Numerical studies of the Bethe-Salpeter equation for a two-fermion bound state
de Paula, W.; Frederico, T.; Salmè, G.; Viviani, M.
2018-03-01
Some recent advances on the solution of the Bethe-Salpeter equation (BSE) for a two-fermion bound system directly in Minkowski space are presented. The calculations are based on the expression of the Bethe-Salpeter amplitude in terms of the so-called Nakanishi integral representation and on the light-front projection (i.e. the integration of the light-front variable k - = k 0 - k 3). The latter technique allows for the analytically exact treatment of the singularities plaguing the two-fermion BSE in Minkowski space. The good agreement observed between our results and those obtained using other existing numerical methods, based on both Minkowski and Euclidean space techniques, fully corroborate our analytical treatment.
The S-matrix for systems with bound states
Ruijgrok, Th.W.
A unitary S-matrix is defined for a system of three particles, two of which can form a bound state. It is shown how for elastic scattering the polarization of the bound state must be taken into account.
Requirement of system-reservoir bound states for entanglement protection
Behzadi, N.; Ahansaz, B.; Faizi, E.; Kasani, H.
2018-03-01
In this work, a genuine mechanism for entanglement protection of a two- qubit system interacting with a dissipative common reservoir is investigated. Based on generating a bound state for the system-reservoir, we show that stronger bound state in the energy spectrum can be created by adding another non-interacting qubits into the reservoir. It turns out that obtaining higher degrees of boundedness in the energy spectrum leads to a better protection of two-qubit entanglement against the dissipative noises. Also, it is figured out that the formation of bound state not only exclusively determines the long-time entanglement protection, irrespective to the Markovian and non-Markovian dynamics, but also performs the same task for reservoirs with different spectral densities.
Bound states in strongly correlated magnetic and electronic systems
International Nuclear Information System (INIS)
Trebst, S.
2002-02-01
A novel strong coupling expansion method to calculate two-particle spectra of quantum lattice models is developed. The technique can be used to study bosonic and fermionic models and in principle it can be applied to systems in any dimension. A number of strongly correlated magnetic and electronic systems are examined including the two-leg spin-half Heisenberg ladder, the dimerized Heisenberg chain with a frustrating next-nearest neighbor interaction, coupled Heisenberg ladders, and the one-dimensional Kondo lattice model. In the various models distinct bound states are found below the two-particle continuum. Quantitative calculations of the dispersion, coherence length and binding energy of these bound states are used to describe spectroscopic experiments on (Ca,La) 14 Cu 24 O 41 and NaV 2 O 5 . (orig.)
A narrow quasi-bound state of the DNN system
International Nuclear Information System (INIS)
Doté, A.; Bayar, M.; Xiao, C.W.; Hyodo, T.; Oka, M.; Oset, E.
2013-01-01
We have investigated a charmed system of DNN (composed of two nucleons and a D meson) by a complementary study with a variational calculation and a Faddeev calculation with fixed-center approximation (Faddeev-FCA). In the present study, we employ a DN potential based on a vector–meson exchange picture in which a resonant Λ c (2595) is dynamically generated as a DN quasi-bound state, similarly to the Λ(1405) as a K ¯ N one in the strange sector. As a result of the study of variational calculation with an effective DN potential and three kinds of NN potentials, the DNN(J π =0 − ,I=1/2) is found to be a narrow quasi-bound state below Λ c (2595)N threshold: total binding energy ∼225 MeV and mesonic decay width ∼25 MeV. On the other hand, the J π =1 − state is considered to be a scattering state of Λ c (2595) and a nucleon. These results are essentially supported by the Faddeev-FCA calculation. By the analysis of the variational wave function, we have found a unique structure in the DNN(J π =0 − ,I=1/2) such that the D meson stays around the center of the total system due to the heaviness of the D meson
Pair condensation and bound states in fermionic systems
International Nuclear Information System (INIS)
Sedrakian, Armen; Clark, John W.
2006-01-01
We study the finite temperature-density phase diagram of an attractive fermionic system that supports two-body (dimer) and three-body (trimer) bound states in free space. Using interactions characteristic for nuclear systems, we obtain the critical temperature T c2 for the superfluid phase transition and the limiting temperature T c3 for the extinction of trimers. The phase diagram features a Cooper-pair condensate in the high-density, low-temperature domain which, with decreasing density, crosses over to a Bose condensate of strongly bound dimers. The high-temperature, low-density domain is populated by trimers whose binding energy decreases toward the density-temperature domain occupied by the superfluid and vanishes at a critical temperature T c3 >T c2
Mass spectrum bound state systems with relativistic corrections
Energy Technology Data Exchange (ETDEWEB)
Dineykhan, M; Zhaugasheva, S A [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Toinbaeva, N Sh; Jakhanshir, A [al-Farabi Kazak National University, 480012 Almaty (Kazakhstan)
2009-07-28
Based on the investigation of the asymptotic behaviour of the polarization loop function for charged n scalar particles in an external gauge field, we determine the interaction Hamiltonian including relativistic corrections. The mass spectrum of the bound state is analytically derived. The mechanism for arising of the constituent mass of the relativistic bound-state forming particles is explained. The mass and the constituent mass of the two-, three- and n-body relativistic bound states are calculated taking into account relativistic corrections. The corrections arising due to the one- and two-loop electron polarization to the energy spectrum of muonic hydrogen with orbital and radial excitations are calculated.
Bound states and scattering in four-body systems
International Nuclear Information System (INIS)
Narodetsky, I.M.
1979-01-01
It is the purpose of this review to provide the clear and elementary introduction in the integral equation method and to demonstrate explicitely its usefulness for the physical applications. The existing results concerning the application of the integral equation technique for the four-nucleon bound states and scattering are reviewed.The treatment is based on the quasiparticle approach that permits the simple interpretation of the equations in terms of quasiparticle scattering. The mathematical basis for the quasiparticle approach is the Hilbert-Schmidt theorem of the Fredholm integral equation theory. This paper contains the detailed discussion of the Hilbert-Schmidt expansion as applied to the 2-particle amplitudes and to the 3 + 1 and 2 + 2 amplitudes which are the kernels of the four-body equations. The review contains essentially the discussion of the four-body quasiparticle equations and results obtained for bound states and scattering
Controlling speedup in open quantum systems through manipulation of system-reservoir bound states
Behzadi, N.; Ahansaz, B.; Ektesabi, A.; Faizi, E.
2017-05-01
In this paper, we give a mechanism for controlling speedup of a single-qubit open quantum system by exclusively manipulating the system-reservoir bound states using additional noninteracting qubits. It is demonstrated that providing stronger bound states in the system-reservoir spectrum makes the single qubit evolve with higher speed. We examine the performance of the mechanism for different spectral densities such as Lorentzian and ohmic and find out the decisive role of bound states' manipulation in the speeding up of quantum evolution.
Majorana bound states in a coupled quantum-dot hybrid-nanowire system
DEFF Research Database (Denmark)
Deng, M. T.; Vaitiekenas, S.; Hansen, E. B.
2016-01-01
Hybrid nanowires combining semiconductor and superconductor materials appear well suited for the creation, detection, and control of Majorana bound states (MBSs). We demonstrate the emergence of MBSs from coalescing Andreev bound states (ABSs) in a hybrid InAs nanowire with epitaxial Al, using...... with the end-dot bound state, which is in agreement with a numerical model. The ABS/MBS spectra provide parameters that are useful for understanding topological superconductivity in this system....
Bound states and molecular structure of systems with hyperons
International Nuclear Information System (INIS)
Akaishi, Y.
1992-01-01
Microscopic calculations are done for Σ-hypernuclear few-body systems by a method named ATMS. Among two- to five-body systems, only the Σ 4 He(0 + ) and Σ 4 H(0 + ) hypernuclei are expected to be bound: The binding energy and the width of the former are calculated to be 3.7 ∼ 4.6 MeV and 4.5 ∼ 7.9 MeV, respectively. The observation of Σ 4 He at KEK is in good agreement with the above prediction. The nucleus-Σ potential has a strong Lane term and a repulsive bump at short distance. The Lane term makes the system bound and the bump suppresses the ΣN → ΛN conversion. X-ray measurement of level shifts in the 4 He-Σ - , 3 He-Σ - and 3 H-Σ - atoms can provide another information on the Lane term. In 208 Pb, there may exist a peculiar state, Coulomb-assisted (atomnucleus) hybrid state, where Σ - is trapped in the surface region by the strong interaction with the aid of the inner centrifugal repulsion and the outer Coulomb attraction. An analysis is given for new data of Ξ -.12 C atomic or nuclear systems from the emulsion-counter experiment at KEK. The double-Λ hypernucleus formation rate is calculated for a stopped Ξ - on 4 He. A high branching ratio of 37% is obtained for the ΛΛ 4 H formation from a Ξ -.4 He atom. The detection of about 2.3 MeV neutron is proposed to search for lightest double-Λ hypernucleus ΛΛ 4 H. (author)
Comment on ``Weakly bound states of the He-He-Ca triatomic system''
López-Durán, D. David; González-Lezana, T.; Delgado-Barrio, G.; Villarreal, P.; Gianturco, F. A.
2012-07-01
We discuss the computational results on the energetics and features of the bound states of one and two He atoms attached to a Ca atom, which have been presented by Gou and Li in a recently published paper in Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.85.012510 85, 012510 (2012). We show that, given their choice for the interaction potential-energy surface, the energy they found for the three-particle complex's ground state must be incorrect. We also point out that a large number of their excited states for the same system do not really exist since they are located above either of the two-atom components' bound-state energies.
Topologically protected bound states in one-dimensional Floquet acoustic waveguide systems
Peng, Yu-Gui; Geng, Zhi-Guo; Zhu, Xue-Feng
2018-03-01
Topological manipulation of sound has recently been a hot spot in acoustics due to the fascinating property of defect immune transport. To the best of our knowledge, the studies on one-dimensional (1D) topological acoustic systems hitherto mainly focus on the case of the Su-Schrieffer-Heeger model. Here, we show that topologically protected bound states may also exist in 1D periodically modulated acoustic waveguide systems, viz., 1D Floquet topological insulators. The results show that tuning the coupling strength in a waveguide lattice could trigger topological phase transition, which gives rise to topologically protected interface states as we put together two waveguide lattices featured with different topological phases or winding numbers. However, for the combined lattice, input at the waveguides other than the interfacial ones will excite bulk states. We have further verified the robustness of interface bound states against the variation of coupling strengths between the two distinct waveguide lattices. This work extends the scope of topological acoustics and may promote potential applications for acoustic devices with topological functionalities.
Shot noise in a quantum dot system coupled with Majorana bound states
Chen, Qiao; Chen, Ke-Qiu; Zhao, Hong-Kang
2014-08-01
We investigate the spectral density of shot noise and current for the system of a quantum dot coupled to Majorana bound states (MBS) employing the nonequilibrium Green’s function. The Majorana bound states at the end of the wire strongly affect the shot noise. There are two types of coupling in the system: dot-MBS and MBS-MBS coupling. The curves of shot noise and current versus coupling strength have novel steps owing to the energy-level splitting caused by dot-MBS coupling. The magnitude of these steps increases with the strength of dot-MBS coupling λ but decreases with the strength of MBS-MBS coupling. The steps shift toward the large ∣eV∣ region as λ or ɛM increases. In addition, dot-MBS coupling enhances the shot noise while MBS-MBS coupling suppresses the shot noise. In the absence of MBS-MBS coupling, a sharp jump emerges in the curve of the Fano factor at zero bias owing to the differential conductance being reduced by a factor of 1/2. This provides a novel technique for the detection of Majorana fermions.
Relativistic two-fermion problem with the most general electric and magnetic potentials
International Nuclear Information System (INIS)
Yilmazer, A.U.
1986-01-01
The energy equation of two spin-1/2 particles interacting with their charges and anomalous magnetic moments is examined. Starting with the most general Hamiltonian already obtained by other authors, the relevant wave equation has been written in terms of the generators of the de Sitter group. The radial equations for four different two-fermion systems are derived and the positronium case is studied in detail. Their bound state solutions are discussed and the similarity to the sixteen radial equations arrived at by other authors in completely different manner is pointed out. (author)
Aspects of Majorana Bound States in One-Dimensional Systems with and without Time-Reversal Symmetry
DEFF Research Database (Denmark)
Wölms, Konrad Udo Hannes
In recent years there has been a lot of interest in topological phases of matter. Unlike conventional phases of matter, topological phases are not distinguished by symmetries, but by so-called topological invariants which have more subtle physical implications. It comes therefore as no surprise...... phase the edge excitations are called Majorana bound states and they are interesting in themselves. There has been a lot of eort in detecting Majorana bound states in the lab. One reason is that these excitations provide evidence that a system is indeed in a topological phase. It is therefore required...... to have unambiguous experimental evidence for the presence Majorana bound states, which in turn requires a good theoretical understanding of the physics associated with Majorana bound states. In particular for the most common experimental methods that are used to study them, the signature of Majorana...
Directory of Open Access Journals (Sweden)
Yu.V.Slyusarenko
2006-01-01
Full Text Available The response of the system, consisting of two types of opposite-charged fermions and their bound states (hydrogen-like atoms, to the perturbation by the external electromagnetic field in low particle kinetic energies region is studied. Investigations are based on using a new formulation of the second quantization method that includes a capability of forming the particle bound states [1]. Expressions for Green functions that describe the system response to the external electromagnetic field and take into account the presence of particle bound states (atoms are found. Macroscopic parameters of the system, such as conductivity, permittivity and magnetic permeability in terms of these Green functions are found. As an example, the perturbation of the ideal hydrogen-like plasma by the external electromagnetic field in low temperature region is considered. Expressions for the values are found that describe the ideal gas of hydrogen-like atoms Bose-condensate response to the external electromagnetic field.
International Nuclear Information System (INIS)
Inoue, J.; Ohtaka, K.
2004-01-01
We study virtual bound states in photonics, which are a vectorial extension of electron virtual bound states. The condition for these states is derived. It is found that the Mie resonant state which satisfies the condition that the size parameter is less than the angular momentum should be interpreted as a photon virtual bound state. In order to confirm the validity of the concept, we compare the photonic density of states, the width of which represents the lifetime of the photon virtual bound states, with numerical results
International Nuclear Information System (INIS)
Yan Junxia; Fu Huahua
2013-01-01
We study the electronic transport through a four-quantum-dot (FQD) structure with a diamond-like shape through nonequilibrium Green's function theory. It is observed that the bound state in the continuum (BIC) appears in this multiple QDs system, and the position of the BIC in the total density of states (TDOS) spectrum is tightly determined by the strength of the electronic hopping between the upper QD and the lower one. As the symmetry in the energy levels in these two QDs is broken, the BIC is suppressed to a general conductance peak with a finite width, and meanwhile a Fano-type antiresonance with a zero point appears in the conductance spectrum. These results will develop our understanding of the BICs and their spintronic device applications of spin filter and quantum computing.
Harris, Frank E.; Frolov, Alexei M.; Smith, Vedene H.
2003-11-01
Exponential variational expansions in relative coordinates are considered for four-body systems. All matrix elements needed for bound-state calculations are expressed as linear combinations of fifth- and sixth-order derivatives of a basic four-body integral. Computation of the basic four-body integral and its derivatives is performed directly, i.e., without any use of the branch tracking in the complex plane that is required in the Fromm/Hill approach, and by methods that take into account the termwise singularities of the formulas. The final computational procedure is relatively simple, physically transparent, and numerically stable. The methods are illustrated with sample data that show the importance of a singularity-canceling approach and that the increased precision thereby made possible permits more accurate wave function optimization than heretofore.
Instanton bound states in ABJM theory
Energy Technology Data Exchange (ETDEWEB)
Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst. and Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics
2013-06-15
The partition function of the ABJM theory receives non-perturbative corrections due to instanton effects. We study these non-perturbative corrections, including bound states of worldsheet instantons and membrane instantons, in the Fermi-gas approach. We require that the total non-perturbative correction should be always finite for arbitrary Chern-Simons level. This finiteness is realized quite non-trivially because each bound state contribution naively diverges at some levels. The poles of each contribution should be canceled out in total. We use this pole cancellation mechanism to find unknown bound state corrections from known ones. We conjecture a general expression of the bound state contribution. Summing up all the bound state contributions, we find that the effect of bound states is simply incorporated into the worldsheet instanton correction by a redefinition of the chemical potential in the Fermi-gas system. Analytic expressions of the 3- and 4-membrane instanton corrections are also proposed.
Comments upon a bound state model for a two body system
International Nuclear Information System (INIS)
Micu, L.
2005-01-01
We show that in classical mechanics, classical and relativistic quantum mechanics it is possible to replace the equation of the relative motion for a two-body bound system at rest by individual dynamical equations with correlated solutions. We compare the representations of a bound system in terms of the relative and individual coordinates and mention some of the observable differences. (author)
Efimov states and bound state properties in selected nuclear and molecular three-body systems
International Nuclear Information System (INIS)
Huber, H.S.
1978-01-01
The search is made among selected three-body systems for possible Efimov state behavior. In order to carry out this analysis of phenomenological potentials a new mathematical approach, the FCM (Faddeev-coordinate-momentum) technique, is developed. The analysis then proceeds through the framework of the Faddeev equations by employing the UPE (unitary pole expansion) to reduce these equations to numerically feasible form. The systems chosen for analysis are the 4 He trimer and the three-α model of 12 C. Efimov states are not found in 12 C, thus answering speculation among nuclear theorists. The 4 He trimer, on the other hand, manifests Efimov states for each potential considered and the characteristics of these states are extensively analyzed. Since Efimov states are predicted by all of the phenomenological potentials considered, these states would seem to be a realistically fundamental property of the 4 He trimer system
Hoyer, Paul
2017-05-01
Bound state poles in the S-matrix of perturbative QED are generated by the divergence of the expansion in α . The perturbative corrections are necessarily singular when expanding around free, {O}( α ^0 ) in and out states that have no overlap with finite-sized atomic wave functions. Nevertheless, measurables such as binding energies do have well-behaved expansions in powers of α (and log α ). It is desirable to formulate the concept of "lowest order" for gauge theory bound states such that higher order corrections vanish in the α → 0 limit. This may allow to determine a lowest order term for QCD hadrons which incorporates essential features such as confinement and chiral symmetry breaking, and thus can serve as the starting point of a useful perturbative expansion. I discuss a "Born" (no loop, lowest order in \\hbar ) approximation. Born level states are bound by gauge fields which satisfy the classical field equations. Gauss' law determines a distinct field A^0({\\varvec{x}}) for each instantaneous position of the charges. A Poincaré covariant boundary condition for the gluon field leads to a confining potential for q\\bar{q} and qqq states. In frames where the bound state is in motion the classical gauge field is obtained by a Lorentz boost of the rest frame field.
DEFF Research Database (Denmark)
Faupin, Jeremy; Møller, Jacob Schach; Skibsted, Erik
2011-01-01
We study regularity of bound states pertaining to embedded eigenvalues of a self-adjoint operator H, with respect to an auxiliary operator A that is conjugate to H in the sense of Mourre. We work within the framework of singular Mourre theory which enables us to deal with confined massless Pauli–......–Fierz models, our primary example, and many-body AC-Stark Hamiltonians. In the simpler context of regular Mourre theory, our results boil down to an improvement of results obtained recently in [8, 9]....
International Nuclear Information System (INIS)
Takahashi, N.K.
1986-01-01
The one-dimensional three body system in which two identical particles interact with a massive excitable core is studied. The bound states and the scattering states of this system are both investigated. In the scattering problem, resonance phenomena which are related to the excitability of the core are observed. In a complementary study, the S-matrix poles situated on the unphysical energy sheet, which are related to the resonances observed in the scattering problem are determined. (author) [pt
International Nuclear Information System (INIS)
Perez, J.F.; Coutinho, F.A.B.; Malta, C.P.
1985-01-01
It is shown that critical long distance behaviour for a two-body potential, defining the finiteness or infinitude of the number of negative eigenvalues of Schrodinger operators in ν-dimensions, are given by v sub(k) (r) = - [ν-2/2r] 2 - 1/(2rlnr) 2 + ... - 1/(2rlnr.lnlnr...ln sub(k)r) 2 where k=0,1... for ν not=2 and k=1,2... if ν=2. This result is a consequence of logarithmic corrections to an inequality known as Uncertainty Principle. If the continuum threshold in the N-body problem is defined by a two-cluster break up our results generate corrections to the existing sufficient conditions for the existence of infinitely many bound states. (Author) [pt
Frolov, Alexei M.
2018-03-01
The universal variational expansion for the non-relativistic three-body systems is explicitly constructed. This universal expansion can be used to perform highly accurate numerical computations of the bound state spectra in various three-body systems, including Coulomb three-body systems with arbitrary particle masses and electric charges. Our main interest is related to the adiabatic three-body systems which contain one bound electron and two heavy nuclei of hydrogen isotopes: the protium p, deuterium d and tritium t. We also consider the analogous (model) hydrogen ion ∞H2+ with the two infinitely heavy nuclei.
The S-matrix of string bound states
Energy Technology Data Exchange (ETDEWEB)
Arutyunov, Gleb [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)], E-mail: g.arutyunov@phys.uu.nl; Frolov, Sergey [School of Mathematics, Trinity College, Dublin 2 (Ireland)], E-mail: frolovs@maths.tcd.ie
2008-11-21
We find the S-matrix which describes the scattering of two-particle bound states of the light-cone string sigma model on AdS{sub 5}xS{sup 5}. We realize the M-particle bound state representation of the centrally extended su(2|2) algebra on the space of homogeneous (super)symmetric polynomials of degree M depending on two bosonic and two fermionic variables. The scattering matrix S{sup MN} of M- and N-particle bound states is a differential operator of degree M+N acting on the product of the corresponding polynomials. We require this operator to obey the invariance condition and the Yang-Baxter equation, and we determine it for the two cases M=1,N=2 and M=N=2. We show that the S-matrices found satisfy generalized physical unitarity, CPT invariance, parity transformation rule and crossing symmetry. Although the dressing factor as a function of four parameters x{sub 1}{sup +},x{sub 1}{sup -},x{sub 2}{sup +},x{sub 2}{sup -} is universal for scattering of any bound states, it obeys a crossing symmetry equation which depends on M and N.
Scattering theory methods for bound state problems
International Nuclear Information System (INIS)
Raphael, R.B.; Tobocman, W.
1978-01-01
For the analysis of the properties of a bound state system one may use in place of the Schroedinger equation the Lippmann-Schwinger (LS) equation for the wave function or the LS equation for the reactance operator. Use of the LS equation for the reactance operator constrains the solution to have correct asymptotic behaviour, so this approach would appear to be desirable when the bound state wave function is to be used to calculate particle transfer form factors. The Schroedinger equation based N-level analysis of the s-wave bound states of a square well is compared to the ones based on the LS equation. It is found that the LS equation methods work better than the Schroedinger equation method. The method that uses the LS equation for the wave function gives the best results for the wave functions while the method that uses the LS equation for the reactance operator gives the best results for the binding energies. The accuracy of the reactance operator based method is remarkably insensitive to changes in the oscillator constant used for the harmonic oscillator function basis set. It is also remarkably insensitive to the number of nodes in the bound state wave function. (Auth.)
The K-harmonics methods and the bound-state spectrum of one-dimensional three-body system
International Nuclear Information System (INIS)
Malta, C.P.; Coutinho, F.A.B.
1983-03-01
The symmetry properties of one-dimensional hyperspherical harmonics components have been investigated. For a system of three identical particles moving in one-dimension it is shown how to construct solutions of definite parity and definite transformation properties under permutation of any particle pair. General qualitative features of the spectrum of the one-dimensional system are deduced for particles satisfying Bose-Einstein, Fermi-Dirac and Boltzmann statistics. (Author) [pt
Experimental observation of optical bound states in the continuum.
Plotnik, Yonatan; Peleg, Or; Dreisow, Felix; Heinrich, Matthias; Nolte, Stefan; Szameit, Alexander; Segev, Mordechai
2011-10-28
We present the experimental observation of bound states in the continuum. Our experiments are carried out in an optical waveguide array structure, where the bound state (guided mode) is decoupled from the continuum by virtue of symmetry only. We demonstrate that breaking the symmetry of the system couples this special bound state to continuum states, leading to radiative losses. These experiments demonstrate ideas initially proposed by von Neumann and Wigner in 1929 and offer new possibilities for integrated optical elements and analogous realizations with cold atoms and optical trapping of particles.
Impedance, zero energy wavefunction, and bound states
Martin, A
1977-01-01
The authors show that for the three-dimensional Schrodinger equation without spherical symmetry the existence of a bound state is related to the impossibility of solving a certain equation; it is further shown that some general conditions for the absence of bound states are readily obtained from this property. (13 refs).
Quasi-bound states in continuum
International Nuclear Information System (INIS)
Nakamura, Hiroaki; Hatano, Naomichi; Garmon, Sterling; Petrosky, Tomio
2007-08-01
We report the prediction of quasi-bound states (resonant states with very long lifetimes) that occur in the eigenvalue continuum of propagating states for a wide region of parameter space. These quasi-bound states are generated in a quantum wire with two channels and an adatom, when the energy bands of the two channels overlap. A would-be bound state that lays just below the upper energy band is slightly destabilized by the lower energy band and thereby becomes a resonant state with a very long lifetime (a second QBIC lays above the lower energy band). (author)
Relativistic bound state approach to fundamental forces including gravitation
Directory of Open Access Journals (Sweden)
Morsch H.P.
2012-06-01
Full Text Available To describe the structure of particle bound states of nature, a relativistic bound state formalism is presented, which requires a Lagrangian including scalar coupling of two boson fields. The underlying mechanisms are quite complex and require an interplay of overlapping boson fields and fermion-antifermion production. This gives rise to two potentials, a boson-exchange potential and one identified with the long sought confinement potential in hadrons. With minimal requirements, two elementary massless fermions (quantons - with and without charge - and one gauge boson, hadrons and leptons but also atoms and gravitational systems are described by bound states with electric and magnetic coupling between the charges and spins of quantons. No need is found for colour, Higgs-coupling and supersymmetry.
Viewing Majorana Bound States by Rabi Oscillations.
Wang, Zhi; Liang, Qi-Feng; Yao, Dao-Xin; Hu, Xiao
2015-07-08
We propose to use Rabi oscillation as a probe to view the fractional Josepshon relation (FJR) associated with Majorana bound states (MBSs) expected in one-dimensional topological superconductors. The system consists of a quantum dot (QD) and an rf-SQUID with MBSs at the Josephson junction. Rabi oscillations between energy levels formed by MBSs are induced by ac gate voltage controlling the coupling between QD and MBS when the photon energy proportional to the ac frequency matches gap between quantum levels formed by MBSs and QD. As a manifestation of the Rabi oscillation in the whole system involving MBSs, the electron occupation on QD oscillates with time, which can be measured by charge sensing techniques. With Floquet theorem and numerical analysis we reveal that from the resonant driving frequency for coherent Rabi oscillation one can directly map out the FJR cos(πΦ/Φ0) as a signature of MBSs, with Φ the magnetic flux through SQUID and Φ0 = hc/2e the flux quantum. The present scheme is expected to provide a clear evidence for MBSs under intensive searching.
Three-nucleon forces and the trinucleon bound states
International Nuclear Information System (INIS)
Friar, J.L.; Frois, B.
1986-04-01
A summary of the bound-state working group session of the ''International Symposium on the Three-Body Force in the Three-Nucleon System'' is presented. The experimental evidence for three-nucleon forces has centered on two ground state properties: the tritium binding energy and the trinucleon form factors. Both are discussed
Effect of substrate on optical bound states in the continuum in 1D photonic structures
DEFF Research Database (Denmark)
Sadrieva, Z. F.; Sinev, I. S.; Samusev, A. K.
2017-01-01
Optical bound states in the continuum (BIC) are localized states with energy lying above the light line and having infinite lifetime. Any losses taking place in real systems result in transformation of the bound states into resonant states with finite lifetime. In this work, we analyze properties...
Spectral singularities and zero energy bound states
Energy Technology Data Exchange (ETDEWEB)
Heiss, W.D. [National Institute for Theoretical Physics, Stellenbosch Institute for Advanced Study, and Institute of Theoretical Physics, University of Stellenbosch, 7602 Matieland (South Africa); Nazmitdinov, R.G. [Department de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)
2011-08-15
Single particle scattering around zero energy is re-analysed in view of recent experiments with ultra-cold atoms, nano-structures and nuclei far from the stability valley. For non-zero orbital angular momentum the low energy scattering cross section exhibits dramatic changes depending on the occurrence of either a near resonance or a bound state or the situation in between, that is a bound state at zero energy. Such state is singular in that it has an infinite scattering length, behaves for the eigenvalues but not for the eigenfunctions as an exceptional point and has no pole in the scattering function. These results should be observable whenever the interaction or scattering length can be controlled. (authors)
Yukawa Bound States and Their LHC Phenomenology
Directory of Open Access Journals (Sweden)
Enkhbat Tsedenbaljir
2013-01-01
Full Text Available We present the current status on the possible bound states of extra generation quarks. These include phenomenology and search strategy at the LHC. If chiral fourth-generation quarks do exist their strong Yukawa couplings, implied by current experimental lower bound on their masses, may lead to formation of bound states. Due to nearly degenerate 4G masses suggested by Precision Electroweak Test one can employ “heavy isospin” symmetry to classify possible spectrum. Among these states, the color-octet isosinglet vector ω 8 is the easiest to be produced at the LHC. The discovery potential and corresponding decay channels are covered in this paper. With possible light Higgs at ~125 GeV two-Higgs doublet version is briefly discussed.
Closed form bound-state perturbation theory
Directory of Open Access Journals (Sweden)
Ollie J. Rose
1980-01-01
Full Text Available The perturbed Schrödinger eigenvalue problem for bound states is cast into integral form using Green's Functions. A systematic algorithm is developed and applied to the resulting equation giving rise to approximate solutions expressed as functions of the given perturbation parameter. As a by-product, convergence radii for the traditional Rayleigh-Schrödinger and Brillouin-Wigner perturbation theories emerge in a natural way.
New approach to calculate bound state eigenvalues
International Nuclear Information System (INIS)
Gerck, E.; Gallas, J.A.C.
1983-01-01
A method of solving the radial Schrodinger equation for bound states is discussed. The method is based on a new piecewise representation of the second derivative operator on a set of functions that obey the boundary conditions. This representation is trivially diagonalised and leads to closed form expressions of the type E sub(n)=E(ab+b+c/n+...) for the eigenvalues. Examples are given for the power-law and logarithmic potentials. (Author) [pt
Volume dependence of N-body bound states
König, Sebastian; Lee, Dean
2018-04-01
We derive the finite-volume correction to the binding energy of an N-particle quantum bound state in a cubic periodic volume. Our results are applicable to bound states with arbitrary composition and total angular momentum, and in any number of spatial dimensions. The only assumptions are that the interactions have finite range. The finite-volume correction is a sum of contributions from all possible breakup channels. In the case where the separation is into two bound clusters, our result gives the leading volume dependence up to exponentially small corrections. If the separation is into three or more clusters, there is a power-law factor that is beyond the scope of this work, however our result again determines the leading exponential dependence. We also present two independent methods that use finite-volume data to determine asymptotic normalization coefficients. The coefficients are useful to determine low-energy capture reactions into weakly bound states relevant for nuclear astrophysics. Using the techniques introduced here, one can even extract the infinite-volume energy limit using data from a single-volume calculation. The derived relations are tested using several exactly solvable systems and numerical examples. We anticipate immediate applications to lattice calculations of hadronic, nuclear, and cold atomic systems.
Two-nucleon bound states in quenched lattice QCD
International Nuclear Information System (INIS)
Yamazaki, T.; Kuramashi, Y.; Ukawa, A.
2011-01-01
We address the issue of bound state in the two-nucleon system in lattice QCD. Our study is made in the quenched approximation at the lattice spacing of a=0.128 fm with a heavy quark mass corresponding to m π =0.8 GeV. To distinguish a bound state from an attractive scattering state, we investigate the volume dependence of the energy difference between the ground state and the free two-nucleon state by changing the spatial extent of the lattice from 3.1 fm to 12.3 fm. A finite energy difference left in the infinite spatial volume limit leads us to the conclusion that the measured ground states for not only spin triplet but also singlet channels are bounded. Furthermore the existence of the bound state is confirmed by investigating the properties of the energy for the first excited state obtained by a 2x2 diagonalization method. The scattering lengths for both channels are evaluated by applying the finite volume formula derived by Luescher to the energy of the first excited states.
Bound states in a strong magnetic field
International Nuclear Information System (INIS)
Machado, C. S.; Navarra, F. S.; Noronha, J.; Oliveira, E. G.; Ferreira Filho, L. G.
2013-01-01
We expect a strong magnetic field to be produced in the perpendicular direction to the reaction plane, in a noncentral heavy-ion collision . The strength of the magnetic field is estimated to be eB∼m 2 π ∼ 0.02 GeV 2 at the RHIC and eB∼ 15m 2 π ∼ 0.3 GeV 2 at the LHC. We investigate the effects of the magnetic field on B 0 and D 0 mesons, focusing on the changes of the energy levels and of the mass of the bound states.
Andreev bound states. Some quasiclassical reflections
Energy Technology Data Exchange (ETDEWEB)
Lin, Y., E-mail: yiriolin@illinois.edu; Leggett, A. J. [University of Illinois at Urhana-Champaign, Dept. of Physics (United States)
2014-12-15
We discuss a very simple and essentially exactly solvable model problem which illustrates some nice features of Andreev bound states, namely, the trapping of a single Bogoliubov quasiparticle in a neutral s-wave BCS superfluid by a wide and shallow Zeeman trap. In the quasiclassical limit, the ground state is a doublet with a splitting which is proportional to the exponentially small amplitude for “normal” reflection by the edges of the trap. We comment briefly on a prima facie paradox concerning the continuity equation and conjecture a resolution to it.
Bound states in curved quantum waveguides
International Nuclear Information System (INIS)
Exner, P.; Seba, P.
1987-01-01
We study free quantum particle living on a curved planar strip Ω of a fixed width d with Dirichlet boundary conditions. It can serve as a model for electrons in thin films on a cylindrical-type substrate, or in a curved quantum wire. Assuming that the boundary of Ω is infinitely smooth and its curvature decays fast enough at infinity, we prove that a bound state with energy below the first transversal mode exists for all sufficiently small d. A lower bound on the critical width is obtained using the Birman-Schwinger technique. (orig.)
Fermionic bound states in distinct kinklike backgrounds
Energy Technology Data Exchange (ETDEWEB)
Bazeia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Mohammadi, A. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, Paraiba (Brazil)
2017-04-15
This work deals with fermions in the background of distinct localized structures in the two-dimensional spacetime. Although the structures have a similar topological character, which is responsible for the appearance of fractionally charged excitations, we want to investigate how the geometric deformations that appear in the localized structures contribute to the change in the physical properties of the fermionic bound states. We investigate the two-kink and compact kinklike backgrounds, and we consider two distinct boson-fermion interactions, one motivated by supersymmetry and the other described by the standard Yukawa coupling. (orig.)
Distinguishing Majorana bound states and Andreev bound states with microwave spectra
Zhang, Zhen-Tao
2018-04-01
Majorana fermions are a fascinating and not yet confirmed quasiparticles in condensed matter physics. Here we propose using microwave spectra to distinguish Majorana bound states (MBSs) from topological trivial Andreev bound states. By numerically calculating the transmission and Zeeman field dependence of the many-body excitation spectrum of a 1D Josephson junction, we find that the two kinds of bound states have distinct responses to variations in the related parameters. Furthermore, the singular behaviors of the MBSs spectrum could be attributed to the robust fractional Josephson coupling and nonlocality of MBSs. Our results provide a feasible method to verify the existence of MBSs and could accelerate its application to topological quantum computation.
On Aharonov-Casher bound states
Energy Technology Data Exchange (ETDEWEB)
Silva, E.O. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, MA (Brazil); Andrade, F.M. [Universidade Estadual de Ponta Grossa, Departamento de Matematica e Estatistica, Ponta Grossa, PR (Brazil); Filgueiras, C. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, PB (Brazil); Belich, H. [Universidade Federal do Espirito Santo, Departamento de Fisica e Quimica, Vitoria, ES (Brazil)
2013-04-15
In this work bound states for the Aharonov-Casher problem are considered. According to Hagen's work on the exact equivalence between spin-1/2 Aharonov-Bohm and Aharonov-Casher effects, is known that the {nabla}.E term cannot be neglected in the Hamiltonian if the spin of particle is considered. This term leads to the existence of a singular potential at the origin. By modeling the problem by boundary conditions at the origin which arises by the self-adjoint extension of the Hamiltonian, we derive for the first time an expression for the bound state energy of the Aharonov-Casher problem. As an application, we consider the Aharonov-Casher plus a two-dimensional harmonic oscillator. We derive the expression for the harmonic oscillator energies and compare it with the expression obtained in the case without singularity. At the end, an approach for determination of the self-adjoint extension parameter is given. In our approach, the parameter is obtained essentially in terms of physics of the problem. (orig.)
Surface-bound states in nanodiamonds
Han, Peng; Antonov, Denis; Wrachtrup, Jörg; Bester, Gabriel
2017-05-01
We show via ab initio calculations and an electrostatic model that the notoriously low, but positive, electron affinity of bulk diamond becomes negative for hydrogen passivated nanodiamonds and argue that this peculiar situation (type-II offset with a vacuum level at nearly midgap) and the three further conditions: (i) a surface dipole with positive charge on the outside layer, (ii) a spherical symmetry, and (iii) a dielectric mismatch at the surface, results in the emergence of a peculiar type of surface state localized just outside the nanodiamond. These states are referred to as "surface-bound states" and have consequently a strong environmental sensitivity. These type of states should exist in any nanostructure with negative electron affinity. We further quantify the band offsets of different type of nanostructures as well as the exciton binding energy and contrast the results with results for "conventional" silicon quantum dots.
Fano effect and Andreev bound states in T-shape double quantum dots
International Nuclear Information System (INIS)
Calle, A.M.; Pacheco, M.; Orellana, P.A.
2013-01-01
In this Letter, we investigate the transport through a T-shaped double quantum dot coupled to two normal metal leads left and right and a superconducting lead. Analytical expressions of Andreev transmission and local density of states of the system at zero temperature have been obtained. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot. We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. Our results show that as a consequence of quantum interference and proximity effect, the transmission from normal to normal lead exhibits Fano resonances due to Andreev bound states. We find that this interference effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. - Highlights: • Transport properties of a double quantum dot coupled in T-shape configuration to conducting and superconducting leads are studied. • We report Fano antiresonances in the normal transmission due to the Andreev reflections in the superconducting lead. • We report for first time the Fano effect produced by Andreev bound states in a side quantum dot. • Fano effect allows us to study the Andreev bound states in the changes in the conductance between two normal leads. • Andreev bound states survives even for strong dot-superconductor coupling
Higgs interchange and bound states of superheavy fermions
Indian Academy of Sciences (India)
Hypothetical superheavy fourth-generation fermions with a very small coupling with the rest of the Standard Model can give rise to long enough lived bound states. The production and the detection of these bound states would be experimentally feasible at the LHC. Extending, in the present study, the analysis of other ...
Quasi-bound states, resonance tunnelling, and tunnelling times ...
Indian Academy of Sciences (India)
We compare the behaviour of the magnitude of wave func- tions of quasi-bound states with those for bound states and with the above-barrier state wave function. We deduce a Breit–Wigner-type resonance formula which neatly describes the variation of transmission coefficient as a function of energy at below-barrier ...
Dark-matter bound states from Feynman diagrams
Petraki, K.; Postma, M.; Wiechers, M.
2015-01-01
If dark matter couples directly to a light force mediator, then it may form bound states in the early universe and in the non-relativistic environment of haloes today. In this work, we establish a field-theoretic framework for the computation of bound-state formation cross-sections, de-excitation
Proximity effect tunneling into virtual bound state alloys
International Nuclear Information System (INIS)
Tang, I.M.; Roongkkeadsakoon, S.
1984-01-01
The effects of a narrow virtual bound state formed by transition metal impurities dissolved in the normal layer of a superconducting proximity effect sandwich are studied. Using standard renormalization techniques, we obtain the changes in the transition temperatures and the jumps in the specific heat at T/sub c/ as a function of the thickness of the normal layer, of the widths of the virtual bound states, and of the impurity concentrations. It is seen that narrow virtual bound states lead to decrease in the transition temperatures, while broad virtual bound states do not. It if further seen that the narrow virtual bound state causes the reduced specific heat jump at T/sub c/ to deviate from the BCS behavior expected of the pure sandwich
Two-phonon bound states in imperfect crystals
International Nuclear Information System (INIS)
Behera, S.N.; Samsur, Sk.
1980-01-01
The question of the occurrence of two-phonon bound states in imperfect crystals is investigated. It is shown that the anharmonicity mediated two-phonon bound state which is present in perfect crystals gets modified due to the presence of impurities. Moreover, the possibility of the occurrence of a purely impurity mediated two-phonon bound state is demonstrated. The bound state frequencies are calculated using the simple Einstein oscillator model for the host phonons. The two-phonon density of states for the imperfect crystal thus obtained has peaks at the combination and difference frequencies of two host phonons besides the peaks at the bound state frequencies. For a perfect crystal the theory predicts a single peak at the two-phonon bound state frequency in conformity with experimental observations and other theoretical calculations. Experimental data on the two-phonon infrared absorption and Raman scattering from mixed crystals of Gasub(1-c)Alsub(c)P and Gesub(1-c)Sisub(c) are analysed to provide evidence in support of impurity-mediated two-phonon bound states. The relevance of the zero frequency (difference spectrum) peak to the central peak, observed in structural phase transitions, is conjectured. (author)
Impurity bound states in d-wave superconductors with subdominant order parameters
Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica
Single magnetic impurity induces intra-gap bound states in conventional s-wave superconductors (SCs) but, in d-wave SCs only virtual bound states can be induced. However, in small cuprate islands a fully gapped spectrum has recently been discovered. In this work, we investigate the real bound states due to potential and magnetic impurities in the two candidate fully gapped states for this system: the topologically trivial d + is -wave state and the topologically non-trivial d + id' -wave (chiral d-wave state). Using the analytic T-matrix formalism and self-consistent numerical tight-binding lattice calculations, we show that potential and magnetic impurities create entirely different intra-gap bound states in d + is -wave and chiral d-wave SCs. Therefore, our results suggest that the bound states mainly depend on the subdominant order parameter. Considering that recent experiments have demonstrated an access to adjustable coupling J, impurities thus offer an intriguing way to clearly distinguish between the chiral d-wave and topologically trivial d + is -wave state. This work was supported by Swedish Research Council, Swedish Foundation for Strategic Research, the Wallenberg Academy Fellows program and the Göran Gustafsson Foundation. The computations were performed on resources provided by SNIC at LUNARC.
Exact Solutions of Relativistic Bound State Problem for Spinless Bosons
Aslanzadeh, M.; Rajabi, A. A.
2017-01-01
We investigated in detail the relativistic bound states of spin-zero bosons under the influence of Coulomb-plus-linear potentials with an arbitrary combination of scalar and vector couplings. Through an exact analytical solution of three-dimensional Klein-Gordon equation, closed form expressions were derived for energy eigenvalues and wave functions and some correlations between potential parameters were found. We also presented the relativistic description of bound states and nonrelativistic limit of the problem in some special cases.
S-matrix method for the numerical determination of bound states.
Bhatia, A. K.; Madan, R. N.
1973-01-01
A rapid numerical technique for the determination of bound states of a partial-wave-projected Schroedinger equation is presented. First, one needs to integrate the equation only outwards as in the scattering case, and second, the number of trials necessary to determine the eigenenergy and the corresponding eigenfunction is considerably less than in the usual method. As a nontrivial example of the technique, bound states are calculated in the exchange approximation for the e-/He+ system and l equals 1 partial wave.
Parra-Rivas, Pedro; Gomila, Damia; Colet, Pere; Gelens, Lendert
2017-07-01
Bound states, also called soliton molecules, can form as a result of the interaction between individual solitons. This interaction is mediated through the tails of each soliton that overlap with one another. When such soliton tails have spatial oscillations, locking or pinning between two solitons can occur at fixed distances related with the wavelength of these oscillations, thus forming a bound state. In this work, we study the formation and stability of various types of bound states in the Lugiato-Lefever equation by computing their interaction potential and by analyzing the properties of the oscillatory tails. Moreover, we study the effect of higher order dispersion and noise in the pump intensity on the dynamics of bound states. In doing so, we reveal that perturbations to the Lugiato-Lefever equation that maintain reversibility, such as fourth order dispersion, lead to bound states that tend to separate from one another in time when noise is added. This separation force is determined by the shape of the envelope of the interaction potential, as well as an additional Brownian ratchet effect. In systems with broken reversibility, such as third order dispersion, this ratchet effect continues to push solitons within a bound state apart. However, the force generated by the envelope of the potential is now such that it pushes the solitons towards each other, leading to a null net drift of the solitons. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.
Recent advances in bound state quantum electrodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.; Lepage, G.P.
1977-06-01
Recent developments are reviewed in four areas of computational quantum electrodynamics: a new relativistic two-body formalism equal in rigor to the Bethe-Salpeter formalism but with strong calculational advantages is discussed; recent work on the computation of the decay rate of bound systems (positronium in particular) is presented; limits on possible composite structure of leptons are discussed; a new multidimensional integration program ('VEGAS') suitable for higher order calculations is presented
Andreev bound states and current-phase relations in three-dimensional topological insulators
Snelder, M.; Veldhorst, M.; Golubov, Alexandre Avraamovitch; Brinkman, Alexander
2013-01-01
To guide the search for the Majorana fermion, we theoretically study superconductor/topological-insulator/superconductor (S/TI/S) junctions in an experimentally relevant regime. We find that the striking features present in these systems, including the doubled periodicity of the Andreev bound states
Transport through Andreev bound states in a graphene quantum dot
Dirks, Travis; Hughes, Taylor L.; Lal, Siddhartha; Uchoa, Bruno; Chen, Yung-Fu; Chialvo, Cesar; Goldbart, Paul M.; Mason, Nadya
2011-05-01
When a low-energy electron is incident on an interface between a metal and superconductor, it causes the injection of a Cooper pair into the superconductor and the generation of a hole that reflects back into the metal--a process known as Andreev reflection. In confined geometries, this process can give rise to discrete Andreev bound states (ABS), which can enable transport of supercurrents through non-superconducting materials and have recently been proposed as a means of realizing solid-state qubits. Here, we report transport measurements of sharp, gate-tunable ABS formed in a superconductor-quantum dot (QD)-normal system realized on an exfoliated graphene sheet. The QD is formed in graphene beneath a superconducting contact as a result of a work-function mismatch. Individual ABS form when the discrete QD levels are proximity-coupled to the superconducting contact. Owing to the low density of states of graphene and the sensitivity of the QD levels to an applied gate voltage, the ABS spectra are narrow and can be continuously tuned down to zero energy by the gate voltage.
Universal extra dimensions and Kaluza-Klein bound states
International Nuclear Information System (INIS)
Carone, Christopher D.; Conroy, Justin M.; Sher, Marc; Turan, Ismail
2004-01-01
We study the bound states of the Kaluza-Klein (KK) excitations of quarks in certain models of universal extra dimensions. Such bound states may be detected at future lepton colliders in the cross section for the pair production of KK quarks near threshold. For typical values of model parameters, we find that 'KK quarkonia' have widths in the 10-100 MeV range, and production cross sections of the order of a few picobarns for the lightest resonances. Two body decays of the constituent KK quarks lead to distinctive experimental signatures. We point out that such KK resonances may be discovered before any of the higher KK modes
Positive energy bound states at higher partial waves
International Nuclear Information System (INIS)
Awin, A.M.; Kremid, A.M.
1988-06-01
Positive energy bound states (PEBS) at higher order (than the 0 th ) partial waves have been studied using a particular form factor. The phase shifts have been calculated in detail for the cases of l=0,1,2. It is found that for a rank-1 separable potential the expected behaviour, at the PEBS energy, is obtained. Finally, some important conclusions have been drawn regarding some problems previously studied in connection with s-wave positive energy bound states. (author). 8 refs, 3 figs
Parity lifetime of bound states in a proximitized semiconductor nanowire
DEFF Research Database (Denmark)
Higginbotham, Andrew Patrick; Albrecht, Sven Marian; Kirsanskas, Gediminas
2015-01-01
superconductor layer, yielding an isolated, proximitized nanowire segment. We identify Andreev-like bound states in the semiconductor via bias spectroscopy, determine the characteristic temperatures and magnetic fields for quasiparticle excitations, and extract a parity lifetime (poisoning time) of the bound...
Scaling properties of net information measures for bound states of ...
Indian Academy of Sciences (India)
Using dimensional analyses, the scaling properties of the Heisenberg uncertainty relationship as well as the various information theoretical uncertainty-like relationships are derived for the bound states corresponding to the superposition of the power potential of the form () = + $^{n_{i}}, where , , , ...
Scaling properties of net information measures for bound states of ...
Indian Academy of Sciences (India)
located at radius R The uncertainty product and all other net information measures are shown here to depend only on the parameters [si ] defined by the ... for example, the product for bound states in homoge- neous, power potentials is ... review article in a monograph on statistical complexity3 which summarizes the various ...
On resonances and bound states of Smilansky Hamiltonian
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Lotoreichik, Vladimir; Tater, Miloš
2016-01-01
Roč. 7, č. 5 (2016), s. 789-802 ISSN 2220-8054 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Smilansky Hamiltonian * resonances * resonance free region * weak coupling asymptotics * Riemann surface * bound states Subject RIV: BE - Theoretical Physics
The generalized pseudospectral approach to the bound states of the ...
Indian Academy of Sciences (India)
Abstract. The generalized pseudospectral (GPS) method is employed to calculate the bound states of the Hulthén and the Yukawa potentials in quantum mechanics, with special emphasis on higher excited states and stronger couplings. Accurate energy eigenvalues, expectation values and radial probability densities are ...
K-nuclear bound states in a dynamical model
Czech Academy of Sciences Publication Activity Database
Mareš, Jiří; Friedman, E.; Gal, A.
2006-01-01
Roč. 770, 1/2 (2006), s. 84-105 ISSN 0375-9474 Institutional research plan: CEZ:AV0Z10480505 Keywords : kaonic atoms * K-nuclear bound states * K-nucleus interaction Subject RIV: BE - Theoretical Physics Impact factor: 2.155, year: 2006
Stieltjes electrostatic model interpretation for bound state problems
Indian Academy of Sciences (India)
In this paper, it is shown that Stieltjes electrostatic model and quantum Hamilton Jacobi formalism are analogous to each other. This analogy allows the bound state problem to mimic as unit moving imaginary charges i ℏ , which are placed in between the two fixed imaginary charges arising due to the classical turning ...
Towards flavored bound states beyond rainbows and ladders
International Nuclear Information System (INIS)
El-Bennich, B.; Rojas, E.; Melo, J. P. B. C. de; Paracha, M. A.
2014-01-01
We give a snapshot of recent progress in solving the Dyson-Schwinger equation with a beyond rainbow-ladder ansatz for the dressed quark-gluon vertex which includes ghost contributions. We discuss the motivations for this approach with regard to heavy-flavored bound states and form factors and briefly describe future steps to be taken
Stieltjes electrostatic model interpretation for bound state problems
Indian Academy of Sciences (India)
Abstract. In this paper, it is shown that Stieltjes electrostatic model and quantum Hamilton Jacobi formalism are analogous to each other. This analogy allows the bound state problem to mimic as n unit moving imaginary charges i¯h, which are placed in between the two fixed imaginary charges arising due to the classical ...
The generalized pseudospectral approach to the bound states of the ...
Indian Academy of Sciences (India)
The generalized pseudospectral (GPS) method is employed to calculate the bound states of the Hulthén and the Yukawa potentials in quantum mechanics, with special emphasis on higher excited states and stronger couplings. Accurate energy eigenvalues, expectation values and radial probability densities are obtained ...
Chiral Symmetry, Heavy Quark Symmetry and Bound States
Yoshida, Yuhsuke
1995-01-01
I investigate the bound state problems of lowest-lying mesons and heavy mesons. Chiral symmetry is essential when one consider lowest-lying mesons. Heavy quark symmetry plays an central role in considering the semi-leptonic form factors of heavy mesons. Various properties based on the symmetries are revealed using Bethe-Salpeter equations.
Relation between properties of long-range diatomic bound states
DEFF Research Database (Denmark)
Spirko, Vladimir; Sauer, Stephan P. A.; Szalewicz, Krzysztof
2013-01-01
Long-range states of diatomic molecules have average values of internuclear separations at least one order of magnitude larger than the equilibrium value of R. For example, the helium dimer 4He2 has a single bound state with
Two-particle Bound States: Mesons and Glueballs
Directory of Open Access Journals (Sweden)
Ganbold G.
2010-04-01
Full Text Available A relativistic quantum-ﬁeld model based on analytic conﬁnement is considered to study the twoquark and two-gluon bound states. For the spectra of two-particle bound states we solve the ladder Bethe-Salpeter equation. We provide a new, independent and analytic estimate of the lowest glueball mass and found it at 1660 MeV. The conventional mesons and the weak decay constants are described to extend the consideration. By using a few parameters (the quark masses, the coupling constant and the conﬁnement scale we obtain numerical results which are in reasonable agreement with experimental evidence in the wide range of energy scale from 140MeV up to 9 GeV. The model can serve a reasonable framework to describe simultaneously diﬀerent sectors in low-energy particle physics.
Bound state equation for the Nakanishi weight function
Carbonell, J.; Frederico, T.; Karmanov, V. A.
2017-06-01
The bound state Bethe-Salpeter amplitude was expressed by Nakanishi using a two-dimensional integral representation, in terms of a smooth weight function g, which carries the detailed dynamical information. A similar, but one-dimensional, integral representation can be obtained for the Light-Front wave function in terms of the same weight function g. By using the generalized Stieltjes transform, we first obtain g in terms of the Light-Front wave function in the complex plane of its arguments. Next, a new integral equation for the Nakanishi weight function g is derived for a bound state case. It has the standard form g = N g, where N is a two-dimensional integral operator. We give the prescription for obtaining the kernel N starting with the kernel K of the Bethe-Salpeter equation. The derivation is valid for any kernel given by an irreducible Feynman amplitude.
Observation of Andreev bound states at spin-active interfaces
Energy Technology Data Exchange (ETDEWEB)
Beckmann, Detlef; Wolf, Michael Johannes [KIT, Institut fuer Nanotechnologie (Germany); Huebler, Florian [KIT, Institut fuer Nanotechnologie (Germany); KIT, Institut fuer Festkoerperphysik (Germany); Loehneysen, Hilbert von [KIT, Institut fuer Festkoerperphysik (Germany); KIT, Physikalisches Institut (Germany)
2013-07-01
We report on high-resolution differential conductance experiments on nanoscale superconductor/ferromagnet tunnel junctions with ultra-thin oxide tunnel barriers. We observe subgap conductance features which are symmetric with respect to bias, and shift according to the Zeeman energy with an applied magnetic field. These features can be explained by resonant transport via Andreev bound states induced by spin-active scattering at the interface. From the energy and the Zeeman shift of the bound states, both the magnitude and sign of the spin-dependent interfacial phase shifts between spin-up and spin-down electrons can be determined. These results contribute to the microscopic insight into the triplet proximity effect at spin-active interfaces.
Extending Quantum Chemistry of Bound States to Electronic Resonances
Jagau, Thomas-C.; Bravaya, Ksenia B.; Krylov, Anna I.
2017-05-01
Electronic resonances are metastable states with finite lifetime embedded in the ionization or detachment continuum. They are ubiquitous in chemistry, physics, and biology. Resonances play a central role in processes as diverse as DNA radiolysis, plasmonic catalysis, and attosecond spectroscopy. This review describes novel equation-of-motion coupled-cluster (EOM-CC) methods designed to treat resonances and bound states on an equal footing. Built on complex-variable techniques such as complex scaling and complex absorbing potentials that allow resonances to be associated with a single eigenstate of the molecular Hamiltonian rather than several continuum eigenstates, these methods extend electronic-structure tools developed for bound states to electronic resonances. Selected examples emphasize the formal advantages as well as the numerical accuracy of EOM-CC in the treatment of electronic resonances. Connections to experimental observables such as spectra and cross sections, as well as practical aspects of implementing complex-valued approaches, are also discussed.
Localized bound states of fermions interacting via massive vector bosons
International Nuclear Information System (INIS)
Ionescu, D.C.; Reinhardt, J.; Mueller, B.; Greiner, W.; Soff, G.
1988-11-01
A model for composite consisting of fermions with internal degrees of freedom interacting via intermediate vector bosons (IVB) is constructed. We find highly localized, low-mass bound states in the Hartree-Fock approximation. We investigate the dependence of these states as function of the coupling constant and vector boson mass. In the limit of infinite vector boson mass the interaction is described by Fermi-type contact forces. (orig.)
Heavy barions as bound states of three quarks
International Nuclear Information System (INIS)
D'Oliveira, A.B.; Carvalho, H.F. de; Gerck, E.
1982-01-01
The mass spectrum of heavy baryons as non relativistic bound states of three quark is calculated, using phenomenological potentials for the quark quark interactions derived from QQ sup(-) effective potentials obtained from fits of the J/psi and UPSILON families. Schroedinger's equation is solved according to Flugge and Zickendraht's prescription, using a method developed specially for confining potentials. Results are compared for several types of confining potentials. (Author) [pt
Dynamics of macroscopic quantum self-bound states in arrays of transmon qubits
de Grandi, Claudia; Girvin, Steven M.
2014-03-01
We consider the many-body physics of an array of transmon qubits in a cavity. Due to the negative anharmonicity and the exchange coupling between the qubits, such a system realizes a Bose-Hubbard model with attractive interactions and thus the N-excitation manifold is expected to have self-bound states. We study the existence of such macroscopic states in the one-dimensional case with open boundary conditions as a function of the parameters of the model, comparing the classical and the quantum predictions. We then analyze the dynamics of the self-bound states in the experimentally relevant scenario of an open dissipative system, where the qubits have a finite energy relaxation time T1. We numerically simulate the dynamics with a quantum trajectory approach supported by a Lanczos diagonalization procedure.
A bound state model of the electric Aharonov-Bohm effect
Dugdale, D E
1994-01-01
It is shown how the electric form of the Aharonov-Bohm effect can be demonstrated using a very simple one dimensional bound state model system. The measurable effects of an inaccessible field in such a model are examined and the results of some explicit calculations are given. Their bearing on the question of the localization of electromagnetic causation in quantum mechanics is discussed. (author)
A search for bound states of the /eta/-meson in light nuclei
International Nuclear Information System (INIS)
Pile, P.H.
1988-01-01
This paper describes an experiment designed to search for a new form of nuclear matter--a bound /eta/-nucleus system. The (π + ,p) reaction was used to study the possible formation of an /eta/-mesic nucleus. No narrow /eta/-nuclear bound states were observed using 7 Li, 12 C, 16 O and 27 Al targets. 7 refs., 4 figs., 1 tab
Andreev bound states probed in three-terminal quantum dots
Gramich, J.; Baumgartner, A.; Schönenberger, C.
2017-11-01
Andreev bound states (ABSs) are well-defined many-body quantum states that emerge from the hybridization of individual quantum dot (QD) states with a superconductor and exhibit very rich and fundamental phenomena. We demonstrate several electron transport phenomena mediated by ABSs that form on three-terminal carbon nanotube (CNT) QDs, with one superconducting (S) contact in the center and two adjacent normal-metal (N) contacts. Three-terminal spectroscopy allows us to identify the coupling to the N contacts as the origin of the Andreev resonance (AR) linewidths and to determine the critical coupling strengths to S, for which a ground state (or quantum phase) transition in such S-QD systems can occur. In addition, we ascribe replicas of the lowest-energy ABS resonance to transitions between the ABS and odd-parity excited QD states, a process we call excited state ABS resonances. In the conductance between the two N contacts we find a characteristic pattern of positive and negative differential subgap conductance, which we explain by considering two nonlocal processes, the creation of Cooper pairs in S by electrons from both N terminals, and a transport mechanism we call resonant ABS tunneling, possible only in multiterminal QD devices. In the latter process, electrons are transferred via the ABS without effectively creating Cooper pairs in S. The three-terminal geometry also allows spectroscopy experiments with different boundary conditions, for example by leaving S floating. Surprisingly, we find that, depending on the boundary conditions and the device parameters, the experiments either show single-particle Coulomb blockade resonances, ABS characteristics, or both in the same measurements, seemingly contradicting the notion of ABSs replacing the single-particle states as eigenstates of the QD. We qualitatively explain these results as originating from the finite time scale required for the coherent oscillations between the superposition states after a single
Majorana bound states from exceptional points in non-topological superconductors
San-Jose, Pablo; Cayao, Jorge; Prada, Elsa; Aguado, Ramón
2016-02-01
Recent experimental efforts towards the detection of Majorana bound states have focused on creating the conditions for topological superconductivity. Here we demonstrate an alternative route, which achieves fully localised zero-energy Majorana bound states when a topologically trivial superconductor is strongly coupled to a helical normal region. Such a junction can be experimentally realised by e.g. proximitizing a finite section of a nanowire with spin-orbit coupling, and combining electrostatic depletion and a Zeeman field to drive the non-proximitized (normal) portion into a helical phase. Majorana zero modes emerge in such an open system without fine-tuning as a result of charge-conjugation symmetry, and can be ultimately linked to the existence of ‘exceptional points’ (EPs) in parameter space, where two quasibound Andreev levels bifurcate into two quasibound Majorana zero modes. After the EP, one of the latter becomes non-decaying as the junction approaches perfect Andreev reflection, thus resulting in a Majorana dark state (MDS) localised at the NS junction. We show that MDSs exhibit the full range of properties associated to conventional closed-system Majorana bound states (zero-energy, self-conjugation, 4π-Josephson effect and non-Abelian braiding statistics), while not requiring topological superconductivity.
Nonthreshold D-brane bound states and black holes with nonzero entropy
International Nuclear Information System (INIS)
Costa, M.S.; Cvetic, M.
1997-01-01
We start with Bogomol close-quote nyi-Prasad-Sommerfield- (BPS) saturated configurations of two (orthogonally) intersecting M-branes and use the electromagnetic duality or dimensional reduction along a boost, in order to obtain new p-brane bound states. In the first case the resulting configurations are interpreted as BPS-saturated nonthreshold bound states of intersecting p-branes, and in the second case as p-branes intersecting at angles and their duals. As a by-product we deduce the enhancement of supersymmetry as the angle approaches zero. We also comment on the D-brane theory describing these new bound states, and a connection between the angle and the world-volume gauge fields of the D-brane system. We use these configurations to find new embeddings of the four- and five-dimensional black holes with nonzero entropy, whose entropy now also depends on the angle and world-volume gauge fields. The corresponding D-brane configuration sheds light on the microscopic entropy of such black holes. copyright 1997 The American Physical Society
Gauge invariant formulation of 3 γ decay of particle-antiparticle bound states
Blankleider, B.; Kvinikhidze, A. N.; Silagadze, Z. K.
2015-08-01
We construct the gauge invariant three-photon decay amplitude of particle-antiparticle bound states modeled by the Dyson-Schwinger and Bethe-Salpeter equations. Application to the quark-antiquark (q q ¯ ) bound states is emphasized. An essential aspect of our formulation is that it applies to any underlying quantum field theoretic model of the q q ¯ system, and not just to models, like exact QCD, where the quark self-energy Σ couples to the electromagnetic field solely via dressed quark propagators. In this way, applications to effective field theories and other QCD motivated models are envisioned. The three-photon decay amplitude is constructed by attaching currents to all possible places in the Feynman diagrams contributing to the dressed quark propagator. The gauge invariance of our construction is thus a direct consequence of respecting the underlying structure of the quantum field theory determining the dynamics. In the resultant expression for the three-photon decay amplitude, all the basic ingredients consisting of the bound-state wave function, the final-state interaction q q ¯ t matrix, the dressed quark propagator, and dressed quark currents, are determined by a universal Bethe-Salpeter kernel.
First observation of bound-state β-decay
International Nuclear Information System (INIS)
Jung, M.; Bosch, F.; Beckert, K.; Eickhoff, H.; Folger, H.; Franzke, B.; Kienle, P.; Klepper, O.; Koenig, W.; Kozhuharov, C.; Mann, R.; Moshammer, R.; Nolden, F.; Schaaf, U.; Soff, G.; Spaedtke, P.; Steck, M.; Stoehlker, T.; Suemmerer, K.
1992-06-01
Bound-state Β - decay was observed for the first time by storing bare 66 163 Dy 66+ ions in a heavy-ion storage ring. From the number of 67 163 Ho 66+ daughter ions, measured as a function of the storage time, a half-life of 47 4 +5 - d was derived. By comparing this result with reported half-lives for electron capture (EC) from the M 1 and M 2 shells of neutral 67 163 Ho, bounds for both the Q EC value of neutral 67 163 Ho and for the electron neutrino mass were set. (orig.)
Triquark bound states in the case of a logarithmic potential
International Nuclear Information System (INIS)
Khelashvili, A.A.; Khvingia, N.L.; Khmaladze, V.Yu.; Chachava, N.D.
1983-01-01
Three-quark bound states in the case of a logarithmic potential have been c considered on the basis of hyperspheric formalism. Precise mass ratios in the c se of mesons and baryons are presented. The formulas have the form correspondin ng to an additive quark model, whereas they are obtained in the case of a non-trivial potential. At present, the existing experimental data permit to che eck only one of the mass formulas obtained, the other formula as enable one to predict yet unobserved states from experimentally known paricle masses
The two-fermion relativistic wave equations of Constraint Theory in the Pauli-Schroedinger form
International Nuclear Information System (INIS)
Mourad, J.; Sazdjian, H.
1994-01-01
The two-fermion relativistic wave equations of Constraint Theory are reduced, after expressing the components of the 4x4 matrix wave function in terms of one of the 2x2 components, to a single equation of the Pauli-Schroedinger type, valid for all sectors of quantum numbers. The potentials that are present belong to the general classes of scalar, pseudoscalar and vector interactions and are calculable in perturbation theory from Feynman diagrams. In the limit when one of the masses becomes infinite, the equation reduces to the two-component form of the one-particle Dirac equation with external static potentials. The Hamiltonian, to order 1/c 2 , reproduces most of the known theoretical results obtained by other methods. The gauge invariance of the wave equation is checked, to that order, in the case of QED. The role of the c.m. energy dependence of the relativistic interquark confining potential is emphasized and the structure of the Hamiltonian, to order 1/c 2 , corresponding to confining scalar potentials, is displayed. (authors). 32 refs., 2 figs
Static and dynamic properties of QCD bound states
International Nuclear Information System (INIS)
Kubrak, Stanislav
2015-01-01
The QCD phenomenology can be faced with the framework of the coupled quark DSE, meson BSE and baryon Faddeev equation, providing non-perturbative, continuum and Poincare invariant scientific approach. The research performed throughout this thesis is twofold. From one perspective we focus on the investigation of mass spectra for mesons with total spin quantum number J=3 and arising Regge-trajectory for natural parity states J PC =1 -- ,2 ++ ,3 -- within rainbow-ladder single gluon exchange model. The other findings are concerning the impact of the pion cloud effect on J>2 meson states, baryon masses, namely on Nucleon and Delta three-body bound states and meson dynamical properties like the pion form factor.
Bound state properties of ABC -stacked trilayer graphene quantum dots
International Nuclear Information System (INIS)
Xiong, Haonan; Jiang, Wentao; Song, Yipu; Duan, Luming
2017-01-01
The few-layer graphene quantum dot provides a promising platform for quantum computing with both spin and valley degrees of freedom. Gate-defined quantum dots in particular can avoid noise from edge disorders. In connection with the recent experimental efforts (Song et al 2016 Nano Lett . 16 6245), we investigate the bound state properties of trilayer graphene (TLG) quantum dots (QDs) through numerical simulations. We show that the valley degeneracy can be lifted by breaking the time reversal symmetry through the application of a perpendicular magnetic field. The spectrum under such a potential exhibits a transition from one group of Landau levels to another group, which can be understood analytically through perturbation theory. Our results provide insight into the transport property of TLG QDs, with possible applications to study of spin qubits and valleytronics in TLG QDs. (paper)
Highly excited bound-state resonances of short-range inverse power-law potentials
Hod, Shahar
2017-11-01
We study analytically the radial Schrödinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r)=-β _n r^{-n} with n>2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E^{ {max}}_l=E^{ {max}}_l(n,β _n,R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system.
Coexistence of a bound state and scattering at the same energy value: a quantum paradox
International Nuclear Information System (INIS)
Chabanov, V.M.; Zakhar'ev, B.N.
1998-01-01
The example of a multi-channel system which possesses both bound (not quasi-bound !) and scattering states at the same energy value E is demonstrated. A special interaction has ability to confine waves near the origin and simultaneously admit scattering (even with transparency) at the fixed spectral point. These interaction matrices and wave functions can be continued to the whole axis. As another multi-channel peculiarity having no one-channel analogues was found a class of absolutely transparent interaction matrices without bound states
Highly excited bound-state resonances of short-range inverse power-law potentials
Energy Technology Data Exchange (ETDEWEB)
Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)
2017-11-15
We study analytically the radial Schroedinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r) = -β{sub n}r{sup -n} with n > 2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E{sub l}{sup max} = E{sub l}{sup max}(n, β{sub n}, R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system. (orig.)
Bound states of Dipolar Bosons in One-dimensional Systems
DEFF Research Database (Denmark)
G. Volosniev, A.; R. Armstrong, J.; V. Fedorov, D.
2013-01-01
We consider one-dimensional tubes containing bosonic polar molecules. The long-range dipole-dipole interactions act both within a single tube and between different tubes. We consider arbitrary values of the externally aligned dipole moments with respect to the symmetry axis of the tubes. The few-...
Scattering and bound states in the K (-) d system
Czech Academy of Sciences Publication Activity Database
Shevchenko, Nina V.
2014-01-01
Roč. 77, č. 4 (2014), s. 496-503 ISSN 1063-7788 R&D Projects: GA ČR(CZ) GAP203/12/2126 Institutional support: RVO:61389005 Keywords : kaonic hydrogen * X-rays * deuterium Subject RIV: BE - Theoretical Physics Impact factor: 0.510, year: 2014
On the scaling equations of the coupling constants for the one-dimensional two-fermion model
International Nuclear Information System (INIS)
Apostol, M.; Barsan, V.; Mantea, C.
1984-08-01
Jordan's boson representation and cut-off regularization procedure for the one-dimensional two-fermion model is used to get the equivalence with the two-dimensional Coulomb gas and sine-Gordon model. The scaling equations of the coupling constants to third-order are obtained thereby, which slightly differ from those reported in the literature. The scaling of the model onto the exactly soluble models is discussed. (author)
Recoil effects in the hyperfine structure of QED bound states
International Nuclear Information System (INIS)
Bodwin, G.T.; Yennie, D.R.; Gregorio, M.A.
1985-01-01
The authors give a general discussion of the derivation from field theory of a formalism for the perturbative solution of the relativistic two-body problem. The lowest-order expression for the four-point function is given in terms of a two-particle three-dimensional propagator in a static potential. It is obtained by fixing the loop energy in the four-dimensional formalism at a point which is independent of the loop momentum and is symmetric in the two particle variables. This method avoids awkward positive- and negative-energy projectors, with their attendant energy square roots, and allows one to recover the Dirac equation straightforwardly in the nonrecoil limit. The perturbations appear as a variety of four-dimensional kernels which are rearranged and regrouped into convenient sets. In particular, they are transformed from the Coulomb to the Feynman gauge, which greatly simplifies the expressions that must be evaluated. Although the approach is particularly convenient for the precision analysis of QED bound states, it is not limited to such applications. The authors use it to give the first unified treatment of all presently known recoil corrections to the muonium hyperfine structure and also to verify the corresponding contributions through order α 2 lnαE/sub F/ in positronium. The required integrals are evaluated analytically
Probing the Dark Sector with Dark Matter Bound States.
An, Haipeng; Echenard, Bertrand; Pospelov, Maxim; Zhang, Yue
2016-04-15
A model of the dark sector where O(few GeV) mass dark matter particles χ couple to a lighter dark force mediator V, m_{V}≪m_{χ}, is motivated by the recently discovered mismatch between simulated and observed shapes of galactic halos. Such models, in general, provide a challenge for direct detection efforts and collider searches. We show that for a large range of coupling constants and masses, the production and decay of the bound states of χ, such as 0^{-+} and 1^{--} states, η_{D} and ϒ_{D}, is an important search channel. We show that e^{+}e^{-}→η_{D}+V or ϒ_{D}+γ production at B factories for α_{D}>0.1 is sufficiently strong to result in multiple pairs of charged leptons and pions via η_{D}→2V→2(l^{+}l^{-}) and ϒ_{D}→3V→3(l^{+}l^{-}) (l=e,μ,π). The absence of such final states in the existing searches performed at BABAR and Belle sets new constraints on the parameter space of the model. We also show that a search for multiple bremsstrahlung of dark force mediators, e^{+}e^{-}→χχ[over ¯]+nV, resulting in missing energy and multiple leptons, will further improve the sensitivity to self-interacting dark matter.
Energy Technology Data Exchange (ETDEWEB)
Andrade, F.M., E-mail: fmandrade@uepg.br [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa-PR (Brazil); Silva, E.O., E-mail: edilbertoo@gmail.com [Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65085-580 São Luís-MA (Brazil); Pereira, M., E-mail: marciano@uepg.br [Departamento de Matemática e Estatística, Universidade Estadual de Ponta Grossa, 84030-900 Ponta Grossa-PR (Brazil)
2013-12-15
In this work the bound state and scattering problems for a spin- 1/2 particle undergone to an Aharonov–Bohm potential in a conical space in the nonrelativistic limit are considered. The presence of a δ-function singularity, which comes from the Zeeman spin interaction with the magnetic flux tube, is addressed by the self-adjoint extension method. One of the advantages of the present approach is the determination of the self-adjoint extension parameter in terms of physics of the problem. Expressions for the energy bound states, phase-shift and S matrix are determined in terms of the self-adjoint extension parameter, which is explicitly determined in terms of the parameters of the problem. The relation between the bound state and zero modes and the failure of helicity conservation in the scattering problem and its relation with the gyromagnetic ratio g are discussed. Also, as an application, we consider the spin- 1/2 Aharonov–Bohm problem in conical space plus a two-dimensional isotropic harmonic oscillator. -- Highlights: •Planar dynamics of a spin- 1/2 neutral particle. •Bound state for Aharonov–Bohm systems. •Aharonov–Bohm scattering. •Helicity nonconservation. •Determination of the self-adjoint extension parameter.
Bound states and Cooper pairs of molecules in 2D optical lattices bilayer
Energy Technology Data Exchange (ETDEWEB)
Camacho-Guardian, A.; Dominguez-Castro, G.A.; Paredes, R. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico (Mexico)
2016-08-15
We investigate the formation of Cooper pairs, bound dimers and the dimer-dimer elastic scattering of ultracold dipolar Fermi molecules confined in a 2D optical lattice bilayer configuration. While the energy and their associated bound states are determined in a variational way, the correlated two-molecule pair is addressed as in the original Cooper formulation. We demonstrate that the 2D lattice confinement favors the formation of zero center mass momentum bound states. Regarding the Cooper pairs binding energy, this depends on the molecule populations in each layer. Maximum binding energies occur for non-zero (zero) pair momentum when the Fermi system is polarized (unpolarized). We find an analytic expression for the dimer-dimer effective interaction in the deep BEC regime. The present analysis represents a route for addressing the BCS-BEC crossover in dipolar Fermi gases confined in 2D optical lattices within the current experimental panorama. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
The bound state S-matrix for AdS5×S5 superstring
Arutyunov, G.E.; de Leeuw, M.; Torrielli, A.
2009-01-01
We determine the S-matrix that describes scattering of arbitrary bound states in the light-cone string theory in AdS5×S5. The corresponding construction relies on the Yangian symmetry and the superspace formalism for the bound state representations. The basic analytic structure supporting the
Bound states and vortex core shrinking effects in iron-based superconductors
International Nuclear Information System (INIS)
Ye, Xiao-Shan
2013-01-01
Highlights: ► We study the vortex core shrinking effects in iron-based superconductors. ► We study the quasiparticle bound states in vortex core. ► The quasiparticle bound states and the vortex core contraction are controlled by inter-orbit coupling. -- Abstract: Quasiparticle bound states and vortex core contraction effects in iron-based superconductors are studied by solving the Bogoliubov de Gennes (BdG) equations self-consistently including pair coupling effects. We find that the appearance of quasiparticle bound states in the vortex core is controlled not only by the pair coupling effects but also by the inter-orbit coupling strength. We also point out that the rapid vortex core contraction is controlled by quasiparticle interference effects. We suggest that these results deserve more attention in analysis of vortex quasiparticle bound states and vortex core contraction effects found in scanning tunneling microscopy (STM) experiments for different iron-based superconductors
Transport through Andreev Bound States in a Graphene-base Quantum Dot
Li, Yanjing; Mason, Nadya
2012-02-01
We perform tunneling spectroscopy on a graphene-quantum dot (QD)-superconductor junction, a system in which sharp, gate-tunable Andreev bound states (ABS) in the spectra have been observed [1]. Here we extend previous results, particularly regarding the origins of the QD. In particular, we discuss how a discontinuous layer of AlOx between the superconductor and the graphene plays a role in the formation of the QD. We also discuss additional spectroscopic features that may be due to multiple QDs and energy levels. Finally, we show that a robust superconducting tunneling junction can be created in a lead-graphene structure, without the explicit deposition of a tunneling barrier. [4pt] [1] Dirks, T., Nature Physics 7, 386--390 (2011)
Exact spinor-scalar bound states in a quantum field theory with scalar interactions
International Nuclear Information System (INIS)
Shpytko, Volodymyr; Darewych, Jurij
2001-01-01
We study two-particle systems in a model quantum field theory in which scalar particles and spinor particles interact via a mediating scalar field. The Lagrangian of the model is reformulated by using covariant Green's functions to solve for the mediating field in terms of the particle fields. This results in a Hamiltonian in which the mediating-field propagator appears directly in the interaction term. It is shown that exact two-particle eigenstates of the Hamiltonian can be determined. The resulting relativistic fermion-boson equation is shown to have Dirac and Klein-Gordon one-particle limits. Analytical solutions for the bound state energy spectrum are obtained for the case of massless mediating fields
Energy Technology Data Exchange (ETDEWEB)
Miserev, D. S., E-mail: d.miserev@student.unsw.edu.au, E-mail: erazorheader@gmail.com [University of New South Wales, School of Physics (Australia)
2016-06-15
The problem of localized states in 1D systems with a relativistic spectrum, namely, graphene stripes and carbon nanotubes, is studied analytically. The bound state as a superposition of two chiral states is completely described by their relative phase, which is the foundation of the variable phase method (VPM) developed herein. Based on our VPM, we formulate and prove the relativistic Levinson theorem. The problem of bound states can be reduced to the analysis of closed trajectories of some vector field. Remarkably, the Levinson theorem appears as the Poincaré index theorem for these closed trajectories. The VPM equation is also reduced to the nonrelativistic and semiclassical limits. The limit of a small momentum p{sub y} of transverse quantization is applicable to an arbitrary integrable potential. In this case, a single confined mode is predicted.
Tunable hybridization of Majorana bound states at the quantum spin Hall edge
Keidel, Felix; Burset, Pablo; Trauzettel, Björn
2018-02-01
Confinement at the helical edge of a topological insulator is possible in the presence of proximity-induced magnetic (F) or superconducting (S) order. The interplay of both phenomena leads to the formation of localized Majorana bound states (MBS) or likewise (under certain resonance conditions) the formation of ordinary Andreev bound states (ABS). We investigate the properties of bound states in junctions composed of alternating regions of F or S barriers. Interestingly, the direction of magnetization in F regions and the relative superconducting phase between S regions can be exploited to hybridize MBS or ABS at will. We show that the local properties of MBS translate into a particular nonlocal superconducting pairing amplitude. Remarkably, the symmetry of the pairing amplitude contains information about the nature of the bound state that it stems from. Hence this symmetry can in principle be used to distinguish MBS from ABS, owing to the strong connection between local density of states and nonlocal pairing in our setup.
Ultraheavy Yukawa-bound states of fourth-generation at Large ...
Indian Academy of Sciences (India)
2012-10-05
Oct 5, 2012 ... A study of bound states of the fourth-generation quarks in the range of 500–700 GeV is presented ... Fourth-generation; Yukawa-bound states; Large Hadron Collider phenomenology. PACS Nos 14.65. ... our numerical study: the decay constant ξ = fω8 /mω8 of ω8, ω8 and π8 mass difference m which ...
Binding Energy of Quantum Bound States in X-shaped Nanowire Intersection
2014-01-01
Many literature sources, till now, looked into the effect of localized states on the elec- tron tunneling behavior for nanowires crossed at right angle... Transistors and switching devices. The model formulated here explains the effect of intersection angle of nanowires on the bound states at the crossed...in the presence of external magnetic field . Hence, they studied rigorously the effect of magnetic field on the bound states at the crossed junction
International Nuclear Information System (INIS)
Mankiewicz, L.; Sawicki, M.
1989-01-01
Within a relativistically correct yet analytically solvable model of light-front quantum mechanics we construct the electromagnetic form factor of the two-body bound state and we study the validity of the static approximation to the full form factor. Upon comparison of full form factors calculated for different values of binding energy we observe an unexpected effect that for very strongly bound states further increase in binding leads to an increase in the size of the bound system. A similar effect is found for another quantum-mechanical model of relativistic dynamics
The generalized pseudospectral approach to the bound states of the ...
Indian Academy of Sciences (India)
the screened Coulomb potentials thus covering a broader range of physical systems. In an attempt to assess the performance and its applicability to such systems, we have computed all the 55 eigenstates (1 ≤ n ≤ 10) of the Hulthén and the Yukawa potentials and compared them with the available literature data wherever ...
Quarkonium-nucleus bound states from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Beane, S. R. [Univ. of Washington, Seattle, WA (United States); Chang, E. [Univ. of Washington, Seattle, WA (United States); Cohen, S. D. [Univ. of Washington, Seattle, WA (United States); Detmold, W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lin, H. -W. [Univ. of Washington, Seattle, WA (United States); Orginos, K. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Parreño, A. [Univ., de Barcelona, Marti Franques (Spain); Savage, M. J. [Univ. of Washington, Seattle, WA (United States)
2015-06-11
Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.
Color-suppression of non-planar diagrams in bosonic bound states
Alvarenga Nogueira, J. H.; Ji, Chueng-Ryong; Ydrefors, E.; Frederico, T.
2018-02-01
We study the suppression of non-planar diagrams in a scalar QCD model of a meson system in 3 + 1 space-time dimensions due to the inclusion of the color degrees of freedom. As a prototype of the color-singlet meson, we consider a flavor-nonsinglet system consisting of a scalar-quark and a scalar-antiquark with equal masses exchanging a scalar-gluon of a different mass, which is investigated within the framework of the homogeneous Bethe-Salpeter equation. The equation is solved by using the Nakanishi representation for the manifestly covariant bound-state amplitude and its light-front projection. The resulting non-singular integral equation is solved numerically. The damping of the impact of the cross-ladder kernel on the binding energies are studied in detail. The color-suppression of the cross-ladder effects on the light-front wave function and the elastic electromagnetic form factor are also discussed. As our results show, the suppression appears significantly large for Nc = 3, which supports the use of rainbow-ladder truncations in practical non-perturbative calculations within QCD.
Bound states of quarks and gluons and hadronic transitions
International Nuclear Information System (INIS)
Castro, Antonio Soares de.
1990-05-01
A potential which incorporates the concepts of confinement and asymptotic freedom, previously utilized in the description of the spectroscopy of mesons and baryons, is extended to the gluon sector. The mass spectroscopy of glueballs and hybrids is analyzed considering only pairwise potentials and massive constituent gluons. The mass spectrum of the color octet two-gluon system is adopted as a suitable description of the intermediate states of hadronic transitions, within the framework of the multipole expansion for quantum chromodynamics. The spin-dependent effects in the gluonium spectrum, associated with the Coulombian potential, are calculated through the inverted first Born approximation for the gluon-gluon scattering. (author). 102 refs, 1 fig, 13 tabs
Surface Andreev Bound States and Odd-Frequency Pairing in Topological Superconductor Junctions
Tanaka, Yukio; Tamura, Shun
2018-04-01
In this review, we summarize the achievement of the physics of surface Andreev bound states (SABS) up to now. The route of this activity has started from the physics of SABS of unconventional superconductors where the pair potential has a sign change on the Fermi surface. It has been established that SABS can be regarded as a topological edge state with topological invariant defined in the bulk Hamiltonian. On the other hand, SABS accompanies odd-frequency pairing like spin-triplet s-wave or spin-singlet p-wave. In a spin-triplet superconductor junction, induced odd-frequency pairing can penetrate into a diffusive normal metal (DN) attached to the superconductor. It causes so called anomalous proximity effect where the local density of states of quasiparticle in DN has a zero energy peak. When bulk pairing symmetry is spin-triplet px-wave, the anomalous proximity effect becomes prominent and the zero bias voltage conductance is always quantized independent of the resistance in DN and interface. Finally, we show that the present anomalous proximity effect is realized in an artificial topological superconducting system, where a nanowire with spin-orbit coupling and Zeeman field is put on the conventional spin-singlet s-wave superconductor.
Bag-model analyses of proton-antiproton scattering and atomic bound states
International Nuclear Information System (INIS)
Alberg, M.A.; Freedman, R.A.; Henley, E.M.; Hwang, W.P.; Seckel, D.; Wilets, L.
1983-01-01
We study proton-antiproton (pp-bar ) scattering using the static real potential of Bryan and Phillips outside a cutoff radius rsub0 and two different shapes for the imaginary potential inside a radius R*. These forms, motivated by bag models, are a one-gluon-annihilation potential and a simple geometric-overlap form. In both cases there are three adjustable parameters: the effective bag radius R*, the effective strong coupling constant αsubssup*, and rsub0. There is also a choice for the form of the real potential inside the cutoff radius rsub0. Analysis of the pp-bar scattering data in the laboratory-momentum region 0.4--0.7 GeV/c yields an effective nucleon bag radius R* in the range 0.6--1.1 fm, with the best fit obtained for R* = 0.86 fm. Arguments are presented that the deduced value of R* is likely to be an upper bound on the isolated nucleon bag radius. The present results are consistent with the range of bag radii in current bag models. We have also used the resultant optical potential to calculate the shifts and widths of the sup3Ssub1 and sup1Ssub0 atomic bound states of the pp-bar system. For both states we find upward (repulsive) shifts and widths of about 1 keV. We find no evidence for narrow, strongly bound pp-bar states in our potential model
Bound-state β decay of a neutron in a strong magnetic field
International Nuclear Information System (INIS)
Kouzakov, Konstantin A.; Studenikin, Alexander I.
2005-01-01
The β decay of a neutron into a bound (pe - ) state and an antineutrino in the presence of a strong uniform magnetic field (B > or approx. 10 13 G) is considered. The β decay process is treated within the framework of the standard model of weak interactions. A Bethe-Salpeter formalism is employed for description of the bound (pe - ) system in a strong magnetic field. For the field strengths 10 13 18 G the estimate for the ratio of the bound-state decay rate w b and the usual (continuum-state) decay rate w c is derived. It is found that in such strong magnetic fields w b /w c ∼0.1-0.4. This is in contrast to the field-free case, where w b /w c ≅4.2x10 -6 [J. N. Bahcall, Phys. Rev. 124, 495 (1961); L. L. Nemenov, Sov. J. Nucl. Phys. 15, 582 (1972); X. Song, J. Phys. G: Nucl. Phys. 13, 1023 (1987)]. The dependence of the ratio w b /w c on the magnetic field strength B exhibits a logarithmiclike behavior. The obtained results can be important for applications in astrophysics and cosmology
Subgap in the Surface Bound States Spectrum of Superfluid ^3 He-B with Rough Surface
Nagato, Y.; Higashitani, S.; Nagai, K.
2017-12-01
The subgap structure in the surface bound states spectrum of superfluid ^3 He-B with rough surface is discussed. The subgap is formed by the level repulsion between the surface bound state and the continuum states in the course of multiple scattering by the surface roughness. We show that the level repulsion is originated from the nature of the wave function of the surface bound state that is now recognized as Majorana fermion. We study the superfluid ^3 He-B with a rough surface and in a magnetic field perpendicular to the surface using the quasi-classical Green function together with a random S-matrix model. We calculate the self-consistent order parameters, the spin polarization density and the surface density of states. It is shown that the subgap is found also in a magnetic field perpendicular to the surface. The magnetic field dependence of the transverse acoustic impedance is also discussed.
One- and Two-Particle Bound States in the Landau Khalatnikov Bose-Liquid Model
Lakshtanov, E. L.; Pirogov, S. A.; Aleksenko, A. I.
2006-07-01
We consider the Landau Khalatnikov Hamiltonian of a quantum liquid restricted to the subspace of one- and two-particle states. We give a complete description of the spectrum of this Hamiltonian for any given value of the total momentum. In particular, we describe the bound state of two rotons, so-called biroton. These results about bound states are not based on any ad hoc hypotheses about roton-roton interaction. The conditions imposed on the quasi-particle dispersion law and on the qubic interaction term are rather general.
Large N Chern-Simons with massive fundamental fermions — A model with no bound states
International Nuclear Information System (INIS)
Frishman, Yitzhak; Sonnenschein, Jacob
2014-01-01
In a previous paper http://dx.doi.org/10.1007/JHEP12(2013)091, we analyzed the theory of massive fermions in the fundamental representation coupled to a U(N) Chern-Simons gauge theory in three dimensions at level K. It was done in the large N, large K limits where λ=(N/K) was kept fixed. Among other results, we showed there that there are no high mass “quark anti-quark" bound states. Here we show that there are no bound states at all.
The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays
Energy Technology Data Exchange (ETDEWEB)
Gadella, M. [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Kuru, Ş. [Department of Physics, Faculty of Science, Ankara University, 06100 Ankara (Turkey); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)
2017-04-15
We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays for the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.
Quasi bound states in the continuum with few unit cells of photonic crystal slab
DEFF Research Database (Denmark)
Taghizadeh, Alireza; Chung, Il-Sug
2017-01-01
Bound states in the continuum (BICs) in photonic crystal slabs represent the resonances with an infinite quality (Q)-factor, occurring above the light line for an infinitely periodic structure. We show that a set of BICs can turn into quasi-BICs with a very high Q-factor even for two or three unit...
SEARCH FOR eta' (958)-NUCLEUS BOUND STATES BY (p, d) REACTION AT GSI AND FAIR
Fujioka, H.; Ayyad, Y.; Benlliure, J.; Brinkmann, K. -T.; Friedrich, S.; Geissel, H.; Gellanki, J.; Guo, C.; Gutz, E.; Haettner, E.; Harakeh, M. N.; Hayano, R. S.; Higashi, Y.; Hirenzaki, S.; Hornung, C.; Igarashi, Y.; Ikeno, N.; Itahashi, K.; Iwasaki, M.; Jido, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Knoebel, R.; Kurz, N.; Metag, V.; Mukha, I.; Nagae, T.; Nagahiro, H.; Nanova, M.; Nishi, T.; Ong, H. J.; Pietri, S.; Prochazka, A.; Rappold, C.; Reiter, M. P.; Rodriguez-Sanchez, J. L.; Scheidenberger, C.; Simon, H.; Sitar, B.; Strmen, P.; Sun, B.; Suzuki, K.; Szarka, I.; Takechi, M.; Tanaka, Y. K.; Tanihata, I.; Terashima, S.; Watanabe, Y. N.; Weick, H.; Widmann, E.; Winfield, J. S.; Xu, X.; Yamakami, H.; Zhao, J.
The mass of the eta' meson is theoretically expected to be reduced at finite density, which indicates the existence of eta'-nucleus bound states. To investigate these states, we perform missing-mass spectroscopy for the (p, d) reaction near the eta' production threshold. The overview of the
Boson bound states in the β-Fermi–Pasta–Ulam model
Indian Academy of Sciences (India)
The bound states of four bosons in the quantum -Fermi–Pasta–Ulam model are investigated and some interesting results are presented using the number conserving approximation combined ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science
Ultraheavy Yukawa-bound states of fourth-generation at Large ...
Indian Academy of Sciences (India)
A study of bound states of the fourth-generation quarks in the range of 500–700 GeV is presented, where the binding energies are expected to be mainly of Yukawa origin, with QCD subdominant. Near degeneracy of their masses exhibits a new `isospin'. The production of a colour- octet, isosinglet vector meson via q q ...
Robustness of Majorana bound states in the short-junction limit
Sticlet, D.C.; Nijholt, B.; Akhmerov, A.R.
2017-01-01
We study the effects of strong coupling between a superconductor and a semiconductor nanowire on the creation of the Majorana bound states, when the quasiparticle dwell time in the normal part of the nanowire is much shorter than the inverse superconducting gap. This "short-junction" limit is
Bound states of the Dirac equation with some physical potentials by the Nikiforov-Uvarov method
Energy Technology Data Exchange (ETDEWEB)
Setare, Mohammad R; Haidari, S [Department of Physics, University of Kurdistan, Pasdaran Avenue, Sanandaj (Iran, Islamic Republic of)], E-mail: rezakord@ipm.ir, E-mail: heidary.somayeh@gmail.com
2010-01-15
Exact analytical solutions for the s-wave Dirac equation with the reflectionless-type, Rosen-Morse and Manning-Rosen potentials are obtained, under the condition of spin symmetry. We obtained bound state energy eigenvalues and corresponding spinor wave function in the framework of the Nikiforov-Uvarov (NU) method.
Triple Rashba dots as a spin filter: Bound states in the continuum and Fano effect
Energy Technology Data Exchange (ETDEWEB)
Vallejo, M.L.; Ladron de Guevara, M.L. [Departamento de Fisica, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile); Orellana, P.A., E-mail: orellana@ucn.c [Departamento de Fisica, Universidad Catolica del Norte, Casilla 1280, Antofagasta (Chile)
2010-11-01
We propose an efficient spin-filter device by exploiting bound states (BICs) in the continuum and Fano effect on a triple Rashba quantum dot molecule embedded in an Aharonov-Bohm interferometer. We find that the coexistence of a BIC and a Fano antiresonance result in polarizations close to 100% in wide regions in the space of parameters.
On the bound states of Schrodinger operators with -interactions on conical surfaces
Czech Academy of Sciences Publication Activity Database
Lotoreichik, Vladimir; Ourmieres-Bonafos, T.
2016-01-01
Roč. 41, č. 6 (2016), s. 999-1028 ISSN 0360-5302 Institutional support: RVO:61389005 Keywords : conical and hyperconical surfaces * delta-interaction * existence of bound states * Schrodinger operator * spectral asymptotics Subject RIV: BE - Theoretical Physics Impact factor: 1.608, year: 2016
Morse potential, symmetric Morse potential and bracketed bound-state energies
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2016-01-01
Roč. 31, č. 14 (2016), s. 1650088 ISSN 0217-7323 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : quantum bound states * special functions * Morse potential * symmetrized Morse potential * upper and lower energy estimates * computer-assisted symbolic manipulations Subject RIV: BE - Theoretical Physics Impact factor: 1.165, year: 2016
Boson bound states in the β-Fermi–Pasta–Ulam model
Indian Academy of Sciences (India)
To answer this question, and also for the purpose of studying quantum dots and quantum comput- ing, many theoretical and experimental studies have been devoted to different quantum nonlinear lattices recently [7–14]. The results confirmed the existence of bound states, some of which featured a particle-like energy band ...
Boson bound states in the β-Fermi–Pasta–Ulam model
Indian Academy of Sciences (India)
an important role in forming different bound states. The signature of the quantum breather is also .... |0201010 ··· 0〉 are the equivalence class states. We can manage to order these classes. For ..... The work has been supported by the scientific research project of Huangshan. University under Grant No. 2011xkj007 and the ...
Ultraheavy Yukawa-bound states of fourth-generation at Large ...
Indian Academy of Sciences (India)
2012-10-05
Oct 5, 2012 ... Abstract. A study of bound states of the fourth-generation quarks in the range of 500–700 GeV is presented, where the binding energies are expected to be mainly of Yukawa origin, with QCD subdominant. Near degeneracy of their masses exhibits a new 'isospin'. The production of a colour- octet, isosinglet ...
The covariant-evolution-operator method in bound-state QED
International Nuclear Information System (INIS)
Lindgren, Ingvar; Salomonson, Sten; Aasen, Bjoern
2004-01-01
The methods of quantum-electrodynamical (QED) calculations on bound atomic systems are reviewed with emphasis on the newly developed covariant-evolution-operator method. The aim is to compare that method with other available methods and also to point out possibilities to combine that with standard many-body perturbation theory (MBPT) in order to perform accurate numerical QED calculations, including quasi-degeneracy, also for light elements, where the electron correlation is relatively strong. As a background, the time-independent many-body perturbation theory (MBPT) is briefly reviewed, particularly the method with extended model space. Time-dependent perturbation theory is discussed in some detail, introducing the time-evolution operator and the Gell-Mann-Low relation, generalized to an arbitrary model space. Three methods of treating the bound-state QED problem are discussed. The standard S-matrix formulation, which is restricted to a degenerate model space, is discussed only briefly. Two methods applicable also to the quasi-degenerate problem are treated in more detail, the two-times Green's-function and the covariant-evolution-operator techniques. The treatment is concentrated on the latter technique, which has been developed more recently and which has not been discussed in more detail before. A comparison of the two-times Green's-function and the covariant-evolution-operator techniques, which have great similarities, is performed. In the appendix a simple procedure is derived for expressing the evolution-operator diagrams of arbitrary order. The possibilities of merging QED in the covariant evolution-operator formulation with MBPT in a systematic way is indicated. With such a technique it might be feasible to perform accurate QED calculations also on light elements, which is presently not possible with the techniques available
Robustness of Majorana bound states in the short-junction limit
Sticlet, Doru; Nijholt, Bas; Akhmerov, Anton
2017-03-01
We study the effects of strong coupling between a superconductor and a semiconductor nanowire on the creation of the Majorana bound states, when the quasiparticle dwell time in the normal part of the nanowire is much shorter than the inverse superconducting gap. This "short-junction" limit is relevant for the recent experiments using the epitaxially grown aluminum characterized by a transparent interface with the semiconductor and a small superconducting gap. We find that the small superconducting gap does not have a strong detrimental effect on the Majorana properties. Specifically, both the critical magnetic field required for creating a topological phase and the size of the Majorana bound states are independent of the superconducting gap. The critical magnetic field scales with the wire cross section, while the relative importance of the orbital and Zeeman effects of the magnetic field is controlled by the material parameters only: g factor, effective electron mass, and the semiconductor-superconductor interface transparency.
The quark-gluon vertex in Landau gauge bound-state studies
International Nuclear Information System (INIS)
Williams, Richard
2015-01-01
We present a practical method for the solution of the quark-gluon vertex for use in Bethe-Salpeter and Dyson-Schwinger calculations. The efficient decomposition into the necessary covariants is detailed, with the numerical algorithm outlined for both real and complex Euclidean momenta. A truncation of the quark-gluon vertex, that neglects explicit back-coupling to enable the application to bound-state calculations, is given together with results for the quark propagator and quark-gluon vertex for different quark flavours. The relative impact of the various components of the quark-gluon vertex is highlighted with the flavour dependence of the effective quark-gluon interaction obtained, thus providing insight for the construction of phenomenological models within the rainbow ladder. Finally, we solve the corresponding Green's functions for complex Euclidean momenta as required in future bound-state calculations. (orig.)
Bound-state formation for thermal relic dark matter and unitarity
International Nuclear Information System (INIS)
Harling, Benedict von; Petraki, Kalliopi
2014-01-01
We show that the relic abundance of thermal dark matter annihilating via a long-range interaction, is significantly affected by the formation and decay of dark matter bound states in the early universe, if the dark matter mass is above a few TeV . We determine the coupling required to obtain the observed dark matter density, taking into account both the direct 2-to-2 annihilations and the formation of bound states, and provide an analytical fit. We argue that the unitarity limit on the inelastic cross-section is realized only if dark matter annihilates via a long-range interaction, and we determine the upper bound on the mass of thermal-relic dark matter to be about 197 (139) TeV for (non)-self-conjugate dark matter
Non-linear sigma model and zero mass bound states of QCD2
International Nuclear Information System (INIS)
Craigie, N.S.; Nahm, W.
1984-02-01
We analyze massless two-dimensional gauge theories and discuss under what circumstances they lead to non-linear sigma models. In particular we show how one is led to conclude that the zero mass bound state sector of QCD 2 with Nsub(c)=2 and a single flavour may be described by a unique non-linear sigma model with an SU(2) global symmetry. (author)
Dissecting zero modes and bound states on BPS vortices in Ginzburg-Landau superconductors
International Nuclear Information System (INIS)
Izquierdo, A. Alonso; Fuertes, W. Garcia; Guilarte, J. Mateos
2016-01-01
In this paper the zero modes of fluctuation of cylindrically symmetric self-dual vortices are analyzed and described in full detail. These BPS topological defects arise at the critical point between Type II and Type I superconductors, or, equivalently, when the masses of the Higgs particle and the vector boson in the Abelian Higgs model are equal. In addition, novel bound states of Higss and vector bosons trapped by the self-dual vortices at their core are found and investigated.
Dissecting zero modes and bound states on BPS vortices in Ginzburg-Landau superconductors
Energy Technology Data Exchange (ETDEWEB)
Izquierdo, A. Alonso [Departamento de Matematica Aplicada, Universidad de Salamanca,Facultad de Ciencias Agrarias y Ambientales,Av. Filiberto Villalobos 119, E-37008 Salamanca (Spain); Fuertes, W. Garcia [Departamento de Fisica, Universidad de Oviedo, Facultad de Ciencias,Calle Calvo Sotelo s/n, E-33007 Oviedo (Spain); Guilarte, J. Mateos [Departamento de Fisica Fundamental, Universidad de Salamanca, Facultad de Ciencias,Plaza de la Merced, E-37008 Salamanca (Spain)
2016-05-12
In this paper the zero modes of fluctuation of cylindrically symmetric self-dual vortices are analyzed and described in full detail. These BPS topological defects arise at the critical point between Type II and Type I superconductors, or, equivalently, when the masses of the Higgs particle and the vector boson in the Abelian Higgs model are equal. In addition, novel bound states of Higss and vector bosons trapped by the self-dual vortices at their core are found and investigated.
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2017-01-01
Roč. 96, č. 1 (2017), č. článku 012127. ISSN 2469-9926 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : non-Hermitian * PT symmetric * bound states Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.925, year: 2016
K- nuclear quasi-bound states in a chirally motivated coupled-channel approach
International Nuclear Information System (INIS)
Mareš, Jiri
2012-01-01
K − nuclear optical potentials are constructed from in-medium K-bar N scattering amplitudes within a chirally motivated coupled-channel model. The strong energy and density dependence of the scattering amplitudes at and below threshold leads to K − potential depths −Re V K - (ρ 0 ) approx. 80 - 100 MeV. Self consistent calculations of K − nuclear quasi-bound states are discussed.
International Nuclear Information System (INIS)
Batiz, Zoltan; Gross, Franz
2000-01-01
The momentum conservation sum rule for deep inelastic scattering (DIS) from composite particles is investigated using the general theory of relativity. For two (1+1)-dimensional examples, it is shown that covariant theories automatically satisy the DIS momentum conservation sum rule provided the bound state is covariantly normalized. Therefore, in these cases the two DIS sum rules for baryon conservation and momentum conservation are equivalent. (c) 2000 The American Physical Society
Bound states in open-coupled asymmetrical waveguides and quantum wires
International Nuclear Information System (INIS)
Amore, Paolo; Terrero-Escalante, César A; Rodriguez, Martin
2012-01-01
The behaviour of bound states in asymmetric cross, T- and L-shaped configurations is considered. Because of the symmetries of the wavefunctions, the analysis can be reduced to the case of an electron localized at the intersection of two orthogonal crossed wires of different width. For different values of the ratio of the widths we prove the existence and non-existence of bound states in each symmetry class. Our arguments yield that for the even–even case the bound state of the cross configuration persists as one of the arms becomes infinitesimally narrow. In the case of odd–odd states, we find that the lowest mode is bounded when the width of the two arms is the same and stays bound up to a critical value of the ratio between the widths; in the case of the even–odd states we find that the lowest mode is unbound up to a critical value of the ratio of the widths. Numerical calculations are used to support those results and to determine precisely the critical values of the ratio of the widths. (paper)
International Nuclear Information System (INIS)
Levin, F.S.; Krueger, H.
1977-01-01
We propose in this article that the non-Hermitian equations typical of some many-body scattering theories be used to help solve many-body bound-state problems. The basic idea is to exploit the channel nature of many-body bound states that must exist because bound states are obvious negative-energy extensions of scattering states. Since atomic, molecular, and nuclear systems all display multichannel effects for E > 0, at least through Pauli-principle effects if not through mass-transfer reactions, this use of positive-energy methods for solving bound-state problems could have wide applicability. The development used here is based on the channel-component-state method of the channel-coupling-array theory, recently described in detail for the E > 0 case, and various aspects of the formalism are discussed. Detailed calculations using simple approximations are discussed for H 2 + , one of the simplest systems displaying channel structure. Comparison with the exact, Born-Oppenheimer results of Wind show that the non-Hermitian-equation, channel-component values of the equilibrium separation and total binding energy are accurate to within 2%, while the dissociation energy is accurate to 10%. The resulting wave function is identical to that arising from the simplest MO calculation, for which these numbers are less accurate than the preceding by at least a factor of 3. We also show that identical particle symmetry for the H 2 + case reduces the pair of coupled (two-channel) equations to a single equation with an exchange term. Similar reductions will occur for larger numbers of identical particles, thus suggesting application of the formalism to atomic structure problems. A detailed analysis of the present numerical results, their general implications, and possible applications is also given
Bound states in a model of interaction of Dirac field with material plane
Directory of Open Access Journals (Sweden)
Pismak Yu. M.
2016-01-01
Full Text Available In the framework of the Symanzik approach model of the interaction of the Dirac spinor field with the material plane in the 3 + 1-dimensional space is constructed. The model contains eight real parameters characterizing the properties of the material plane. The general solution of the Euler-Lagrange equations of the model and dispersion equations for bound states are analyzed. It is shown that there is a choice of parameters of the model in which the connected states are characterized by dispersion law of a mass-less particle moving along the material plane with the dimensionless Fermi velocity not exceeding one.
Trif, Mircea; Dmytruk, Olesia; Bouchiat, Hélène; Aguado, Ramón; Simon, Pascal
2018-02-01
We theoretically study a Josephson junction based on a semiconducting nanowire subject to a time-dependent flux bias. We establish a general density-matrix approach for the dynamical response of the Majorana junction and calculate the resulting flux-dependent susceptibility using both microscopic and effective low-energy descriptions for the nanowire. We find that the diagonal component of the susceptibility, associated with the dynamics of the Majorana state populations, dominates over the standard Kubo contribution for a wide range of experimentally relevant parameters. The diagonal term, explored, in this Rapid Communication, in the context of Majorana physics, allows probing accurately the presence of Majorana bound states in the junction.
Manipulation of Squeezed Two-Phonon Bound States using Femtosecond Laser Pulses
Directory of Open Access Journals (Sweden)
Nakamura Kazutaka G.
2013-03-01
Full Text Available Two-phonon bound states have been excited exclusively in ZnTe(110 via impulsive stimulated second-order Raman scattering, essentially being squeezed states due to phase coherent excitation of two identical components anticorrelated in the wave vector. By using coherent control technique with a pair of femtosecond laser pulses, the manipulation of squeezed states has been demonstrated in which both the amplitude and lifetime of coherent oscillations of squeezed states are modulated, indicating the feasibility to control the quantum noise and the quantum nature of phonon squeezed states, respectively.
Monopole-fermion and dyon-fermion bound states. Pt. 5
International Nuclear Information System (INIS)
Osland, P.; Harvard Univ., Cambridge, MA; Schultz, C.L.; Wu, T.T.
1985-02-01
We present explicit, approximate, remarkably precise results for the Kazama-Yang hamiltonian, which describes a Dirac monopole interacting with a spin-1/2 fermion that has an extra magnetic moment. The results are valid for bound states of angular momentum j >= Zvertical strokeegvertical stroke+1/2, where the radial wave functions are determined by four coupled differential equations. These equations have been solved analytically for M - E << M, which is a limit of considerable practical interest. Binding energies and wave functions are given. (orig.)
Electron-electron bound states in parity-preserving QED3
International Nuclear Information System (INIS)
Belich, H.; Helayel-Neto, J.A.; Centro Brasileiro de Pesquisas Fisicas; Cima, O.M. del; Ferreira Junior, M.M.; Maranhao Univ., Sao Luis, MA
2002-04-01
By considering the Higgs mechanism in the framework of a parity-preserving Planar Quantum Electrodynamics, one shows that an attractive electron-electron interaction may dominate. The e - e - interaction potential emerges as the non-relativistic limit of the Moeller scattering amplitude and it results attractive with a suitable choice of parameters. Numerically values of the e - e - binding energy are obtained by solving the two-dimensional Schroedinger equation. The existence of bound states is a strong indicative that this model may be adopted to address the pairing mechanism of high-T c superconductivity. (author)
Electron-electron bound states in parity-preserving QED{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Belich, H.; Helayel-Neto, J.A. [Universidade Catolica do Petropolis, RJ (Brazil). Grupo de Fisica Teorica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas; Cima, O.M. del [Universidade Catolica do Petropolis, RJ (Brazil). Grupo de Fisica Teorica; Ferreira Junior, M.M. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica
2002-04-01
By considering the Higgs mechanism in the framework of a parity-preserving Planar Quantum Electrodynamics, one shows that an attractive electron-electron interaction may dominate. The e{sup -}e{sup -} interaction potential emerges as the non-relativistic limit of the Moeller scattering amplitude and it results attractive with a suitable choice of parameters. Numerically values of the e{sup -}e{sup -} binding energy are obtained by solving the two-dimensional Schroedinger equation. The existence of bound states is a strong indicative that this model may be adopted to address the pairing mechanism of high-T{sub c} superconductivity. (author)
Numerical solution of the Schrodinger equation for stationary bound states using nodel theorem
International Nuclear Information System (INIS)
Chen Zhijiang; Kong Fanmei; Din Yibin
1987-01-01
An iterative procedure for getting the numerical solution of Schrodinger equation on stationary bound states is introduced. The theoretical foundtion, the practical steps and the method are presented. An example is added at the end. Comparing with other methods, the present one requires less storage, less running time but posesses higher accuracy. It can be run on the personal computer or microcomputer with 256 K memory and 16 bit word length such as IBM/PC, MC68000/83/20, PDP11/23 etc
Bound states of quarks calculated with stochastic integration of the Bethe-Salpeter equation
International Nuclear Information System (INIS)
Salomon, M.
1992-07-01
We have computed the masses, wave functions and sea quark content of mesons in their ground state by integrating the Bethe-Salpeter equation with a stochastic algorithm. This method allows the inclusion of a large set of diagrams. Inspection of the kernel of the equation shows that q-q-bar pairs with similar constituent masses in a singlet spin state exhibit a high bound state which is not present in other pairs. The pion, kaon and eta belongs to this category. 19 refs., 2 figs., 2 tabs
Study of vison-spinon bound states on the kagome lattice
Shao, Junping; Ghosh, Shivam; Cho, Gil-Young; Lawler, Michael
2014-03-01
We search for low-energy vison-spinon bound states on the kagome lattice. We do this by applying an optimization algorithm to a bosonic spin liquid state with a well separated pair of visons inserted. The resulting wavefunction reveals that the low energy eigen-modes correspond to bound spinon states localized around the visons. We study these modes and their symmetry properties. Our results provide evidence supporting the low energy effective theories of Z2 spin liquids whose bosonic spinons, fermonic spinons and visions are characterized by projective symmetry groups consistent with the expected fusion rules and duality relations.
Bound states for square well potentials extending to infinity in D ≥ 2
International Nuclear Information System (INIS)
Rupertsberger, H.
1992-01-01
It is well known that quantum mechanics allows the penetration into classically forbidden regions (tunneling). Less well known seems to be the fact that in some sense the converse is true also. Potentials with classically allowed regions where a particle can move freely to infinity can nevertheless lead to bound states in quantum mechanics due to the stringent requirements of the boundary conditions, thus forbidding an escape to infinity. This effect is demonstrated by using an obvious generalization of the well known one-dimensional (D = 1) square well potential to arbitray space dimensions. (author)
Wedge-Local Fields in Integrable Models with Bound States II: Diagonal S-Matrix
Cadamuro, Daniela; Tanimoto, Yoh
2017-01-01
We construct candidates for observables in wedge-shaped regions for a class of 1+1-dimensional integrable quantum field theories with bound states whose S-matrix is diagonal, by extending our previous methods for scalar S-matrices. Examples include the Z(N)-Ising models, the A_N-affine Toda field theories and some S-matrices with CDD factors. We show that these candidate operators which are associated with elementary particles commute weakly on a dense domain. For the models with two species of particles, we can take a larger domain of weak commutativity and give an argument for the Reeh-Schlieder property.
Subthreshold internal conversion to bound states in highly ionized 125Te ions
International Nuclear Information System (INIS)
Karpeshin, F.F.; Harston, M.R.; Attallah, F.; Chemin, J.F.; Scheurer, J.N.; Band, I.M.; Trzhaskovskaya, M.B.
1996-01-01
A new mode of internal conversion decay, in which the converted electron is excited to a bound orbital instead of a continuum orbital, is discussed. General theoretical results are presented for the relation between bound internal conversion and continuum internal conversion of the nucleus. It is shown that the transition rate for internal conversion decay is continuous across the energy threshold between continuum final states and bound final states. Theoretical predictions for decay to bound states of 125 Te are consistent with experimental data on internal conversion in highly charged ions of this nuclide. copyright 1996 The American Physical Society
Spectrum of Andreev bound states in Josephson junctions with a ferromagnetic insulator
International Nuclear Information System (INIS)
Kawabata, Shiro; Tanaka, Yukio; Golubov, Alexander A.; Vasenko, Andrey S.; Asano, Yasuhiro
2012-01-01
Ferromagnetic-insulator (FI) based Josephson junctions are promising candidates for a coherent superconducting quantum bit as well as a classical superconducting logic circuit. Recently the appearance of an intriguing atomic-scale 0–π transition has been theoretically predicted. In order to uncover the mechanism of this phenomena, we numerically calculate the spectrum of Andreev bound states in a FI barrier by diagonalizing the Bogoliubov–de Gennes equation. We show that Andreev spectrum drastically depends on the parity of the FI-layer number L and accordingly the π(0) state is always more stable than the 0 (π) state if L is odd (even).
Josephson current through a quantum dot molecule with a Majorana zero mode and Andreev bound states
Tang, Han-Zhao; Zhang, Ying-Tao; Liu, Jian-Jun
2018-04-01
Based on the Green's function method, we investigate the interplay between Majorana zero mode (MZM) and Andreev bound states (ABSs) in a quantum dot molecule side coupled to a topological superconducting nanowire with a pair of MZMs forming a Josephson junction. Since the strong electron-hole asymmetry induced by the nanowire with a topologically non-trivial phase, the MZM suppress the ABSs. The suppression induced by the MZM is robust against the Coulomb repulsion. The interplay between the MZM and the ABSs in Josephson junction presents a feasible experimental means for distinguish between the presence of MZM and ABSs.
Electron-electron bound states in parity-preserving QED sub 3
Belich, H; Helayel-Neto, J A; Monteiro del Cima, O
2002-01-01
By considering the Higgs mechanism in the framework of a parity-preserving Planar Quantum Electrodynamics, one shows that an attractive electron-electron interaction may dominate. The e sup - e sup - interaction potential emerges as the non-relativistic limit of the Moeller scattering amplitude and it results attractive with a suitable choice of parameters. Numerically values of the e sup - e sup - binding energy are obtained by solving the two-dimensional Schroedinger equation. The existence of bound states is a strong indicative that this model may be adopted to address the pairing mechanism of high-T sub c superconductivity.
Ratis, Yu L
2004-01-01
This paper substantiates a hypothesis that the natural fireball represents an area of space where the chain nuclear reaction of the bound state beta-decay of radioactive phosphorus nuclei takes place.
Chen, Jiao-Kai
2018-04-01
We present one reduction of the Bethe-Salpeter equation for the bound states composed of two off-mass-shell constituents. Both the relativistic effects and the virtuality effects can be considered in the obtained spinless virtuality distribution equation. The eigenvalues of the spinless virtuality distribution equation are perturbatively calculated and the bound states e+e-, μ+μ-, τ+τ-, μ+e-, and τ+e- are discussed.
The light bound states of N=1 supersymmetric SU(3) Yang-Mills theory on the lattice
Ali, Sajid; Bergner, Georg; Gerber, Henning; Giudice, Pietro; Montvay, Istvan; Münster, Gernot; Piemonte, Stefano; Scior, Philipp
2018-03-01
In this article we summarise our results from numerical simulations of N=1 supersymmetric Yang-Mills theory with gauge group SU(3). We use the formulation of Curci and Veneziano with clover-improved Wilson fermions. The masses of various bound states have been obtained at different values of the gluino mass and gauge coupling. Extrapolations to the limit of vanishing gluino mass indicate that the bound states form mass-degenerate supermultiplets.
Kalchmair, Stefan; Gansch, Roman; Genevet, Patrice; Zederbauer, Tobias; MacFarland, Donald; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Capasso, Federico; Loncar, Marko
2016-04-01
Photonic crystal slabs have been subject to research for more than a decade, yet the existence of bound states in the radiation continuum (BICs) in photonic crystals has been reported only recently [1]. A BIC is formed when the radiation from all possible channels interferes destructively, causing the overall radiation to vanish. In photonic crystals, BICs are the result of accidental phase matching between incident, reflected and in-plane waves at seemingly random wave vectors [2]. While BICs in photonic crystals have been discussed previously using reflection measurements, we reports for the first time in-situ measurements of the bound states in the continuum in photonic crystal slabs. By embedding a photodetector into a photonic crystal slab we were able to directly observe optical BICs. The photonic crystal slabs are processed from a GaAs/AlGaAs quantum wells heterostructure, providing intersubband absorption in the mid-infrared wavelength range. The generated photocurrent is collected via doped contact layers on top and bottom of the suspended photonic crystal slab. We were mapping out the photonic band structure by rotating the device and by acquiring photocurrent spectra every 5°. Our measured photonic bandstructure revealed several BICs, which was confirmed with a rigorously coupled-wave analysis simulation. Since coupling to external fields is suppressed, the photocurrent measured by the photodetector vanishes at the BIC wave vector. To confirm the relation between the measured photocurrent and the Q-factor we used temporal coupled mode theory, which yielded an inverse proportional relation between the photocurrent and the out-coupling loss from the photonic crystal. Implementing a plane wave expansion simulation allowed us to identify the corresponding photonic crystal modes. The ability to directly measure the field intensity inside the photonic crystal presents an important milestone towards integrated opto-electronic BIC devices. Potential
Moore, Christopher; Stanescu, Tudor D.; Tewari, Sumanta
2018-04-01
We show that a pair of overlapping Majorana bound states (MBSs) forming a partially separated Andreev bound state (ps-ABS) represents a generic low-energy feature in spin-orbit-coupled semiconductor-superconductor (SM-SC) hybrid nanowire in the presence of a Zeeman field. The ps-ABS interpolates continuously between the "garden variety" ABS, which consists of two MBSs sitting on top of each other, and the topologically protected Majorana zero modes (MZMs), which are separated by a distance given by the length of the wire. The really problematic ps-ABSs consist of component MBSs separated by a distance of the order of the characteristic Majorana decay length ξ , and have nearly zero energy in a significant range of control parameters, such as the Zeeman field and chemical potential, within the topologically trivial phase. Despite being topologically trivial, such ps-ABSs can generate signatures identical to MZMs in local charge tunneling experiments. In particular, the height of the zero-bias conductance peak (ZBCP) generated by ps-ABSs has the quantized value 2 e2/h , and it can remain unchanged in an extended range of experimental parameters, such as Zeeman field and the tunnel barrier height. We illustrate the formation of such low-energy robust ps-ABSs in two experimentally relevant situations: a hybrid SM-SC system consisting of a proximitized nanowire coupled to a quantum dot and the SM-SC system in the presence of a spatially varying inhomogeneous potential. We then show that, unlike local measurements, a two-terminal experiment involving charge tunneling at both ends of the wire is capable of distinguishing between the generic ps-ABSs and the non-Abelian MZMs. While the MZMs localized at the opposite ends of the wire generate correlated differential conduction spectra, including correlations in energy splittings and critical Zeeman fields associated with the emergence of the ZBCPs, such correlations are absent if the ZBCPs are due to ps-ABSs emerging in the
Toward the Application of Three-Dimensional Approach to Few-body Atomic Bound States
Directory of Open Access Journals (Sweden)
Hadizadeh M.R.
2010-04-01
Full Text Available The ﬁrst step toward the application of an eﬀective non partial wave (PW numerical approach to few-body atomic bound states has been taken. The two-body transition amplitude which appears in the kernel of three-dimensional Faddeev-Yakubovsky integral equations is calculated as function of two-body Jacobi momentum vectors, i.e. as a function of the magnitude of initial and ﬁnal momentum vectors and the angle between them. For numerical calculation the realistic interatomic interactions HFDHE2, HFD-B, LM2M2 and TTY are used. The angular and momentum dependence of the fully oﬀ-shell transition amplitude is studied at negative energies. It has been numerically shown that, similar to the nuclear case, the transition amplitude exhibits a characteristic angular behavior in the vicinity of 4He dimer pole.
Calculations of antiproton-nucleus quasi-bound states using the Paris N bar N potential
Hrtánková, Jaroslava; Mareš, Jiří
2018-01-01
An optical potential constructed using the p bar N scattering amplitudes derived from the 2009 version of the Paris N bar N potential is applied in calculations of p bar quasi-bound states in selected nuclei across the periodic table. A proper self-consistent procedure for treating energy dependence of the amplitudes in a nucleus appears crucial for evaluating p bar binding energies and widths. Particular attention is paid to the role of P-wave amplitudes. While the P-wave potential nearly does not affect calculated p bar binding energies, it reduces considerably the corresponding widths. The Paris S-wave potential supplemented by a phenomenological P-wave term yields in dynamical calculations p bar binding energies Bpbar ≈ 200 MeV and widths Γpbar ∼ 200- 230 MeV, which is very close to the values obtained within the RMF model consistent with p bar -atom data.
Mapping the orbital structure of impurity bound states in a superconductor.
Choi, Deung-Jang; Rubio-Verdú, Carmen; de Bruijckere, Joeri; Ugeda, Miguel M; Lorente, Nicolás; Pascual, Jose Ignacio
2017-05-08
A magnetic atom inside a superconductor locally distorts superconductivity. It scatters Cooper pairs as a potential with broken time-reversal symmetry, leading to localized bound states with subgap excitation energies, named Shiba states. Most conventional approaches regarding Shiba states treat magnetic impurities as point scatterers with isotropic exchange interaction. Here, we show that the number and the shape of Shiba states are correlated to the spin-polarized atomic orbitals of the impurity, hybridized with the superconductor. Using scanning tunnelling spectroscopy, we spatially map the five Shiba excitations found on subsurface chromium atoms in Pb(111), resolving their particle and hole components. While particle components resemble d orbitals of embedded Cr atoms, hole components differ strongly from them. Density functional theory simulations correlate the orbital shapes to the magnetic ground state of the atom, and identify scattering channels and interactions, all valuable tools for designing atomic-scale superconducting devices.
Transient Phenomena in Quantum Bound States Subjected to a Sudden Perturbation
Directory of Open Access Journals (Sweden)
Marcos Moshinsky
2005-08-01
Full Text Available Transient phenomena in quantum mechanics have been of interest to one of the authors (MM since long ago and, in this paper, we focus on the problem of a potential V_- which for negative times gives rise to bound states and is suddenly changed at t = 0 to a potential V_+ which includes V_- plus a perturbed term. An example will be the deuteron (where the proton and neutron are assumed to interact through an oscillator potential submitted to a sudden electrostatic field. The analysis for t >0 can be carried out with the help of appropriate Feynmann propagators and we arrive at the result that the separation between the nucleons has an amplitude that depends on the intensity of the electrostatic field, but its period continues to be related with the inverse of the frequency of the oscillator proposed for the interaction. A general approximate procedure for arbitrary problems of this type is also presented at the end.
Bound state properties of ABC-stacked trilayer graphene quantum dots
Xiong, Haonan; Jiang, Wentao; Song, Yipu; Duan, Luming
2017-06-01
The few-layer graphene quantum dot provides a promising platform for quantum computing with both spin and valley degrees of freedom. Gate-defined quantum dots in particular can avoid noise from edge disorders. In connection with the recent experimental efforts (Song et al 2016 Nano Lett. 16 6245), we investigate the bound state properties of trilayer graphene (TLG) quantum dots (QDs) through numerical simulations. We show that the valley degeneracy can be lifted by breaking the time reversal symmetry through the application of a perpendicular magnetic field. The spectrum under such a potential exhibits a transition from one group of Landau levels to another group, which can be understood analytically through perturbation theory. Our results provide insight into the transport property of TLG QDs, with possible applications to study of spin qubits and valleytronics in TLG QDs.
Quartified leptonic color, bound states, and future electron–positron collider
Directory of Open Access Journals (Sweden)
Corey Kownacki
2017-06-01
Full Text Available The [SU(3]4 quartification model of Babu, Ma, and Willenbrock (BMW, proposed in 2003, predicts a confining leptonic color SU(2 gauge symmetry, which becomes strong at the keV scale. It also predicts the existence of three families of half-charged leptons (hemions below the TeV scale. These hemions are confined to form bound states which are not so easy to discover at the Large Hadron Collider (LHC. However, just as J/ψ and ϒ appeared as sharp resonances in e−e+ colliders of the 20th century, the corresponding ‘hemionium’ states are expected at a future e−e+ collider of the 21st century.
Sharma, Natasha
2016-01-01
The excellent particle identification capabilities of the ALICE detector, using the time projection chamber and the time-of-flight detector, allow the detection of light nuclei and anti-nuclei. Furthermore, the high tracking resolution provided by the inner tracking system enables the separation of primary nuclei from those coming from the decay of heavier systems. This allows for the reconstruction of decays such as the hypertriton mesonic weak decay ($^3_{\\Lambda}$H$\\rightarrow ^3$He + $\\pi^-$), the decay of a hypothetical bound state of a $\\Lambda$n into a deuteron and pion or the H-dibaryon decaying into a $\\Lambda$, a proton and a $\\pi^{-}$. An overview of the production of stable nuclei and anti-nuclei in proton-proton, proton-lead and, in particular, lead-lead collisions is presented. Hypernuclei production rates in Pb--Pb are also shown, together with the upper limits estimated on the production of hypothetical exotica candidates. The results are compared with predictions for the production in thermal...
A search for the K−pp bound state in the 3He(K−in-flight, n reaction at J-PARC
Directory of Open Access Journals (Sweden)
Hashimoto T.
2014-03-01
Full Text Available We have collected the first physics data of an experimental search for the simplest kaonic nuclear bound state, “K− pp”, by the 3He(K− n reaction at J-PARC. We confirmed that our spectrometer system works as designed and observed clear peak structure composed of the quasi-elastic K−“n” → K−n and the charge-exchange K−“p” → ¯̅K0n reactions in the forward neutron spectrum.
The bound state S-matrix for AdS{sub 5}xS{sup 5} superstring
Energy Technology Data Exchange (ETDEWEB)
Arutyunov, G. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)], E-mail: g.e.arutyunov@uu.nl; Leeuw, M. de [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)], E-mail: m.deleeuw@uu.nl; Torrielli, A. [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)], E-mail: a.torrielli@uu.nl
2009-10-01
We determine the S-matrix that describes scattering of arbitrary bound states in the light-cone string theory in AdS{sub 5}xS{sup 5}. The corresponding construction relies on the Yangian symmetry and the superspace formalism for the bound state representations. The basic analytic structure supporting the S-matrix entries turns out to be the hypergeometric function {sub 4}F{sub 3}. We show that for particular bound state numbers it reproduces all the scattering matrices previously obtained in the literature. Our findings should be relevant for the TBA and Luescher approaches to the finite-size spectral problem. They also shed some light on the construction of the universal R-matrix for the centrally-extended psu(2|2) superalgebra.
Znojil, Miloslav
2017-07-01
The phenomenon of the birth of an isolated quantum bound state at the lower edge of the continuum is studied for a particle moving along a discrete real line of coordinates x ∈Z . The motion is controlled by a weakly nonlocal 2 J -parametric external potential V which is non-Hermitian but P T symmetric. The model is found exactly solvable. The bound states are interpreted as Sturmians. Their closed-form definitions are presented and discussed up to J =7 .
Moore, Christopher; Stanescu, Tudor D.; Tewari, Sumanta
2017-01-01
We show that a pair of overlapping Majorana bound states (MBSs) forming a partially-separated Andreev bound state (ps-ABS) represents a generic low-energy feature in spin-orbit coupled semiconductor-superconductor (SM-SC) hybrid nanowires in the presence of a Zeeman field. The ps-ABS interpolates continuously between the "garden variety" ABS, which consists of two MBSs sitting on top of each other, and the topologically protected Majorana zero modes (MZMs), which are separated by a distance g...
Neutron scattering from elemental indium, the optical model, and the bound-state potential
Energy Technology Data Exchange (ETDEWEB)
Chiba, S. (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)); Guenther, P.T.; Lawson, R.D.; Smith, A.B. (Argonne National Lab., IL (USA))
1990-06-01
Neutron differential elastic-scattering cross sections of elemental indium are measured from 4.5 to 10 MeV at incident-energy intervals of {approx}500 keV. Seventy or more differential values are obtained at each incident energy, distributed between {approx}18{degree} and 160{degree}. These experimental results are combined with lower-energy values previously obtained at this laboratory, and with 11 and 14 MeV results in the literature, to form a comprehensive elastic-scattering database extending from {approx}1.5 to 14 MeV. These data are interpreted in terms of a conventional spherical optical model. The resulting potential is extrapolated to the bound-state regime. It is shown that in the middle of the 50--82 neutron shell, the potential derived from the scattering results adequately describes the binding energies of article states, but does not do well for hole states. The latter shortcoming is attributed to the holes states having occupational probabilities sufficiently different from unity, so that the exclusion principle become a factor, and to the rearrangement of the neutron core. 68 refs.
Neutron scattering from elemental indium, the optical model, and the bound-state potential
International Nuclear Information System (INIS)
Chiba, S.; Guenther, P.T.; Lawson, R.D.; Smith, A.B.
1990-01-01
Neutron differential elastic-scattering cross sections of elemental indium are measured from 4.5 to 10 MeV at incident-energy intervals of ∼500 keV. Seventy or more differential values are obtained at each incident energy, distributed between ∼18 degree and 160 degree. These experimental results are combined with lower-energy values previously obtained at this laboratory, and with 11 and 14 MeV results in the literature, to form a comprehensive elastic-scattering database extending from ∼1.5 to 14 MeV. These data are interpreted in terms of a conventional spherical optical model. The resulting potential is extrapolated to the bound-state regime. It is shown that in the middle of the 50--82 neutron shell, the potential derived from the scattering results adequately describes the binding energies of article states, but does not do well for hole states. The latter shortcoming is attributed to the holes states having occupational probabilities sufficiently different from unity, so that the exclusion principle become a factor, and to the rearrangement of the neutron core. 68 refs
Boosting QED and QCD bound states in the path integral formalism
Simonov, Yu. A.
2015-03-01
Wave functions and energy eigenvalues of the path integral Hamiltonian are studied in the Lorentz frame moving with velocity v . The instantaneous interaction produced by the Wilson loop is shown to be reduced by an overall factor √{1 -(v/c )2 }. As a result, one obtains the boosted energy eigenvalues in the Lorentz covariant form E =√{P2+M02 } , where M0 is the c.m. energy, and this form is tested for two free particles and for the Coulomb and linear interaction. Using Lorentz-contracted wave functions of the bound states, one obtains the scaled-parton wave functions and valence quark distributions for large P . Matrix elements containing wave functions moving with different velocities strongly decrease with growing relative momentum; e.g., for the timelike form factors, one obtains Fh(Q0)˜(M/hQ_0)2 nh with nh=1 and 2 for mesons and baryons, as in the "quark counting rule."
Electron-electron bound states in Maxwell-Chern-Simons-Proca QED{sub 3}
Energy Technology Data Exchange (ETDEWEB)
Belich, H.; Helayel-Neto, J.A. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]. E-mail: belich@cbpf.br; helayel@gft.ucp.br; Del Cima, O.M. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]. E-mail: delcima@gft.ucp.br; Ferreira, M.M. Jr. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica]. E-mail: manojr@cbpf.br
2002-10-01
We start from a parity-breaking MCS QED{sub 3} model with spontaneous breaking of the gauge symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of numerical values for the e{sup -}e{sup -} - bound state. Three expressions (V{sub eff{down_arrow}}{sub {down_arrow}}, V{sub eff{down_arrow}}{sub {up_arrow}}, V{sub eff{down_arrow}}{sub {down_arrow}}) are obtained according to the polarization state of the scattered electrons. In an energy scale compatible with condensed matter electronic excitations, these potentials become degenerated. The resulting potential is implemented in the Schroedinger equation and the variational method is applied to carry out the electronic binding energy. The resulting binding energies in the scale of 10-100 meV and a correlation length in the scale of 10 - 30 Angstrom are possible indications that the MCS-QED{sub 3} model adopted may be suitable to address an eventual case of e{sup -}e{sup -} pairing in the presence of parity-symmetry breakdown. The data analyzed here suggest an energy scale of 10-100 meV to fix the breaking of the U(1)-symmetry. (author)
The light bound states of supersymmetric SU(2) Yang-Mills theory
Bergner, Georg; Giudice, Pietro; Münster, Gernot; Montvay, Istvan; Piemonte, Stefano
2016-03-01
Supersymmetry provides a well-established theoretical framework for extensions of the standard model of particle physics and the general understanding of quantum field theories. We summarise here our investigations of {N}=1 supersymmetric Yang-Mills theory with SU(2) gauge symmetry using the non-perturbative first-principles method of numerical lattice simulations. The strong interactions of gluons and their superpartners, the gluinos, lead to confinement, and a spectrum of bound states including glueballs, mesons, and gluino-glueballs emerges at low energies. For unbroken supersymmetry these particles have to be arranged in supermultiplets of equal masses. In lattice simulations supersymmetry can only be recovered in the continuum limit since it is explicitly broken by the discretisation. We present the first continuum extrapolation of the mass spectrum of supersymmetric Yang-Mills theory. The results are consistent with the formation of super-multiplets and the absence of non-perturbative sources of supersymmetry breaking. Our investigations also indicate that numerical lattice simulations can be applied to non-trivial supersymmetric theories.
Electroweak-charged bound states as LHC probes of hidden forces
Li, Lingfeng; Salvioni, Ennio; Tsai, Yuhsin; Zheng, Rui
2018-01-01
We explore the LHC reach on beyond-the-standard model (BSM) particles X associated with a new strong force in a hidden sector. We focus on the motivated scenario where the SM and hidden sectors are connected by fermionic mediators ψ+,0 that carry SM electroweak charges. The most promising signal is the Drell-Yan production of a ψ±ψ¯ 0 pair, which forms an electrically charged vector bound state ϒ± due to the hidden force and later undergoes resonant annihilation into W±X . We analyze this final state in detail in the cases where X is a real scalar ϕ that decays to b b ¯, or a dark photon γd that decays to dileptons. For prompt X decays, we show that the corresponding signatures can be efficiently probed by extending the existing ATLAS and CMS diboson searches to include heavy resonance decays into BSM particles. For long-lived X , we propose new searches where the requirement of a prompt hard lepton originating from the W boson ensures triggering and essentially removes any SM backgrounds. To illustrate the potential of our results, we interpret them within two explicit models that contain strong hidden forces and electroweak-charged mediators, namely λ -supersymmetry (SUSY) and non-SUSY ultraviolet extensions of the twin Higgs model. The resonant nature of the signals allows for the reconstruction of the mass of both ϒ± and X , thus providing a wealth of information about the hidden sector.
Bound states of two gluinos at the Fermilab Tevatron and CERN LHC
Energy Technology Data Exchange (ETDEWEB)
Chikovani, E.; Kartvelishvili, V.; Shanidze, R.; Shaw, G. [High Energy Physics Institute, Tbilisi State University, Tbilisi, GE-380086, Republic of (Georgia)]|[Department of Physics and Astronomy, Schuster Laboratory, University of Manchester, Manchester M13 9PL (United Kingdom)
1996-06-01
We calculate the production cross sections for the vector and pseudoscalar bound states of two gluinos. It is shown that existing and future colliders imply a realistic chance of observing gluinonium as a narrow peak in the two-jet invariant mass spectrum. With an integrated luminosity of 0.2 fb{sup {minus}1} at the Fermilab Tevatron, and the high efficiency for tagging heavy quark jets at CDF, one should be able to detect vector gluinonium for gluino masses up to about 170 GeV, or up to about 260 GeV for an upgraded Tevatron with a center of mass energy of 2 TeV and an integrated luminosity of 1 fb{sup {minus}1}. The significantly higher energy and luminosity of the CERN LHC should allow pseudoscalar gluinonium to be detected for gluino masses up to about 1500 GeV for an assumed luminosity of 200 fb{sup {minus}1}. These results are insensitive to the details of supersymmetry models, provided that {ital R} parity is conserved and the gluinos are lighter than the squarks. In addition, gluinonium detection implies a relatively accurate measure of the gluino mass, which is difficult to determine by other means. {copyright} {ital 1996 The American Physical Society.}
Electron-electron bound states in Maxwell-Chern-Simons-Proca QED3
International Nuclear Information System (INIS)
Belich, H.; Helayel-Neto, J.A.; Ferreira, M.M. Jr.; Maranhao Univ., Sao Luis, MA
2002-10-01
We start from a parity-breaking MCS QED 3 model with spontaneous breaking of the gauge symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of numerical values for the e - e - - bound state. Three expressions V eff↓↓ , V eff↓↑ , V eff↓↓ ) are obtained according to the polarization state of the scattered electrons. In an energy scale compatible with condensed matter electronic excitations, these potentials become degenerated. The resulting potential is implemented in the Schroedinger equation and the variational method is applied to carry out the electronic binding energy. The resulting binding energies in the scale of 10-100 meV and a correlation length in the scale of 10 - 30 Angstrom are possible indications that the MCS-QED 3 model adopted may be suitable to address an eventual case of e - e - pairing in the presence of parity-symmetry breakdown. The data analyzed here suggest an energy scale of 10-100 meV to fix the breaking of the U(1)-symmetry. (author)
Energy Technology Data Exchange (ETDEWEB)
Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)
2017-12-15
It has recently been demonstrated that asymptotically flat neutral reflecting stars are characterized by an intriguing no-hair property. In particular, it has been proved that these horizonless compact objects cannot support spatially regular static matter configurations made of scalar (spin-0) fields, vector (spin-1) fields and tensor (spin-2) fields. In the present paper we shall explicitly prove that spherically symmetric compact reflecting stars can support stationary (rather than static) bound-state massive scalar fields in their exterior spacetime regions. To this end, we solve analytically the Klein-Gordon wave equation for a linearized scalar field of mass μ and proper frequency ω in the curved background of a spherically symmetric compact reflecting star of mass M and radius R{sub s}. It is proved that the regime of existence of these stationary composed star-field configurations is characterized by the simple inequalities 1 - 2M/R{sub s} < (ω/μ){sup 2} < 1. Interestingly, in the regime M/R{sub s} << 1 of weakly self-gravitating stars we derive a remarkably compact analytical equation for the discrete spectrum {ω(M,R_s, μ)}{sup n=∞}{sub n=1} of resonant oscillation frequencies which characterize the stationary composed compact-reflecting-star-linearized-massive-scalar-field configurations. Finally, we verify the accuracy of the analytically derived resonance formula of the composed star-field configurations with direct numerical computations. (orig.)
Electron-electron bound states in Maxwell-Chern-Simons-Proca QED sub 3
Belich, H; Ferreira, M M J; Helayel-Neto, J A
2002-01-01
We start from a parity-breaking MCS QED sub 3 model with spontaneous breaking of the gauge symmetry as a framework for evaluation of the electron-electron interaction potential and for attainment of numerical values for the e sup - e sup - - bound state. Three expressions V sub e sub f sub f subarrow down subarrow down, V sub e sub f sub f subarrow down subarrow up, V sub e sub f sub f subarrow down subarrow down) are obtained according to the polarization state of the scattered electrons. In an energy scale compatible with condensed matter electronic excitations, these potentials become degenerated. The resulting potential is implemented in the Schroedinger equation and the variational method is applied to carry out the electronic binding energy. The resulting binding energies in the scale of 10-100 meV and a correlation length in the scale of 10 - 30 Angstrom are possible indications that the MCS-QED sub 3 model adopted may be suitable to address an eventual case of e sup - e sup - pairing in the presence o...
Bound State Eigenvalues of the Schroedinger Eq. in two Spatial Variables.
Rawitscher, George H.; Koltracht, Israel
2002-08-01
An efficient spectral integral equation method (SIEM) has recently been developed for obtaining the scattering solution of a one-dimensional Schroedinger equation.(R.A. Gonzales, S.-Y. Kang, I. Koltracht and G. Rawitscher, J. of Comput. Phys. 153, 160 (1999).) The purpose of the present study is to extend this method to the case of bound-states in more than one dimension. Even though other methods have already been developed for this case, such as finite element methods, the application we have in mind is to solve the non-linear Bose-Einstein condensate case in the presence of an optical lattice. In the presence of a trapping potential alone, a B-E condensate solution has been obtained by a new iterative spectral method which solves the differential equation.(Y.-S. Choi, J. Javanainen, I. Koltracht, M. Koš)trun, P.J. McKenna and N. Savytska "A Fast Algorithm for the Solution of the Time-Independent Gross-Pitaevskii Equation," Submitted to Computational Physics. But this method becomes inadequate for the case that several potential barriers are also present. The reason that the SIEM is expected to be better suited is that it distributes the collocation points much more efficiently into partitions of variable size.
Bound states via Higgs exchanging and heavy resonant di-Higgs
Directory of Open Access Journals (Sweden)
Zhaofeng Kang
2017-08-01
Full Text Available The existence of Higgs boson h predicted by the standard model (SM was established and hunting for clues to new physics (NP hidden in h has become the top priority in particle physics. In this paper we explore an intriguing phenomenon that prevails in NP associated with h, bound state (Bh, referring to the ground state only of relatively heavy particles ϕ out of NP via interchanging h. This is well-motivated due to the intrinsic properties of h: It has zero spin and light mass, capable of mediating Yukawa interactions; moreover, it may be strongly coupled to ϕ in several important contexts, from addressing the naturalness problem by compositeness/supersymmetry (SUSY/classical scale invariance to understanding neutrino mass origin radiatively and matter asymmetry by electroweak baryogensis. The new resonance Bh, being a neutral scalar boson, has important implications to the large hadron collider (LHC di-Higgs search because it yields a clear resonant di-Higgs signature at the high mass region (≳1 TeV. In other words, searching for Bh offers a new avenue to probe the hidden sector with a Higgs-portal. For illustration in this paper we concentrate on two examples, the stop sector in SUSY and an inert Higgs doublet from a radiative neutrino model. In particular, h-mediation opens a new and wide window to probe the conventional stoponium and the current date begins to have sensitivity to stoponium around TeV.
Bound states via Higgs exchanging and heavy resonant di-Higgs
Kang, Zhaofeng
2017-08-01
The existence of Higgs boson h predicted by the standard model (SM) was established and hunting for clues to new physics (NP) hidden in h has become the top priority in particle physics. In this paper we explore an intriguing phenomenon that prevails in NP associated with h, bound state (Bh, referring to the ground state only) of relatively heavy particles ϕ out of NP via interchanging h. This is well-motivated due to the intrinsic properties of h: It has zero spin and light mass, capable of mediating Yukawa interactions; moreover, it may be strongly coupled to ϕ in several important contexts, from addressing the naturalness problem by compositeness/supersymmetry (SUSY)/classical scale invariance to understanding neutrino mass origin radiatively and matter asymmetry by electroweak baryogensis. The new resonance Bh, being a neutral scalar boson, has important implications to the large hadron collider (LHC) di-Higgs search because it yields a clear resonant di-Higgs signature at the high mass region (≳ 1 TeV). In other words, searching for Bh offers a new avenue to probe the hidden sector with a Higgs-portal. For illustration in this paper we concentrate on two examples, the stop sector in SUSY and an inert Higgs doublet from a radiative neutrino model. In particular, h-mediation opens a new and wide window to probe the conventional stoponium and the current date begins to have sensitivity to stoponium around TeV.
Energy Technology Data Exchange (ETDEWEB)
Silva Carvalho, Hendly da
1991-08-01
We study relativistic equations for bound states of two-body systems using Dirac`s constraint formalism and supersymmetry. The two-body system can be of spinless particles, one of them spinning and the other one spinless, or both of them spinning. The interaction is described by scalar, timelike four-vector and spacelike four-vector potentials under Lorentz transformations. As an application we use the relativistic wave equation for two scalar particles and calculate the mass spectra of the mesons treating them as spinless quark-antiquark bound states. The interaction potential in this case is a convenient adaptation of the potential employed in non-relativistic calculations. Finally, we compare our results with more recent experimental data and with theoretical results obtained with the same potential used by us but with a non-relativistic wave equation. We also compare our results with results obtained with the relativistic wave equation but with a different interaction potential. (author). 38 refs, 9 figs, 8 tabs.
Fujioka, H.; Ayyad, Y.; Benlliure, J.; Brinkmann, K. -T.; Friedrich, S.; Geissel, H.; Gellanki, J.; Guo, C.; Gutz, E.; Haettner, E.; Harakeh, M. N.; Hayano, R. S.; Higashi, Y.; Hirenzaki, S.; Hornung, C.; Igarashi, Y.; Ikeno, N.; Itahashi, K.; Iwasaki, M.; Jido, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Knoebel, R.; Kurz, N.; Metag, V.; Mukha, I.; Nagae, T.; Nagahiro, H.; Nanova, M.; Nishi, T.; Ong, H. J.; Pietri, S.; Prochazka, A.; Rappold, C.; Reiter, M. P.; Rodríguez-Sánchez, J. L.; Scheidenberger, C.; Simon, H.; Sitar, B.; Strmen, P.; Sun, B.; Suzuki, K.; Szarka, I.; Takechi, M.; Tanaka, Y. K.; Tanihata, I.; Terashima, S.; Watanabe, Y. N.; Weick, H.; Widmann, E.; Winfield, J. S.; Xu, X.; Yamakami, H.; Zhao, J.
2015-01-01
The possible existence of \\eta'-nucleus bound states has been put forward through theoretical and experimental studies. It is strongly related to the \\eta' mass at finite density, which is expected to be reduced because of the interplay between the $U_A(1)$ anomaly and partial restoration of chiral
DEFF Research Database (Denmark)
Sadrieva, Z. F.; Sinev, I. S.; Samusev, A. K.
2016-01-01
In this work, we implement CMOS-compatible one-dimensional photonic structure based on silicon-on-insulator wafer supporting optical bound states in the continuum at telecommunication wavelengths — localized optical state with energy lying above the light line of the surrounding space. Such high...
The hyperon-nucleon interaction potential in the bound-state soliton model: the Λ N case
International Nuclear Information System (INIS)
Thomas, G.L.; Herscovitz, V.E.; Scoccola, N.N.
1999-05-01
We develop the formalism the study the hyperon-nucleon interaction potential within the bound state approach to the SU (3) Skyrme model. The general framework is illustrated by applying it to the diagonal Λ N potential. The central, spin-spin and tensor components of this interaction are obtained and compared with those derived using alternative schemes. (author)
New Bound States of Top-anti-Top Quarks and T-balls Production at Colliders (Tevatron, LHC, etc.)
Froggatt, C D; Nevzorov, R B; Nielsen, H B; Das, C R
2008-01-01
The present talk is based on the assumption that New Bound States (NBSs) of top-anti-top quarks (named T-balls) exist in the Standard Model (SM): a) there exists the scalar 1S - bound state of 6t+6\\bar t - the bound state of 6 top-quarks with their 6 anti-top-quarks; b) the forces which bind these top-quarks are very strong and almost completely compensate the mass of the 12 top-anti-top-quarks forming this bound state; c) such strong forces are produced by the interactions of top-quarks via the virtual exchange of the scalar Higgs bosons having the large value of the top-quark Yukawa coupling constant g_t\\simeq 1. Theory also predicts the existence of the NBS 6t + 5\\bar t, which is a color triplet and a fermion similar to the t'-quark of the fourth generation. We have also considered "b-replaced" NBSs: n_b b + (6t + 6\\bar t - n_b t) and n'_b b + (6t + 5\\bar t - n'_b t), etc. We have estimated the masses of the lightest "b-replaced" NBS: M_{NBS}\\simeq (300 - 400) GeV, and discussed the larger masses of the NB...
Majorana bound states in two-channel time-reversal-symmetric nanowire systems
DEFF Research Database (Denmark)
Gaidamauskas, Erikas; Paaske, Jens; Flensberg, Karsten
2014-01-01
We consider time-reversal-symmetric two-channel semiconducting quantum wires proximity coupled to a conventional s-wave superconductor. We analyze the requirements for a non-trivial topological phase, and find that necessary conditions are 1) the determinant of the pairing matrix in channel space...
Johansen, J G; Borge, M J G; Cubero, M; Diriken, J; Elsevier, J; Fraile, L M; Fynbo, H O U; Gaffney, L P; Gernhäuser, R; Jonson, B; Koldste, G T; Konki, J; Kröll, T; Krücken, R; Mücher, D; Nilsson, T; Nowak, K; Pakarinen, J; Pesudo, V; Raabe, R; Riisager, K; Seidlitz, M; Tengblad, O; Törnqvist, H; Voulot, D; Warr, N; Wenander, F; Wimmer, K; De Witte, H
2013-01-01
The bound states of $^{12}$Be have been studied through a $^{11}$Be$(d,p)^{12}$Be transfer reaction experiment in inverse kinematics. A 2.8 MeV/u beam of $^{11}$Be was produced using the REX-ISOLDE facility at CERN. The outgoing protons were detected with the T-REX silicon detector array. The MINIBALL germanium array was used to detect $\\gamma$-rays from the excited states in $^{12}$Be. The $\\gamma$-ray detection enabled a clear identification of the four known bound states in $^{12}$Be, and each of the states has been studied individually. Differential cross sections over a large angular range have been extracted. Spectroscopic factors for each of the states have been determined from DWBA calculations and have been compared to previous experimental and theoretical results.
Membrane-bound state of the colicin E1 channel domain as an extended two-dimensional helical array.
Zakharov, S D; Lindeberg, M; Griko, Y; Salamon, Z; Tollin, G; Prendergast, F G; Cramer, W A
1998-04-14
Atomic level structures have been determined for the soluble forms of several colicins and toxins, but the structural changes that occur after membrane binding have not been well characterized. Changes occurring in the transition from the soluble to membrane-bound state of the C-terminal 190-residue channel polypeptide of colicin E1 (P190) bound to anionic membranes are described. In the membrane-bound state, the alpha-helical content increases from 60-64% to 80-90%, with a concomitant increase in the average length of the helical segments from 12 to 16 or 17 residues, close to the length required to span the membrane bilayer in the open channel state. The average distance between helical segments is increased and interhelix interactions are weakened, as shown by a major loss of tertiary structure interactions, decreased efficiency of fluorescence resonance energy transfer from an energy donor on helix V of P190 to an acceptor on helix IX, and decreased resonance energy transfer at higher temperatures, not observed in soluble P190, implying freedom of motion of helical segments. Weaker interactions are also shown by a calorimetric thermal transition of low cooperativity, and the extended nature of the helical array is shown by a 3- to 4-fold increase in the average area subtended per molecule to 4,200 A2 on the membrane surface. The latter, with analysis of the heat capacity changes, implies the absence of a developed hydrophobic core in the membrane-bound P190. The membrane interfacial layer thus serves to promote formation of a highly helical extended two-dimensional flexible net. The properties of the membrane-bound state of the colicin channel domain (i.e., hydrophobic anchor, lengthened and loosely coupled alpha-helices, and close association with the membrane interfacial layer) are plausible structural features for the state that is a prerequisite for voltage gating, formation of transmembrane helices, and channel opening.
On the role of anti-bound states in the RPA description of the giant monopole resonance
International Nuclear Information System (INIS)
Vertse, T.; Bang, J.
1989-01-01
The limit of the applicability of the resonant Random Phase Approximation (RPA) method is tested by calculating escape widths in the giant monopole resonance of 16 O and comparing them to the results of a time dependent Hartree-Fock calculation. Though the widths of the narrow s-wave component agree reasonably well, the broad p-wave component shows large disagreement, which cannot be cured by complementing the basis with anti-bound states in the RPA calculation. (author) 18 refs.; 3 tabs
Feng, Xiao-Yong; Ng, Tai-Kai
2008-01-01
The tunneling conductance between a metal and a multiband s-wave superconductor with a thin layer of single-band s-wave superconductor sandwiched in between is examined in this paper. We show that an in-gap peak in conductance curve is found as a result of the formation of in-gap bound state between the single-band and multiband superconductor junctions if the phases of the superconducting order parameters of the multiband superconductor are frustrated. The implication of this result in deter...
Big-bang nucleosynthesis through bound-state effects with a long-lived slepton in the NMSSM
Kohri, Kazunori; Koike, Masafumi; Konishi, Yasufumi; Ohta, Shingo; Sato, Joe; Shimomura, Takashi; Sugai, Kenichi; Yamanaka, Masato
2014-08-01
We show that the Li problems can be solved in the next-to-minimal supersymmetric standard model where the slepton as the next-to-lightest supersymmetric (SUSY) particle is very long lived. Such a long-lived slepton induces exotic nuclear reactions in big-bang nucleosynthesis, and destroys and produces the Li7 and Li6 nuclei via bound state formation. We study cases where the lightest SUSY particle is singlino-like neutralino and bino-like neutralino to present allowed regions in the parameter space, which is consistent with the observations on the dark matter and the Higgs mass.
Calculations of antiproton nucleus quasi-bound states using the Paris (N)over-barN potential
Czech Academy of Sciences Publication Activity Database
Hrtánková, Jaroslava; Mareš, Jiří
2018-01-01
Roč. 969, č. 1 (2018), s. 45-59 ISSN 0375-9474 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : antiproton-nucleus interaction * Paris (N)over-barN potential * antiproton-nuclear bound states Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.916, year: 2016
Coupled-channels Faddeev AGS calculation of K{sup -}ppn and K{sup -}ppp quasi-bound states
Energy Technology Data Exchange (ETDEWEB)
Marri, S.; Kalantari, S.Z. [Isfahan University of Technology, Department of Physics, Isfahan (Iran, Islamic Republic of)
2016-09-15
Using separable anti KN - πΣ potentials in the Faddeev equations, we calculated the binding energies and widths of the K{sup -}pp, K{sup -}ppn and K{sup -}ppp quasi-bound states on the basis of three- and four-body Alt-Grassberger-Sandhas equations in the momentum representation. One- and two-pole version of anti KN - πΣ interaction are considered and the dependence of the resulting few-body energy on the two-body anti KN - πΣ potential was investigated. The s -wave [3 + 1] and [2 + 2] sub-amplitudes are obtained by using the Hilbert-Schmidt expansion procedure for the integral kernels. As a result, we found a four-body resonance of the K{sup -} ppn and K{sup -}ppp quasi-bound states with a binding energy in the range B{sub K{sup -}ppn} ∝ 55-70 and B{sub K{sup -}ppp} ∝ 90-100 MeV, respectively. The calculations yielded full width of Γ{sub K{sup -}ppn} ∝ 16-20 and Γ{sub K{sup -}ppp} ∝ 7-20 MeV. (orig.)
Coupled-channels Faddeev AGS calculation of K-ppn and K-ppp quasi-bound states
International Nuclear Information System (INIS)
Marri, S.; Kalantari, S.Z.
2016-01-01
Using separable anti KN - πΣ potentials in the Faddeev equations, we calculated the binding energies and widths of the K - pp, K - ppn and K - ppp quasi-bound states on the basis of three- and four-body Alt-Grassberger-Sandhas equations in the momentum representation. One- and two-pole version of anti KN - πΣ interaction are considered and the dependence of the resulting few-body energy on the two-body anti KN - πΣ potential was investigated. The s -wave [3 + 1] and [2 + 2] sub-amplitudes are obtained by using the Hilbert-Schmidt expansion procedure for the integral kernels. As a result, we found a four-body resonance of the K - ppn and K - ppp quasi-bound states with a binding energy in the range B K - ppn ∝ 55-70 and B K - ppp ∝ 90-100 MeV, respectively. The calculations yielded full width of Γ K - ppn ∝ 16-20 and Γ K - ppp ∝ 7-20 MeV. (orig.)
Description of width and spectra of two relativistic fermions bound states
International Nuclear Information System (INIS)
Sidorov, A.V.; Skachkov, N.B.
1979-01-01
The formalism for relativistic description of two particles with spin 1/2 is constructed. Used is the two-particle three-dimensional equation, obtained by quasipotential approach. Quasipotential equation in the relativistic configurational space with OBEP potential is reduced to the system of partial equations which is the analog of nonrelativistic Hamada-Jonston system. WKB approach is used to calculate mass spectra and leptonic width of mesons in quark model. The results of the study can be applied to the calculation of mass spectra and widths of electromagnetic decays of systems of e + e - , μ + μ - , c anti c, b anti b, N anti N type
Topologically protected bound states in photonic parity-time-symmetric crystals.
Weimann, S; Kremer, M; Plotnik, Y; Lumer, Y; Nolte, S; Makris, K G; Segev, M; Rechtsman, M C; Szameit, A
2017-04-01
Parity-time (PT)-symmetric crystals are a class of non-Hermitian systems that allow, for example, the existence of modes with real propagation constants, for self-orthogonality of propagating modes, and for uni-directional invisibility at defects. Photonic PT-symmetric systems that also support topological states could be useful for shaping and routing light waves. However, it is currently debated whether topological interface states can exist at all in PT-symmetric systems. Here, we show theoretically and demonstrate experimentally the existence of such states: states that are localized at the interface between two topologically distinct PT-symmetric photonic lattices. We find analytical closed form solutions of topological PT-symmetric interface states, and observe them through fluorescence microscopy in a passive PT-symmetric dimerized photonic lattice. Our results are relevant towards approaches to localize light on the interface between non-Hermitian crystals.
Excitations and possible bound states in the S = 1/2 alternating chain compound (VO)2P2O7
International Nuclear Information System (INIS)
Tennant, D.A.; Nagler, S.E.; Sales, B.C.
1997-01-01
Magnetic excitations in an array of (VO) 2 P 2 O 7 single crystals have been measured using inelastic neutron scattering. Until now, (VO) 2 P 2 O 7 has been thought of as a two-leg antiferromagnetic Heisenberg spin ladder with chains running in the a-direction. The present results show unequivocally that (VO) 2 P 2 O 7 is best described as an alternating spin-chain directed along the crystallographic b-direction. In addition to the expected magnon with magnetic zone-center energy gap Δ = 3.1 meV, a second excitation is observed at an energy just below 2Δ. The higher mode may be a triplet two-magnon bound state. Numerical results in support of bound modes are presented
K− absorption on two nucleons and ppK− bound state search in the Σ0p final state
Directory of Open Access Journals (Sweden)
O. Vázquez Doce
2016-07-01
Full Text Available We report the measurement of K− absorption processes in the Σ0p final state and the first exclusive measurement of the two nucleon absorption (2NA with the KLOE detector. The 2NA process without further interactions is found to be 9% of the sum of all other contributing processes, including absorption on three and more nucleons or 2NA followed by final state interactions with the residual nucleons. We also determine the possible contribution of the ppK− bound state to the Σ0p final state. The yield of ppK−/Kstop− is found to be (0.044±0.009stat−0.005+0.004syst⋅10−2 but its statistical significance based on an F-test is only 1σ.
Line bundle twisted chiral de Rham complex and bound states of D-branes on toric manifolds
International Nuclear Information System (INIS)
Parkhomenko, S.E.
2014-01-01
In this note we calculate elliptic genus in various examples of twisted chiral de Rham complex on two-dimensional toric compact manifolds and Calabi–Yau hypersurfaces in toric manifolds. At first the elliptic genus is calculated for the line bundle twisted chiral de Rham complex on a compact smooth toric manifold and K3 hypersurface in P 3 . Then we twist chiral de Rham complex by sheaves localized on positive codimension submanifolds in P 2 and calculate in each case the elliptic genus. In the last example the elliptic genus of chiral de Rham complex on P 2 twisted by SL(N) vector bundle with instanton number k is calculated. In all the cases considered we find the infinite tower of open string oscillator contributions and identify directly the open string boundary conditions of the corresponding bound state of D-branes
International Nuclear Information System (INIS)
Kneipp, Marco A.C.
1999-10-01
Soliton time delays and the semiclassical limit for soliton S-matrices are calculated for non-simply laced Affine Toda Field Theories. The phase shift is written as a sum over bilinears on the soliton conserved charges. The results apply to any two solitons of any Affine Toda Field Theory. As a by-product, a general expression for the number of bound states and the values of the coupling in which the S-matrix can be diagonal are obtained. In order to arrive at these results, a vertex operator is constructed, in the principal gradation, for non-simply laced affine Lie algebras, extending the previous constructions for simply laced and twisted affine Lie algebras. (author)
Zhang, Yan-Rong; Wang, Wei; Wang, Lu-Qi; Guo, Rui-Peng; Cao, Xuewei; Chen, Jing
2018-03-01
We develop a coupled-mode theory on the optical transmission in parity-time ( P T ) symmetric coaxial metamaterials. Modeled by coupled lossy Lorentzian oscillators, the theory provides a good fit to numerical full-wave simulation. In the scenario of unidirectional coupling, two polarization-sensitive anomalies are obtained: an amplified transmission and an ultra-narrow one analogous to bound states in continuum. We argue that these phenomena are associated with either a unidirectional-field-transfer process or an indirect unidirectional-field-trapping resonance. The broadening effect is shown to determine the magnitude and polarization of the transmission. Our theory and analysis provide a deep understanding on the importance of P T symmetry and dark helical modes and would contribute to applications such as light storage, field amplification, and even lasing.
Bottom and charm mass determinations from global fits to Q\\overline{Q} bound states at N3LO
Mateu, Vicent; Ortega, Pablo G.
2018-01-01
The bottomonium spectrum up to n = 3 is studied within Non-Relativistic Quantum Chromodynamics up to N3LO. We consider finite charm quark mass effects both in the QCD potential and the \\overline{MS} -pole mass relation up to third order in the Y-scheme counting. The u = 1 /2 renormalon of the static potential is canceled by expressing the bottom quark pole mass in terms of the MSR mass. A careful investigation of scale variation reveals that, while n = 1 , 2 states are well behaved within perturbation theory, n = 3 bound states are no longer reliable. We carry out our analysis in the n ℓ = 3 and n ℓ = 4 schemes and conclude that, as long as finite m c effects are smoothly incorporated in the MSR mass definition, the difference between the two schemes is rather small. Performing a fit to b\\overline{b} bound states we find {\\overline{m}}_b({\\overline{m}}_b) = 4 .216 ± 0 .039 GeV. We extend our analysis to the lowest lying charmonium states finding {\\overline{m}}_c({\\overline{m}}_c) = 1 .273 ± 0 .054 GeV. Finally, we perform simultaneous fits for {\\overline{m}}_b and α s finding {α}_s^{({n}_f=5)}({m}_Z)=0.1178± 0.0051 . Additionally, using a modified version of the MSR mass with lighter massive quarks we are able to predict the uncalculated O({α}_s^4) virtual massive quark corrections to the relation between the \\overline{MS} and pole masses.
Quantum few-body bound states of dipolar particles in a helical geometry
DEFF Research Database (Denmark)
Pedersen, Jakob Knorborg; Fedorov, Dmitri Vladimir; Jensen, Aksel Stenholm
2016-01-01
We study a quantum mechanical system consisting of up to three identical dipoles confined to move along a helical shaped trap. The long-range interactions between particles confined to move in this one dimension leads to an interesting effective two-particle potential with an oscillating behavior...... that they can take maximal advantage of the strong head-to-tail attraction that is a generic feature of the dipole–dipole interaction....
Fermionic bound states in Minkowski space. Light-cone singularities and structure
Energy Technology Data Exchange (ETDEWEB)
Paula, Wayne de; Frederico, Tobias; Pimentel, Rafael [Instituto Tecnologico de Aeronautica, DCTA, Dept. de Fisica, Sao Jose dos Campos, Sao Paulo (Brazil); Salme, Giovanni [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Viviani, Michele [Istituto Nazionale di Fisica Nucleare, Pisa (Italy)
2017-11-15
The Bethe-Salpeter equation for two-body bound system with spin 1/2 constituent is addressed directly in the Minkowski space. In order to accomplish this aim we use the Nakanishi integral representation of the Bethe-Salpeter amplitude and exploit the formal tool represented by the exact projection onto the null-plane. This formal step allows one (i) to deal with end-point singularities one meets and (ii) to find stable results, up to strongly relativistic regimes, which settle in strongly bound systems. We apply this technique to obtain the numerical dependence of the binding energies upon the coupling constants and the light-front amplitudes for a fermion-fermion 0{sup +} state with interaction kernels, in ladder approximation, corresponding to scalar-, pseudoscalar- and vector-boson exchanges, respectively. After completing the numerical survey of the previous cases, we extend our approach to a quark-antiquark system in 0{sup -} state, taking both constituent-fermion and exchanged-boson masses, from lattice calculations. Interestingly, the calculated light-front amplitudes for such a mock pion show peculiar signatures of the spin degrees of freedom. (orig.)
Explanation of the formation dynamics of the bound state with ion implantation
Energy Technology Data Exchange (ETDEWEB)
Dineykhan, M; Zhaugasheva, S A; Imambekov, O [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna (Russian Federation); Al-Farabi Kazak National University, 480012 Almaty (Kazakhstan)
2008-10-15
Taking into account the structure and the size of localized electrons the density matrix of localized electrons is analytically derived. In the framework of Kohn's approximation the analytical expression is used for the density matrix, and the additional potential for the three-body Coulomb systems is determined. Our result shows that, the consideration of the structure and size of localized electrons leads to an additional potential. If the size parameter is small, then the additional potential is the oscillator one. This gives a possibility to explain experimental results.
Quantum localization and bound-state formation in Bose-Einstein condensates
International Nuclear Information System (INIS)
Franzosi, Roberto; Giampaolo, Salvatore M.; Illuminati, Fabrizio
2010-01-01
We discuss the possibility of exponential quantum localization in systems of ultracold bosonic atoms with repulsive interactions in open optical lattices without disorder. We show that exponential localization occurs in the maximally excited state of the lowest energy band. We establish the conditions under which the presence of the upper energy bands can be neglected, determine the successive stages and the quantum phase boundaries at which localization occurs, and discuss schemes to detect it experimentally by visibility measurements. The discussed mechanism is a particular type of quantum localization that is intuitively understood in terms of the interplay between nonlinearity and a bounded energy spectrum.
Search for the He-η bound states with the WASA-at-COSY facility
Directory of Open Access Journals (Sweden)
Krzemien W.
2012-12-01
Full Text Available The η-mesic nuclei in which the η meson is bound with nucleus via strong interaction was postulated already in 1986, however till now no experiment confirmed empirically its existence. The discovery of this new kind of an exotic nuclear matter would be very important for better understanding of the η meson structure and its interaction with nucleons. The search for η-mesic helium is carried out with high statistic and high acceptance with the WASA-at-COSY detection setup in the Research Center Jülich. The search is conducted via the measurement of the excitation function for the chosen decay channels of the 4He-η system. Till now two reactions dd → (4He-ηbs → 3Hepπ− and dd → (4He-ηbs → 3Henπ0 were measured with the beam momentum ramped around the η production threshold. This report includes the description of experimental method and status of the analysis.
Metastable states in parametrically excited multimode Hamiltonian systems
Kirr, E
2003-01-01
Consider a linear autonomous Hamiltonian system with time periodic bound state solutions. In this paper we study their dynamics under time almost periodic perturbations which are small, localized and Hamiltonian. The analysis proceeds through a reduction of the original infinite dimensional dynamical system to the dynamics of two coupled subsystems: a dominant m-dimensional system of ordinary differential equations (normal form), governing the projections onto the bound states and an infinite dimensional dispersive wave equation. The present work generalizes previous work of the authors, where the case of a single bound state is considered. Here, the interaction picture is considerably more complicated and requires deeper analysis, due to a multiplicity of bound states and the very general nature of the perturbation's time dependence. Parametric forcing induces coupling of bound states to continuum radiation modes, bound states directly to bound states, as well as coupling among bound states, which is mediate...
Ricco, L. S.; Marques, Y.; Dessotti, F. A.; Machado, R. S.; de Souza, M.; Seridonio, A. C.
2016-04-01
We report on a theoretical investigation of the interplay between vacuum fluctuations, Majorana quasiparticles (MQPs), and bound states in the continuum (BICs) by proposing a new venue for qubit storage. BICs emerge due to quantum interference processes as the Fano effect and, since such a mechanism is unbalanced, these states decay as regular into the continuum. Such fingerprints identify BICs in graphene as we have discussed in detail in Phys. Rev. B 92, 245107 (2015), 10.1103/PhysRevB.92.245107 and Phys. Rev. B, 92, 045409 (2015), 10.1103/PhysRevB.92.045409. Here, by considering two semi-infinite Kitaev chains within the topological phase, coupled to a quantum dot (QD) hybridized with leads, we show the emergence of a novel type of BICs, in which MQPs are trapped. As the MQPs of these chains far apart build a delocalized fermion and qubit, we identify that the decay of these BICs is not connected to Fano and it occurs when finite fluctuations are observed in the vacuum composed by electron pairs for this qubit. From the experimental point of view, we also show that vacuum fluctuations can be induced just by changing the chain-dot couplings from symmetric to asymmetric. Hence, we show how to perform the qubit storage within two delocalized BICs of MQPs and to access it when the vacuum fluctuates by means of a complete controllable way in quantum transport experiments.
Bound states of 27Al studied at selected 26Mg(p,γ)27Al resonances, ch. 1
International Nuclear Information System (INIS)
Maas, J.W.; Holvast, A.J.C.D.; Baghus, A.; Endt, P.M.
1976-01-01
Measurements of the γ-ray decay and angular distributions at eight low-energy (Esub(P) 26 Mg (p,γ) 27 Al resonances lead to the spin and parity assignments Jsup(π) = 3/2 + , 1/2 - , 3/2 - , 5/2 + , 5/2, 3/2 - , 9/2 - and 7/2 for the bound states at Esub(x) = 3.96, 4.05, 5.15, 5.25, 5.44, 6.16, 6.99, 7.23 and 7.47 MeV, respectively. For other levels, spin and parity limitations are set. Also reported are precise excitation energies, branching and mixing ratios and lifetime limits. For the resonances, additional information is given on energies, strengths and widths. The reaction Q-value is Q = 8267.2 +- 0.7 keV. The level scheme of 27 Al, complemented with these new data, is compared with the results from recent shell-model calculations
International Nuclear Information System (INIS)
Araujo Junior, C.F. de; Adhikari, S.K.; Tomio, L.
1993-10-01
Complex Kohn variational principle is applied to the numerical solution of the fully off-shell Lippmann-Schwinger equation for nucleon-nucleon scattering for various partial waves including the coupled 3 S 1 - 3 D 1 channel. Analytic expressions are obtained for all the integrals in the method for a suitable choice of expansion functions. Calculations with the partial waves 1 S 0 , 1 P 1 , 1 D 2 , and 3 S 1 - 3 D 1 of the Reid soft core potential show that the method converges faster than other solution schemes not only for the phase shift but also for the off-shell t matrix elements. It is also shown that its is trivial to modify this variational principle in order to make it suitable for bound-stage calculations. The bound-state approach is illustrated for the 3 S 1 - 3 D 1 channel of the Reid soft-core potential for calculating the deuteron binding, wave function and the D state asymptotic parameters. (author)
Energy Technology Data Exchange (ETDEWEB)
Christiansen, H.R. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]. E-mail: hugo@cbpf.br; Cima, O.M. Del [Universidade Catolica de Petropolis, RJ (Brazil). Grupo de Fisica Teorica]. E-mail: delcima@gft.ucp.br; Ferreira Junior, M.M. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]|[Maranhao Univ., Sao Luis, MA (Brazil). Dept. de Fisica]. E-mail: manojr@cbpf.br; Helayel-Neto, J.A. [Universidade Catolica de Petropolis, RJ (Brazil). Grupo de Fisica Teorica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]. E-mail: helayel@gft.ucp.br
2001-08-01
We consider a parity-preserving QED{sub 3} model with spontaneous breaking of the gauge symmetry as a framework for the evaluation of the electron-electron interaction potential underlying high-T{sub e} superconductivity. The fact that resulting potential, - C{sub s} K{sub o} (Mr), is non-confining and weak (in the sense of Kato) strongly suggests the mechanism of pair-condensation. This potential, compatible with an s-wave order parameters, is then applied to the Schrodinger equation for the sake of numerical calculations, thereby enforcing the existence of bound states. The results worked out by means of our theoretical framework are checked by considering a number of phenomenological data extracted from different copper oxide superconductors. The agreement may motivate a deeper analysis of our model viewing an application to quasi-planar cuprate superconductors. The data analyzed here suggest an energy scale of 1-10 meV for the breaking of the U(1)-symmetry. (author)
Christiansen, H R; Helayel-Neto, J A; Monteiro del Cima, O
2001-01-01
We consider a parity-preserving QED sub 3 model with spontaneous breaking of the gauge symmetry as a framework for the evaluation of the electron-electron interaction potential underlying high-T sub e superconductivity. The fact that resulting potential, - C sub s K sub o (Mr), is non-confining and weak (in the sense of Kato) strongly suggests the mechanism of pair-condensation. This potential, compatible with an s-wave order parameters, is then applied to the Schrodinger equation for the sake of numerical calculations, thereby enforcing the existence of bound states. The results worked out by means of our theoretical framework are checked by considering a number of phenomenological data extracted from different copper oxide superconductors. The agreement may motivate a deeper analysis of our model viewing an application to quasi-planar cuprate superconductors. The data analyzed here suggest an energy scale of 1-10 meV for the breaking of the U(1)-symmetry.
Experimental study of bound states in ^{12}Be through low-energy ^{11}Be(d,p)-transfer reactions
DEFF Research Database (Denmark)
Johansen, Jacob S.; Bildstein, V.; Borge, M. J. G.
2013-01-01
The bound states of 12Be have been studied through a 11Be(d,p)12Be transfer reaction experiment in inverse kinematics. A 2.8 MeV/u beam of 11Be was produced using the REX-ISOLDE facility at CERN. The outgoing protons were detected with the T-REX silicon detector array. The MINIBALL germanium arra...
DEFF Research Database (Denmark)
Chung, Il-Sug; Taghizadeh, Alireza
2017-01-01
The bound states in the continuum (BICs) in photonic crystal (PhC) slabs presume infinite periodicity in the inplane direction. Thus, a large number of unit cells are typically required to implement the BICs with a high quality (Q) factor. Here, we report on a method to engineer the reciprocal...... functionalities for many important applications....
Lucchese, Robert; McCurdy, C. W.; Rescigno, T. N.
2017-04-01
The conversion of resonant metastable states to bound states with changing potential strength in the presence of a Coulomb potential proceeds by a mechanism fundamentally different from the same process in the case of short-range potentials. This phenomenon, which can accompany changes in molecular geometry, is central to the physics of the process of dissociative recombination of electrons with molecular cations. We verify computationally that there is no direct connection between a resonance pole of the S-matrix and the bound state poles for several model problems. We present a detailed analysis of the analytic structure of the scattering matrix in which the resonance pole remains distinct in the complex plane while a new state appears in the bound state spectrum. Nonetheless, as might be expected from quantum-defect theory, there is a close analytic relation between the resonant behavior of scattering at positive energies and the energies of the bound states. This connection allows the width of a resonance at low energies to be calculated directly from the behavior of the quantum defects with changing potential strength or molecular geometry. US-DOE, OBES, Chemical Sciences, Geosciences, and Biosciences Division.
((F, D1), D3) bound state, S-duality and noncommutative open string/Yang-Mills theory
International Nuclear Information System (INIS)
Lu, J.X.; Roy, S.; Singh, H.
2000-01-01
We study decoupling limits and S-dualities for noncommutative open string/Yang-Mills theory in a gravity setup by considering an SL(2,Z) invariant supergravity solution of the form ((F, D1), D3) bound state of type IIB string theory. This configuration can be regarded as D3-branes with both electric and magnetic fields turned on along one of the spatial directions of the brane and preserves half of the space-time supersymmetries of the string theory. Our study indicates that there exists a decoupling limit for which the resulting theory is an open string theory defined in a geometry with noncommutativity in both space-time and space-space directions. We study S-duality of this noncommutative open string (NCOS) and find that the same decoupling limit in the S-dual description gives rise to a space-space noncommutative Yang-Mills theory (NCYM). We also discuss independently the decoupling limit for NCYM in this D3 brane background. Here we find that S-duality of NCYM theory does not always give a NCOS theory. Instead, it can give an ordinary Yang-Mills with a singular metric and an infinitely large coupling. We also find that the open string coupling relation between the two S-duality related theories is modified such that S-duality of a strongly coupled open-string/Yang-Mills theory does not necessarily give a weakly coupled theory. The relevant gravity dual descriptions of NCOS/NCYM are also given. (author)
Davlieva, Milya; Donarski, James; Wang, Jiachen; Shamoo, Yousif; Nikonowicz, Edward P
2014-01-01
Several protein-targeted RNA aptamers have been identified for a variety of applications and although the affinities of numerous protein-aptamer complexes have been determined, the structural details of these complexes have not been widely explored. We examined the structural accommodation of an RNA aptamer that binds bacterial r-protein S8. The core of the primary binding site for S8 on helix 21 of 16S rRNA contains a pair of conserved base triples that mold the sugar-phosphate backbone to S8. The aptamer, which does not contain the conserved sequence motif, is specific for the rRNA binding site of S8. The protein-free RNA aptamer adopts a helical structure with multiple non-canonical base pairs. Surprisingly, binding of S8 leads to a dramatic change in the RNA conformation that restores the signature S8 recognition fold through a novel combination of nucleobase interactions. Nucleotides within the non-canonical core rearrange to create a G-(G-C) triple and a U-(A-U)-U quartet. Although native-like S8-RNA interactions are present in the aptamer-S8 complex, the topology of the aptamer RNA differs from that of the helix 21-S8 complex. This is the first example of an RNA aptamer that adopts substantially different secondary structures in the free and protein-bound states and highlights the remarkable plasticity of RNA secondary structure. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Backbone resonance assignments for G protein α(i3) subunit in the GDP-bound state.
Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio
2014-10-01
Guanine-nucleotide binding proteins (G proteins) serve as molecular switches in signaling pathways, by coupling the activation of G protein-coupled receptors (GPCRs) at the cell surface to intracellular responses. In the resting state, G protein forms a heterotrimer, consisting of the G protein α subunit with GDP (Gα·GDP) and the G protein βγ subunit (Gβγ). Ligand binding to GPCRs promotes the GDP-GTP exchange on Gα, leading to the dissociation of the GTP-bound form of Gα (Gα·GTP) and Gβγ. Then, Gα·GTP and Gβγ bind to their downstream effector enzymes or ion channels and regulate their activities, leading to a variety of cellular responses. Finally, Gα hydrolyzes the bound GTP to GDP and returns to the resting state by re-associating with Gβγ. The G proteins are classified with four major families based on the amino acid sequences of Gα: i/o, s, q/11, and 12/13. Here, we established the backbone resonance assignments of human Gαi3, a member of the i/o family with a molecular weight of 41 K, in complex with GDP. The chemical shifts were compared with those of Gα(i3) in complex with a GTP-analogue, GTPγS, which we recently reported, indicating that the residues with significant chemical shift differences are mostly consistent with the regions with the structural differences between the GDP- and GTPγS-bound states, as indicated in the crystal structures. The assignments of Gα(i3)·GDP would be useful for the analyses of the dynamics of Gα(i3) and its interactions with various target molecules.
International Nuclear Information System (INIS)
Blaizot, J.P.
1981-01-01
Using a stationary phase approximation to calculate a functional integral defined on continuous overcomplete sets of vectors of the Hilbert space, one derives a generalized semi-classical quantization condition for periodic trajectories in the Hilbert space. This quantization condition is interpreted in terms of a variational principle. Application to the time dependent Hartree-Fock approximation is presented. (orig.)
Weakly bound states of two- and three-boson systems in the crossover from two to three dimensions
DEFF Research Database (Denmark)
Yamashita, Marcelo; Bellotti, Filipe Furlan; Frederico, Tobias
2015-01-01
{\\"o}dinger equation in momentum space that we solve numerically. Our results show a distinct dimensional crossover as three-boson states will either disappear into the continuum or merge with a 2D counterpart, and also a series of sharp transitions in the ratios of three-body and two-body energies from being purely 2...
Horing, N. J. M.
1997-03-01
An explicit position-space inversion of the dielectric function of a planar quantum well with a bound state embedded in a bulk medium having a 3D band of extended states is carried out here in closed form.The resulting nonlocal dynamic inverse dielectric function K(z,z^';barq,w) is exact within the framework of the random phase approximation with the assumption that the 3D band of extended states is translationally invariant in the z-direction,and that intersubband transitions between the 3D band and the discrete bound state are negligible.The frequency poles of K(z,z^';barq,w) obtained here represent the coupling of nonlocal bulk plasmons with 2D intrasubband plasmons of the quantum well and the residues of these poles provide the oscillator strength of such coupled collective modes.
Meng, Dan; Bruschweiler-Li, Lei; Zhang, Fengli; Brüschweiler, Rafael
2015-04-01
Copper-transporting ATPase, a member of P-type ATPase family, plays a key role in the homeostasis of cellular copper levels. Here, the backbone assignments of the directly connected N and P domains (292 residues, 31 kDa) of Cu-transporting ATPase in the ligand free and the AMPPCP-bound states are reported in solution. The NMR assignments pave the way for binding and dynamics studies of this enzyme to better understand its function.
Huang, Dao-Ling; Zhu, Guo-Zhu; Wang, Lai-Sheng
2016-06-01
Deprotonated thymine can exist in two different forms, depending on which of its two N sites is deprotonated: N1[T-H]^- or N3[T-H]^-. Here we report a photodetachment study of the N1[T-H]^- isomer cooled in a cryogenic ion trap and the observation of an excited dipole-bound state. Eighteen vibrational levels of the dipole-bound state are observed, and its vibrational ground state is found to be 238 ± 5 wn below the detachment threshold of N1[T-H]^-. The electron affinity of the deprotonated thymine radical (N1[T-H]^.) is measured accruately to be 26 322 ± 5 wn (3.2635 ± 0.0006 eV). By tuning the detachment laser to the sixteen vibrational levels of the dipole-bound state that are above the detachment threshold, highly non-Franck-Condon resonant-enhanced photoelectron spectra are obtained due to state- and mode-selective vibrational autodetachment. Much richer vibrational information is obtained for the deprotonated thymine radical from the photodetachment and resonant-enhanced photoelectron spectroscopy. Eleven fundamental vibrational frequencies in the low-frequency regime are obtained for the N1[T-H]^. radical, including the two lowest-frequency internal rotational modes of the methyl group at 70 ± 8 wn and 92 ± 5 wn. D. L. Huang, H. T. Liu, C. G. Ning, G. Z. Zhu and L. S. Wang, Chem. Sci., 6, 3129-3138 (2015)
Strong coupling QED with two fermionic flavors
Energy Technology Data Exchange (ETDEWEB)
Wang, K.C.
1990-11-01
We report the recent results of our simulation of strong coupling QED, with non-compact action, on lattices 10{sup 4} and 16{sup 4}. Since we are dealing with two staggered fermionic flavors, we use hybrid algorithm to do the simulation. In addition to the measurement of the chiral order parameter {l angle}{bar {psi}}{psi}{r angle}, we also measure magnetic monopole susceptibility, {chi}, throughout the region of chiral transition. 6 refs., 6 figs.
Antchev, G.; The TOTEM collaboration; Atanassov, I.; Avati, V.; Baechler, J.; Barrera, C. B.; Berardi, V.; Berretti, M.; Bossini, E.; Bottigli, U.; Bozzo, M.; Bruce, R.; Burkhardt, H.; Cafagna, F.S.; Catanesi, M.G.; Csanad, M.; Csorgo, T.; Deile, M.; De Leonardis, F.; D'Orazio, A.; Doubek, M.; Druzhkin, D.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Garcia Morales, H.; Georgiev, V.; Giani, S.; Grzanka, L.; Hammerbauer, J.; Heino, J.; Helander, P.; Isidori, T.;; Ivanchenko, V.; Karev, A.; Kavspar, J.; Kopal, J.; Kosinski, J.; Kundrat, V.; Lami, S.; Latino, G.; Lauhakangas, R.; Linhart, R.; Lindsey, C.;; Lokajivcek, M.V.; Losurdo, L; Lo Vetere, M.; Lucas-Rodriguez, F.; Lucsanyi, D.; Macri, M.; Malwski, M.; Minafra, N.; Minutoli, S.; Naaranoja, T.; Nemes, F.; Niewiadomski, H.; Novak, T.; Oliveri, E.; Oljemark, F.; Oriunno, M.; Osterberg, K.; Palazzi, P.; Palocko, L.; Passaro, V.; Peroutka, Z.; Prochazka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Redaelli, S.; Robutti, E.; Royon, C.; Ruggiero, G.; Saarikko, H.; Scribano, A.; Siroky, J.; Smajek, J.; Snoeys, W.; Stefanovitch, R.; Sziklai, J.; Taylor, C.; Tcherniaev, E.;; Turini, N.; Vacek, V.; Valentino, G.; Wenninger, J.; Welti, J.; Williams, J.; Wyszkowski, P.; Zich, J.; Zielinski, K
2017-01-01
The TOTEM experiment at the LHC has performed the first measurement at √s = 13 TeV of the ρ parameter, the real to imaginary ratio of the nuclear elastic scattering amplitude at t = 0, obtaining the following results: ρ = 0.09 ± 0.01 and ρ = 0.10 ± 0.01, depending on different physics assumptions and mathematical modelling. The unprecedented precision of the ρ measurement, combined with the TOTEM total cross-section measurements in an energy range larger than 10TeV (from 2.76 to 13TeV), has implied the exclusion of all the models classified and published by COMPETE. The ρ results obtained by TOTEM are compatible with the predictions, from alternative theoretical models both in the Regge-like framework and in the modern QCD framework, of a colourless 3-gluon bound state exchange in the t-channel of the proton-proton elastic scattering. On the contrary, if shown that the 3-gluon bound state t-channel exchange is not of importance for the description of elastic scattering, the ρ value determined by TOT...
Charm-beauty meson bound states from B (B*)D (D*) and B (B*)D \\xAF(D\\xAF*) interaction
Sakai, S.; Roca, L.; Oset, E.
2017-09-01
We evaluate the s -wave interaction of pseudoscalar and vector mesons with both charm and beauty to investigate the possible existence of molecular B D , B*D , B D*, B*D*, B D ¯, B*D ¯, B D¯*, or B*D¯* meson states. The scattering amplitude is obtained implementing unitarity starting from a tree level potential accounting for the dominant vector meson exchange. The diagrams are evaluated using suitable extensions to the heavy flavor sector of the hidden gauge symmetry Lagrangians involving vector and pseudoscalar mesons, respecting heavy quark spin symmetry. We obtain bound states at energies above 7 GeV for B D (JP=0+), B*D (1+), B D* (1+), and B*D* (0+, 1+, 2+), all in isospin 0. For B D ¯ (0+), B*D ¯ (1+), B D¯* (1+), and B*D¯* (0+, 1+, 2+) we also find similar bound states in I =0 , but much less bound, which would correspond to exotic meson states with b ¯ and c ¯ quarks, and for the I =1 we find a repulsive interaction. We also evaluate the scattering lengths in all cases, which can be tested in current investigations of lattice QCD.
Hellmich, Ute A; Duchardt-Ferner, Elke; Glaubitz, Clemens; Wöhnert, Jens
2012-04-01
LmrA from Lactococcus lactis is a multidrug transporter and a member of the ATP binding cassette (ABC) transporter family. ABC transporters consist of a transmembrane domain (TMD) and a nucleotide binding domain (NBD). The NBD contains the highly conserved signature motifs of this transporter superfamily. In the case of LmrA, the TMD and the NBD are expressed as a single polypeptide. LmrA catalyzes the extrusion of hydrophobic compounds including antibiotics from the cell membrane at the expense of ATP hydrolysis. ATP binds to the NBD, where binding and hydrolysis induce conformational changes that lead to the extrusion of the substrate via the TMD. Here, we report the (1)H, (13)C and (15)N backbone chemical shift assignments of the isolated 263 amino acid containing NBD of LmrA in its ADP bound state.
Aktas, M.
2018-01-01
In this study, we focus on investigating the exact relativistic bound-state spectra for supersymmetric, PT-supersymmetric and non-Hermitian versions of the q-deformed parameter Hulthén potential. The Hamiltonian hierarchy mechanism, namely the factorization method, is adopted within the framework of SUSYQM. This algebraic approach is used in solving the Klein-Gordon equation with the potential cases. The results obtained analytically by executing the straightforward calculations are in consistent forms for certain values of q. Achieving the results may have a particular interest for such applications. That is, they can be involved in determining the quantum structural properties of molecules for ro-vibrational states, and optical spectra characteristics of semiconductor devices with regard to the lattice dynamics. They are also employed to construct the broken or unbroken case of the supersymmetric particle model concerning the interaction between the elementary particles.
International Nuclear Information System (INIS)
Prunele, E de
2003-01-01
Conditions for bound states for a periodic linear chain are given within the framework of an exactly solvable non-relativistic quantum-mechanical model in three-dimensional space. These conditions express the strength parameter in terms of the distance between two consecutive centres of the chain, and of the range interaction parameter. This expression can be formulated in terms of polylogarithm functions, and, in some particular cases, in terms of the Riemann zeta function. An interesting mathematical result is that these expressions also correspond to the spectra of Toeplitz complex symmetric operators. The non-trivial zeros of the Riemann zeta function are interpreted as multiple points, at the origin, of the spectra of these Toeplitz operators
International Nuclear Information System (INIS)
Ikhdair, S.M.; Hamzavi, M.; Rajabi, A.A.
2013-01-01
Approximate bound-state solutions of the Dirac equation with q-deformed Woods–Saxon (WS) plus a new generalized ring-shaped (RS) potential are obtained for any arbitrary l-state. The energy eigenvalue equation and corresponding two-component wave functions are calculated by solving the radial and angular wave equations within a shortcut of the Nikiforov–Uvarov (NU) method. The solutions of the radial and polar angular parts of the wave function are expressed in terms of the Jacobi polynomials. A new approximation being expressed in terms of the potential parameters is carried out to deal with the strong singular centrifugal potential term l(l+1)r -2 . Under some limitations, we can obtain solution for the RS Hulthen potential and the standard usual spherical WS potential (q = 1). (author)
Search for the K−pp bound state via the in-flight 3He(K−, n reaction
Directory of Open Access Journals (Sweden)
Sada Y.
2014-01-01
Full Text Available In the J-PARC E15 experiment, a K− pp search was performed via the 3He(K−, n reaction at 1.0 GeV/c. A forward-going neutron is detected by a neutron counter with 15 m flight length, and decay particles from K− pp are simultaneously measured by a cylindrical detector system that surrounds a liquid 3He target system. In March and May, 2013, we carried out the first physics data-taking with 5×109 incident kaons on the 3He target, and we have obtained a preliminary exclusive analysis result of 3He(K−, Λpn reaction.
Energy Technology Data Exchange (ETDEWEB)
Castro, Antonio Soares de
1990-05-01
A potential which incorporates the concepts of confinement and asymptotic freedom, previously utilized in the description of the spectroscopy of mesons and baryons, is extended to the gluon sector. The mass spectroscopy of glueballs and hybrids is analyzed considering only pairwise potentials and massive constituent gluons. The mass spectrum of the color octet two-gluon system is adopted as a suitable description of the intermediate states of hadronic transitions, within the framework of the multipole expansion for quantum chromodynamics. The spin-dependent effects in the gluonium spectrum, associated with the Coulombian potential, are calculated through the inverted first Born approximation for the gluon-gluon scattering. (author). 102 refs, 1 fig, 13 tabs.
International Nuclear Information System (INIS)
O’Carroll, Michael
2012-01-01
We consider the interaction of particles in weakly correlated lattice quantum field theories. In the imaginary time functional integral formulation of these theories there is a relative coordinate lattice Schroedinger operator H which approximately describes the interaction of these particles. Scalar and vector spin, QCD and Gross-Neveu models are included in these theories. In the weakly correlated regime H=H o +W where H o =−γΔ l , 0 l is the d-dimensional lattice Laplacian: γ=β, the inverse temperature for spin systems and γ=κ 3 where κ is the hopping parameter for QCD. W is a self-adjoint potential operator which may have non-local contributions but obeys the bound ‖W(x, y)‖⩽cexp ( −a(‖x‖+‖y‖)), a large: exp−a=β/β o (1/2) (κ/κ o ) for spin (QCD) models. H o , W, and H act in l 2 (Z d ), d⩾ 1. The spectrum of H below zero is known to be discrete and we obtain bounds on the number of states below zero. This number depends on the short range properties of W, i.e., the long range tail does not increase the number of states.
Energy Technology Data Exchange (ETDEWEB)
O' Carroll, Michael [Departamento de Matematica Aplicada e Estatistica, ICMC-USP, C.P. 668,13560-970 Sao Carlos, Sao Paulo (Brazil)
2012-07-15
We consider the interaction of particles in weakly correlated lattice quantum field theories. In the imaginary time functional integral formulation of these theories there is a relative coordinate lattice Schroedinger operator H which approximately describes the interaction of these particles. Scalar and vector spin, QCD and Gross-Neveu models are included in these theories. In the weakly correlated regime H=H{sub o}+W where H{sub o}=-{gamma}{Delta}{sub l}, 0 < {gamma} Much-Less-Than 1 and {Delta}{sub l} is the d-dimensional lattice Laplacian: {gamma}={beta}, the inverse temperature for spin systems and {gamma}={kappa}{sup 3} where {kappa} is the hopping parameter for QCD. W is a self-adjoint potential operator which may have non-local contributions but obeys the bound Double-Vertical-Line W(x, y) Double-Vertical-Line Less-Than-Or-Slanted-Equal-To cexp ( -a( Double-Vertical-Line x Double-Vertical-Line + Double-Vertical-Line y Double-Vertical-Line )), a large: exp-a={beta}/{beta}{sub o}{sup (1/2)}({kappa}/{kappa}{sub o}) for spin (QCD) models. H{sub o}, W, and H act in l{sub 2}(Z{sup d}), d Greater-Than-Or-Slanted-Equal-To 1. The spectrum of H below zero is known to be discrete and we obtain bounds on the number of states below zero. This number depends on the short range properties of W, i.e., the long range tail does not increase the number of states.
Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym
2016-01-10
We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible $\\overline{\\Lambda\\mathrm{n}}$ bound state. The search is performed with the ALICE detector in central (0-10%) Pb-Pb collisions at $ \\sqrt{s_{\\rm{NN}}} = 2.76$ TeV, by invariant mass analysis in the decay modes $\\overline{\\Lambda\\mathrm{n}} \\rightarrow \\overline{\\mathrm{d}} \\pi^{+} $ and H-dibaryon $\\rightarrow \\Lambda \\mathrm{p} \\pi^{-}$. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.
Directory of Open Access Journals (Sweden)
J. Adam
2016-01-01
Full Text Available We present results of a search for two hypothetical strange dibaryon states, i.e. the H-dibaryon and the possible Λn‾ bound state. The search is performed with the ALICE detector in central (0–10% Pb–Pb collisions at sNN=2.76 TeV, by invariant mass analysis in the decay modes Λn‾→d‾π+ and H-dibaryon →Λpπ−. No evidence for these bound states is observed. Upper limits are determined at 99% confidence level for a wide range of lifetimes and for the full range of branching ratios. The results are compared to thermal, coalescence and hybrid UrQMD model expectations, which describe correctly the production of other loosely bound states, like the deuteron and the hypertriton.
The nuclear magnetic moment of 208Bi and its relevance for a test of bound-state strong-field QED
Schmidt, S.; Billowes, J.; Bissell, M. L.; Blaum, K.; Garcia Ruiz, R. F.; Heylen, H.; Malbrunot-Ettenauer, S.; Neyens, G.; Nörtershäuser, W.; Plunien, G.; Sailer, S.; Shabaev, V. M.; Skripnikov, L. V.; Tupitsyn, I. I.; Volotka, A. V.; Yang, X. F.
2018-04-01
The hyperfine structure splitting in the 6p3 3/2 4S → 6p2 7 s 1/2 4P transition at 307 nm in atomic 208Bi was measured with collinear laser spectroscopy at ISOLDE, CERN. The hyperfine A and B factors of both states were determined with an order of magnitude improved accuracy. Based on these measurements, theoretical input for the hyperfine structure anomaly, and results from hyperfine measurements on hydrogen-like and lithium-like 209Bi80+,82+, the nuclear magnetic moment of 208Bi has been determined to μ (208Bi) = + 4.570 (10)μN. Using this value, the transition energy of the ground-state hyperfine splitting in hydrogen-like and lithium-like 208Bi80+,82+ and their specific difference of -67.491(5)(148) meV are predicted. This provides a means for an experimental confirmation of the cancellation of nuclear structure effects in the specific difference in order to exclude such contributions as the cause of the hyperfine puzzle, the recently reported 7-σ discrepancy between experiment and bound-state strong-field QED calculations of the specific difference in the hyperfine structure splitting of 209Bi80+,82+.
International Nuclear Information System (INIS)
Mitra, Indranil; Roy, Shibaji
2002-01-01
We generalize the nonthreshold bound state in type IIB supergravity of the form (NS5-brane, D5-brane, D3-brane) constructed by the present authors [J. High Energy Phys. 02, 026 (2001)] to a nonzero asymptotic value of the axion (χ 0 ). We identify the decoupling limits corresponding to both the open D3-brane theory and open D5-brane theory for this supergravity solution as expected. However, we do not find any noncommutative Yang-Mills theory (NCYM) limit for this solution in the presence of NS5-branes. We then study the SL(2,Z) duality symmetry of type IIB theory for both open D3-brane (OD3) limit and open D5-brane (OD5) limit. We find that for OD3 theory, a generic SL(2,Z) duality always gives another OD3 theory irrespective of the value of χ 0 being rational or not. This indicates that OD3 theory is self-dual. But, under a special set of SL(2,Z) transformations for which χ 0 is rational, OD3 theory goes over to a (5+1)-dimensional NCYM theory and these two theories in this case are related to each other by strong-weak duality symmetry. On the other hand, for OD5 theory, a generic SL(2,Z) duality gives another OD5 theory if χ 0 is irrational, but when χ 0 is rational it gives the little string theory limit indicating that OD5 theory is S dual to the type IIB little string theory
International Nuclear Information System (INIS)
Buchko, Garry W.; Edwards, Thomas E.; Abendroth, Jan; Arakaki, Tracy L.; Law, Laura; Napuli, Alberto J.; Hewitt, Stephen N.; Van Voorhis, Wesley C.; Stewart, Lance J.; Staker, Bart L.; Myler, Peter J.
2011-01-01
B. henselae is the etiological agent responsible for cat scratch fever (bartonellosis). The crystal structure of the smaller of the two Nudix hydrolases encoded in the genome of B. henselae, Bh-MutT, was determined to 2.1 Å resolution. Cat scratch fever (also known as cat scratch disease and bartonellosis) is an infectious disease caused by the proteobacterium Bartonella henselae following a cat scratch. Although the infection usually resolves spontaneously without treatment in healthy adults, bartonellosis may lead to severe complications in young children and immunocompromised patients, and there is new evidence suggesting that B. henselae may be associated with a broader range of clinical symptoms then previously believed. The genome of B. henselae contains genes for two putative Nudix hydrolases, BH02020 and BH01640 (KEGG). Nudix proteins play an important role in regulating the intracellular concentration of nucleotide cofactors and signaling molecules. The amino-acid sequence of BH02020 is similar to that of the prototypical member of the Nudix superfamily, Escherichia coli MutT, a protein that is best known for its ability to neutralize the promutagenic compound 7,8-dihydro-8-oxoguanosine triphosphate. Here, the crystal structure of BH02020 (Bh-MutT) in the Mg 2+ -bound state was determined at 2.1 Å resolution. As observed in all Nudix hydrolase structures, the α-helix of the highly conserved ‘Nudix box’ in Bh-MutT is one of two helices that sandwich a four-stranded mixed β-sheet with the central two β-strands parallel to each other. The catalytically essential divalent cation observed in the Bh-MutT structure, Mg 2+ , is coordinated to the side chains of Glu57 and Glu61. The structure is not especially robust; a temperature melt obtained using circular dichroism spectroscopy shows that Bh-MutT irreversibly unfolds and precipitates out of solution upon heating, with a T m of 333 K
Buchko, Garry W; Edwards, Thomas E; Abendroth, Jan; Arakaki, Tracy L; Law, Laura; Napuli, Alberto J; Hewitt, Stephen N; Van Voorhis, Wesley C; Stewart, Lance J; Staker, Bart L; Myler, Peter J
2011-09-01
Cat scratch fever (also known as cat scratch disease and bartonellosis) is an infectious disease caused by the proteobacterium Bartonella henselae following a cat scratch. Although the infection usually resolves spontaneously without treatment in healthy adults, bartonellosis may lead to severe complications in young children and immunocompromised patients, and there is new evidence suggesting that B. henselae may be associated with a broader range of clinical symptoms then previously believed. The genome of B. henselae contains genes for two putative Nudix hydrolases, BH02020 and BH01640 (KEGG). Nudix proteins play an important role in regulating the intracellular concentration of nucleotide cofactors and signaling molecules. The amino-acid sequence of BH02020 is similar to that of the prototypical member of the Nudix superfamily, Escherichia coli MutT, a protein that is best known for its ability to neutralize the promutagenic compound 7,8-dihydro-8-oxoguanosine triphosphate. Here, the crystal structure of BH02020 (Bh-MutT) in the Mg(2+)-bound state was determined at 2.1 Å resolution (PDB entry 3hhj). As observed in all Nudix hydrolase structures, the α-helix of the highly conserved `Nudix box' in Bh-MutT is one of two helices that sandwich a four-stranded mixed β-sheet with the central two β-strands parallel to each other. The catalytically essential divalent cation observed in the Bh-MutT structure, Mg(2+), is coordinated to the side chains of Glu57 and Glu61. The structure is not especially robust; a temperature melt obtained using circular dichroism spectroscopy shows that Bh-MutT irreversibly unfolds and precipitates out of solution upon heating, with a T(m) of 333 K.
Buchko, Garry W.; Edwards, Thomas E.; Abendroth, Jan; Arakaki, Tracy L.; Law, Laura; Napuli, Alberto J.; Hewitt, Stephen N.; Van Voorhis, Wesley C.; Stewart, Lance J.; Staker, Bart L.; Myler, Peter J.
2011-01-01
Cat scratch fever (also known as cat scratch disease and bartonellosis) is an infectious disease caused by the proteobacterium Bartonella henselae following a cat scratch. Although the infection usually resolves spontaneously without treatment in healthy adults, bartonellosis may lead to severe complications in young children and immunocompromised patients, and there is new evidence suggesting that B. henselae may be associated with a broader range of clinical symptoms then previously believed. The genome of B. henselae contains genes for two putative Nudix hydrolases, BH02020 and BH01640 (KEGG). Nudix proteins play an important role in regulating the intracellular concentration of nucleotide cofactors and signaling molecules. The amino-acid sequence of BH02020 is similar to that of the prototypical member of the Nudix superfamily, Escherichia coli MutT, a protein that is best known for its ability to neutralize the promutagenic compound 7,8-dihydro-8-oxoguanosine triphosphate. Here, the crystal structure of BH02020 (Bh-MutT) in the Mg2+-bound state was determined at 2.1 Å resolution (PDB entry 3hhj). As observed in all Nudix hydrolase structures, the α-helix of the highly conserved ‘Nudix box’ in Bh-MutT is one of two helices that sandwich a four-stranded mixed β-sheet with the central two β-strands parallel to each other. The catalytically essential divalent cation observed in the Bh-MutT structure, Mg2+, is coordinated to the side chains of Glu57 and Glu61. The structure is not especially robust; a temperature melt obtained using circular dichroism spectroscopy shows that Bh-MutT irreversibly unfolds and precipitates out of solution upon heating, with a T m of 333 K. PMID:21904053
Binding in some few-body systems containing antimatter
International Nuclear Information System (INIS)
Armour, E.A.G.
2009-01-01
It is well known that the system made up of a fixed proton and antiproton and an electron (or a positron) has no bound states if the internuclear distance R 0 . In this paper, I consider the more complicated system in which the electron and the positron are both present and investigate the possibility of obtaining a lower bound on the value of R for which the system has no bound states. I also investigate the implications of the existence of bound states of the simpler, one light particle system regarding bound states of the more complicated system. This article is based on the presentation by E. A. G. Armour at the Fifth Workshop on Critical Stability, Erice, Sicily. (author)
International Nuclear Information System (INIS)
Moroz, A.
1994-01-01
Both the nonrelativistic scattering and the spectrum in the presence of the Aharonov-Bohm potential are analyzed, and the single-particle density of states for different self-adjoint extensions is calculated, which is shown to be a symmetric and periodic function of the flux depending only on the distance from the nearest integer. The Aharonov-Casher theorem on the number of zero modes is corrected for the singular field configuration. The Hall resistivity is calculated in the dilute vortex limit. The magnetic moment coupling and not the spin is shown to be the primary source for the phase-shift flip that may occur even in its absence. The total energy of the system consisting of particles and field is discussed. (author) 65 refs.; 5 figs.; 1 tab
Energy Technology Data Exchange (ETDEWEB)
Sturm, Sven
2012-09-06
This thesis describes the ultra-precise determination of the g-factor of the electron bound to hydrogenlike {sup 28}Si{sup 13+}. The experiment is based on the simultaneous determination of the cyclotron- and Larmor frequency of a single ion, which is stored in a triple Penning-trap setup. The continuous Stern-Gerlach effect is used to couple the spin of the bound electron to the motional frequencies of the ion via a magnetic bottle, which allows the non-destructive determination of the spin state. To this end, a highly sensitive, cryogenic detection system was developed, which allowed the direct, non-destructive detection of the eigenfrequencies with the required precision. The development of a novel, phase sensitive detection technique finally allowed the determination of the g-factor with a relative accuracy of 4 . 10{sup -11}, which was previously inconceivable. The comparison of the hereby determined value with the value predicted by quantumelectrodynamics (QED) allows the verification of the validity of this fundamental theory under the extreme conditions of the strong binding potential of a highly charged ion. The exact agreement of theory and experiment is an impressive demonstration of the exactness of QED. The experimental possibilities created in this work will allow in the near future not only further tests of theory, but also the determination of the mass of the electron with a precision that exceeds the current literature value by more than an order of magnitude.
eta-nuclear bound states revisited
Czech Academy of Sciences Publication Activity Database
Friedman, E.; Gal, A.; Mareš, Jiří
2013-01-01
Roč. 725, 4-5 (2013), s. 334-338 ISSN 0370-2693 R&D Projects: GA ČR(CZ) GAP203/12/2126 Institutional support: RVO:61389005 Keywords : meson-baryon interactions * mesons in nuclear matter * Mesic nuclei Subject RIV: BE - Theoretical Physics Impact factor: 6.019, year: 2013
Bound state of heavy quarks and antiquarks
International Nuclear Information System (INIS)
Quigg, C.
1979-09-01
Properties of the charmonium and upsilon families of heavy mesons are reviewed within the framework of quarkonium quantum mechanics. The implications of current data are analyzed and projections are made for heavier quarkonium families. 72 references
Black hole bound states and their quantization
de Boer, J.
2008-01-01
We briefly review the construction of multi-centered black hole solutions in type IIA string theory. We then discuss a decoupling limit which embeds these solutions in M-theory on AdS(3) x S-2 x CY, and discuss some aspects of their dual CFT interpretation. Finally, we consider the quantization of
Roedersheimer, Mark
2015-01-01
Exhaustive dialysis (ED) of lysed human platelets against dilute HCl yields stable angiogenic activity. Dialysis against a constrained external volume, with subsequent relaxation of the separation upon opening the dialysis bag, produces material able to maintain phenotypes and viability of human cells in culture better than ED material. Significant graded changes in MTT viability measurement tracked with external volume. The presence of elements smaller than the MW cutoff, capable of setting up cycling currents initiated by oriented flow of HCl across the membrane, suggests that maturation of bioactivity occurred through establishment of a novel type of geometric phase. These information-rich bound states fit recent descriptions of topological order and Majorana fermions, suggesting relevance in testing Penrose and Hameroff's theory of Orchestrated Objective Reduction, under conditions more general, and on finer scales, than those dependent on tubulin protein. The Berry curvature appears to be a good tool for building a general field theory of physiologic stress dependent on the quantum Hall effect. A new form of geometric phase, and an associated "geometric" quantum Hall effect underlying memory retrieval, dependent on the rate of path traversal and reduction from more than two initial field influences is described.
Geometric methods in multiparticle quantum systems
International Nuclear Information System (INIS)
Simon, B.
1977-01-01
Technically simple proofs are given of the HVZ theorem on the bottom of the essential spectrum of multiparticle systems and of Combes' result on completeness below the lowest three body threshold. The first proof is a variant of a proof of Enss and a decendent of Zhislin's original proof. Finally, we apply our methods to the bound state spectrum. (orig.) [de
Shen, H Z; Shao, X Q; Wang, G C; Zhao, X L; Yi, X X
2016-01-01
The quantum phase transition (QPT) describes a sudden qualitative change of the macroscopic properties mapped from the eigenspectrum of a quantum many-body system. It has been studied intensively in quantum systems with the spin-boson model, but it has barely been explored for systems in coupled spin-boson models. In this paper, we study the QPT with coupled spin-boson models consisting of coupled two-level atoms embedded in three-dimensional anisotropic photonic crystals. The dynamics of the system is derived exactly by means of the Laplace transform method, which has been proven to be equivalent to the dissipationless non-Markovian dynamics. Drawing on methods for analyzing the ground state, we obtain the phase diagrams through two exact critical equations and two QPTs are found: one QPT is that from the phase without one bound state to the phase with one bound state and another is that from one phase with the bound state having one eigenvalue to another phase where the bound state has two eigenvalues. Our analytical results also suggest a way of control to overcome the effect of decoherence by engineering the spectrum of the reservoirs to approach the non-Markovian regime and to form the bound state of the whole system for quantum devices and quantum statistics.
Guerra, Alfredo J; Giedroc, David P
2014-04-01
Streptococcus pneumoniae adhesin competence repressor (AdcR) is a Zn(II)-dependent 32 kDa homodimer that controls the transcription of a zinc-specific ABC uptake system (AdcABC), three pneumococcal histidine triad proteins (PhtA, PhtD and PhtE), and an AdcA homolog AdcAII. AdcR is the first metal-dependent member of the MarR family of prokaryotic transcriptional repressors. Two-dimensional NMR studies reveal large changes in the spectrum upon Zn(II) binding. Near complete backbone and stereospecific methyl group resonance assignments for apo- and Zn(II)-AdcR are presented here.
Bridge between bound state and reaction effective nucleon–nucleon ...
Indian Academy of Sciences (India)
Both provide partial information. An attempt is made to understand if there is an inherent link, a bridge, which connects all these informations, through the study of heavy ion fusion reactions. Keywords. Effective nucleon–nucleon interactions; heavy-ion reactions; microscopic approach; fu- sion reactions. PACS Nos 21.30.
Quark-antiquark bound-state spectroscopy and QCD
Energy Technology Data Exchange (ETDEWEB)
Bloom, E.D.
1982-11-01
The discussion covers quarks as we know them, the classification of ordinary mesons in terms of constituent quarks, hidden charm states and charmed mesons, bottom quarks, positronium as a model for quarti q, quantum chromodynamics and its foundation in experiment, the charmonium model, the mass of states, fine structure and hyperfine structure, classification, widths of states, rate and multipolarity of gamma transitions, questions about bottom, leptonic widths and the determination of Q/sub b/, the mass splitting of the n/sup 3/S/sub 1/ states, the center of gravity of the masses of the n/sup 3/P; states, n/sup 3/ P; fine structure and classification, branching ratios for upsilon' ..-->.. tau chi/sub 6j/ and the tau cascade reactions, hyperfine splitting, and top. (GHT)
Quasi-bound states, resonance tunnelling, and tunnelling times ...
Indian Academy of Sciences (India)
scattering and decay of unstable nuclei via alpha decay, proton emission etc. as evident from refs [14–19]. A detailed procedure exists for the study of such states in ...... for the case of transmission across equispaced multiple barriers generating well-separated QB states. 3. The variation of total tunnelling time Tq shows ...
Bound state quantum field theory application to atoms and ions
Sapirstein, Jonathan
2019-01-01
Two aspects of the book should appeal to a wide audience. One aspect would be the comprehensive coverage on the latest updates and developments this book provides, besides Bethe and Salpeter's handbook on hydrogen and helium, which is still widely regarded as useful. The other aspect would be that a major part of the book uses effective field theory, a way of including quantum electrodynamics (QED) that starts with the familiar Schrödinger equation, and then adds perturbing operators derived in a rather simple manner that incorporates QED. Effective field theory is used in a number of fields including particle physics and nuclear physics, and readership is targeted at these communities too.Additionally, students using this book in conjunction with Peskin's textbook could learn to carry out fairly sophisticated calculations in QED in order to learn the technique, as this book comes with practical calculations.Also included is a very clear exposition of the BetheSalpeter equation, which is simply either ...
Light relativistic bound states in high temperature QCD
International Nuclear Information System (INIS)
Zahed, Ismail
1991-01-01
The nonperturbative structure of high temperature QCD is combined with generalized sum-rules arguments to analyse gauge invariant correlation functions in real time. It is shown that for a plausible choice of condensates, QCD at high temperature exhibits color singlet excitations as opposed to merely screened quarks and gluons. (author). 14 refs.; 2 figs
Higgs interchange and bound states of superheavy fermions
Indian Academy of Sciences (India)
Nacional de Colombia for the financial support received through the research grant 'Teoría de Campos Cuánticos aplicada a sistemas de la Física de Partículas, de la Física de la. Materia Condensada y a la descripción de propiedades del grafeno'. References. [1] The ATLAS Collaboration: Phys. Lett. B 716, 1 (2012), ...
Separable pole expansions in four-nucleon bound state calculations
International Nuclear Information System (INIS)
Sofianos, S.A.; Fiedeldey, H.; Haberzettl, H.; Sandhas, W.
1982-04-01
We compare the utility of the Generalized Unitary Pole Expansion (GUPE) and the Energy-Dependent Pole Expansion (EDPE) for the three-body subsystem amplitudes in four-body state calculations for a variety of separable and local nucleon-nucleon interactions. It is found that, with the EDPE, the four-body binding energy is well reproduced with only two terms each for the (2+2)- and the (3+1)-subsystem, respectively, while the GUPE requires three terms for the (3+1)-channel and four terms for the (2+2)-channel. We thus conclude that pole dominance is of greater importance for the GUPE than for EDPE, which works equally well for both types of subsystems. It is found that both methods, in particular the EDPE, converge more rapidly with increasing repulsion in the two-body interaction, i.e. the more realistic the interaction becomes. Both expansions require similar computing times for a converged calculation and are about 15-20 times faster than the widely used Hilbert-Schmidt Expansion (HSE). The respective merits of the two pole expansions are discussed and compared with the HSE. (orig.)
Scaling properties of net information measures for bound states of ...
Indian Academy of Sciences (India)
which imply that the Onicescu energy product Erp = Er Ep satisfies the relation. Erp(h2/M, Z, Zi , R, Vc) = Erp(1,1,si ,t1,t2), si = M h2. Zi. ( h2. MZ. )( ni +2 n+2 ). , t1 = R(MZ/h2)1/(n+2), t2 = Vc(M/h2)(h2/MZ)2/(n+2). (34). In this case also, for given values of the parameters. Z, Zi , R, Vc, the Onicescu energy product depends on.
Bound states in waveguides with complex Robin boundary conditions
Czech Academy of Sciences Publication Activity Database
Novák, Radek
2016-01-01
Roč. 96, 3-4 (2016), s. 251-281 ISSN 0921-7134 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : non-self-adjointness * waveguide * Robin boundary conditions * spectral analysis * essential spectrum * weak coupling * Birman-Schwinger principle * reality of the spectrum Subject RIV: BE - Theoretical Physics Impact factor: 0.933, year: 2016
On the existence of bound states in asymmetric leaky wires
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Vugalter, S.
2016-01-01
Roč. 57, č. 2 (2016), s. 022104 ISSN 0022-2488 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : quantum wave-guides * graphs Subject RIV: BE - Theoretical Physics Impact factor: 1.077, year: 2016
The relativistic bound states of a non-central potential
Indian Academy of Sciences (India)
2017-03-29
Mar 29, 2017 ... with the increase in the quantum number n from 1 to 3 when K = 5. In figure 6, we also show the influence of param- eter B on the energy spectrum En. It is obvious that the energy increases vs. the parameter A with the decrease in azimuthal quantum number m = 2,0,−2 and the energy decrease with the ...
Higgs interchange and bound states of superheavy fermions
Indian Academy of Sciences (India)
Departamento de Física, Universidad Nacional de Colombia, Bogotá (D.C.), Colombia. E-mail: mdesanctis@unal.edu.co. MS received 11 September 2012; revised 31 March 2013; accepted 2 May 2013. Abstract. Hypothetical superheavy fourth-generation fermions with a very small coupling with the rest of the Standard ...
Coulomb plus strong interaction bound states - momentum space numerical solutions
International Nuclear Information System (INIS)
Heddle, D.P.; Tabakin, F.
1985-01-01
The levels and widths of hadronic atoms are calculated in momentum space using an inverse algorithm for the eigenvalue problem. The Coulomb singularity is handled by the Lande substraction method. Relativistic, nonlocal, complex hadron-nucleus interactions are incorporated as well as vacuum polarization and finite size effects. Coordinate space wavefunctions are obtained by employing a Fourier Bessel transformation. (orig.)
Composite models of hadrons and relativistic bound states
International Nuclear Information System (INIS)
Filippov, A.T.
1977-01-01
The following problems are considered: what the constituents of the hadrons are; what their quantum numbers and their broken and unbroken symmetries are; what the dynamics of the constituents (equations, binding forces and the origin of symmetry violations) is. The most puzzling question is: why the constituents ''escape from freedom'' and are confined inside the hadrons; what experimentalists can report about the hadron constituents and their dynamics if not finding them. There are no final answers to all these questions. The achievements of quark model are described, some problems concerning the comparison of the quark model with experiment are considered. The attempt is also made to present alternative views on the same problems
The relativistic bound states of a non-central potential
Indian Academy of Sciences (India)
2017-03-29
Mar 29, 2017 ... tivistic quantum mechanics, the behaviour of nucleons in nuclei and the relativistic collisions of heavy ions and interaction of laser with matter. Recently, many researchers have been working on the exact solution of the Dirac equation with different non-central poten- tials [1–5]. The near realization of these ...
Bridge between bound state and reaction effective nucleon–nucleon ...
Indian Academy of Sciences (India)
not involve analysis of the effective interactions themselves. ... made an indepth study in this regard using other macro-microscopic interactions. ... Theoretical analysis. The theoretical frame work for the understanding of heavy ion fusion cross sections on the basis of effective N–N interactions, the so-called microscopic ...
The deuteron bound state wave function with tensor forces
International Nuclear Information System (INIS)
Takemasa, Tadashi
1991-01-01
A FORTRAN program named DEUTERON is developed to calculate the binding energy and wave function of a deuteron, when the interaction between two nucleons is described in terms of central, tensor, spin-orbit, and quadratic LS potentials with or without a hard core. An important use of the program is to provide the deuteron wave function required in nuclear reaction calculations involving a deuteron. Also, this program may be employed in nuclear Hartree-Fock calculations using an effective nucleon-nucleon interaction with a tensor component. (author)
Lieb-Thirring inequalities for geometrically induced bound states
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Linde, H.; Weidi, T.
2004-01-01
Roč. 70, č. 1 (2004), s. 83-95 ISSN 0377-9017 R&D Projects: GA AV ČR KSK1010104 Keywords : quantum wave -guides * Schrödinger-operators * dirichlet Subject RIV: BE - Theoretical Physics Impact factor: 0.926, year: 2004
The relativistic bound states of a non-central potential
Indian Academy of Sciences (India)
Yang Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Physics, University of Semnan, Semnan, Iran; Department of Physics, Faculty of Science, an-Najah National University, Nablus, Palestine; Department of Electrical Engineering, Near East University, Nicosia, ...
Dirac bound states of anharmonic oscillator in external fields
Energy Technology Data Exchange (ETDEWEB)
Hamzavi, Majid, E-mail: majid.hamzavi@gmail.com [Department of Physics, University of Zanjan, Zanjan (Iran, Islamic Republic of); Ikhdair, Sameer M., E-mail: sikhdair@gmail.com [Department of Physics, Faculty of Science, an-Najah National University, Nablus, West Bank, Palestine (Country Unknown); Department of Electrical and Electronic Engineering, Near East University, 922022 Nicosia, Northern Cyprus, Mersin 10 (Turkey); Falaye, Babatunde J., E-mail: fbjames11@physicist.net [Theoretical Physics Section, Department of Physics, University of Ilorin, P. M. B. 1515, Ilorin (Nigeria)
2014-02-15
We explore the effect of the external magnetic and Aharonov–Bohm (AB) flux fields on the energy levels of Dirac particle subjects to mixed scalar and vector anharmonic oscillator field in the two-dimensional (2D) space. We calculate the exact energy eigenvalues and the corresponding un-normalized two-spinor-components wave functions in terms of the chemical potential parameter, magnetic field strength, AB flux field and magnetic quantum number by using the Nikiforov–Uvarov (NU) method. -- Highlights: • Effect of the external fields on the energy levels of Dirac particle with the anharmonic oscillator is investigated. • The solutions are discussed in view of spin and pseudospin symmetries limits. • The energy levels and wave function are presented by the Nikiforov–Uvarov method.
Stieltjes electrostatic model interpretation for bound state problems
Indian Academy of Sciences (India)
+ iQ(xk) = 0, 1 ≤ k ≤ n. (17) the solution for the differential eq. (17), for an exactly solvable potential that is for cer- tain Q(xk), are the zeros of appropriate orthogonal polynomials. The interval is fixed by the fixed poles of the potential. It is well known that the classical orthogonal poly- nomials arise as solutions to the bound ...
New computational methods for determining antikaon-nucleus bound states
International Nuclear Information System (INIS)
Fink, P.J. Jr.
1989-01-01
Optical potential for antikaon-nucleus strong interactions are constructed using elementary antikaon-nucleus potentials determined previously. The optical potentials are used to determine the existence of a kaon hypernucleus. Modern three dimensional visualization techniques are used to study model dependences, new methods for speeding the calculation of the optical potential are developed, and previous approximation to avoid full Fermi averaging are eliminated. 19 refs., 21 figs., 3 tabs
Dirac bound states of anharmonic oscillator in external fields
International Nuclear Information System (INIS)
Hamzavi, Majid; Ikhdair, Sameer M.; Falaye, Babatunde J.
2014-01-01
We explore the effect of the external magnetic and Aharonov–Bohm (AB) flux fields on the energy levels of Dirac particle subjects to mixed scalar and vector anharmonic oscillator field in the two-dimensional (2D) space. We calculate the exact energy eigenvalues and the corresponding un-normalized two-spinor-components wave functions in terms of the chemical potential parameter, magnetic field strength, AB flux field and magnetic quantum number by using the Nikiforov–Uvarov (NU) method. -- Highlights: • Effect of the external fields on the energy levels of Dirac particle with the anharmonic oscillator is investigated. • The solutions are discussed in view of spin and pseudospin symmetries limits. • The energy levels and wave function are presented by the Nikiforov–Uvarov method
Fluxons and their interactions in a system of three stacked Josephson junctions
DEFF Research Database (Denmark)
Corria, Carlos; Christiansen, Peter Leth; Gaididei, Yuri Borisovich
2003-01-01
Fluxon dynamics in a system of three coupled driven damped sine-Gordon equations is investigated. Bunching of fluxons is observed. It is shown that fluxon-fluxon-fluxon bound states exist in a certain interval of the fluxon velocity. Attraction between fluxons occurs as a result of indirect fluxo...
Scattering-equivalent multichannel systems and n-body (n>=3) nuclear forces
International Nuclear Information System (INIS)
Saenz, A.W.; Zachary, W.W.
1975-01-01
Rigorous conditions are given for two nonrelativistic N-particle (N>=2) systems with unitarily equivalent Hamiltonians to yield the same scattering amplitudes. This allows the phenomenological investigation of n-body (n>=3) nuclear forces by varying nuclear bound-state wave-functions while leaving unaltered the pertinent scattering predictions. (Auth.)
Soliton solutions describing charged particle propagation in a system with self-induction
International Nuclear Information System (INIS)
Mitropol'skij, I.A.; Shuvaev, A.G.
1991-01-01
Soliton solutions of the equations describing charged particle motion in an inductive feedback system are derived for quantum and classical cases. Possible existence of soliton bound states is shown. Conditions of longitudinal focusing of particles which propagate at different initial velocities in a nonlinear medium are discussed
qqq-barq-bar system in a potential model
Energy Technology Data Exchange (ETDEWEB)
Weinstein, J.; Isgur, N.
1983-02-01
We have examined the qqq-barq-bar system in a nonrelativistic potential model with color-dependent confinement forces and hyperfine interactions by solving the four-particle Schroedinger equation variationally. We find that normally the ground state of this system consists of two free mesons, but that exceptions to this rule probably occur for KK-bar systems, where we find weakly bound 0/sup + +/ states with a meson-meson structure reminiscent of the nucleon-nucleon structure of the deuteron. We show that these states may be identified with the S* and delta just below KK-bar threshold. We further argue that the qqq-barq-bar system is not only nearly barren of bound states, but that it is unlikely to support any resonances. Finally, independent of their identification with observed states, we note that the qqq-barq-bar bound states are a model for the weak binding and color-singlet clustering observed in nuclei.
Faddeev-Yakubovsky technique for weakly bound systems
International Nuclear Information System (INIS)
Hadizadeh, M.R.; Yamashita, M.T.; Tomio, Lauro; Delfino, A.
2011-01-01
Nature shows the existence of weakly bound systems in different sectors, ranging from atomic to nuclear physics. Few-body systems with large scattering length exhibit universal features, which are independent of the details of the interaction, and thus are common to nuclear and atomic systems. Very different methods are used to study the properties of few-body systems, from Faddeev methods to diagonalization methods that rely on an expansion of the wave functions in a complete basis set, like e.g. hyper-spherical harmonics and no core shell model. In this talk we present Faddeev-Yakubovsky method to study the three- and four-body bound states in momentum space. To show the efficiency and accuracy of the method we investigate the three- and four-boson weakly bound states in unitary limit (for zero two-body binding) and we present a pretty complete picture of universality. (author)
Topics in the theory of heavy-quark systems
International Nuclear Information System (INIS)
Flory, C.A.
1981-04-01
Due to the kinematic and dynamic simplifications possible because of the large mass of heavy quark bound states, certain properties of these systems can be quantitatively analyzed within the framework of quantum chromodynamics. It is clear that dimensionally the size of the bound state is proportional to the inverse quark mass, and for very heavy quarkonia the radius of the system should become smaller than that of normal hadrons. When this small system interacts with external long wavelength field quanta, the natural expansion that results is of a multipole type, analogous to the familiar multipole expansion in electrodynamics. This multipole expansion has better convergence properties than the standard perturbative treatment in certain kinematic regimes, which opens up a new area for strong interaction physics calculations. More specifically, it is ideally suited to investigate soft non-perturbative effects in QCD which appear to be so crucial to present day phenomenology and the conjectured confinement mechanism
Flow-enhanced pairing and other unusual effects in Fermi gases in synthetic gauge fields
Shenoy, Vijay B.
2013-09-01
Recent experiments on fermions in synthetic gauge fields result in systems with a spin-orbit coupling along one spatial axis, a detuning field, and a Zeeman field. We show theoretically that the presence of all three results in interesting and unusual phenomena in a system of interacting fermions (interactions described by a scattering length). For two fermions, bound states appear only over a certain range of the center-of-mass momenta. The deepest bound state appears at a nonzero center-of-mass momentum. For center-of-mass momenta without a bound state, the gauge field induces a resonance-like feature in the scattering continuum resulting in a large scattering phase shift. In the case of many particles, we demonstrate that the system, in a parameter range, shows flow-enhanced pairing, i.e., a Fulde-Farrell-Larkin-Ovchnnikov superfluid state made of robust pairs with a finite center-of-mass momentum. Yet another regime of parameters offers the opportunity to study strongly interacting normal states of spin-orbit-coupled fermionic systems utilizing the resonance-like feature induced by the synthetic gauge field.
Bethe-Salpeter equation for a four fermion system I
Energy Technology Data Exchange (ETDEWEB)
Kim, S.K.; Muller, B.; Greiner, W.
1988-08-01
The authors derive the Bethe-Salpeter equation for bound states of a four-body system. They treat only two-body interaction kernels in the ladder approximation. The equations should be applicable for the description of exotic meson states (q qq-barq-bar states) and the ''poly-positronium'' states discussed in connection with the interpretation of the narrow coincidence peaks in the spectra of electrons and positrons observed in heavy ion collisions.
Coupled Atom-Polar Molecule Condensate Systems: A Theoretical Adventure
2014-07-14
Bose gases 6 VI. Landau-Ginzburg Perspective of Finite-Temperature Phase Diagrams of a Two-Component Fermi-Bose Mixture 8 VII. Collective Excitations and...state, while the latter is a tightly bound state. It is then, in principle, di¢ cult to locate a single excited state, capable of a large spatial...chain of systems. In this project, we aim to generalize the idea of chainwise stimulated Raman adiabatic passage (STI- RAP ) [Kuznetsova et al., Phys
Constraints on a system of two neutral fermions from cosmology
International Nuclear Information System (INIS)
Binetruy, P.; Girardi, G.; Salati, P.
1983-07-01
Using the standard model of cosmology we study the evolution of the population of a coupled system of two neutral fermions in which the lighter one is stable. During the expansion their population can be frozen at a certain level which makes them contribute to the mass density of the universe. The details of the freezing depend crucially on the couplings and on the masses of these two fermions, so that, comparison with the measured mass density in the universe gives constraints on the parameters of the physical system we examine. We discuss in detail different configurations for the couplings among these fermions; in particular in the case of large mixing we obtain restrictive bounds on both masses. Our study is relevant to supersymmetric grand unified models which predict the occurence of light interacting neutral fermions, particularly Higgsinos
Strongly correlated photons generated by coupling a three- or four-level system to a waveguide
Zheng, Huaixiu; Gauthier, Daniel J.; Baranger, Harold U.
2012-04-01
We study the generation of strongly correlated photons by coupling an atom to photonic quantum fields in a one-dimensional waveguide. Specifically, we consider a three-level or four-level system for the atom. Photon-photon bound states emerge as a manifestation of the strong photon-photon correlation mediated by the atom. Effective repulsive or attractive interaction between photons can be produced, causing either suppressed multiphoton transmission (photon blockade) or enhanced multiphoton transmission (photon-induced tunneling). As a result, nonclassical light sources can be generated on demand by sending coherent states into the proposed system. We calculate the second-order correlation function of the transmitted field and observe bunching and antibunching caused by the bound states. Furthermore, we demonstrate that the proposed system can produce photon pairs with a high degree of spectral entanglement, which have a large capacity for carrying information and are important for large-alphabet quantum communication.
Non-Abelian parafermions in time-reversal-invariant interacting helical systems
Orth, Christoph P.; Tiwari, Rakesh P.; Meng, Tobias; Schmidt, Thomas L.
2015-02-01
The interplay between bulk spin-orbit coupling and electron-electron interactions produces umklapp scattering in the helical edge states of a two-dimensional topological insulator. If the chemical potential is at the Dirac point, umklapp scattering can open a gap in the edge state spectrum even if the system is time-reversal invariant. We determine the zero-energy bound states at the interfaces between a section of a helical liquid which is gapped out by the superconducting proximity effect and a section gapped out by umklapp scattering. We show that these interfaces pin charges which are multiples of e /2 , giving rise to a Josephson current with 8 π periodicity. Moreover, the bound states, which are protected by time-reversal symmetry, are fourfold degenerate and can be described as Z4 parafermions. We determine their braiding statistics and show how braiding can be implemented in topological insulator systems.
Single-Particle Momentum Distributions of Efimov States in Mixed-Species Systems
DEFF Research Database (Denmark)
T. Yamashita, M.; F. Bellotti, F.; Frederico, T.
2013-01-01
to derive formulas for the scaling factor of the Efimov spectrum for any mass ratio assuming either that two or three of the two-body subsystems have a bound state at zero energy. We consider the single-particle momentum distribution analytically and numerically and analyse the tail of the momentum......We solve the three-body bound state problem in three dimensions for mass imbalanced systems of two identical bosons and a third particle in the universal limit where the interactions are assumed to be of zero-range. The system displays the Efimov effect and we use the momentum-space wave equation...... distribution to obtain the three-body contact parameter. Our finding demonstrate that the functional form of the three-body contact term depends on the mass ratio and we obtain an analytic expression for this behavior. To exemplify our results, we consider mixtures of Lithium with either two Caesium or Rubium...
A determination of the centre-of-mass energy at LEP2 using radiative two-fermion events
Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; llmendinger, T; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, D; Barker, G J; Baroncelli, A; Battaglia, M; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N; Benvenuti, A C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Buschbeck, Brigitte; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F; Chapkin, M; Charpentier, P; Checchia, P; Chierici, R; Chliapnikov, P V; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J; Gandelman, M; García, C; Gavillet, P; Gazis, E; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, B P; Kerzel, U; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Mazzucato, M; Mönig, K; Mulders, M; Nawrocki, K; Orava, R; Masik, J; Mastroyiannopoulos, N; Migliore, E; Matorras, F; Matteuzzi, C; Mazzucato, F; Nulty, R M; Moch, M; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Murray, W; Monge, R; Ouraou, A; Muryn, B; Myatt, G; Myklebust, T; Nassiakou, M; Olshevskii, A G; Palacios, J P; Navarria, Francesco Luigi; Onofre, A; Palka, H; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Paiano, S; Meroni, C; Mitaroff, W A; Mjörnmark, U; Moa, T; Mundim, L; Nicolaidou, R; Österberg, K; Oyanguren, A; Paganoni, M; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdnyakov, V; Pukhaeva, N; Pullia, A; Rames, J; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sisakian, A; Smadja, G; Smirnova, O; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J; Wilkinson, G; Winter, M; Witek1, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M
2006-01-01
Using e+e- -> mu+mu-(gamma) and e+e- -> qqbar(gamma) events radiative to the Z pole, DELPHI has determined the centre-of-mass energy, sqrt{s}, using energy and momentum constraint methods. The results are expressed as deviations from the nominal LEP centre-of-mass energy, measured using other techniques. The results are found to be compatible with the LEP Energy Working Group estimates for a combination of the 1997 to 2000 data sets.
Theory and simulation of strong correlations in quantum Coulomb systems
Bonitz, M.; Semkat, D.; Filinov, A.; Golubnychyi, V.; Kremp, D.; Gericke, D. O.; Murillo, M. S.; Filinov, V.; Fortov, V.; Hoyer, W.; Koch, S. W.
2003-06-01
Strong correlations in quantum Coulomb systems (QCS) are attracting increasing interest in many fields ranging from dense plasmas and semiconductors to metal clusters and ultracold trapped ions. Examples are bound states in dense plasmas (atoms, molecules, clusters) and semiconductors (excitons, trions, biexcitons) or Coulomb crystals. We present first-principle simulation results of these systems including path integral Monte Carlo simulations of the equilibrium behaviour of dense hydrogen and electron-hole plasmas and molecular dynamics and quantum kinetic theory simulations of the nonequilibrium properties of QCS. Finally, we critically assess potential and limitations of the various methods in their application to Coulomb systems.
Few-Body Systems in Low-Dimensional Geometries
DEFF Research Database (Denmark)
Volosniev, Artem
2013-01-01
The research in this dissertation is devoted to few-body bound state physics in experimentally relevant systems of trapped atoms and molecules. First, the complexes of tubes containing dipoles are considered. The tubes are assumed to have zero width such that one-dimensional treatment can...... be applied. For this setup few-body bound structures are found for different polarization an- gles and dipole strengths by using stochastic variational methods. After that a similar analysis is provided for two-dimensional planes filled with dipolar par- ticles. At the end of the thesis, a system...
Analytical solution of relativistic three-body bound systems
Energy Technology Data Exchange (ETDEWEB)
Aslanzadeh, M.; Rajabi, A.A. [Shahrood University of Technology, Physics Department, Shahrood (Iran, Islamic Republic of)
2014-10-15
In this paper we have investigated in detail the relativistic three-body bound states. We carried out calculations in six-dimensional representation on the basis of the Jacobi coordinates. The obtained second-degree differential equation is solved by using the Nikiforov-Uvarov method and the energy eigenvalues are obtained. Consequently we obtained the binding energy of the three-nucleon bound system. Here we used the generalized Woods-Saxon spin-independent potential in our calculations. The dependence of the three-body binding energy on the potential parameters is also investigated. (orig.)
Statistical methods for including two-body forces in large system calculations
International Nuclear Information System (INIS)
Grimes, S.M.
1980-07-01
Large systems of interacting particles are often treated by assuming that the effect on any one particle of the remaining N-1 may be approximated by an average potential. This approach reduces the problem to that of finding the bound-state solutions for a particle in a potential; statistical mechanics is then used to obtain the properties of the many-body system. In some physical systems this approach may not be acceptable, because the two-body force component cannot be treated in this one-body limit. A technique for incorporating two-body forces in such calculations in a more realistic fashion is described. 1 figure
Two- and three-dimensional few-body systems close to the universal regime
DEFF Research Database (Denmark)
Bellotti, Filipe Furlan
2014-01-01
Macro properties of cold atomic gases are driven by few-body correlations, even if the gas has thousands of particles. Quantum systems composed of two and three particles with attractive zero-range pairwise interactions are considered for general masses and interaction strengths in two and three...... dimensions (2D and 3D). The Faddeev decomposition is used to derive the equations for the bound state, which is the starting point for the investigation of universal properties of few-body systems, i.e. those that all potentials with the same physics at low energy are able to describe in a model...
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.
Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried
2017-05-16
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.
Asymptotics of the bound state induced by delta-interaction supported on a weakly deformed plane
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Kondej, S.; Lotoreichik, Vladimir
2018-01-01
Roč. 59, č. 1 (2018), č. článku 013501. ISSN 0022-2488 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : Schrodinger operator * interactions Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.077, year: 2016
Gauge invariant description of heavy quark bound states in quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Moore, S.E.
1980-08-01
A model for a heavy quark meson is proposed in the framework of a gauge-invariant version of quantum chromodynamics. The field operators in this formulation are taken to be Wilson loops and strings with quark-antiquark ends. The fundamental differential equations of point-like Q.C.D. are expressed as variational equations of the extended loops and strings. The 1/N expansion is described, and it is assumed that nonleading effects such as intermediate quark pairs and nonplanar gluonic terms can be neglected. The action of the Hamiltonian in the A/sub 0/ = 0 gauge on a string operator is derived. A trial meson wave functional is constructed consisting of a path-averaged string operator applied to the full vacuum. A Gaussian in the derivative of the path location is assumed for the minimal form of the measure over paths. A variational parameter is incorporated in the measure as the exponentiated coefficient of the squared path location. The expectation value of the Hamiltonian in the trial state is evaluated for the assumption that the negative logarithm of the expectation value of a Wilson loop is proportional to the loop area. The energy is then minimized by deriving the equivalent quantum mechanical Schroedinger's equation and using the quantum mechanical 1/n expansion to estimate the effective eigenvalues. It is found that the area law behavior of the Wilson loop implies a nonzero best value of the variational parameter corresponding to a quantum broadening of the flux tube.
Phase-tunable Majorana bound states in a topological N-SNS junction
DEFF Research Database (Denmark)
Hansen, Esben Bork; Danon, Jeroen; Flensberg, Karsten
2016-01-01
We theoretically study the differential conductance of a one-dimensional normal-superconductor-normal-superconductor (N-SNS) junction with a phase bias applied between the two superconductors. We consider specifically a junction formed by a spin-orbit coupled semiconducting nanowire with regions ...
In-medium eta N interactions and eta nuclear bound states
Czech Academy of Sciences Publication Activity Database
Cieplý, Aleš; Friedman, E.; Gal, A.; Mareš, Jiří
2014-01-01
Roč. 925, MAY (2014), s. 126-140 ISSN 0375-9474 R&D Projects: GA ČR(CZ) GAP203/12/2126; GA MŠk LG14038 Institutional support: RVO:61389005 Keywords : N(star) (1535 resonance * meson-baryon interactions * mesons in nuclear matter * mesic nuclei Subject RIV: BE - Theoretical Physics Impact factor: 2.202, year: 2014
Bound state solutions of Schrödinger equation for Rydberg potential ...
African Journals Online (AJOL)
The arbitrary angular momentum solutions of the Schrödinger equation for a diatomic molecule with the Rydberg potential energy function D {1 +ar}exp(ar) has been presented. The energy eigenvalues and the corresponding eigenfunctions are calculated analytically by the use of. Nikiforov-Uvarov (NU) method which is ...
Matrix-variational method: an efficient approach to bound state eigenproblems
International Nuclear Information System (INIS)
Gerck, E.; d'Oliveira, A.B.
1978-11-01
A new matrix-variational method for solving the radial Schroedinger equation is described. It consists in obtaining an adjustable matrix formulation for the boundary value differential equation, using a set of three functions that obey the boundary conditions. These functions are linearly combined at every three adjacents points to fit the true unknown eigenfunction by a variational technique. With the use of a new class of central differences, the exponential differences, tridiagonal or bidiagonal matrices are obtained. In the bidiagonal case, closed form expressions for the eigenvalues are given for the Coulomb, harmonic, linear, square-root and logarithmic potentials. The values obtained are within 0.1% of the true numerical value. The eigenfunction can be calculated using the eigenvectors to reconstruct the linear combination of the set functions [pt
Calculations of K- nuclear quasi-bound states based on chiral meson-baryon amplitudes
Czech Academy of Sciences Publication Activity Database
Gazda, Daniel; Mareš, Jiří
2012-01-01
Roč. 881, 5/6 (2012), s. 159-168 ISSN 0375-9474 R&D Projects: GA MŠk(CZ) LG11005 Institutional support: RVO:61389005 Keywords : K- nuclear states * mesic nuclei * antikaon-nucleus interaction Subject RIV: BE - Theoretical Physics Impact factor: 1.525, year: 2012
Kinematical and dynamical aspects of higher-spin bound-state equations in holographic QCD
Energy Technology Data Exchange (ETDEWEB)
de Téramond, Guy F.; Dosch, Hans Günter; Brodsky, Stanley J.
2013-04-01
In this paper we derive holographic wave equations for hadrons with arbitrary spin starting from an effective action in a higher-dimensional space asymptotic to anti–de Sitter (AdS) space. Our procedure takes advantage of the local tangent frame, and it applies to all spins, including half-integer spins. An essential element is the mapping of the higher-dimensional equations of motion to the light-front Hamiltonian, thus allowing a clear distinction between the kinematical and dynamical aspects of the holographic approach to hadron physics. Accordingly, the nontrivial geometry of pure AdS space encodes the kinematics, and the additional deformations of AdS space encode the dynamics, including confinement. It thus becomes possible to identify the features of holographic QCD, which are independent of the specific mechanisms of conformal symmetry breaking. In particular, we account for some aspects of the striking similarities and differences observed in the systematics of the meson and baryon spectra.
Bound states of water in gelatin discriminated by near-infrared spectroscopy
Otsuka, Yukiko; Shirakashi, Ryo; Hirakawa, Kazuhiko
2017-11-01
By near-infrared spectroscopy, we classified water molecules in hydrated gelatin membranes in a drying process. Absorbance spectra in the frequency range of 4500-5500 cm-1 were resolved into three peaks, S0, S1, and S2, that correspond to water molecules with different hydrogen bond states. From the areas of the absorbance peaks as a function of the water content of gelatin, together with the information on the freezing properties of water measured by differential scanning calorimetry, we found that, when the water content is less than 20%, free water disappears and only weakly and strongly bound waters remain. We also found that the weakly bound water consists of S0, S1, and S2 water molecules with a simple composition of \\text{S}0:\\text{S}1:\\text{S}2 ≈ 1:2:0. Using this information, most of the freezable water was determined to be free water. Our classification provides a simple method of estimating the retention and freezing properties of processed foods or drugs by infrared spectroscopy.
Fusion, collapse, and stationary bound states of incoherently coupled waves in bulk cubic media
DEFF Research Database (Denmark)
Bang, Ole; Bergé, L.; Juul Rasmussen, Jens
1999-01-01
these sufficient conditions numerically and show that only when the equations and the initial conditions are symmetric are they also close to bring necessary conditions. Using Gaussian initial conditions we predict and confirm numerically the power dependent characteristic initial separations that divide the phase...
Human DNA Ligase III Recognizes DNA Ends by Dynamic Switching between Two DNA-Bound States
Energy Technology Data Exchange (ETDEWEB)
Cotner-Gohara, Elizabeth; Kim, In-Kwon; Hammel, Michal; Tainer, John A.; Tomkinson, Alan E.; Ellenberger, Tom (Scripps); (Maryland-MED); (WU-MED); (LBNL)
2010-09-13
Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a 'jackknife model' in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers.
Multiple-Pulse Operation and Bound States of Solitons in Passive Mode-Locked Fiber Lasers
Directory of Open Access Journals (Sweden)
A. Komarov
2012-01-01
Full Text Available We present results of our research on a multiple-pulse operation of passive mode-locked fiber lasers. The research has been performed on basis of numerical simulation. Multihysteresis dependence of both an intracavity energy and peak intensities of intracavity ultrashort pulses on pump power is found. It is shown that the change of a number of ultrashort pulses in a laser cavity can be realized by hard as well as soft regimes of an excitation and an annihilation of new solitons. Bound steady states of interacting solitons are studied for various mechanisms of nonlinear losses shaping ultrashort pulses. Possibility of coding of information on basis of soliton trains with various bonds between neighboring pulses is discussed. The role of dispersive wave emitted by solitons because of lumped intracavity elements in a formation of powerful soliton wings is analyzed. It is found that such powerful wings result in large bounding energies of interacting solitons in steady states. Various problems of a soliton interaction in passive mode-locked fiber lasers are discussed.
isospin mixing in the 4He bound state and the nucleon strange form factor
Energy Technology Data Exchange (ETDEWEB)
Rocco Schiavilla
2006-10-11
The contribution of isospin admixtures in the ground state of the {sup 4}He nucleus is studied using wave functions derived from the most modern nuclear interactions, including isospin symmetry breaking terms. The present calculations show that this contribution is larger than previous estimates had indicated. Its effect on parity violating elastic scattering of polarized electrons from {sup 4}He is investigated. In particular, a simple analysis of the recently measured left-right asymmetry at low Q{sup 2} shows that the contribution of these isospin admixtures is of comparable magnitude to that associated with strangeness components in the nucleon electric form factor.
Widths of K-nuclear deeply bound states in a dynamical model
Czech Academy of Sciences Publication Activity Database
Mareš, Jiří; Friedman, E.; Gal, A.
2005-01-01
Roč. 606, 3/4 (2005), s. 295-302 ISSN 0370-2693 R&D Projects: GA AV ČR(CZ) IAA1048305 Keywords : kaonic atoms * field-theory * (K) over-bar Subject RIV: BE - Theoretical Physics Impact factor: 5.301, year: 2005
Hadronic bound states in SU(2) from Dyson-Schwinger equations
International Nuclear Information System (INIS)
Vujinovic, Milan; Williams, Richard
2015-01-01
By using the Dyson-Schwinger/Bethe-Salpeter formalism in Euclidean spacetime, we calculate the ground state spectrum of J ≤ 1 hadrons in an SU(2) gauge theory with two fundamental fermions. We show that the rainbow-ladder truncation, commonly employed in QCD studies, is unsuitable for a description of an SU(2) theory. This we remedy by truncating at the level of the quark-gluon vertex Dyson-Schwinger equation in a diagrammatic expansion. Results obtained within this novel approach show good agreement with lattice studies. These findings emphasize the need to use techniques more sophisticated than rainbow-ladder when investigating generic strongly interacting gauge theories. (orig.)
Curvature-induced bound states in Robin waveguides and their asymptotical properties
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Minakov, A.
2014-01-01
Roč. 55, č. 12 (2014), s. 122101 ISSN 0022-2488 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : strong delta-interaction * Schrodinger operator * large parameter Subject RIV: BE - Theoretical Physics Impact factor: 1.243, year: 2014
Bound states and magnetic field induced valley splitting in gate-tunable graphene quantum dots
Recher, Patrik; Nilsson, Johan; Burkard, Guido; Trauzettel, Björn
2009-02-01
The magnetic field dependence of energy levels in gapped single-layer and bilayer graphene quantum dots (QDs) defined by electrostatic gates is studied analytically in terms of the Dirac equation. Due to the absence of sharp edges in these types of QDs, the valley degree of freedom is a good quantum number. We show that its degeneracy is efficiently and controllably broken by a magnetic field applied perpendicular to the graphene plane. This opens up a feasible route to create well-defined and well-controlled spin and valley qubits in graphene QDs. We also point out the similarities and differences in the spectrum between single-layer and bilayer graphene quantum dots. Striking in the case of bilayer graphene is the anomalous bulk Landau level (LL) that crosses the gap, which results in crossings of QD states with this bulk LL at large magnetic fields in stark contrast to the single-layer case where this LL is absent. The tunability of the gap in the bilayer case allows us to observe different regimes of level spacings directly related to the formation of a pronounced “sombrero” in the bulk band structure. We discuss the applicability of such QDs to control and measure the valley isospin and their potential use for hosting and controlling spin qubits.
Bound State Solutions of the Klein-Gordon Equation for the Mathews-Lakshmanan Oscillator
International Nuclear Information System (INIS)
Schulze-Halberg, Axel; Wang, Jie
2014-01-01
We study a boundary-value problem for the Klein-Gordon equation that is inspired by the well-known Mathews-Lakshmanan oscillator model. By establishing a link to the spheroidal equation, we show that our problem admits an infinite number of discrete energies, together with associated solutions that form an orthogonal set in a weighted L 2 -Hilbert space. (author)
Bound-state energy of double magic number plus one nucleon ...
Indian Academy of Sciences (India)
In this work, we have obtained energy levels and charge radius for the β -stability line nucleus, in relativistic shell model. In this model, we considered a close shell for each nucleus containing double magicnumber and a single nucleon energy level. Here we have taken 41 Ca with a single neutron in the 40 Ca core as an ...
Gauge invariant description of heavy quark bound states in quantum chromodynamics
International Nuclear Information System (INIS)
Moore, S.E.
1980-08-01
A model for a heavy quark meson is proposed in the framework of a gauge-invariant version of quantum chromodynamics. The field operators in this formulation are taken to be Wilson loops and strings with quark-antiquark ends. The fundamental differential equations of point-like Q.C.D. are expressed as variational equations of the extended loops and strings. The 1/N expansion is described, and it is assumed that nonleading effects such as intermediate quark pairs and nonplanar gluonic terms can be neglected. The action of the Hamiltonian in the A 0 = 0 gauge on a string operator is derived. A trial meson wave functional is constructed consisting of a path-averaged string operator applied to the full vacuum. A Gaussian in the derivative of the path location is assumed for the minimal form of the measure over paths. A variational parameter is incorporated in the measure as the exponentiated coefficient of the squared path location. The expectation value of the Hamiltonian in the trial state is evaluated for the assumption that the negative logarithm of the expectation value of a Wilson loop is proportional to the loop area. The energy is then minimized by deriving the equivalent quantum mechanical Schroedinger's equation and using the quantum mechanical 1/n expansion to estimate the effective eigenvalues. It is found that the area law behavior of the Wilson loop implies a nonzero best value of the variational parameter corresponding to a quantum broadening of the flux tube
Relativistic Model of Hamiltonian Renormalization for Bound States and Scattering Amplitudes
International Nuclear Information System (INIS)
Serafin, Kamil
2017-01-01
We test the renormalization group procedure for effective particles on a model of fermion–scalar interaction based on the Yukawa theory. The model is obtained by truncating the Yukawa theory to just two Fock sectors in the Dirac front form of Hamiltonian dynamics, a fermion, and a fermion and a boson, for the purpose of simple analytic calculation that exhibits steps of the procedure. (author)
Scattering and bound states for the Hulthen potential in a cosmic string background
Energy Technology Data Exchange (ETDEWEB)
Hosseinpour, Mansoureh; Hassanabadi, Hassan [Shahrood University of Technology, Physics Department, P. O. Box: 3619995161-316, Shahrood (Iran, Islamic Republic of); Andrade, Fabiano M. [Universidade Estadual de Ponta Grossa, Departamento de Matematica e Estatistica, Ponta Grossa, PR (Brazil); Silva, Edilberto O. [Universidade Federal do Maranhao, Departamento de Fisica, Sao Luis, MA (Brazil)
2017-05-15
In this work we study the Dirac equation with vector and scalar potentials in the spacetime generated by a cosmic string. Using an approximation for the centrifugal term, a solution for the radial differential equation is obtained. We consider the scattering states under the Hulthen potential and obtain the phase shifts. From the poles of the scattering S-matrix the states energies are determined as well. (orig.)
QCD bound states and their response to extremes of temperature and density
International Nuclear Information System (INIS)
We describe the application of Dyson-Schwinger equations to the calculation of hadron observable. The studies at zero temperature (T) and quark chemical potential (μ) provide a springboard for the extension to finite-(T, μ). Our exemplars highlight that much of hadronic physics can be understood as simply a manifestation of the nonperturbative, momentum-dependent dressing of the elementary Schwinger functions in QCD
Erratum to: Boson bound states in the β-Fermi–Pasta–Ulam model
Indian Academy of Sciences (India)
XIN-GUANG HU1, JU XIANG2,∗. , ZHENG JIAO1, YANG LIU3,. GUO-QIU XIE1 and KE HU4. 1Department of Physics, Huangshan University, Huangshan 245041, Anhui, China. 2Department of Basic Sciences, The First Aeronautical Institute of the Air Force, Xinyang 464000,. Henan, China. 3Department of Basis, Air Force ...
Erratum to: Boson bound states in the β-Fermi–Pasta–Ulam model
Indian Academy of Sciences (India)
2014-01-11
Jan 11, 2014 ... Xin-Guang Hu1 Ju Xiang2 Zheng Jiao1 Yang Liu3 Guo-Qiu Xie1 Ke Hu4. Department of Physics, Huangshan University, Huangshan 245041, Anhui, China; Department of Basic Sciences, The First Aeronautical Institute of the Air Force, Xinyang 464000, Henan, China; Department of Basis, Air Force Early ...
Boson bound states in the β-Fermi–Pasta–Ulam model
Indian Academy of Sciences (India)
Xin-Guang Hu1 Ju Xiang2 Zheng Jiao1 Yang Liu3 Guo-Qiu Xie1 Ke Hu3. Department of Physics, Huangshan University, Huangshan 245041, Anhui, China; Department of Basic Sciences, The First Aeronautical Institute of the Air Force, Xinyang 464000, Henan, China; Department of Physics, Xiangtan University, Xiangtan ...
Crystal structure of Na+, K(+)-ATPase in the Na(+)-bound state.
Nyblom, Maria; Poulsen, Hanne; Gourdon, Pontus; Reinhard, Linda; Andersson, Magnus; Lindahl, Erik; Fedosova, Natalya; Nissen, Poul
2013-10-04
The Na(+), K(+)-adenosine triphosphatase (ATPase) maintains the electrochemical gradients of Na(+) and K(+) across the plasma membrane--a prerequisite for electrical excitability and secondary transport. Hitherto, structural information has been limited to K(+)-bound or ouabain-blocked forms. We present the crystal structure of a Na(+)-bound Na(+), K(+)-ATPase as determined at 4.3 Å resolution. Compared with the K(+)-bound form, large conformational changes are observed in the α subunit whereas the β and γ subunit structures are maintained. The locations of the three Na(+) sites are indicated with the unique site III at the recently suggested IIIb, as further supported by electrophysiological studies on leak currents. Extracellular release of the third Na(+) from IIIb through IIIa, followed by exchange of Na(+) for K(+) at sites I and II, is suggested.
Bound states of a light atom and two heavy dipoles in two dimensions
DEFF Research Database (Denmark)
Rosa, D. S.; Bellotti, F. F.; Jensen, Aksel Stenholm
2016-01-01
and the degeneracies related to radial nodes and angular momentum quantum numbers. We include a repulsive dipole-dipole interaction and investigate the three-body solutions as functions of strength and dipole direction. Avoided crossings occur between levels localized in the emerging small and large-distance minima...
Laser-induced bound-state phases in high-order harmonic generation
DEFF Research Database (Denmark)
Etches, Adam; B. Gaarde, Mette; Bojer Madsen, Lars
2012-01-01
We present single-molecule and macroscopic calculations showing that laser-induced Stark shifts contribute significantly to the phase of high-order harmonics from polar molecules. This is important for orbital tomography, where phases of field-free dipole matrix elements are needed in order...
Scattering and bound states for the Hulthén potential in a cosmic string background
Hosseinpour, Mansoureh; Andrade, Fabiano M.; Silva, Edilberto O.; Hassanabadi, Hassan
2017-05-01
In this work we study the Dirac equation with vector and scalar potentials in the spacetime generated by a cosmic string. Using an approximation for the centrifugal term, a solution for the radial differential equation is obtained. We consider the scattering states under the Hulthén potential and obtain the phase shifts. From the poles of the scattering S-matrix the states energies are determined as well.
Positron bound states on hydride ions in thermochemically reduced MgO single crystals
International Nuclear Information System (INIS)
Monge, M.A.; Pareja, R.; Gonzalez, R.; Chen, Y.
1996-01-01
Positron-lifetime and Doppler-broadening techniques were used to unambiguously identify positronium hydrides in thermochemically reduced MgO crystals at low temperatures. Positrons trapped at H - ions, forming PsH, yield a lifetime of (640±40) ps, independent of temperature. Complementary evidence for this identification was provided by Doppler-broadening experiments, in which positrons were trapped at H 2- sites at low temperatures. The H 2- ions were formed via H - +e - →H 2- by the capturing of an electron released from Fe + impurity under blue-light stimulation. copyright 1996 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Wang, Peiyue [Department of Physics, Beijing Normal University, Beijing 100875 (China); Cao, Yunshan [School of Physics, Peking University, Beijing 100871 (China); Kavli Institute of NanoScience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Gong, Ming [Department of Physics and Centre for Quantum Coherence, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong (China); Li, Shu-Shen [State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 (China); Li, Xin-Qi, E-mail: lixinqi@bnu.edu.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)
2014-02-01
It was predicted by Tewari et al. (2008) [15] that a teleportation-like electron transfer phenomenon is one of the novel consequences of the existence of Majorana fermion, because of the inherently nonlocal nature. In this work we consider a concrete realization and measurement scheme for this interesting behavior, based on a setup consisting of a pair of quantum dots which are tunnel-coupled to a semiconductor nanowire and are jointly measured by two point-contact detectors. We analyze the teleportation dynamics in the presence of measurement back-action and discuss how the teleportation events can be identified from the current trajectories of strong response detectors.
Weak measurements in non-Hermitian systems
Matzkin, A.
2012-11-01
‘Weak measurements’—involving a weak unitary interaction between a quantum system and a meter followed by a projective measurement—are investigated when the system has a non-Hermitian Hamiltonian. We show in particular how the standard definition of the ‘weak value’ of an observable must be modified. These studies are undertaken in the context of bound-state scattering theory, a non-Hermitian formalism for which the involved Hilbert spaces are unambiguously defined and the metric operators can be explicitly computed. Numerical examples are given for a model system. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.
Effective-range parameters and vertex constants for Λ-nuclear systems
Rakityansky, S. A.; Gopane, I. M.
For a wide range of the core-nuclei (6 ≤ A ≤ 207), the scattering lengths, effective radii, and the other effective-range parameters (up to the order ˜ k8) for the angular momentum ℓ = 0, 1, 2 are calculated within a two-body ΛA-model. For the same hypernuclear systems, the S-matrix residues as well as the corresponding Nuclear-Vertex and Asymptotic-Normalization constants (NVC’s and ANC’s) for the bound states are also found.
On the Nature of the Hagedorn Transition in NCOS Systems
Barbón, José L F
2001-01-01
We extend the study of the nature of the Hagedorn transition in NCOS systems in various dimensions. The canonical analysis results in a microscopic ionization picture of a bound state system in which the Hagedorn transition is postponed till irrelevancy. A microcanonical analysis leads to a limiting Hagedorn behaviour dominated by highly excited, long open strings. The study of the full phase diagram of the NCOS system using the AdS/CFT correspondence suggests that the microscopic ionization picture is the correct one. We discuss some refinements of the ionization mechanism for $d>2$ NCOS systems, including the formation of a temperature-dependent barrier for the process. Some possible consequences of this behaviour, including a potential puzzle for $d=5$, are discussed. Phase diagrams of a regularized form of NCOS systems are introduced and do accomodate a phase of long open strings which disappears in the strict NCOS limit.
International Nuclear Information System (INIS)
Vuillermot, P.A.
1988-01-01
We present and discuss three new theorems concerning the existence of smooth manifolds associated with certain infinite-dimensional dynamical systems defined from nonlinear Klein-Gordon equations of the form u tt (x, t) = u xx (x, t)-g(u(x, t)), where g: R → R is analytic and where (x, t) ε R 2 . In particular, we prove the nonexistence of small amplitude soliton bound state solutions in the classical Φ 4 -theory, a fact recently brought about by the perturbative analysis of Kruskal and Segur [fr
Energy Technology Data Exchange (ETDEWEB)
Contreras-Astorga, A., E-mail: alonso.contreras.astorga@gmail.com [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary, IN 46408 (United States); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Tristao, S., E-mail: hetsudoyaguiu@gmail.com [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)
2016-01-08
This paper deals with the problem of an electron in a non-homogeneous magnetic field perpendicular to a plane. From the classical point of view this is an integrable, but not superintegrable, solvable system. In the quantum framework of the Dirac equation this integrable system is solvable too; the energy levels and wavefunctions of bound states, for its reduction to the plane, are computed. The effective one-dimensional matrix Hamiltonian is shown to belong to a shape-invariant hierarchy. Through this example we will shed some light on the specific properties of a quantum integrable system with respect to those characteristic of superintegrable systems. - Highlights: • The system: an electron in a non-homogeneous magnetic field. • This is a solvable integrable but not superintegrable system. • Solutions to the discrete Dirac spectrum are found. • The shape-invariance of Dirac matrix Hamiltonians is characterized. • Specific properties of integrable, not superintegrable, systems are analyzed.
International Nuclear Information System (INIS)
Contreras-Astorga, A.; Negro, J.; Tristao, S.
2016-01-01
This paper deals with the problem of an electron in a non-homogeneous magnetic field perpendicular to a plane. From the classical point of view this is an integrable, but not superintegrable, solvable system. In the quantum framework of the Dirac equation this integrable system is solvable too; the energy levels and wavefunctions of bound states, for its reduction to the plane, are computed. The effective one-dimensional matrix Hamiltonian is shown to belong to a shape-invariant hierarchy. Through this example we will shed some light on the specific properties of a quantum integrable system with respect to those characteristic of superintegrable systems. - Highlights: • The system: an electron in a non-homogeneous magnetic field. • This is a solvable integrable but not superintegrable system. • Solutions to the discrete Dirac spectrum are found. • The shape-invariance of Dirac matrix Hamiltonians is characterized. • Specific properties of integrable, not superintegrable, systems are analyzed.
Two-Nucleon Systems in a Finite Volume
Energy Technology Data Exchange (ETDEWEB)
Briceno, Raul
2014-11-01
I present the formalism and methodology for determining the nucleon-nucleon scattering parameters from the finite volume spectra obtained from lattice quantum chromodynamics calculations. Using the recently derived energy quantization conditions and the experimentally determined scattering parameters, the bound state spectra for finite volume systems with overlap with the 3S1-3D3 channel are predicted for a range of volumes. It is shown that the extractions of the infinite-volume deuteron binding energy and the low-energy scattering parameters, including the S-D mixing angle, are possible from Lattice QCD calculations of two-nucleon systems with boosts of |P| <= 2pi sqrt{3}/L in volumes with spatial extents L satisfying fm <~ L <~ 14 fm.
Heavy particle scattering by atomic and nuclear systems
International Nuclear Information System (INIS)
Lazauskas, R.
2003-10-01
In this thesis quantum mechanical non-relativistic few-body problem is discussed. Basing on fundamentals ideas from Faddeev and Yakubovski three and four body equations are formulated and solved for fermionic atomic and nuclear systems. Former equations are modified to include long range interactions. Original results for nuclear and molecular physics were obtained: -) positively charged particle scattering on hydrogen atoms was considered; predictions for π + → H, μ + → H and p + → H scattering lengths were given. Existence of an unknown, very weakly bound H + 2 bound state was predicted. -) Motivated by the possible observation of bound four neutron structure at GANIL we have studied compatibility of such an existence within the current nuclear interaction models. -) 4 nucleon scattering at low energies was investigated. Results for n → 3 H, p → 3 H and p → 3 He systems were compared with the experimental data. Validity of realistic nucleon-nucleon interaction models is questioned. (author)
Roy, Chiranjeeb
In this thesis we study the role of nonradiative degrees of freedom on quantum optical properties of mesoscopic quantum dots placed in the structured electromagnetic reservoir of a photonic crystal. We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption lineshape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the "colored" electromagnetic vacuum of a photonic band gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. Phonon sidebands in an ordinary electromagnetic reservoir are recaptured in a simple model of optical phonons using a mean-field factorization of the atomic and lattice displacement operators. Our formalism is then used to treat the non-Markovian dynamics of the same system within the structured electromagnetic density of states of a photonic crystal. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to enhanced lifetime of a photon-atom bound state in a PBG by (i) dephasing and reducing the transition electric dipole moment of the atom and (ii) reducing the quantum mechanical overlap of the state vectors of the excited and ground state (polaronic shift). This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (break-up of phonons into lower energy phonons) and purely nonradiative decay. We demonstrate how these additional damping effects limit the extent of the polaronic (Franck-Condon) shift of
International Nuclear Information System (INIS)
Anon.
1980-01-01
Papers in this session describe the concept of mined geologic disposal system and methods for ensuring that the system, when developed, will meet all technical requirements. Also presented in the session are analyses of system parameters, such as cost and nuclear criticality potential, as well as a technical analysis of a requirement that the system permit retrieval of the waste for some period of time. The final paper discusses studies under way to investigate technical alternatives or complements to the mined geologic disposal system. Titles of the presented papers are: (1) Waste Isolation System; (2) Waste Isolation Economics; (3) BWIP Technical Baseline; (4) Criticality Considerations in Geologic Disposal of High-Level Waste; (5) Retrieving Nuclear Wastes from Repository; (6) NWTS Programs for the Evaluation of Technical Alternatives or Complements to Mined Geologic Repositories - Purpose and Objectives
Directory of Open Access Journals (Sweden)
Alexander Leonessa
2000-01-01
Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.
Advances in the Application of the Similarity Renormalization Group to Strongly Interacting Systems
Wendt, Kyle Andrew
The Similarity Renormalization Group (SRG) as applied in nuclear physics is a tool to soften and decouple inter-nucleon interactions. The necessity for such a tool is generated by the strong coupling of high- and low-momentum degrees of freedom in modern precision interactions. In recent years the SRG have been used with great success in enhancing few (2-12) nucleon calculations, but there are still many open questions about the nature of the SRG, and how it affects chiral forces. This thesis focuses on three topics within the study of the SRG as it applies to nuclear few-body interactions, with a focus on nuclear forces from chiral effective field theory. The typical SRG applied to nuclear physics is the T̂ rel-SRG, which uses the relative kinetic energy to generate a renormalizing flow. However, this generator explicitly violates criteria that ensure the SRG will decouple the interaction. Previous study of this generator found for a simple model that as the resolution is lowered past the momentum scales associated with a bound state, the T̂rel-SRG enhances coupling near the bound state whereas the classical Wegner generator completely decouples the bound state. In practice, this has not been an issue because the only two-body bound state is very shallow, and therefore well below the SRG softening scales. This study is extended to use leading order chiral effective field theory with large cutoffs to explore this decoupling. This builds in the same low energy physics while including spurious high energy details, including high energy bound states. The evolutions with T̂rel-SRG are compared to the evolution with Wegner's generator. During the decoupling process, the SRG can induce new non-local contributions to the interactions, which inhibits its application using Quantum Monte Carlo (QMC) methods. Separating out the non-local terms is numerically difficult. Instead an approximate separation is applied to T̂ rel-SRG evolved interactions and the nature of the
Duality of two-point functions for confined non-relativistic quark-antiquark systems
International Nuclear Information System (INIS)
Fishbane, P.M.; Gasiorowicz, S.G.; Kaus, P.
1985-01-01
An analog to the scattering matrix describes the spectrum and high-energy behavior of confined systems. We show that for non-relativistic systems this S-matrix is identical to a two-point function which transparently describes the bound states for all angular momenta. Confined systems can thus be described in a dual fashion. This result makes it possible to study the modification of linear trajectories (originating in a long-range confining potential) due to short range forces which are unknown except for the way in which they modify the asymptotic behavior of the two point function. A type of effective range expansion is one way to calculate the energy shifts. 9 refs
Instability of hairy black holes in spontaneously broken Einstein-Yang-Mills-Higgs systems
Winstanley, E.; Mavromatos, N. E.
1995-02-01
The stability of a new class of hairy black-hole solutions in the coupled system of Einstein-Yang-Mills-Higgs is examined, generalising a method suggested by Brodbeck and Straumann and collaborators, and Volkov and Gal'tsov. The method maps the algebraic system of linearised radial perturbations of the various field modes around the black-hole solution into a coupled system of radial equations of Schrödinger type. No detailed knowledge of the black-hole solution is required, except from the fact that the boundary conditions at the physical space-time boundaries (horizons) must be such so as to guarantee thefiniteness of the various expressions involved. In this way, it is demonstrated that the above Schrödinger equations have bound states, which implies the instability of the associated black-hole solution.
Czech Academy of Sciences Publication Activity Database
Jex, M.; Lotoreichik, Vladimir
2016-01-01
Roč. 57, č. 2 (2016), s. 022101 ISSN 0022-2488 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : dimensional Schrodinger-operators * hypersurfaces * spectra Subject RIV: BE - Theoretical Physics Impact factor: 1.077, year: 2016
X-ray and neutron diffraction studies of B12 coenzymes in free and enzyme bound state
International Nuclear Information System (INIS)
Jogl, G.
1999-11-01
The molecular structure of the coenzyme B12 binding subunit S (GlmS) of glutamate mutase from Clostridium cochlearium has been determined with x-ray crystallographic methods. GlmS was crystallized with cyanocobalamin in three different crystal forms. High-resolution synchrotron diffraction data have been collected for two crystal forms (P212121, 1.7A; I422, 1.6A). The structure was solved with molecular replacement. In the GlmS crystal structure, cyanocobalamin is observed in its base-off constitution. The protein derived residue Histidin16 displaces the B12 dimethylbenzimidazole base and coordinates to the coenzyme's cobalt center. In a second part, the structure of the radical species cob(II)alamin was determined by single crystal neutron diffraction. Cob(II)alamin was synthesized from D2O and D6-acetone. Large crystals were grown by repeated seeding. Solvent deuterium positions for 2 out of 3 acetone molecules and 7 out of 15 water molecules were located from neutron diffraction data. For comparison with neutron results, a high-resolution synchrotron x-ray data set of cob(II)alamin was collected. Refinement of x-ray data gave the currently most accurate crystallographic structure of a cobalamin molecule. Solvent hydrogen positions have been compared for both structures. The hydrogen bond geometry of a solvent water cluster is analyzed from neutron diffraction results. (author)
DEFF Research Database (Denmark)
Naqvi, Mohsin M; Heiðarsson, Pétur Orri; Otazo, Mariela R
2015-01-01
Neuronal calcium sensor-1 (NCS-1) is the primordial member of a family of proteins responsible primarily for sensing changes in neuronal Ca(2+) concentration. NCS-1 is a multispecific protein interacting with a number of binding partners in both calcium-dependent and independent manners, and acting...... in a variety of cellular processes in which it has been linked to a number of disorders such as schizophrenia and autism. Despite extensive studies on the Ca(2+)-activated state of NCS proteins, little is known about the conformational dynamics of the Mg(2+)-bound and apo states, both of which are populated...... by populating one intermediate state consisting of a folded C-domain and an unfolded N-domain. The interconversion at equilibrium between the different molecular states populated by NCS-1 was monitored in real time through constant-force measurements and the energy landscapes underlying the observed transitions...
Hentges, Patrick Jay
2004-12-01
Planar tunnel spectroscopic measurements are performed on YBa2Cu3O7-delta (YBCO) thin films at four different crystallographic orientations. Since tunneling is a highly surface-sensitive probe on YBCO, films have been optimized for high surface quality. To fabricate the tunneling insulator, a novel fabrication technique has been developed through solution condensation and hydrolysis of zirconia, which has proven to be gentler to the surface than previous techniques. The result is a clean tunneling interface as shown in scanning electron microscopy, atomic force microscopy and transmission electron microscopy, that allows us to detect several new features in the tunneling conductance. In addition, we have fabricated tunnel junctions with three different counter-electrode deposition techniques. In doing so, various behaviors of the tunneling conductance and its dependence on magnetic field, temperature, and injected current as a function of these counter-electrode deposition techniques has been observed. Modeling of the tunneling conductance has provided insight into the various behaviors. It has been shown that by varying the value of the tunneling cone, surface faceting and quasiparticle lifetime, in agreement with the observations, splitting vs. non-splitting of the zero-bias conductance peak can be understood.
Formation of η{sup '} (958) meson bound states by the {sup 6}Li(γ,d) reaction
Energy Technology Data Exchange (ETDEWEB)
Miyatani, M.; Nagahiro, H.; Hirenzaki, S. [Nara Women' s University, Department of Physics, Nara (Japan); Ikeno, N. [Tottori University, Department of Regional Environment, Tottori (Japan)
2016-07-15
We have investigated the {sup 6}Li(γ,d) reaction theoretically for the formation of the η{sup '}(958) mesic nucleus close to the recoilless kinematics. We have developed the theoretical formula and reported the quantitative results of the formation spectra for various cases in this article. We have found that the formation cross sections are reduced by the effects of the fragile deuteron form factor. (orig.)
Backbone resonance assignments for G protein α(i3) subunit in the GTP-bound state.
Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio
2012-10-01
Guanine-nucleotide binding proteins (G proteins) act as molecular switches in signaling pathways, by coupling the activation of G protein-coupled receptors (GPCRs) at the cell surface to intracellular responses. In the resting state, G protein forms a heterotrimer, consisting of GDP-bound form of the G protein α subunit (Gα(GDP)) and G protein βγ subunit (Gβγ). Ligand binding to GPCRs promotes the GDP-GTP exchange on Gα, leading to the dissociation of the GTP-bound form of Gα (Gα(GTP)) and Gβγ. Then, Gα(GTP) and Gβγ bind to their downstream effector enzymes or ion channels and regulate their activities, leading to a variety of cellular responses. Finally, Gα hydrolyzes the bound GTP to GDP and returns to the resting state by re-associating with Gβγ. G proteins are classified with four major families based on the amino acid sequences of Gα: i/o, s, q/11, and 12/13. Each family transduces the signaling from different GPCRs to the specific effectors. Here, we established the backbone resonance assignments of human Gα(i3), a member of the i/o family, with a molecular weight of 41 K in complex with a GTP analogue, GTPγS.
KOK, LP; SCHELLINGERHOUT, NW
1991-01-01
The three-body problem is solved at negative energies using the Faddeev-Noyes equations. The latter are reduced to a matrix equation by spline approximation and orthogonal collocation. This matrix equation is solved using a method that is based on the tensor structure of the matrices. High-accuracy
Three-body bound states of two bosonic impurities immersed in a Fermi sea in 2D
DEFF Research Database (Denmark)
Bellotti, F. F.; Frederico, T.; Yamashita, M. T.
2016-01-01
We consider two identical impurities immersed in a Fermi sea for a broad range of masses and for both interacting and non-interacting impurities. The interaction between the particles is described through attractive zero-range potentials and the problem is solved in momentum space. The two impuri...
Zhu, Xiaolei; Yarkony, David R
2009-06-21
The quasidiabatic, coupled electronic state, fully quadratic Hamiltonian (H(d)), suitable for the simulation of spectra exhibiting strong vibronic couplings and constructed using a recently introduced pseudonormal equations approach, is studied. The flexibility inherent in the normal equations approach is shown to provide a robust means for (i) improving the accuracy of H(d), (ii) extending its domain of utility, and (iii) determining the limits of the fully quadratic model. The two lowest electronic states of pyrrolyl which are coupled by conical intersections are used as a test case. The requisite ab initio data are obtained from large multireference configuration interaction expansions comprised of 108.5x10(6) configuration state functions and based on polarized triple zeta quality atomic orbital bases.
Energy Technology Data Exchange (ETDEWEB)
Dolan, Kyle T.; Duguid, Erica M.; He, Chuan (UC)
2011-11-17
SlyA is a master virulence regulator that controls the transcription of numerous genes in Salmonella enterica. We present here crystal structures of SlyA by itself and bound to a high-affinity DNA operator sequence in the slyA gene. SlyA interacts with DNA through direct recognition of a guanine base by Arg-65, as well as interactions between conserved Arg-86 and the minor groove and a large network of non-base-specific contacts with the sugar phosphate backbone. Our structures, together with an unpublished structure of SlyA bound to the small molecule effector salicylate (Protein Data Bank code 3DEU), reveal that, unlike many other MarR family proteins, SlyA dissociates from DNA without large conformational changes when bound to this effector. We propose that SlyA and other MarR global regulators rely more on indirect readout of DNA sequence to exert control over many genes, in contrast to proteins (such as OhrR) that recognize a single operator.
Energy Technology Data Exchange (ETDEWEB)
Eby, Joshua; Suranyi, Peter; Wijewardhana, L. C. R.
2018-04-01
The method pioneered by Ruffini and Bonazzola (RB) to describe boson stars involves an expansion of the boson field which is linear in creation and annihilation operators. This expansion constitutes an exact solution to a non-interacting field theory, and has been used as a reasonable ansatz for an interacting one. In this work, we show how one can go beyond the RB ansatz towards an exact solution of the interacting operator Klein-Gordon equation, which can be solved iteratively to ever higher precision. Our Generalized Ruffini-Bonazzola approach takes into account contributions from nontrivial harmonic dependence of the wavefunction, using a sum of terms with energy $k\\,E_0$, where $k\\geq1$ and $E_0$ is the chemical potential of a single bound axion. The method critically depends on an expansion in a parameter $\\Delta \\equiv \\sqrt{1-E_0{}^2/m^2}<1$, where $m$ is the mass of the boson. In the case of the axion potential, we calculate corrections which are relevant for axion stars in the transition or dense branches. We find with high precision the local minimum of the mass, $M_{min}\\approx 463\\,f^2/m$, at $\\Delta\\approx0.27$, where $f$ is the axion decay constant. This point marks the crossover from transition to dense branches of solutions, and a corresponding crossover from structural instability to stability.
Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field
International Nuclear Information System (INIS)
Bach, V.; Sigal, I.M.
1999-01-01
We consider systems of static nuclei and electrons - atoms and molecules - coupled to the quantized radiation field. The interactions between electrons and the soft modes of the quantized electromagnetic field are described by minimal coupling, p→p-eA(x), where A(x) is the electromagnetic vector potential with an ultraviolet cutoff. If the interactions between the electrons and the quantized radiation field are turned off, the atom or molecule is assumed to have at least one bound state. We prove that, for sufficiently small values of the fine structure constant α, the interacting system has a ground state corresponding to the bottom of its energy spectrum. For an atom, we prove that its excited states above the ground state turn into metastable states whose life-times we estimate. Furthermore the energy spectrum is absolutely continuous, except, perhaps,in a small interval above the ground state energy and around the threshold energies of the atom or molecule. (orig.)
Directory of Open Access Journals (Sweden)
Patrick L. Brockett
1978-01-01
Full Text Available Suppose S={{Xnj, j=1,2,…,kn}} is an infinitesimal system of random variables whose centered sums converge in law to a (necessarily infinitely divisible distribution with Levy representation determined by the triple (γ,σ2,M. If {Yj, j=1,2,…} are independent indentically distributed random variables independent of S, then the system S′={{YjXnj,j=1,2,…,kn}} is obtained by randomizing the scale parameters in S according to the distribution of Y1. We give sufficient conditions on the distribution of Y in terms of an index of convergence of S, to insure that centered sums from S′ be convergent. If such sums converge to a distribution determined by (γ′,(σ′2,Λ, then the exact relationship between (γ,σ2,M and (γ′,(σ′2,Λ is established. Also investigated is when limit distributions from S and S′ are of the same type, and conditions insuring products of random variables belong to the domain of attraction of a stable law.
Directory of Open Access Journals (Sweden)
K. Swarnalatha
2013-01-01
Full Text Available Risk analysis of urban aquatic systems due to heavy metals turns significant due to their peculiar properties viz. persis tence, non-degradab ility, toxicity, and accumulation. Akkulam Veli (AV, an urba n tropical lake in south India is subjected to various environmental stresses due to multiple waste discharge, sand mining, developmental activities, tour ism related activitie s etc. Hence, a comprehensive approach is adopted for risk assessment using modified degree of contamination factor, toxicity units based on numerical sediment quality guidelines (SQGs, and potentialecological risk indices. The study revealed the presence of toxic metals such as Cr, C d, Pb and As and the lake is rated under ‘low ecological risk’ category.
Capture reactions into borromean two-proton systems at rp-waiting points
DEFF Research Database (Denmark)
Hove, D.; Jensen, A. S.; Fynbo, H. O. U.
2016-01-01
a linear dependence between two- and three-body energies with the same slope, but the absolute value slightly dependent on partial wave structure. Using these relations we predict low-lying excited states in the isotones following the critical waiting points. The capture rate for producing a borromean......We investigate even-even two-proton borromean systems at prominent intermediate heavy waiting points for the rapid proton capture process. The most likely single-particle levels are used to calculate three-body energy and structure as a function of proton-core resonance energy. We establish...... bound state is described both based on a full three-body calculation and on a very simple analytic rate expression for temperatures about $1-5$~GK. This rate is valid for both direct and sequential capture paths, and it only depends on the three-body resonance energy. As a result the relevant path...
Energy Technology Data Exchange (ETDEWEB)
Hey, Heyder
1996-12-31
We have study three quantum systems under time dependent external fields. The first one is an harmonic oscillator and the external field is quasiperiodic. We prove that the autocorrelation spectrum is absolutely transient continuous covering the real line on the resonant case or pure point under supplementary diophantine conditions. The second one refers to the spin tunneling. We show that an external periodic field may causes a blocking of spin tunneling. The last problem concerns to the resonances of the Floquet spectrum on the non-perturbative region of parameters for the model of an atom with one bound state under an external periodic field. The problems of Quantum Chaology and Quantum Stability are the predominant points of view in this work. (author) 59 refs., 15 figs., 6 tabs.
Neutron scattering studies of low dimensional magnetic systems
DEFF Research Database (Denmark)
Hansen, Ursula Bengård
CoCl2 · 2D2O have been investigated with neutron scattering experiments.CoCl2 · 2D2O can be considered a quasi one dimensional Ising system. This means, thatit is a near ideal model material for investigating low dimensional magnetic phenomena.The excitation spectrum of CoCl2 · 2D2O has been...... investigated at low temperaturesand in a longitudinal magnetic eld using neutron spectroscopy. Here we observe thehybridisation of the magnon bound states, inherent to the low dimensional nature ofCoCl2 · 2D2O.At higher temperature, signatures which can be attributed to Magnetic Bloch Oscillationsis observed......The results of this thesis can be divided into two parts, one concerning neutron scatteringstudies of low dimensional magnetic systems and one concerning neutron optics for theEuropean Spallation Source (ESS).In the part concerning low dimensional magnetic systems, three aspects of the dynamicsof...
ND and NB systems in quark delocalization color screening model
Energy Technology Data Exchange (ETDEWEB)
Zhao, Lifang [Nanjing College of Information Technology, Department of Quality-Oriented Education, Nanjing (China); Huang, Hongxia; Ping, Jialun [Nanjing Normal University, Department of Physics, Nanjing (China)
2017-02-15
The ND and NB systems with I = 0 and 1, J{sup P} = (1)/(2){sup ±}, (3)/(2){sup ±}, and (5)/(2){sup ±} are investigated within the framework of the quark delocalization color screening model. The results show that all the positive-parity states are unbound. By coupling to the ND* channel, the state ND with I = 0, J{sup P} = (1)/(2){sup -} can form a bound state, which can be invoked to explain the observed Σ(2800) state. The mass of the ND* with I = 0, J{sup P} = (3)/(2){sup -} is close to that of the reported Λ{sub c}(2940){sup +}, which indicates that Λ{sub c}(2940){sup +} can be explained as a ND* molecular state in QDCSM. Besides, the ΔD* with I = 1, J{sup P} = (5)/(2){sup -} is also a possible resonance state. The results of the bottom case of the NB system are similar to those of the ND system. Searching for these states will be a challenging subject of experiments. (orig.)
On the foundation of a variational principle for decaying systems
International Nuclear Information System (INIS)
Szasz, G.I.
1976-01-01
Taking into account the circumstances that the decay of an unstable microscopic system into two fragments is established by the counting of one of the decay products in a detector, the observed exponential decay law then asserts only knowledge of the spatiotemporal behaviour of the probability density (and therewith knowledge of the decaying state) at a large finite distance from the site of decay. We therefore formulate a variational principle, of which stationary functions show this decay behaviour. In addition to the resonant wave functions there are also solutions of the variational principle, which decrease exponentially with increasing distance, i.e., functions which could be used to describe the bound states. As the time-dependent treatment shows, the decaying states cannot occur in isolation in a scattering process. The mathematical characterisation of the decaying states via a variational principle is incorporated in a theory of open physical systems. In contradiction to the variational principle of Schroedinger our principle does not provide complete knowledge of the quantum states, but this is not needed in order to describe the decay. (orig.) [de
Coupled fermion-kink system in Jackiw-Rebbi model
Energy Technology Data Exchange (ETDEWEB)
Amado, A.; Mohammadi, A. [Universidade Federal de Pernambuco, Departamento de Fisica, Recife, PE (Brazil)
2017-07-15
In this paper, we study Jackiw-Rebbi model, in which a massless fermion is coupled to the kink of λφ{sup 4} theory through a Yukawa interaction. In the original Jackiw-Rebbi model, the soliton is prescribed. However, we are interested in the back-reaction of the fermion on the soliton besides the effect of the soliton on the fermion. Also, as a particular example, we consider a minimal supersymmetric kink model in (1 + 1) dimensions. In this case, the bosonic self-coupling, λ, and the Yukawa coupling between fermion and soliton, g, have a specific relation, g = √(λ/2). As the set of coupled equations of motion of the system is not analytically solvable, we use a numerical method to solve it self-consistently. We obtain the bound energy spectrum, bound states of the system and the corresponding shape of the soliton using a relaxation method, except for the zero mode fermionic state and threshold energies which are analytically solvable. With the aid of these results, we are able to show how the soliton is affected in general and supersymmetric cases. The results we obtain are consistent with the ones in the literature, considering the soliton as background. (orig.)
Development method of Hybrid Energy Storage System, including PEM fuel cell and a battery
Ustinov, A.; Khayrullina, A.; Borzenko, V.; Khmelik, M.; Sveshnikova, A.
2016-09-01
Development of fuel cell (FC) and hydrogen metal-hydride storage (MH) technologies continuously demonstrate higher efficiency rates and higher safety, as hydrogen is stored at low pressures of about 2 bar in a bounded state. A combination of a FC/MH system with an electrolyser, powered with a renewable source, allows creation of an almost fully autonomous power system, which could potentially replace a diesel-generator as a back-up power supply. However, the system must be extended with an electro-chemical battery to start-up the FC and compensate the electric load when FC fails to deliver the necessary power. Present paper delivers the results of experimental and theoretical investigation of a hybrid energy system, including a proton exchange membrane (PEM) FC, MH- accumulator and an electro-chemical battery, development methodology for such systems and the modelling of different battery types, using hardware-in-the-loop approach. The economic efficiency of the proposed solution is discussed using an example of power supply of a real town of Batamai in Russia.
Classical representation of wave functions for integrable systems
International Nuclear Information System (INIS)
Kay, Kenneth G.
2004-01-01
Classical exact (CE) wave functions are certain integral representations of energy eigenfunctions that are parameterized in terms of the motion of the corresponding classical system in a semiclassically relevant way. When applied to systems for which they are not exact, such expressions serve as semiclassical approximations. Previous work identified CE wave functions for a number of specific systems and established their semiclassical usefulness. This paper explores the degree to which such representations can be found for more general systems. It is shown that CE wave functions exist, in principle, for bound states of an arbitrary integrable system that are confined to a single classically allowed region. Evidence is presented that CE representations also exist for more general states of such a system that are unbound, or that extend over more than one allowed region. The CE expressions are not unique: an innumerable variety exists for each such system. The existence proof provides a formal method for constructing CE expressions by Fourier transforming certain superpositions of energy eigenstates. The parameterization in terms of the classical motion is achieved by identifying certain quantities in these superpositions as classical action and angle variables. The semiclassical relevance of this identification is ensured by imposing some mild conditions on the coefficients in the superposition. This procedure for parameterizing exact wave functions in terms of classical variables indicates a basic relationship between the quantum and classical descriptions of states. The method of constructing CE wave functions introduced in the proof is shown to be consistent with a number of previously obtained CE formulas and is used to derive two new, closed-form, CE expressions. A simple numerical example is presented to illustrate the semiclassical application of one of these expressions and to further verify the physical significance of the classical parameterization
Frolov, Alexei M.; Smith, Vedene H., Jr.
2003-05-01
The exponential variational expansion is applied to highly accurate computations of the ground states in the Ps- and inftyH- ions. The determined variational energies for these systems are -0.262 005 070 232 980 107 7335 and -0.527 751 016 544 377 196 5668 au respectively. These energies and corresponding wavefunctions are significantly more accurate than values known from earlier studies. A number of bound state properties are determined for the Ps- ion. The method of scalar coupling for three-body systems is developed. A general analytical expression is derived for the overlap integral between two scalar functions phi(r32, r31, r21) and psi(r32, r31), written in relative coordinates and one-particle coordinates respectively. The case of bound S(L = 0) states in Coulomb three-body systems is discussed in detail. In this case, explicit analytical formulae for the three-body scalar coupling coefficients have been produced and tested in actual highly accurate calculations for the Ps- and inftyH- ions. The approach developed in this work can be applied to a large number of real three-body problems.
Xu, Tao; Chen, Yong
2018-04-01
In this paper, we extend the one-component Gross-Pitaevskii (GP) equation to the two-component coupled GP system including damping term, linear and parabolic density profiles. The Lax pair with nonisospectral parameter and infinitely-many conservation laws of this coupled GP system are presented. Actually, the Darboux transformation (DT) for this kind of nonautonomous system is essentially different from the autonomous case. Consequently, we construct the DT of the coupled GP equations, besides, nonautonomous multi-solitons, one-breather and the first-order rogue wave are also obtained. Various kinds of one-soliton solution are constructed, which include stationary one-soliton and nonautonomous one-soliton propagating along the negative (positive) direction of x-axis. The interaction of two solitons and two-soliton bound state are demonstrated respectively. We get the nonautonomous one-breather on a curved background and this background is completely controlled by the parameter β. Using a limiting process, the nonautonomous first-order rogue wave can be obtained. Furthermore, some dynamic structures of these analytical solutions are discussed in detail. In addition, the multi-component generalization of GP equations are given, then the corresponding Lax pair and DT are also constructed.
Maznev, A. A.; Every, A. G.
2018-01-01
We study the existence of guided acoustic modes in layered structures whose phase velocity is higher than that of bulk waves in a solid substrate or an adjacent fluid half space, which belong to the class of bound states in the radiation continuum (BICs). We demonstrate that in contrast to the electromagnetic case, non-symmetry-protected BICs exist in isotropic layered systems without periodic structures. Two systems supporting non-symmetry-protected sagittally polarized BICs have been identified: (i) a supported solid layer yields BICs whose phase velocity is higher than the transverse velocity of the substrate but lower than the longitudinal velocity; (ii) a supported solid layer loaded by a fluid half space supports BICs whose velocity is higher that the bulk velocity of the fluid but lower than acoustic velocities of the substrate. The latter case is a unique example of BICs in the sense that it does not involve an evanescent field in the fluid half space providing the radiation continuum. In either case, BICs are represented by isolated points in the dispersion relations located within "leaky" branches. We show that these BICs are robust with respect to small perturbations of the system parameters. Numerical results are provided for realistic materials combinations. We also show that no BICs exist in all-fluid layered structures, whereas in solid layered structures there are no shear horizontal BICs and no sagittally polarized BICs whose velocity exceeds the longitudinal velocity of the substrate.
Energy Technology Data Exchange (ETDEWEB)
Lazauskas, R
2003-10-01
In this thesis quantum mechanical non-relativistic few-body problem is discussed. Basing on fundamentals ideas from Faddeev and Yakubovski three and four body equations are formulated and solved for fermionic atomic and nuclear systems. Former equations are modified to include long range interactions. Original results for nuclear and molecular physics were obtained: -) positively charged particle scattering on hydrogen atoms was considered; predictions for {pi}{sup +} {yields} H, {mu}{sup +} {yields} H and p{sup +} {yields} H scattering lengths were given. Existence of an unknown, very weakly bound H{sup +}{sub 2} bound state was predicted. -) Motivated by the possible observation of bound four neutron structure at GANIL we have studied compatibility of such an existence within the current nuclear interaction models. -) 4 nucleon scattering at low energies was investigated. Results for n {yields} {sup 3}H, p {yields} {sup 3}H and p {yields} {sup 3}He systems were compared with the experimental data. Validity of realistic nucleon-nucleon interaction models is questioned. (author)
Jaeken, Laurent; Vasilievich Matveev, Vladimir
2012-01-01
Observations of coherent cellular behavior cannot be integrated into widely accepted membrane (pump) theory (MT) and its steady state energetics because of the thermal noise of assumed ordinary cell water and freely soluble cytoplasmic K(+). However, Ling disproved MT and proposed an alternative based on coherence, showing that rest (R) and action (A) are two different phases of protoplasm with different energy levels. The R-state is a coherent metastable low-entropy state as water and K(+) are bound to unfolded proteins. The A-state is the higher-entropy state because water and K(+) are free. The R-to-A phase transition is regarded as a mechanism to release energy for biological work, replacing the classical concept of high-energy bonds. Subsequent inactivation during the endergonic A-to-R phase transition needs an input of metabolic energy to restore the low entropy R-state. Matveev's native aggregation hypothesis allows to integrate the energetic details of globular proteins into this view.
Czech Academy of Sciences Publication Activity Database
Agakishiev, G.; Arnold, O.; Belver, D.; Belyaev, A.; Krása, Antonín; Křížek, Filip; Kugler, Andrej; Sobolev, Yuri, G.; Tlustý, Pavel; Wagner, Vladimír
2015-01-01
Roč. 742, MAR (2015), s. 242-248 ISSN 0370-2693 R&D Projects: GA MŠk LG12007; GA ČR GA13-06759S Institutional support: RVO:61389005 Keywords : kaonic nuclei * anti-kaon-nucleon physics * ppK(-) * low energy * QCD * partial wave analysis Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 4.787, year: 2015
Onyeaju, M. C.; Ikot, A. N.; Onate, C. A.; Ebomwonyi, O.; Udoh, M. E.; Idiodi, J. O. A.
2017-07-01
The Pekeris approximate scheme is introduced to deal with the centrifugal term in a Dirac equation with the deformed Hylleraas plus Woods-Saxon (DHWS) potential model. The relativistic energy solutions for the spin and pseudospin symmetries are obtained via the Nikiforov-Uvarov (NU) method. In the non-relativistic limits we calculated the thermodynamics properties for some selected diatomic molecules.
B0 → D0 anti D0K0, B+ → D0 anti D0K+, and the scalar D anti D bound state
International Nuclear Information System (INIS)
Dai, L.R.; Xie, Ju-Jun; Oset, E.
2016-01-01
We study the B 0 decay to D 0 anti D 0 K 0 based on the chiral unitary approach, which generates the X(3720) resonance, and we make predictions for the D 0 anti D 0 invariant mass distribution. From the shape of the distribution, the existence of the resonance below threshold could be induced. We also predict the rate of production of the X(3720) resonance to the D 0 anti D 0 mass distribution with no free parameters. (orig.)
Crystal structure of the EphA4 protein tyrosine kinase domain in the apo-and dasantinib-bound state
Farenc, C; Celie, C; Tensen, P.H.N; de Esch, I.J.P.; Siegal, C.P.
2011-01-01
The Eph family of receptor tyrosine kinases regulates diverse cellular processes while the over-expression of a member of this family, EphA4, has been reported in a variety of malignant carcinomas. To gain insight into molecular mechanisms and to facilitate structure-based inhibitor design, we
Energy Technology Data Exchange (ETDEWEB)
Jittoh, Toshifumi; Kohri, Kazunori; Koike, Masafumi; Sato, Joe; Sugai, Kenichi; Yamanaka, Masato; Yazaki, Koichi [Department of Physics, Saitama University, Shimo-okubo, Sakura-ku, Saitama, 338-8570 (Japan); Theory Center, Institute of Particle and Nuclear Studies, KEK (High Energy Accelerator Research Organization), 1-1 Oho, Tsukuba 305-0801 (Japan); Maskawa Institute for Science and Culture, Kyoto Sangyo University, Kyoto 603-8555 (Japan); Hashimoto Mathematical Physics Laboratory, Nishina Accelerator Research Center, RIKEN, Wako, Saitama 351-0198 and Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)
2012-07-27
We propose helium-4 spallation processes induced by long-lived stau in supersymmetric standard models, and investigate an impact of the processes on light elements abundances. We show that, as long as the phase space of helium-4 spallation processes is open, they are more important than stau-catalyzed fusion and hence constrain the stau property.
Jittoh, Toshifumi; Kohri, Kazunori; Koike, Masafumi; Sato, Joe; Sugai, Kenichi; Yamanaka, Masato; Yazaki, Koichi
2012-07-01
We propose helium-4 spallation processes induced by long-lived stau in supersymmetric standard models, and investigate an impact of the processes on light elements abundances. We show that, as long as the phase space of helium-4 spallation processes is open, they are more important than stau-catalyzed fusion and hence constrain the stau property.
Analysis of phenomenological potentials for a quarkonium-like system
International Nuclear Information System (INIS)
Carvalho, H.F. de; Chanda, R.
1979-01-01
The comparison is made of the numerical results of quark-antiquark bound state spectra in a non-relativistic approximation for interaction effective potentials. The discussion of several aspects attached to the scalar and vetor nature of the confinant potential is made. The results obtained are compared with recent data on the PSI family. (L.C.) [pt
Exact integrability in quantum field theory and statistical systems
International Nuclear Information System (INIS)
Thacker, H.B.
1981-01-01
The properties of exactly integrable two-dimensional quantum systems are reviewed and discussed. The nature of exact integrability as a physical phenomenon and various aspects of the mathematical formalism are explored by discussing several examples, including detailed treatments of the nonlinear Schroedinger (delta-function gas) model, the massive Thirring model, and the six-vertex (ice) model. The diagonalization of a Hamiltonian by Bethe's Ansatz is illustrated for the nonlinear Schroedinger model, and the integral equation method of Lieb for obtaining the spectrum of the many-body system from periodic boundary conditions is reviewed. Similar methods are applied to the massive Thirring model, where the fermion-antifermion and bound-state spectrum are obtained explicitly by the integral equation method. After a brief review of the classical inverse scattering method, the quantum inverse method for the nonlinear Schroedinger model is introduced and shown to be an algebraization of the Bethe Ansatz technique. In the quantum inverse method, an auxiliary linear problem is used to define nonlocal operators which are functionals of the original local field on a fixed-time string of arbitrary length. The particular operators for which the string is infinitely long (free boundary conditions) or forms a closed loop around a cylinder (periodic boundary conditions) correspond to the quantized scattering data and have a special significance. One of them creates the Bethe eigenstates, while the other is the generating function for an infinite number of conservation laws. The analogous operators on a lattice are constructed for the symmetric six-vertex model, where the object which corresponds to a solution of the auxiliary linear problem is a string of vertices contracted over horizontal links (arrows). The relationship between the quantum inverse method and the transfer matrix formalism is exhibited
PENTATRAP. A novel Penning-trap system for high-precision mass measurements
Energy Technology Data Exchange (ETDEWEB)
Doerr, Andreas
2015-01-21
The novel Penning-trap mass spectrometer PENTATRAP aims at mass-ratio determinations of medium-heavy to heavy ions with relative uncertainties below 10{sup -11}. From the mass ratios of certain ion species, the corresponding mass differences will be determined with sub-eV/c{sup 2} uncertainties. These mass differences are relevant for neutrino-mass experiments, a test of special relativity and tests of bound-state QED. Means to obtain the required precision are very stable trapping fields, the use of highly-charged ions produced by EBITs, a non-destructive cyclotron-frequency determination scheme employing detectors with single-ion sensitivity and a five-trap tower, that allows for measurement schemes being insensitive to magnetic field drifts. Within this thesis, part of the detection electronics was set up and tested under experimental conditions. A single-trap setup was realized. A Faraday cup in the trap tower enabled the proper adjustment of the settings of the beamline connecting the EBIT and the Penning-trap system, resulting in the first trapping of ions at PENTATRAP. A stabilization of switched voltages in the beamline and detailed studies of ion bunch characteristics allowed for reproducible loading of only a few ions. Detection of the axial oscillation of the trapped ions gave hints that in some cases, even single ions had been trapped. Furthermore, valuable conclusions about necessary modifications of the setup could be drawn.
Quantum physics of entangled systems: wave-particle duality and atom-photon molecules
International Nuclear Information System (INIS)
Rempe, G.
2000-01-01
One of the cornerstones of quantum physics is the wave nature of matter. It explains experimentally observed effects like interference and diffraction, occurring when an object moves from one place to another along several indistinguishable ways simultaneously. The wave nature disappears when the individual ways are distinguishable. In this case, the particle nature of the object becomes visible. To determine the particle nature quantitatively, the way of the object has to be measured. Here, large progress has been made recently with new techniques, enabling one to investigate single moving atoms in a controlled manner. Two examples are discussed in the following two sections. The first experiment describes an atom interferometer, where the way of the atom is entangled with its internal state. This allows one to explore the origin of wave-particle duality and perform a quantitative test of this fundamental principle. The second experiment reports on the observation of an atom-photon molecule, a bound state between an atom and a single photon. A fascinating aspect of this system is that it makes possible to monitor the motion of a single neutral atom in real time. (orig.)
Lie Symmetries and Solitons in Nonlinear Systems with Spatially Inhomogeneous Nonlinearities
International Nuclear Information System (INIS)
Belmonte-Beitia, Juan; Perez-Garcia, Victor M.; Vekslerchik, Vadym; Torres, Pedro J.
2007-01-01
Using Lie group theory and canonical transformations, we construct explicit solutions of nonlinear Schroedinger equations with spatially inhomogeneous nonlinearities. We present the general theory, use it to show that localized nonlinearities can support bound states with an arbitrary number solitons, and discuss other applications of interest to the field of nonlinear matter waves
Relativistic two-body system in (1+1)-dimensional QED. 1. On the circle S1
International Nuclear Information System (INIS)
Barut, A.O.; Saradzhev, F.M.
1994-01-01
From the coupled Maxwell-Dirac equations for two fermion fields Ψ 1 , Ψ 2 the authors derive a covariant two-body equation for the composite field Φ(x 1 , x 2 ) in configuration space which includes radiative self-energy effects. Both Coulomb gauge and covariant gauge have been used and their equivalence is proved. For the space S 1 the authors solve the two-body equation with mutual interactions exactly and obtain the mass spectrum in the case of massless fermions. 7 refs., 5 figs
Larsen, Ask Hjorth; De Giovannini, Umberto; Rubio, Angel
2016-01-01
We present a review of different computational methods to describe time-dependent phenomena in open quantum systems and their extension to a density-functional framework. We focus the discussion on electron emission processes in atoms and molecules addressing excited-state lifetimes and dissipative processes. Initially we analyze the concept of an electronic resonance, a central concept in spectroscopy associated with a metastable state from which an electron eventually escapes (electronic lifetime). Resonances play a fundamental role in many time-dependent molecular phenomena but can be rationalized from a time-independent context in terms of scattering states. We introduce the method of complex scaling, which is used to capture resonant states as localized states in the spirit of usual bound-state methods, and work on its extension to static and time-dependent density-functional theory. In a time-dependent setting, complex scaling can be used to describe excitations in the continuum as well as wave packet dynamics leading to electron emission. This process can also be treated by using open boundary conditions which allow time-dependent simulations of emission processes without artificial reflections at the boundaries (i.e., borders of the simulation box). We compare in detail different schemes to implement open boundaries, namely transparent boundaries using Green functions, and absorbing boundaries in the form of complex absorbing potentials and mask functions. The last two are regularly used together with time-dependent density-functional theory to describe the electron emission dynamics of atoms and molecules. Finally, we discuss approaches to the calculation of energy and angle-resolved time-dependent pump-probe photoelectron spectroscopy of molecular systems.
Energy Technology Data Exchange (ETDEWEB)
Weinstein, J.; Isgur, N.
1982-03-08
The qqq-barq-bar system has been examined by solving the four-particle Schroedinger equation variationally. The main findings are that: (1) qqq-barq-bar bound states normally do not exist, (2) the cryptoexotic 0/sup + +/ sector of this system with KK-bar quantum numbers is probably the only exception to (1) and its bound states can be identified with the S* and delta just below KK-bar threshold, (3) qqq-barq-bar bound states provide a model for the weak binding and color-singlet clustering observed in nuclei, and (4) there is no indication that this system has strong resonances.
Diphytanoyl lipids as model systems for studying membrane-active peptides.
Kara, Sezgin; Afonin, Sergii; Babii, Oleg; Tkachenko, Anton N; Komarov, Igor V; Ulrich, Anne S
2017-10-01
The branched chains in diphytanoyl lipids provide membranes with unique properties, such as high chemical/physical stability, low water permeability, and no gel-to-fluid phase transition at ambient temperature. Synthetic diphytanoyl phospholipids are often used as model membranes for electrophysiological experiments. To evaluate whether these sturdy lipids are also suitable for solid-state NMR, we have examined their interactions with a typical amphiphilic peptide in comparison with straight-chain lipids. First, their phase properties were monitored using 31 P NMR, and the structural behaviour of the antimicrobial peptide PGLa was studied by 19 F NMR and circular dichroism in oriented membrane samples. Only lipids with choline headgroups (DPhPC) were found to form stable lipid bilayers in oriented samples, while DPhPG, DPhPE and DPhPS display non-lamellar structures. Hence, the experimental temperature and hydration are crucial factors when using supported diphytanoyl lipids, as both parameters must be maintained in an appropriate range to avoid the formation of non-bilayer structures. For the same reason, a high content of other diphytanoyl lipids besides DPhPC in mixed lipid systems is not favourable. Unlike the situation in straight-chain membranes, we found that the α-helical PGLa was not able to insert into the tightly packed fluid bilayer of DPhPC but remained in a surface-bound state even at very high peptide concentration. This behaviour can be explained by the high cohesivity and the negative spontaneous curvature of the diphytanoyl lipids. These characteristic features must therefore be taken into consideration, both, in electrophysiological studies, and when interpreting the structural behaviour of membrane-active peptides in such lipid environment. Copyright © 2017 Elsevier B.V. All rights reserved.
DEFF Research Database (Denmark)
Jeppesen, Palle
1996-01-01
The lecture note is aimed at introducing system budgets for optical communication systems. It treats optical fiber communication systems (six generations), system design, bandwidth effects, other system impairments and optical amplifiers.......The lecture note is aimed at introducing system budgets for optical communication systems. It treats optical fiber communication systems (six generations), system design, bandwidth effects, other system impairments and optical amplifiers....
The two-body-problem in quantized, inertia-free mechanics
International Nuclear Information System (INIS)
Kreisel, E.
1984-01-01
There do not exist bound states of the two-particle-system in Riemann-Machian quantum mechanics. The spectrum of the energy is necessarily positively semidefinite and continuous, in analogy to the free particle of quantum mechanics. (author)
International Nuclear Information System (INIS)
Madsen, V.A.; Landau, R.H.
1985-12-01
Research on microscopic optical potentials, multistep processes, neutron-proton differences in nuclear vibrations, and exact calculations of Coulomb plus nuclear bound states of exotic systems is reported. 21 refs
International Nuclear Information System (INIS)
Gossler
1980-01-01
The present paper deals with - controlled area ventilation systems - ventilation systems for switchgear-building and control-room - other ventilation systems for safety equipments - service systems for ventilation systems. (orig./RW)
Zheng, Wenjun
2017-02-01
In the adaptive immune systems of many bacteria and archaea, the Cas9 endonuclease forms a complex with specific guide/scaffold RNA to identify and cleave complementary target sequences in foreign DNA. This DNA targeting machinery has been exploited in numerous applications of genome editing and transcription control. However, the molecular mechanism of the Cas9 system is still obscure. Recently, high-resolution structures have been solved for Cas9 in different structural forms (e.g., unbound forms, RNA-bound binary complexes, and RNA-DNA-bound tertiary complexes, corresponding to an inactive state, a pre-target-bound state, and a cleavage-competent or product state), which offered key structural insights to the Cas9 mechanism. To further probe the structural dynamics of Cas9 interacting with RNA and DNA at the amino-acid level of details, we have performed systematic coarse-grained modeling using an elastic network model and related analyses. Our normal mode analysis predicted a few key modes of collective motions that capture the observed conformational changes featuring large domain motions triggered by binding of RNA and DNA. Our flexibility analysis identified specific regions with high or low flexibility that coincide with key functional sites (such as DNA/RNA-binding sites, nuclease cleavage sites, and key hinges). We also identified a small set of hotspot residues that control the energetics of functional motions, which overlap with known functional sites and offer promising targets for future mutagenesis efforts to improve the specificity of Cas9. Finally, we modeled the conformational transitions of Cas9 from the unbound form to the binary complex and then the tertiary complex, and predicted a distinct sequence of domain motions. In sum, our findings have offered rich structural and dynamic details relevant to the Cas9 machinery, and will guide future investigation and engineering of the Cas9 systems. Proteins 2017; 85:342-353. © 2016 Wiley Periodicals
Thermal systems; Systemes thermiques
Energy Technology Data Exchange (ETDEWEB)
Lalot, S. [Valenciennes Univ. et du Hainaut Cambresis, LME, 59 (France); Lecoeuche, S. [Ecole des Mines de Douai, Dept. GIP, 59 - Douai (France)]|[Lille Univ. des Sciences et Technologies, 59 - Villeneuve d' Ascq (France); Ahmad, M.; Sallee, H.; Quenard, D. [CSTB, 38 - Saint Martin d' Heres (France); Bontemps, A. [Universite Joseph Fourier, LEGI/GRETh, 38 - Grenoble (France); Gascoin, N.; Gillard, P.; Bernard, S. [Laboratoire d' Energetique, Explosion, Structure, 18 - Bourges (France); Gascoin, N.; Toure, Y. [Laboratoire Vision et Robotique, 18 - Bourges (France); Daniau, E.; Bouchez, M. [MBDA, 18 - Bourges (France); Dobrovicescu, A.; Stanciu, D. [Bucarest Univ. Polytechnique, Faculte de Genie Mecanique (Romania); Stoian, M. [Reims Univ. Champagne Ardenne, Faculte des Sciences, UTAP/LTM, 51 (France); Bruch, A.; Fourmigue, J.F.; Colasson, S. [CEA Grenoble, Lab. Greth, 38 (France); Bontemps, A. [Universite Joseph Fourier, LEGI/GRETh, 38 - Grenoble (France); Voicu, I.; Mare, T.; Miriel, J. [Institut National des Sciences Appliquees (INSA), LGCGM, IUT, 35 - Rennes (France); Galanis, N. [Sherbrooke Univ., Genie Mecanique, QC (Canada); Nemer, M.; Clodic, D. [Ecole des Mines de Paris, Centre Energetique et Procedes, 75 (France); Lasbet, Y.; Auvity, B.; Castelain, C.; Peerhossaini, H. [Nantes Univ., Ecole Polytechnique, Lab. de Thermocinetiquede Nantes, UMR-CNRS 6607, 44 (France)
2005-07-01
This session about thermal systems gathers 26 articles dealing with: neural model of a compact heat exchanger; experimental study and numerical simulation of the thermal behaviour of test-cells with walls made of a combination of phase change materials and super-insulating materials; hydraulic and thermal modeling of a supercritical fluid with pyrolysis inside a heated channel: pre-dimensioning of an experimental study; energy analysis of the heat recovery devices of a cryogenic system; numerical simulation of the thermo-hydraulic behaviour of a supercritical CO{sub 2} flow inside a vertical tube; mixed convection inside dual-tube exchangers; development of a nodal approach with homogenization for the simulation of the brazing cycle of a heat exchanger; chaotic exchanger for the cooling of low temperature fuel cells; structural optimization of the internal fins of a cylindrical generator; a new experimental approach for the study of the local boiling inside the channels of exchangers with plates and fins; experimental study of the flow regimes of boiling hydrocarbons on a bundle of staggered tubes; energy study of heat recovery exchangers used in Claude-type refrigerating systems; general model of Carnot engine submitted to various operating constraints; the free pistons Stirling cogeneration system; natural gas supplied cogeneration system with polymer membrane fuel cell; influence of the CRN coating on the heat flux inside the tool during the wood unrolling process; transport and mixture of a passive scalar injected inside the wake of a Ahmed body; control of a laser welding-brazing process by infrared thermography; 2D self-adaptative method for contours detection: application to the images of an aniso-thermal jet; exergy and exergy-economical study of an 'Ericsson' engine-based micro-cogeneration system; simplified air-conditioning of telephone switching equipments; parametric study of the 'low-energy' individual dwelling; brief synthesis of
International Nuclear Information System (INIS)
Vinitskii, S.I.; Puzynin, I.V.; Puzynina, T.P.
1992-01-01
An effective adiabatic approach is given for the analysis of three-particle interactions that makes it possible, even in the simple two-level approximation, to reflect all the qualitative characteristics of mesic-atom resonance reactions and to obtain good qualitative agreement with various time-consuming calculations. 6 figs
Li, Dominic Him Shun; Chung, Yu Seon; Gloyd, Melanie; Joseph, Ebenezer; Ghirlando, Rodolfo; Wright, Gerard D.; Cheng, Yi-Qiang; Maurizi, Michael R.; Guarné, Alba; Ortega, Joaquin
2010-01-01
In ClpXP and ClpAP complexes, ClpA and ClpX use the energy of ATP hydrolysis to unfold proteins and translocate them into the self-compartmentalized ClpP protease. ClpP requires the ATPases to degrade folded or unfolded substrates, but binding of acyldepsipeptide antibiotics (ADEPs) to ClpP bypasses this requirement with unfolded proteins. We present the crystal structure of Escherichia coli ClpP bound to ADEP1 and report the structural changes underlying ClpP activation. ADEP1 binds in the h...
Czech Academy of Sciences Publication Activity Database
Adam, J.; Adamová, Dagmar; Bielčík, J.; Bielčíková, Jana; Brož, M.; Čepila, J.; Contreras, J. G.; Eyyubova, G.; Ferencei, Jozef; Křelina, M.; Křížek, Filip; Kučera, Vít; Kushpil, Svetlana; Mareš, Jiří A.; Petráček, V.; Pospíšil, Jan; Schulc, M.; Špaček, M.; Šumbera, Michal; Vajzer, Michal; Vaňát, Tomáš; Závada, Petr
2016-01-01
Roč. 752, JAN (2016), s. 267-277 ISSN 0370-2693 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : ALICE collaboration * heavy ion collisions * matter Subject RIV: BG - Nuclear, Atomic and Molecular Physics , Colliders; BF - Elementary Particles and High Energy Physics (FZU-D) Impact factor: 4.807, year: 2016
Data Systems vs. Information Systems
Amatayakul, Margret K.
1982-01-01
This paper examines the current status of “hospital information systems” with respect to the distinction between data systems and information systems. It is proposed that the systems currently existing are incomplete data dystems resulting in ineffective information systems.
Supersymmetric quantum mechanics, phase equivalence, and low energy scattering anomalies
International Nuclear Information System (INIS)
Amado, R.D.; Cannata, F.; Dedonder, J.P.
1991-01-01
Supersymmetric quantum mechanics links two Hamiltonians with the same scattering (phase equivalence) but different number of bound states. We examine the Green's functions for these Hamiltonians as a prelude to embedding the two-body dynamics in a many-body system. We study the effect of the elimination of a two-body bound state near zero energy for the Efimov effect and Beg's theorem
Georgiana Marin; Mihai Catalin Andrei
2011-01-01
In recent decades IT and computer systems have evolved rapidly in economic informatics field. The goal is to create user friendly information systems that respond promptly and accurately to requests. Informatics systems evolved into decision assisted systems, and such systems are converted, based on gained experience, in expert systems for creative problem solving that an organization is facing. Expert systems are aimed at rebuilding human reasoning on the expertise obtained from experts, sto...
The four-body system made up of hydrogen and antihydrogen
International Nuclear Information System (INIS)
Armour, E.A.G.; Chamberlain, C.W.
2002-01-01
In view of current interest in the trapping of antihydrogen (H) atoms at low temperatures, we have investigated the reasons for considering that H-H does not have a bound state. We go on to carry out a four-body variational calculation for s-wave hydrogen-antihydrogen scattering, using the Kohn variational method. This is a continuation of earlier work on H-H interactions. Refs. 21 (author)
Variational Approaches to the Evolution and Control of Strongly Driven Quantum Systems.
Widmayer, C. Clay
optimal control is presented for maximizing a chosen observable at a single point in time. The method is applied to the hydrogen atom and an external field is obtained for the production of a bound state gaussian wave packet.
Quantum theory of the electronic and optical properties of low-dimensional semiconductor systems
Lau, Wayne Heung
-QD (QW) coupled system is inhibited and polariton bound states are formed within the polaritonic energy gap. A theory is also developed to study the polariton eigenenergy spectrum, polariton effective mass, and polariton spectral density of N identical semiconductor QDs (QWs) or a superlattice (SL) placed inside a III--V semiconductor. A polariton-impurity band lying within the polaritonic energy gap of the III--V semiconductor is predicted when the resonance energies of the QDs (QWs) lie inside the polaritonic energy gap. Hole-like polariton effective mass of the polariton-impurity band is predicted. It is also predicted that the spectral density of the polariton has a Lorentzian shape if the resonance energies of the QDs (QWs) lie outside the polaritonic gap.
DEFF Research Database (Denmark)
Wagner, Falko Jens
1999-01-01
Multibody Systems is one area, in which methods for solving DAEs are of special interst. This chapter is about multibody systems, why they result in DAE systems and what kind of problems that can arise when dealing with multibody systems and formulating their corresponding DAE system....
Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules.
Herink, G; Kurtz, F; Jalali, B; Solli, D R; Ropers, C
2017-04-07
Solitons, particle-like excitations ubiquitous in many fields of physics, have been shown to exhibit bound states akin to molecules. The formation of such temporal soliton bound states and their internal dynamics have escaped direct experimental observation. By means of an emerging time-stretch technique, we resolve the evolution of femtosecond soliton molecules in the cavity of a few-cycle mode-locked laser. We track two- and three-soliton bound states over hundreds of thousands of consecutive cavity roundtrips, identifying fixed points and periodic and aperiodic molecular orbits. A class of trajectories acquires a path-dependent geometrical phase, implying that its dynamics may be topologically protected. These findings highlight the importance of real-time detection in resolving interactions in complex nonlinear systems, including the dynamics of soliton bound states, breathers, and rogue waves. Copyright © 2017, American Association for the Advancement of Science.
International Nuclear Information System (INIS)
Kube, L.J.
1978-01-01
This invention relates generally to gas-cooled nuclear reactor systems and, more particularly, to an improved closure system for a pressure vessel in such a system wherein a penetration is provided for accommodating a heat exchanger. (author)
Lymphatic system ... neck, under the arms, and groin. The lymph system includes the: Tonsils Adenoids Spleen Thymus ... JE, Flynn JA, Solomon BS, Stewart RW. Lymphatic system. In: Ball JW, Dains JE, Flynn JA, Solomon ...
Some comments on the EPR (The reasons why experiments should still be done)
International Nuclear Information System (INIS)
Piccioni, O.; Wright, B.
1993-10-01
The authors believe that much of the contradiction they hear about the Einstein Podoisky Rosen Paradox (EPR), can be framed into the diverse ways of using or misusing the principle of ''collapse,'' (a principle, which according to Wigner, is very attractive, but not very informative). To make their points, they will mainly use the model [Lamehi-Rachti, Mittig, Phys. Rev. D14 (1976)] of two free protons scattering in the well known state of singlet, ud-du = SS, according to the Pauli Principle. (An equivalent description can be done with the polarization of photons.) The authors ask the important question whether, on separation, the two fermions will remain in the state SS, where neither proton has a definite state and the whole two fermion system has exactly zero component in any direction
Some comments on the EPR (The reasons why experiments should still be done)
Energy Technology Data Exchange (ETDEWEB)
Piccioni, O.; Wright, B.
1993-10-01
The authors believe that much of the contradiction they hear about the Einstein Podoisky Rosen Paradox (EPR), can be framed into the diverse ways of using or misusing the principle of ``collapse,`` (a principle, which according to Wigner, is very attractive, but not very informative). To make their points, they will mainly use the model [Lamehi-Rachti, Mittig, Phys. Rev. D14 (1976)] of two free protons scattering in the well known state of singlet, ud-du = SS, according to the Pauli Principle. (An equivalent description can be done with the polarization of photons.) The authors ask the important question whether, on separation, the two fermions will remain in the state SS, where neither proton has a definite state and the whole two fermion system has exactly zero component in any direction.
International Nuclear Information System (INIS)
Sokalski, A.
1982-01-01
History, organizational structure and operation principles of INIS system are presented. The preparation of input, checking and data processing as well as output production, computer forms of files and information retrieval systems are described in detail. The active participation of Poland in the system is emphasized. The possible ways of system development are presented. (author)
'Critical' behaviour of weakly bound systems
International Nuclear Information System (INIS)
Lassaut, M.; Lombard, R.J.; Bulboaca, I.
1995-11-01
The class of 3-dimensional finite range or similar potentials λW(r) is discussed, depending on a strength constant λ. The behaviour of the eigenvalue E as function of λ-λ c is studied, where λ c is the critical value at the transition from 0 → 1 bound state. For the l=0 case, E α (λ-λ c ) 2 was found, whereas the relationship is linear for l≥1. Treating l as a continuous parameter in the radial Schroedinger equation, the evolution of the power-law between l=0 and l=1 is given. Besides spherically symmetric scalar potentials, the case of a repulsive scalar potential combined with a spin-orbit component of the Thomas form is also discussed. (author)
Habayeb, A R
1987-01-01
Highlights three principal applications of system effectiveness: hardware system evaluation, organizational development and evaluation, and conflict analysis. The text emphasizes the commonality of the system effectiveness discipline. The first part of the work presents a framework for system effectiveness, partitioning and hierarchy of hardware systems. The second part covers the structure, hierarchy, states, functions and activities of organizations. Contains an extended Appendix on mathematical concepts and also several project suggestions.
DEFF Research Database (Denmark)
Aceto, Luca; Ingolfsdottir, Anna; Larsen, Kim Guldstrand
A reactive system comprises networks of computing components, achieving their goals through interaction among themselves and their environment. Thus even relatively small systems may exhibit unexpectedly complex behaviours. As moreover reactive systems are often used in safety critical systems......, the need for mathematically based formal methodology is increasingly important. There are many books that look at particular methodologies for such systems. This book offers a more balanced introduction for graduate students and describes the various approaches, their strengths and weaknesses, and when...
Directory of Open Access Journals (Sweden)
Jan Lánský
2017-06-01
Full Text Available Cryptocurrency systems are purely digital and decentralized systems that use cryptographic principles to confirm transactions. Bitcoin is the first and also the most widespread cryptocurrency. The aim of this article is to introduce Bitcoin system using a language understandable also to readers without computer science education. This article captures the Bitcoin system from three perspectives: internal structure, network and users. Emphasis is placed on brief and clear definitions (system components and their mutual relationships. A new system view of the stated terms constitutes author’s own contribution.
National Aeronautics and Space Administration — The autonomous systems (AS) project, led by NASA Ames, is developing software for system operation automation. AS technology will help astronauts make more decisions...
Schomaker, Verner; Lingafelter, E. C.
1985-01-01
Discusses characteristics of crystal systems, comparing (in table format) crystal systems with lattice types, number of restrictions, nature of the restrictions, and other lattices that can accidently show the same metrical symmetry. (JN)
International Nuclear Information System (INIS)
Vanin, V.R.
1990-01-01
The multidetector systems for high resolution gamma spectroscopy are presented. The observable parameters for identifying nuclides produced simultaneously in the reaction are analysed discussing the efficiency of filter systems. (M.C.K.)
... and symptoms may result from the tear drainage system becoming obstructed at any point from the puncta ... specializes in the eyelids, orbit, and tear drain system. It’s also important that he or she is ...
The biliary system creates, moves, stores, and releases bile into the duodenum . This helps the body digest food. It also assists ... from the liver to the duodenum. The biliary system includes: The gallbladder Bile ducts and certain cells ...
International Nuclear Information System (INIS)
Haldy, P.A.
1988-01-01
The definitions of the terms 'artificial intelligence' and 'expert systems', the methodology, areas of employment and limits of expert systems are discussed. The operation of an expert system is described, especially the presentation and organization of knowledge as well as interference and control. Methods and tools for expert system development are presented and their application in nuclear energy are briefly addressed. 7 figs., 2 tabs., 6 refs
DEFF Research Database (Denmark)
Madsen, Tanja Kidholm Osmann; Bahnsen, Chris Holmberg; Jensen, Morten Bornø
This deliverable is part of WP4. Overall WP4 is motivated by the need for automatic systems that can ease the task of annotating massive amounts of traffic data. Concretely this deliverable is related to WP4.2 - the watchdog system. The idea with the watchdog is to develop a system that can remov...
Indian Academy of Sciences (India)
system programmers should take into consideration all possi- bilities and write programs that do not fail. Responsiveness: Embedded systems should respond to events as soon as possible. For example, a patient monitoring system should process the patient'S heart signals quickly and immedi- ately notify if any abnormality ...
Pellerano, Fernando
2015-01-01
This short course provides information on what systems engineering is and how the systems engineer guides requirements, interfaces with the discipline leads, and resolves technical issues. There are many system-wide issues that either impact or are impacted by the thermal subsystem. This course will introduce these issues and illustrate them with real life examples.
DEFF Research Database (Denmark)
Manelius, Anne-Mette; Beim, Anne
2007-01-01
Opsamling af diskussioner på konferencen og udstillingen Creative Systems i september/oktober 2007. Konferencen og Udstillingen Creative Systems sætter fokus på systemer som en positiv drivkraft i den kreative skabelsesproces. CINARK inviterede fire internationale kapaciteter, som indenfor hver...
Indian Academy of Sciences (India)
IAS Admin
Systems biology seeks to study biological systems as a whole, contrary to the reductionist approach that has dominated biology. Such a view of biological systems emanating from strong foundations of molecular level understanding of the individual components in terms of their form, function and interactions is promising to ...
... Staying Safe Videos for Educators Search English Español Digestive System KidsHealth / For Parents / Digestive System What's in this ... the body can absorb and use. About the Digestive System Almost all animals have a tube-type digestive ...
Indian Academy of Sciences (India)
sumer electronic systems, they are cost sensitive. Thus their cost must be low. Robustness: Embedded systems should be robust since they operate in a harsh environment. They should endure vibrations, power supply fluctuations and excessive heat. Due to limited power supply in an embedded system, the power ...
Tsichritzis, Dionysios C; Rheinboldt, Werner
1974-01-01
Operating Systems deals with the fundamental concepts and principles that govern the behavior of operating systems. Many issues regarding the structure of operating systems, including the problems of managing processes, processors, and memory, are examined. Various aspects of operating systems are also discussed, from input-output and files to security, protection, reliability, design methods, performance evaluation, and implementation methods.Comprised of 10 chapters, this volume begins with an overview of what constitutes an operating system, followed by a discussion on the definition and pr
International Nuclear Information System (INIS)
Wauthier, J.; Fiori, R.
1990-01-01
The development, the characteristics and the applications of a multifunction system are presented. The system is used on the RBES laboratory pipes, at Marcoule. The system was developed in order to allow, without time loss, the modification of the circuit function by replacing only one component. The following elements form the multifunction system: a fixed base, which is part of the tube, a removable piece, which is inserted into the base, a cover plate and its locking system. The material, chosen among commercial trade marks, required small modifications in order to be used in the circuit [fr
DEFF Research Database (Denmark)
The tutorial will discuss the definition of cognitive systems as the possibilities to extend the current systems engineering paradigm in order to perceive, learn, reason and interact robustly in open-ended changing environments. I will also address cognitive systems in a historical perspective an...... in cognitive systems include e.g. personalized information systems, sensor network systems, social dynamics system and Web2.0, and cognitive components analysis. I will use example from our own research and link to other research activities.......The tutorial will discuss the definition of cognitive systems as the possibilities to extend the current systems engineering paradigm in order to perceive, learn, reason and interact robustly in open-ended changing environments. I will also address cognitive systems in a historical perspective...... to be modeled within a limited set of predefined specifications. There will inevitably be a need for robust decisions and behaviors in novel situations that include handling of conflicts and ambiguities based on the capability and knowledge of the artificial cognitive system. Further, there is a need...
DEFF Research Database (Denmark)
Hildebrandt, Thomas Troels; Cattani, Gian Luca
2016-01-01
An expert system is a computer system for inferring knowledge from a knowledge base, typically by using a set of inference rules. When the concept of expert systems was introduced at Stanford University in the early 1970s, the knowledge base was an unstructured set of facts. Today the knowledge...... base of expert systems is often given in terms of an ontology, extracted and built from various data sources by employing natural language-processing and statistics. To emphasize such capabilities, the term “expert” is now often replaced by “cognitive,” “knowledge,” “knowledge-based,” or “intelligent......” system. With very few exceptions, general-purpose expert systems have failed to emerge so far. However, expert systems are applied in specialized domains, particularly in healthcare. The increasing availability of large quantities of data to organizations today provides a valuable opportunity...
International Nuclear Information System (INIS)
Kagan, D.N.; Hubberstey, P.; Barker, M.G.
1985-01-01
The paper reviews the experimental and theoretical studies carried out on multicomponent alkali metal systems. Solid-liquid phase equilibria studies are mainly concerned with the systems Na-K-Rb and Na-K-Cs, and data on the liquidus temperatures in these systems are presented. The thermodynamic properties of the ternary Na-K-Cs eutectic system have been determined experimentally, and the enthalpy, heat capacity and excess functions of the alloy are given. An analysis of calculational methods used in determining thermodynamic functions of ternary liquid metals systems is described. Finally, data are tabulated for the density, compressibility, saturated vapour pressure, viscosity and thermal conductivity of the ternary Na-K-Cs eutectic system. (UK)
DEFF Research Database (Denmark)
Jensen, Mads Brath; Mortensen, Henrik Rubæk; Mullins, Michael
2009-01-01
This paper describes and reflects upon the results of an investigative project which explores the setting up of a material system - a parametric and generative assembly consisting of and taking into consideration material properties, manufacturing constraints and geometric behavior. The project...... approaches the subject through the construction of a logic-driven system aiming to explore the possibilities of a material system that fulfills spatial, structural and performative requirements concurrently and how these are negotiated in situations where they might be conflicting....
Kembellec, Gérald; Saleh, Imad
2014-01-01
Acclaimed by various content platforms (books, music, movies) and auction sites online, recommendation systems are key elements of digital strategies. If development was originally intended for the performance of information systems, the issues are now massively moved on logical optimization of the customer relationship, with the main objective to maximize potential sales. On the transdisciplinary approach, engines and recommender systems brings together contributions linking information science and communications, marketing, sociology, mathematics and computing. It deals with the understan
Federal Laboratory Consortium — The Energetic Systems Division provides full-spectrum energetic engineering services (project management, design, analysis, production support, in-service support,...
Irwin, J David
2011-01-01
Technology has now progressed to the point that intelligent systems are replacing humans in the decision making processes as well as aiding in the solution of very complex problems. In many cases intelligent systems are already outperforming human activities. Artificial neural networks are not only capable of learning how to classify patterns, such images or sequence of events, but they can also effectively model complex nonlinear systems. Their ability to classify sequences of events is probably more popular in industrial applications where there is an inherent need to model nonlinear system
DEFF Research Database (Denmark)
Aceto, Luca; Ingolfsdottir, Anna; Larsen, Kim Guldstrand
A reactive system comprises networks of computing components, achieving their goals through interaction among themselves and their environment. Thus even relatively small systems may exhibit unexpectedly complex behaviours. As moreover reactive systems are often used in safety critical systems...... they are best used. Milner's CCS and its operational semantics are introduced, together with the notions of behavioural equivalences based on bisimulation techniques and with recursive extensions of Hennessy-Milner logic. In the second part of the book, the presented theories are extended to take timing issues...
Anticipatory systems as linguistic systems
Ekdahl, Bertil
2000-05-01
The idea of system is well established although not well defined. What makes up a system depends on the observer. Thinking in terms of systems is only a convenient way to conceptualize organizations, natural or artificial, that show coherent properties. Among all properties, which can be ascribed to systems, one property seems to be more outstanding than others, namely that of being anticipatory. In nature, anticipatory properties are found only in living organizations. In this way it can be said to separate non-living systems from living because there is no indication that any natural phenomenon occurring in systems where there is no indication of life is anticipatory. The characteristic of living systems is that they are exposed to the evolution contrary to causal systems that do not undergo changes due to the influence of the environment. Causal systems are related to the past in such a way that subsequent situations can be calculated from knowledge of past situations. In causal systems the past is the cause of the present and there is no reference to the future as a determining agent, contrary to anticipatory systems where expectations are the cause of the present action. Since anticipatory properties are characteristic of living systems, this property, as all other properties in living systems, is a result of the evolution and can be found in plants as well as in animals. Thus, it is not only tied to consciousness but is found at a more basic level, i.e., in the interplay between genotype and phenotype. Anticipation is part of the genetic language in such a way that appropriate actions, for events in the anticipatory systems environment, are inscribed in the genes. Anticipatory behavior, as a result of the interpretation of the genetic language, has been selected by the evolution. In this paper anticipatory systems are regarded as linguistic systems and I argue that as such anticipation cannot be fragmented but must be holistically studied. This has the
Gröbner, Oswald
2006-01-01
The vacuum system of a particle accelerator must provide the necessary conditions for the high energy beam to avoid loss of particles and deterioration of the beam quality. In this talk we will review basic design concepts, vacuum components and procedures required for an accelerator vacuum system.
... jobs to do: B lymphocytes are like the body's military intelligence system, seeking out their targets and sending defenses ... like the soldiers, destroying the invaders that the intelligence system has ... that invades the body is called an antigen (pronounced: AN-tih-jun). ...
DEFF Research Database (Denmark)
Rose, Jørgen
1997-01-01
This report gives an overview of the different retrofitting possibilities that are available today. The report looks at both external and internal systems for external wall constructions, roof constructions, floor constructions and foundations. All systems are described in detail in respect to use...
International Nuclear Information System (INIS)
Ohyama, Takuya; Saegusa, Hiromitsu
2009-03-01
As a part of the research and development regarding characterisation of deep geological environment, the GEOMASS (GEOLOGICAL MODELLING ANALYSIS AND SIMULATION SOFTWARE) system has been developed by the Japan Atomic Energy Agency in order to carry out geological and hydrogeological modelling and groundwater flow simulation and so on. The GEOMASS system integrates a commercial geological interpretation system (EarthVision), which is used for geological modelling and visualisation, with a proprietary code for groundwater flow (FracAffinity). This integrated system allows users to make rapid improvement of models as data increases. Also, it is possible to perform more realistic groundwater flow simulation due to the capability of modelling the rock mass as a continuum with discrete hydro-structural features in the rock mass. This paper consists of 'Overview of GEOMASS system', FracAffinity Theoretical Background' and 'FracAffinity User Guide' and is edited as a GEOMASS system manual. 'Overview of GEOMASS system' describes the outline of this system. 'FracAffinity Theoretical Background' describes the information of technical background of FracAffinity software. FracAffinity User Guide' describes the structure of the FracAffinity input files, the usage of FracAffinity Interface and flow-solver. Updating of the FracAffinity has been continued as needed and FracAffinity version3.3 is the latest version at present (July 2008). (author)
Indian Academy of Sciences (India)
M Suresh Babu is currently a fourth year undergraduate student in the Department of. Computer Science and. Engineering, Narayana. Engineering College,. Nellore, Andhra Pradesh. He would like to work in operating systems, computer networks and also in Internet security concepts. Keywords. Operating systems, file sys-.
Indian Academy of Sciences (India)
The process concept and concurrency are at the heart of modern operating systems (OS). A process is the unit of work in a computer system. A process must be in main memory during execution. To improve the utilization of central processing unit. (CPU) as well as the speed of its response to its users, the computer must ...
Hoff, Karla
2016-01-01
In standard economics, individuals are rational actors and economic forces undermine institutions that impose large inefficiencies. The persistence of the caste system is evidence of the need for psychologically more realistic models of decision-making in economics. The caste system divides South Asian society into hereditary groups whose lowest ranks are represented as innately polluted. ...
Energy Technology Data Exchange (ETDEWEB)
Kaya, Yoichi
1987-01-10
In the wake of the oil shock in 1973, the need for developing more effective energy systems has been mounting. The dominant views and topics for power generation systems in terms of scale merit shifted from the advocacy of centralization/scaling-up of facilities to the soft energy path theory insisting on the efficiency of dispersed small-scale plants, followed by the recent holonic path theory which maintains that large and small scale plants should be centralized or dispersed in an optimum manner. At the same time, an autonomous-type system concept has emerged which points out that the energy systems can be operated efficiently through mutual coordination and cooperation between the suppliers and users to find a balance point that meets the market principle, while abolishing the conventional suppliers-governed system. As a result, the load management system based on time-of-use pricing or adaptive pricing is expected to be adopted widely in near future. All these new theories are aimed at developing flexible and reasonable system structures that can be adapted to the changing circumstances. (4 figs, 17 refs)
International Nuclear Information System (INIS)
Froggatt, R.J.
1981-01-01
The invention provides a two dimensional imaging system in which a pattern of radiation falling on the system is detected to give electrical signals for each of a plurality of strips across the pattern. The detection is repeated for different orientations of the strips and the whole processed by compensated back projection. For a shadow x-ray system a plurality of strip x-ray detectors are rotated on a turntable. For lower frequencies the pattern may be rotated with a Dove prism and the strips condensed to suit smaller detectors with a cylindrical lens. (author)
Sternberg, Shlomo
2010-01-01
Celebrated mathematician Shlomo Sternberg, a pioneer in the field of dynamical systems, created this modern one-semester introduction to the subject for his classes at Harvard University. Its wide-ranging treatment covers one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials offer a variety of online components, including PowerPoint lecture slides for professors and MATLAB exercises.""Even though there are many dynamical systems books on the market, this book is bound to become a classic. The the
Directory of Open Access Journals (Sweden)
Oset E.
2012-12-01
Full Text Available I make a short review of the situation of the kaonic systems, with novel information supporting the two Λ(1405 states from the K-d → nπΣ reaction. A review is made of the K¯$ar K$NN system with recent calculations converging to smaller bindings and larger widths. Novel systems involving two kaons and one nucleon or three kaons are also reported and finally a short discussion is made of the analogous state DNN for which recent studies find a large binding and a small width.
U Rehman, Habib; McKee, Nida A; McKee, Michael L
2016-01-15
Several ring systems (Saturn systems) have been studied using DFT methods that include dispersion effects. Comparison with X-ray structures are made with three systems, and the agreement is quite good. Binding enthalpies and binding free energies in dichloromethane and toluene have been computed. The effect of an encapsulated lithium cation is accessed by comparing C60 @(C6 H4 )10 and [Li@C60 @(C6 H4 )10 ](+). The [Li@C60 ](+) cation is a much better acceptor than C60 which leads to greater donor-acceptor interactions and larger charge transfer from the ring to [Li@C60 ](+). © 2015 Wiley Periodicals, Inc.
Avdeev, Alexander A
2016-01-01
This monograph presents a systematic analysis of bubble system mathematics, using the mechanics of two-phase systems in non-equilibrium as the scope of analysis. The author introduces the thermodynamic foundations of bubble systems, ranging from the fundamental starting points to current research challenges. This book addresses a range of topics, including description methods of multi-phase systems, boundary and initial conditions as well as coupling requirements at the phase boundary. Moreover, it presents a detailed study of the basic problems of bubble dynamics in a liquid mass: growth (dynamically and thermally controlled), collapse, bubble pulsations, bubble rise and breakup. Special emphasis is placed on bubble dynamics in turbulent flows. The analysis results are used to write integral equations governing the rate of vapor generation (condensation) in non-equilibrium flows, thus creating a basis for solving a number of practical problems. This book is the first to present a comprehensive theory of boil...
African Journals Online (AJOL)
1,3,2-DIAZABORACYCLOALKANE. RING SYSTEM. Negussie Retta" and Robert H. Neilson. 'Department of Chemistry, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia. Department of Chemistry, Texas Christian University.
Bartlett, R. G., Jr.
1973-01-01
The general anatomy and function of the human respiratory system is summarized. Breathing movements, control of breathing, lung volumes and capacities, mechanical relations, and factors relevant to respiratory support and equipment design are discussed.
CSIR Research Space (South Africa)
Wessels, Konrad J
2006-01-01
Full Text Available This chapter describes the current condition of dryland systems with respect to the services they provide and the drivers that determine trends in their provision. Within the context of the mounting global concern caused by land degradation...
Directory of Open Access Journals (Sweden)
Lixin Dong
2008-11-01
Full Text Available Two strategies towards the realization of nanotechnology have been presented, i.e., top-down and bottom up. The former one is mainly based on nanofabrication and includes technologies such as nano-lithography, nano-imprint, and etching. Presently, they are still 2D fabrication processes with low resolution. The later one is an assembly-based technique. At present, it includes such items as self-assembly, dip-pen lithography, and directed self-assembly. These techniques can generate regular nano patterns in large scales. To fabricate 3D complex nano devices there are still no effective ways by so far. Here we show our effort on the development of a nano laboratory, a prototype nanomanufacturing system, based on nanorobotic manipulations. In which, we take a hybrid strategy as shown in Fig. 1. In this system, nano fabrication and nano assembly can be performed in an arbitrary order to construct nano building blocks and finally nano devices. The most important feature in this system is that the products can be fed back into the system to shrink the system part by part leading to nanorobots. Property characterization can be performed in each intermediate process. Due to the nanorobotic manipulation system, dynamic measurement can be performed rather than conventional static observations.
Directory of Open Access Journals (Sweden)
Hermann Kopetz
2013-11-01
Full Text Available The global availability of communication services makes it possible to interconnect independently developed systems, called constituent systems, to provide new synergistic services and more efficient economic processes. The characteristics of these new Systems-of-Systems are qualitatively different from the classic monolithic systems. In the first part of this presentation we elaborate on these differences, particularly with respect to the autonomy of the constituent systems, to dependability, continuous evolution, and emergence. In the second part we look at a SoS from the point of view of cognitive complexity. Cognitive complexity is seen as a relation between a model of an SoS and the observer. In order to understand the behavior of a large SoS we have to generate models of adequate simplicity, i.e, of a cognitive complexity that can be handled by the limited capabilities of the human mind. We will discuss the importance of properly specifying and placing the relied-upon message interfaces between the constituent systems that form an open SoS and discuss simplification strategies that help to reduce the cognitive complexity.
Energy Technology Data Exchange (ETDEWEB)
Graham, R.L.
1998-03-17
The Systems Studies Activity had two objectives: (1) to investigate nontechnical barriers to the deployment of biomass production and supply systems and (2) to enhance and extend existing systems models of bioenergy supply and use. For the first objective, the Activity focused on existing bioenergy markets. Four projects were undertaken: a comparative analysis of bioenergy in Sweden and Austria; a one-day workshop on nontechnical barriers jointly supported by the Production Systems Activity; the development and testing of a framework for analyzing barriers and drivers to bioenergy markets; and surveys of wood pellet users in Sweden, Austria and the US. For the second objective, two projects were undertaken. First, the Activity worked with the Integrated BioEnergy Systems (TBS) Activity of TEA Bioenergy Task XIII to enhance the BioEnergy Assessment Model (BEAM). This model is documented in the final report of the IBS Activity. The Systems Studies Activity contributed to enhancing the feedstock portion of the model by developing a coherent set of willow, poplar, and switchgrass production modules relevant to both the US and the UK. The Activity also developed a pretreatment module for switchgrass. Second, the Activity sponsored a three-day workshop on modeling bioenergy systems with the objectives of providing an overview of the types of models used to evaluate bioenergy and promoting communication among bioenergy modelers. There were nine guest speakers addressing different types of models used to evaluate different aspects of bioenergy, ranging from technoeconomic models based on the ASPEN software to linear programming models to develop feedstock supply curves for the US. The papers from this workshop have been submitted to Biomass and Bioenergy and are under editorial review.
Fiscal system analysis - contractual systems
International Nuclear Information System (INIS)
Kaiser, M.J.
2006-01-01
Production sharing contracts are one of the most popular forms of contractual system used in petroleum agreements around the world, but the manner in which the fiscal terms and contract parameters impact system measures is complicated and not well understood. The purpose of this paper is to quantify the influence of private and market uncertainty in contractual fiscal systems. A meta-modelling approach is employed that couples the results of a simulation model with regression analysis to construct numerical functionals that quantify the fiscal regime. Relationships are derived that specify how the present value, rate of return, and take statistics vary as a function of the system parameters. The deepwater Girassol field development in Angola is taken as a case study. (author)
Olsen, Lola
1992-01-01
In addition to the discussions, Ocean Climate Data Workshop hosts gave participants an opportunity to hear about, see, and test for themselves some of the latest computer tools now available for those studying climate change and the oceans. Six speakers described computer systems and their functions. The introductory talks were followed by demonstrations to small groups of participants and some opportunities for participants to get hands-on experience. After this familiarization period, attendees were invited to return during the course of the Workshop and have one-on-one discussions and further hands-on experience with these systems. Brief summaries or abstracts of introductory presentations are addressed.
1992-01-01
Technology originating in a NASA-sponsored study of the measurement of microbial growth in zero gravity led to the development of Biomerieux Vitek, Inc.'s VITEK system. VITEK provides a physician with accurate diagnostic information and identifies the most effective medication. Test cards are employed to identify organisms and determine susceptibility to antibiotics. A photo-optical scanner scans the card and monitors changes in the growth of cells contained within the card. There are two configurations - VITEK and VITEK JR as well as VIDAS, a companion system that detects bacteria, viruses, etc. from patient specimens. The company was originally created by McDonnell Douglas, the NASA contractor.
DEFF Research Database (Denmark)
Schürmann, Carsten; Poswolsky, Adam
2009-01-01
Delphin is a functional programming language [Adam Poswolsky and Carsten Schürmann. Practical programming with higher-order encodings and dependent types. In European Symposium on Programming (ESOP), 2008] utilizing dependent higher-order datatypes. Delphin's two-level type-system cleanly separates...... data from computation, allowing for decidable type checking. The data level is LF [Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of the Association for Computing Machinery, 40(1):143-184, January 1993], which allows for the specification of deductive systems...
Van Steen, Maarten
2017-01-01
For this third edition of "Distributed Systems," the material has been thoroughly revised and extended, integrating principles and paradigms into nine chapters: 1. Introduction 2. Architectures 3. Processes 4. Communication 5. Naming 6. Coordination 7. Replication 8. Fault tolerance 9. Security A separation has been made between basic material and more specific subjects. The latter have been organized into boxed sections, which may be skipped on first reading. To assist in understanding the more algorithmic parts, example programs in Python have been included. The examples in the book leave out many details for readability, but the complete code is available through the book's Website, hosted at www.distributed-systems.net.
Transparency in nanophotonic quantum wires
International Nuclear Information System (INIS)
Singh, Mahi R
2009-01-01
We have studied the quantum optics of a photonic quantum nanowire doped with an ensemble of three-level nanoparticles. The wire is made from two photonic crystals A and B. Crystal A is embedded within crystal B and acts as a photonic nanowire. It is considered that the conduction band of crystal A lies below that of crystal B. As a result, photons are confined in crystal A and are reflected from crystal B. The bound states of the confined photons are calculated using the transfer matrix method. It is found that the number of bound states in the wire depends on the size of the wire and the energy difference between the conduction band extrema of crystals A and B. The absorption coefficient of the system has also been calculated using the Schroedinger equation method. It is considered that the nanoparticles interact with the photonic bound states. Numerical simulations show that when one of the resonance energies lies near the bound state, the system becomes transparent. However, when the resonance energy lies away from the bound state the crystal reverts to an absorbing state. Similarly, when the radius of the dielectric spheres is changed the location of the transparency peak is shifted. This means that the present system can be switched between two states by changing the size of the wire and the transition energy. These findings can be used to make new types of optical devices.
Energy Technology Data Exchange (ETDEWEB)
Wiley, H S.
2006-06-01
The biology revolution over the last 50 years has been driven by the ascendancy of molecular biology. This was enthusiastically embraced by most biologists because it took us into increasingly familiar territory. It took mysterious processes, such as the replication of genetic material and assigned them parts that could be readily understood by the human mind. When we think of ''molecular machines'' as being the underlying basis of life, we are using a paradigm derived from everyday experience. However, the price that we paid was a relentless drive towards reductionism and the attendant balkanization of biology. Now along comes ''systems biology'' that promises us a solution to the problem of ''knowing more and more about less and less''. Unlike molecular biology, systems biology appears to be taking us into unfamiliar intellectual territory, such as statistics, mathematics and computer modeling. Not surprisingly, systems biology has met with widespread skepticism and resistance. Why do we need systems biology anyway and how does this new area of research promise to change the face of biology in the next couple of decades?
Indian Academy of Sciences (India)
areas in which this type is useful are multimedia, virtual reality, and advanced scientific projects such as undersea exploration and planetary rovers. Because of the expanded uses for soft real-time functionality, it is finding its way into most current operating systems, including major versions of Unix and Windows NT OS.
Bell, Samantha
2018-01-01
"Using the new Next Generation Science Standards (NGSS), the My World of Science series provides the earliest readers with background on key STEM concepts. Solar System explores basic planetary astronomy in a simple, engaging way that will help readers develop word recognition and reading skills. Includes a glossary and index."-- Provided by publisher.
Christakis, Alexander; Hammond, Debora; Jackson, Michael; Laszlo, Alexander; Mitroff, Ian; Snowden, Dave; Troncale, Len; Carr-Chellman, Alison; Spector, J. Michael; Wilson, Brent
2013-01-01
Scholars representing the field of systems science were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Alexander Christakis, Debora Hammond, Michael Jackson, Alexander Laszlo, Ian Mitroff, Dave…
International Nuclear Information System (INIS)
Mitchell, C.P.
1997-01-01
The objective of this paper is to demonstrate that a bioenergy system has to be considered as an integrated process in which each stage or step interacts with other steps in the overall process. There are a number of stages in the supply and conversion of woody biomass for energy. Each step in the chain has implications for the next step and for overall system efficiency. The resource can take many forms and will have varying physical and chemical characteristics which will influence the efficiency and cost of conversion. The point in the supply chain at which size and moisture content is reduced and the manner in which it is done is influential in determining feedstock delivered cost and overall system costs. To illustrate the interactions within the overall system, the influence of the nature, size and moisture content of delivered feedstocks on costs of generating electricity via thermal conversion processes is examined using a model developed to investigate the inter-relationships between the stages in the supply chain. (author)
Drenth, K.F.
1999-01-01
The transport system comprises at least one road surface (2) and at least one vehicle (4) on wheels (6). The road surface (2) has a substantially bowl-shaped cross section and the vehicle (4) is designed so that the wheels (6) run directly on the road surface (2) while the road surface (2) acts as a
Heteren, S. van
2015-01-01
Barrier-system dynamics are a function of antecedent topography and substrate lithology, Relative sea-level (RSL) changes, sediment availability and type, climate, vegetation type and cover, and various aero- and hydrodynamic processes during fair-weather conditions and extreme events. Global change
A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...
Aschbacher, Michael; Oliver, Bob
2016-01-01
This is a survey article on the theory of fusion systems, a relatively new area of mathematics with connections to local finite group theory, algebraic topology, and modular representation theory. We first describe the general theory and then look separately at these connections.
DEFF Research Database (Denmark)
Benveniste, Helene; Nedergaard, Maiken
2016-01-01
a so-called glymphatic pathway which comprise the peri-vascular space and acuaporin-4 water channels on astroglial endfeet. As such the glymphatic pathway can be perceived as a hitherto overlooked compartment of the extracellular space of the central nervous system which is involved in clearance...
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions
Alonso-Izquierdo, A.
2018-02-01
In this paper we examine the scattering processes among the members of a rich family of kinks which arise in a (1+1)-dimensional relativistic two scalar field theory. These kinks carry two different topological charges that determine the mutual interactions between the basic energy lumps (extended particles) described by these topological defects. Processes like topological charge exchange, kink-antikink bound state formation or kink repulsion emerge depending on the charges of the scattered particles. Two-bounce resonant windows have been found in the antikink-kink scattering processes, but not in the kink-antikink interactions.
DEFF Research Database (Denmark)
At first glance, this book may appear eclectic. It contains writings from architectural practice in a language and structure based on subjective views and experiences, combined with research contributions based on systematic design investigations of discrete computational systems. Discussions range...... from an undulating masonry wall at the University of Virginia erected by then-U.S. President Thomas Jefferson to agile robotic manufacturing processes and computational solver strategies based on graph networks. Conversely, the focus of this anthology is expressed directly in the title: bricks...... and systems. The basis for this theme is the work conducted at the Utzon(x) Research Group at Aalborg University, in combination with the rich tradition and implementation of masonry work in Denmark, which has attracted increasing attention from architectural practitioners and researchers alike. How should...
International Nuclear Information System (INIS)
Barbosa, H.J.C.; Guerreiro, J.N.C.; Toledo, E.M.
1980-01-01
Proceedings recently incorporated to TUBO system like the seismic analysis and the stress verification acccording to ASME-Boiler Rule and Pressure Vessel Code-section III are presented. The seismic analysis comprehend the consideration of uniform motion of the support, its multiple excitation, and the attainment of the spectral response for both cases. The module for stress verification uses stresses resulting fromthe combination of the loads specified by the user, in the automatic verification of permissible stresses for the pipings class 1 and 2, based on criteria NB-3650 and NC-3650 of ASME. The implementation of these proceedings in the TUBO system are discussed and a numerical example that covers the different phases of a stress analysis in a piping is presented [pt
DEFF Research Database (Denmark)
Poletto, Marco; Pasquero, Claudia
This is a manual investigating the subject of urban ecology and systemic development from the perspective of architectural design. It sets out to explore two main goals: to discuss the contemporary relevance of a systemic practice to architectural design, and to share a toolbox of informational...... design protocols developed to describe the city as a territory of self-organization. Collecting together nearly a decade of design experiments by the authors and their practice, ecoLogicStudio, the book discusses key disciplinary definitions such as ecologic urbanism, algorithmic architecture, bottom......-up or tactical design, behavioural space and the boundary of the natural and the artificial realms within the city and architecture. A new kind of "real-time world-city" is illustrated in the form of an operational design manual for the assemblage of proto-architectures, the incubation of proto...
Bilateral system. The ABACC system
International Nuclear Information System (INIS)
Nicolas, Ruben O.
2001-01-01
After relating the antecedents of the creation of the Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials (ABACC), the paper describes the common system of accounting and control set up by Argentina and Brazil. The organization of ABACC is also outlined
Physical system requirements: Overall system
International Nuclear Information System (INIS)
1992-01-01
The Nuclear Waste Policy Act (NWPA) of 1982 assigned to the Department of Energy (DOE) the responsibility for managing the disposal of spent nuclear fuel and high-level radioactive waste and established the Office of Civilian Radioactive Waste Management (OCRWM) for that purpose. The Secretary of Energy, in his November 1989 report to Congress (DOE/RW-0247), announced three new initiatives for conduct of the Civilian Radioactive Waste Management (CRWM) program. One of these initiatives was to establish improved management structure and procedures. In response, OCRWM performed a management study and the Direct subsequently issued the Management Systems Improvement Strategy (MSIS) on August 10, 1990, calling for a rigorous implementation of systems engineering principles with a special emphasis on functional analysis. This approach establishes a framework for integrating the program management efforts with the technical requirements analysis into a single, unified, and consistent program. The functional analysis approach recognizes that just the facilities and equipment comprising the physical waste management system must perform certain functions, so must certain programmatic and management functions be performed within the program in order to successfully bring the physical system into being
International Nuclear Information System (INIS)
Soulen, R.L.; Grosh, J.
1984-01-01
Invasive cardiovascular diagnostic procedures involve a finite risk and therefore can be recommended only when the benefit appears to exceed the risk by a substantial margin. The risk/benefit ratio varies not only with the procedure concerned but with the status of the vascular system, concomitant diseases, and the risks of both the suspected illness and its treatment. The risks inherent in the procedures per se are detailed in the sections to follow
Baumann, Mark J.; Kuca, Michal; Aragon, Mona L.
2016-02-02
A security system includes a structure having a structural surface. The structure is sized to contain an asset therein and configured to provide a forceful breaching delay. The structure has an opening formed therein to permit predetermined access to the asset contained within the structure. The structure includes intrusion detection features within or associated with the structure that are activated in response to at least a partial breach of the structure.
2015-07-31
early lifecycle phases will have intended quality outcomes. Requirements and Quality Validation Develop requirements elicitation and management...gradients within a system. That is, there are attack surfaces at internal APIs and service interfaces. The complexity also arises from particular features...interoperation (compatibility and support for with SoS APIs and practices), as well as a diverse range of ilities (evolvability/extensibility
Shannon, R.H.; Williamson, H.E.
1962-10-30
A boiling water type nuclear reactor power system having improved means of control is described. These means include provisions for either heating the coolant-moderator prior to entry into the reactor or shunting the coolantmoderator around the heating means in response to the demand from the heat engine. These provisions are in addition to means for withdrawing the control rods from the reactor. (AEC)
Directory of Open Access Journals (Sweden)
Yi Zhao
2012-01-01
Full Text Available Quantum instanton (QI approximation is recently proposed for the evaluations of the chemical reaction rate constants with use of full dimensional potential energy surfaces. Its strategy is to use the instanton mechanism and to approximate time-dependent quantum dynamics to the imaginary time propagation of the quantities of partition function. It thus incorporates the properties of the instanton idea and the quantum effect of partition function and can be applied to chemical reactions of complex systems. In this paper, we present the QI approach and its applications to several complex systems mainly done by us. The concrete systems include, (1 the reaction of H+CH4→H2+CH3, (2 the reaction of H+SiH4→H2+SiH3, (3 H diffusion on Ni(100 surface; and (4 surface-subsurface transport and interior migration for H/Ni. Available experimental and other theoretical data are also presented for the purpose of comparison.
Solvable Relativistic Hydrogenlike System in Supersymmetric Yang-Mills Theory
DEFF Research Database (Denmark)
Caron-Huot, Simon; Henn, Johannes M.
2014-01-01
this symmetry? In this Letter we show that the answer is positive: in the nonrelativistic limit, we identify the dual conformal symmetry of planar N=4 super Yang-Mills theory with the well-known symmetries of the hydrogen atom. We point out that the dual conformal symmetry offers a novel way to compute......he classical Kepler problem, as well as its quantum mechanical version, the hydrogen atom, enjoys a well-known hidden symmetry, the conservation of the Laplace-Runge-Lenz vector, which makes these problems superintegrable. Is there a relativistic quantum field theory extension that preserves...... the spectrum of bound states of massive W bosons in the theory. We perform nontrivial tests of this setup at weak and strong coupling and comment on the possible extension to arbitrary values of the coupling....
Solvable relativistic hydrogenlike system in supersymmetric Yang-Mills theory.
Caron-Huot, Simon; Henn, Johannes M
2014-10-17
The classical Kepler problem, as well as its quantum mechanical version, the hydrogen atom, enjoys a well-known hidden symmetry, the conservation of the Laplace-Runge-Lenz vector, which makes these problems superintegrable. Is there a relativistic quantum field theory extension that preserves this symmetry? In this Letter we show that the answer is positive: in the nonrelativistic limit, we identify the dual conformal symmetry of planar N = 4 super Yang-Mills theory with the well-known symmetries of the hydrogen atom. We point out that the dual conformal symmetry offers a novel way to compute the spectrum of bound states of massive W bosons in the theory. We perform nontrivial tests of this setup at weak and strong coupling and comment on the possible extension to arbitrary values of the coupling.
Topologically protected states in one-dimensional systems
Fefferman, C L; Weinstein, M I
2017-01-01
The authors study a class of periodic Schrödinger operators, which in distinguished cases can be proved to have linear band-crossings or "Dirac points". They then show that the introduction of an "edge", via adiabatic modulation of these periodic potentials by a domain wall, results in the bifurcation of spatially localized "edge states". These bound states are associated with the topologically protected zero-energy mode of an asymptotic one-dimensional Dirac operator. The authors' model captures many aspects of the phenomenon of topologically protected edge states for two-dimensional bulk structures such as the honeycomb structure of graphene. The states the authors construct can be realized as highly robust TM-electromagnetic modes for a class of photonic waveguides with a phase-defect.
Birkhoff, George D
1927-01-01
His research in dynamics constitutes the middle period of Birkhoff's scientific career, that of maturity and greatest power. -Yearbook of the American Philosophical Society The author's great book€¦is well known to all, and the diverse active modern developments in mathematics which have been inspired by this volume bear the most eloquent testimony to its quality and influence. -Zentralblatt MATH In 1927, G. D. Birkhoff wrote a remarkable treatise on the theory of dynamical systems that would inspire many later mathematicians to do great work. To a large extent, Birkhoff was writing about his o
Knoll, Peter
Videosensoren spielen für Fahrerassistenz systeme eine zentrale Rolle, da sie die Interpretation visueller Informationen (Objektklassifikation) gezielt unterstützen. Im Heckbereich kann die Video sensorik in der einfachsten Variante die ultraschallbasierte Einparkhilfe bei Einpark- und Rangiervorgängen unterstützen. Beim Nachtsichtsystem NightVision wird das mit Infrarotlicht angestrahlte Umfeld vor dem Fahrzeug mit einer Frontkamera aufgenommen und im Fahrzeugcockpit auf einem Display dem Fahrer angezeigt (s. Nachtsichtsysteme). Andere Fahrerassistenzsysteme verarbeiten die Videosignale und generieren daraus gezielt Informationen, die für eigenständige Funktionen (z. B. Spurverlassenswarner) oder aber als Zusatzinformation für andere Funktionen ausgewertet werden (Sensordatenfusion).
Bourlès, Henri
2013-01-01
Linear systems have all the necessary elements (modeling, identification, analysis and control), from an educational point of view, to help us understand the discipline of automation and apply it efficiently. This book is progressive and organized in such a way that different levels of readership are possible. It is addressed both to beginners and those with a good understanding of automation wishing to enhance their knowledge on the subject. The theory is rigorously developed and illustrated by numerous examples which can be reproduced with the help of appropriate computation software. 60 exe
Todreas, Neil E
2011-01-01
Principal Characteristics of Power ReactorsIntroductionPower CyclesPrimary Coolant SystemsReactor CoresFuel AssembliesAdvanced Water- and Gas-Cooled Reactors (Generation III And III+)Advanced Thermal and Fast Neutron Spectrum Reactors (Generation IV)ReferencesProblemsThermal Design Principles and ApplicationIntroductionOverall Plant Characteristics Influenced by Thermal Hydraulic ConsiderationsEnergy Production and Transfer ParametersThermal Design LimitsThermal Design MarginFigures of Merit for Core Thermal PerformanceThe Inverted Fuel ArrayThe Equivalent Annulus ApproximationReferencesProble