang; Arrigoni, Enrico
2016-12-01
We study nonequilibrium thermoelectric transport properties of a correlated impurity connected to two leads for temperatures below the Kondo scale. At finite bias, for which a current flows across the leads, we investigate the differential response of the current to a temperature gradient. In particular, we compare the influence of a bias voltage and of a finite temperature on this thermoelectric response. This is of interest from a fundamental point of view to better understand the two different decoherence mechanisms produced by a bias voltage and by temperature. Our results show that in this respect the thermoelectric response behaves differently from the electric conductance. In particular, while the latter displays a similar qualitative behavior as a function of voltage and temperature, both in theoretical and experimental investigations, qualitative differences occur in the case of the thermoelectric response. In order to understand this effect, we analyze the different contributions in connection to the behavior of the impurity spectral function versus temperature. Especially in the regime of strong interactions and large enough bias voltages, we obtain a simple picture based on the asymmetric suppression or enhancement of the split Kondo peaks as a function of the temperature gradient. Besides the academic interest, these studies could additionally provide valuable information to assess the applicability of quantum dot devices as responsive nanoscale temperature sensors.
Possible undercompensation effect in the Kondo insulator (Yb,Tm)B12
Alekseev, P. A.; Nemkovski, K. S.; Mignot, J.-M.; Clementyev, E. S.; Ivanov, A. S.; Rols, S.; Bewley, R. I.; Filipov, V. B.; Shitsevalova, N. Yu.
2014-03-01
The effects of Tm substitution on the dynamical magnetic response of Yb1-xTmxB12 (x=0, 0.08, 0.15, and 0.75) and Lu0.92Tm0.08B12 compounds have been studied using time-of-flight inelastic neutron scattering. Major changes were observed in the spectral structure and temperature evolution of the Yb contribution to the inelastic response for a rather low content of magnetic Tm ions. A sizable influence of the RB12 host (YbB12, as compared to LuB12 or pure TmB12) on the crystal-field splitting of the Tm3+ ion is also reported. The results point to a specific effect of impurities carrying a magnetic moment (Tm, as compared to Lu or Zr) in a Kondo insulator, which is thought to reflect the "undercompensation" of Yb magnetic moments, originally Kondo screened in pure YbB12. A parallel is made with the strong effect of Tm substitution on the temperature dependence of the Seebeck coefficient in Yb1-xTmxB12, which was reported previously.
Long-range ferrimagnetic order in a two-dimensional supramolecular Kondo lattice
Girovsky, Jan; Nowakowski, Jan; Ali, Md. Ehesan; Baljozovic, Milos; Rossmann, Harald R.; Nijs, Thomas; Aeby, Elise A.; Nowakowska, Sylwia; Siewert, Dorota; Srivastava, Gitika; Wäckerlin, Christian; Dreiser, Jan; Decurtins, Silvio; Liu, Shi-Xia; Oppeneer, Peter M.; Jung, Thomas A.; Ballav, Nirmalya
2017-05-01
Realization of long-range magnetic order in surface-supported two-dimensional systems has been challenging, mainly due to the competition between fundamental magnetic interactions as the short-range Kondo effect and spin-stabilizing magnetic exchange interactions. Spin-bearing molecules on conducting substrates represent a rich platform to investigate the interplay of these fundamental magnetic interactions. Here we demonstrate the direct observation of long-range ferrimagnetic order emerging in a two-dimensional supramolecular Kondo lattice. The lattice consists of paramagnetic hexadeca-fluorinated iron phthalocyanine (FeFPc) and manganese phthalocyanine (MnPc) molecules co-assembled into a checkerboard pattern on single-crystalline Au(111) substrates. Remarkably, the remanent magnetic moments are oriented in the out-of-plane direction with significant contribution from orbital moments. First-principles calculations reveal that the FeFPc-MnPc antiferromagnetic nearest-neighbour coupling is mediated by the Ruderman-Kittel-Kasuya-Yosida exchange interaction via the Au substrate electronic states. Our findings suggest the use of molecular frameworks to engineer novel low-dimensional magnetically ordered materials and their application in molecular quantum devices.
Long-range ferrimagnetic order in a two-dimensional supramolecular Kondo lattice.
Girovsky, Jan; Nowakowski, Jan; Ali, Md Ehesan; Baljozovic, Milos; Rossmann, Harald R; Nijs, Thomas; Aeby, Elise A; Nowakowska, Sylwia; Siewert, Dorota; Srivastava, Gitika; Wäckerlin, Christian; Dreiser, Jan; Decurtins, Silvio; Liu, Shi-Xia; Oppeneer, Peter M; Jung, Thomas A; Ballav, Nirmalya
2017-05-22
Realization of long-range magnetic order in surface-supported two-dimensional systems has been challenging, mainly due to the competition between fundamental magnetic interactions as the short-range Kondo effect and spin-stabilizing magnetic exchange interactions. Spin-bearing molecules on conducting substrates represent a rich platform to investigate the interplay of these fundamental magnetic interactions. Here we demonstrate the direct observation of long-range ferrimagnetic order emerging in a two-dimensional supramolecular Kondo lattice. The lattice consists of paramagnetic hexadeca-fluorinated iron phthalocyanine (FeFPc) and manganese phthalocyanine (MnPc) molecules co-assembled into a checkerboard pattern on single-crystalline Au(111) substrates. Remarkably, the remanent magnetic moments are oriented in the out-of-plane direction with significant contribution from orbital moments. First-principles calculations reveal that the FeFPc-MnPc antiferromagnetic nearest-neighbour coupling is mediated by the Ruderman-Kittel-Kasuya-Yosida exchange interaction via the Au substrate electronic states. Our findings suggest the use of molecular frameworks to engineer novel low-dimensional magnetically ordered materials and their application in molecular quantum devices.
4 f excitations in Ce Kondo lattices studied by resonant inelastic x-ray scattering
Amorese, A.; Dellea, G.; Fanciulli, M.; Seiro, S.; Geibel, C.; Krellner, C.; Makarova, I. P.; Braicovich, L.; Ghiringhelli, G.; Vyalikh, D. V.; Brookes, N. B.; Kummer, K.
2016-04-01
The potential of resonant inelastic soft x-ray scattering to measure 4 f crystal electric-field excitation spectra in Ce Kondo lattices has been examined. Spectra have been obtained for several Ce systems and show a well-defined structure determined by crystal-field, spin-orbit, and charge-transfer excitations only. The spectral shapes of the excitation spectra can be well understood in the framework of atomic multiplet calculations. For CeCu2Si2 we found notable disagreement between the inelastic x-ray-scattering spectra and theoretical calculations when using the crystal-field scheme proposed from inelastic neutron scattering. Modified sets of crystal-field parameters yield better agreement. Our results also show that, with the very recent improvements of soft x-ray spectrometers in resolution to below 30 meV at the Ce M4 ,5 edges, resonant inelastic x-ray scattering could be an ideal tool to determine the crystal-field scheme in Ce Kondo lattices and other rare-earth compounds.
Importance of conduction electron correlation in a Kondo lattice, Ce{sub 2}CoSi{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Patil, Swapnil; Pandey, Sudhir K; Medicherla, V R R; Singh, R S; Bindu, R; Sampathkumaran, E V; Maiti, Kalobaran, E-mail: kbmaiti@tifr.res.i [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai-400 005 (India)
2010-06-30
Kondo systems are usually described by the interaction of the correlation induced local moments with the highly itinerant conduction electrons. Here, we study the role of electron correlations among conduction electrons in the electronic structure of a Kondo lattice compound, Ce{sub 2}CoSi{sub 3}, using high resolution photoemission spectroscopy and ab initio band structure calculations, where Co 3d electrons contribute in the conduction band. High energy resolution employed in the measurements helped to reveal the signatures of Ce 4f states derived Kondo resonance features at the Fermi level and the dominance of Co 3d contributions at higher binding energies in the conduction band. The lineshape of the experimental Co 3d band is found to be significantly different from that obtained from the band structure calculations within the local density approximations, LDA. Consideration of electron-electron Coulomb repulsion, U, among Co 3d electrons within the LDA + U method leads to a better representation of experimental results. The signature of an electron correlation induced satellite feature is also observed in the Co 2p core level spectrum. These results clearly demonstrate the importance of the electron correlation among conduction electrons in deriving the microscopic description of such Kondo systems.
Antiferroquadrupolar Ordering in Quadrupolar Kondo Lattice of Non-Kramers System PrTa2Al20
Higashinaka, Ryuji; Nakama, Akihiro; Miyazaki, Ryoichi; Yamaura, Jun-ichi; Sato, Hideyuki; Aoki, Yuji
2017-10-01
Single crystals of PrTa2Al20 have been investigated by means of single-crystal structural analysis and measurements of magnetization, specific heat, and electrical resistivity. The crystalline-electric-field level scheme of the Pr ions has a nonmagnetic Γ3 doublet ground state and a Γ5 magnetic excited state with an energy separation of 53 K. The 4f-electron contribution to the electrical resistivity shows -log T magnetic Kondo scattering above 50 K and a downward curvature characteristic of a quadrupolar Kondo lattice formation below 20 K. A phase transition appears at 0.65 K in zero field and shifts to higher temperatures in applied fields, indicating that this transition is antiferroquadrupolar (AFQ) in nature. The largely enhanced Sommerfeld coefficient ˜1.5 J/(mol K2) in the AFQ state may indicate the formation of heavy quasiparticles. The hierarchically arranged sequence of the magnetic Kondo regime, quadrupolar Kondo lattice regime, and AFQ ordered state in the wide temperature range 0.2-300 K demonstrates that PrTa2Al20 is a good playground to investigate quadrupole physics with strong electron correlations.
Hayashi, Yuya; Takai, Shun; Matsumura, Takeshi; Tanida, Hiroshi; Sera, Masafumi; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Ochiai, Akira
2016-03-01
We have measured the electrical resistivity of cerium monochalcogenides, CeS, CeSe, and CeTe, under high pressures of up to 8 GPa. The pressure dependences of the antiferromagnetic ordering temperature TN, crystal field splitting, and the ln T anomaly of the Kondo effect have been studied to cover the entire region from the magnetic ordering regime at low pressure to the Fermi liquid regime at high pressure. TN initially increases with increasing pressure, and starts to decrease at high pressure as expected from Doniach’s diagram. Simultaneously, the ln T behavior in the resistivity is enhanced, indicating the enhancement of the Kondo effect by pressure. It is also characteristic of CeXc that the crystal field splitting rapidly decreases at a common rate of -12.2 K/GPa. This leads to the increase in the degeneracy of the f state and the further enhancement of the Kondo effect. It is shown that the pressure-dependent degeneracy of the f state is a key factor for understanding the pressure dependence of TN, the Kondo effect, magnetoresistance, and the peak structure in the temperature dependence of resistivity.
Gate-controlled spin splitting in quantum dots with ferromagnetic leads in the Kondo regime
Martinek, J.; Sindel, M.; Borda, L.; Barnaś, J.; Bulla, R.; König, J.; Schön, G.; Maekawa, S.; von Delft, J.
2005-09-01
The effect of a gate voltage ( Vg ) on the spin splitting of an electronic level in a quantum dot (QD) attached to ferromagnetic leads is studied in the Kondo regime using a generalized numerical renormalization group technique. We find that the Vg dependence of the QD level spin splitting strongly depends on the shape of the density of states (DOS). For one class of DOS shapes there is nearly no Vg dependence; for another, Vg can be used to control the magnitude and sign of the spin splitting, which can be interpreted as a local exchange magnetic field. We find that the spin splitting acquires a new type of logarithmic divergence. We give an analytical explanation for our numerical results and explain how they arise due to spin-dependent charge fluctuations.
Two-dimensional Fermi surfaces in Kondo insulator SmB₆.
Li, G; Xiang, Z; Yu, F; Asaba, T; Lawson, B; Cai, P; Tinsman, C; Berkley, A; Wolgast, S; Eo, Y S; Kim, Dae-Jeong; Kurdak, C; Allen, J W; Sun, K; Chen, X H; Wang, Y Y; Fisk, Z; Li, Lu
2014-12-05
In the Kondo insulator samarium hexaboride (SmB6), strong correlation and band hybridization lead to an insulating gap and a diverging resistance at low temperature. The resistance divergence ends at about 3 kelvin, a behavior that may arise from surface conductance. We used torque magnetometry to resolve the Fermi surface topology in this material. The observed oscillation patterns reveal two Fermi surfaces on the (100) surface plane and one Fermi surface on the (101) surface plane. The measured Fermi surface cross sections scale as the inverse cosine function of the magnetic field tilt angles, which demonstrates the two-dimensional nature of the conducting electronic states of SmB6. Copyright © 2014, American Association for the Advancement of Science.
Proposed Rabi-Kondo correlated state in a laser-driven semiconductor quantum dot.
Sbierski, B; Hanl, M; Weichselbaum, A; Türeci, H E; Goldstein, M; Glazman, L I; von Delft, J; Imamoğlu, A
2013-10-11
Spin exchange between a single-electron charged quantum dot and itinerant electrons leads to an emergence of Kondo correlations. When the quantum dot is driven resonantly by weak laser light, the resulting emission spectrum allows for a direct probe of these correlations. In the opposite limit of vanishing exchange interaction and strong laser drive, the quantum dot exhibits coherent oscillations between the single-spin and optically excited states. Here, we show that the interplay between strong exchange and nonperturbative laser coupling leads to the formation of a new nonequilibrium quantum-correlated state, characterized by the emergence of a laser-induced secondary spin screening cloud, and examine the implications for the emission spectrum.
Proximity effect induced by Kondo interaction in a network composed of YBCO and spin density wave
Maity, S.; Ghosh, Ajay Kumar
2015-10-01
The possibility of the proximity effect mediated by Kondo interaction in YBCO embedded in system of diluted magnetic spin ordering has been studied. An YBCO sample is selected in which both metal to insulator transition and superconducting state exist in the different ranges of temperature. The intergranular network of the bulk Y-123 has been modified by the inclusion of YMnO3 which has a well defined magnetic structure depending on temperature. The current-voltage measurements have been carried out in pure Y-123 at several temperatures. At the same set of temperatures the current-voltage curves in presence of YMnO3 have been studied. The role of the diluted spin magnetic ordering in tuning proximity effect and conduction property in binary systems is associated with reduced coherence length in the normal region.
Photoemission study of the ferromagnetic Kondo system CeRh3B2
Fujimori, A.; Takahashi, T.; Okabe, A.; Kasaya, M.; Kasuya, T.
1990-04-01
We have studied the electronic structure of CeRh3B2, which has an anomalously high ferromagnetic ordering temperature, by photoemission and Auger-electron spectroscopy. The Ce 4f occupancy nf~=0.85 evaluated from the Ce 3d core-level photoemission spectrum indicates a moderately strong valence fluctuation in the Kondo regime. Rh d-derived valence-band photoemission spectra are found to be in good agreement with the results of band-structure calculations when a strong energy dependence of the hole lifetime is taken into account. This observation and the deviation of the Rh M4,5VV Auger spectrum from the self-convolution of the Rh d partial density of states provide evidence for electron correlation within the Rh d band of order of U=1-2 eV. We discuss a possible effect of the latter electron correlation on the ferromagnetic instability of this compound.
From tunneling to contact in a magnetic atom: The non-equilibrium Kondo effect
Choi, Deung-Jang; Abufager, Paula; Limot, Laurent; Lorente, Nicolás
2017-03-01
A low-temperature scanning tunneling microscope was employed to study the differential conductance in an atomic junction formed by an adsorbed Co atom on a Cu(100) surface and a copper-covered tip. A zero-bias anomaly (ZBA) reveals spin scattering off the Co atom, which is assigned to a Kondo effect. The ZBA exhibits a characteristic asymmetric lineshape when electrons tunnel between tip and sample, while upon the tip-Co contact it symmetrizes and broadens. Through density functional theory calculations and the non-equilibrium non-crossing approximation, we show that the lineshape broadening is mainly a consequence of the additional coupling to the tip, while non-equilibrium effects only modify the large-bias tails of the ZBA.
Effects of van Hove Singularities on Transport of Quantum Dot Systems in Kondo Regime
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
In the present paper, we study the effect of van Hove singularities of conduction electron on the transport of a single quantum dot system in the Kondo regime. By using both the equation-of-motion and the noncrossing approximation techniques, we show that the corrections caused by these singularities are actually minor. It can be explained by observing that the singularities in the equations, which determine the electronic DOS on the dot, are integrable. Furthermore, we find that, although each line width function is divergent at van Hove singular points, the total divergence is canceled out in the final formula to calculate the current through the system. Therefore, as far as the qualitative properties of the system is concerned, these singularities can be ignored and the wide-band approximation can be safely used in calculation.
Crystal field-phonon coupling in the Kondo lattice CeCu2
Witte, U.; Kramp, S.; Braden, M.; Svoboda, P.; Loewenhaupt, M.
CeCu2 is a Kondo lattice and shows antiferromagnetic order below 3.5K. In earlier neutron-scattering experiments on a polycrystalline sample an anomaly in the inelastic neutron spectra at about 14 meV and at temperatures between 100 and 150K was observed. This has led to the assumption of a coupling between a crystal field transition between two excited levels and phonons. Inelastic neutron measurements on a single crystal confirm this assumption. We find an unusual strong energy shift (up to 15%) of certain phonons with increasing temperature, depending on their symmetry. At the same time the magnetic response is strongly broadened due to the coupling to the phonons.
Crystal field-phonon coupling in the Kondo lattice CeCu{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Witte, U. [TU Dresden, Institut fuer Angewandte Physik (IAPD), 01062 Dresden (Germany); HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Kramp, S. [HMI Berlin, Glienicker Str. 100, 14109 Berlin (Germany); Braden, M. [LLB Saclay, 91191 Gif-Sur-Yvette Cedex (France); Svoboda, P. [Charles University, 12116 Praha (Czech Republic); Loewenhaupt, M. [TU Dresden, Institut fuer Angewandte Physik (IAPD), 01062 Dresden (Germany)
2002-07-01
CeCu{sub 2} is a Kondo lattice and shows antiferromagnetic order below 3.5 K. In earlier neutron-scattering experiments on a polycrystalline sample an anomaly in the inelastic neutron spectra at about 14 meV and at temperatures between 100 and 150 K was observed. This has led to the assumption of a coupling between a crystal field transition between two excited levels and phonons. Inelastic neutron measurements on a single crystal confirm this assumption. We find an unusual strong energy shift (up to 15%) of certain phonons with increasing temperature, depending on their symmetry. At the same time the magnetic response is strongly broadened due to the coupling to the phonons. (orig.)
Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics
Steglich, Frank; Wirth, Steffen
2016-08-01
This article overviews the development of heavy-fermion superconductivity, notably in such rare-earth-based intermetallic compounds which behave as Kondo-lattice systems. Heavy-fermion superconductivity is of unconventional nature in the sense that it is not mediated by electron-phonon coupling. Rather, in most cases the attractive interaction between charge carriers is apparently magnetic in origin. Fluctuations associated with an antiferromagnetic (AF) quantum critical point (QCP) play a major role. The first heavy-fermion superconductor CeCu2Si2 turned out to be the prototype of a larger group of materials for which the underlying, often pressure-induced, AF QCP is likely to be of a three-dimensional (3D) spin-density-wave (SDW) variety. For UBe13, the second heavy-fermion superconductor, a magnetic-field-induced 3D SDW QCP inside the superconducting phase can be conjectured. Such a ‘conventional’, itinerant QCP can be well understood within Landau’s paradigm of order-parameter fluctuations. In contrast, the low-temperature normal-state properties of a few heavy-fermion superconductors are at odds with the Landau framework. They are characterized by an ‘unconventional’, local QCP which may be considered a zero-temperature 4 f-orbital selective Mott transition. Here, as concluded for YbRh2Si2, the breakdown of the Kondo effect concurring with the AF instability gives rise to an abrupt change of the Fermi surface. Very recently, superconductivity was discovered for this compound at ultra-low temperatures. Therefore, YbRh2Si2 along with CeRhIn5 under pressure provide a natural link between the large group of about fifty low-temperature heavy-fermion superconductors and other families of unconventional superconductors with substantially higher T c, e.g. the doped Mott insulators of the perovskite-type cuprates and the organic charge-transfer salts.
STEM in Kondo Lattices: a new window on correlated electron materials
Coleman, Piers
2012-02-01
The tremendous developments in scanning tunneling electron spectroscopy over the past decade, applied with tremendous success to the cuprate superconductors, are now beginning to be applied to other strongly correlated electron systems. One area where they offer tremendous potential, is in the context of heavy fermion materials. In the last few years, it has become possible to start probing the physics of the Kondo lattice using STEM methods. In this talk I will review this field, discussing the physics of tunneling into the Kondo lattice, showing how tunneling involves a co-operative process of electron transfer and spin-flip, called ``cotunnelling'' [1,2]. I will provide an overview of latest results in this field, especially URu2Si2 [3,4], YbRh2Si2 [5] and CeCoIn5 [6], discussing how STEM can be used to probe various new theoretical proposals [7,8] for the exotic order and critical behavior. [4pt] [1] M. Maltseva, M. Dzero, and P. Coleman, Phys. Rev. Lett. 103, 206402 (2009).[0pt] [2] J. Figgins and D. Morr, Phys. Rev. Lett. 104, 187202 (2010).[0pt] [3] A. R. Schmidt et al, Nature 465, 570-576 (2010).[0pt] [4] P. Aynajian et al., Proc. Natl. Acad. Sci. U.S.A. 107, 10383 (2010).[0pt] [5] S. Ernst et al, Nature (2011).[0pt] [6] S. Ernst et al, Physica Status Solidi 247, 624 (2010).[0pt] [7] Y. Dubi and A.V. Balatsky, Phys. Rev. Lett. 106, 196407 (2011).[0pt] [8] P. Chandra, P. Coleman and R. Flint, to be published (2012).
Foundations of heavy-fermion superconductivity: lattice Kondo effect and Mott physics.
Steglich, Frank; Wirth, Steffen
2016-08-01
This article overviews the development of heavy-fermion superconductivity, notably in such rare-earth-based intermetallic compounds which behave as Kondo-lattice systems. Heavy-fermion superconductivity is of unconventional nature in the sense that it is not mediated by electron-phonon coupling. Rather, in most cases the attractive interaction between charge carriers is apparently magnetic in origin. Fluctuations associated with an antiferromagnetic (AF) quantum critical point (QCP) play a major role. The first heavy-fermion superconductor CeCu2Si2 turned out to be the prototype of a larger group of materials for which the underlying, often pressure-induced, AF QCP is likely to be of a three-dimensional (3D) spin-density-wave (SDW) variety. For UBe13, the second heavy-fermion superconductor, a magnetic-field-induced 3D SDW QCP inside the superconducting phase can be conjectured. Such a 'conventional', itinerant QCP can be well understood within Landau's paradigm of order-parameter fluctuations. In contrast, the low-temperature normal-state properties of a few heavy-fermion superconductors are at odds with the Landau framework. They are characterized by an 'unconventional', local QCP which may be considered a zero-temperature 4 f-orbital selective Mott transition. Here, as concluded for YbRh2Si2, the breakdown of the Kondo effect concurring with the AF instability gives rise to an abrupt change of the Fermi surface. Very recently, superconductivity was discovered for this compound at ultra-low temperatures. Therefore, YbRh2Si2 along with CeRhIn5 under pressure provide a natural link between the large group of about fifty low-temperature heavy-fermion superconductors and other families of unconventional superconductors with substantially higher T c, e.g. the doped Mott insulators of the perovskite-type cuprates and the organic charge-transfer salts.
Observation of orbital two-channel Kondo effect in a ferromagnetic L10-MnGa film
Zhu, Lijun; Woltersdorf, Georg; Zhao, Jianhua
2016-09-01
The experimental existence and stability of the fixed point of the two-channel Kondo (2CK) effect displaying exotic non-Fermi liquid physics have been buried in persistent confusion despite the intensive theoretical and experimental efforts in past three decades. Here we report an experimental realization of the two-level system resonant scattering-induced orbital 2CK effect in a ferromagnetic L10-MnGa film, which is signified by a magnetic field-independent resistivity upturn that has a logarithmic and a square-root temperature dependence beyond and below the Kondo temperature of ~14.5 K, respectively. Our results not only evidence the robust existence of orbital 2CK effect even in the presence of strong magnetic fields and long-range ferromagnetic ordering, but also extend the scope of 2CK host materials from nonmagnetic nanoscale point contacts to diffusive conductors of disordered alloys.
Isaev, L.; Schachenmayer, J.; Rey, A. M.
2016-09-01
We show that an interplay between quantum effects, strong on-site ferromagnetic exchange interaction, and antiferromagnetic correlations in Kondo lattices can give rise to an exotic spin-orbit coupled metallic state in regimes where classical treatments predict a trivial insulating behavior. This phenomenon can be simulated with ultracold alkaline-earth fermionic atoms subject to a laser-induced magnetic field by observing dynamics of spin-charge excitations in quench experiments.
Isaev, L; Schachenmayer, J; Rey, A M
2016-09-23
We show that an interplay between quantum effects, strong on-site ferromagnetic exchange interaction, and antiferromagnetic correlations in Kondo lattices can give rise to an exotic spin-orbit coupled metallic state in regimes where classical treatments predict a trivial insulating behavior. This phenomenon can be simulated with ultracold alkaline-earth fermionic atoms subject to a laser-induced magnetic field by observing dynamics of spin-charge excitations in quench experiments.
Anomalous electrical resistivity of the Kondo system Ce(Rh1-xCox)3B2
Ku, H. C.; Yu, H.
1986-08-01
Electrical resistivity measurements have been carried out on the high-Curie-temperature ferromagnetic compound CeRh3B2 (TC=110-115 K). The temperature dependence of the electrical resistivity ρ(T) during the initial cooldown above TC gives the first solid indication of the Kondo-like behavior in this system. However, the resisitivity is irreversible above TC when warming up from low temperature and ρ(T) approaches the previous reported form. This irreversibility is closely related to microscopic cracks created by the strong internal magnetic field of the ferromagnetic state and was not observed in the nonmagnetic compound CeCo3B2 with the same hexagonal structure. Further proof of this Kondo state can be obtained in the study of the pseudoternary system Ce(Rh1-xCox)3B2 where the resistivity increases with decreasing temperature during the initial cooldown and a local minimum Kondo anomaly was observed. The magnetic state is rapidly broken up with the replacement of Rh by Co and the resistivity anomaly disappears after the disappearance of ferromagnetic order.
Kondo Physics at Interfaces in Metallic Non-Local Spin Transport Devices
Leighton, Chris
2015-03-01
Despite the maturity of metallic spintronics there remain large gaps in our understanding of spin transport in metals, particularly with injection of spins across ferromagnetic/non-magnetic (FM/NM) interfaces, and their subsequent diffusion and relaxation. Unresolved issues include the limits of applicability of Elliott-Yafet spin relaxation, quantification of the influence of defects, surfaces, and interfaces on spin relaxation at nanoscopic dimensions, and the importance of magnetic and spin-orbit scattering. The non-local spin-valve is an enabling device in this context as, in addition to offering potentially disruptive applications, it allows for the separation of charge and spin currents. One particularly perplexing issue in metallic non-local spin valves is the widely observed non-monotonicity in the T-dependent spin accumulation, where the spin signal actually decreases at low T, in contrast to simple expectations. In this work, by studying an expanded range of FM/NM combinations (encompassing Ni80Fe20, Ni, Fe, Co, Cu, and Al), we demonstrate that this effect is not a property of a given FM or NM, but rather of the FM/NM pair. The non-monotonicity is in fact strongly correlated with the ability of the FM to form a dilute local magnetic moment in the NM. We show that local moments, resulting in this case from the ppm-level tail of the FM/NM interdiffusion profile, suppress the injected spin polarization and diffusion length via a novel manifestation of the Kondo effect, explaining all observations associated with the low T downturn in spin accumulation. We further show: (a) that this effect can be promoted by thermal annealing, at which point the conventional charge transport Kondo effect is simultaneously detected in the NM, and (b) that this suppression in spin accumulation can be quenched, even at interfaces that are highly susceptible to the effect, by insertion of a thin non-moment-supporting interlayer. Important implications for room temperature
Kondo effect and quantum critical point in Mn(1-x)CoxSi
Teyssier, J.; Viennois, R.; Guritanu, V.; Giannini, E.; van der Marel, D.
2010-01-01
We report magnetic, transport and neutron diffraction studies of the solid solution Mn1-xCoxSi. For the Mn rich compounds, a sharp decrease of the Curie temperature is observed upon cobalt doping and neutron elastic scattering shows that the helimagnetic order of MnSi persists up to x = 0.06 with a shortening of the helix period. For higher Co concentrations (0.06 Weiss temperature changes sign and the system enters an antiferromagnetic state upon cooling (TN=9K for x = 0.50). In this doping range, the antiferromagnetic coupling leads to a Kondo effect marked by a minimum in the resistivity. This scenario is supported by the scaling of the magnetoresistance with a TK approx 6.5 K, close to the change in curvature of the resistivity and in agreement with the Weiss temperature from magnetic susceptibility. The sign change of the Weiss temperature and the transition from a helimagnetic to an antiferromagnetic ground state, with increasing the Co doping, point toward the existence of a quantum critical point at the composition Mn0.94Co0.06Si.
Magnetic Doping and Kondo Effect in Bi 2 Se 3 Nanoribbons
Cha, Judy J.
2010-03-10
A simple surface band structure and a large bulk band gap have allowed Bi2Se3 to become a reference material for the newly discovered three-dimensional topological insulators, which exhibit topologically protected conducting surface states that reside inside the bulk band gap. Studying topological insulators such as Bi2Se3 in nanostructures is advantageous because of the high surfaceto-volume ratio, which enhances effects from the surface states; recently reported Aharonov-Bohm oscillation in topological insulator nanoribbons by some of us is a good example. Theoretically, introducing magnetic impurities in topological insulators is predicted to open a small gap in the surface states by breaking time-reversal symmetry. Here, we present synthesis of magnetically doped Bi 2Se3 nanoribbons by vapor-liquid-solid growth using magnetic metal thin films as catalysts. Although the doping concentration is less than ∼2 %. low-temperature transport measurements of the Fe-doped Bi2Se3 nanoribbon devices show a clear Kondo effect at temperatures below 30 K, confirming the presence of magnetic impurities in the Bi2Se3 nanoribbons. The capability to dope topological insulator nanostructures magnetically opens up exciting opportunities for spintronics. © 2010 American Chemical Society.
Transport properties of the topological Kondo insulator SmB6 under the irradiation of light
Zhu, Guo-Bao; Yang, Hui-Min
2016-10-01
In this paper, we study transport properties of the X point in the Brillouin zone of the topological Kondo insulator SmB6 under the application of a circularly polarized light. The transport properties at high-frequency regime and low-frequency regime as a function of the ratio (κ) of the Dresselhaus-like and Rashba-like spin-orbit parameter are studied based on the Floquet theory and Boltzmann equation respectively. The sign of Hall conductivity at high-frequency regime can be reversed by the ratio κ and the amplitude of the light. The amplitude of the current can be enhanced by the ratio κ. Our findings provide a way to control the transport properties of the Dirac materials at low-frequency regime. Project supported by the National Natural Science Foundation of China (Grant Nos. 11504095 and 11447145), the Foundation of Heze University (Grant Nos. XY14B002 and XYPY01), and the Project funded by the Higher Educational Science and Technology Program of Shandong Province, China (Grant No. J15LJ55).
Fano resonance and hybridization gap in the Kondo lattice URu2Si2^*
Park, Wan Kyu; Tobash, P. H.; Ronning, F.; Bauer, E. D.; Sarrao, J. L.; Thompson, J. D.; Greene, L. H.
2012-02-01
The nature of the `hidden' order transition in URu2Si2 remains puzzling despite intensive research over the past two and half decades. A key question under debate is whether a hybridization gap between the renormalized bands can be identified as the long-sought hidden order parameter. We report on the measurement of a hybridization gap in URu2Si2 employing a spectroscopic technique based on quasiparticle scattering across a ballistic metallic junction [1]. The differential conductance data exhibit an asymmetric double-peak structure, a signature for a Fano resonance in a Kondo lattice [2]. The extracted hybridization gap opens well above the hidden order transition temperature, indicating that it is not the order parameter for the hidden order phase. Our results place constraints on the origin of the hidden order transition in URu2Si2.[4pt] [1] W. K. Park et al., arXiv:1110.5541.[0pt] [2] M. Maltseva, M. Dzero, P. Coleman, PRL 103, 206402 (2009).
Energy Technology Data Exchange (ETDEWEB)
Korytar, Richard; Lorente, Nicolas, E-mail: rkorytar@cin2.es [Centro de investigacion en nanociencia y nanotecnologIa (CSIC-ICN), Campus de la UAB, E-08193 Bellaterra (Spain)
2011-09-07
We have developed a multi-orbital approach to compute the electronic structure of a quantum impurity using the non-crossing approximation. The calculation starts with a mean-field evaluation of the system's electronic structure using a standard quantum chemistry code; here we use density functional theory (DFT). We transformed the one-electron structure into an impurity Hamiltonian by using maximally localized Wannier functions. Hence, we have developed a method to study the Kondo effect in systems based on an initial one-electron calculation. We have applied our methodology to a copper phthalocyanine molecule chemisorbed on Ag(100), and we have described its spectral function for three different cases where the molecule presents a single spin or two spins with ferro- and anti-ferromagnetic exchange couplings. We find that the use of broken-symmetry mean-field theories such as Kohn-Sham DFT cannot deal with the complexity of the spin of open-shell molecules on metal surfaces and extra modeling is needed. (paper)
Kondo effect at low electron density and high particle-hole asymmetry in 1D, 2D, and 3D
Žitko, Rok; Horvat, Alen
2016-09-01
Using the perturbative scaling equations and the numerical renormalization group, we study the characteristic energy scales in the Kondo impurity problem as a function of the exchange coupling constant J and the conduction-band electron density. We discuss the relation between the energy gain (impurity binding energy) Δ E and the Kondo temperature TK. We find that the two are proportional only for large values of J , whereas in the weak-coupling limit the energy gain is quadratic in J , while the Kondo temperature is exponentially small. The exact relation between the two quantities depends on the detailed form of the density of states of the band. In the limit of low electron density the Kondo screening is affected by the strong particle-hole asymmetry due to the presence of the band-edge van Hove singularities. We consider the cases of one- (1D), two- (2D), and three-dimensional (3D) tight-binding lattices (linear chain, square lattice, cubic lattice) with inverse-square-root, step-function, and square-root onsets of the density of states that are characteristic of the respective dimensionalities. We always find two different regimes depending on whether TK is higher or lower than μ , the chemical potential measured from the bottom of the band. For 2D and 3D, we find a sigmoidal crossover between the large-J and small-J asymptotics in Δ E and a clear separation between Δ E and TK for TKband edge. Furthermore, we find that in 1D the particle-hole asymmetry leads to a large decrease of TK compared to the standard result obtained by approximating the density of states to be constant (flat-band approximation), while in 3D the opposite is the case; this is due to the nontrivial interplay of the exchange and potential scattering renormalization in the presence of particle-hole asymmetry. The 2D square-lattice density of states behaves to a very good approximation as a band with constant density of states.
Light induced suppression of Kondo effect at amorphous LaAlO3/SrTiO3 interface
Liu, G. Z.; Qiu, J.; Jiang, Y. C.; Zhao, R.; Yao, J. L.; Zhao, M.; Feng, Y.; Gao, J.
2016-07-01
We report photoelectric properties of two-dimensional electron gas (2DEG) at an amorphous LaAlO3/SrTiO3 interface. Under visible light illumination (650 nm), an enhancement of electric conductivity is observed over the temperature range from 2 to 300 K. Particularly, a resistance upturn appearing below 25 K, which is further proved to from the Kondo effect, is suppressed by the 650 nm visible light. From the results of light-assisted Hall measurements, light irradiation increases the carrier mobility rather than carrier density in the Kondo regime. It is suggested that light induces the decoherence effect of localized spin states, hence the electron scattering is weakened and the carrier mobility is improved accordingly. Moreover, the enhancement of electrical conductivity by visible light verifies that in-gap states located in the SrTiO3 side of the interface play an important role in the electrical transport of the amorphous SrTiO3-based oxide 2DEG system. Our results provide deeper insight into the photoinduced effects in the 2DEG system, paving the way for the design of optoelectronic devices based on oxides.
Competition between Kondo and indirect exchange at the edges and bulk of graphene, and 2D materials
Allerdt, Andrew; Martins, George; Feiguin, Adrian
We study the problem of two magnetic impurities at the surface of graphene, BN, MoS2, phosphorene, silicene and germanene using exact numerical methods. We map the band structure of these materials onto one dimensional tight-binding chains in the same spirit as Wilson's numerical renormalization group. We use the density matrix renormalization group to solve the problem exactly, keeping all the information about the underlying lattice. Competition between Kondo and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions is non-trivial, due to strong non-perturbative effects. Depending on the presence of a pseudogap, or gap, we identify an important directionality and position dependence of the correlations. We present scenarios and regimes where impurities prefer to form their own Kondo clouds instead of an RKKY singlet state, or remain as uncoupled local moments. In the particular case of graphene, ferromagnetism is only stable at half-filling. In addition, we study the effects of spin-orbit coupling, and the presence of edge states.
The effect of Ce dilution on the ferromagnetic ordering and Kondo behavior of CeRuPO
Noorafshan, M.; Nourbakhsh, Z.
2017-03-01
The structural, electronic and magnetic properties and Kondo behavior of Ce1-xLax RuPO (x=0, 0.25, 0.5, 0.75 and 1) alloys are investigated using density functional theory by utilizing Wien2k package. The exchange-correlation potential is treated with the generalized gradient approximation (GGA). Moreover, the GGA+U approach (where U is the Hubbard correlation term) is employed to treat the f-electrons properly. We also present a comparative study between the electronic structure and magnetic properties of these alloys within GGA and GGA+U approaches. The calculated lattice parameters and bulk moduli of these alloys as a function of x are in the best agreement with Vegard's linear rule. The total and partial electron density of states and linear coefficient of electronic specific heat of these alloy within GGA and GGA+U are investigated and compared. The effect of La substitution on the Kondo behavior of CeRuPO compound is investigated.
Schilling, James S.; Song, Jing; Soni, Vikas; Lim, Jinhyuk
Most elemental lanthanides order magnetically at temperatures To well below ambient, the highest being 292 K for Gd. Sufficiently high pressure is expected to destabilize the well localized magnetic 4 f state of the heavy lanthanides, leading to increasing influence of Kondo physics on the RKKY interaction. For pressures above 80 GPa, To for Dy and Tb begins to increase dramatically, extrapolating for Dy to a record-high value near 400 K at 160 GPa. This anomalous increase may be an heretofore unrecognized feature of the Kondo lattice state; if so, one would expect To to pass through a maximum and fall rapidly at even higher pressures. A parallel is suggested to the ferromagnet CeRh3B2 where To = 115 K at ambient pressure, a temperature more than 100-times higher than anticipated from simple de Gennes scaling. Here we discuss recent experiments on Nd where anomalous behavior in To (P) is found to occur at lower pressures, perhaps reflecting the fact that Nd's 4 f wave function is less localized. Work at Washington University is supported by NSF Grant DMR-1104742 and CDAC through NNSA/DOE Grant DE-FC52-08NA28554.
Buot, Felix A.; Otadoy, Roland E. S.; Rivero, Karla B.
2017-03-01
Wide ranging interest in Dirac Hamiltonian is due to the emergence of novel materials, namely, graphene, topological insulators and superconductors, the newly-discovered Weyl semimetals, and still actively-sought after Majorana fermions in real materials. We give a brief review of the relativistic Dirac quantum mechanics and its impact in the developments of modern physics. The quantum band dynamics of Dirac Hamiltonian is crucial in resolving the giant diamagnetism of bismuth and Bi-Sb alloys. Quantitative agreement of the theory with the experiments on Bi-Sb alloys has been achieved, and physically meaningful contributions to the diamagnetism has been identified. We also treat relativistic Dirac fermion as an interband dynamics in uniform magnetic fields. For the interacting Bloch electrons, the role of translation symmetry for calculating the magnetic susceptibility avoids any approximation to second order in the field. The expressions for magnetic susceptibility of dilute nonmagnetic alloys give a firm theoretical foundation of the empirical formulas used in fitting experimental results. The unified treatment of all the above calculations is based on the lattice Weyl-Wigner formulation of discrete phase-space quantum mechanics. For completeness, the magnetic susceptibility of Kondo alloys is also given since Dirac fermions in conduction band and magnetic impurities exhibit Kondo effect.
Tuning the Kondo effect in YbRh{sub 2}Si{sub 2}: Electron spin resonance under pressure and doping
Energy Technology Data Exchange (ETDEWEB)
Wykhoff, Jan; Sichelschmidt, J.; Krellner, C.; Geibel, C.; Steglich, F. [MPl for Chemical Physics of Solids, Dresden (Germany); Zakharov, D.V.; Krug von Nidda, H.A.; Loidl, A. [EP V, EKM, University of Augsburg (Germany); Fazlizhanov, I. [E.K. Zavoisky Physical Technical Institute, Kazan (Russian Federation)
2009-07-01
The observation of a well defined Electron Spin Resonance (ESR) signal below the Kondo temperature T{sub K} in the heavy-fermion compound YbRh{sub 2}Si{sub 2} refutes a common believe that concentrated rare earth ions in Kondo-lattice intermetallic compounds would be ESR silent in the Kondo regime. The signal shows distinct properties of the Yb{sup 3+} 4f spin and, hence, should contain valuable microscopic information on the dynamical Kondo coupling to the conduction electrons. We investigated the effect of tuning the 4f - conduction electron hybridization strength by Co-doping and hydrostatic pressure up to 3 GPa. Both stabilize antiferromagnetic order, lead to a reduction of T{sub K}, and yield pronounced changes in the ESR parameters. By comparing the quantitatively different effect of pressure and Co doping on the ESR parameters we found a relation of the zero temperature residual ESR linewidth to the residual resistivity and the linear in temperature slope of the linewidth as was similarly reported for the La-doping case.
A predictive standard model for heavy electron systems
Energy Technology Data Exchange (ETDEWEB)
Yang, Yifeng [Los Alamos National Laboratory; Curro, N J [UC DAVIS; Fisk, Z [UC DAVIS; Pines, D [UC DAVIS
2010-01-01
We propose a predictive standard model for heavy electron systems based on a detailed phenomenological two-fluid description of existing experimental data. It leads to a new phase diagram that replaces the Doniach picture, describes the emergent anomalous scaling behavior of the heavy electron (Kondo) liquid measured below the lattice coherence temperature, T*, seen by many different experimental probes, that marks the onset of collective hybridization, and enables one to obtain important information on quantum criticality and the superconducting/antiferromagnetic states at low temperatures. Because T* is {approx} J{sup 2} {rho}/2, the nearest neighbor RKKY interaction, a knowledge of the single-ion Kondo coupling, J, to the background conduction electron density of states, {rho}, makes it possible to predict Kondo liquid behavior, and to estimate its maximum superconducting transition temperature in both existing and newly discovered heavy electron families.
Jean-Claude Gadmer
2013-01-01
09 September 2013 - Japanese Members of Internal Affairs and Communications Committee House of Representatives visiting the ATLAS experimental cavern with ATLAS Spokesperson D. Charlton. T. Kondo and K. Yoshida present.
Maximilien Brice
2007-01-01
Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) representative H. Ikukawa visiting ATLAS experiment with Collaboration Spokesperson P. Jenni, KEK representative T. Kondo and Advisor to CERN DG J. Ellis on 15 May 2007.
Spin-glass, antiferromagnetism and Kondo behavior in Ce2Au1-CoSi3 alloys
Indian Academy of Sciences (India)
Subham Majumdar; E V Sampathkumaran; St Berger; M Della Mea; H Michor; E Bauer; M Brando; J Hemberger; A Loidl
2002-05-01
Recently, the solid solution Ce2Au1-CoSi3 has been shown to exhibit many magnetic anomalies associated with the competition between magnetic ordering and the Kondo effect. Here we report high pressure electrical resistivity of Ce2AuSi3, ac susceptibility () and magnetoresistance of various alloys of this solid solution in order to gain better knowledge of the magnetism of these alloys. High pressure resistivity behavior is consistent with the proposal that Ce2AuSi3 lies at the left-hand side of the maximum in Doniach’s magnetic phase diagram. The ac data reveal that there are in fact two magnetic transitions, one at 2 K and the other at 3 K for this compound, both of which are spin-glass-like. However, as the Co concentration is increased, antiferromagnetism is stabilized for intermediate compositions before attaining non-magnetism for the Co end member.
Single-crystalline study of the ferromagnetic kondo compound UCu{sub 0.9}Sb{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Bukowski, Z. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 WrocIaw (Poland); Troc, R. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 WrocIaw (Poland); Stepien-Damm, J. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 WrocIaw (Poland); SuIkowski, C. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 WrocIaw (Poland); Tran, V.H. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 WrocIaw (Poland)]. E-mail: V.H.Tran@int.pan.wroc.pl
2005-11-10
Single crystals of UCu{sub 0.9}Sb{sub 2} have been grown using the self-flux method and studied by means of X-ray diffraction, magnetic and electrical transport measurements. This compound crystallizes in a tetragonal structure of the HfCuSi{sub 2}-type (space group P4/nmm) and orders ferromagnetically below T {sub C} = 113 K with the easy-magnetization direction along the c-axis exhibiting a large magnetocrystalline anisotropy in both the ordered and paramagnetic states. The electrical resistivity, magnetoresistivity and thermoelectric power data are also given. A Kondo-like behaviour of the resistivity in the paramagnetic state is reported.
High pressure studies on the ferromagnetic dense Kondo systems CeRh3B2 and UCu2Ge2
Cornelius, A. L.; Schilling, J. S.; Endstra, T.; Mydosh, J. A.
1994-07-01
The dependence of the Curie temperature of the anomalous ferromagnets UCu2Ge2 and CeRh3B2 on hydrostatic pressure to 11 GPa is determined using a diamond-anvil cell loaded with dense helium as pressure medium. A sensitive primary/secondary coil system allows the detection of the ferromagnetic transition in the ac susceptibility for tiny samples with less than 1 μ mass. The Curie temperatures of the above two compounds, Tc≊110 K and 118 K, both increase initially under pressure but pass through maxima at 8 GPa and 2 GPa, respectively, before falling rapidly at higher pressures. We take this as evidence that both compounds behave as dense Kondo system, where Tc depends on the exchange coupling J according to a magnetic phase diagram originally proposed by Doniach.
Anomalous Hall effect in L 10-MnAl films with controllable orbital two-channel Kondo effect
Zhu, L. J.; Nie, S. H.; Zhao, J. H.
2016-05-01
The anomalous Hall effect (AHE) in strongly disordered magnetic systems has been buried in persistent confusion despite its long history. We report the AHE in perpendicularly magnetized L 10-MnAl epitaxial films with a variable orbital two-channel Kondo (2CK) effect arising from the strong coupling of conduction electrons and the structural disorders of two-level systems. The AHE is observed to excellently scale with ρAH/f =a0ρx x 0+b ρxx 2 at high temperatures where phonon scattering prevails. In contrast, significant deviation occurs at low temperatures where the orbital 2CK effect becomes important, suggesting a negative AHE contribution. The deviation of the scaling agrees with the orbital 2CK effect in the breakdown temperatures and deviation magnitudes.
Kang, Chang-Jong; Choi, Hong Chul; Kim, Kyoo; Min, B I
2015-04-24
We have investigated temperature-dependent behaviors of electronic structure and resistivity in a mixed-valent golden phase of SmS, based on the dynamical mean-field-theory band-structure calculations. Upon cooling, the coherent Sm 4f bands are formed to produce the hybridization-induced pseudogap near the Fermi level, and accordingly the topology of the Fermi surface is changed to exhibit a Lifshitz-like transition. The surface states emerging in the bulk gap region are found to be not topologically protected states but just typical Rashba spin-polarized states, indicating that SmS is not a topological Kondo semimetal. From the analysis of anomalous resistivity behavior in SmS, we have identified universal energy scales, which characterize the Kondo-mixed-valent semimetallic systems.
Arnold, Michael; Langenbruch, Tobias; Kroha, Johann
2007-11-02
We propose a physical realization of the two-channel Kondo (2CK) effect, where a dynamical defect in a metal has a unique ground state and twofold degenerate excited states. In a wide range of parameters the interactions with the electrons renormalize the excited doublet downward below the bare defect ground state, thus stabilizing the 2CK fixed point. In addition to the Kondo temperature T(K) the three-state defect exhibits another low-energy scale, associated with ground-to-excited-state transitions, which can be exponentially smaller than T(K). Using the perturbative nonequilibrium renormalization group we demonstrate that this can provide the long-sought explanation of the sharp conductance spikes observed by Ralph and Buhrman in ultrasmall metallic point contacts.
Energy Technology Data Exchange (ETDEWEB)
Nguyen Bich Ha [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay Dist., Hanoi (Viet Nam); Nguyen Van Hop [Hanoi National University of Education, Hanoi (Viet Nam)], E-mail: bichha@iop.vast.ac.vn
2009-09-01
The Kondo and Fano resonances in the two-point Green's function of the single-level quantum dot were found and investigated in many previous works by means of different numerical calculation methods. In this work we present the derivation of the analytical expressions of resonance terms in the expression of the two-point Green's function. For that purpose the system of Dyson equations for the two-point nonequilibrium Green's functions in the complex-time Keldysh formalism was established in the second order with respect to the tunneling coupling constants and the mean field approximation. This system of Dyson equations was solved exactly and the analytical expressions of the resonance terms are derived. The conditions for the existence of Kondo or Fano resonances are found.
Energy Technology Data Exchange (ETDEWEB)
Wegewijs, Maarten R [Institut fuer Theoretische Physik-Lehrstuhl A, RWTH Aachen, 52056 Aachen (Germany); Romeike, Christian [Institut fuer Theoretische Physik-Lehrstuhl A, RWTH Aachen, 52056 Aachen (Germany); Schoeller, Herbert [Institut fuer Theoretische Physik-Lehrstuhl A, RWTH Aachen, 52056 Aachen (Germany); Hofstetter, Walter [Institut fuer Theoretische Physik, J W Goethe-Universitaet Frankfurt, 60438 Frankfurt (Germany)
2007-09-15
We theoretically analyse coherent electron transport through a single-molecule magnet (SMM) in the regime where charge fluctuations are suppressed. Using the numerical renormalization group (NRG) technique, we calculate the low-temperature conductance as a function of the SMMs magnetic anisotropy parameters and the strength and orientation of an external magnetic field. We show how the microscopic magnetic symmetry of the molecule affects the transport via a Kondo effect with non-trivial dependence on a longitudinal field. In addition, we show how Berry's phase and the Kondo effect, both associated with reversal of the SMMs spin, appear when both the magnetic field amplitude and direction are varied. It is shown that both effects involve the magnetic excitations of the SMM in an essential way.
Energy Technology Data Exchange (ETDEWEB)
Magnavita, E.T. [CCNH, Universidade Federal do ABC (UFABC), Santo André, SP, 09210-580 (Brazil); Rettori, C. [CCNH, Universidade Federal do ABC (UFABC), Santo André, SP, 09210-580 (Brazil); Instituto de Física “Gleb Wataghin”, UNICAMP, Campinas, SP, 13083-970 (Brazil); Osorio-Guillén, J.M. [Instituto de Física, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín (Colombia); Ferreira, F.F.; Mendonça-Ferreira, L.; Avila, M.A.; Ribeiro, R.A. [CCNH, Universidade Federal do ABC (UFABC), Santo André, SP, 09210-580 (Brazil)
2016-06-05
A thorough transport and thermodynamic investigation of flux-grown single crystals of the ternary Zintl phase Yb{sub 11} AlSb{sub 9}, combined with first-principles density functional theory calculations, shows that this compound is a metal above T ≈ 100 K and a semiconductor with small hybridization gap at low-T. The general behavior resembles those of Kondo lattice semiconductors, although some of the measured properties are strongly sample dependent, as often seen in hybridized f-electron materials. We thus suggest that Yb{sub 11} AlSb{sub 9} can be considered as a new Yb-based Kondo lattice semiconductor joining the family of strongly correlated electron systems. - Highlights: • First characterization at low temperatures of Yb{sub 11}AlSb{sub 9}. • Yb{sub 11}AlSb{sub 9} has a small, field dependent hybridization gap at low-T. • Yb{sub 11}AlSb{sub 9} can be considered as a new Kondo lattice semiconductor.
Non-Fermi liquid behavior and the undersceened Kondo effect in Fe1-yCoySi
Wu, Yan; Fulfer, Brad; Chan, Julia; Young, David; Ditusa, John
2015-03-01
Mn or Co substitutions into the narrow band-gap insulator FeSi introduce charge carriers, either holes or electrons, accompanied by an equal density of more localized magnetic moments resulting in an interesting insulator-to-metal transition (IMT). Mn doping of FeSi exhibits an IMT where the nascent metal displays intriguing field sensitive non-Fermi-Liquid (NFL) behavior due to the undercompensation of S = 1 impurity moments by the spin-1/2 hole carriers. Here, we present the results of an investigation of Fe1-yCoySi (0 <= y <= 0.1). Our magnetization and susceptibility measurements indicate that for y<0.03 Co-impurities alsointroduce a S = 1 magnetic moment that have a tendency to form singlets whereas for larger ya ferromagnetic interaction that grows with y. We have discovered a NFLbehavior for y<0.03 that evolves into the standard disordered Fermi-liquid form either by applying a magnetic field or by increasing y. The results of specific heat measurements on Fe1-yCoySi,performed to explore the underlying underscreened Kondo mechanism, to investigate its variation with field and composition,and to compare with our Fe1-xMnxSi data will be presented.
García-Hemme, E.; Montero, D.; García-Hernansanz, R.; Olea, J.; Mártil, I.; González-Díaz, G.
2016-07-01
We report the observation of the insulator-to-metal transition in crystalline silicon samples supersaturated with vanadium. Ion implantation followed by pulsed laser melting and rapid resolidification produce high quality single-crystalline silicon samples with vanadium concentrations that exceed equilibrium values in more than 5 orders of magnitude. Temperature-dependent analysis of the conductivity and Hall mobility values for temperatures from 10 K to 300 K indicate that a transition from an insulating to a metallic phase is obtained at a vanadium concentration between 1.1 × 1020 and 1.3 × 1021 cm-3. Samples in the insulating phase present a variable-range hopping transport mechanism with a Coulomb gap at the Fermi energy level. Electron wavefunction localization length increases from 61 to 82 nm as the vanadium concentration increases in the films, supporting the theory of impurity band merging from delocalization of levels states. On the metallic phase, electronic transport present a dispersion mechanism related with the Kondo effect, suggesting the presence of local magnetic moments in the vanadium supersaturated silicon material.
Three-dimensional bulk electronic structure of the Kondo lattice CeIn3 revealed by photoemission
Zhang, Yun; Lu, Haiyan; Zhu, Xiegang; Tan, Shiyong; Liu, Qin; Chen, Qiuyun; Feng, Wei; Xie, Donghua; Luo, Lizhu; Liu, Yu; Song, Haifeng; Zhang, Zhengjun; Lai, Xinchun
2016-09-01
We show the three-dimensional electronic structure of the Kondo lattice CeIn3 using soft x-ray angle resolved photoemission spectroscopy in the paramagnetic state. For the first time, we have directly observed the three-dimensional topology of the Fermi surface of CeIn3 by photoemission. The Fermi surface has a complicated hole pocket centred at the Γ-Z line and an elliptical electron pocket centred at the R point of the Brillouin zone. Polarization and photon-energy dependent photoemission results both indicate the nearly localized nature of the 4f electrons in CeIn3, consistent with the theoretical prediction by means of the combination of density functional theory and single-site dynamical mean-field theory. Those results illustrate that the f electrons of CeIn3, which is the parent material of CeMIn5 compounds, are closer to the localized description than the layered CeMIn5 compounds.
Unusual Kondo-hole effect and crystal-field frustration in Nd-doped CeRhIn5
Rosa, P. F. S.; Oostra, A.; Thompson, J. D.; Pagliuso, P. G.; Fisk, Z.
2016-07-01
We investigate single crystals of Ce1 -xNdxRhIn5 by means of x-ray-diffraction, microprobe, magnetic susceptibility, heat capacity, and electrical resistivity measurements. Our data reveal that the antiferromagnetic transition of CeRhIn5, at TNCe=3.8 K, is linearly suppressed with xNd. We associate this effect with the presence of a "Kondo hole" created by Nd substitution. The extrapolation of TNCe to zero temperature, however, occurs at xc˜0.3 , which is below the two-dimensional percolation limit found in Ce1 -xLaxRhIn5 . This result strongly suggests the presence of a crystal-field induced magnetic frustration. Near xNd˜0.2 , the Ising antiferromagnetic order from Nd3 + ions is stabilized and TNNd increases up to 11 K in NdRhIn5. Our results shed light on the effects of magnetic doping in heavy-fermion antiferromagnets and stimulate the study of such systems under applied pressure.
The completeness problem in the impurity Anderson model
Energy Technology Data Exchange (ETDEWEB)
Lobo, T. [Instituto de Fisica da, Universidade Federal Fluminense, Av. Litoranea s/n, 24210-346 Niteroi, Rio de Janeiro, Brasil (Brazil); Figueira, M.S. [Instituto de Fisica da, Universidade Federal Fluminense, Av. Litoranea s/n, 24210-346 Niteroi, Rio de Janeiro, Brasil (Brazil)]. E-mail: figueira@if.uff.br; Franco, R. [Departamento de Fisica, Universidad Nacional de Colombia, Ciudadela Universidad Nacional, Bogota (Colombia); Silva-Valencia, J. [Departamento de Fisica, Universidad Nacional de Colombia, Ciudadela Universidad Nacional, Bogota (Colombia); Foglio, M.E. [Instituto de Fisica Gleb Wataghin - Universidade Estadual de Campinas, Barao Geraldo 13083-970 Campinas-SP, Brasil (Brazil)
2007-09-01
With the recent development of the nanoscopic technology, the impurity Anderson model (AIM) was experimentally realized in quantum dot devices, and there is renewed interest in the study of the Kondo physics of the AIM. Several Green's functions approximations by the equation of motion method (EOM), that incorporates the Kondo effect through a digamma function, have been presented in the literature as an adequate tool to describe, at least qualitatively, the Kondo effect. However, these approximations present several drawbacks: they are no longer valid as the temperature decreases below the Kondo temperature, because the logarithmic divergence of the digamma function makes the spectral density at the chemical potential to vanish, and the Friedel sum rule and the completeness in the occupation numbers are not fulfilled. In this work we present a critical discussion comparing the results of digamma approximations GF with the atomic approach, recently developed by some of us, that satisfy the completeness and the Friedel sum rule. We present results for the density of states, the Friedel sum rule and the completeness.
Venegas, P. A.; Garcia, F. A.; Garcia, D. J.; Cabrera, G. G.; Avila, M. A.; Rettori, C.
2016-12-01
Recent experiments on G d3 + electron-spin resonance (ESR) in the filled skutterudite C e1 -xG dxF e4P12(x ≈0.001 ) , at temperatures where the host resistivity manifests a smooth insulator-metal crossover, provide evidence of the underlying Kondo physics associated with this system. At low temperatures (below T ≈160 K), C e1 -xG dxF e4P12 behaves as a Kondo insulator with a relatively large hybridization gap, and the G d3 + ESR spectra display a fine structure with Lorentzian line shape, typical of insulating media. In this work, based on previous experiments performed by the same group, we argue that the electronic gap may be attributed to the large hybridization present in the coherent regime of a Kondo lattice. Moreover, mean-field calculations suggest that the electron-phonon interaction is fundamental at explaining such hybridization. The resulting electronic structure is strongly temperature dependent, and at T*≈160 K the system undergoes an insulator-to-metal transition induced by the withdrawal of 4 f electrons from the Fermi volume, the system becoming metallic and nonmagnetic. The G d3 + ESR fine structure coalesces into a single Dysonian resonance, as in metals. Our simulations suggest that exchange narrowing via the usual Korringa mechanism is not enough to describe the thermal behavior of the G d3 + ESR spectra in the entire temperature region (4.2-300 K). We propose that the temperature activated fluctuating valence of the Ce ions is the key ingredient that fully describes this unique temperature dependence of the G d3 + ESR fine structure.
Aoki, Dai; Paulsen, Carley; Kotegawa, Hisashi; Hardy, Frederic; Meingast, Christoph; Haen, Pierre; Boukahil, Mounir; Knafo, William; Ressouche, Eric; Raymond, Stephane; Flouquet, Jacques
2012-01-01
Doping Kondo lattice system CeRu2Si2 with Rh-8% (Ce(Ru0.92Rh0.08)2Si2) leads to drastic consequences due to the mismatch of the lattice parameters between CeRu2Si2 and CeRh2Si2. A large variety of experiments clarifies the unusual properties of the ground state induced by the magnetic field from longitudinal antiferromagnetic (AF) mode at H = 0 to polarized paramagnetic phase in very high magnetic field. The separation between AF phase, paramagnetic phase and polarized paramagnetic phase vary...
Coexistence of Kondo and spin-glass behaviour in Ce{sub 4}Y{sub 3}Ni{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Trovarelli, O. [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, 8400 S.C. de Bariloche (Argentina); Sereni, J.G. [Centro Atomico Bariloche, Comision Nacional de Energia Atomica, 8400 S.C. de Bariloche (Argentina); Schmerber, G. [Institut de Physique et Chimie des Materiaux de Strasbourg, Groupe d`Etude des Materiaux Metallique, 23 rue du Loess, 67037 Strasbourg (France); Kappler, J.P. [Institut de Physique et Chimie des Materiaux de Strasbourg, Groupe d`Etude des Materiaux Metallique, 23 rue du Loess, 67037 Strasbourg (France)
1995-02-09
Magnetic susceptibility {chi} and specific heat C{sub P} measurements on Ce{sub 4}Y{sub 3}Ni{sub 3} are presented. The temperature of the maximum of {chi}{sub ac}(T) and C{sub P}(T) shifts with frequency and applied field respectively, as expected for a spin glass (SG) system. The C{sub P} (T{yields}0) dependence corresponds to that of an anisotropic SG. According to the entropy gain two Ce atoms are involved in the SG contribution and two exhibit Kondo effect. ((orig.)).
Low-energy physics of three-orbital impurity model with Kanamori interaction
Horvat, Alen; Žitko, Rok; Mravlje, Jernej
2016-10-01
We discuss the low-energy physics of the three-orbital Anderson impurity model with the Coulomb interaction term of the Kanamori form which has orbital SO(3) and spin SU(2) symmetry and describes systems with partially occupied t2 g shells. We focus on the case with two electrons in the impurity that is relevant to Hund's metals. Using the Schrieffer-Wolff transformation we derive an effective Kondo model with couplings between the bulk and impurity electrons expressed in terms of spin, orbital, and orbital quadrupole operators. The bare spin-spin Kondo interaction is much smaller than the orbit-orbit and spin-orbital couplings or is even ferromagnetic. Furthermore, the perturbative scaling equations indicate faster renormalization of the couplings related to orbital degrees of freedom compared to spin degrees of freedom. Both mechanisms lead to a slow screening of the local spin moment. The model thus behaves similarly to the related quantum impurity problem with a larger SU(3) orbital symmetry (Dworin-Narath interaction) where this was first observed. We find that the two problems actually describe the same low-energy physics since the SU(3) symmetry is dynamically established through the renormalization of the splittings between the orbital and quadrupole coupling constants to zero. The perturbative renormalization group results are corroborated with the numerical-renormalization group (NRG) calculations. The dependence of spin Kondo temperatures and orbital Kondo temperatures as a function of interaction parameters, the hybridization, and the impurity occupancy is calculated and discussed.
Hall effect anomaly and low-temperature metamagnetism in the Kondo compound CeAgBi2
Thomas, S. M.; Rosa, P. F. S.; Lee, S. B.; Parameswaran, S. A.; Fisk, Z.; Xia, J.
2016-02-01
Heavy fermion (HF) materials exhibit a rich array of phenomena due to the strong Kondo coupling between their localized moments and itinerant electrons. A central question in their study is to understand the interplay between magnetic order and charge transport, and its role in stabilizing new quantum phases of matter. Particularly promising in this regard is a family of tetragonal intermetallic compounds Ce T X2 (where T denotes transition metal and X denotes pnictogen), which includes a variety of HF compounds showing T -linear electronic specific heat Ce˜γ T , with γ ˜20 -500 mJ mol-1K-2 , reflecting an effective-mass enhancement ranging from small to modest. Here, we study the low-temperature field-tuned phase diagram of high-quality CeAgBi2 using magnetometry and transport measurements. We find an antiferromagnetic transition at TN=6.4 K with weak magnetic anisotropy and the easy axis along the c axis, similar to previous reports (TN=6.1 K ). This scenario, along with the presence of two anisotropic Ruderman-Kittel-Kasuya-Yosida interactions, leads to a rich field-tuned magnetic phase diagram, consisting of five metamagnetic transitions of both first and second order. In addition, we unveil an anomalous Hall contribution for fields H <54 kOe , which is drastically altered when H is tuned through a trio of transitions at 57, 78, and 84 kOe, suggesting that the Fermi surface is reconstructed in a subset of the metamagnetic transitions.
Ivantsov, Ilya; Ferraz, Alvaro; Kochetov, Evgenii
2016-01-01
We perform quantum Monte Carlo simulations of the itinerant-localized periodic Kondo-Heisenberg model for the underdoped cuprates to calculate the associated spin correlation functions. The strong electron correlations are shown to play a key role in the abrupt destruction of the quasi long-range antiferromagnetic order in the lightly doped regime.
Ivantsov, Ilya; Ferraz, Alvaro; Kochetov, Evgenii
2016-12-01
We perform quantum Monte Carlo simulations of the itinerant-localized periodic Kondo-Heisenberg model for the underdoped cuprates to calculate the associated spin correlation functions. The strong electron correlations are shown to play a key role in the abrupt destruction of the quasi-long-range antiferromagnetic order in the lightly doped regime.
Energy Technology Data Exchange (ETDEWEB)
Sarvestani, N. Kamali, E-mail: n_kamali@std.du.ac.ir [School of Physics, Damghan University, P.O. Box 36716-41167, Damghan (Iran, Islamic Republic of); Ketabi, S. Ahmad [School of Physics, Damghan University, P.O. Box 36716-41167, Damghan (Iran, Islamic Republic of); Yazdani, A. [Department of Physics, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)
2014-11-15
Highlights: • The elastic constants of Gd and Gd{sub 2}In using DFT with PBE/PBE+U were calculated. • We found out the relationship between Bulk and Shear moduli with c.e.c. • We found the possibility of Kondo-like behavior in Gd{sub 2}In through the Poison’s ratio. • Through DOS, we found the possibility of c.e.c around the magnetic ions in Gd{sub 2}In. • We found out the reduction of magnetic moment due to the induced spin polarization. - Abstract: The elastic constants of Gd-element and Gd{sub 2}In have been determined by density functional theory (DFT). Mechanical properties have been specified and compared with available experimental results. In this work, a detailed ab initio study on Gd and Gd{sub 2}In are presented in order to investigate the magneto-elastic and electronic properties and to consider the tune parameters involved in these values. The relationship between these data and the possibility of Kondo-like effect in Gd{sub 2}In were discussed.
The lobate lac scale Paratachardina pseudolobata Kondo & Gullan (Kerriidae) is a polyphagous pest of woody plants in Florida (U.S.A), the Bahamas, Cuba, and Christmas Island (Australia). Its recent appearance as a pest in these places indicates that this scale is introduced; however, its native rang...
The atomic approach to the Anderson model for the finite U case: application to a quantum dot.
Lobo, T; Figueira, M S; Foglio, M E
2010-07-09
In the present work we apply the atomic approach to the single-impurity Anderson model (SIAM). A general formulation of this approach, that can be applied both to the impurity and to the lattice Anderson Hamiltonian, was developed in a previous work (Foglio et al 2009 arxiv: 0903.0139v2 [cond-mat.str-el]). The method starts from the cumulant expansion of the periodic Anderson model, employing the hybridization as a perturbation. The atomic Anderson limit is analytically solved and its sixteen eigenenergies and eigenstates are obtained. This atomic Anderson solution, which we call the AAS, has all the fundamental excitations that generate the Kondo effect, and in the atomic approach is employed as a 'seed' to generate the approximate solutions for finite U. The width of the conduction band is reduced to zero in the AAS, and we choose its position such that the Friedel sum rule is satisfied, close to the chemical potential mu. We perform a complete study of the density of states of the SIAM over the whole relevant range of parameters: the empty dot, intermediate valence, Kondo and magnetic regimes. In the Kondo regime we obtain a density of states that characterizes well the structure of the Kondo peak. To show the usefulness of the method we have calculated the conductance of a quantum dot, side-coupled to a conduction band.
Sayad, Mohammad; Potthoff, Michael
2015-11-01
The real-time dynamics of a classical spin in an external magnetic field and local exchange coupled to an extended one-dimensional system of non-interacting conduction electrons is studied numerically. Retardation effects in the coupled electron-spin dynamics are shown to be the source for the relaxation of the spin in the magnetic field. Total energy and spin is conserved in the non-adiabatic process. Approaching the new local ground state is therefore accompanied by the emission of dispersive wave packets of excitations carrying energy and spin and propagating through the lattice with Fermi velocity. While the spin dynamics in the regime of strong exchange coupling J is rather complex and governed by an emergent new time scale, the motion of the spin for weak J is regular and qualitatively well described by the Landau-Lifschitz-Gilbert (LLG) equation. Quantitatively, however, the full quantum-classical hybrid dynamics differs from the LLG approach. This is understood as a breakdown of weak-coupling perturbation theory in J in the course of time. Furthermore, it is shown that the concept of the Gilbert damping parameter is ill-defined for the case of a one-dimensional system.
Nonequilibrium critical scaling in quantum thermodynamics
Bayat, Abolfazl; Apollaro, Tony J. G.; Paganelli, Simone; De Chiara, Gabriele; Johannesson, Henrik; Bose, Sougato; Sodano, Pasquale
2016-05-01
The emerging field of quantum thermodynamics is contributing important results and insights into archetypal many-body problems, including quantum phase transitions. Still, the question whether out-of-equilibrium quantities, such as fluctuations of work, exhibit critical scaling after a sudden quench in a closed system has remained elusive. Here, we take a novel approach to the problem by studying a quench across an impurity quantum critical point. By performing density matrix renormalization group computations on the two-impurity Kondo model, we are able to establish that the irreversible work produced in a quench exhibits finite-size scaling at quantum criticality. This scaling faithfully predicts the equilibrium critical exponents for the crossover length and the order parameter of the model, and, moreover, implies an exponent for the rescaled irreversible work. By connecting the irreversible work to the two-impurity spin correlation function, our findings can be tested experimentally.
Aoki, Dai; Paulsen, Carley; Kotegawa, Hisashi; Hardy, Frédéric; Meingast, Christoph; Haen, Pierre; Boukahil, Mounir; Knafo, William; Ressouche, Eric; Raymond, Stephane; Flouquet, Jacques
2012-03-01
Doping Kondo lattice system CeRu2Si2 with Rh-8% (Ce(Ru0.92Rh0.08)2Si2) leads to drastic consequences due to the mismatch of the lattice parameters between CeRu2Si2 and CeRh2Si2. A large variety of experiments clarifies the unusual properties of the ground state induced by the magnetic field from longitudinal antiferromagnetic (AF) mode at H=0 to polarized paramagnetic phase in very high magnetic field. The separation between AF phase, paramagnetic phase and polarized paramagnetic phase varying with temperature, magnetic field and pressure is discussed on the basis of the experiments down to very low temperature. Similarities and differences between Rh and La substituted alloys are discussed with emphasis on the competition between transverse and longitudinal AF modes, and ferromagnetic fluctuations.
Brooks, J. S.; Balicas, L.; Tokumoto, M.; Terashima, T.; Echizen, Y.; Takabatake, T.
2001-01-01
We have performed magnetoresistance measurements on an organic conductor, α-(BEDT-TTF) 2KHg(SCN) 4, and on a Kondo semiconductor, CeNiSn, at low temperatures and for fields up to 45 T in the hybrid magnet at the National High Magnetic Field Laboratory. We will discuss some new insight into a very controversial high-field phase of α-(BEDT-TTF) 2KHg(SCN) 4 gained from measurements of the anomalous temperature dependence of the quantum oscillations in the range 25-45 T. New information will also be presented on the temperature dependence of resistivity in the high-field state of CeNiSn, where questions of metallic versus semiconducting ground states arise. To acquaint researchers who anticipate using the facility in the near future, practical details concerning use of this new high-field resource are included.
Rader, Oliver; Hlawenka, Peter; Rienks, Emile; Siemensmeyer, Konrad; Weschke, Eugen; Varykhalov, Andrei; Shitsevalova, Natalya; Gabani, Slavomir; Flachbart, Karol
2015-03-01
The system SmB6 is known for its unusual resistivity which increases exponentially with decreasing temperature and saturates below 3 K. This has recently been attributed to topological-Kondo-insulator behavior where a topological surface state is created by Sm 4 f - 5 d hybridization and is responsible for the transport. Local-density-approximation + Gutzwiller calculations of the (100) surface predict the appearance of three Dirac cones in the surface Brillouin zone. We perform angle-resolved photoemission at temperatures below 1 K and reveal surface states at Γ and X . Bulk conduction band states near X appear at higher temperature. These findings will be discussed in detail vis-á-vis the theoretical and experimental literature.
Expansão perturbativa em torno do limite atômico para sistemas Kondo e de valência intermediária
Leonardo Gregory Brunnet
1991-01-01
Neste trabalho estudamos as propriedades eletrônicas de sistemas compostos de certos elementos de terras raras. Estes sistemas apresentam propriedades físicas anômalas em decorrência da interação entre os elétrons 4f e os elétrons de condução . Eles são conhecidos como sistemas de valência intermediária, sistemas Kondo, ou, quando a baixas temperaturas apresentam massas efetivas eletrônicas muito grandes, como sistemas de férmions pesados. O hamiltoniano modelo para a descrição teórica desses...
Rescuing a Quantum Phase Transition with Quantum Noise
Zhang, Gu; Novais, E.; Baranger, Harold U.
2017-02-01
We show that placing a quantum system in contact with an environment can enhance non-Fermi-liquid correlations, rather than destroy quantum effects, as is typical. The system consists of two quantum dots in series with two leads; the highly resistive leads couple charge flow through the dots to the electromagnetic environment, the source of quantum noise. While the charge transport inhibits a quantum phase transition, the quantum noise reduces charge transport and restores the transition. We find a non-Fermi-liquid intermediate fixed point for all strengths of the noise. For strong noise, it is similar to the intermediate fixed point of the two-impurity Kondo model.
Torre, L D L; Ellerby, M; McEwen, K A
2003-01-01
We report on electrical resistivity measurements performed on polycrystalline samples of UCu sub 5 sub - sub x Ni sub x (x = 0.25, 1). In order to extract the Kondo contribution to the resistivity, the experiments were carried out over a wide temperature range (0.4-800 K). From the analysis of our results, we conclude that the Kondo temperature takes values of T sub K approx 240 K for x = 1 and T sub K approx 245 K for x = 0.25, and that for both Ni concentrations the dominant part of the remarkably high residual resistivity (rho(0) approx 400 mu OMEGA cm) corresponds to the Kondo contribution. These results are discussed in comparison with previous analysis of specific heat and magnetic susceptibility data that produced similar values of T sub K. We interpret our results in terms of disorder-driven non-Fermi liquid behaviour for UCu sub 4 Ni, as indicated by the anomalous temperature dependences of the electrical, thermal and magnetic properties previously observed in this compound.
Sun, P; Huo, D; Kuwai, T; Lu, Q
2003-01-01
The electrical resistivity, magnetic susceptibility and specific heat measurements were performed on Ce(Pd sub 1 sub - sub x Cu sub x) sub 2 Al sub 3 (x = 0.0-0.7) system to investigate the effects induced by Cu substitution in the heavy fermion compound CePd sub 2 Al sub 3. A dramatic evolution of the magnetic properties was observed with the substitution of Pd by Cu: (1) a small amount of Cu (x < 0.1) in CePd sub 2 Al sub 3 leads to a rapid decrease of the antiferromagnetic transition temperature T sub N; passing through a crossover region without a long-range magnetic order, a ferromagnetic-like state, which reveals an enhanced magnetic susceptibility and a distinct peak in the specific heat curve at low temperatures, occurs around x = 0.1-0.4; (3) by furthering the substitution through a second crossover region, however, the antiferromagnetic ordering is recovered close to x = 0.5 - 0.7. A decrease tendency of the Kondo temperature T sub K with increasing x is derived from the analysis on the specific ...
Rousuli, A.; Sato, H.; Iga, F.; Hayashi, K.; Ishii, K.; Wada, T.; Nagasaki, T.; Mimura, K.; Anzai, H.; Ichiki, K.; Ueda, S.; Kondo, A.; Kindo, K.; Takabatake, T.; Shimada, K.; Namatame, H.; Taniguchi, M.
2017-07-01
We have carried out hard x-ray photoemission spectroscopy (HAXPES) of Yb1-x Zr x B12 (0≤slant x≤slant 0.875 ) to study the effects of electron doping on the Kondo insulator YbB12. The Yb valences of Yb1-x Zr x B12 at 300 K estimated from the Yb 3d HAXPES spectra decreased after substituting Yb with Zr from 2.93 for YbB12 to 2.83 for Yb0.125Zr0.875B12. A temperature dependent valence decrease was found upon cooling for all doping concentrations. We found peak shifts of the B 1s and Zr 3d5/2, and Yb3+ 4f spectra toward the deeper binding-energy with increasing Zr concentration, which indicates a shift of the Fermi level to the higher energy and that of the Yb 4f hole level close to the Fermi level, respectively, due to electron doping. These results qualitatively show the enhanced hybridization between the Yb 4f and conduction-band states with Zr substitution, consistent with magnetic susceptibility measurements.
Two-Channel Kondo Physics due to As Vacancies in the Layered Compound ZrAs1.58 Se0.39
Cichorek, T.; Bochenek, L.; Schmidt, M.; Czulucki, A.; Auffermann, G.; Kniep, R.; Niewa, R.; Steglich, F.; Kirchner, S.
2016-09-01
We address the origin of the magnetic-field-independent -|A |T1 /2 term observed in the low-temperature resistivity of several As-based metallic systems of the PbFCl structure type. For the layered compound ZrAs1.58 Se0.39 , we show that vacancies in the square nets of As give rise to the low-temperature transport anomaly over a wide temperature regime of almost two decades in temperature. This low-temperature behavior is in line with the nonmagnetic version of the two-channel Kondo effect, whose origin we ascribe to a dynamic Jahn-Teller effect operating at the vacancy-carrying As layer with a C4 symmetry. The pair-breaking nature of the dynamical defects in the square nets of As explains the low superconducting transition temperature Tc≈0.14 K of ZrAs1.58 Se0.39 compared to the free-of-vacancies homologue ZrP1.54 S0.46 (Tc≈3.7 K ). Our findings should be relevant to a wide class of metals with disordered pnictogen layers.
Magnetic properties of Ce{sup 3+} in Pb{sub 1{minus}x}Ce{sub x}Se: Kondo and crystal-field effect
Energy Technology Data Exchange (ETDEWEB)
Gratens, X.; Charar, S.; Averous, M. [Groupe dEtude des Semiconducteurs URA 357, Universite Montpellier II, Place Eugene Bataillon, 34095 Montpellier Cedex 5 (France); Isber, S. [Department of Physic, Concordia University, 1455 de Maisonneuve Boulevard West, Montreal, Quebec, H3G 1M8 (CANADA); Deportes, J. [Laboratoire Louis Neel, Avenue des Martyres, BP 166X, 38042 Grenoble Cedex 9 (France); Golacki, Z. [Institute of Physics, Polish Academy of Sciences, Pl. 02-668, Warsaw (Poland)
1997-10-01
Electron paramagnetic resonance (EPR) experiments were performed on a Pb{sub 1{minus}x}Ce{sub x}Se crystal at liquid-helium temperatures and show very clearly that the doublet {Gamma}{sub 7} is the ground state for cerium ions. The cubic symmetry is shown and the effective Land{acute e} factor for the Ce{sup 3+} is determined to be 1.354{plus_minus}0.003. An orbital reduction factor is introduced to explain the g experimental value. High-field magnetization results are in good agreement with the EPR results. The nominal Ce composition in PbSe deduced from saturation of the magnetization, x=0.0405{plus_minus}0.0003, is very closed to the value determined by microprobe analysis (x=0.04). At 1.5 K, an antiferromagnetic interaction between the nearest-neighbor cerium atoms is found, J{sub ex}/k{sub B}={minus}0.715thinspK. The low-field magnetic-susceptibility results show that the magnetic moment of cerium impurities is strongly temperature dependent, explained by the presence of the crystal-field effect and the Kondo effect. {copyright} {ital 1997} {ital The American Physical Society}
Matsumura, M; Takabatake, T; Tsuji, S; Tou, H; Sera, M
2003-01-01
sup 7 sup 5 As NQR/NMR studies were performed to investigate the successive phase transitions found recently, the gap formation and their interplay in a Kondo semiconductor CeRhAs. NQR/NMR spectra in their respective phases change, reflecting lattice modulation modes, q sub 1 = (0, 1/2, 1/2), q sub 2 = (0, 1/3, 1/3) and q sub 3 = (1/3, 0, 0). In particular for well-resolved three NQR lines corresponding to the q sub 3 mode in the lowest temperature phase, the nuclear spin-lattice relaxation rate (T sub 1 T) sup - sup 1 shows an activation type T-dependence, suggesting a gap opening over the entire Fermi surface, in contrast to the V-shaped gap in isostructural CeNiSn and CeRhSn. The evaluated gap of 272 K and the bandwidth of about 4000 K are one order of magnitude larger than those in CeNiSn and CeRhSb. A lattice modulation forms a gap different from the V-shaped gap. (author)
Magneto-heat capacity study on Kondo lattice system Ce(Ni$_{1−x}$Cu$_x$)$_2$Al$_3$
Indian Academy of Sciences (India)
SANKARARAO YADAM; DURGESH SINGH; D VENKATESHWARLU; MOHAN KUMAR GANGRADE; S SHANMUKHA RAO SAMATHAM; V GANESAN
2016-04-01
Heat capacity studies on the Kondo lattice system Ce(Ni$_{1−x}$Cu$_x$)$_2$Al$_3$, in the presence of magnetic fields, were reported for $x = 0.0−0.4$. The physical properties of the intermediate compositions like $x = 0.3$ and 0.4 were known for their enhanced thermoelectric power and hence have been analysed with an extra interest. It was also shown from the X-ray diffraction that these systems with $x = 0.3$ and 0.4 were in single phase in terms of sample purity and it stabilized the phases easily with the increase in the Cu doping in the system. The low temperature risein $C_p/T$ below 10 K under the influence of high magnetic fields was analysed using a multi-level Schottky effect. A gradual decrease of the total angular momentum (J) with the increase of applied magnetic fields indicated ascenario of screening of Ce$^{3+}$ magnetic moment while simultaneously the system settled for the Fermi liquid state. The screening thus seen was in line with the expectations of electrical conductivity measurements on these samples.
Photoelectron Spectroscopy of YbInCu{sub 4}: Direct Testing of Correlated Electron Models
Energy Technology Data Exchange (ETDEWEB)
Joyce, J.J.; Arko, A.J.; Sarrao, J.L.; Fisk, Z.
1997-12-31
The electronic properties of single crystal YbInCu{sub 4} have been investigated by means of high resolution photoelectron spectroscopy. A first order, isostructural phase transition for YbInCu{sub 4} at T{sub v}=42 K leads to changes in the Kondo temperature of more than an order of magnitude (27 K vs. 400 K). This phase transition and accompanying Kondo temperature change provide the most direct test of the single impurity model (SIM) to date. Particle hole symmetry allows the SIM to be used for Yb compounds as well as Ce heavy fermions with the great advantage that the predicted Kondo resonance is found on the occupied side of the spectral weight function for Yb materials and is thus directly observable in photoemission. The photoemission results are incongruous with the single impurity model predictions for temperature dependence, binding energy and 4f occupancy, encouraging a reevaluation of the single impurity model. The experiments were conducted using the PGM undulator and 4 meter NIM beamlines at SRC. The spectra were taken at photon energies of 40 eV and 90 eV and the combined energy resolution of the analyzer and monochromator was 45- 85 meV.
Non-Fermi-liquid behavior in quantum impurity models with superconducting channels
Žitko, Rok; Fabrizio, Michele
2017-02-01
We study how the non-Fermi-liquid nature of the overscreened multichannel Kondo impurity model affects the response to a BCS pairing term that, in the absence of the impurity, opens a gap Δ . We find that the low-energy spectrum in the limit Δ →0 actually does not correspond to the spectrum strictly at Δ =0 . In particular, in the two-channel Kondo model, the Δ →0 ground state is an orbitally degenerate spin singlet, while it is an orbital singlet with a residual spin degeneracy at Δ =0 . In addition, there are fractionalized spin-1/2 subgap excitations whose energy in units of Δ tends toward a finite and universal value when Δ →0 , as if the universality of the anomalous power-law exponents that characterize the overscreened Kondo effect turned into universal energy ratios when the scale invariance is broken by Δ ≠0 . This intriguing phenomenon can be explained by the renormalization flow toward the overscreened fixed point and the gap cutting off the orthogonality catastrophe singularities. We also find other non-Fermi-liquid features at finite Δ : the local density of states lacks coherence peaks, the states in the continuum above the gap are unconventional, and the boundary entropy is a nonmonotonic function of temperature. The persistent subgap excitations are characteristic of the non-Fermi-liquid fixed point of the model, and thus depend on the impurity spin and the number of screening channels.
Energy Technology Data Exchange (ETDEWEB)
Joyce, J.J.; Arko, A.J.; Lawrence, J.; Canfield, P.C.; Fisk, Z.; Bartlett, R.J.; Thompson, J.D.; Smith, J.L. (Los Alamos National Lab., NM (United States))
1992-04-03
A series of cerium heavy fermion compounds have been studied in order to check for the systematics with T{sub K} and the temperature dependence of the Kondo resonance predicted by the Kondo model. Neither the systematics nor the temperature dependence is found, the latter primarily determined from a detailed study in CeSi{sub 2}. The qualitative shapes of the features at E{sub F} remain nearly constant irrespectively of T{sub K}, while all the temperature dependence can be explained as resulting from phonon broadening of core-like states as well as Fermi function broadening. In addition, if the d electron contribution to the spectra is subtracted, one obtains a symmetric, lorentzian line shape for the ''main'' 4f peak. (orig.).
ARPES in strongly correlated 4f and 5f systems: Comparison to the Periodic Anderson Model
Energy Technology Data Exchange (ETDEWEB)
Arko, A.J.; Joyce, J.J.; Cox, L.E. [and others
1997-12-01
The electronic structure of both Ce and U heavy fermions appears to consist of extremely narrow, nearly temperature independent bands (i.e., no spectral weight loss or transfer with temperature). A small dispersion of the f-bands above the Kondo temperature is easily measurable so that a Kondo resonance, as defined by NCA, is not evident. Preliminary results, however, indicate that the Periodic Anderson Model captures some of the essential physics. Angle-integrated resonant photoemission results on {delta}-Pu indicate a narrow 5f feature at E{sub F}, similar in width to f-states in Ce and U compounds, but differing in that cross-section behavior of the near-E{sub F} feature suggests substantial 6D admixture.
Theoretical models for a complex magnetic system: The case of CeNi{sub 1-x}Cu{sub x}
Energy Technology Data Exchange (ETDEWEB)
Marcano, N [Departamento de Fisica de la Materia Condensada, ICMA, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain); Magalhaes, S G [Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul 97105-900 (Brazil); Coqblin, B [L.P.S., CNRS UMR 8502, Universite Paris-Sud, 91405-Orsay (France); Sal, J C Gomez; Espeso, J I [Departamento CITIMAC, Universidad de Cantabria, 39005 Santander (Spain); Zimmer, F M [Departamento de Fisica, Universidade do Estado de Santa Catarina, 89223-100, Joinville, SC (Brazil); Iglesias, J R, E-mail: marcanon@unizar.e [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre (Brazil)
2010-01-15
Special features in the phase diagram and in the low temperature hysteresis cycles have been experimentally observed in the complex CeNi{sub 1-x}Cu{sub x} system. We present also here theoretical approaches, based firstly on a Kondo lattice model which describes the coexistence between a spin glass or a cluster glass state, the Kondo regime and the ferromagnetic ordering. The second model is a Monte Carlo simulation on a 3D lattice with clusters and random anisotropy and reproduces the existence of steps in the magnetizations cycles at very low temperatures. The theoretical results are compared with the experimental data of the very complex magnetic behaviour of CeNi{sub 1-x}Cu{sub x} alloys. In particular, we can account for the existence of a cluster spin glass state which changes continuously into an inhomogeneous ferromagnetic phase at very low temperatures.
ARPES in strongly correlated 4f and 5f systems: comparison to the periodic Anderson model (PAM)
Energy Technology Data Exchange (ETDEWEB)
Arko, A.J.; Joyce, J.J.; Cox, L.E.; Morales, L.; Sarrao, J.; Smith, J.L. [Los Alamos National Lab., NM (United States); Fisk, Z. [NHMFL, Florida State University, Tallahassee, FL 32306 (United States); Menovsky, A. [Natuurkundig Laboratorium, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands); Tahvildar-Zadeh, A.; Jarrell, M. [University of Cincinnati, Cincinnati, OH 45221-0011 (United States)
1998-06-12
The electronic structure of both Ce and U heavy fermions appears to consist of extremely narrow, nearly temperature-independent bands (i.e., no spectral weight loss or transfer with temperature). A small dispersion of the f-bands above the Kondo temperature is easily measurable so that a Kondo resonance, as defined by NCA, is not evident. Preliminary results, however, indicate that the periodic Anderson model (PAM) captures some of the essential physics. Angle-integrated resonant photoemission results on {delta}-Pu indicate a narrow 5f feature at E{sub F}, similar in width to f-states in Ce and U compounds, but differing in that PES cross-section as a function of h{nu} suggests substantial 6d admixture. (orig.) 36 refs.
Ferromagnetism in Electronic Models for Manganites
Riera, Jose; Hallberg, Karen; Dagotto, Elbio
1996-01-01
Ground state properties of the Kondo model for manganese oxides in one dimension are studied using numerical techniques. The large Hund coupling ($J_{H}$) limit is specially analyzed. A robust region of fully saturated ferromagnetism (FM) is identified at all densities. For open boundary conditions it is shown exactly that the ground state is FM at $J_{H} = \\infty$. Hole-spin phase separation competing with FM was also observed when a large exchange $J$ between the $Mn^{3+}$ ions is used. As ...
2011-01-01
19 September 2011 - Japan Science and Technology Agency President K. Kitazawa visiting the LHC superconducting magnet test hall with engineer M. Bajko; the ATLAS visitor centre with Collaboration Former Spokesperson P. Jenni and Senior Scientist T. Kondo; signing the guest book with Adviser R.Voss and Head of International Relations F. Pauss.
Jean-Claude Gadmer
2013-01-01
30 August 2013 - Senior Vice Minister for Foreign Affairs in Japan M. Matsuyama signing the guest book with CERN Director-General; visit the ATLAS experimental cavern with ATLAS Spokesperson D. Charlton and visiting the LHC tunnel at Point 1 with former ATLAS Japan national contact physicist T. Kondo. R. Voss and K. Yoshida present throughout.
Maximilien Brice
2010-01-01
2nd September 2010 - Japanese Senior Vice-Minister of the Environment I. Tajima signing the guest book with Director-General R. Heuer and visiting the ATLAS control room with physicists T. Kondo and H. Fukuda, Members of the ATLAS Collaboration and KEK.
Raphaël Piguet
2011-01-01
31st August 2011 - Government of Japan R. Chubachi, Executive Member of the Council for Science and Technology Policy, Cabinet Office, Vice Chairman, Representative Corporate Executive Officer and Member of the Board, Sony Corporation, visiting the ATLAS experimental area with Former Collaboration Spokesperson P. Jenni and Senior physicist T. Kondo.
Ramos, E.; Silva-Valencia, J.; Franco, R.; Siqueira, E. C.; Figueira, M. S.
2015-11-01
We study the spin-current Seebeck effect through an immersed gate defined quantum dot, employing the U-finite atomic method for the single impurity Anderson model. Our description qualitatively confirms some of the results obtained by an earlier Hartree-Fock work, but as our calculation includes the Kondo effect, some new features will appear in the spin-current Seebeck effect S, which as a function of the gate voltage present an oscillatory shape. At intermediate temperatures, our results show a three zero structure and at low temperatures, our results are governed by the emergence of the Kondo peak in the transmittance, which defines the behavior of the shape of the S coefficient as a function of the parameters of the model. The oscillatory behavior obtained by the Hartree-Fock approximation reproduces the shape obtained by us in a non-interacting system (U=0). The S sign is sensitive to different polarization of the quantum dot, and as a consequence the device could be employed to experimentally detect the polarization states of the system. Our results also confirm that the large increase of S upon increasing U, obtained by the mean field approximation, is correct only for low temperatures. We also discuss the role of the Kondo peak in defining the behavior of the spin thermopower at low temperatures.
Directory of Open Access Journals (Sweden)
M. E. Foglio
2012-09-01
Full Text Available We consider the cumulant expansion of the periodic Anderson model (PAM in the case of a finite electronic correlation U, employing the hybridization as perturbation, and obtain a formal expression of the exact one-electron Green's function (GF. This expression contains effective cumulants that are as difficult to calculate as the original GF, and the atomic approach consists in substituting the effective cumulants by the ones that correspond to the atomic case, namely by taking a conduction band of zeroth width and local hybridization. In a previous work (T. Lobo, M. S. Figueira, and M. E. Foglio, Nanotechnology 21, 274007 (201010.1088/0957-4484/21/27/274007 we developed the atomic approach by considering only one variational parameter that is used to adjust the correct height of the Kondo peak by imposing the satisfaction of the Friedel sum rule. To obtain the correct width of the Kondo peak in the present work, we consider an additional variational parameter that guarantees this quantity. The two constraints now imposed on the formalism are the satisfaction of the Friedel sum rule and the correct Kondo temperature. In the first part of the work, we present a general derivation of the method for the single impurity Anderson model (SIAM, and we calculate several density of states representative of the Kondo regime for finite correlation U, including the symmetrical case. In the second part, we apply the method to study the electronic transport through a quantum dot (QD embedded in a quantum wire (QW, which is realized experimentally by a single electron transistor (SET. We calculate the conductance of the SET and obtain a good agreement with available experimental and theoretical results.
Low temperature specific heat of the Kondo-semimetal CeNiSn in zero and applied magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Brueckl, A.; Neumaier, K.; Einzel, D.; Andres, K. [Walther-Meissner-Inst., Garching (Germany); Flaschin, S.; Kalvius, G.M. [Technical Univ. Munich, Garching (Germany). Physics Dept.; Nakamoto, G. [Japan Advanced Inst. of Science and Technology, Ishikawa (Japan); Takabatake, T. [Hiroshima Univ., Higashi-Hiroshima (Japan). Dept. of Quantum Matter
1999-06-01
The specific heat of several CeNiSn single crystals of various purity has been measured in the temperature range from 25 mK to 5 K and in magnetic fields from zero to 7 Tesla. At very low temperatures (below {approximately} 200 mK) the specific heat is found to vary linearly with temperature (C = {gamma}T), the coefficient {gamma} decreasing with increasing purity. Above 200 mK, the specific heat is well described as the sum of a linear and a quadratic term. An applied magnetic field affects mostly the linear term, which first slightly decreases, then strongly increases with field. In magnetic fields, a nuclear hyperfine specific heat contribution is superimposed, which is due mostly to the bare Zeeman-splitting of the {sup 115}Sn, {sup 117}Sn, {sup 119}Sn nuclei (all with spin I = 1/2 and with abundances of 0.35, 7.61, and 8.58% respectively) in the externally applied field. The results on the specific heat at very low temperatures in applied fields fit into the model of an enhanced (heavy-fermion type) density of states which is modified by coherent antiferromagnetic fluctuations into a V-shaped density of states at the Fermi energy.
De Franceschi, Silvano; van der Wiel, Wilfred Gerard; Sattler, Klaus D.
2010-01-01
The research community has long understood the value of formal specifications in building robust software. However, the adoption of any specifications beyond run-time assertions in industrial software has been limited. All of this has changed at Microsoft in the last few years. Today, formal specifi
De Koninck, Jean-Marie; Kátai, Imre
2013-01-01
Given an integer $q\\ge 2$, a $q$-normal number is an irrational number $\\eta$ such that any preassigned sequence of $k$ digits occurs in the $q$-ary expansion of $\\eta$ at the expected frequency, namely $1/q^k$. Given an integer $q\\ge 3$, we consider the sequence of primes reduced modulo $q$ and examine various possibilities of constructing normal numbers using this sequence. We create a sequence of independent random variables that mimics the sequence of primes and then show that for almost ...
De Franceschi, Silvano; Wiel, van der Wilfred G.; Sattler, Klaus D.
2010-01-01
The research community has long understood the value of formal specifications in building robust software. However, the adoption of any specifications beyond run-time assertions in industrial software has been limited. All of this has changed at Microsoft in the last few years. Today, formal specifi
Van Hattem, B.; Corfdir, P.; Brereton, P.; Pearce, P; Graham, A. M.; Stanley, M.J.; Hugues, M.; Hopkinson, M.; Phillips, R. T.
2013-01-01
We present a magnetophotoluminescence study on neutral and charged excitons confined to InAs/GaAs quantum dots. Our investigation relies on a confocal microscope that allows arbitrary tuning of the angle between the applied magnetic field and the sample growth axis. First, from experiments on neutral excitons and trions, we extract the in-plane and on-axis components of the Land? tensor for electrons and holes in the s shell. Then, based on the doubly negatively charged exciton magnetophotolu...
Baruselli, Pier Paolo; Vojta, Matthias
2015-10-09
SmB_{6} was recently proposed to be both a strong topological insulator and a topological crystalline insulator. For this and related cubic topological Kondo insulators, we prove the existence of four different topological phases, distinguished by the sign of mirror Chern numbers. We characterize these phases in terms of simple observables, and we provide concrete tight-binding models for each phase. Based on theoretical and experimental results for SmB_{6} we conclude that it realizes the phase with C_{k_{z}=0}^{+}=+2, C_{k_{z}=π}^{+}=+1, C_{k_{x}=k_{y}}^{+}=-1, and we propose a corresponding minimal model.
Wysokiński, Marcin M.; Kaczmarczyk, Jan; Spałek, Jozef
2015-09-01
The recently proposed diagrammatic expansion (DE) technique for the full Gutzwiller wave function (GWF) is applied to the Anderson lattice model. This approach allows for a systematic evaluation of the expectation values with full Gutzwiller wave function in finite-dimensional systems. It introduces results extending in an essential manner those obtained by means of the standard Gutzwiller approximation (GA), which is variationally exact only in infinite dimensions. Within the DE-GWF approach we discuss the principal paramagnetic properties and their relevance to heavy-fermion systems. We demonstrate the formation of an effective, narrow f band originating from atomic f -electron states and subsequently interpret this behavior as a direct itineracy of f electrons; it represents a combined effect of both the hybridization and the correlations induced by the Coulomb repulsive interaction. Such a feature is absent on the level of GA, which is equivalent to the zeroth order of our expansion. Formation of the hybridization- and electron-concentration-dependent narrow f band rationalizes the common assumption of such dispersion of f levels in the phenomenological modeling of the band structure of CeCoIn5. Moreover, it is shown that the emerging f -electron direct itineracy leads in a natural manner to three physically distinct regimes within a single model that are frequently discussed for 4 f - or 5 f -electron compounds as separate model situations. We identify these regimes as (i) the mixed-valence regime, (ii) Kondo/almost-Kondo insulating regime, and (iii) the Kondo-lattice limit when the f -electron occupancy is very close to the f -state half filling, →1 . The nonstandard features of the emerging correlated quantum liquid state are stressed.
Multiple magnetic impurities on surfaces: Scattering and quasiparticle interference
Mitchell, A.
2015-01-01
We study systems of multiple interacting quantum impurities deposited on a metallic surface in a three-dimensional host. For the real-space two-impurity problem, using numerical renormalization group calculations, a rich range of behavior is shown to arise due to the interplay between Kondo physics
Model for the orientation, magnetic field, and temperature dependence of the specific heat of CeCu6
Edelstein, A. S.
1988-03-01
The results of a model calculation of the orientation, magnetic field, and temperature dependence of the specific heat C of CeCu6 are found to be in good agreement with the single-crystal data of Amato et al. The model incorporates both the Kondo and crystal-field effects. It is suggested that the low-temperature Wilson's ratio C/Tχ, where χ is the susceptibility, may not change in an applied field H and that both C/T and χ at low temperatures as a function of H may be proportional to the many-body density of states at the energy μH.
Heat transfer in the spin-boson model: a comparative study in the incoherent tunneling regime.
Segal, Dvira
2014-07-01
We study the transfer of heat in the nonequilibrium spin-boson model with an Ohmic dissipation. In the nonadiabatic limit we derive a formula for the thermal conductance based on a rate equation formalism at the level of the noninteracting blip approximation, valid for temperatures T>T(K), with T(K) as the Kondo temperature. We evaluate this expression analytically assuming either weak or strong couplings, and demonstrate that our results agree with exact relations. Far-from-equilibrium situations are further examined, showing a close correspondence to the linear response limit.
Sposetti, C. N.; Manuel, L. O.; Roura-Bas, P.
2016-08-01
The Anderson impurity model is studied by means of the self-consistent hybridization expansions in its noncrossing (NCA) and one-crossing (OCA) approximations. We have found that for the one-channel spin-1 /2 particle-hole symmetric Anderson model, the NCA results are qualitatively wrong for any temperature, even when the approximation gives the exact threshold exponents of the ionic states. Actually, the NCA solution describes an overscreened Kondo effect, because it is the same as for the two-channel infinite-U single-level Anderson model. We explicitly show that the NCA is unable to distinguish between these two very different physical systems, independently of temperature. Using the impurity entropy as an example, we show that the low-temperature values of the NCA entropy for the symmetric case yield the limit Simp(T =0 ) →ln√{2 }, which corresponds to the zero temperature entropy of the overscreened Kondo model. Similar pathologies are predicted for any other thermodynamic property. On the other hand, we have found that the OCA approach lifts the artificial mapping between the models and restores correct properties of the ground state, for instance, a vanishing entropy at low enough temperatures Simp(T =0 ) →0 . Our results indicate that the very well known NCA should be used with caution close to the symmetric point of the Anderson model.
Non-equilibrium STLS approach to transport properties of single impurity Anderson model
Rezai, Raheleh; Ebrahimi, Farshad
2014-04-01
In this work, using the non-equilibrium Keldysh formalism, we study the effects of the electron-electron interaction and the electron-spin correlation on the non-equilibrium Kondo effect and the transport properties of the symmetric single impurity Anderson model (SIAM) at zero temperature by generalizing the self-consistent method of Singwi, Tosi, Land, and Sjolander (STLS) for a single-band tight-binding model with Hubbard type interaction to out of equilibrium steady-states. We at first determine in a self-consistent manner the non-equilibrium spin correlation function, the effective Hubbard interaction, and the double-occupancy at the impurity site. Then, using the non-equilibrium STLS spin polarization function in the non-equilibrium formalism of the iterative perturbation theory (IPT) of Yosida and Yamada, and Horvatic and Zlatic, we compute the spectral density, the current-voltage characteristics and the differential conductance as functions of the applied bias and the strength of on-site Hubbard interaction. We compare our spectral densities at zero bias with the results of numerical renormalization group (NRG) and depict the effects of the electron-electron interaction and electron-spin correlation at the impurity site on the aforementioned properties by comparing our numerical result with the order U2 IPT. Finally, we show that the obtained numerical results on the differential conductance have a quadratic universal scaling behavior and the resulting Kondo temperature shows an exponential behavior.
Nunes de Oliveira, Luiz
The renormalization group techniques developed by Wilson for the Kondo problem are applied to three related problems: the absorption of x-rays by metals, the absorption of x-rays by impurities in metals, and the specific heat of dilute magnetic alloys. In the first problem considered, the x-ray absorption problem, the metal is represented by a half-filled conduction band and a deep level representing a core state. The absorption of an x-ray photon excites an electron from this core level to the conduction band creating a core hole whose positive charge interacts with the conduction electrons. The absorption spectrum is, for the first time, calculated in the energy range 10('-10)D ) (omega)(,T)) expression to seven decimal places; the prefactor (mu)(,o) is calculated for the first time. For (omega)-(omega)(,T) (TURNEQ) D, remarkably small deviations (e.g., deviations of 15% for (omega)-(omega)(,T) = .3D) from the Nozieres-De Dominicis power law are found. As a second application of the renormalization group techniques, the x-ray absorption spectrum for the resonant level model for impurities in metals is calculated. In this model, the metal is represented by a half-filled conduction band and the impurity by two levels: a core level from which an electron is excited to the conduction band by the absorption of an x-ray photon, and a resonant level, coupled to the conduction electrons, whose energy is lowered by the interaction with the core hole created by the absorption of the x-ray. In the x-ray absorption process, the resonant level is thus shifted to lower energy. The absorption spectrum approaches a power law in the energy range (omega)-(omega)(,T) >> (GAMMA), where (GAMMA) is the width of the resonant level, and a different power law in the range (omega)-(omega)(,T) body effect found in the spectrum of certain systems having a discrete level coupled to a continuum of energies) is elaborated. The problem of the specific heat of dilute magnetic alloys is attacked
Mott-Hubbard transition in the mass-imbalanced Hubbard model
Philipp, Marie-Therese; Wallerberger, Markus; Gunacker, Patrik; Held, Karsten
2017-06-01
The mass-imbalanced Hubbard model represents a continuous evolution from the Hubbard to the Falicov-Kimball model. We employ dynamical mean field theory and study the paramagnetic metal-insulator transition, which has a very different nature for the two limiting models. Our results indicate that the metal-insulator transition rather resembles that of the Hubbard model as soon as a tiny hopping between the more localized fermions is switched on. At low temperatures we observe a first-order metal-insulator transition and a three peak structure. The width of the central peak is the same for the more and less mobile fermions when approaching the phase transition, which agrees with our expectation of a common Kondo temperature and phase transition for the two species.
Nonequilibrium Floquet States in Topological Kondo Insulators
2016-02-04
scholarships or fellowships for further studies in science, mathematics, engineering or technology fields: Student Metrics This section only applies to...REPORT TYPE 17. LIMITATION OF ABSTRACT 15. NUMBER OF PAGES 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 5c. PROGRAM ELEMENT NUMBER 5b...RETURN YOUR FORM TO THE ABOVE ADDRESS. University of Maryland - College Park Research Administration 3112 Lee Building College Park, MD 20742 -5141 31
Kormány, Róbert; Molnár, Imre; Fekete, Jenő
2017-02-20
An older method for terazosin was reworked in order to reduce the analysis time from 90min (2×45min) to below 5min. The method in European Pharmacopoeia (Ph.Eur.) investigates the specified impurities separately. The reason of the different methods is that the retention of two impurities is not adequate in reversed phase, not even with 100% water. Therefore ion-pair-chromatography has to be applied and since that two impurities absorb at low UV-wavelength they had to be analyzed by different method than the other specified impurities. In our new method we could improve the retention with pH elevation using a new type of stationary phases available for high pH applications. Also a detection wavelength could be selected that is appropriate for the detection and quantification of all impurities. The method development is the bottleneck of liquid chromatography even today, when more and more fast chromatographic systems are used. Expert knowledge with intelligent programs is available to reduce the time of method development and offer extra information about the robustness of the separation. Design of Experiments (DoE) for simultaneous optimization of gradient time (tG), temperature (T) and ternary eluent composition (tC) requires 12 experiments. A good alternative way to identify a certain peak in different chromatograms is the molecular mass of the compound, due to its high specificity. Liquid Chromatography-Mass Spectrometry (LC-MS) is now a routine technique and increasingly available in laboratories. In our experiment for the resolution- and retention modeling the DryLab4 method development software (Version 4.2) was used. In recent versions of the software the use of (m/z)-MS-data is possible along the UV-peak-area-tracking technology. The modelled and measured chromatograms showed excellent correlations. The average retention time deviations were ca. 0.5s and there was no difference between the predicted and measured Rs,crit -values.
Mott transitions in the periodic Anderson model
Logan, David E.; Galpin, Martin R.; Mannouch, Jonathan
2016-11-01
The periodic Anderson model (PAM) is studied within the framework of dynamical mean-field theory, with particular emphasis on the interaction-driven Mott transition it contains, and on resultant Mott insulators of both Mott-Hubbard and charge-transfer type. The form of the PAM phase diagram is first deduced on general grounds using two exact results, over the full range of model parameters and including metallic, Mott, Kondo and band insulator phases. The effective low-energy model which describes the PAM in the vicinity of a Mott transition is then shown to be a one-band Hubbard model, with effective hoppings that are not in general solely nearest neighbour, but decay exponentially with distance. This mapping is shown to have a range of implications for the physics of the problem, from phase boundaries to single-particle dynamics; all of which are confirmed and supplemented by NRG calculations. Finally we consider the locally degenerate, non-Fermi liquid Mott insulator, to describe which requires a two-self-energy description. This is shown to yield a number of exact results for the associated local moment, charge, and interaction-renormalised levels, together with a generalisation of Luttinger’s theorem to the Mott insulator.
Heisenberg necklace model in a magnetic field
Tsvelik, A. M.; Zaliznyak, I. A.
2016-08-01
We study the low-energy sector of the Heisenberg necklace model. Using the field-theory methods, we estimate how the coupling of the electronic spins with the paramagnetic Kondo spins affects the overall spin dynamics and evaluate its dependence on a magnetic field. We are motivated by the experimental realizations of the spin-1/2 Heisenberg chains in SrCuO2 and Sr2CuO3 cuprates, which remain one-dimensional Luttinger liquids down to temperatures much lower than the in-chain exchange coupling J . We consider the perturbation of the energy spectrum caused by the interaction γ with nuclear spins (I =3 /2 ) present on the same sites. We find that the resulting necklace model has a characteristic energy scale, Λ ˜J1 /3(γI ) 2 /3 , at which the coupling between (nuclear) spins of the necklace and the spins of the Heisenberg chain becomes strong. This energy scale is insensitive to a magnetic field B . For μBB >Λ we find two gapless bosonic modes that have different velocities, whose ratio at strong fields approaches a universal number, √{2 }+1 .
DEFF Research Database (Denmark)
Juel-Christiansen, Carsten
2005-01-01
Artiklen fremhæver den visuelle rotation - billeder, tegninger, modeller, værker - som det privilligerede medium i kommunikationen af ideer imellem skabende arkitekter......Artiklen fremhæver den visuelle rotation - billeder, tegninger, modeller, værker - som det privilligerede medium i kommunikationen af ideer imellem skabende arkitekter...
Spädtke, P
2013-01-01
Modeling of technical machines became a standard technique since computer became powerful enough to handle the amount of data relevant to the specific system. Simulation of an existing physical device requires the knowledge of all relevant quantities. Electric fields given by the surrounding boundary as well as magnetic fields caused by coils or permanent magnets have to be known. Internal sources for both fields are sometimes taken into account, such as space charge forces or the internal magnetic field of a moving bunch of charged particles. Used solver routines are briefly described and some bench-marking is shown to estimate necessary computing times for different problems. Different types of charged particle sources will be shown together with a suitable model to describe the physical model. Electron guns are covered as well as different ion sources (volume ion sources, laser ion sources, Penning ion sources, electron resonance ion sources, and H$^-$-sources) together with some remarks on beam transport.
African Journals Online (AJOL)
trie neural construction oí inoiviouo! unci communal identities in ... occurs, Including models based on Information processing,1 ... Applying the DSM descriptive approach to dissociation in the ... a personal, narrative path lhal connects personal lo ethnic ..... managed the problem in the context of the community, using a.
Modeling of hydrogen adsorption on activated carbon and SWNT nanotubes
Energy Technology Data Exchange (ETDEWEB)
Benard, P.; Chahine, R. [Quebec Univ., Hydrogen Research Institute, Trois Rivieres, PQ (Canada)
1999-12-01
The physical properties of hydrogen adsorption on activated carbon over a temperature range of 77 to 273 degrees K and pressure range 0 to 6 MPa are discussed. Results show that for the hydrogen/activated carbon system over a wide temperature and pressure range the Langmuir model is adequate, however, at low temperatures and high pressures a new approach is required, one that takes into account excess adsorption and adsorbate-adsorbate interactions. Under these conditions the Ono-Kondo approach is more appropriate. The adsorption properties of hydrogen on single-walled nanotubes (SWNT) were also studied using the Stan and Cole potential to account for the effect of the cylindrical geometry of the nanotubes on the adsorption properties. Comparison of the adsorption properties of activated carbon and SWNTs showed that the larger specific surfaces on activated carbon can lead to larger adsorption effects at higher pressures, even though the adsorption energy is smaller. SWNTs are effective only at low pressures. 5 refs., 3 figs.
Coherent Coupling of Double Quantum Dots Embedded in a Mesoscopic Ring
Institute of Scientific and Technical Information of China (English)
吴绍全; 王顺金
2003-01-01
We theoretically study the properties of the ground state of a series-coupled double quantum dot embedded in a mesoscopic ring in the Kondo regime by means of the two-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. It is shown that two dots can be coupled coherently,which is reflected in the appearance of parity effects and the complex current-phase relation in this system. This system might be a possible candidate for future device applications.
Giant Persistent Current in a Mesoscopic Ring with Parallel-Coupled Double Quantum Dots
Institute of Scientific and Technical Information of China (English)
CHEN Xiong-Wen; WU Shao-Quan; WANG Peng; SUN Wei-Li
2004-01-01
@@ We theoretically study the properties of the ground state of the parallel-coupled double quantum dots embedded in a mesoscopic ring in the Kondo regime by means of the two-impurity Anderson Hamiltonian. The Hamiltonian is solved by means of the slave-boson mean-field theory. Our results show that in this system, the persistent current depends sensitively on both the parity of this system and the size of the ring. Two dots can be coupled coherently, which is reflected in the giant current peak in the strong coupling regime. This system might be a candidate for future device applications.
Zhong, Yin; Liu, Yu; Luo, Hong-Gang
2017-10-01
The periodic Anderson model (PAM), where local electron orbitals interplay with itinerant electronic carriers, plays an essential role in our understanding of heavy fermion materials. Motivated by recent proposals for simulating the Kondo lattice model (KLM) in terms of alkaline-earth metal atoms, we take another step toward the simulation of PAM, which includes the crucial charge/valence fluctuation of local f-electrons beyond purely low-energy spin fluctuation in the KLM. To realize PAM, a transition induced by a suitable laser between the electronic excited and ground state of alkaline-earth metal atoms (1 S 0⇌3 P 0) is introduced. This leads to effective hybridization between local electrons and conduction electrons in PAM. Generally, the SU( N) version of PAM can be realized by our proposal, which gives a unique opportunity to detect large- N physics without complexity in realistic materials. In the present work, high-temperature physical features of standard [ SU(2)] PAM with harmonic trapping potential are analyzed by quantum Monte Carlo and dynamic mean-field theory, where the Mott/orbital-selective Mott state was found to coexist with metallic states. Indications for near-future experiments are provided. We expect our theoretical proposal and (hopefully) forthcoming experiments will deepen our understanding of heavy fermion systems. At the same time, we hope these will trigger further studies on related Mott physics, quantum criticality, and non-trivial topology in both the inhomogeneous and nonequilibrium realms.
Some transport properties of the two-channel Kondo impurity
Energy Technology Data Exchange (ETDEWEB)
Schlottmann, P. [Department of Physics, Florida State University, Tallahassee, Florida 32306 (United States); Zvyagin, A.A. [B. I. Verkin Institute for Low Temperature Physics and Engineering of the Ukrainian Akademy of Sciences, 47 Lenin Ave., 310164, Kharkov (Ukraine)
1997-04-01
We consider conduction electrons moving along a ring in two different orbital channels interacting with a spin-1/2 impurity via isotropic spin exchange. The exchange is the same for both channels, but a crystalline field breaks the orbital symmetry. The tower structure of the finite size corrections to the ground state energy is derived from the Bethe ansatz equations and used to discuss the Aharonov{endash}Bohm{endash}Casher interference pattern in the persistent current and the magnetoresistivity. {copyright} {ital 1997 American Institute of Physics.}
Coqblin-Schrieffer model for an ultracold gas of ytterbium atoms with metastable state
Kuzmenko, Igor; Kuzmenko, Tetyana; Avishai, Yshai; Jo, Gyu-Boong
2016-03-01
Motivated by the impressive recent advance in manipulating cold ytterbium atoms, we explore and substantiate the feasibility of realizing the Coqblin-Schrieffer model in a gas of cold fermionic 173Yb atoms. Making use of different AC polarizabillity of the electronic ground state (electronic configuration S10) and the long lived metastable state (electronic configuration P30), it is substantiated that the latter can be localized and serve as a magnetic impurity while the former remains itinerant. The exchange mechanism between the itinerant S10 and the localized P30 atoms is analyzed and shown to be antiferromagnetic. The ensuing SU(6) symmetric Coqblin-Schrieffer Hamiltonian is constructed, and, using the calculated exchange constant J , perturbative renormalization group (RG) analysis yields the Kondo temperature TK that is experimentally accessible. A number of thermodynamic measurable observables are calculated in the weak-coupling regime T >TK (using perturbative RG analysis) and in the strong-coupling regime T
Energy Technology Data Exchange (ETDEWEB)
Joyce, J.J.; Arko, A.J; Canfield, P.C.; Fisk, Z.; Barlett, R.J.; Smith, J.L.; Thompson, J.D. (Los Alamos National Lab., NM (United States)); Lawrence, J. (California Univ., Irvine, CA (United States))
1991-01-01
We have re-examined the temperature-dependence of the valence band 4f features in Ce-based heavy fermions. We measured the phonon broadening of the Si-2p core levels in CeSi{sub 2} by determining the increase of the full width at half-maximum (FWHM) as a function of temperature. We discovered that all the temperature dependence is exactly accounted for, and there is none left over to attribute to any Kondo effects. We concluded that the feature of E{sub F} in Ce-based heavy fermions cannot be a Kondo resonance. 16 refs., 3 figs.
Logan, David E.; Galpin, Martin R.
2016-01-01
The paramagnetic phase of the one-band Hubbard model is studied at zero-temperature, within the framework of dynamical mean-field theory, and for general particle-hole asymmetry where a doping-induced Mott transition occurs. Our primary focus is the Mott insulator (MI) phase, and our main aim to establish what can be shown exactly about it. To handle the locally doubly-degenerate MI requires two distinct self-energies, which reflect the broken symmetry nature of the phase and together determine the standard single self-energy. Exact results are obtained for the local charge, local magnetic moment and associated spin susceptibilities, the interaction-renormalised levels, and the low-energy behaviour of the self-energy in the MI phase. The metallic phase is also considered briefly, and shown to acquire an emergent particle-hole symmetry as the Mott transition is approached. Throughout the metal, Luttinger’s theorem is reflected in the vanishing of the Luttinger integral; for the generic MI by contrast this is shown to be non-vanishing, but again to have a universal magnitude. Numerical results are also obtained using NRG, for the metal/MI phase boundary, the scaling behaviour of the charge as the Mott transition is aproached from the metal, and associated universal scaling of single-particle dynamics as the low-energy Kondo scale vanishes.
First results from the International Urban Energy Balance Model Comparison: Model Complexity
Blackett, M.; Grimmond, S.; Best, M.
2009-04-01
offline to ensure no feedback to larger scale conditions within the modelling domain. Initially, participants were issued with just forcing data from an unknown urban site (termed "Alpha"); in subsequent stages, further details of the site were provided. Results from each stage, for each participating model, were then compared using a variety of statistical and graphical techniques. * The EGU2009-5713 Team: C.S.B. Grimmond1, M. Blackett1, M. Best2 and J. Barlow3and J.-J. Baik4, S. Belcher3, S. Bohnenstengel3, I. Calmet5, F. Chen6, A. Dandou7, K. Fortuniak8, M. Gouvea1, R. Hamdi9, M. Hendry2, H. Kondo10, S. Krayenhoff11, S. H. Lee4, T. Loridan1, A. Martilli12, S. Miao13, K. Oleson6, G. Pigeon14, A. Porson2,3, F. Salamanca12, L. Shashua-Bar15, G.-J. Steeneveld16, M. Tombrou7, J. Voogt17, N. Zhang18. 1King's College London, UK, 2UK Met Office, UK, 3University of Reading, UK, 4Seoul National University, Korea, 5Ecole Centrale de Nantes, France, 6National Center for Atmospheric Research, USA, 7University of Athens, Greece, 8University of Ł ódź , Poland, 9Royal Meteorological Institute, Belgium, 10National Institute of Advanced Industrial Science and Technology, Japan, 11University of British Columbia, Canada, 12CIEMAT, Spain, 13IUM, CMA, China, 14Meteo France, France, 15Ben Gurion University, Israel, 16Wageningen University, Netherlands, 17University of Western Ontario, Canada, 18Nanjing University, China.
Entanglement routers using macroscopic singlets.
Bayat, Abolfazl; Bose, Sougato; Sodano, Pasquale
2010-10-29
We propose a mechanism where high entanglement between very distant boundary spins is generated by suddenly connecting two long Kondo spin chains. We show that this procedure provides an efficient way to route entanglement between multiple distant sites. We observe that the key features of the entanglement dynamics of the composite spin chain are well described by a simple model of two singlets, each formed by two spins. The proposed routing mechanism is a footprint of the emergence of a Kondo cloud in a Kondo system and can be engineered and observed in varied physical settings.
Phase diagram of the half-filled ionic Hubbard model
Bag, Soumen; Garg, Arti; Krishnamurthy, H. R.
2015-06-01
We study the phase diagram of the ionic Hubbard model (IHM) at half filling on a Bethe lattice of infinite connectivity using dynamical mean-field theory (DMFT), with two impurity solvers, namely, iterated perturbation theory (IPT) and continuous time quantum Monte Carlo (CTQMC). The physics of the IHM is governed by the competition between the staggered ionic potential Δ and the on-site Hubbard U . We find that for a finite Δ and at zero temperature, long-range antiferromagnetic (AFM) order sets in beyond a threshold U =UA F via a first-order phase transition. For U smaller than UA F the system is a correlated band insulator. Both methods show a clear evidence for a quantum transition to a half-metal (HM) phase just after the AFM order is turned on, followed by the formation of an AFM insulator on further increasing U . We show that the results obtained within both methods have good qualitative and quantitative consistency in the intermediate-to-strong-coupling regime at zero temperature as well as at finite temperature. On increasing the temperature, the AFM order is lost via a first-order phase transition at a transition temperature TA F(U ,Δ ) [or, equivalently, on decreasing U below UA F(T ,Δ ) ], within both methods, for weak to intermediate values of U /t . In the strongly correlated regime, where the effective low-energy Hamiltonian is the Heisenberg model, IPT is unable to capture the thermal (Neel) transition from the AFM phase to the paramagnetic phase, but the CTQMC does. At a finite temperature T , DMFT +CTQMC shows a second phase transition (not seen within DMFT +IPT ) on increasing U beyond UA F. At UN>UA F , when the Neel temperature TN for the effective Heisenberg model becomes lower than T , the AFM order is lost via a second-order transition. For U ≫Δ , TN˜t2/U (1 -x2) , where x =2 Δ /U and thus TN increases with increase in Δ /U . In the three-dimensional parameter space of (U /t ,T /t ,andΔ /t ) , as T increases, the surface of first
Energy Technology Data Exchange (ETDEWEB)
Joyce, J.J.; Arko, A.J. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))
1993-02-22
The authors continue to demonstrate the prediction by the Kondo model is inconsistent with their previous photoelectron spectroscopy data in cerium heavy[minus]fermion compounds, in response to the criticizers. (AIP)
Many-Body Quantum Electrodynamics Networks: Non-Equilibrium Condensed Matter Physics with Light
Hur, Karyn Le; Henriet, Loïc; Petrescu, Alexandru; Plekhanov, Kirill; Roux, Guillaume; Schiró, Marco
2015-01-01
We review recent developments concerning non-equilibrium quantum dynamics and many-body physics with light, in superconducting circuits and Josephson analogues. We start with quantum impurity models summarizing the effect of dissipation and of driving the system. We mention theoretical and experimental efforts to characterize these non-equilibrium quantum systems. We show how Josephson junction systems can implement the equivalent of the Kondo effect with microwave photons. The Kondo effect i...
Matrix product state calculations for one-dimensional quantum chains and quantum impurity models
Energy Technology Data Exchange (ETDEWEB)
Muender, Wolfgang
2011-09-28
involving a Kondo exciton and population switching in quantum dots. It turns out that both phenomena rely on the various manifestations of Anderson orthogonality (AO), which describes the fact that the response of the Fermi sea to a quantum quench (i.e. an abrupt change of some property of the impurity or quantum dot) is a change of the scattering phase shifts of all the single-particle wave functions, therefore drastically changing the system. In this context, we demonstrate that NRG, a highly accurate method for quantum impurity models, allows for the calculation of all static and dynamic quantities related to AO and present an extensive NRG study for population switching in quantum dots. (orig.)
Freeman, Thomas J.
This paper discusses six different models of organizational structure and leadership, including the scalar chain or pyramid model, the continuum model, the grid model, the linking pin model, the contingency model, and the circle or democratic model. Each model is examined in a separate section that describes the model and its development, lists…
Model Transformations? Transformation Models!
Bézivin, J.; Büttner, F.; Gogolla, M.; Jouault, F.; Kurtev, I.; Lindow, A.
2006-01-01
Much of the current work on model transformations seems essentially operational and executable in nature. Executable descriptions are necessary from the point of view of implementation. But from a conceptual point of view, transformations can also be viewed as descriptive models by stating only the
Simonse, W.L.
2014-01-01
Business model design does not always produce a “design” or “model” as the expected result. However, when designers are involved, a visual model or artifact is produced. To assist strategic managers in thinking about how they can act, the designers’ challenge is to combine both strategy and design n
Spin gap and antiferromagnetic correlations in the kondo insulator CeNiSn
DEFF Research Database (Denmark)
Mason, T.E.; Aeppli, G.; Ramirez, A.P.
1992-01-01
Neutron scattering measurements show that the crossover (at T less than or similar to 10 K) from metallic heavy-fermion to semiconducting behavior coincides with the formation of a gap in the magnetic excitation spectrum of CeNiSn. In contrast to the simple band picture of an insulator, the gap...
Spin-orbit interaction and asymmetry effects on Kondo ridges at finite magnetic field
DEFF Research Database (Denmark)
Grap, Stephan; Andergassen, Sabine; Paaske, Jens;
2011-01-01
We study electron transport through a serial double quantum dot with Rashba spin-orbit interaction (SOI) and Zeeman field of amplitude B in the presence of local Coulomb repulsion. The linear conductance as a function of a gate voltage Vg equally shifting the levels on both dots shows two B=0 Kon...
TQUID Magnetometer and Artificial Neural Circuitry Based on a Topological Kondo Insulator
2016-05-01
small samples at mK temperatures. To ensure thermal anchoring of the small samples, experiments will be carried out in a liquid Helium cell installed in...our dilution fridge with samples immersed in liquid and wires connected to Ag sinters immersed in liquid too. Such a configuration has been found...capacitance bank was added to the balance side of the circuit instead of a single capacitor. A range of balance capacitance can be chosen by connecting
Non-equilibrium Transport and Relaxation in Diffusive Nanowires with Kondo Impurities
DEFF Research Database (Denmark)
Kroha, Johann; Rosch, Achim; Paaske, Jens
2003-01-01
of the quasiparticle energy E approximately obeys the scaling property, f(E,V) = f(E/V), if the transport voltage V exceeds a certain crossover scale V^*. This scaling indicates anomalous inelastic relaxation processes to be present. It is demonstrated that the latter can be induced by quantum impurities...
Tetsuo Kondo tõi Kadrioru parki uue tasandi / Liina Luhats
Luhats, Liina
2011-01-01
Linnainstallatsioonide festivali LIFT11 viimane teos, jaapani arhitekti installatsioon "Rada metsas" on avatud 24.09.-22.10.2011. Autor räägib, millest ta kohaspetsiifilist teost projekteerides lähtus
A chemically driven quantum phase transition in a two-molecule Kondo system
Esat, Taner; Lechtenberg, Benedikt; Deilmann, Thorsten; Wagner, Christian; Krüger, Peter; Temirov, Ruslan; Rohlfing, Michael; Anders, Frithjof B.; Tautz, F. Stefan
2016-09-01
The magnetic properties of nanostructures that consist of a small number of atoms or molecules are typically determined by magnetic exchange interactions. Here, we show that non-magnetic, chemical interactions can have a similarly decisive effect if spin-moment-carrying orbitals extend in space and therefore allow the direct coupling of magnetic properties to wavefunction overlap and the formation of bonding and antibonding orbitals. We demonstrate this for a dimer of metal-molecule complexes on the Au(111) surface. A changing wavefunction overlap between the two monomers drives the surface-adsorbed dimer through a quantum phase transition from an underscreened triplet to a singlet ground state, with one configuration being located extremely close to a quantum critical point.
On the interplay between heavy-fermion and soft crystal field excitations in Kondo lattices
Energy Technology Data Exchange (ETDEWEB)
Kagan, Yu.; Kikoin, K.A.; Mishchenko, A.S. [Rossijskij Nauchnyj Tsentr ``Kurchatovskij Inst.``, Moscow (Russian Federation)
1997-06-13
On the grounds of the microscopic theory of heavy-fermion spin-liquids a novel description of low-energy excitation spectra in CeNiSn and related compounds is offered. The anomalous properties of orthorhombic CeNiSn and related materials are explained by the interplay between the fermi-type spinon excitations with the energy scale T{sup *}{approx}T{sub K} and the one-site crystal field excitations with the energy {Delta}{sub CF}
On the nature of the pseudogap in the low-energy spectrum of noncubic Kondo insulators
Energy Technology Data Exchange (ETDEWEB)
Kagan, Y. (Kurchatov Institute, Kurchatov Sq., 123182 Moscow (Russian Federation)); Kikoin, K.A. (Kurchatov Institute, Kurchatov Sq., 123182 Moscow (Russian Federation)); Prokof' ev, N.V. (University of British Columbia, 6224 Agricultural Rd., Vancouver B.C., V6T 1Z1 (Canada))
1994-04-01
It is shown that the soft crystal electric field excitations in noncubic crystals interact strongly with the heavy fermions provided [Delta][sub CEF][<=]T[sub K]. This interaction results in forming the gap in the fermion spectrum which can be suppressed by an external magnetic field applied along the easy magnetization axis. ((orig.))
Non-Fermi liquid picture and superconductivity in heavy fermion systems
Energy Technology Data Exchange (ETDEWEB)
Sykora, Steffen [IFW Dresden, D- 01171 Dresden (Germany); Becker, Klaus W. [Department of Physics, TU Dresden, D-01069 Dresden (Germany)
2013-07-01
We study the S = 1/2 Kondo lattice model which is widely used to describe heavy fermion behavior. In conventional treatments of the model a hybridization of conduction and localized f electrons is introduced by decoupling the Kondo interaction. However, such an approximation has the detrimental effect that a breaking of a local gauge symmetry is imposed which implicates that the local f occupation n{sub i}{sup f} is no longer conserved. To avoid such an artifact, we treat the model in an alternative approach based on the Projective Renormalization Method (PRM). Thereby, within the conduction electron spectral function we identify the lattice Kondo resonance as an almost flat incoherent excitation near the Fermi surface which is composed of conduction electron creation operators combined with localized spin fluctuations. This leads to a new concept of the Kondo resonance without having to resort to a symmetry breaking and Fermi liquid theory. Based on this new picture we develop a microscopic theory for superconductivity in heavy fermion systems. Thereby we study the momentum-dependence of the superconducting order parameter for singlet as well as triplet pairing. We show that in particular the triplet pairing components are strongly affected by the incoherent excitations found to be responsible for the Kondo resonance.
Modelling SDL, Modelling Languages
Directory of Open Access Journals (Sweden)
Michael Piefel
2007-02-01
Full Text Available Today's software systems are too complex to implement them and model them using only one language. As a result, modern software engineering uses different languages for different levels of abstraction and different system aspects. Thus to handle an increasing number of related or integrated languages is the most challenging task in the development of tools. We use object oriented metamodelling to describe languages. Object orientation allows us to derive abstract reusable concept definitions (concept classes from existing languages. This language definition technique concentrates on semantic abstractions rather than syntactical peculiarities. We present a set of common concept classes that describe structure, behaviour, and data aspects of high-level modelling languages. Our models contain syntax modelling using the OMG MOF as well as static semantic constraints written in OMG OCL. We derive metamodels for subsets of SDL and UML from these common concepts, and we show for parts of these languages that they can be modelled and related to each other through the same abstract concepts.
DEFF Research Database (Denmark)
Poulsen, Helle
1996-01-01
This paper presents a functional modelling method called Actant Modelling rooted in linguistics and semiotics. Actant modelling can be integrated with Multilevel Flow Modelling (MFM) in order to give an interpretation of actants.......This paper presents a functional modelling method called Actant Modelling rooted in linguistics and semiotics. Actant modelling can be integrated with Multilevel Flow Modelling (MFM) in order to give an interpretation of actants....
Anaïs Schaeffer
2012-01-01
By analysing the production of mesons in the forward region of LHC proton-proton collisions, the LHCf collaboration has provided key information needed to calibrate extremely high-energy cosmic ray models. Average transverse momentum (pT) as a function of rapidity loss ∆y. Black dots represent LHCf data and the red diamonds represent SPS experiment UA7 results. The predictions of hadronic interaction models are shown by open boxes (sibyll 2.1), open circles (qgsjet II-03) and open triangles (epos 1.99). Among these models, epos 1.99 shows the best overall agreement with the LHCf data. LHCf is dedicated to the measurement of neutral particles emitted at extremely small angles in the very forward region of LHC collisions. Two imaging calorimeters – Arm1 and Arm2 – take data 140 m either side of the ATLAS interaction point. “The physics goal of this type of analysis is to provide data for calibrating the hadron interaction models – the well-known &...
DEFF Research Database (Denmark)
2011-01-01
This chapter deals with the practicalities of building, testing, deploying and maintaining models. It gives specific advice for each phase of the modelling cycle. To do this, a modelling framework is introduced which covers: problem and model definition; model conceptualization; model data...... requirements; model construction; model solution; model verification; model validation and finally model deployment and maintenance. Within the adopted methodology, each step is discussedthrough the consideration of key issues and questions relevant to the modelling activity. Practical advice, based on many...... years of experience is providing in directing the reader in their activities.Traps and pitfalls are discussed and strategies also given to improve model development towards “fit-for-purpose” models. The emphasis in this chapter is the adoption and exercise of a modelling methodology that has proven very...
Inelastic low-temperature transport through a quantum dot with a Mn ion
Energy Technology Data Exchange (ETDEWEB)
Niu Pengbin, E-mail: niupengbin123456@gmail.com [Institute of Theoretical Physics, Shanxi University, Taiyuan 030006 (China); Yao Hui; Li Zhijian [Institute of Theoretical Physics, Shanxi University, Taiyuan 030006 (China); Nie Yihang, E-mail: nieyh@sxu.edu.cn [Institute of Theoretical Physics, Shanxi University, Taiyuan 030006 (China); Institute of Solid State Physics, Shanxi Datong University, Datong 037009 (China)
2012-07-15
Using the nonequilibrium Hubbard operator Green's function technique, we study the inelastic low-temperature quantum transport through an artificial single-molecule magnet coupled to a single phonon mode. For a minimal model based on CdTe quantum dot doped with a single Mn{sup 2+} ion (S=5/2), the calculated results show that in the presence of hole-phonon coupling, in addition to main Kondo-like peaks associated with (2S+1) sublevels of spin pair states, satellite Kondo-like peaks originating from emitting phonons appear in the local density of states and differential conductance. Moreover, the number of these phonon-induced Kondo-like peaks depends on the parity of the local large spin, i.e., S=integer or half-integer. It is expected that the intrinsic properties of artificial single-molecule magnets can be obtained by detecting these transport characteristics. - Highlights: Black-Right-Pointing-Pointer We study inelastic transport through an ASMM in low temperature regime. Black-Right-Pointing-Pointer An analytical formula for the retarded Green's function is derived. Black-Right-Pointing-Pointer Phonon-induced Kondo-like peaks depending on the parity of local spin are found. Black-Right-Pointing-Pointer Single-particle and Kondo-like elastic (inelastic) tunneling processes are discussed.
Numerical renormalization group method for quantum impurity systems
Bulla, Ralf; Costi, Theo A.; Pruschke, Thomas
2008-04-01
In the early 1970s, Wilson developed the concept of a fully nonperturbative renormalization group transformation. When applied to the Kondo problem, this numerical renormalization group (NRG) method gave for the first time the full crossover from the high-temperature phase of a free spin to the low-temperature phase of a completely screened spin. The NRG method was later generalized to a variety of quantum impurity problems. The purpose of this review is to give a brief introduction to the NRG method, including some guidelines for calculating physical quantities, and to survey the development of the NRG method and its various applications over the last 30 years. These applications include variants of the original Kondo problem such as the non-Fermi-liquid behavior in the two-channel Kondo model, dissipative quantum systems such as the spin-boson model, and lattice systems in the framework of the dynamical mean-field theory.
Peak-dip crossover of the differential conductance in mesoscopic systems with quantum impurities
Energy Technology Data Exchange (ETDEWEB)
Aldea, A; Tolea, M; Dinu, I V [National Institute of Materials Physics, POBox MG7, Bucharest-Magurele (Romania)], E-mail: aldea@infim.ro
2009-02-01
We investigate the differential conductance dI/dV for the interacting T-shape model, using an approach based on the Keldysh formalism and the Lacroix solution for the equation of motion. A peak-dip crossover has been noticed by changing the hybridization between the two dots. For the same model, the combined interaction and interference processes give rise to the Fano-Kondo effect with an interesting crossing point of the isoterms below the Kondo temperature A tentative explanation of these effects is given in terms of the many-body spectral properties of the system.
Suhl, Harry
1973-01-01
Magnetism, Volume V: Magnetic Properties of Metallic Alloys deals with the magnetic properties of metallic alloys and covers topics ranging from conditions favoring the localization of effective moments to the s-d model and the Kondo effect, along with perturbative, scattering, and Green's function theories of the s-d model. Asymptotically exact methods used in addressing the Kondo problem are also described.Comprised of 12 chapters, this volume begins with a review of experimental results and phenomenology concerning the formation of local magnetic moments in metals, followed by a Har
Li, Qin; Zhao, Yongxin; Wu, Xiaofeng; Liu, Si
There can be multitudinous models specifying aspects of the same system. Each model has a bias towards one aspect. These models often override in specific aspects though they have different expressions. A specification written in one model can be refined by introducing additional information from other models. The paper proposes a concept of promoting models which is a methodology to obtain refinements with support from cooperating models. It refines a primary model by integrating the information from a secondary model. The promotion principle is not merely an academic point, but also a reliable and robust engineering technique which can be used to develop software and hardware systems. It can also check the consistency between two specifications from different models. A case of modeling a simple online shopping system with the cooperation of the guarded design model and CSP model illustrates the practicability of the promotion principle.
DEFF Research Database (Denmark)
Stubkjær, Erik
2005-01-01
Modeling is a term that refers to a variety of efforts, including data and process modeling. The domain to be modeled may be a department, an organization, or even an industrial sector. E-business presupposes the modeling of an industrial sector, a substantial task. Cadastral modeling compares to...
Su, H.; Reutter, P.; Trentmann, J.; Rose, D.; Gunthe, S.; Simmel, M.; Nowak, A.; Wiedensohler, A.; Zhu, T.; Pöschl, U.
2009-04-01
., Zhang, Y., Andreae, M. O., and Pöschl, U.: Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China - Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity, Atmos. Chem. Phys. Discuss., 8, 17343-17392, 2008. Simmel, M. and Wurzler, S.: Condensation and activation in sectional cloud microphysical models., Atmospheric Research 80(2-3): 218-236., 2006. Wiedensohler, A., Cheng, Y. F., Nowak, A., Wehner, B., Achtert, P., Berghof, M., Birmili, W., Wu, Z. J., Hu, M., Zhu, T., Takegawa, N., Kita, K., Kondo, Y., Lou, S. R., Hofzumahaus, A., Holland, F., Wahner, A., Gunthe, S., Rose, D., and Pöschl, U.: Rapid Aerosol Particle Growth and Increase of Cloud Condensation Nucleus (CCN) Activity by Secondary Aerosol Formation: a Case Study for Regional Air Pollution in North Eastern China, J. Geophys. Res., submitted, 2008
Alliss, R.
2014-09-01
Optical turbulence (OT) acts to distort light in the atmosphere, degrading imagery from astronomical telescopes and reducing the data quality of optical imaging and communication links. Some of the degradation due to turbulence can be corrected by adaptive optics. However, the severity of optical turbulence, and thus the amount of correction required, is largely dependent upon the turbulence at the location of interest. Therefore, it is vital to understand the climatology of optical turbulence at such locations. In many cases, it is impractical and expensive to setup instrumentation to characterize the climatology of OT, so numerical simulations become a less expensive and convenient alternative. The strength of OT is characterized by the refractive index structure function Cn2, which in turn is used to calculate atmospheric seeing parameters. While attempts have been made to characterize Cn2 using empirical models, Cn2 can be calculated more directly from Numerical Weather Prediction (NWP) simulations using pressure, temperature, thermal stability, vertical wind shear, turbulent Prandtl number, and turbulence kinetic energy (TKE). In this work we use the Weather Research and Forecast (WRF) NWP model to generate Cn2 climatologies in the planetary boundary layer and free atmosphere, allowing for both point-to-point and ground-to-space seeing estimates of the Fried Coherence length (ro) and other seeing parameters. Simulations are performed using a multi-node linux cluster using the Intel chip architecture. The WRF model is configured to run at 1km horizontal resolution and centered on the Mauna Loa Observatory (MLO) of the Big Island. The vertical resolution varies from 25 meters in the boundary layer to 500 meters in the stratosphere. The model top is 20 km. The Mellor-Yamada-Janjic (MYJ) TKE scheme has been modified to diagnose the turbulent Prandtl number as a function of the Richardson number, following observations by Kondo and others. This modification
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
This paper puts forward a new conception:model warehouse,analyzes the reason why model warehouse appears and introduces the characteristics and architecture of model warehouse.Last,this paper points out that model warehouse is an important part of WebGIS.
Effects of interactions in transport through Aharonov-Bohm-Casher interferometers.
Lobos, A M; Aligia, A A
2008-01-11
We study the conductance through a ring described by the Hubbard model (such as an array of quantum dots), threaded by a magnetic flux and subject to Rashba spin-orbit coupling (SOC). We develop a formalism that is able to describe the interference effects as well as the Kondo effect when the number of electrons in the ring is odd. In the Kondo regime, the SOC reduces the conductance from the unitary limit, and, in combination with the magnetic flux, the device acts as a spin polarizer.
Vortex Crystals with Chiral Stripes in Itinerant Magnets
Ozawa, Ryo; Hayami, Satoru; Barros, Kipton; Chern, Gia-Wei; Motome, Yukitoshi; Batista, Cristian D.
2016-10-01
We study noncoplanar magnetic ordering in frustrated itinerant magnets. For a family of Kondo square lattice models with classical local moments, we find that a double-Q noncoplanar vortex crystal has lower energy than the single-Q helical order expected from the Ruderman-Kittel-Kasuya-Yosida interaction when the lattice symmetry dictates four global maxima in the bare magnetic susceptibility. By expanding in the small Kondo exchange and the degree of noncoplanarity, we demonstrate that this noncoplanar state arises from a Fermi surface instability occurring in independent sections connected by two ordering wave vectors.
DEFF Research Database (Denmark)
2011-01-01
procedure is introduced for the analysis and solution of property models. Models that capture and represent the temperature dependent behaviour of physical properties are introduced, as well as equation of state models (EOS) such as the SRK EOS. Modelling of liquid phase activity coefficients are also......This chapter presents various types of constitutive models and their applications. There are 3 aspects dealt with in this chapter, namely: creation and solution of property models, the application of parameter estimation and finally application examples of constitutive models. A systematic...... covered, illustrating several models such as the Wilson equation and NRTL equation, along with their solution strategies. A section shows how to use experimental data to regress the property model parameters using a least squares approach. A full model analysis is applied in each example that discusses...
Batty, M.
2007-01-01
The term ?model? is now central to our thinking about how weunderstand and design cities. We suggest a variety of ways inwhich we use ?models?, linking these ideas to Abercrombie?sexposition of Town and Country Planning which represented thestate of the art fifty years ago. Here we focus on using models asphysical representations of the city, tracing the development ofsymbolic models where the focus is on simulating how functiongenerates form, to iconic models where the focus is on representi...
Chang, CC
2012-01-01
Model theory deals with a branch of mathematical logic showing connections between a formal language and its interpretations or models. This is the first and most successful textbook in logical model theory. Extensively updated and corrected in 1990 to accommodate developments in model theoretic methods - including classification theory and nonstandard analysis - the third edition added entirely new sections, exercises, and references. Each chapter introduces an individual method and discusses specific applications. Basic methods of constructing models include constants, elementary chains, Sko
Spin-spin correlations of magnetic adatoms on graphene
Güçlü, A. D.; Bulut, Nejat
2015-03-01
We study the interaction between two magnetic adatom impurities in graphene using the Anderson model. The two-impurity Anderson Hamiltonian is solved numerically by using the quantum Monte Carlo technique. We find that the interimpurity spin susceptibility is strongly enhanced at low temperatures, significantly diverging from the well-known Ruderman-Kittel-Kasuya-Yoshida result which decays as R-3.
DEFF Research Database (Denmark)
Bækgaard, Lars
2001-01-01
The purpose of this chapter is to discuss conceptual event modeling within a context of information modeling. Traditionally, information modeling has been concerned with the modeling of a universe of discourse in terms of information structures. However, most interesting universes of discourse...... are dynamic and we present a modeling approach that can be used to model such dynamics. We characterize events as both information objects and change agents (Bækgaard 1997). When viewed as information objects events are phenomena that can be observed and described. For example, borrow events in a library can...
DEFF Research Database (Denmark)
Bækgaard, Lars
2001-01-01
The purpose of this chapter is to discuss conceptual event modeling within a context of information modeling. Traditionally, information modeling has been concerned with the modeling of a universe of discourse in terms of information structures. However, most interesting universes of discourse...... are dynamic and we present a modeling approach that can be used to model such dynamics.We characterize events as both information objects and change agents (Bækgaard 1997). When viewed as information objects events are phenomena that can be observed and described. For example, borrow events in a library can...
Digital Repository Service at National Institute of Oceanography (India)
Unnikrishnan, A; Manoj, N.T.
Various numerical models used to study the dynamics and horizontal distribution of salinity in Mandovi-Zuari estuaries, Goa, India is discussed in this chapter. Earlier, a one-dimensional network model was developed for representing the complex...
Turner, Raymond
2009-01-01
Computational models can be found everywhere in present day science and engineering. In providing a logical framework and foundation for the specification and design of specification languages, Raymond Turner uses this framework to introduce and study computable models. In doing so he presents the first systematic attempt to provide computational models with a logical foundation. Computable models have wide-ranging applications from programming language semantics and specification languages, through to knowledge representation languages and formalism for natural language semantics. They are al
Taylor, J G
2009-01-01
We present tentative answers to three questions: firstly, what is to be assumed about the structure of the brain in attacking the problem of modeling consciousness; secondly, what is it about consciousness that is attempting to be modeled; and finally, what is taken on board the modeling enterprise, if anything, from the vast works by philosophers about the nature of mind.
DEFF Research Database (Denmark)
Sclütter, Flemming; Frigaard, Peter; Liu, Zhou
This report presents the model test results on wave run-up on the Zeebrugge breakwater under the simulated prototype storms. The model test was performed in January 2000 at the Hydraulics & Coastal Engineering Laboratory, Aalborg University. The detailed description of the model is given...
DEFF Research Database (Denmark)
Ravn, Anders P.; Staunstrup, Jørgen
1994-01-01
This paper proposes a model for specifying interfaces between concurrently executing modules of a computing system. The model does not prescribe a particular type of communication protocol and is aimed at describing interfaces between both software and hardware modules or a combination of the two....... The model describes both functional and timing properties of an interface...
DEFF Research Database (Denmark)
2011-01-01
This chapter presents various types of constitutive models and their applications. There are 3 aspects dealt with in this chapter, namely: creation and solution of property models, the application of parameter estimation and finally application examples of constitutive models. A systematic...
Model Experiments and Model Descriptions
Jackman, Charles H.; Ko, Malcolm K. W.; Weisenstein, Debra; Scott, Courtney J.; Shia, Run-Lie; Rodriguez, Jose; Sze, N. D.; Vohralik, Peter; Randeniya, Lakshman; Plumb, Ian
1999-01-01
The Second Workshop on Stratospheric Models and Measurements Workshop (M&M II) is the continuation of the effort previously started in the first Workshop (M&M I, Prather and Remsberg [1993]) held in 1992. As originally stated, the aim of M&M is to provide a foundation for establishing the credibility of stratospheric models used in environmental assessments of the ozone response to chlorofluorocarbons, aircraft emissions, and other climate-chemistry interactions. To accomplish this, a set of measurements of the present day atmosphere was selected. The intent was that successful simulations of the set of measurements should become the prerequisite for the acceptance of these models as having a reliable prediction for future ozone behavior. This section is divided into two: model experiment and model descriptions. In the model experiment, participant were given the charge to design a number of experiments that would use observations to test whether models are using the correct mechanisms to simulate the distributions of ozone and other trace gases in the atmosphere. The purpose is closely tied to the needs to reduce the uncertainties in the model predicted responses of stratospheric ozone to perturbations. The specifications for the experiments were sent out to the modeling community in June 1997. Twenty eight modeling groups responded to the requests for input. The first part of this section discusses the different modeling group, along with the experiments performed. Part two of this section, gives brief descriptions of each model as provided by the individual modeling groups.
Scalable Models Using Model Transformation
2008-07-13
and the following companies: Agilent, Bosch, HSBC , Lockheed-Martin, National Instruments, and Toyota. Scalable Models Using Model Transformation...parametrization, and workflow automation. (AFRL), the State of California Micro Program, and the following companies: Agi- lent, Bosch, HSBC , Lockheed
DEFF Research Database (Denmark)
Stubkjær, Erik
2005-01-01
to the modeling of an industrial sector, as it aims at rendering the basic concepts that relate to the domain of real estate and the pertinent human activities. The palpable objects are pieces of land and buildings, documents, data stores and archives, as well as persons in their diverse roles as owners, holders...... to land. The paper advances the position that cadastral modeling has to include not only the physical objects, agents, and information sets of the domain, but also the objectives or requirements of cadastral systems.......Modeling is a term that refers to a variety of efforts, including data and process modeling. The domain to be modeled may be a department, an organization, or even an industrial sector. E-business presupposes the modeling of an industrial sector, a substantial task. Cadastral modeling compares...
Modelling in Business Model design
Simonse, W.L.
2013-01-01
It appears that business model design might not always produce a design or model as the expected result. However when designers are involved, a visual model or artefact is produced. To assist strategic managers in thinking about how they can act, the designers challenge is to combine strategy and
Druyan, Leonard M.
2012-01-01
Climate models is a very broad topic, so a single volume can only offer a small sampling of relevant research activities. This volume of 14 chapters includes descriptions of a variety of modeling studies for a variety of geographic regions by an international roster of authors. The climate research community generally uses the rubric climate models to refer to organized sets of computer instructions that produce simulations of climate evolution. The code is based on physical relationships that describe the shared variability of meteorological parameters such as temperature, humidity, precipitation rate, circulation, radiation fluxes, etc. Three-dimensional climate models are integrated over time in order to compute the temporal and spatial variations of these parameters. Model domains can be global or regional and the horizontal and vertical resolutions of the computational grid vary from model to model. Considering the entire climate system requires accounting for interactions between solar insolation, atmospheric, oceanic and continental processes, the latter including land hydrology and vegetation. Model simulations may concentrate on one or more of these components, but the most sophisticated models will estimate the mutual interactions of all of these environments. Advances in computer technology have prompted investments in more complex model configurations that consider more phenomena interactions than were possible with yesterday s computers. However, not every attempt to add to the computational layers is rewarded by better model performance. Extensive research is required to test and document any advantages gained by greater sophistication in model formulation. One purpose for publishing climate model research results is to present purported advances for evaluation by the scientific community.
Nonequilibrium Transport through a Spinful Quantum Dot with Superconducting Leads
DEFF Research Database (Denmark)
Andersen, Brian Møller; Flensberg, Karsten; Koerting, Verena
2011-01-01
We study the nonlinear cotunneling current through a spinful quantum dot contacted by two superconducting leads. Applying a general nonequilibrium Green function formalism to an effective Kondo model, we study the rich variation in the IV characteristics with varying asymmetry in the tunnel...
2016-01-01
This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.
DEFF Research Database (Denmark)
Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens
2011-01-01
In this report a new turbulence model is presented.In contrast to the bulk of modern work, the model is a classical continuum model with a relatively simple constitutive equation. The constitutive equation is, as usual in continuum mechanics, entirely empirical. It has the usual Newton or Stokes...... term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence....... The model is in a virgin state, but a number of numerical tests have been carried out with good results. It is published to encourage other researchers to study the model in order to find its merits and possible limitations....
DEFF Research Database (Denmark)
Blomhøj, Morten
2004-01-01
Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...
Wenninger, Magnus J
2012-01-01
Well-illustrated, practical approach to creating star-faced spherical forms that can serve as basic structures for geodesic domes. Complete instructions for making models from circular bands of paper with just a ruler and compass. Discusses tessellation, or tiling, and how to make spherical models of the semiregular solids and concludes with a discussion of the relationship of polyhedra to geodesic domes and directions for building models of domes. "". . . very pleasant reading."" - Science. 1979 edition.
DEFF Research Database (Denmark)
Liu, Zhou; Frigaard, Peter
This report presents the model on wave run-up and run-down on the Zeebrugge breakwater under short-crested oblique wave attacks. The model test was performed in March-April 2000 at the Hydraulics & Coastal Engineering Laboratory, Aalborg University.......This report presents the model on wave run-up and run-down on the Zeebrugge breakwater under short-crested oblique wave attacks. The model test was performed in March-April 2000 at the Hydraulics & Coastal Engineering Laboratory, Aalborg University....
DEFF Research Database (Denmark)
Vestergaard, Kristian
the engineers, but as the scale and the complexity of the hydraulic works increased, the mathematical models became so complex that a mathematical solution could not be obtained. This created a demand for new methods and again the experimental investigation became popular, but this time as measurements on small......-scale models. But still the scale and complexity of hydraulic works were increasing, and soon even small-scale models reached a natural limit for some applications. In the mean time the modern computer was developed, and it became possible to solve complex mathematical models by use of computer-based numerical...
Energy Technology Data Exchange (ETDEWEB)
V. Chipman
2002-10-05
The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their post-closure analyses. The Ventilation Model report was initially developed to analyze the effects of preclosure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts, and to provide heat removal data to support EBS design. Revision 00 of the Ventilation Model included documentation of the modeling results from the ANSYS-based heat transfer model. The purposes of Revision 01 of the Ventilation Model are: (1) To validate the conceptual model for preclosure ventilation of emplacement drifts and verify its numerical application in accordance with new procedural requirements as outlined in AP-SIII-10Q, Models (Section 7.0). (2) To satisfy technical issues posed in KTI agreement RDTME 3.14 (Reamer and Williams 2001a). Specifically to demonstrate, with respect to the ANSYS ventilation model, the adequacy of the discretization (Section 6.2.3.1), and the downstream applicability of the model results (i.e. wall heat fractions) to
Modeling Documents with Event Model
Directory of Open Access Journals (Sweden)
Longhui Wang
2015-08-01
Full Text Available Currently deep learning has made great breakthroughs in visual and speech processing, mainly because it draws lessons from the hierarchical mode that brain deals with images and speech. In the field of NLP, a topic model is one of the important ways for modeling documents. Topic models are built on a generative model that clearly does not match the way humans write. In this paper, we propose Event Model, which is unsupervised and based on the language processing mechanism of neurolinguistics, to model documents. In Event Model, documents are descriptions of concrete or abstract events seen, heard, or sensed by people and words are objects in the events. Event Model has two stages: word learning and dimensionality reduction. Word learning is to learn semantics of words based on deep learning. Dimensionality reduction is the process that representing a document as a low dimensional vector by a linear mode that is completely different from topic models. Event Model achieves state-of-the-art results on document retrieval tasks.
Model Selection for Geostatistical Models
Energy Technology Data Exchange (ETDEWEB)
Hoeting, Jennifer A.; Davis, Richard A.; Merton, Andrew A.; Thompson, Sandra E.
2006-02-01
We consider the problem of model selection for geospatial data. Spatial correlation is typically ignored in the selection of explanatory variables and this can influence model selection results. For example, the inclusion or exclusion of particular explanatory variables may not be apparent when spatial correlation is ignored. To address this problem, we consider the Akaike Information Criterion (AIC) as applied to a geostatistical model. We offer a heuristic derivation of the AIC in this context and provide simulation results that show that using AIC for a geostatistical model is superior to the often used approach of ignoring spatial correlation in the selection of explanatory variables. These ideas are further demonstrated via a model for lizard abundance. We also employ the principle of minimum description length (MDL) to variable selection for the geostatistical model. The effect of sampling design on the selection of explanatory covariates is also explored.
DEFF Research Database (Denmark)
Højgaard, Tomas; Hansen, Rune
2016-01-01
The purpose of this paper is to introduce Didactical Modelling as a research methodology in mathematics education. We compare the methodology with other approaches and argue that Didactical Modelling has its own specificity. We discuss the methodological “why” and explain why we find it useful to...
Højgaard, Tomas; Hansen, Rune
2016-01-01
The purpose of this paper is to introduce Didactical Modelling as a research methodology in mathematics education. We compare the methodology with other approaches and argue that Didactical Modelling has its own specificity. We discuss the methodological “why” and explain why we find it useful to construct this approach in mathematics education research.
DEFF Research Database (Denmark)
Gøtze, Jens Peter; Krentz, Andrew
2014-01-01
In this issue of Cardiovascular Endocrinology, we are proud to present a broad and dedicated spectrum of reviews on animal models in cardiovascular disease. The reviews cover most aspects of animal models in science from basic differences and similarities between small animals and the human...
Giandomenico, Rossano
2006-01-01
The model determines a stochastic continuous process as continuous limit of a stochastic discrete process so to show that the stochastic continuous process converges to the stochastic discrete process such that we can integrate it. Furthermore, the model determines the expected volatility and the expected mean so to show that the volatility and the mean are increasing function of the time.
Budiansky, Stephen
1980-01-01
This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)
Poortman, Sybilla; Sloep, Peter
2006-01-01
Educational models describes a case study on a complex learning object. Possibilities are investigated for using this learning object, which is based on a particular educational model, outside of its original context. Furthermore, this study provides advice that might lead to an increase in
Jongerden, M.R.; Haverkort, Boudewijn R.H.M.
2008-01-01
The use of mobile devices is often limited by the capacity of the employed batteries. The battery lifetime determines how long one can use a device. Battery modeling can help to predict, and possibly extend this lifetime. Many different battery models have been developed over the years. However,
Linguistic models and linguistic modeling.
Pedryez, W; Vasilakos, A V
1999-01-01
The study is concerned with a linguistic approach to the design of a new category of fuzzy (granular) models. In contrast to numerically driven identification techniques, we concentrate on budding meaningful linguistic labels (granules) in the space of experimental data and forming the ensuing model as a web of associations between such granules. As such models are designed at the level of information granules and generate results in the same granular rather than pure numeric format, we refer to them as linguistic models. Furthermore, as there are no detailed numeric estimation procedures involved in the construction of the linguistic models carried out in this way, their design mode can be viewed as that of a rapid prototyping. The underlying algorithm used in the development of the models utilizes an augmented version of the clustering technique (context-based clustering) that is centered around a notion of linguistic contexts-a collection of fuzzy sets or fuzzy relations defined in the data space (more precisely a space of input variables). The detailed design algorithm is provided and contrasted with the standard modeling approaches commonly encountered in the literature. The usefulness of the linguistic mode of system modeling is discussed and illustrated with the aid of numeric studies including both synthetic data as well as some time series dealing with modeling traffic intensity over a broadband telecommunication network.
Energy Technology Data Exchange (ETDEWEB)
Veronica J. Rutledge
2013-01-01
The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of off-gas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data is obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data and parameters were input into the adsorption model to develop models specific for krypton adsorption. The same can be done for iodine, xenon, and tritium. The model will be validated with experimental breakthrough curves. Customers will be given access to
Mitchell, W.D.
1972-01-01
Model hydrographs are composed of pairs of dimensionless ratios, arrayed in tabular form, which, when modified by the appropriate values of rainfall exceed and by the time and areal characteristics of the drainage basin, satisfactorily represent the flood hydrograph for the basin. Model bydrographs are developed from a dimensionless translation hydrograph, having a time base of T hours and appropriately modified for storm duration by routing through reservoir storage, S=kOx. Models fall into two distinct classes: (1) those for which the value of x is unity and which have all the characteristics of true unit hydrographs and (2) those for which the value of x is other than unity and to which the unit-hydrograph principles of proportionality and superposition do not apply. Twenty-six families of linear models and eight families of nonlinear models in tabular form from the principal subject of this report. Supplemental discussions describe the development of the models and illustrate their application. Other sections of the report, supplemental to the tables, describe methods of determining the hydrograph characteristics, T, k, and x, both from observed hydrograph and from the physical characteristics of the drainage basin. Five illustrative examples of use show that the models, when properly converted to incorporate actual rainfall excess and the time and areal characteristics of the drainage basins, do indeed satisfactorily represent the observed flood hydrographs for the basins.
Grimaldi, P.
2012-07-01
These mandatory guidelines are provided for preparation of papers accepted for publication in the series of Volumes of The The stereometric modelling means modelling achieved with : - the use of a pair of virtual cameras, with parallel axes and positioned at a mutual distance average of 1/10 of the distance camera-object (in practice the realization and use of a stereometric camera in the modeling program); - the shot visualization in two distinct windows - the stereoscopic viewing of the shot while modelling. Since the definition of "3D vision" is inaccurately referred to as the simple perspective of an object, it is required to add the word stereo so that "3D stereo vision " shall stand for "three-dimensional view" and ,therefore, measure the width, height and depth of the surveyed image. Thanks to the development of a stereo metric model , either real or virtual, through the "materialization", either real or virtual, of the optical-stereo metric model made visible with a stereoscope. It is feasible a continuous on line updating of the cultural heritage with the help of photogrammetry and stereometric modelling. The catalogue of the Architectonic Photogrammetry Laboratory of Politecnico di Bari is available on line at: http://rappresentazione.stereofot.it:591/StereoFot/FMPro?-db=StereoFot.fp5&-lay=Scheda&-format=cerca.htm&-view
Modeling complexes of modeled proteins.
Anishchenko, Ivan; Kundrotas, Petras J; Vakser, Ilya A
2017-03-01
Structural characterization of proteins is essential for understanding life processes at the molecular level. However, only a fraction of known proteins have experimentally determined structures. This fraction is even smaller for protein-protein complexes. Thus, structural modeling of protein-protein interactions (docking) primarily has to rely on modeled structures of the individual proteins, which typically are less accurate than the experimentally determined ones. Such "double" modeling is the Grand Challenge of structural reconstruction of the interactome. Yet it remains so far largely untested in a systematic way. We present a comprehensive validation of template-based and free docking on a set of 165 complexes, where each protein model has six levels of structural accuracy, from 1 to 6 Å C(α) RMSD. Many template-based docking predictions fall into acceptable quality category, according to the CAPRI criteria, even for highly inaccurate proteins (5-6 Å RMSD), although the number of such models (and, consequently, the docking success rate) drops significantly for models with RMSD > 4 Å. The results show that the existing docking methodologies can be successfully applied to protein models with a broad range of structural accuracy, and the template-based docking is much less sensitive to inaccuracies of protein models than the free docking. Proteins 2017; 85:470-478. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Lin, Tony; Erfan, Sasan
2016-01-01
Mathematical modeling is an open-ended research subject where no definite answers exist for any problem. Math modeling enables thinking outside the box to connect different fields of studies together including statistics, algebra, calculus, matrices, programming and scientific writing. As an integral part of society, it is the foundation for many…
DEFF Research Database (Denmark)
Ashauer, Roman; Albert, Carlo; Augustine, Starrlight
2016-01-01
The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test...... the ability of GUTS to predict survival of aquatic organisms across different pesticide exposure patterns, time scales and species. Firstly, using synthetic data, we identified experimental data requirements which allow for the estimation of all parameters of the GUTS proper model. Secondly, we assessed how...
DEFF Research Database (Denmark)
Kindler, Ekkart
2009-01-01
There are many different notations and formalisms for modelling business processes and workflows. These notations and formalisms have been introduced with different purposes and objectives. Later, influenced by other notations, comparisons with other tools, or by standardization efforts, these no...
Searle, Shayle R
2012-01-01
This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.
Insepov, Zeke; Veitzer, Seth; Mahalingam, Sudhakar
2011-01-01
Although vacuum arcs were first identified over 110 years ago, they are not yet well understood. We have since developed a model of breakdown and gradient limits that tries to explain, in a self-consistent way: arc triggering, plasma initiation, plasma evolution, surface damage and gra- dient limits. We use simple PIC codes for modeling plasmas, molecular dynamics for modeling surface breakdown, and surface damage, and mesoscale surface thermodynamics and finite element electrostatic codes for to evaluate surface properties. Since any given experiment seems to have more variables than data points, we have tried to consider a wide variety of arcing (rf structures, e beam welding, laser ablation, etc.) to help constrain the problem, and concentrate on common mechanisms. While the mechanisms can be comparatively simple, modeling can be challenging.
National Oceanic and Atmospheric Administration, Department of Commerce — Computer simulations of past climate. Variables provided as model output are described by parameter keyword. In some cases the parameter keywords are a subset of all...
Regardt, Olle; Rönnbäck, Lars; Bergholtz, Maria; Johannesson, Paul; Wohed, Petia
Maintaining and evolving data warehouses is a complex, error prone, and time consuming activity. The main reason for this state of affairs is that the environment of a data warehouse is in constant change, while the warehouse itself needs to provide a stable and consistent interface to information spanning extended periods of time. In this paper, we propose a modeling technique for data warehousing, called anchor modeling, that offers non-destructive extensibility mechanisms, thereby enabling robust and flexible management of changes in source systems. A key benefit of anchor modeling is that changes in a data warehouse environment only require extensions, not modifications, to the data warehouse. This ensures that existing data warehouse applications will remain unaffected by the evolution of the data warehouse, i.e. existing views and functions will not have to be modified as a result of changes in the warehouse model.
Hodges, Wilfrid
1993-01-01
An up-to-date and integrated introduction to model theory, designed to be used for graduate courses (for students who are familiar with first-order logic), and as a reference for more experienced logicians and mathematicians.
Quantum frustrated and correlated electron systems
Directory of Open Access Journals (Sweden)
P Thalmeier
2008-06-01
Full Text Available Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the high field magnetization are surveyed. The possible quantum phase transitions are discussed and applied to layered vanadium oxides. In itinerant electron systems frustration is an emergent property caused by electron correlations. It leads to enhanced spin fluctuations in a very large region of momentum space and therefore may cause heavy fermion type low temperature anomalies as in the 3d spinel compound LiV2O4 . Competing on-site and inter-site electronic interactions in Kondo compounds are responsible for the quantum phase transition between nonmagnetic Kondo singlet phase and magnetic phase such as observed in many 4f compounds. They may be described by Kondo lattice and simplified Kondo necklace type models. Their quantum phase transitions are investigated by numerical exact diagonalization and analytical bond operator methods respectively.
Accelerated life models modeling and statistical analysis
Bagdonavicius, Vilijandas
2001-01-01
Failure Time DistributionsIntroductionParametric Classes of Failure Time DistributionsAccelerated Life ModelsIntroductionGeneralized Sedyakin's ModelAccelerated Failure Time ModelProportional Hazards ModelGeneralized Proportional Hazards ModelsGeneralized Additive and Additive-Multiplicative Hazards ModelsChanging Shape and Scale ModelsGeneralizationsModels Including Switch-Up and Cycling EffectsHeredity HypothesisSummaryAccelerated Degradation ModelsIntroductionDegradation ModelsModeling the Influence of Explanatory Varia
Do stroke models model stroke?
Directory of Open Access Journals (Sweden)
Philipp Mergenthaler
2012-11-01
Full Text Available Stroke is one of the leading causes of death worldwide and the biggest reason for long-term disability. Basic research has formed the modern understanding of stroke pathophysiology, and has revealed important molecular, cellular and systemic mechanisms. However, despite decades of research, most translational stroke trials that aim to introduce basic research findings into clinical treatment strategies – most notably in the field of neuroprotection – have failed. Among other obstacles, poor methodological and statistical standards, negative publication bias, and incomplete preclinical testing have been proposed as ‘translational roadblocks’. In this article, we introduce the models commonly used in preclinical stroke research, discuss some of the causes of failed translational success and review potential remedies. We further introduce the concept of modeling ‘care’ of stroke patients, because current preclinical research models the disorder but does not model care or state-of-the-art clinical testing. Stringent statistical methods and controlled preclinical trials have been suggested to counteract weaknesses in preclinical research. We conclude that preclinical stroke research requires (1 appropriate modeling of the disorder, (2 appropriate modeling of the care of stroke patients and (3 an approach to preclinical testing that is similar to clinical testing, including Phase 3 randomized controlled preclinical trials as necessary additional steps before new therapies enter clinical testing.
DEFF Research Database (Denmark)
2012-01-01
The relationship between representation and the represented is examined here through the notion of persistent modelling. This notion is not novel to the activity of architectural design if it is considered as describing a continued active and iterative engagement with design concerns – an evident...... characteristic of architectural practice. But the persistence in persistent modelling can also be understood to apply in other ways, reflecting and anticipating extended roles for representation. This book identifies three principle areas in which these extensions are becoming apparent within contemporary....... It also provides critical insight into the use of contemporary modelling tools and methods, together with an examination of the implications their use has within the territories of architectural design, realisation and experience....
Eck, Christof; Knabner, Peter
2017-01-01
Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.
Institute of Scientific and Technical Information of China (English)
Ling Li; Vasily Volkov
2006-01-01
A physically-based model is presented for the simulation of a new type of deformable objects-inflatable objects, such as shaped balloons, which consist of pressurized air enclosed by an elastic surface. These objects have properties inherent in both 3D and 2D elastic bodies, as they demonstrate the behaviour of 3D shapes using 2D formulations. As there is no internal structure in them, their behaviour is substantially different from the behaviour of deformable solid objects. We use one of the few available models for deformable surfaces, and enhance it to include the forces of internal and external pressure. These pressure forces may also incorporate buoyancy forces, to allow objects filled with a low density gas to float in denser media. The obtained models demonstrate rich dynamic behaviour, such as bouncing, floating, deflation and inflation.
DEFF Research Database (Denmark)
Nash, Ulrik William
2014-01-01
Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory of probabil......Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory...... of probabilistic functionalism, and concerns the environment and the mind, and adaptation by the latter to the former. This entry is about the lens model, and probabilistic functionalism more broadly. Focus will mostly be on firms and their employees, but, to fully appreciate the scope, we have to keep in mind...
DEFF Research Database (Denmark)
Nash, Ulrik William
2014-01-01
Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory of probabil......Firms consist of people who make decisions to achieve goals. How do these people develop the expectations which underpin the choices they make? The lens model provides one answer to this question. It was developed by cognitive psychologist Egon Brunswik (1952) to illustrate his theory...
Directory of Open Access Journals (Sweden)
Aarti Sharma
2009-01-01
Full Text Available The use of computational chemistry in the development of novel pharmaceuticals is becoming an increasingly important tool. In the past, drugs were simply screened for effectiveness. The recent advances in computing power and the exponential growth of the knowledge of protein structures have made it possible for organic compounds to be tailored to decrease the harmful side effects and increase the potency. This article provides a detailed description of the techniques employed in molecular modeling. Molecular modeling is a rapidly developing discipline, and has been supported by the dramatic improvements in computer hardware and software in recent years.
Sivaram, C
2007-01-01
An alternate model for gamma ray bursts is suggested. For a white dwarf (WD) and neutron star (NS) very close binary system, the WD (close to Mch) can detonate due to tidal heating, leading to a SN. Material falling on to the NS at relativistic velocities can cause its collapse to a magnetar or quark star or black hole leading to a GRB. As the material smashes on to the NS, it is dubbed the Smashnova model. Here the SN is followed by a GRB. NS impacting a RG (or RSG) (like in Thorne-Zytkow objects) can also cause a SN outburst followed by a GRB. Other variations are explored.
Cardey, Sylviane
2013-01-01
In response to the need for reliable results from natural language processing, this book presents an original way of decomposing a language(s) in a microscopic manner by means of intra/inter‑language norms and divergences, going progressively from languages as systems to the linguistic, mathematical and computational models, which being based on a constructive approach are inherently traceable. Languages are described with their elements aggregating or repelling each other to form viable interrelated micro‑systems. The abstract model, which contrary to the current state of the art works in int
Institute of Scientific and Technical Information of China (English)
乐然
2006-01-01
著名的Hi-End名厂Audio Note自1976年成立以来已有30个寒暑。对一个只是专注于Hi-End器材生产的厂商来说，30年不长也不短。同时期不少品牌，有的已经销声匿迹有的已经偏离了Hi-Fi路线，为了更好地生存而去生产更为大众化的产品了，然而AudioN0te却执着于Hi-End路线，坚持将其对音乐重播的极致追求呈现在产品上，甚至有点不惜工本的味道。
Xiong, Yong-Chen; Zhang, Jun; Zhou, Wang-Huai; Laref, Amel
2017-08-01
Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11504102), the Scientific Research Items Foundation of Hubei Educational Committee, China (Grant Nos. Q20161803 and B2016091), the Doctoral Scientific Research Foundation (Grant No. BK201407), and the Major Scientific Research Project Pre-funds of Hubei University of Automotive Technology, China (Grant No. 2014XY06).
Anomalous ferromagnetism in CeRh3B2: Possibility of a new Kondo-lattice state
Shaheen, S. A.; Schilling, J. S.; Shelton, R. N.
1985-01-01
Information on the nature of the highly anomalous ferromagnetic state of CeRh3B2 below 115 K is gained by studying the evolution of the magnetic, superconducting, and structural properties across the quasiternary series LaxCe1-xRh3B2 and Ce(RuyRh1-y)3B2. The present results offer considerable evidence that this ferromagnetism originates from the ordering of Ce local moments and not, as has been claimed, from itinerant magnetism in the Rh 4d band.
Energy Technology Data Exchange (ETDEWEB)
Wykhoff, Jan
2010-07-07
The systems Yb{sub 1-w}A{sub 1-w}(Rh{sub 1-x}Co{sub x})(Si{sub 1-y}Ge{sub y}){sub 2} with A=La respectively Lu, as well as YbIr{sub 2}Si{sub 2} are studied. The measurements are presented sortedly for systems, dopings, and external parameters. Beside these external parameters furthermore the orientation of the sample related to the quasistatic magnetic field and the microwave magnetic field was varied.
Kotani, A.
2011-04-01
Theoretical predictions are given for low energy excitations, such as crystal field excitations and Kondo resonance excitations, to be detected by high-resolution measurements of resonant inelastic x-ray scattering (RIXS) of rare-earth materials with Yb compounds as typical examples. Crystal field excitations in the Yb 3d RIXS of a Yb3+ ion in the cubic crystal field are formulated, and the calculation of RIXS spectra for YbN is done. Kondo resonance excitations revealed in the Yb 3d RIXS spectra are calculated for mixed-valence Yb compounds, Yb1-xLuxAl3, in the leading term approximation of the 1/Nf expansion method with a single impurity Anderson model. It is emphasized that the high-resolution RIXS with polarization dependence is a powerful tool to study the crystal field levels together with their symmetry and also the Kondo bound state in rare-earth compounds. Some in-depth discussions are given on the polarization effects of RIXS, including 4d and 2p RIXS spectra, the coherence effect of the Kondo bound states, and the importance of the high-resolution RIXS spectra for condensed matter physics under extreme conditions.
Building Models and Building Modelling
DEFF Research Database (Denmark)
Jørgensen, Kaj Asbjørn; Skauge, Jørn
I rapportens indledende kapitel beskrives de primære begreber vedrørende bygningsmodeller og nogle fundamentale forhold vedrørende computerbaseret modulering bliver opstillet. Desuden bliver forskellen mellem tegneprogrammer og bygningsmodelleringsprogrammer beskrevet. Vigtige aspekter om......lering og bygningsmodeller. Det bliver understreget at modellering bør udføres på flere abstraktionsniveauer og i to dimensioner i den såkaldte modelleringsmatrix. Ud fra dette identificeres de primære faser af bygningsmodellering. Dernæst beskrives de basale karakteristika for bygningsmodeller. Heri...... inkluderes en præcisering af begreberne objektorienteret software og objektorienteret modeller. Det bliver fremhævet at begrebet objektbaseret modellering giver en tilstrækkelig og bedre forståelse. Endelig beskrives forestillingen om den ideale bygningsmodel som værende én samlet model, der anvendes gennem...
DEFF Research Database (Denmark)
Jensen, Morten S.; Frigaard, Peter
In the following, results from model tests with Zeebrugge breakwater are presented. The objective with these tests is partly to investigate the influence on wave run-up due to a changing waterlevel during a storm. Finally, the influence on wave run-up due to an introduced longshore current...
Directory of Open Access Journals (Sweden)
Olaf eWolkenhauer
2014-01-01
Full Text Available Next generation sequencing technologies are bringing about a renaissance of mining approaches. A comprehensive picture of the genetic landscape of an individual patient will be useful, for example, to identify groups of patients that do or do not respond to certain therapies. The high expectations may however not be satisfied if the number of patient groups with similar characteristics is going to be very large. I therefore doubt that mining sequence data will give us an understanding of why and when therapies work. For understanding the mechanisms underlying diseases, an alternative approach is to model small networks in quantitative mechanistic detail, to elucidate the role of gene and proteins in dynamically changing the functioning of cells. Here an obvious critique is that these models consider too few components, compared to what might be relevant for any particular cell function. I show here that mining approaches and dynamical systems theory are two ends of a spectrum of methodologies to choose from. Drawing upon personal experience in numerous interdisciplinary collaborations, I provide guidance on how to model by discussing the question Why model?
Wolkenhauer, Olaf
2014-01-01
Next generation sequencing technologies are bringing about a renaissance of mining approaches. A comprehensive picture of the genetic landscape of an individual patient will be useful, for example, to identify groups of patients that do or do not respond to certain therapies. The high expectations may however not be satisfied if the number of patient groups with similar characteristics is going to be very large. I therefore doubt that mining sequence data will give us an understanding of why and when therapies work. For understanding the mechanisms underlying diseases, an alternative approach is to model small networks in quantitative mechanistic detail, to elucidate the role of gene and proteins in dynamically changing the functioning of cells. Here an obvious critique is that these models consider too few components, compared to what might be relevant for any particular cell function. I show here that mining approaches and dynamical systems theory are two ends of a spectrum of methodologies to choose from. Drawing upon personal experience in numerous interdisciplinary collaborations, I provide guidance on how to model by discussing the question "Why model?"
Burianová, Eva
2008-01-01
Cílem první části této bakalářské práce je - pomocí analýzy výchozích textů - teoretické shrnutí ekonomických modelů a teorií, na kterých model CAPM stojí: Markowitzův model teorie portfolia (analýza maximalizace očekávaného užitku a na něm založený model výběru optimálního portfolia), Tobina (rozšíření Markowitzova modelu ? rozdělení výběru optimálního portfolia do dvou fází; nejprve určení optimální kombinace rizikových instrumentů a následná alokace dostupného kapitálu mezi tuto optimální ...
Institute of Scientific and Technical Information of China (English)
R.E. Waltz
2007-01-01
@@ There has been remarkable progress during the past decade in understanding and modeling turbulent transport in tokamaks. With some exceptions the progress is derived from the huge increases in computational power and the ability to simulate tokamak turbulence with ever more fundamental and physically realistic dynamical equations, e.g.
Baart, F.; Donchyts, G.; van Dam, A.; Plieger, M.
2015-12-01
The emergence of interactive art has blurred the line between electronic, computer graphics and art. Here we apply this art form to numerical models. Here we show how the transformation of a numerical model into an interactive painting can both provide insights and solve real world problems. The cases that are used as an example include forensic reconstructions, dredging optimization, barrier design. The system can be fed using any source of time varying vector fields, such as hydrodynamic models. The cases used here, the Indian Ocean (HYCOM), the Wadden Sea (Delft3D Curvilinear), San Francisco Bay (3Di subgrid and Delft3D Flexible Mesh), show that the method used is suitable for different time and spatial scales. High resolution numerical models become interactive paintings by exchanging their velocity fields with a high resolution (>=1M cells) image based flow visualization that runs in a html5 compatible web browser. The image based flow visualization combines three images into a new image: the current image, a drawing, and a uv + mask field. The advection scheme that computes the resultant image is executed in the graphics card using WebGL, allowing for 1M grid cells at 60Hz performance on mediocre graphic cards. The software is provided as open source software. By using different sources for a drawing one can gain insight into several aspects of the velocity fields. These aspects include not only the commonly represented magnitude and direction, but also divergence, topology and turbulence .
Goodwyn, Lauren; Salm, Sarah
2007-01-01
Teaching the anatomy of the muscle system to high school students can be challenging. Students often learn about muscle anatomy by memorizing information from textbooks or by observing plastic, inflexible models. Although these mediums help students learn about muscle placement, the mediums do not facilitate understanding regarding integration of…
Finger Lakes Regional Education Center for Economic Development, Mount Morris, NY.
This guide describes seven model programs that were developed by the Finger Lakes Regional Center for Economic Development (New York) to meet the training needs of female and minority entrepreneurs to help their businesses survive and grow and to assist disabled and dislocated workers and youth in beginning small businesses. The first three models…
Tijskens, L.M.M.
2003-01-01
For modelling product behaviour, with respect to quality for users and consumers, its essential to have at least a fundamental notion what quality really is, and which product properties determine the quality assigned by the consumer to a product. In other words: what is allowed and what is to be
Modelling snowpack surface temperature in the Canadian Prairies using simplified heat flow models
Singh, Purushottam Raj; Yew Gan, Thian
2005-11-01
Three practical schemes for computing the snow surface temperature Ts, i.e. the force-restore method (FRM), the surface conductance method (SCM), and the Kondo and Yamazaki method (KYM), were assessed with respect to Ts retrieved from cloud-free, NOAA-AVHRR satellite data for three land-cover types of the Paddle River basin of central Alberta. In terms of R2, the mean Ts, the t-test and F-test, the FRM generally simulated more accurate Ts than the SCM and KYM. The bias in simulated Ts is usually within several degrees Celsius of the NOAA-AVHRR Ts for both the calibration and validation periods, but larger errors are encountered occasionally, especially when Ts is substantially above 0 °C. Results show that the simulated Ts of the FRM is more consistent than that of the SCM, which in turn was more consistent than that of the KYM. This is partly because the FRM considers two aspects of heat conduction into snow, a stationary-mean diurnal (sinusoidal) temperature variation at the surface coupled to a near steady-state ground heat flux, whereas the SCM assumes a near steady-state, simple heat conduction, and other simplifying assumptions, and the KYM does not balance the snowpack heat fluxes by assuming the snowpack having a vertical temperature profile that is linear. Copyright
Energy Technology Data Exchange (ETDEWEB)
A. Alsaed
2004-09-14
The ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003) presents the methodology for evaluating potential criticality situations in the monitored geologic repository. As stated in the referenced Topical Report, the detailed methodology for performing the disposal criticality analyses will be documented in model reports. Many of the models developed in support of the Topical Report differ from the definition of models as given in the Office of Civilian Radioactive Waste Management procedure AP-SIII.10Q, ''Models'', in that they are procedural, rather than mathematical. These model reports document the detailed methodology necessary to implement the approach presented in the Disposal Criticality Analysis Methodology Topical Report and provide calculations utilizing the methodology. Thus, the governing procedure for this type of report is AP-3.12Q, ''Design Calculations and Analyses''. The ''Criticality Model'' is of this latter type, providing a process evaluating the criticality potential of in-package and external configurations. The purpose of this analysis is to layout the process for calculating the criticality potential for various in-package and external configurations and to calculate lower-bound tolerance limit (LBTL) values and determine range of applicability (ROA) parameters. The LBTL calculations and the ROA determinations are performed using selected benchmark experiments that are applicable to various waste forms and various in-package and external configurations. The waste forms considered in this calculation are pressurized water reactor (PWR), boiling water reactor (BWR), Fast Flux Test Facility (FFTF), Training Research Isotope General Atomic (TRIGA), Enrico Fermi, Shippingport pressurized water reactor, Shippingport light water breeder reactor (LWBR), N-Reactor, Melt and Dilute, and Fort Saint Vrain Reactor spent nuclear fuel (SNF). The scope of
Information Model for Product Modeling
Institute of Scientific and Technical Information of China (English)
焦国方; 刘慎权
1992-01-01
The Key problems in product modeling for integrated CAD ∥CAM systems are the information structures and representations of products.They are taking more and more important roles in engineering applications.With the investigation on engineering product information and from the viewpoint of industrial process,in this paper,the information models are proposed and the definitions of the framework of product information are given.And then,the integration and the consistence of product information are discussed by introucing the entity and its instance.As a summary,the information structures described in this paper have many advantage and natures helpful in engineering design.
Building Models and Building Modelling
DEFF Research Database (Denmark)
Jørgensen, Kaj; Skauge, Jørn
2008-01-01
I rapportens indledende kapitel beskrives de primære begreber vedrørende bygningsmodeller og nogle fundamentale forhold vedrørende computerbaseret modulering bliver opstillet. Desuden bliver forskellen mellem tegneprogrammer og bygningsmodelleringsprogrammer beskrevet. Vigtige aspekter om comp...
Directory of Open Access Journals (Sweden)
Aarti Sharma
2009-12-01
Full Text Available
DEFF Research Database (Denmark)
Arnoldi, Jakob
The article discusses the use of algorithmic models for so-called High Frequency Trading (HFT) in finance. HFT is controversial yet widespread in modern financial markets. It is a form of automated trading technology which critics among other things claim can lead to market manipulation. Drawing...... on two cases, this article shows that manipulation more likely happens in the reverse way, meaning that human traders attempt to make algorithms ‘make mistakes’ or ‘mislead’ algos. Thus, it is algorithmic models, not humans, that are manipulated. Such manipulation poses challenges for security exchanges....... The article analyses these challenges and argues that we witness a new post-social form of human-technology interaction that will lead to a reconfiguration of professional codes for financial trading....
Barr, Michael
2002-01-01
Acyclic models is a method heavily used to analyze and compare various homology and cohomology theories appearing in topology and algebra. This book is the first attempt to put together in a concise form this important technique and to include all the necessary background. It presents a brief introduction to category theory and homological algebra. The author then gives the background of the theory of differential modules and chain complexes over an abelian category to state the main acyclic models theorem, generalizing and systemizing the earlier material. This is then applied to various cohomology theories in algebra and topology. The volume could be used as a text for a course that combines homological algebra and algebraic topology. Required background includes a standard course in abstract algebra and some knowledge of topology. The volume contains many exercises. It is also suitable as a reference work for researchers.
Fossión, Rubén
2010-09-01
The atomic nucleus is a typical example of a many-body problem. On the one hand, the number of nucleons (protons and neutrons) that constitute the nucleus is too large to allow for exact calculations. On the other hand, the number of constituent particles is too small for the individual nuclear excitation states to be explained by statistical methods. Another problem, particular for the atomic nucleus, is that the nucleon-nucleon (n-n) interaction is not one of the fundamental forces of Nature, and is hard to put in a single closed equation. The nucleon-nucleon interaction also behaves differently between two free nucleons (bare interaction) and between two nucleons in the nuclear medium (dressed interaction). Because of the above reasons, specific nuclear many-body models have been devised of which each one sheds light on some selected aspects of nuclear structure. Only combining the viewpoints of different models, a global insight of the atomic nucleus can be gained. In this chapter, we revise the the Nuclear Shell Model as an example of the microscopic approach, and the Collective Model as an example of the geometric approach. Finally, we study the statistical properties of nuclear spectra, basing on symmetry principles, to find out whether there is quantum chaos in the atomic nucleus. All three major approaches have been rewarded with the Nobel Prize of Physics. In the text, we will stress how each approach introduces its own series of approximations to reduce the prohibitingly large number of degrees of freedom of the full many-body problem to a smaller manageable number of effective degrees of freedom.
DEFF Research Database (Denmark)
2015-01-01
This book reflects and expands on the current trend in the building industry to understand, simulate and ultimately design buildings by taking into consideration the interlinked elements and forces that act on them. This approach overcomes the traditional, exclusive focus on building tasks, while....... The chapter authors were invited speakers at the 5th Symposium "Modelling Behaviour", which took place at the CITA in Copenhagen in September 2015....
DEFF Research Database (Denmark)
Michael, John
others' minds. Then (2), in order to bring to light some possible justifications, as well as hazards and criticisms of the methodology of looking time tests, I will take a closer look at the concept of folk psychology and will focus on the idea that folk psychology involves using oneself as a model...... of other people in order to predict and understand their behavior. Finally (3), I will discuss the historical location and significance of the emergence of looking time tests...
Energy Technology Data Exchange (ETDEWEB)
Plimpton, Steven James; Heffernan, Julieanne; Sasaki, Darryl Yoshio; Frischknecht, Amalie Lucile; Stevens, Mark Jackson; Frink, Laura J. Douglas
2005-11-01
Understanding the properties and behavior of biomembranes is fundamental to many biological processes and technologies. Microdomains in biomembranes or ''lipid rafts'' are now known to be an integral part of cell signaling, vesicle formation, fusion processes, protein trafficking, and viral and toxin infection processes. Understanding how microdomains form, how they depend on membrane constituents, and how they act not only has biological implications, but also will impact Sandia's effort in development of membranes that structurally adapt to their environment in a controlled manner. To provide such understanding, we created physically-based models of biomembranes. Molecular dynamics (MD) simulations and classical density functional theory (DFT) calculations using these models were applied to phenomena such as microdomain formation, membrane fusion, pattern formation, and protein insertion. Because lipid dynamics and self-organization in membranes occur on length and time scales beyond atomistic MD, we used coarse-grained models of double tail lipid molecules that spontaneously self-assemble into bilayers. DFT provided equilibrium information on membrane structure. Experimental work was performed to further help elucidate the fundamental membrane organization principles.
Model Construct Based Enterprise Model Architecture and Its Modeling Approach
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
In order to support enterprise integration, a kind of model construct based enterprise model architecture and its modeling approach are studied in this paper. First, the structural makeup and internal relationships of enterprise model architecture are discussed. Then, the concept of reusable model construct (MC) which belongs to the control view and can help to derive other views is proposed. The modeling approach based on model construct consists of three steps, reference model architecture synthesis, enterprise model customization, system design and implementation. According to MC based modeling approach a case study with the background of one-kind-product machinery manufacturing enterprises is illustrated. It is shown that proposal model construct based enterprise model architecture and modeling approach are practical and efficient.
Directory of Open Access Journals (Sweden)
PAPAJ Jan
2014-05-01
Full Text Available Traditional wireless networks use the concept of the point-to-point forwarding inherited from reliable wired networks which seems to be not ideal for wireless environment. New emerging applications and networks operate mostly disconnected. So-called Delay-Tolerant networks (DTNs are receiving increasing attentions from both academia and industry. DTNs introduced a store-carry-and-forward concept solving the problem of intermittent connectivity. Behavior of such networks is verified by real models, computer simulation or combination of the both approaches. Computer simulation has become the primary and cost effective tool for evaluating the performance of the DTNs. OPNET modeler is our target simulation tool and we wanted to spread OPNET’s simulation opportunity towards DTN. We implemented bundle protocol to OPNET modeler allowing simulate cases based on bundle concept as epidemic forwarding which relies on flooding the network with messages and the forwarding algorithm based on the history of past encounters (PRoPHET. The implementation details will be provided in article.
Institute of Scientific and Technical Information of China (English)
Liu Zhiyang
2011-01-01
Similar to ISO Technical Committees,SAC Technical Committees undertake the management and coordination of standard's development and amendments in various sectors in industry,playing the role as a bridge among enterprises,research institutions and the governmental standardization administration.How to fully play the essential role is the vital issue SAC has been committing to resolve.Among hundreds of SAC TCs,one stands out in knitting together those isolated,scattered,but highly competitive enterprises in the same industry with the "Standards" thread,and achieving remarkable results in promoting industry development with standardization.It sets a role model for other TCs.
DEFF Research Database (Denmark)
2015-01-01
This book reflects and expands on the current trend in the building industry to understand, simulate and ultimately design buildings by taking into consideration the interlinked elements and forces that act on them. This approach overcomes the traditional, exclusive focus on building tasks, while....... The chapter authors were invited speakers at the 5th Symposium "Modelling Behaviour", which took place at the CITA in Copenhagen in September 2015....... posing new challenges in all areas of the industry from material and structural to the urban scale. Contributions from invited experts, papers and case studies provide the reader with a comprehensive overview of the field, as well as perspectives from related disciplines, such as computer science...
Directory of Open Access Journals (Sweden)
M. Alguacil Marí
2017-08-01
Full Text Available The current economic environment, together with the low scores obtained by our students in recent years, makes it necessary to incorporate new teaching methods. In this sense, econometric modelling provides a unique opportunity offering to the student with the basic tools to address the study of Econometrics in a deeper and novel way. In this article, this teaching method is described, presenting also an example based on a recent study carried out by two students of the Degree of Economics. Likewise, the success of this method is evaluated quantitatively in terms of academic performance. The results confirm our initial idea that the greater involvement of the student, as well as the need for a more complete knowledge of the subject, suppose a stimulus for the study of this subject. As evidence of this, we show how those students who opted for the method we propose here obtained higher qualifications than those that chose the traditional method.
DEFF Research Database (Denmark)
Bork Petersen, Franziska
2013-01-01
For the presentation of his autumn/winter 2012 collection in Paris and subsequently in Copenhagen, Danish designer Henrik Vibskov installed a mobile catwalk. The article investigates the choreographic impact of this scenography on those who move through it. Drawing on Dance Studies, the analytical...... advantageous manner. Stepping on the catwalk’s sloping, moving surfaces decelerates the models’ walk and makes it cautious, hesitant and shaky: suddenly the models lack exactly the affirmative, staccato, striving quality of motion, and the condescending expression that they perform on most contemporary...... catwalks. Vibskov’s catwalk induces what the dance scholar Gabriele Brandstetter has labelled a ‘defigurative choregoraphy’: a straying from definitions, which exist in ballet as in other movement-based genres, of how a figure should move and appear (1998). The catwalk scenography in this instance...
The Numerical Renormalization Group Method for correlated electrons
Bulla, Ralf
2000-01-01
The Numerical Renormalization Group method (NRG) has been developed by Wilson in the 1970's to investigate the Kondo problem. The NRG allows the non-perturbative calculation of static and dynamic properties for a variety of impurity models. In addition, this method has been recently generalized to lattice models within the Dynamical Mean Field Theory. This paper gives a brief historical overview of the development of the NRG and discusses its application to the Hubbard model; in particular th...
TRANSPORT PROPERTIES OF THE STRONGLY CORRELATED SYSTEMS
Directory of Open Access Journals (Sweden)
T.Domanski
2004-01-01
Full Text Available The transport properties of various systems are studied here in the context of three different models. These are: - the disordered Hubbard model applicable to correlated binary alloys with a general disorder, - the Anderson model used in describing the Kondo physics of a quantum dot connected to the external superconducting leads, and - the Ranninger-Robaszkiewicz model applied to the study of optical properties of the system with preformed electron pairs above the temperature of transition to the superconducting state. We calculate the density of states, specific heat, the Wilson ratio and conductivity of the correlated binary alloy with off-diagonal disorder. We investigate the conditions under which the Kondo peak appears in the density of states and in the conductance of a dot coupled to the external superconducting leads. We analyze the effect of the pseudogap on the optical spectra in the high temperature superconductors described by the boson-fermion model.
On Activity modelling in process modeling
Directory of Open Access Journals (Sweden)
Dorel Aiordachioaie
2001-12-01
Full Text Available The paper is looking to the dynamic feature of the meta-models of the process modelling process, the time. Some principles are considered and discussed as main dimensions of any modelling activity: the compatibility of the substances, the equipresence of phenomena and the solvability of the model. The activity models are considered and represented at meta-level.
Towards a Multi Business Model Innovation Model
DEFF Research Database (Denmark)
Lindgren, Peter; Jørgensen, Rasmus
2012-01-01
This paper studies the evolution of business model (BM) innovations related to a multi business model framework. The paper tries to answer the research questions: • What are the requirements for a multi business model innovation model (BMIM)? • How should a multi business model innovation model...... look like? Different generations of BMIMs are initially studied in the context of laying the baseline for how next generation multi BM Innovation model (BMIM) should look like. All generations of models are analyzed with the purpose of comparing the characteristics and challenges of previous...
Better Language Models with Model Merging
Brants, T
1996-01-01
This paper investigates model merging, a technique for deriving Markov models from text or speech corpora. Models are derived by starting with a large and specific model and by successively combining states to build smaller and more general models. We present methods to reduce the time complexity of the algorithm and report on experiments on deriving language models for a speech recognition task. The experiments show the advantage of model merging over the standard bigram approach. The merged model assigns a lower perplexity to the test set and uses considerably fewer states.
Model Selection Principles in Misspecified Models
Lv, Jinchi
2010-01-01
Model selection is of fundamental importance to high dimensional modeling featured in many contemporary applications. Classical principles of model selection include the Kullback-Leibler divergence principle and the Bayesian principle, which lead to the Akaike information criterion and Bayesian information criterion when models are correctly specified. Yet model misspecification is unavoidable when we have no knowledge of the true model or when we have the correct family of distributions but miss some true predictor. In this paper, we propose a family of semi-Bayesian principles for model selection in misspecified models, which combine the strengths of the two well-known principles. We derive asymptotic expansions of the semi-Bayesian principles in misspecified generalized linear models, which give the new semi-Bayesian information criteria (SIC). A specific form of SIC admits a natural decomposition into the negative maximum quasi-log-likelihood, a penalty on model dimensionality, and a penalty on model miss...
The IMACLIM model; Le modele IMACLIM
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-07-01
This document provides annexes to the IMACLIM model which propose an actualized description of IMACLIM, model allowing the design of an evaluation tool of the greenhouse gases reduction policies. The model is described in a version coupled with the POLES, technical and economical model of the energy industry. Notations, equations, sources, processing and specifications are proposed and detailed. (A.L.B.)
Building Mental Models by Dissecting Physical Models
Srivastava, Anveshna
2016-01-01
When students build physical models from prefabricated components to learn about model systems, there is an implicit trade-off between the physical degrees of freedom in building the model and the intensity of instructor supervision needed. Models that are too flexible, permitting multiple possible constructions require greater supervision to…
The IMACLIM model; Le modele IMACLIM
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-07-01
This document provides annexes to the IMACLIM model which propose an actualized description of IMACLIM, model allowing the design of an evaluation tool of the greenhouse gases reduction policies. The model is described in a version coupled with the POLES, technical and economical model of the energy industry. Notations, equations, sources, processing and specifications are proposed and detailed. (A.L.B.)
Topological confinement and superconductivity
Energy Technology Data Exchange (ETDEWEB)
Al-hassanieh, Dhaled A [Los Alamos National Laboratory; Batista, Cristian D [Los Alamos National Laboratory
2008-01-01
We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.
Critical behaviour of coupled organic ferromagnet chains
Institute of Scientific and Technical Information of China (English)
Guo Ji-Yong; Chen Yu-Guang; Chen Hong
2005-01-01
The interchain coupling in a model, which is most relevant to organic ferromagnets, is studied by a kind of mean field theory. A full phase diagram is given for this model. It is shown that the interchain coupling dramatically affects the ferromagnetic order in the ground state. When the interchain coupling reaches a critical value, the high-spin ground state disappears and the system may transit from ferromagnetic phase into Kondo-singlet phase.
Modelling live forensic acquisition
CSIR Research Space (South Africa)
Grobler, MM
2009-06-01
Full Text Available This paper discusses the development of a South African model for Live Forensic Acquisition - Liforac. The Liforac model is a comprehensive model that presents a range of aspects related to Live Forensic Acquisition. The model provides forensic...
Non-Fermi-liquid behavior: Exact results for ensembles of magnetic impurities
Zvyagin, A A
2002-01-01
In this work we consider several exactly solvable models of magnetic impurities in critical quantum antiferromagnetic spin chains and multichannel Kondo impurities. Their ground state properties are studied and the finite set of nonlinear integral equations, which exactly describe the thermodynamics of the models, is constructed. We obtain several analytic low-energy expressions for the temperature, magnetic field, and frequency dependences of important characteristics of exactly solvable disordered quantum spin models and disordered multichannel Kondo impurities with essential many-body interactions. We show that the only low-energy parameter that gets renormalized is the velocity of the low-lying excitations (or the effective crossover scale connected with each impurity); the others appear to be universal. In our study several kinds of strong disorder important for experiments were used. Some of them produce low divergences in certain characteristics of our strongly disordered critical systems (compared wit...
Continuous Time Model Estimation
Carl Chiarella; Shenhuai Gao
2004-01-01
This paper introduces an easy to follow method for continuous time model estimation. It serves as an introduction on how to convert a state space model from continuous time to discrete time, how to decompose a hybrid stochastic model into a trend model plus a noise model, how to estimate the trend model by simulation, and how to calculate standard errors from estimation of the noise model. It also discusses the numerical difficulties involved in discrete time models that bring about the unit ...
Comparative Protein Structure Modeling Using MODELLER.
Webb, Benjamin; Sali, Andrej
2016-06-20
Comparative protein structure modeling predicts the three-dimensional structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and how to use the ModBase database of such models, and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. © 2016 by John Wiley & Sons, Inc.
Concept Modeling vs. Data modeling in Practice
DEFF Research Database (Denmark)
Madsen, Bodil Nistrup; Erdman Thomsen, Hanne
2015-01-01
account of the inheritance of characteristics and allows us to introduce a number of principles and constraints which render concept modeling more coherent than earlier approaches. Second, we explain how terminological ontologies can be used as the basis for developing conceptual and logical data models......This chapter shows the usefulness of terminological concept modeling as a first step in data modeling. First, we introduce terminological concept modeling with terminological ontologies, i.e. concept systems enriched with characteristics modeled as feature specifications. This enables a formal...
Dodgson, Mark; Gann, David; Phillips, Nelson; Massa, Lorenzo; Tucci, Christopher
2014-01-01
The chapter offers a broad review of the literature at the nexus between Business Models and innovation studies, and examines the notion of Business Model Innovation in three different situations: Business Model Design in newly formed organizations, Business Model Reconfiguration in incumbent firms, and Business Model Innovation in the broad context of sustainability. Tools and perspectives to make sense of Business Models and support managers and entrepreneurs in dealing with Business Model ...
Chao, Dennis L; Longini, Ira M; Morris, J Glenn
2014-01-01
Mathematical modeling can be a valuable tool for studying infectious disease outbreak dynamics and simulating the effects of possible interventions. Here, we describe approaches to modeling cholera outbreaks and how models have been applied to explore intervention strategies, particularly in Haiti. Mathematical models can play an important role in formulating and evaluating complex cholera outbreak response options. Major challenges to cholera modeling are insufficient data for calibrating models and the need to tailor models for different outbreak scenarios.
Longini, Ira M.; Morris, J. Glenn
2014-01-01
Mathematical modeling can be a valuable tool for studying infectious disease outbreak dynamics and simulating the effects of possible interventions. Here, we describe approaches to modeling cholera outbreaks and how models have been applied to explore intervention strategies, particularly in Haiti. Mathematical models can play an important role in formulating and evaluating complex cholera outbreak response options. Major challenges to cholera modeling are insufficient data for calibrating models and the need to tailor models for different outbreak scenarios. PMID:23412687
Model Manipulation for End-User Modelers
DEFF Research Database (Denmark)
Acretoaie, Vlad
of these proposals. To achieve its first goal, the thesis presents the findings of a Systematic Mapping Study showing that human factors topics are scarcely and relatively poorly addressed in model transformation research. Motivated by these findings, the thesis explores the requirements of end-user modelers......End-user modelers are domain experts who create and use models as part of their work. They are typically not Software Engineers, and have little or no programming and meta-modeling experience. However, using model manipulation languages developed in the context of Model-Driven Engineering often...... requires such experience. These languages are therefore only used by a small subset of the modelers that could, in theory, benefit from them. The goals of this thesis are to substantiate this observation, introduce the concepts and tools required to overcome it, and provide empirical evidence in support...
Air Quality Dispersion Modeling - Alternative Models
Models, not listed in Appendix W, that can be used in regulatory applications with case-by-case justification to the Reviewing Authority as noted in Section 3.2, Use of Alternative Models, in Appendix W.
From Product Models to Product State Models
DEFF Research Database (Denmark)
Larsen, Michael Holm
1999-01-01
A well-known technology designed to handle product data is Product Models. Product Models are in their current form not able to handle all types of product state information. Hence, the concept of a Product State Model (PSM) is proposed. The PSM and in particular how to model a PSM is the Research...... Object for this project. In the presentation, benefits and challenges of the PSM will be presented as a basis for the discussion....